101
|
Belousov AB, Fontes JD. Neuronal gap junctions: making and breaking connections during development and injury. Trends Neurosci 2013; 36:227-36. [PMID: 23237660 PMCID: PMC3609876 DOI: 10.1016/j.tins.2012.11.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 11/02/2012] [Accepted: 11/02/2012] [Indexed: 01/08/2023]
Abstract
In the mammalian central nervous system (CNS), coupling of neurons by gap junctions (i.e., electrical synapses) and the expression of the neuronal gap junction protein, connexin 36 (Cx36), transiently increase during early postnatal development. The levels of both subsequently decline and remain low in the adult, confined to specific subsets of neurons. However, following neuronal injury [such as ischemia, traumatic brain injury (TBI), and epilepsy], the coupling and expression of Cx36 rise. Here we summarize new findings on the mechanisms of regulation of Cx36-containing gap junctions in the developing and mature CNS and following injury. We also review recent studies suggesting various roles for neuronal gap junctions and in particular their role in glutamate-mediated neuronal death.
Collapse
Affiliation(s)
- Andrei B Belousov
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
102
|
Petersen C, Crochet S. Synaptic Computation and Sensory Processing in Neocortical Layer 2/3. Neuron 2013; 78:28-48. [DOI: 10.1016/j.neuron.2013.03.020] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2013] [Indexed: 11/26/2022]
|
103
|
Parekh R, Ascoli GA. Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron 2013; 77:1017-38. [PMID: 23522039 PMCID: PMC3653619 DOI: 10.1016/j.neuron.2013.03.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2013] [Indexed: 02/07/2023]
Abstract
The importance of neuronal morphology in brain function has been recognized for over a century. The broad applicability of "digital reconstructions" of neuron morphology across neuroscience subdisciplines has stimulated the rapid development of numerous synergistic tools for data acquisition, anatomical analysis, three-dimensional rendering, electrophysiological simulation, growth models, and data sharing. Here we discuss the processes of histological labeling, microscopic imaging, and semiautomated tracing. Moreover, we provide an annotated compilation of currently available resources in this rich research "ecosystem" as a central reference for experimental and computational neuroscience.
Collapse
Affiliation(s)
- Ruchi Parekh
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030, USA
| | - Giorgio A. Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030, USA
| |
Collapse
|
104
|
Albéri L, Lintas A, Kretz R, Schwaller B, Villa AEP. The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. J Neurophysiol 2013; 109:2827-41. [PMID: 23486206 DOI: 10.1152/jn.00375.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The reticular thalamic nucleus (RTN) of the mouse is characterized by an overwhelming majority of GABAergic neurons receiving afferences from both the thalamus and the cerebral cortex and sending projections mainly on thalamocortical neurons. The RTN neurons express high levels of the "slow Ca(2+) buffer" parvalbumin (PV) and are characterized by low-threshold Ca(2+) currents, I(T). We performed extracellular recordings in ketamine/xylazine anesthetized mice in the rostromedial portion of the RTN. In the RTN of wild-type and PV knockout (PVKO) mice we distinguished four types of neurons characterized on the basis of their firing pattern: irregular firing (type I), medium bursting (type II), long bursting (type III), and tonically firing (type IV). Compared with wild-type mice, we observed in the PVKOs the medium bursting (type II) more frequently than the long bursting type and longer interspike intervals within the burst without affecting the number of spikes. This suggests that PV may affect the firing properties of RTN neurons via a mechanism associated with the kinetics of burst discharges. Ca(v)3.2 channels, which mediate the I(T) currents, were more localized to the somatic plasma membrane of RTN neurons in PVKO mice, whereas Ca(v)3.3 expression was similar in both genotypes. The immunoelectron microscopy analysis showed that Ca(v)3.2 channels were localized at active axosomatic synapses, thus suggesting that the differential localization of Ca(v)3.2 in the PVKOs may affect bursting dynamics. Cross-correlation analysis of simultaneously recorded neurons from the same electrode tip showed that about one-third of the cell pairs tended to fire synchronously in both genotypes, independent of PV expression. In summary, PV deficiency does not affect the functional connectivity between RTN neurons but affects the distribution of Ca(v)3.2 channels and the dynamics of burst discharges of RTN cells, which in turn regulate the activity in the thalamocortical circuit.
Collapse
Affiliation(s)
- Lavinia Albéri
- Unit of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | | | | | | | | |
Collapse
|
105
|
Hughes DI, Boyle KA, Kinnon CM, Bilsland C, Quayle JA, Callister RJ, Graham BA. HCN4 subunit expression in fast-spiking interneurons of the rat spinal cord and hippocampus. Neuroscience 2013; 237:7-18. [PMID: 23357121 PMCID: PMC3620460 DOI: 10.1016/j.neuroscience.2013.01.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/16/2012] [Accepted: 01/07/2013] [Indexed: 11/27/2022]
Abstract
Hyperpolarisation-activated (Ih) currents are considered important for dendritic integration, synaptic transmission, setting membrane potential and rhythmic action potential (AP) discharge in neurons of the central nervous system. Hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels underlie these currents and are composed of homo- and hetero-tetramers of HCN channel subunits (HCN1–4), which confer distinct biophysical properties on the channel. Despite understanding the structure–function relationships of HCN channels with different subunit stoichiometry, our knowledge of their expression in defined neuronal populations remains limited. Recently, we have shown that HCN subunit expression is a feature of a specific population of dorsal horn interneurons that exhibit high-frequency AP discharge. Here we expand on this observation and use neuroanatomical markers to first identify well-characterised neuronal populations in the lumbar spinal cord and hippocampus and subsequently determine whether HCN4 expression correlates with high-frequency AP discharge in these populations. In the spinal cord, HCN4 is expressed in several putative inhibitory interneuron populations including parvalbumin (PV)-expressing islet cells (84.1%; SD: ±2.87), in addition to all putative Renshaw cells and Ia inhibitory interneurons. Similarly, virtually all PV-expressing cells in the hippocampal CA1 subfield (93.5%; ±3.40) and the dentate gyrus (90.9%; ±6.38) also express HCN4. This HCN4 expression profile in inhibitory interneurons mirrors both the prevalence of Ih sub-threshold currents and high-frequency AP discharge. Our findings indicate that HCN4 subunits are expressed in several populations of spinal and hippocampal interneurons, which are known to express both Ih sub-threshold currents and exhibit high-frequency AP discharge. As HCN channel function plays a critical role in pain perception, learning and memory, and sleep as well as the pathogenesis of several neurological diseases, these findings provide important insights into the identity and neurochemical status of cells that could underlie such conditions.
Collapse
Affiliation(s)
- D I Hughes
- Spinal Cord Research Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
106
|
Mittag J, Lyons DJ, Sällström J, Vujovic M, Dudazy-Gralla S, Warner A, Wallis K, Alkemade A, Nordström K, Monyer H, Broberger C, Arner A, Vennström B. Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions. J Clin Invest 2012; 123:509-16. [PMID: 23257356 DOI: 10.1172/jci65252] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/18/2012] [Indexed: 12/18/2022] Open
Abstract
Thyroid hormone is well known for its profound direct effects on cardiovascular function and metabolism. Recent evidence, however, suggests that the hormone also regulates these systems indirectly through the central nervous system. While some of the molecular mechanisms underlying the hormone's central control of metabolism have been identified, its actions in the central cardiovascular control have remained enigmatic. Here, we describe a previously unknown population of parvalbuminergic neurons in the anterior hypothalamus that requires thyroid hormone receptor signaling for proper development. Specific stereotaxic ablation of these cells in the mouse resulted in hypertension and temperature-dependent tachycardia, indicating a role in the central autonomic control of blood pressure and heart rate. Moreover, the neurons exhibited intrinsic temperature sensitivity in patch-clamping experiments, providing a new connection between cardiovascular function and core temperature. Thus, the data identify what we believe to be a novel hypothalamic cell population potentially important for understanding hypertension and indicate developmental hypothyroidism as an epigenetic risk factor for cardiovascular disorders. Furthermore, the findings may be beneficial for treatment of the recently identified patients that have a mutation in thyroid hormone receptor α1.
Collapse
Affiliation(s)
- Jens Mittag
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Forrest D, Wess J. A heartfelt response: new thyroid hormone-sensitive neurons in the hypothalamus. J Clin Invest 2012; 123:117-20. [PMID: 23257363 DOI: 10.1172/jci67448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thyroid hormone is a well-known regulator of metabolic and cardiovascular functions, and signaling through thyroid receptors has differential effects on cells depending on the receptor isoform that they express. In this issue of the JCI, Mittag et al. provide evidence that thyroid hormone receptors are essential for the formation of a population of parvalbuminergic neurons in the anterior hypothalamus, linking, for the first time, impaired thyroid hormone signaling during development to cellular deficits in the hypothalamus. Since this newly discovered cell group is predicted to play a role in regulating cardiovascular function, these findings suggest that developmental hypothyroidism may be the cause of cardiovascular disorders later in life.
Collapse
Affiliation(s)
- Douglas Forrest
- Nuclear Receptor Biology Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland 20892, USA
| | | |
Collapse
|
108
|
Nagy JI. Evidence for connexin36 localization at hippocampal mossy fiber terminals suggesting mixed chemical/electrical transmission by granule cells. Brain Res 2012; 1487:107-22. [PMID: 22771400 PMCID: PMC3501615 DOI: 10.1016/j.brainres.2012.05.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 11/25/2022]
Abstract
Electrical synaptic transmission via gap junctions has become an accepted feature of neuronal communication in the mammalian brain, and occurs often between dendrites of interneurons in major brain structures, including the hippocampus. Electrical and dye-coupling has also been reported to occur between pyramidal cells in the hippocampus, but ultrastructurally-identified gap junctions between these cells have so far eluded detection. Gap junctions can be formed by nerve terminals, where they contribute the electrical component of mixed chemical/electrical synaptic transmission, but mixed synapses have only rarely been described in mammalian CNS. Here, we used immunofluorescence localization of the major gap junction forming protein connexin36 to examine its possible association with hippocampal pyramidal cells. In addition to labeling associated with gap junctions between dendrites of parvalbumin-positive interneurons, a high density of fine, punctate immunolabeling for Cx36, non-overlapping with parvalbumin, was found in subregions of the stratum lucidum in the ventral hippocampus of rat brain. A high percentage of Cx36-positive puncta in the stratum lucidum was localized to mossy fiber terminals, as indicated by co-localization of Cx36-puncta with the mossy terminal marker vesicular glutamate transporter-1, as well as with other proteins that are highly concentrated in, and diagnostic markers of, these terminals. These results suggest that mossy fiber terminals abundantly form mixed chemical/electrical synapses with pyramidal cells, where they may serve as intermediaries for the reported electrical and dye-coupling between ensembles of these principal cells. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, Canada R3E 0J9.
| |
Collapse
|
109
|
Moss J, Toni N. A circuit-based gatekeeper for adult neural stem cell proliferation: Parvalbumin-expressing interneurons of the dentate gyrus control the activation and proliferation of quiescent adult neural stem cells. Bioessays 2012; 35:28-33. [PMID: 23165996 DOI: 10.1002/bies.201200136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Newborn neurons are generated in the adult hippocampus from a pool of self-renewing stem cells located in the subgranular zone (SGZ) of the dentate gyrus. Their activation, proliferation, and maturation depend on a host of environmental and cellular factors but, until recently, the contribution of local neuronal circuitry to this process was relatively unknown. In their recent publication, Song and colleagues have uncovered a novel circuit-based mechanism by which release of the neurotransmitter, γ-aminobutyric acid (GABA), from parvalbumin-expressing (PV) interneurons, can hold radial glia-like (RGL) stem cells of the adult SGZ in a quiescent state. This tonic GABAergic signal, dependent upon the activation of γ(2) subunit-containing GABA(A) receptors of RGL stem cells, can thus prevent their proliferation and subsequent maturation or return them to quiescence if previously activated. PV interneurons are thus capable of suppressing neurogenesis during periods of high network activity and facilitating neurogenesis when network activity is low.
Collapse
Affiliation(s)
- Jonathan Moss
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
110
|
Curley AA, Eggan SM, Lazarus MS, Huang ZJ, Volk DW, Lewis DA. Role of glutamic acid decarboxylase 67 in regulating cortical parvalbumin and GABA membrane transporter 1 expression: implications for schizophrenia. Neurobiol Dis 2012; 50:179-86. [PMID: 23103418 DOI: 10.1016/j.nbd.2012.10.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/02/2012] [Accepted: 10/20/2012] [Indexed: 01/23/2023] Open
Abstract
Markers of GABA neurotransmission are altered in multiple regions of the neocortex in individuals with schizophrenia. Lower levels of glutamic acid decarboxylase 67 (GAD67) mRNA and protein, which is responsible for most cortical GABA synthesis, are accompanied by lower levels of GABA membrane transporter 1 (GAT1) mRNA. These alterations are thought to be most prominent in the parvalbumin (PV)-containing subclass of interneurons, which also contain lower levels of PV mRNA. Since GAT1 and PV each reduce the availability of GABA at postsynaptic receptors, lower levels of GAT1 and PV mRNAs have been hypothesized to represent compensatory responses to an upstream reduction in cortical GABA synthesis in schizophrenia. However, such cause-and-effect hypotheses cannot be directly tested in a human illness. Consequently, we used two mouse models with reduced GAD67 expression specifically in PV neurons (PV(GAD67+/-)) or in all interneurons (GABA(GAD67+/-)) and quantified GAD67, GAT1 and PV mRNA levels using methods identical to those employed in studies of schizophrenia. Cortical levels of PV or GAT1 mRNAs were not altered in PV(GAD67+/-) mice during postnatal development or in adulthood. Furthermore, cellular analyses confirmed the predicted reduction in GAD67 mRNA, but failed to show a deficit in PV mRNA in these animals. Levels of PV and GAT1 mRNAs were also unaltered in GABA(GAD67+/-) mice. Thus, mouse lines with cortical reductions in GAD67 mRNA that match or exceed those present in schizophrenia, and that differ in the developmental timing and cell type-specificity of the GAD67 deficit, failed to provide proof-of-concept evidence that lower PV and GAT1 expression in schizophrenia are a consequence of lower GAD67 expression. Together, these findings suggest that the correlated decrements in cortical GAD67, PV and GAT1 mRNAs in schizophrenia may be a common consequence of some other upstream factor.
Collapse
Affiliation(s)
- Allison A Curley
- Department of Psychiatry, W1653 Biomedical Science Tower, 200 Lothrop St. University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
111
|
Trehalose-enhanced isolation of neuronal sub-types from adult mouse brain. Biotechniques 2012; 52:381-5. [PMID: 22668417 DOI: 10.2144/0000113878] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/15/2012] [Indexed: 12/31/2022] Open
Abstract
Efficient isolation of specific, intact, living neurons from the adult brain is problematic due to the complex nature of the extracellular matrix consolidating the neuronal network. Here, we present significant improvements to the protocol for isolation of pure populations of neurons from mature postnatal mouse brain using fluorescence activated cell sorting (FACS). The 10-fold increase in cell yield enables cell-specific transcriptome analysis by protocols such as nanoCAGE and RNA seq.
Collapse
|
112
|
Yang JM, Zhang J, Yu YQ, Duan S, Li XM. Postnatal development of 2 microcircuits involving fast-spiking interneurons in the mouse prefrontal cortex. ACTA ACUST UNITED AC 2012; 24:98-109. [PMID: 23042741 DOI: 10.1093/cercor/bhs291] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Disturbed development of the parvalbumin-positive fast-spiking (FS) interneurons in the prefrontal cortex (PFC) is closely associated with many neuropsychiatric disorders such as schizophrenia and autism. FS interneurons form at least 2 microcircuits in the PFC: one with pyramidal neurons (FS-PN) through chemical synapses; the other with other FS interneurons (FS-FS) via chemical and electrical synapses. It is currently unknown when and how these circuits are established in the PFC during early development. Here, we used G42 mice, in which FS interneurons are specifically labeled with enhanced green fluorescent protein, to make dual whole-cell recordings from postnatal day 3 (P3) to P30 to study the development of FS interneuronal networks in the PFC. We found that FS interneurons were poorly developed in terms of the membrane and network properties during the first postnatal week, both of which exhibited an abrupt maturation during the second postnatal week. The development of FS interneuronal microcircuits lasted throughout early adulthood. Thus, our data suggest that FS interneurons might not be involved in generating cortical oscillatory activity and γ oscillations during the first postnatal week. Our data also indicate an independent development of electrical and chemical synapses among FS interneuronal networks during the early period.
Collapse
Affiliation(s)
- Jian-Ming Yang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
113
|
The use of transgenic mouse models to reveal the functions of Ca2+ buffer proteins in excitable cells. Biochim Biophys Acta Gen Subj 2012; 1820:1294-303. [DOI: 10.1016/j.bbagen.2011.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 12/19/2022]
|
114
|
Kameda H, Hioki H, Tanaka YH, Tanaka T, Sohn J, Sonomura T, Furuta T, Fujiyama F, Kaneko T. Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites. Eur J Neurosci 2012; 35:838-54. [PMID: 22429243 DOI: 10.1111/j.1460-9568.2012.08027.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To examine inputs to parvalbumin (PV)-producing interneurons, we generated transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein specifically in the interneurons, and completely visualized their dendrites and somata. Using immunolabeling for vesicular glutamate transporter (VGluT)1, VGluT2, and vesicular GABA transporter, we found that VGluT1-positive terminals made contacts 4- and 3.1-fold more frequently with PV-producing interneurons than VGluT2-positive and GABAergic terminals, respectively, in the primary somatosensory cortex. Even in layer 4, where VGluT2-positive terminals were most densely distributed, VGluT1-positive inputs to PV-producing interneurons were 2.4-fold more frequent than VGluT2-positive inputs. Furthermore, although GABAergic inputs to PV-producing interneurons were as numerous as VGluT2-positive inputs in most cortical layers, GABAergic inputs clearly preferred the proximal dendrites and somata of the interneurons, indicating that the sites of GABAergic inputs were more optimized than those of VGluT2-positive inputs. Simulation analysis with a PV-producing interneuron model compatible with the present morphological data revealed a plausible reason for this observation, by showing that GABAergic and glutamatergic postsynaptic potentials evoked by inputs to distal dendrites were attenuated to 60 and 87%, respectively, of those evoked by somatic inputs. As VGluT1-positive and VGluT2-positive axon terminals were presumed to be cortical and thalamic glutamatergic inputs, respectively, cortical excitatory inputs to PV-producing interneurons outnumbered the thalamic excitatory and intrinsic inhibitory inputs more than two-fold in any cortical layer. Although thalamic inputs are known to evoke about two-fold larger unitary excitatory postsynaptic potentials than cortical ones, the present results suggest that cortical inputs control PV-producing interneurons at least as strongly as thalamic inputs.
Collapse
Affiliation(s)
- Hiroshi Kameda
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Belousov AB. Novel model for the mechanisms of glutamate-dependent excitotoxicity: role of neuronal gap junctions. Brain Res 2012; 1487:123-30. [PMID: 22771704 DOI: 10.1016/j.brainres.2012.05.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/23/2012] [Accepted: 05/31/2012] [Indexed: 11/16/2022]
Abstract
In the mammalian central nervous system (CNS), coupling of neurons by gap junctions (electrical synapses) increases during early post-natal development, then decreases, but increases in the mature CNS following neuronal injury, such as ischemia, traumatic brain injury and epilepsy. Glutamate-dependent neuronal death also occurs in the CNS during development and neuronal injury, i.e., at the time when neuronal gap junction coupling is increased. Here, we review our recent studies on the regulation of neuronal gap junction coupling by glutamate during development and injury and on the role of gap junctions in neuronal cell death. A novel model of the mechanisms of glutamate-dependent neuronal death is discussed, which includes neuronal gap junction coupling as a critical part of these mechanisms.
Collapse
Affiliation(s)
- Andrei B Belousov
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
116
|
Markadieu N, San-Cristobal P, Nair AV, Verkaart S, Lenssen E, Tudpor K, van Zeeland F, Loffing J, Bindels RJM, Hoenderop JGJ. A primary culture of distal convoluted tubules expressing functional thiazide-sensitive NaCl transport. Am J Physiol Renal Physiol 2012; 303:F886-92. [PMID: 22759396 DOI: 10.1152/ajprenal.00114.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Studying the molecular regulation of the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) is important for understanding how the kidney contributes to blood pressure regulation. Until now, a native mammalian cell model to investigate this transporter remained unknown. Our aim here is to establish, for the first time, a primary distal convoluted tubule (DCT) cell culture exhibiting transcellular thiazide-sensitive Na(+) transport. Because parvalbumin (PV) is primarily expressed in the DCT, where it colocalizes with NCC, kidneys from mice expressing enhanced green-fluorescent protein (eGFP) under the PV gene promoter (PV-eGFP-mice) were employed. The Complex Object Parametric Analyzer and Sorter (COPAS) was used to sort fluorescent PV-positive tubules from these kidneys, which were then seeded onto permeable supports. After 6 days, DCT cell monolayers developed transepithelial resistance values of 630 ± 33 Ω·cm(2). The monolayers also established opposing transcellular concentration gradients of Na(+) and K(+). Radioactive (22)Na(+) flux experiments showed a net apical-to-basolateral thiazide-sensitive Na(+) transport across the monolayers. Both hypotonic low-chloride medium and 1 μM angiotensin II increased this (22)Na(+) transport significantly by four times, which could be totally blocked by 100 μM hydrochlorothiazide. Angiotensin II-stimulated (22)Na(+) transport was also inhibited by 1 μM losartan. Furthermore, NCC present in the DCT monolayers was detected by immunoblot and immunocytochemistry studies. In conclusion, a murine primary DCT culture was established which expresses functional thiazide-sensitive Na(+)-Cl(-) transport.
Collapse
Affiliation(s)
- Nicolas Markadieu
- Department of Physiology, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Hughes DI, Sikander S, Kinnon CM, Boyle KA, Watanabe M, Callister RJ, Graham BA. Morphological, neurochemical and electrophysiological features of parvalbumin-expressing cells: a likely source of axo-axonic inputs in the mouse spinal dorsal horn. J Physiol 2012; 590:3927-51. [PMID: 22674718 DOI: 10.1113/jphysiol.2012.235655] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Perception of normal bodily sensations relies on the precise regulation of sensory information entering the dorsal horn of the spinal cord. Inhibitory, axoaxonic, synapses provide a mechanism for this regulation, but the source of these important inhibitory connections remains to be elucidated. This study shows that a subpopulation of spinal interneurons that expresses parvalbumin and have specific morphological, connectivity and functional characteristics are a likely source of the inhibitory inputs that selectivity regulate non-noxious tactile input in the spinal cord. Our findings suggest that a loss of normal function in parvalbumin positive dorsal horn neurons may result in the development of tactile allodynia, where non-painful stimuli gain the capacity to evoke the sensation of pain.
Collapse
Affiliation(s)
- D I Hughes
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | | | | | | | | | |
Collapse
|
118
|
de Baaij JHF, Stuiver M, Meij IC, Lainez S, Kopplin K, Venselaar H, Müller D, Bindels RJM, Hoenderop JGJ. Membrane topology and intracellular processing of cyclin M2 (CNNM2). J Biol Chem 2012. [PMID: 22399287 DOI: 10.11074/jbc.m13112.342204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Recently, mutations in the cyclin M2 (CNNM2) gene were identified to be causative for severe hypomagnesemia. In kidney, CNNM2 is a basolaterally expressed protein with predominant expression in the distal convoluted tubule. Transcellular magnesium (Mg(2+)) reabsorption in the distal convoluted tubule represents the final step before Mg(2+) is excreted into the urine, thus fine-tuning its final excretion via a tightly regulated mechanism. The present study aims to get insight in the structure of CNNM2 and to characterize its post-translational modifications. Here, membrane topology studies using intramolecular epitopes and immunocytochemistry showed that CNNM2 has an extracellular N terminus and an intracellular C terminus. This suggests that one of the predicted transmembrane regions might be re-entrant. By homology modeling, we demonstrated that the loss-of-function mutation as found in patients disturbs the potential ATP binding by the intracellular cystathionine β-synthase domains. In addition, the cellular processing pathway of CNNM2 was exposed in detail. In the endoplasmic reticulum, the signal peptidase complex cleaves off a large N-terminal signal peptide of about 64 amino acids. Mutagenesis screening showed that CNNM2 is glycosylated at residue Asn-112, stabilizing CNNM2 on the plasma membrane. Interestingly, co-immunoprecipitation studies evidenced that CNNM2a forms heterodimers with the smaller isoform CNNM2b. These new findings on CNNM2 structure and processing may aid to elucidate the physiological role of CNNM2 in Mg(2+) reabsorption in the kidney.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
de Baaij JHF, Stuiver M, Meij IC, Lainez S, Kopplin K, Venselaar H, Müller D, Bindels RJM, Hoenderop JGJ. Membrane topology and intracellular processing of cyclin M2 (CNNM2). J Biol Chem 2012; 287:13644-55. [PMID: 22399287 DOI: 10.1074/jbc.m112.342204] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently, mutations in the cyclin M2 (CNNM2) gene were identified to be causative for severe hypomagnesemia. In kidney, CNNM2 is a basolaterally expressed protein with predominant expression in the distal convoluted tubule. Transcellular magnesium (Mg(2+)) reabsorption in the distal convoluted tubule represents the final step before Mg(2+) is excreted into the urine, thus fine-tuning its final excretion via a tightly regulated mechanism. The present study aims to get insight in the structure of CNNM2 and to characterize its post-translational modifications. Here, membrane topology studies using intramolecular epitopes and immunocytochemistry showed that CNNM2 has an extracellular N terminus and an intracellular C terminus. This suggests that one of the predicted transmembrane regions might be re-entrant. By homology modeling, we demonstrated that the loss-of-function mutation as found in patients disturbs the potential ATP binding by the intracellular cystathionine β-synthase domains. In addition, the cellular processing pathway of CNNM2 was exposed in detail. In the endoplasmic reticulum, the signal peptidase complex cleaves off a large N-terminal signal peptide of about 64 amino acids. Mutagenesis screening showed that CNNM2 is glycosylated at residue Asn-112, stabilizing CNNM2 on the plasma membrane. Interestingly, co-immunoprecipitation studies evidenced that CNNM2a forms heterodimers with the smaller isoform CNNM2b. These new findings on CNNM2 structure and processing may aid to elucidate the physiological role of CNNM2 in Mg(2+) reabsorption in the kidney.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Aramuni G, Griesbeck O. Chronic calcium imaging in neuronal development and disease. Exp Neurol 2012; 242:50-6. [PMID: 22374357 DOI: 10.1016/j.expneurol.2012.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 12/05/2011] [Accepted: 02/13/2012] [Indexed: 12/12/2022]
Abstract
Neuronal circuits develop, adjust to experience and degenerate in response to injury or disease in the course of weeks and months. Available recording techniques, however, typically sample physiological properties of identified neurons on the time scale of minutes and hours. Thus, in order to obtain a full understanding of a long term physiological process data need to be extrapolated from numerous experimental sessions and animals, often collected blindly and under variable conditions. The generation and ongoing engineering of genetically encoded calcium indicators creates an opportunity to repeatedly record activity from the same individual neurons in vivo over weeks, months and potentially the entire lifetime of a model organism. Chronic calcium imaging with genetically encoded indicators thus may allow to establish functional biographies of identified neuronal cell types in the brain and to reveal the physiological relevance of structural changes as they occur under natural and pathological conditions.
Collapse
Affiliation(s)
- Gayane Aramuni
- Max-Planck-Institut für Neurobiologie, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
121
|
Alpár A, Attems J, Mulder J, Hökfelt T, Harkany T. The renaissance of Ca2+-binding proteins in the nervous system: secretagogin takes center stage. Cell Signal 2012; 24:378-387. [PMID: 21982882 PMCID: PMC3237847 DOI: 10.1016/j.cellsig.2011.09.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/24/2011] [Indexed: 02/03/2023]
Abstract
Effective control of the Ca(2+) homeostasis in any living cell is paramount to coordinate some of the most essential physiological processes, including cell division, morphological differentiation, and intercellular communication. Therefore, effective homeostatic mechanisms have evolved to maintain the intracellular Ca(2+) concentration at physiologically adequate levels, as well as to regulate the spatial and temporal dynamics of Ca(2+)signaling at subcellular resolution. Members of the superfamily of EF-hand Ca(2+)-binding proteins are effective to either attenuate intracellular Ca(2+) transients as stochiometric buffers or function as Ca(2+) sensors whose conformational change upon Ca(2+) binding triggers protein-protein interactions, leading to cell state-specific intracellular signaling events. In the central nervous system, some EF-hand Ca(2+)-binding proteins are restricted to specific subtypes of neurons or glia, with their expression under developmental and/or metabolic control. Therefore, Ca(2+)-binding proteins are widely used as molecular markers of cell identity whilst also predicting excitability and neurotransmitter release profiles in response to electrical stimuli. Secretagogin is a novel member of the group of EF-hand Ca(2+)-binding proteins whose expression precedes that of many other Ca(2+)-binding proteins in postmitotic, migratory neurons in the embryonic nervous system. Secretagogin expression persists during neurogenesis in the adult brain, yet becomes confined to regionalized subsets of differentiated neurons in the adult central and peripheral nervous and neuroendocrine systems. Secretagogin may be implicated in the control of neuronal turnover and differentiation, particularly since it is re-expressed in neoplastic brain and endocrine tumors and modulates cell proliferation in vitro. Alternatively, and since secretagogin can bind to SNARE proteins, it might function as a Ca(2+) sensor/coincidence detector modulating vesicular exocytosis of neurotransmitters, neuropeptides or hormones. Thus, secretagogin emerges as a functionally multifaceted Ca(2+)-binding protein whose molecular characterization can unravel a new and fundamental dimension of Ca(2+)signaling under physiological and disease conditions in the nervous system and beyond.
Collapse
Affiliation(s)
- Alán Alpár
- European Neuroscience Institute at Aberdeen, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom; Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Johannes Attems
- Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Jan Mulder
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institutet, Tomtebodavägen 23A, S-17165 Solna, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Retzius väg 8, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Tibor Harkany
- European Neuroscience Institute at Aberdeen, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom; Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden.
| |
Collapse
|
122
|
Langer D, Helmchen F. Post hoc immunostaining of GABAergic neuronal subtypes following in vivo two-photon calcium imaging in mouse neocortex. Pflugers Arch 2011; 463:339-54. [PMID: 22134770 PMCID: PMC3261390 DOI: 10.1007/s00424-011-1048-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/28/2011] [Accepted: 10/17/2011] [Indexed: 01/11/2023]
Abstract
GABAergic neurons in the neocortex are diverse with regard to morphology, physiology, and axonal targeting pattern, indicating functional specializations within the cortical microcircuitry. Little information is available, however, about functional properties of distinct subtypes of GABAergic neurons in the intact brain. Here, we combined in vivo two-photon calcium imaging in supragranular layers of the mouse neocortex with post hoc immunohistochemistry against the three calcium-binding proteins parvalbumin, calretinin, and calbindin in order to assign subtype marker profiles to neuronal activity. Following coronal sectioning of fixed brains, we matched cells in corresponding volumes of image stacks acquired in vivo and in fixed brain slices. In GAD67-GFP mice, more than 95% of the GABAergic cells could be unambiguously matched, even in large volumes comprising more than a thousand interneurons. Triple immunostaining revealed a depth-dependent distribution of interneuron subtypes with increasing abundance of PV-positive neurons with depth. Most importantly, the triple-labeling approach was compatible with previous in vivo calcium imaging following bulk loading of Oregon Green 488 BAPTA-1, which allowed us to classify spontaneous calcium transients recorded in vivo according to the neurochemically defined GABAergic subtypes. Moreover, we demonstrate that post hoc immunostaining can also be applied to wild-type mice expressing the genetically encoded calcium indicator Yellow Cameleon 3.60 in cortical neurons. Our approach is a general and flexible method to distinguish GABAergic subtypes in cell populations previously imaged in the living animal. It should thus facilitate dissecting the functional roles of these subtypes in neural circuitry.
Collapse
Affiliation(s)
- Dominik Langer
- Department of Neurophysiology, Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | |
Collapse
|
123
|
Ma Y, Hioki H, Konno M, Pan S, Nakamura H, Nakamura KC, Furuta T, Li JL, Kaneko T. Expression of gap junction protein connexin36 in multiple subtypes of GABAergic neurons in adult rat somatosensory cortex. Cereb Cortex 2011; 21:2639-49. [PMID: 21467210 DOI: 10.1093/cercor/bhr051] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To characterize connexin36 (Cx36)-expressing neurons of the adult rat somatosensory cortex, we examined fluorescence signals for Cx36 messenger RNA (mRNA) in 3 nonoverlapping subpopulations of γ-aminobutyric acid (GABA)ergic interneurons, which showed immunoreactivity for 1) parvalbumin (PV); 2) somatostatin (SOM); and 3) either calretinin (CR), vasoactive intestinal polypeptide (VIP), cholecystokinin (CCK), or choline acetyltransferase (ChAT). About 80% of PV-, 52% of SOM-, 37% of CR/VIP/CCK/ChAT-immunoreactive cells displayed Cx36 signals across all cortical layers, and inversely 64%, 25%, and 9% of Cx36-expressing neurons were positive for PV, SOM, or CR/VIP/CCK/ChAT, respectively. Notably, although almost all Cx36-expressing neurons in layer (L) 4, L5, and L6 were positive for one of these markers, a substantial proportion of those in L1 (91%) and L2/3 (10%) were negative for the markers tested, suggesting that other types of neurons might express Cx36. We further investigated the colocalization of Cx36 mRNA and α-actinin2 immunoreactivity, as a marker for late-spiking GABAergic neurons, by using mirror-image sections. Surprisingly, more than 77% of α-actinin2-positive cells displayed Cx36 signals in L1-L3, and about 49% and 13% of Cx36-expressing neurons were positive for α-actinin2 in L1 and L2/3, respectively. These findings suggest that all the subtypes of GABAergic interneurons might form gap junctions in the neocortex.
Collapse
Affiliation(s)
- Yunfei Ma
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Leppä E, Linden AM, Vekovischeva OY, Swinny JD, Rantanen V, Toppila E, Höger H, Sieghart W, Wulff P, Wisden W, Korpi ER. Removal of GABA(A) receptor γ2 subunits from parvalbumin neurons causes wide-ranging behavioral alterations. PLoS One 2011; 6:e24159. [PMID: 21912668 PMCID: PMC3166293 DOI: 10.1371/journal.pone.0024159] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/01/2011] [Indexed: 11/28/2022] Open
Abstract
We investigated the behavioral significance of fast synaptic inhibition by αβγ2-type GABAA receptors on parvalbumin (Pv) cells. The GABAA receptor γ2 subunit gene was selectively inactivated in Pv-positive neurons by Cre/loxP recombination. The resulting Pv-Δγ2 mice were relatively healthy in the first postnatal weeks; but then as Cre started to be expressed, the mice progressively developed wide-ranging phenotypic alterations including low body weight, motor deficits and tremor, decreased anxiety levels, decreased pain sensitivity and deficient prepulse inhibition of the acoustic startle reflex and impaired spatial learning. Nevertheless, the deletion was not lethal, and mice did not show increased mortality even after one year. Autoradiography with t-butylbicyclophosphoro[35S]thionate suggested an increased amount of GABAA receptors with only α and β subunits in central nervous system regions that contained high levels of parvalbumin neurons. Using BAC-transgenesis, we reduced some of the Pv-Δγ2 phenotype by selectively re-expressing the wild-type γ2 subunit back into some Pv cells (reticular thalamic neurons and cerebellar Pv-positive neurons). This produced less severe impairments of motor skills and spatial learning compared with Pv-Δγ2 mice, but all other deficits remained. Our results reveal the widespread significance of fast GABAergic inhibition onto Pv-positive neurons for diverse behavioral modalities, such as motor coordination, sensorimotor integration, emotional behavior and nociception.
Collapse
Affiliation(s)
- Elli Leppä
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Armstrong C, Szabadics J, Tamás G, Soltesz I. Neurogliaform cells in the molecular layer of the dentate gyrus as feed-forward γ-aminobutyric acidergic modulators of entorhinal-hippocampal interplay. J Comp Neurol 2011; 519:1476-91. [PMID: 21452204 DOI: 10.1002/cne.22577] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Feed-forward inhibition from molecular layer interneurons onto granule cells (GCs) in the dentate gyrus is thought to have major effects regulating entorhinal-hippocampal interactions, but the precise identity, properties, and functional connectivity of the GABAergic cells in the molecular layer are not well understood. We used single and paired intracellular patch clamp recordings from post-hoc-identified cells in acute rat hippocampal slices and identified a subpopulation of molecular layer interneurons that expressed immunocytochemical markers present in members of the neurogliaform cell (NGFC) class. Single NGFCs displayed small dendritic trees, and their characteristically dense axonal arborizations covered significant portions of the outer and middle one-thirds of the molecular layer, with frequent axonal projections across the fissure into the CA1 and subicular regions. Typical NGFCs exhibited a late firing pattern with a ramp in membrane potential prior to firing action potentials, and single spikes in NGFCs evoked biphasic, prolonged GABA(A) and GABA(B) postsynaptic responses in GCs. In addition to providing dendritic GABAergic inputs to GCs, NGFCs also formed chemical synapses and gap junctions with various molecular layer interneurons, including other NGFCs. NGFCs received low-frequency spontaneous synaptic events, and stimulation of perforant path fibers revealed direct, facilitating synaptic inputs from the entorhinal cortex. Taken together, these results indicate that NGFCs form an integral part of the local molecular layer microcircuitry generating feed-forward inhibition and provide a direct GABAergic pathway linking the dentate gyrus to the CA1 and subicular regions through the hippocampal fissure.
Collapse
Affiliation(s)
- Caren Armstrong
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California 92697, USA.
| | | | | | | |
Collapse
|
126
|
Mishchenko Y, Vogelstein JT, Paninski L. A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data. Ann Appl Stat 2011. [DOI: 10.1214/09-aoas303] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
127
|
Imbrosci B, Mittmann T. Functional consequences of the disturbances in the GABA-mediated inhibition induced by injuries in the cerebral cortex. Neural Plast 2011; 2011:614329. [PMID: 21766043 PMCID: PMC3135051 DOI: 10.1155/2011/614329] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 04/05/2011] [Indexed: 11/18/2022] Open
Abstract
Cortical injuries are often reported to induce a suppression of the intracortical GABAergic inhibition in the surviving, neighbouring neuronal networks. Since GABAergic transmission provides the main source of inhibition in the mammalian brain, this condition may lead to hyperexcitability and epileptiform activity of cortical networks. However, inhibition plays also a crucial role in limiting the plastic properties of neuronal circuits, and as a consequence, interventions aiming to reestablish a normal level of inhibition might constrain the plastic capacity of the cortical tissue. A promising strategy to minimize the deleterious consequences of a modified inhibitory transmission without preventing the potential beneficial effects on cortical plasticity may be to unravel distinct GABAergic signaling pathways separately mediating these positive and negative events. Here, gathering data from several recent studies, we provide new insights to better face with this "double coin" condition in the attempt to optimize the functional recovery of patients.
Collapse
Affiliation(s)
- Barbara Imbrosci
- Institute of Physiology and Pathophysiology, Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | | |
Collapse
|
128
|
Ferrè S, Veenstra GJC, Bouwmeester R, Hoenderop JG, Bindels RJ. HNF-1B specifically regulates the transcription of the γa-subunit of the Na+/K+-ATPase. Biochem Biophys Res Commun 2011; 404:284-90. [DOI: 10.1016/j.bbrc.2010.11.108] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
|
129
|
Bartos M, Alle H, Vida I. Role of microcircuit structure and input integration in hippocampal interneuron recruitment and plasticity. Neuropharmacology 2010; 60:730-9. [PMID: 21195097 DOI: 10.1016/j.neuropharm.2010.12.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/10/2010] [Accepted: 12/15/2010] [Indexed: 11/25/2022]
Abstract
The proper operation of cortical neuronal networks depends on the temporally precise recruitment of GABAergic inhibitory interneurons. Inhibitory cells receive convergent excitatory inputs from afferent pathways, as well as local collaterals of principal cells, and provide feedforward or feedback inhibition within the circuitry. Accumulating evidence indicates that recruitment of GABAergic cells is highly diverse among interneuron types. Differences in the properties of input synapses, dendritic architecture and membrane properties, as well as the rich repertoire of plasticity mechanisms contribute to this diversity. Efficient and precise recruitment of interneurons is thought to depend on the coincident occurrence of rapid synaptic responses and their faithful propagation to the action potential initiation site. However, slow inputs can also play important roles by facilitating the activation of interneurons by rapid synaptic inputs and supporting associative synaptic plasticity. Here we review how the diversity in the synaptic and integrative properties as well as dendritic geometry of hippocampal inhibitory cells impact on their activation. We further discuss how the various modes of interneuron recruitment can support the versatile cell type- and input-specific computational functions which appear to be adapted to the structure and the function of the network they are embedded in. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.
Collapse
Affiliation(s)
- Marlene Bartos
- Institute of Physiology 1, University of Freiburg, Engesser Strasse 4, D-79108 Freiburg, Germany.
| | | | | |
Collapse
|
130
|
Dimke H, San-Cristobal P, de Graaf M, Lenders JW, Deinum J, Hoenderop JGJ, Bindels RJM. γ-Adducin stimulates the thiazide-sensitive NaCl cotransporter. J Am Soc Nephrol 2010; 22:508-17. [PMID: 21164023 DOI: 10.1681/asn.2010060606] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The thiazide-sensitive NaCl cotransporter (NCC) plays a key role in renal salt reabsorption and the determination of systemic BP, but the molecular mechanisms governing the regulation of NCC are not completely understood. Here, through pull-down experiments coupled to mass spectrometry, we found that γ-adducin interacts with the NCC transporter. γ-Adducin colocalized with NCC to the distal convoluted tubule. (22)Na(+) uptake experiments in the Xenopus laevis oocyte showed that γ-adducin stimulated NCC activity in a dose-dependent manner, an effect that occurred upstream from With No Lysine (WNK) 4 kinase. The binding site of γ-adducin mapped to the N terminus of NCC and encompassed three previously reported phosphorylation sites. Supporting this site of interaction, competition with the N-terminal domain of NCC abolished the stimulatory effect of γ-adducin on the transporter. γ-Adducin failed to increase NCC activity when these phosphorylation sites were constitutively inactive or active. In addition, γ-adducin bound only to the dephosphorylated N terminus of NCC. Taken together, our observations suggest that γ-adducin dynamically regulates NCC, likely by amending the phosphorylation state, and consequently the activity, of the transporter. These data suggest that γ-adducin may influence BP homeostasis by modulating renal NaCl transport.
Collapse
Affiliation(s)
- Henrik Dimke
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
131
|
Ishihara N, Armsen W, Papadopoulos T, Betz H, Eulenburg V. Generation of a mouse line expressing Cre recombinase in glycinergic interneurons. Genesis 2010; 48:437-45. [PMID: 20506101 DOI: 10.1002/dvg.20640] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In caudal regions of the CNS, glycine constitutes the major inhibitory neurotransmitter. Here, we describe a mouse line that expresses Cre recombinase under the control of a BAC transgenic glycine transporter 2 (GlyT2) promoter fragment. Mating of GlyT2-Cre mice with the Cre reporter mouse lines Rosa26/LacZ and Rosa26/YFP and analysis of double transgenic offsprings revealed strong transgene activity in caudal regions of the central nervous system, i.e., brain stem and spinal cord. Some additional Cre expression was observed in cortical and cerebellar regions. In brain stem and spinal cord, Cre expressing cells were identified as glycinergic interneurons by staining with GlyT2- and glycine-immunoreactive antibodies; here, >80% of the glycine-immunoreactive cells expressed the Cre reporter protein. These data indicate that GlyT2-Cre mice are a useful tool for the genetic manipulation of glycinergic interneurons.
Collapse
Affiliation(s)
- Naoko Ishihara
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, 60529 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
132
|
Helbig I, Sammler E, Eliava M, Bolshakov AP, Rozov A, Bruzzone R, Monyer H, Hormuzdi SG. In vivo evidence for the involvement of the carboxy terminal domain in assembling connexin 36 at the electrical synapse. Mol Cell Neurosci 2010; 45:47-58. [PMID: 20510366 PMCID: PMC3025355 DOI: 10.1016/j.mcn.2010.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/03/2010] [Accepted: 05/15/2010] [Indexed: 12/03/2022] Open
Abstract
Connexin 36 (Cx36)-containing electrical synapses contribute to the timing and amplitude of neural responses in many brain regions. A Cx36-EGFP transgenic was previously generated to facilitate their identification and study. In this study we demonstrate that electrical coupling is normal in transgenic mice expressing Cx36 from the genomic locus and suggest that fluorescent puncta present in brain tissue represent distributed electrical synapses. These qualities emphasize the usefulness of the Cx36-EGFP reporter as a tool for the detailed anatomical characterization of electrical synapses in fixed and living tissue. However, though the fusion protein is able to form gap junctions between Xenopus laevis oocytes it is unable to restore electrical coupling to interneurons in the Cx36-deficient mouse. Further experiments in transgenic tissue and non-neural cell lines reveal impaired transport to the plasma membrane as the possible cause. By analyzing the functional deficits exhibited by the fusion protein in vivo and in vitro, we identify a motif within Cx36 that may interact with other trafficking or scaffold proteins and thereby be responsible for its incorporation into electrical synapses.
Collapse
Affiliation(s)
- Ingo Helbig
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein (UKSH), Schwanenweg 20, 24105 Kiel, Germany
| | - Esther Sammler
- Centre for Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Marina Eliava
- Department of Clinical Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Alexey P. Bolshakov
- Centre for Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Andrei Rozov
- Centre for Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Roberto Bruzzone
- HKU-Pasteur Research Centre, 1/F, Dexter HC Man Building, Pokfulam, Hong Kong
| | - Hannah Monyer
- Department of Clinical Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Sheriar Gustad Hormuzdi
- Centre for Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| |
Collapse
|
133
|
Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 2010; 90:1195-268. [PMID: 20664082 DOI: 10.1152/physrev.00035.2008] [Citation(s) in RCA: 1208] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Synchronous rhythms represent a core mechanism for sculpting temporal coordination of neural activity in the brain-wide network. This review focuses on oscillations in the cerebral cortex that occur during cognition, in alert behaving conditions. Over the last two decades, experimental and modeling work has made great strides in elucidating the detailed cellular and circuit basis of these rhythms, particularly gamma and theta rhythms. The underlying physiological mechanisms are diverse (ranging from resonance and pacemaker properties of single cells to multiple scenarios for population synchronization and wave propagation), but also exhibit unifying principles. A major conceptual advance was the realization that synaptic inhibition plays a fundamental role in rhythmogenesis, either in an interneuronal network or in a reciprocal excitatory-inhibitory loop. Computational functions of synchronous oscillations in cognition are still a matter of debate among systems neuroscientists, in part because the notion of regular oscillation seems to contradict the common observation that spiking discharges of individual neurons in the cortex are highly stochastic and far from being clocklike. However, recent findings have led to a framework that goes beyond the conventional theory of coupled oscillators and reconciles the apparent dichotomy between irregular single neuron activity and field potential oscillations. From this perspective, a plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention. Finally, implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Department of Neurobiology and Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
134
|
Ishikawa D, Takahashi N, Sasaki T, Usami A, Matsuki N, Ikegaya Y. Fluorescent pipettes for optically targeted patch-clamp recordings. Neural Netw 2010; 23:669-72. [DOI: 10.1016/j.neunet.2010.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/08/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
|
135
|
Szabó GG, Holderith N, Gulyás AI, Freund TF, Hájos N. Distinct synaptic properties of perisomatic inhibitory cell types and their different modulation by cholinergic receptor activation in the CA3 region of the mouse hippocampus. Eur J Neurosci 2010; 31:2234-46. [PMID: 20529124 PMCID: PMC2916217 DOI: 10.1111/j.1460-9568.2010.07292.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/16/2010] [Accepted: 04/23/2010] [Indexed: 01/13/2023]
Abstract
Perisomatic inhibition originates from three types of GABAergic interneurons in cortical structures, including parvalbumin-containing fast-spiking basket cells (FSBCs) and axo-axonic cells (AACs), as well as cholecystokinin-expressing regular-spiking basket cells (RSBCs). These interneurons may have significant impact in various cognitive processes, and are subjects of cholinergic modulation. However, it is largely unknown how cholinergic receptor activation modulates the function of perisomatic inhibitory cells. Therefore, we performed paired recordings from anatomically identified perisomatic interneurons and pyramidal cells in the CA3 region of the mouse hippocampus. We determined the basic properties of unitary inhibitory postsynaptic currents (uIPSCs) and found that they differed among cell types, e.g. GABA released from axon endings of AACs evoked uIPSCs with the largest amplitude and with the longest decay measured at room temperature. RSBCs could also release GABA asynchronously, the magnitude of the release increasing with the discharge frequency of the presynaptic interneuron. Cholinergic receptor activation by carbachol significantly decreased the uIPSC amplitude in all three types of cell pairs, but to different extents. M2-type muscarinic receptors were responsible for the reduction in uIPSC amplitudes in FSBC- and AAC-pyramidal cell pairs, while an antagonist of CB(1) cannabinoid receptors recovered the suppression in RSBC-pyramidal cell pairs. In addition, carbachol suppressed or even eliminated the short-term depression of uIPSCs in FSBC- and AAC-pyramidal cell pairs in a frequency-dependent manner. These findings suggest that not only are the basic synaptic properties of perisomatic inhibitory cells distinct, but acetylcholine can differentially control the impact of perisomatic inhibition from different sources.
Collapse
Affiliation(s)
- Gergely G Szabó
- Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of SciencesH-1083 Budapest, Hungary
| | - Noémi Holderith
- Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of SciencesH-1083 Budapest, Hungary
| | - Attila I Gulyás
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | - Tamás F Freund
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | - Norbert Hájos
- Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of SciencesH-1083 Budapest, Hungary
| |
Collapse
|
136
|
Sosulina L, Graebenitz S, Pape HC. GABAergic interneurons in the mouse lateral amygdala: a classification study. J Neurophysiol 2010; 104:617-26. [PMID: 20484532 DOI: 10.1152/jn.00207.2010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell patch-clamp recordings were performed in GABAergic interneurons labeled by green fluorescent protein (GFP) in the lateral amygdala (LA) in vitro from glutamic acid decarboxylase 67 (GAD67)-GFP mice. Neurons were characterized by electrotonic and electrogenic parameters. Cytoplasm was collected from individual neurons, and single-cell RT-PCR was used for detection of molecular markers typifying LA interneurons. Hierarchical cluster and multiple discriminant analysis demonstrated the existence of five types of GABAergic interneurons, which can be reliably identified through electrophysiological criteria. Action potentials were of a short duration followed by pronounced fast afterhyperpolarization (AHP) in interneurons of all types, except for type V, which generated broad action potentials and displayed typical spike bursts at the beginning of depolarizing stimuli and prominent anomalous inward rectification. Interneurons of type I and II generated series of action potentials with frequency adaptation on maintained depolarizing current stimulation with overall frequencies at high levels and presented delayed firing, stuttering or fast-spiking behavior. Further distinguishing features of type II interneurons were a medium AHP following spike trains and pronounced anomalous inward rectification. Types III and IV of neurons fired regularly, whereas type IV displayed no prominent spike frequency adaptation. Additionally, interneurons of all five types contained mRNA of glutamic acid decarboxylase 65 and cholecystokinin, whereas only type I interneurons were somatostatin-positive. Overall, these data represent a detailed and reliable classification scheme of LA GABAergic interneurons and will provide a feasible basis for subsequent functional studies.
Collapse
Affiliation(s)
- Ludmila Sosulina
- Institut für Physiologie I, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | | | | |
Collapse
|
137
|
Gee CE, Benquet P, Demont-Guignard S, Wendling F, Gerber U. Energy deprivation transiently enhances rhythmic inhibitory events in the CA3 hippocampal network in vitro. Neuroscience 2010; 168:605-12. [PMID: 20403414 DOI: 10.1016/j.neuroscience.2010.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/21/2010] [Accepted: 04/11/2010] [Indexed: 01/01/2023]
Abstract
Oxygen glucose deprivation (OGD) leads to rapid suppression of synaptic transmission. Here we describe an emergence of rhythmic activity at 8 to 20 Hz in the CA3 subfield of hippocampal slice cultures occurring for a few minutes prior to the OGD-induced cessation of evoked responses. These oscillations, dominated by inhibitory events, represent network activity, as they were abolished by tetrodotoxin. They were also completely blocked by the GABAergic antagonist picrotoxin, and strongly reduced by the glutamatergic antagonist NBQX. Applying CPP to block NMDA receptors had no effect and neither did UBP302, an antagonist of GluK1-containing kainate receptors. The gap junction blocker mefloquine disrupted rhythmicity. Simultaneous whole-cell voltage-clamp recordings from neighboring or distant CA3 pyramidal cells revealed strong cross-correlation of the incoming rhythmic activity. Interneurons in the CA3 area received similar correlated activity. Interestingly, oscillations were much less frequently observed in the CA1 area. These data, together with the observation that the recorded activity consists primarily of inhibitory events, suggest that CA3 interneurons are important for generating these oscillations. This transient increase in inhibitory network activity during OGD may represent a mechanism contributing to the lower vulnerability to ischemic insults of the CA3 area as compared to the CA1 area.
Collapse
Affiliation(s)
- C E Gee
- Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
138
|
An approach for reliably investigating hippocampal sharp wave-ripples in vitro. PLoS One 2009; 4:e6925. [PMID: 19738897 PMCID: PMC2732900 DOI: 10.1371/journal.pone.0006925] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 07/17/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Among the various hippocampal network patterns, sharp wave-ripples (SPW-R) are currently the mechanistically least understood. Although accurate information on synaptic interactions between the participating neurons is essential for comprehensive understanding of the network function during complex activities like SPW-R, such knowledge is currently notably scarce. METHODOLOGY/PRINCIPAL FINDINGS We demonstrate an in vitro approach to SPW-R that offers a simple experimental tool allowing detailed analysis of mechanisms governing the sharp wave-state of the hippocampus. We combine interface storage of slices with modifications of a conventional submerged recording system and established in vitro SPW-R comparable to their in vivo counterpart. We show that slice storage in the interface chamber close to physiological temperature is the required condition to preserve network integrity that is necessary for the generation of SPW-R. Moreover, we demonstrate the utility of our method for studying synaptic and network properties of SPW-R, using electrophysiological and imaging methods that can only be applied in the submerged system. CONCLUSIONS/SIGNIFICANCE The approach presented here demonstrates a reliable and experimentally simple strategy for studying hippocampal sharp wave-ripples. Given its utility and easy application we expect our model to foster the generation of new insight into the network physiology underlying SPW-R.
Collapse
|
139
|
Brown SP, Hestrin S. Cell-type identity: a key to unlocking the function of neocortical circuits. Curr Opin Neurobiol 2009; 19:415-21. [PMID: 19674891 DOI: 10.1016/j.conb.2009.07.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/10/2009] [Accepted: 07/13/2009] [Indexed: 11/17/2022]
Abstract
A central tenet of neuroscience is that the precise patterns of connectivity among neurons in a given brain area underlie its function. However, assigning any aspect of perception or behavior to the wiring of local circuits has been challenging. Here, we review recent work in sensory neocortex that demonstrates the power of identifying specific cell types when investigating the functional organization of brain circuits. These studies indicate that knowing the identity of both the presynaptic and postsynaptic cell type is key when analyzing neocortical circuits. Furthermore, identifying the circuit organization of particular cell types in the neocortex allows the recording and manipulation of each cell type's activity and the direct testing of its functional role in perception and behavior.
Collapse
Affiliation(s)
- Solange P Brown
- Department of Comparative Medicine, Stanford University, School of Medicine, 300 Pasteur Drive, R314, Stanford, CA 94305-5342, USA
| | | |
Collapse
|
140
|
Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 2009; 459:698-702. [PMID: 19396159 DOI: 10.1038/nature07991] [Citation(s) in RCA: 1935] [Impact Index Per Article: 120.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 03/20/2009] [Indexed: 11/08/2022]
Abstract
Synchronized oscillations and inhibitory interneurons have important and interconnected roles within cortical microcircuits. In particular, interneurons defined by the fast-spiking phenotype and expression of the calcium-binding protein parvalbumin have been suggested to be involved in gamma (30-80 Hz) oscillations, which are hypothesized to enhance information processing. However, because parvalbumin interneurons cannot be selectively controlled, definitive tests of their functional significance in gamma oscillations, and quantitative assessment of the impact of parvalbumin interneurons and gamma oscillations on cortical circuits, have been lacking despite potentially enormous significance (for example, abnormalities in parvalbumin interneurons may underlie altered gamma-frequency synchronization and cognition in schizophrenia and autism). Here we use a panel of optogenetic technologies in mice to selectively modulate multiple distinct circuit elements in neocortex, alone or in combination. We find that inhibiting parvalbumin interneurons suppresses gamma oscillations in vivo, whereas driving these interneurons (even by means of non-rhythmic principal cell activity) is sufficient to generate emergent gamma-frequency rhythmicity. Moreover, gamma-frequency modulation of excitatory input in turn was found to enhance signal transmission in neocortex by reducing circuit noise and amplifying circuit signals, including inputs to parvalbumin interneurons. As demonstrated here, optogenetics opens the door to a new kind of informational analysis of brain function, permitting quantitative delineation of the functional significance of individual elements in the emergent operation and function of intact neural circuitry.
Collapse
|
141
|
Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice. Neurosci Res 2009; 63:213-23. [DOI: 10.1016/j.neures.2008.12.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 12/10/2008] [Accepted: 12/25/2008] [Indexed: 11/24/2022]
|
142
|
Haverkamp S, Inta D, Monyer H, Wässle H. Expression analysis of green fluorescent protein in retinal neurons of four transgenic mouse lines. Neuroscience 2009; 160:126-39. [PMID: 19232378 DOI: 10.1016/j.neuroscience.2009.01.081] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/14/2009] [Accepted: 01/22/2009] [Indexed: 11/30/2022]
Abstract
Transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of a cell-specific promoter have been used with great success to identify and label specific cell types of the retina. We studied the expression of EGFP in the retina of mice making use of four transgenic mouse lines. Expression of EGFP driven by the calretinin promoter was found in amacrine, displaced amacrine and ganglion cells. Comparison of the EGFP expression and calretinin immunolabeling showed that many but not all cells appear to be double labeled. Expression of EGFP under the control of the choline acetyltransferase promoter was found in amacrine cells; however, the cells did not correspond to the well known cholinergic (starburst) cells of the mouse retina. The expression of EGFP under the control of the parvalbumin promoter was restricted to amacrine cells of the inner nuclear layer and to cells of the ganglion cell layer (displaced amacrine cells and ganglion cells). Most of the cells were also immunoreactive for parvalbumin, however, differences in labeling intensity were observed. The expression of EGFP driven by the promoter for the 5-HT3 A receptor (5-HTR3A) was restricted to type 5 bipolar cells. In contrast, immunostaining for 5-HTR3A was found in synaptic hot spots in sublamina 1 of the inner plexiform layer and was not related to type 5 bipolar cells. The results show that these transgenic mice are very useful for future electrophysiological studies of specific types of amacrine and bipolar cells that express EGFP and thus permit directed microelectrode targeting under microscopic control.
Collapse
Affiliation(s)
- S Haverkamp
- Department of Neuroanatomy, Max Planck Institute for Brain Research, Deutschordenstr. 46, D-60528 Frankfurt/Main, Germany.
| | | | | | | |
Collapse
|
143
|
Jasnow AM, Ressler KJ, Hammack SE, Chhatwal JP, Rainnie DG. Distinct subtypes of cholecystokinin (CCK)-containing interneurons of the basolateral amygdala identified using a CCK promoter-specific lentivirus. J Neurophysiol 2009; 101:1494-506. [PMID: 19164102 DOI: 10.1152/jn.91149.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The basolateral amygdala (BLA) is critical for the formation of emotional memories. Little is known about the physiological properties of BLA interneurons, which can be divided into four subtypes based on their immunocytochemical profiles. Cholecystokinin (CCK) interneurons play critical roles in feedforward inhibition and behavioral fear responses. Evidence suggests that interneurons within a subgroup can display heterogeneous physiological properties. However, little is known about the physiological properties of CCK interneurons in the BLA and/or whether they represent a homogeneous or heterogeneous population. To address this question, we generated a lentivirus-expressing GFP under the control of the CCK promoter to identify CCK neurons in vivo. We combined this with whole cell patch-clamp recording techniques to examine the physiological properties of CCK-containing interneurons of the rat BLA. Here, we describe the physiological properties of 57 cells recorded in current-clamp mode; we used hierarchical cluster and discriminant function analysis to demonstrate that CCK interneurons can be segregated into three distinct subtypes (I, II, III) based on their passive and active membrane properties. Additionally, Type II neurons could be further separated into adapting and nonadapting types based on their rates of spike frequency adaptation. These data suggest that CCK interneurons of the BLA are a heterogeneous population and may be functionally distinct subpopulations that differentially contribute to the processing of emotionally salient stimuli.
Collapse
Affiliation(s)
- Aaron M Jasnow
- Department of Psychiatry and Behavioral Sciences, Center for Behavioral Neuroscience, Yerkes Research Center, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | | | | | |
Collapse
|
144
|
Caputi A, Rozov A, Blatow M, Monyer H. Two calretinin-positive GABAergic cell types in layer 2/3 of the mouse neocortex provide different forms of inhibition. ACTA ACUST UNITED AC 2008; 19:1345-59. [PMID: 18842664 DOI: 10.1093/cercor/bhn175] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Calretinin (CR)-positive GABAergic (gamma-aminobutyric acidergic) interneurons have been suggested to target preferentially other GABAergic cells in the neocortex. To systematically study this cell population in the cortex, we generated transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of the CR promoter and characterized EGFP/CR-positive cells at the cellular and network level. Based on anatomical and electrophysiological characteristics, 2 types of EGFP/CR-positive cells could be distinguished that we termed bipolar (BCR) and multipolar (MCR) CR cells. Both cell types share the feature of preferential interneuron targeting but differ in most other characteristics, including firing pattern, biochemical markers, neurite arborization, and synaptic plasticity. Like many other GABAergic interneurons, BCR cells but not MCR cells exhibit restricted cell type-specific gap junction coupling. Notably, MCR cells are electrically coupled in an asymmetric fashion with GABAergic interneurons of another subtype, the parvalbumin-positive multipolar bursting (MB) cells. Most importantly, the strength of electrical coupling between MCR and MB cells underlies their synchronous activation during carbachol-induced oscillations.
Collapse
Affiliation(s)
- Antonio Caputi
- Department of Clinical Neurobiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
145
|
Plessy C, Fagiolini M, Wagatsuma A, Harasawa N, Kuji T, Asaka-Oba A, Kanzaki Y, Fujishima S, Waki K, Nakahara H, Hensch TK, Carninci P. A resource for transcriptomic analysis in the mouse brain. PLoS One 2008; 3:e3012. [PMID: 18714383 PMCID: PMC2507754 DOI: 10.1371/journal.pone.0003012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 07/23/2008] [Indexed: 11/18/2022] Open
Abstract
Background The transcriptome of the cerebral cortex is remarkably homogeneous, with variations being stronger between individuals than between areas. It is thought that due to the presence of many distinct cell types, differences within one cell population will be averaged with the noise from others. Studies of sorted cells expressing the same transgene have shown that cell populations can be distinguished according to their transcriptional profile. Methodology We have prepared a low-redundancy set of 16,209 full-length cDNA clones which represents the transcriptome of the mouse visual cortex in its coding and non-coding aspects. Using an independent tag-based approach, CAGE, we confirmed the cortical expression of 72% of the clones. Clones were amplified by PCR and spotted on glass slides, and we interrogated the microarrays with RNA from flow-sorted fluorescent cells from the cerebral cortex of parvalbumin-egfp transgenic mice. Conclusions We provide an annotated cDNA clone collection which is particularly suitable for transcriptomic analysis in the mouse brain. Spotting it on microarrays, we compared the transcriptome of EGFP positive and negative cells in a parvalbumin-egfp transgenic background and showed that more than 30% of clones are differentially expressed. Our clone collection will be a useful resource for the study of the transcriptome of single cell types in the cerebral cortex.
Collapse
Affiliation(s)
- Charles Plessy
- Functional Genomics Technology Team, Omics Science Center, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Michela Fagiolini
- Laboratory for Neuronal Circuit Development, RIKEN Brain Science Institute, Wakô, Saitama, Japan
| | - Akiko Wagatsuma
- Laboratory for Neuronal Circuit Development, RIKEN Brain Science Institute, Wakô, Saitama, Japan
| | - Norihiro Harasawa
- Laboratory for Integrated Theoretical Neuroscience, RIKEN Brain Science Institute, Wakô, Saitama, Saitama, Japan
| | - Takenobu Kuji
- Laboratory for Neuronal Circuit Development, RIKEN Brain Science Institute, Wakô, Saitama, Japan
| | - Atsuko Asaka-Oba
- Laboratory for Neuronal Circuit Development, RIKEN Brain Science Institute, Wakô, Saitama, Japan
| | - Yukari Kanzaki
- Laboratory for Neuronal Circuit Development, RIKEN Brain Science Institute, Wakô, Saitama, Japan
| | - Sayaka Fujishima
- Laboratory for Neuronal Circuit Development, RIKEN Brain Science Institute, Wakô, Saitama, Japan
| | - Kazunori Waki
- Genome Science Laboratory, Discovery and Research Institute, RIKEN Wakô Institute, Wakô, Saitama, Japan
| | - Hiroyuki Nakahara
- Laboratory for Integrated Theoretical Neuroscience, RIKEN Brain Science Institute, Wakô, Saitama, Saitama, Japan
| | - Takao K. Hensch
- Laboratory for Neuronal Circuit Development, RIKEN Brain Science Institute, Wakô, Saitama, Japan
- * E-mail: (TKH); (PC)
| | - Piero Carninci
- Functional Genomics Technology Team, Omics Science Center, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- * E-mail: (TKH); (PC)
| |
Collapse
|
146
|
McLean DL, Fetcho JR. Using imaging and genetics in zebrafish to study developing spinal circuits in vivo. Dev Neurobiol 2008; 68:817-34. [PMID: 18383546 DOI: 10.1002/dneu.20617] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Imaging and molecular approaches are perfectly suited to young, transparent zebrafish (Danio rerio), where they have allowed novel functional studies of neural circuits and their links to behavior. Here, we review cutting-edge optical and genetic techniques used to dissect neural circuits in vivo and discuss their application to future studies of developing spinal circuits using living zebrafish. We anticipate that these experiments will reveal general principles governing the assembly of neural circuits that control movements.
Collapse
Affiliation(s)
- David L McLean
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA.
| | | |
Collapse
|
147
|
Kameda H, Furuta T, Matsuda W, Ohira K, Nakamura K, Hioki H, Kaneko T. Targeting green fluorescent protein to dendritic membrane in central neurons. Neurosci Res 2008; 61:79-91. [DOI: 10.1016/j.neures.2008.01.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 01/10/2008] [Accepted: 01/21/2008] [Indexed: 11/30/2022]
|
148
|
Fuchs EC, Zivkovic AR, Cunningham MO, Middleton S, Lebeau FEN, Bannerman DM, Rozov A, Whittington MA, Traub RD, Rawlins JNP, Monyer H. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 2008; 53:591-604. [PMID: 17296559 DOI: 10.1016/j.neuron.2007.01.031] [Citation(s) in RCA: 391] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 08/28/2006] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
Perisomatic inhibition provided by a subgroup of GABAergic interneurons plays a critical role in timing the output of pyramidal cells. To test their contribution at the network and the behavioral level, we generated genetically modified mice in which the excitatory drive was selectively reduced either by the knockout of the GluR-D or by conditional ablation of the GluR-A subunit in parvalbumin-positive cells. Comparable cell type-specific reductions of AMPA-mediated currents were obtained. Kainate-induced gamma oscillations exhibited reduced power in hippocampal slices from GluR-D-/- and GluR-A(PVCre-/-) mice. Experimental and modeling data indicated that this alteration could be accounted for by imprecise spike timing of fast-spiking cells (FS) caused by smaller interneuronal EPSPs. GluR-D-/- and GluR-A(PVCre-/-) mice exhibited similar impairments in hippocampus-dependent tasks. These findings directly show the effects of insufficient recruitment of fast-spiking cells at the network and behavioral level and demonstrate the role of this subpopulation for working and episodic-like memory.
Collapse
Affiliation(s)
- Elke C Fuchs
- Department of Clinical Neurobiology, University Hospital of Neurology, IZN, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Huxlin KR, Williams JM, Price T. A neurochemical signature of visual recovery after extrastriate cortical damage in the adult cat. J Comp Neurol 2008; 508:45-61. [PMID: 18300259 DOI: 10.1002/cne.21658] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In adult cats, damage to the extrastriate visual cortex on the banks of the lateral suprasylvian (LS) sulcus causes severe deficits in motion perception that can recover as a result of intensive direction discrimination training. The fact that recovery is restricted to trained visual field locations suggests that the neural circuitry of early visual cortical areas, with their tighter retinotopy, may play an important role in attaining perceptual improvements after damage to higher level visual cortex. The present study tests this hypothesis by comparing the manner in which excitatory and inhibitory components of the supragranular circuitry in an early visual cortical area (area 18) are affected by LS lesions and postlesion training. First, the proportion of LS-projecting pyramidal cells as well as calbindin- and parvalbumin-positive interneurons expressing each of the four AMPA receptor subunits was estimated in layers II and III of area 18 in intact animals. The degree to which LS lesions and visual retraining altered these expression patterns was then assessed. Both LS-projecting pyramidal cells and inhibitory interneurons exhibited long-term, differential reductions in the expression of glutamate receptor (GluR)1, -2, -2/3, and -4 following LS lesions. Intensive visual training post lesion restored normal AMPAR subunit expression in all three cell-types examined. Furthermore, for LS-projecting and calbindin-positive neurons, this restoration occurred only in portions of the ipsi-lesional area 18 representing trained visual field locations. This supports our hypothesis that stimulation of early visual cortical areas-in this case, area 18-by training is an important factor in restoring visual perception after permanent damage to LS cortex.
Collapse
Affiliation(s)
- Krystel R Huxlin
- Department of Ophthalmology, University of Rochester, Rochester, New York 14642.
| | | | | |
Collapse
|
150
|
Tepper JM, Wilson CJ, Koós T. Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons. ACTA ACUST UNITED AC 2007; 58:272-81. [PMID: 18054796 DOI: 10.1016/j.brainresrev.2007.10.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 10/22/2022]
Abstract
There are two distinct inhibitory GABAergic circuits in the neostriatum. The feedforward circuit consists of a relatively small population of GABAergic interneurons that receives excitatory input from the neocortex and exerts monosynaptic inhibition onto striatal spiny projection neurons. The feedback circuit comprises the numerous spiny projection neurons and their interconnections via local axon collaterals. This network has long been assumed to provide the majority of striatal GABAergic inhibition and to sharpen and shape striatal output through lateral inhibition, producing increased activity in the most strongly excited spiny cells at the expense of their less strongly excited neighbors. Recent results, mostly from recording experiments of synaptically connected pairs of neurons, have revealed that the two GABAergic circuits differ markedly in terms of the total number of synapses made by each, the strength of the postsynaptic response detected at the soma, the extent of presynaptic convergence and divergence and the net effect of the activation of each circuit on the postsynaptic activity of the spiny neuron. These data have revealed that the feedforward inhibition is powerful and widespread, with spiking in a single interneuron being capable of significantly delaying or even blocking the generation of spikes in a large number of postsynaptic spiny neurons. In contrast, the postsynaptic effects of spiking in a single presynaptic spiny neuron on postsynaptic spiny neurons are weak when measured at the soma, and unable to significantly affect spike timing or generation. Further, reciprocity of synaptic connections between spiny neurons is only rarely observed. These results suggest that the bulk of the fast inhibition that has the strongest effects on spiny neuron spike timing comes from the feedforward interneuronal system whereas the axon collateral feedback system acts principally at the dendrites to control local excitability as well as the overall level of activity of the spiny neuron.
Collapse
Affiliation(s)
- James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA.
| | | | | |
Collapse
|