101
|
Del Cid-Pellitero E, Plavski A, Mainville L, Jones BE. Homeostatic Changes in GABA and Glutamate Receptors on Excitatory Cortical Neurons during Sleep Deprivation and Recovery. Front Syst Neurosci 2017; 11:17. [PMID: 28408870 PMCID: PMC5374161 DOI: 10.3389/fnsys.2017.00017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/20/2017] [Indexed: 11/23/2022] Open
Abstract
Neuronal activity is regulated in a homeostatic manner through changes in inhibitory GABA and excitatory glutamate (Glu) AMPA (A) receptors (GluARs). Using immunofluorescent staining, we examined whether calcium/calmodulin-dependent protein kinase IIα (CaMKIIα)-labeled (+) excitatory neurons in the barrel cortex undergo such homeostatic regulation following enforced waking with associated cortical activation during the day when mice normally sleep the majority of the time. Sleep deprived mice were prevented from falling asleep by unilateral whisker stimulation and sleep recovery (SR) mice allowed to sleep freely following deprivation. In parallel with changes in c-Fos reflecting changes in activity, (β2-3 subunits of) GABAA Rs were increased on the membrane of CaMKIIα+ neurons with enforced waking and returned to baseline levels with SR in barrel cortex on sides both contra- and ipsilateral to the whisker stimulation. The GABAAR increase was correlated with increased gamma electroencephalographic (EEG) activity across conditions. On the other hand, (GluA1 subunits of) AMPA Rs were progressively removed from the membrane of CaMKIIα+ neurons by (Rab5+) early endosomes during enforced waking and returned to the membrane by (Rab11+) recycling endosomes during SR. The internalization of the GluA1Rs paralleled the expression of Arc, which mediates homeostatic regulation of AMPA receptors through an endocytic pathway. The reciprocal changes in GluA1Rs relative to GABAARs suggest homeostatic down-scaling during enforced waking and sensory stimulation and restorative up-scaling during recovery sleep. Such homeostatic changes with sleep-wake states and their associated cortical activities could stabilize excitability and activity in excitatory cortical neurons.
Collapse
Affiliation(s)
- Esther Del Cid-Pellitero
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological InstituteMontreal, QC, Canada
| | - Anton Plavski
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological InstituteMontreal, QC, Canada
| | - Lynda Mainville
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological InstituteMontreal, QC, Canada
| | - Barbara E Jones
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological InstituteMontreal, QC, Canada
| |
Collapse
|
102
|
Hunsberger HC, Konat GW, Reed MN. Peripheral viral challenge elevates extracellular glutamate in the hippocampus leading to seizure hypersusceptibility. J Neurochem 2017; 141:341-346. [PMID: 28244106 DOI: 10.1111/jnc.13999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/25/2017] [Accepted: 02/21/2017] [Indexed: 12/27/2022]
Abstract
Peripheral viral infections increase seizure propensity and intensity in susceptible individuals. We have modeled this comorbidity by demonstrating that the acute phase response instigated by an intraperitoneal (i.p.) injection of a viral mimetic, polyinosinic-polycytidylic acid (PIC), induces protracted hypersusceptibility to kainic acid-induced seizures. We have further demonstrated that PIC challenge robustly increases the level of tonic extracellular glutamate and neuronal excitability in the hippocampus. This study was undertaken to determine a relationship between tonic glutamate and seizure susceptibility following PIC challenge. Briefly, glutamate-sensing microelectrodes were permanently implanted into the CA1 of 8-week-old female C57BL/6 mice. Following a 3-day recovery, acute phase response was induced by i.p. injection of 12 mg/kg of PIC, while saline-injected mice served as controls. Tonic glutamate was measured at 1, 2, 3 and 4 days after PIC challenge. PIC challenge induced an approximately fourfold increase in tonic glutamate levels measured after 24 h. The levels gradually declined to the baseline values within 4 days. Twenty-four hours after PIC challenge, the mice featured an approximately threefold increase in cumulative seizure scores and twofold increase in the duration of status epilepticus induced by subcutaneous injection of 12 mg/kg of kainic acid. Seizure scores positively correlated with pre-seizure tonic glutamate. Moreover, seizures resulted in a profound (76%) elevation of extracellular glutamate in the CA1 of PIC-challenged but not saline-injected mice. Our results implicate the increase in extracellular glutamate as a mediator of seizure hypersusceptibility induced by peripheral viral challenge.
Collapse
Affiliation(s)
- Holly C Hunsberger
- Department of Neurobiology and Anatomy, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Gregory W Konat
- Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Miranda N Reed
- Department of Neurobiology and Anatomy, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
103
|
Selective activation of a few limbic structures during paradoxical (REM) sleep by the claustrum and the supramammillary nucleus: evidence and function. Curr Opin Neurobiol 2017; 44:59-64. [PMID: 28347885 DOI: 10.1016/j.conb.2017.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/04/2017] [Indexed: 01/17/2023]
Abstract
We review here classical and recent knowledge on the state of the cortex during paradoxical (REM) sleep (PS). Recent data indicate that only a few limbic cortical structures including the anterior cingulate, retrosplenial and medial entorhinal cortices and the dentate gyrus are strongly activated during PS. In contrast, most of the other cortices including the somatosensory ones are rather deactivated during PS. Further, recent results suggest that tonic activation of limbic cortical neurons during PS is due to projections from glutamate neurons of the claustrum and GABA/glutamate neurons of the supramammillary nucleus while their pacing with theta is induced by projections from GABAergic neurons of the medial septum. The limbic structures activated during PS have all been implicated in spatial memory and it is therefore likely that such activation is crucial for memory consolidation.
Collapse
|
104
|
The tired hippocampus: the molecular impact of sleep deprivation on hippocampal function. Curr Opin Neurobiol 2017; 44:13-19. [PMID: 28242433 DOI: 10.1016/j.conb.2017.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/05/2017] [Indexed: 01/05/2023]
Abstract
Memory consolidation, the process by which information is stored following training, consists of synaptic consolidation and systems consolidation. It is widely acknowledged that sleep deprivation has a profound effect on synaptic consolidation, particularly for memories that require the hippocampus. It is unclear, however, which of the many molecular changes associated with sleep deprivation directly contribute to memory deficits. In this review, we highlight recent studies showing that sleep deprivation impairs hippocampal cAMP and mTOR signaling, and ultimately causes spine loss in CA1 neurons in a cofilin-dependent fashion. Reversing these molecular alterations made memory consolidation resistant to the negative impact of sleep deprivation. Together, these studies have started to identify the molecular underpinnings by which sleep deprivation impairs synaptic consolidation.
Collapse
|
105
|
The Relationship Between Sleep-Wake Cycle Disturbance and Trajectory of Cognitive Recovery During Acute Traumatic Brain Injury. J Head Trauma Rehabil 2017; 31:108-16. [PMID: 26709584 DOI: 10.1097/htr.0000000000000206] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Following traumatic brain injury, both sleep dysfunction and cognitive impairment are common. Unfortunately, little is known regarding the potential associations between these 2 symptoms during acute recovery. This study sought to prospectively examine the relationship between ratings of sleep dysfunction and serial cognitive assessments among traumatic brain injury acute neurorehabilitation admissions. METHODS Participants were consecutive admissions to a free-standing rehabilitation hospital following moderate to severe traumatic brain injury (Median Emergency Department Glasgow Coma Scale = 7). Participants were assessed for sleep-wake cycle disturbance (SWCD) and cognitive functioning at admission and with subsequent weekly examinations. Participants were grouped on the basis of presence (SWCD+) or absence (SWCD-) of sleep dysfunction for each examination; groups were equivalent on demographic and injury variables. Individual Growth Curve modeling was used to examine course of Cognitive Test for Delirium performance across examinations. RESULTS Individual Growth Curve modeling revealed a significant interaction between examination number (ie, time) and SWCD group (β = -4.03, P < .001) on total Cognitive Test for Delirium score. The SWCD+ ratings on later examinations were predicted to result in lower Cognitive Test for Delirium scores and greater cognitive impairment over time. CONCLUSIONS This study has implications for improving neurorehabilitation treatment, as targeting sleep dysfunction for early intervention may facilitate cognitive recovery.
Collapse
|
106
|
Incidence, Characterization, and Predictors of Sleep Apnea in Consecutive Brain Injury Rehabilitation Admissions. J Head Trauma Rehabil 2017; 31:82-100. [PMID: 26959663 DOI: 10.1097/htr.0000000000000230] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To prospectively examine the incidence and risk factors for sleep apnea in consecutive brain injury rehabilitation admissions. SETTING Inpatient neurorehabilitation hospital. PARTICIPANTS Participants (n = 86) were consecutive neurorehabilitation admissions. DESIGN Retrospective analysis of prospectively collected data. MAIN MEASURES Polysomnography. RESULTS Half (49%) of the sample was diagnosed with sleep apnea. For the full sample, univariate logistic regression revealed age (odds ratio: 1.08; 95% confidence interval: 1.04-1.11) and hypertension (odds ratio: 7.77; 95% confidence interval: 2.81-21.47) as significant predictors of sleep apnea diagnosis. Results of logistic regression conducted within the traumatic brain injury group revealed age (odds ratio: 1.07; 95% confidence interval: 1.02-1.13) as the only significant predictor of apnea diagnosis after adjustment for other variables. Hierarchical generalized linear regression models for the prediction of apnea severity (ie, apnea-hypopnea index found that Functional Independence Measure Cognition Score (P = .01) and age (P < .01) were significant predictors. Following adjustment for all other terms, only age (P < .01) remained significant. CONCLUSION Sleep apnea is prevalent in acute neurorehabilitation admissions and traditional risk profiles for sleep apnea may not effectively screen for the disorder. Given the progressive nature of obstructive sleep apnea and morbidity associated with even mild obstructive sleep apnea, early identification and intervention may address comorbidities influencing acute and long-term outcome.
Collapse
|
107
|
O'Callaghan EK, Ballester Roig MN, Mongrain V. Cell adhesion molecules and sleep. Neurosci Res 2016; 116:29-38. [PMID: 27884699 DOI: 10.1016/j.neures.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023]
Abstract
Cell adhesion molecules (CAMs) play essential roles in the central nervous system, where some families are involved in synaptic development and function. These synaptic adhesion molecules (SAMs) are involved in the regulation of synaptic plasticity, and the formation of neuronal networks. Recent findings from studies examining the consequences of sleep loss suggest that these molecules are candidates to act in sleep regulation. This review highlights the experimental data that lead to the identification of SAMs as potential sleep regulators, and discusses results supporting that specific SAMs are involved in different aspects of sleep regulation. Further, some potential mechanisms by which SAMs may act to regulate sleep are outlined, and the proposition that these molecules may serve as molecular machinery in the two sleep regulatory processes, the circadian and homeostatic components, is presented. Together, the data argue that SAMs regulate the neuronal plasticity that underlies sleep and wakefulness.
Collapse
Affiliation(s)
- Emma Kate O'Callaghan
- Research Centre and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin West Blvd. Montreal, QC, H4J 1C5, Canada; Department of Neuroscience, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montreal, QC, H3C 3J7, Canada
| | - Maria Neus Ballester Roig
- Research Centre and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin West Blvd. Montreal, QC, H4J 1C5, Canada; Neurophysiology of Sleep and Biology Rhythms Laboratory, IDISPA (Health Research Foundation Illes Balears), University of Balearic Islands, Palma de Mallorca 07122, Spain
| | - Valérie Mongrain
- Research Centre and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin West Blvd. Montreal, QC, H4J 1C5, Canada; Department of Neuroscience, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montreal, QC, H3C 3J7, Canada,.
| |
Collapse
|
108
|
Contribution of sleep to the repair of neuronal DNA double-strand breaks: evidence from flies and mice. Sci Rep 2016; 6:36804. [PMID: 27830758 PMCID: PMC5103291 DOI: 10.1038/srep36804] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022] Open
Abstract
Exploration of a novel environment leads to neuronal DNA double-strand breaks (DSBs). These DSBs are generated by type 2 topoisomerase to relieve topological constrains that limit transcription of plasticity-related immediate early genes. If not promptly repaired, however, DSBs may lead to cell death. Since the induction of plasticity-related genes is higher in wake than in sleep, we asked whether it is specifically wake associated with synaptic plasticity that leads to DSBs, and whether sleep provides any selective advantage over wake in their repair. In flies and mice, we find that enriched wake, more than simply time spent awake, induces DSBs, and their repair in mice is delayed or prevented by subsequent wake. In both species the repair of irradiation-induced neuronal DSBs is also quicker during sleep, and mouse genes mediating the response to DNA damage are upregulated in sleep. Thus, sleep facilitates the repair of neuronal DSBs.
Collapse
|
109
|
Circadian dynamics in measures of cortical excitation and inhibition balance. Sci Rep 2016; 6:33661. [PMID: 27651114 PMCID: PMC5030482 DOI: 10.1038/srep33661] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/31/2016] [Indexed: 11/24/2022] Open
Abstract
Several neuropsychiatric and neurological disorders have recently been characterized as dysfunctions arising from a ‘final common pathway’ of imbalanced excitation to inhibition within cortical networks. How the regulation of a cortical E/I ratio is affected by sleep and the circadian rhythm however, remains to be established. Here we addressed this issue through the analyses of TMS-evoked responses recorded over a 29 h sleep deprivation protocol conducted in young and healthy volunteers. Spectral analyses of TMS-evoked responses in frontal cortex revealed non-linear changes in gamma band evoked oscillations, compatible with an influence of circadian timing on inhibitory interneuron activity. In silico inferences of cell-to-cell excitatory and inhibitory connectivity and GABA/Glutamate receptor time constant based on neural mass modeling within the Dynamic causal modeling framework, further suggested excitation/inhibition balance was under a strong circadian influence. These results indicate that circadian changes in EEG spectral properties, in measure of excitatory/inhibitory connectivity and in GABA/glutamate receptor function could support the maintenance of cognitive performance during a normal waking day, but also during overnight wakefulness. More generally, these findings demonstrate a slow daily regulation of cortical excitation/inhibition balance, which depends on circadian-timing and prior sleep-wake history.
Collapse
|
110
|
Circadian regulation of human cortical excitability. Nat Commun 2016; 7:11828. [PMID: 27339884 PMCID: PMC4931032 DOI: 10.1038/ncomms11828] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
Prolonged wakefulness alters cortical excitability, which is essential for proper brain function and cognition. However, besides prior wakefulness, brain function and cognition are also affected by circadian rhythmicity. Whether the regulation of cognition involves a circadian impact on cortical excitability is unknown. Here, we assessed cortical excitability from scalp electroencephalography (EEG) responses to transcranial magnetic stimulation in 22 participants during 29 h of wakefulness under constant conditions. Data reveal robust circadian dynamics of cortical excitability that are strongest in those individuals with highest endocrine markers of circadian amplitude. In addition, the time course of cortical excitability correlates with changes in EEG synchronization and cognitive performance. These results demonstrate that the crucial factor for cortical excitability, and basic brain function in general, is the balance between circadian rhythmicity and sleep need, rather than sleep homoeostasis alone. These findings have implications for clinical applications such as non-invasive brain stimulation in neurorehabilitation. Cognitive performance is impaired after prolonged wakefulness, yet the contribution of circadian rhythms for proper brain function remains unclear. Here the authors show that cortical excitability measured using TMS exhibits robust circadian dynamics which is correlated with cognitive performance.
Collapse
|
111
|
Spindle Activity Orchestrates Plasticity during Development and Sleep. Neural Plast 2016; 2016:5787423. [PMID: 27293903 PMCID: PMC4884844 DOI: 10.1155/2016/5787423] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/13/2016] [Indexed: 11/17/2022] Open
Abstract
Spindle oscillations have been described during early brain development and in the adult brain. Besides similarities in temporal patterns and involved brain areas, neonatal spindle bursts (NSBs) and adult sleep spindles (ASSs) show differences in their occurrence, spatial distribution, and underlying mechanisms. While NSBs have been proposed to coordinate the refinement of the maturating neuronal network, ASSs are associated with the implementation of acquired information within existing networks. Along with these functional differences, separate synaptic plasticity mechanisms seem to be recruited. Here, we review the generation of spindle oscillations in the developing and adult brain and discuss possible implications of their differences for synaptic plasticity. The first part of the review is dedicated to the generation and function of ASSs with a particular focus on their role in healthy and impaired neuronal networks. The second part overviews the present knowledge of spindle activity during development and the ability of NSBs to organize immature circuits. Studies linking abnormal maturation of brain wiring with neurological and neuropsychiatric disorders highlight the importance to better elucidate neonatal plasticity rules in future research.
Collapse
|
112
|
Petit JM, Magistretti P. Regulation of neuron–astrocyte metabolic coupling across the sleep–wake cycle. Neuroscience 2016; 323:135-56. [DOI: 10.1016/j.neuroscience.2015.12.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022]
|
113
|
Xie F, Li X, Bao M, Shi R, Yue Y, Guan Y, Wang Y. Anesthetic propofol normalized the increased release of glutamate and γ-amino butyric acid in hippocampus after paradoxical sleep deprivation in rats. Neurol Res 2016; 37:1102-7. [PMID: 26923580 DOI: 10.1080/01616412.2015.1114231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fang Xie
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xueyang Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Mengmeng Bao
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Rong Shi
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yun Yue
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
114
|
de Vivo L, Nelson AB, Bellesi M, Noguti J, Tononi G, Cirelli C. Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex. Sleep 2016; 39:861-74. [PMID: 26715225 DOI: 10.5665/sleep.5644] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/21/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVE The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. METHODS Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6-8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). RESULTS Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. CONCLUSIONS Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss.
Collapse
Affiliation(s)
- Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Aaron B Nelson
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Michele Bellesi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Juliana Noguti
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
115
|
Wickwire EM, Williams SG, Roth T, Capaldi VF, Jaffe M, Moline M, Motamedi GK, Morgan GW, Mysliwiec V, Germain A, Pazdan RM, Ferziger R, Balkin TJ, MacDonald ME, Macek TA, Yochelson MR, Scharf SM, Lettieri CJ. Sleep, Sleep Disorders, and Mild Traumatic Brain Injury. What We Know and What We Need to Know: Findings from a National Working Group. Neurotherapeutics 2016; 13:403-17. [PMID: 27002812 PMCID: PMC4824019 DOI: 10.1007/s13311-016-0429-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disturbed sleep is one of the most common complaints following traumatic brain injury (TBI) and worsens morbidity and long-term sequelae. Further, sleep and TBI share neurophysiologic underpinnings with direct relevance to recovery from TBI. As such, disturbed sleep and clinical sleep disorders represent modifiable treatment targets to improve outcomes in TBI. This paper presents key findings from a national working group on sleep and TBI, with a specific focus on the testing and development of sleep-related therapeutic interventions for mild TBI (mTBI). First, mTBI and sleep physiology are briefly reviewed. Next, essential empirical and clinical questions and knowledge gaps are addressed. Finally, actionable recommendations are offered to guide active and efficient collaboration between academic, industry, and governmental stakeholders.
Collapse
Affiliation(s)
- Emerson M Wickwire
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
- Sleep Disorders Center, Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Scott G Williams
- Department of Medicine, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Thomas Roth
- Sleep Disorders and Research Center, Henry Ford Hospital, Detroit, MI, USA
| | - Vincent F Capaldi
- Department of Behavioral Biology, Walter Reed Army Institute of Research, Center for Military Psychiatry and Neuroscience Research, Silver Spring, MD, USA
| | - Michael Jaffe
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Concussion and Sports Program, University of Florida Trauma, Gainesville, FL, USA
- UF Health Sleep Disorders Center, Gainesville, FL, USA
| | | | - Gholam K Motamedi
- Department of Neurology, Georgetown University Hospital, Washington, DC, USA
| | - Gregory W Morgan
- Sleep Disorders Center, National Intrepid Center of Excellence, Bethesda, MD, USA
| | - Vincent Mysliwiec
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Sleep Medicine, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Anne Germain
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | - Thomas J Balkin
- Department of Behavioral Biology, Walter Reed Army Institute of Research, Center for Military Psychiatry and Neuroscience Research, Silver Spring, MD, USA
| | - Margaret E MacDonald
- Defense and Veterans Brain Injury Center, (Contractor, General Dynamics Health Solutions), Evans Army Community Hospital, Fort Carson, CO, USA
| | - Thomas A Macek
- Department of Clinical Science, CNS, Takeda Development Center - Americas, Deerfield, IL, USA
| | - Michael R Yochelson
- Medstar National Rehabilitation Network, Washington, DC, USA
- Departments of Neurology and Rehabilitation Medicine, Georgetown University School of Medicine, Washington, DC, USA
| | - Steven M Scharf
- Sleep Disorders Center, Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher J Lettieri
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
116
|
Li C, Limnuson K, Wu Z, Amin A, Narayan A, Golanov EV, Ahn CH, Hartings JA, Narayan RK. Single probe for real-time simultaneous monitoring of neurochemistry and direct-current electrocorticography. Biosens Bioelectron 2016; 77:62-8. [DOI: 10.1016/j.bios.2015.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 01/25/2023]
|
117
|
Eyes Open on Sleep and Wake: In Vivo to In Silico Neural Networks. Neural Plast 2016; 2016:1478684. [PMID: 26885400 PMCID: PMC4738930 DOI: 10.1155/2016/1478684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/11/2015] [Indexed: 12/14/2022] Open
Abstract
Functional and effective connectivity of cortical areas are essential for normal brain function under different behavioral states. Appropriate cortical activity during sleep and wakefulness is ensured by the balanced activity of excitatory and inhibitory circuits. Ultimately, fast, millisecond cortical rhythmic oscillations shape cortical function in time and space. On a much longer time scale, brain function also depends on prior sleep-wake history and circadian processes. However, much remains to be established on how the brain operates at the neuronal level in humans during sleep and wakefulness. A key limitation of human neuroscience is the difficulty in isolating neuronal excitation/inhibition drive in vivo. Therefore, computational models are noninvasive approaches of choice to indirectly access hidden neuronal states. In this review, we present a physiologically driven in silico approach, Dynamic Causal Modelling (DCM), as a means to comprehend brain function under different experimental paradigms. Importantly, DCM has allowed for the understanding of how brain dynamics underscore brain plasticity, cognition, and different states of consciousness. In a broader perspective, noninvasive computational approaches, such as DCM, may help to puzzle out the spatial and temporal dynamics of human brain function at different behavioural states.
Collapse
|
118
|
Bellesi M, Tononi G, Cirelli C, Serra PA. Region-Specific Dissociation between Cortical Noradrenaline Levels and the Sleep/Wake Cycle. Sleep 2016; 39:143-54. [PMID: 26237776 DOI: 10.5665/sleep.5336] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/28/2015] [Indexed: 12/20/2022] Open
Abstract
STUDY OBJECTIVES The activity of the noradrenergic system of the locus coeruleus (LC) is high in wake and low in sleep. LC promotes arousal and EEG activation, as well as attention, working memory, and cognitive flexibility. These functions rely on prefrontal cortex and are impaired by sleep deprivation, but the extent to which LC activity changes during wake remains unclear. Moreover, it is unknown whether noradrenergic neurons can sustain elevated firing during extended wake. Recent studies show that relative to LC neurons targeting primary motor cortex (M1), those projecting to medial prefrontal cortex (mPFC) have higher spontaneous firing rates and are more excitable. These results suggest that noradrenaline (NA) levels should be higher in mPFC than M1, and that during prolonged wake LC cells targeting mPFC may fatigue more, but direct evidence is lacking. METHODS We performed in vivo microdialysis experiments in adult (9-10 weeks old) C57BL/6 mice implanted for chronic electroencephalographic recordings. Cortical NA levels were measured during spontaneous sleep and wake (n = 8 mice), and in the course of sleep deprivation (n = 6). RESULTS We found that absolute NA levels are higher in mPFC than in M1. Moreover, in both areas they decline during sleep and increase during wake, but these changes are faster in M1 than mPFC. Finally, by the end of sleep deprivation NA levels decline only in mPFC. CONCLUSIONS Locus coeruleus (LC) neurons targeting prefrontal cortex may fatigue more markedly, or earlier, than other LC cells, suggesting one of the mechanisms underlying the cognitive impairment and the increased sleep presure associated with sleep deprivation. COMMENTARY A commentary on this article appears in this issue on page 11.
Collapse
Affiliation(s)
- Michele Bellesi
- Dept. of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Giulio Tononi
- Dept. of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Chiara Cirelli
- Dept. of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Pier Andrea Serra
- Dept. of Clinical and Experimental Medicine, University of Sassari, Italy
| |
Collapse
|
119
|
Synaptic plasticity model of therapeutic sleep deprivation in major depression. Sleep Med Rev 2015; 30:53-62. [PMID: 26803484 DOI: 10.1016/j.smrv.2015.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/26/2015] [Accepted: 11/19/2015] [Indexed: 01/01/2023]
Abstract
Therapeutic sleep deprivation (SD) is a rapid acting treatment for major depressive disorder (MDD). Within hours, SD leads to a dramatic decrease in depressive symptoms in 50-60% of patients with MDD. Scientifically, therapeutic SD presents a unique paradigm to study the neurobiology of MDD. Yet, up to now, the neurobiological basis of the antidepressant effect, which is most likely different from today's first-line treatments, is not sufficiently understood. This article puts the idea forward that sleep/wake-dependent shifts in synaptic plasticity, i.e., the neural basis of adaptive network function and behavior, represent a critical mechanism of therapeutic SD in MDD. Particularly, this article centers on two major hypotheses of MDD and sleep, the synaptic plasticity hypothesis of MDD and the synaptic homeostasis hypothesis of sleep-wake regulation, and on how they can be integrated into a novel synaptic plasticity model of therapeutic SD in MDD. As a major component, the model proposes that therapeutic SD, by homeostatically enhancing cortical synaptic strength, shifts the initially deficient inducibility of associative synaptic long-term potentiation (LTP) in patients with MDD in a more favorable window of associative plasticity. Research on the molecular effects of SD in animals and humans, including observations in the neurotrophic, adenosinergic, monoaminergic, and glutamatergic system, provides some support for the hypothesis of associative synaptic plasticity facilitation after therapeutic SD in MDD. The model proposes a novel framework for a mechanism of action of therapeutic SD that can be further tested in humans based on non-invasive indices and in animals based on direct studies of synaptic plasticity. Further determining the mechanisms of action of SD might contribute to the development of novel fast acting treatments for MDD, one of the major health problems worldwide.
Collapse
|
120
|
Giacobbo BL, Corrêa MS, Vedovelli K, de Souza CEB, Spitza LM, Gonçalves L, Paludo N, Molina RD, da Rosa ED, Argimon IIDL, Bromberg E. Could BDNF be involved in compensatory mechanisms to maintain cognitive performance despite acute sleep deprivation? An exploratory study. Int J Psychophysiol 2015; 99:96-102. [PMID: 26602839 DOI: 10.1016/j.ijpsycho.2015.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/01/2015] [Accepted: 11/18/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Neuroimaging studies suggest that acute sleep deprivation can lead to adaptations, such as compensatory recruitment of cerebral structures, to maintain cognitive performance despite sleep loss. However, the understanding of the neurochemical alterations related to these adaptations remains incomplete. OBJECTIVE Investigate BDNF levels, cognitive performance and their relations in healthy subjects after acute sleep deprivation. METHODS Nineteen sleep deprived (22.11±3.21years) and twenty control (25.10±4.42years) subjects completed depression, anxiety and sleep quality questionnaires. Sleep deprived group spent a full night awake performing different playful activities to keep themselves from sleeping. Attention, response inhibition capacity and working memory (prefrontal cortex-dependent) were assessed with Stroop and Digit Span tests. Declarative memory (hippocampus-dependent) was assessed with Logical Memory test. Serum BDNF was measured by sandwich ELISA. Data were analyzed with independent samples T-test, ANOVA, ANCOVA and curve estimation regressions. p<0.05 was deemed statistically significant. RESULTS The sleep deprived group showed higher BDNF levels and normal performance on attention, response inhibition capacity and working memory. However, declarative memory was impaired. A sigmoidal relation between BDNF and Stroop Test scores was found. CONCLUSIONS Increased BDNF could be related, at least in part, to the maintenance of normal prefrontal cognitive functions after sleep deprivation. This potential relation should be further investigated.
Collapse
Affiliation(s)
- Bruno Lima Giacobbo
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; National Institute for Translational Medicine (INCT-TM), Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Márcio Silveira Corrêa
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; National Institute for Translational Medicine (INCT-TM), Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Kelem Vedovelli
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; National Institute for Translational Medicine (INCT-TM), Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Carlos Eduardo Bruhn de Souza
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Letícia Martins Spitza
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Lucas Gonçalves
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Nathália Paludo
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Rachel Dias Molina
- Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Eduarda Dias da Rosa
- Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Irani Iracema de Lima Argimon
- Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Elke Bromberg
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; National Institute for Translational Medicine (INCT-TM), Porto Alegre, Rio Grande do Sul 90035-003, Brazil.
| |
Collapse
|
121
|
Positive correlation between cerebrospinal fluid glutamate levels and Pittsburgh Sleep Quality Index scores in northern Chinese subjects. Sleep Med 2015; 23:123-124. [PMID: 26459692 DOI: 10.1016/j.sleep.2015.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/12/2015] [Indexed: 11/23/2022]
|
122
|
Bellesi M, de Vivo L, Tononi G, Cirelli C. Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol 2015; 13:66. [PMID: 26303010 PMCID: PMC4548305 DOI: 10.1186/s12915-015-0176-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022] Open
Abstract
Background Astrocytes can mediate neurovascular coupling, modulate neuronal excitability, and promote synaptic maturation and remodeling. All these functions are likely to be modulated by the sleep/wake cycle, because brain metabolism, neuronal activity and synaptic turnover change as a function of behavioral state. Yet, little is known about the effects of sleep and wake on astrocytes. Results Here we show that sleep and wake strongly affect both astrocytic gene expression and ultrastructure in the mouse brain. Using translating ribosome affinity purification technology and microarrays, we find that 1.4 % of all astrocytic transcripts in the forebrain are dependent on state (three groups, sleep, wake, short sleep deprivation; six mice per group). Sleep upregulates a few select genes, like Cirp and Uba1, whereas wake upregulates many genes related to metabolism, the extracellular matrix and cytoskeleton, including Trio, Synj2 and Gem, which are involved in the elongation of peripheral astrocytic processes. Using serial block face scanning electron microscopy (three groups, sleep, short sleep deprivation, chronic sleep restriction; three mice per group, >100 spines per mouse, 3D), we find that a few hours of wake are sufficient to bring astrocytic processes closer to the synaptic cleft, while chronic sleep restriction also extends the overall astrocytic coverage of the synapse, including at the axon–spine interface, and increases the available astrocytic surface in the neuropil. Conclusions Wake-related changes likely reflect an increased need for glutamate clearance, and are consistent with an overall increase in synaptic strength when sleep is prevented. The reduced astrocytic coverage during sleep, instead, may favor glutamate spillover, thus promoting neuronal synchronization during non-rapid eye movement sleep. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0176-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michele Bellesi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI, 53719, USA.
| | - Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI, 53719, USA.
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI, 53719, USA.
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI, 53719, USA.
| |
Collapse
|
123
|
Disrupted sleep-wake regulation in type 1 equilibrative nucleoside transporter knockout mice. Neuroscience 2015; 303:211-9. [PMID: 26143012 DOI: 10.1016/j.neuroscience.2015.06.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 01/25/2023]
Abstract
The type 1 equilibrative nucleoside transporter (ENT1) is implicated in regulating levels of extracellular adenosine ([AD]ex). In the basal forebrain (BF) levels of [AD]ex increase during wakefulness and closely correspond to the increases in the electroencephalogram (EEG) delta (0.75-4.5Hz) activity (NRδ) during subsequent non-rapid eye movement sleep (NREMS). Thus in the BF, [AD]ex serves as a biochemical marker of sleep homeostasis. Waking EEG activity in theta range (5-9Hz, Wθ) is also described as a marker of sleep homeostasis. An hour-by-hour temporal relationship between the Wθ and NRδ is unclear. In this study we examined the relationship between these EEG markers of sleep homeostasis during spontaneous sleep-wakefulness and during sleep deprivation (SD) and recovery sleep in the ENT1 gene knockout (ENT1KO) mouse. We observed that baseline NREMS amount was decreased during the light period in ENT1KO mice, accompanied by a weak correlation between Wθ of each hour and NRδ of its subsequent hour when compared to their wild-type (WT) littermates. Perfusion of low dose of adenosine into BF not only strengthened the Wθ-NRδ relationship, but also increased NREMS to match with the WT littermates suggesting decreased [AD]ex in ENT1KO mice. However, the SD-induced [AD]ex increase in the BF and the linear correlation between the EEG markers of sleep homeostasis were unaffected in ENT1KO mice suggesting that during SD, sources other than ENT1 contribute to increase in [AD]ex. Our data provide evidence for a differential regulation of wakefulness-associated [AD]ex during spontaneous vs prolonged waking.
Collapse
|
124
|
Lim MM, Szymusiak R. Neurobiology of Arousal and Sleep: Updates and Insights Into Neurological Disorders. CURRENT SLEEP MEDICINE REPORTS 2015. [DOI: 10.1007/s40675-015-0013-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
125
|
Kreutzmann JC, Havekes R, Abel T, Meerlo P. Sleep deprivation and hippocampal vulnerability: changes in neuronal plasticity, neurogenesis and cognitive function. Neuroscience 2015; 309:173-90. [PMID: 25937398 DOI: 10.1016/j.neuroscience.2015.04.053] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/31/2015] [Accepted: 04/21/2015] [Indexed: 01/19/2023]
Abstract
Despite the ongoing fundamental controversy about the physiological function of sleep, there is general consensus that sleep benefits neuronal plasticity, which ultimately supports brain function and cognition. In agreement with this are numerous studies showing that sleep deprivation (SD) results in learning and memory impairments. Interestingly, such impairments appear to occur particularly when these learning and memory processes require the hippocampus, suggesting that this brain region may be particularly sensitive to the consequences of sleep loss. Although the molecular mechanisms underlying sleep and memory formation remain to be investigated, available evidence suggests that SD may impair hippocampal neuronal plasticity and memory processes by attenuating intracellular cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling which may lead to alterations in cAMP response element binding protein (CREB)-mediated gene transcription, neurotrophic signaling, and glutamate receptor expression. When restricted sleep becomes a chronic condition, it causes a reduction of hippocampal cell proliferation and neurogenesis, which may eventually lead to a reduction in hippocampal volume. Ultimately, by impairing hippocampal plasticity and function, chronically restricted and disrupted sleep contributes to cognitive disorders and psychiatric diseases.
Collapse
Affiliation(s)
- J C Kreutzmann
- Center for Behavior and Neurosciences, University of Groningen, The Netherlands; Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - R Havekes
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - T Abel
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - P Meerlo
- Center for Behavior and Neurosciences, University of Groningen, The Netherlands.
| |
Collapse
|
126
|
Abstract
Transcriptomic studies have revealed that the brains of sleeping and awake animals differ significantly at the molecular level, with hundreds of brain transcripts changing their expression across behavioral states. However, it was unclear how sleep affects specific cells types, such as oligodendrocytes, which make myelin in the healthy brain and in response to injury. In this review, I summarize the recent findings showing that several genes expressed at higher levels during sleep are involved in the synthesis/maintenance of all membranes and of myelin in particular. In addition, I will discuss the effect of sleep and wake on oligodendrocyte precursor cells (OPCs), providing a working hypothesis on the function of REM sleep and acetylcholine in OPC proliferation.
Collapse
Affiliation(s)
- Michele Bellesi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
127
|
Astrocytic Regulation of Sleep Processes. CURRENT SLEEP MEDICINE REPORTS 2015. [DOI: 10.1007/s40675-014-0005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
128
|
Dyakonova VE, Hernádi L, Ito E, Dyakonova TL, Chistopolsky IA, Zakharov IS, Sakharov DA. The activity of isolated neurons and the modulatory state of an isolated nervous system represent a recent behavioural state. ACTA ACUST UNITED AC 2015; 218:1151-8. [PMID: 25714568 DOI: 10.1242/jeb.111930] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/04/2015] [Indexed: 11/20/2022]
Abstract
Behavioural/motivational state is known to influence nearly all aspects of physiology and behaviour. The cellular basis of behavioural state control is only partially understood. Our investigation, performed on the pond snail Lymnaea stagnalis whose nervous system is useful for work on completely isolated neurons, provided several results related to this problem. First, we demonstrated that the behavioural state can produce long-term changes in individual neurons that persist even after neuron isolation from the nervous system. Specifically, we found that pedal serotonergic neurons that control locomotion show higher activity and lower membrane potential after being isolated from the nervous systems of hungry animals. Second, we showed that the modulatory state (the chemical neuroactive microenvironment of the central ganglia) changes in accordance with the nutritional state of an animal and produces predicted changes in single isolated locomotor neurons. Third, we report that observed hunger-induced effects can be explained by the increased synthesis of serotonin in pedal serotonergic neurons, which has an impact on the electrical activity of isolated serotonergic neurons and the intensity of extrasynaptic serotonin release from the pedal ganglia.
Collapse
Affiliation(s)
- Varvara E Dyakonova
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Laszlo Hernádi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Tihany H-8237, Hungary
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki 769-2193, Japan
| | - Taisia L Dyakonova
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Ilya A Chistopolsky
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Igor S Zakharov
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Dmitri A Sakharov
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
129
|
Hikichi H, Hiyoshi T, Marumo T, Tomishima Y, Kaku A, Iida I, Urabe H, Tamita T, Yasuhara A, Karasawa JI, Chaki S. Antipsychotic profiles of TASP0443294, a novel and orally active positive allosteric modulator of metabotropic glutamate 2 receptor. J Pharmacol Sci 2015; 127:352-61. [PMID: 25837934 DOI: 10.1016/j.jphs.2015.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 01/01/2023] Open
Abstract
Glutamatergic dysfunction has been implicated in psychiatric disorders such as schizophrenia. The stimulation of metabotropic glutamate (mGlu) 2 receptor has been shown to be effective in a number of animal models of schizophrenia. In this study, we investigated the antipsychotic profiles of (2S)-5-methyl-2-{[4-(1,1,1-trifluoro-2-methylpropan-2-yl)phenoxy]methyl}-2,3-dihydroimidazo[2,1-b][1,3]oxazole-6-carboxamide (TASP0443294), a newly synthesized positive allosteric modulator of the mGlu2 receptor. TASP0443294 potentiated the response of human mGlu2 and rat mGlu2 receptors to glutamate with EC50 values of 277 and 149 nM, respectively, without affecting the glutamate response of human mGlu3 receptor. TASP0443294 was distributed in the brain and cerebrospinal fluid after peroral administration in rats. The peroral administration of TASP0443294 inhibited methamphetamine-induced hyperlocomotion in rats, which was attenuated by an mGlu2/3 receptor antagonist, and improved social memory impairment induced by 5R,10S-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) in rats. Furthermore, TASP0443294 reduced the ketamine-induced basal gamma hyperactivity in the prefrontal cortex and suppressed rapid eye movement (REM) sleep in rats. These findings indicate that TASP0443294 is an mGlu2 receptor positive allosteric modulator with antipsychotic activity, and that the suppression of aberrant gamma oscillations and REM sleep could be considered as neurophysiological biomarkers for TASP0443294.
Collapse
Affiliation(s)
- Hirohiko Hikichi
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan.
| | - Tetsuaki Hiyoshi
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Toshiyuki Marumo
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Yasumitsu Tomishima
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Ayaka Kaku
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Izumi Iida
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Hiroki Urabe
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Tomoko Tamita
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Akito Yasuhara
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Jun-ichi Karasawa
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - Shigeyuki Chaki
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| |
Collapse
|
130
|
Abstract
Experience-dependent plasticity, the ability of the brain to constantly adapt to an ever-changing environment, has been suggested to be highest during childhood and to decline thereafter. However, empirical evidence for this is rather scarce. Slow-wave activity (SWA; EEG activity of 1-4.5 Hz) during deep sleep can be used as a marker of experience-dependent plasticity. For example, performing a visuomotor adaptation task in adults increased SWA during subsequent sleep over a locally restricted region of the right parietal cortex, which is known to be involved in visuomotor adaptation. Here, we investigated whether local experience-dependent changes in SWA vary as a function of brain maturation. Three age groups (children, adolescents, and adults) participated in a high-density EEG study with two conditions (baseline and adaptation) of a visuomotor learning task. Compared with the baseline condition, sleep SWA was increased after visuomotor adaptation in a cluster of eight electrodes over the right parietal cortex. The local boost in SWA was highest in children. Baseline SWA in the parietal cluster and right parietal gray matter volume, which both indicate region-specific maturation, were significantly correlated with the local increase in SWA. Our findings indicate that processes of brain maturation favor experience-dependent plasticity and determine how sensitive a specific brain region is for learning experiences. Moreover, our data confirm that SWA is a highly sensitive tool to map maturational differences in experience-dependent plasticity.
Collapse
|
131
|
Naismith SL, Lagopoulos J, Hermens DF, White D, Duffy SL, Robillard R, Scott EM, Hickie IB. Delayed circadian phase is linked to glutamatergic functions in young people with affective disorders: a proton magnetic resonance spectroscopy study. BMC Psychiatry 2014; 14:345. [PMID: 25496061 PMCID: PMC4276104 DOI: 10.1186/s12888-014-0345-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/19/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND While the association between affective disorders and sleep and circadian disturbance is well established, little is known about the neurobiology underpinning these relationships. In this study, we sought to determine the relationship between a marker of circadian rhythm and neuronal integrity (N-Acetyl Aspartate, NAA), oxidative stress (glutathione, GSH) and neuronal-glial dysfunction (Glutamate + Glutamine, Glx). METHODS Fifty-three young adults (age range 15-33 years, mean = 21.8, sd = 4.3) with emerging affective disorders were recruited from a specialized tertiary referral service. Participants underwent clinical assessment and actigraphy monitoring, from which sleep midpoint was calculated as a marker of circadian rhythm. Proton magnetic resonance spectroscopy was performed in the anterior cingulate cortex (ACC). The metabolites NAA, GSH and Glx were obtained, and expressed as a ratio to Creatine. RESULTS Neither NAA or GSH were associated with sleep midpoint. However, higher levels of ACC Glx were associated with later sleep midpoints (rho = 0.35, p = 0.013). This relationship appeared to be independent of age and depression severity. CONCLUSIONS This study is the first to demonstrate that delayed circadian phase is related to altered glutamatergic processes. It is aligned with animal research linking circadian rhythms with glutamatergic neurotransmission as well as clinical studies showing changes in glutamate with sleep interventions. Further studies may seek to examine the role of glutamate modulators for circadian misalignment.
Collapse
Affiliation(s)
- Sharon L Naismith
- Clinical Research Unit, Brain & Mind Research Institute, The University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Jim Lagopoulos
- Clinical Research Unit, Brain & Mind Research Institute, The University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Daniel F Hermens
- Clinical Research Unit, Brain & Mind Research Institute, The University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Django White
- Clinical Research Unit, Brain & Mind Research Institute, The University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Shantel L Duffy
- Clinical Research Unit, Brain & Mind Research Institute, The University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Rebecca Robillard
- Clinical Research Unit, Brain & Mind Research Institute, The University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Elizabeth M Scott
- Clinical Research Unit, Brain & Mind Research Institute, The University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Ian B Hickie
- Clinical Research Unit, Brain & Mind Research Institute, The University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
132
|
Canali P, Sferrazza Papa G, Casali AG, Schiena G, Fecchio M, Pigorini A, Smeraldi E, Colombo C, Benedetti F. Changes of cortical excitability as markers of antidepressant response in bipolar depression: preliminary data obtained by combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG). Bipolar Disord 2014; 16:809-19. [PMID: 25219396 DOI: 10.1111/bdi.12249] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 05/09/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND It is still unclear which biological changes are needed to recover from a major depressive episode. Current perspectives focus on cortical synaptic neuroplasticity. Measures of cortical responses evoked by transcranial magnetic stimulation (TMS) change with sleep homeostasic pressure in humans and approximate measures of synaptic strength in animal models. Using repeated total sleep deprivation as a model of antidepressant treatment, we aimed to correlate recovery from depression with these measures of cortical excitability. METHODS We recorded electroencephalographic responses to TMS in the prefrontal cortex of 21 depressed inpatients with bipolar disorder treated with repeated sleep deprivation combined with light therapy. We performed seven TMS/electroencephalography sessions during one week and calculated three measures of cortical excitability. RESULTS Cortical excitability progressively increased during the antidepressant treatment and as a function of time awake. Higher values differentiated responders from non-responders at baseline and during and after treatment on all measures. CONCLUSIONS Changes in measures of cortical excitability parallel and predict antidepressant response to combined sleep deprivation and light therapy. Data suggest that promoting cortical plasticity in bipolar depression could be a major effect of successful antidepressant treatments, and that patients not responding could suffer a persistent impairment in their neuroplasticity mechanisms.
Collapse
Affiliation(s)
- Paola Canali
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele and University Vita-Salute San Raffaele, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Bohra MH, Kaushik C, Temple D, Chung SA, Shapiro CM. Weighing the balance: how analgesics used in chronic pain influence sleep? Br J Pain 2014; 8:107-18. [PMID: 26516542 PMCID: PMC4590120 DOI: 10.1177/2049463714525355] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pain and sleep share a bidirectional relationship, with each influencing the other. Several excellent reviews have explored this relationship. In this article, we revisit the evidence and explore existing research on this complex inter-relationship. The primary focus of the article is on the pharmacological treatment of chronic non-malignant pain and the main purpose is to review the effect of various pharmacological agents used in the management of chronic pain on sleep. This has not been comprehensively done before. We explore the clinical use of these agents, their impact on sleep architecture and sleep physiology, the mechanism of action on sleep parameters and sleep disorders associated with these agents. Pharmacological classes reviewed include antidepressants, opioid analgesics, anti-epileptics, cannabinoids and non-steroidal anti-inflammatory agents, drugs most commonly used to manage chronic pain. The objective is to help health professionals gain better insight into the complex effect that commonly used analgesics have on an individual's sleep and how this could impact on the effectiveness of the drug as an analgesic. We conclude that antidepressants have both positive and negative effects on sleep, so do opioids, but in the latter case the evidence shifts towards the counterproductive side. Some anticonvulsants are sleep sparing and non-steroidal anti-inflammatory drugs (NSAIDs) are sleep neutral. Cannabinoids remain an underexplored and researched group.
Collapse
Affiliation(s)
- Miqdad H Bohra
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | - Daniel Temple
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon A Chung
- Sleep Research Laboratory, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Colin M Shapiro
- Department of Psychiatry, University Health Network, Toronto, ON, Canada ; Sleep and Alertness Clinic Youthdale Child & Adolescent Sleep Centre, Toronto, ON, Canada
| |
Collapse
|
134
|
Hascup KN, Hascup ER. Electrochemical techniques for subsecond neurotransmitter detection in live rodents. Comp Med 2014; 64:249-55. [PMID: 25296011 PMCID: PMC4170089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/12/2013] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
Alterations in neurotransmission have been implicated in numerous neurodegenerative and neuropsychiatric disorders, including Alzheimer disease, Parkinson disease, epilepsy, and schizophrenia. Unfortunately, few techniques support the measurement of real-time changes in neurotransmitter levels over multiple days, as is essential for ethologic and pharmacodynamic testing. Microdialysis is commonly used for these research paradigms, but its poor temporal and spatial resolution make this technique inadequate for measuring the rapid dynamics (milliseconds to seconds) of fast signaling neurotransmitters, such as glutamate and acetylcholine. Enzymatic microelectrode arrays (biosensors) coupled with electrochemical recording techniques have demonstrated fast temporal resolution (less than 1 s), excellent spatial resolution (micron-scale), low detection limits (≤200 nM), and minimal damage (50 to 100 μm) to surrounding brain tissue. Here we discuss the benefits, methods, and animal welfare considerations of using platinum microelectrodes on a ceramic substrate for enzyme-based electrochemical recording techniques for real-time in vivo neurotransmitter recordings in both anesthetized and awake, freely moving rodents.
Collapse
Affiliation(s)
- Kevin N Hascup
- Departments of Neurology and Pharmacology, Center for Alzheimer's Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Erin R Hascup
- Departments of Neurology and Pharmacology, Center for Alzheimer's Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, Illinois, USA.
| |
Collapse
|
135
|
John J, Kodama T, Siegel JM. Caffeine promotes glutamate and histamine release in the posterior hypothalamus. Am J Physiol Regul Integr Comp Physiol 2014; 307:R704-10. [PMID: 25031227 DOI: 10.1152/ajpregu.00114.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histamine neurons are active during waking and largely inactive during sleep, with minimal activity during rapid-eye movement (REM) sleep. Caffeine, the most widely used stimulant, causes a significant increase of sleep onset latency in rats and humans. We hypothesized that caffeine increases glutamate release in the posterior hypothalamus (PH) and produces increased activity of wake-active histamine neurons. Using in vivo microdialysis, we collected samples from the PH after caffeine administration in freely behaving rats. HPLC analysis and biosensor measurements showed a significant increase in glutamate levels beginning 30 min after caffeine administration. Glutamate levels remained elevated for at least 140 min. GABA levels did not significantly change over the same time period. Histamine level significantly increased beginning 30 min after caffeine administration and remained elevated for at least 140 min. Immunostaining showed a significantly elevated number of c-Fos-labeled histamine neurons in caffeine-treated rats compared with saline-treated animals. We conclude that increased glutamate levels in the PH activate histamine neurons and contribute to caffeine-induced waking and alertness.
Collapse
Affiliation(s)
- Joshi John
- Neurobiology Research, Veterans Affairs Greater Los Angeles Healthcare System, Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, North Hills, California; and
| | - Tohru Kodama
- Department of Physiological Psychology, Tokyo Metropolitan Institute of Medical Sciences, Tokyo, Japan
| | - Jerome M Siegel
- Neurobiology Research, Veterans Affairs Greater Los Angeles Healthcare System, Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, North Hills, California; and
| |
Collapse
|
136
|
Gaggioni G, Maquet P, Schmidt C, Dijk DJ, Vandewalle G. Neuroimaging, cognition, light and circadian rhythms. Front Syst Neurosci 2014; 8:126. [PMID: 25071478 PMCID: PMC4086398 DOI: 10.3389/fnsys.2014.00126] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/18/2014] [Indexed: 01/27/2023] Open
Abstract
In humans, sleep and wakefulness and the associated cognitive processes are regulated through interactions between sleep homeostasis and the circadian system. Chronic disruption of sleep and circadian rhythmicity is common in our society and there is a need for a better understanding of the brain mechanisms regulating sleep, wakefulness and associated cognitive processes. This review summarizes recent investigations which provide first neural correlates of the combined influence of sleep homeostasis and circadian rhythmicity on cognitive brain activity. Markers of interindividual variations in sleep-wake regulation, such as chronotype and polymorphisms in sleep and clock genes, are associated with changes in cognitive brain responses in subcortical and cortical areas in response to manipulations of the sleep-wake cycle. This review also includes recent data showing that cognitive brain activity is regulated by light, which is a powerful modulator of cognition and alertness and also directly impacts sleep and circadian rhythmicity. The effect of light varied with age, psychiatric status, PERIOD3 genotype and changes in sleep homeostasis and circadian phase. These data provide new insights into the contribution of demographic characteristics, the sleep-wake cycle, circadian rhythmicity and light to brain functioning.
Collapse
Affiliation(s)
- Giulia Gaggioni
- Cyclotron Research Centre, University of LiègeLiège, Belgium
| | - Pierre Maquet
- Cyclotron Research Centre, University of LiègeLiège, Belgium
| | - Christina Schmidt
- Cyclotron Research Centre, University of LiègeLiège, Belgium
- Centre for Chronobiology, Psychiatric Hospital of the University of BaselBasel, Switzerland
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of SurreyGuildford, UK
| | | |
Collapse
|
137
|
Johnston MV, Ammanuel S, O'Driscoll C, Wozniak A, Naidu S, Kadam SD. Twenty-four hour quantitative-EEG and in-vivo glutamate biosensor detects activity and circadian rhythm dependent biomarkers of pathogenesis in Mecp2 null mice. Front Syst Neurosci 2014; 8:118. [PMID: 25018705 PMCID: PMC4072927 DOI: 10.3389/fnsys.2014.00118] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/02/2014] [Indexed: 11/13/2022] Open
Abstract
Mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (Mecp2) cause most cases of Rett syndrome (RTT). Currently there is no cure for RTT. Abnormal EEGs are found in 100% of RTT cases and are associated with severe sleep dysfunction, the cause of which is not well understood. Mice deficient in MeCP2 protein have been studied and characterized for their neuropathological and behavioral deficits to better understand RTT. With the goal to study the non-ictal EEG correlates in symptomatic Mecp2 KO mice (Mecp2(tm1.1Bird/y)), and determine novel EEG biomarkers of their reported progressive neurodegeneration, we used 24 h video-EEG/EMG with synchronous in-vivo cortical glutamate biosensor in the frontal cortex. We scored the EEG for activity states and spectral analysis was performed to evaluate correlations to the synchronous extracellular glutamate fluctuations underlying Mecp2 inactivation as compared to WT. Significant alterations in sleep structure due to dark cycle-specific long wake states and poor quality of slow-wave sleep were associated with a significant increase in glutamate loads per activity cycle. The dynamics of the activity-state-dependent physiological rise and fall of glutamate indicative of glutamate homeostasis were significantly altered in the KO mice. Colorimetric quantitation of absolute glutamate levels in frontal cortex also indicated the presence of significantly higher levels in KO. This study for the first time found evidence of uncompensated sleep deprivation-like EEG biomarkers that were associated with glutamate homeostatic dysfunction in the Mecp2 KO mice.
Collapse
Affiliation(s)
- Michael V Johnston
- Neuroscience Laboratory, Departments of Neurology and Pediatrics, Hugo Moser Research Institute at Kennedy Krieger, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Simon Ammanuel
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger Baltimore, MD, USA
| | - Cliona O'Driscoll
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Hugo Moser Research Institute at Kennedy Krieger, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Amy Wozniak
- Biostatistics Center, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Sakkubai Naidu
- Departments of Neurology and Pediatrics, Hugo Moser Research Institute at Kennedy Krieger Baltimore, MD, USA
| | - Shilpa D Kadam
- Neuroscience Laboratory, Departments of Neurology, Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
138
|
Abstract
Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial memory encoding, and in the subsequent offline consolidation of memory. Sleep and sleep deprivation bidirectionally alter molecular signaling pathways that regulate synaptic strength and control plasticity-related gene transcription and protein translation. At the cellular level, sleep deprivation impairs cellular excitability necessary for inducing synaptic potentiation and accelerates the decay of long-lasting forms of synaptic plasticity. In contrast, rapid eye movement (REM) and non-rapid eye movement (NREM) sleep enhance previously induced synaptic potentiation, although synaptic de-potentiation during sleep has also been observed. Beyond single cell dynamics, large-scale cell ensembles express coordinated replay of prior learning-related firing patterns during subsequent NREM sleep. At the whole-brain level, somewhat analogous learning-associated hippocampal (re)activation during NREM sleep has been reported in humans. Moreover, the same cortical NREM oscillations associated with replay in rodents also promote human hippocampal memory consolidation, and this process can be manipulated using exogenous reactivation cues during sleep. Mirroring molecular findings in rodents, specific NREM sleep oscillations before encoding refresh human hippocampal learning capacity, while deprivation of sleep conversely impairs subsequent hippocampal activity and associated encoding. Together, these cross-descriptive level findings demonstrate that the unique neurobiology of sleep exerts powerful effects on molecular, cellular and network mechanisms of plasticity that govern both initial learning and subsequent long-term memory consolidation.
Collapse
|
139
|
Abstract
Sleep is essential for effective cognitive functioning. Loosing even a few hours of sleep can have detrimental effects on a wide variety of cognitive processes such as attention, language, reasoning, decision making, learning and memory. While sleep is necessary to ensure normal healthy cognitive functioning, it can also enhance performance beyond the boundaries of the normal condition. This article discusses the enhancing potential of sleep, mainly focusing on the domain of learning and memory. Sleep is known to facilitate the consolidation of memories learned before sleep as well as the acquisition of new memories to be learned after sleep. According to a widely held model this beneficial effect of sleep relies on the neuronal reactivation of memories during sleep that is associated with sleep-specific brain oscillations (slow oscillations, spindles, ripples) as well as a characteristic neurotransmitter milieu. Recent research indicates that memory processing during sleep can be boosted by (i) cueing memory reactivation during sleep; (ii) stimulating sleep-specific brain oscillations; and (iii) targeting specific neurotransmitter systems pharmacologically. Olfactory and auditory cues can be used, for example, to increase reactivation of associated memories during post-learning sleep. Intensifying neocortical slow oscillations (the hallmark of slow wave sleep (SWS)) by electrical or auditory stimulation and modulating specific neurotransmitters such as noradrenaline and glutamate likewise facilitates memory processing during sleep. With this evidence in mind, this article concludes by discussing different methodological caveats and ethical issues that should be considered when thinking about using sleep for cognitive enhancement in everyday applications.
Collapse
Affiliation(s)
- Susanne Diekelmann
- Institute of Medical Psychology and Behavioral Neurobiology, University Tübingen Tübingen, Germany
| |
Collapse
|
140
|
Rachalski A, Freyburger M, Mongrain V. Contribution of transcriptional and translational mechanisms to the recovery aspect of sleep regulation. Ann Med 2014; 46:62-72. [PMID: 24428734 DOI: 10.3109/07853890.2013.866439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sleep parallels brain functioning and mental health. Neuronal activity during wakefulness leads to a subsequent increase in sleep intensity as measured using electroencephalographic slow-wave activity (SWA; index of neuronal synchrony in the low-frequency range). Wakefulness, and particularly prolonged wakefulness, also drives important changes in brain gene expression and changes in protein regulation. The role of these two cellular mechanisms in sleep-wake regulation has typically been studied independently, and their exact contribution to SWA remains poorly defined. In this review, we highlight that many transcriptional pathways driven by sleep deprivation are associated to protein regulation. We first describe the relationship between cytokines, clock genes, and markers of sleep need with an emphasis on transcriptional processes. Observations regarding the role of protein metabolism in sleep-wake regulation are then depicted while presenting interconnections between transcriptional and translational responses driven by sleep loss. Lastly, a manner by which this integrated response can feed back on neuronal network activity to determine sleep intensity is proposed. Overall, the literature supports that a complex cross-talk between transcriptional and translational regulation during prolonged wakefulness drives the changes in sleep intensity as a function of the sleep/wake history.
Collapse
Affiliation(s)
- Adeline Rachalski
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal , Montréal, QC , Canada
| | | | | |
Collapse
|
141
|
Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 2014; 81:12-34. [PMID: 24411729 PMCID: PMC3921176 DOI: 10.1016/j.neuron.2013.12.025] [Citation(s) in RCA: 1282] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sleep is universal, tightly regulated, and its loss impairs cognition. But why does the brain need to disconnect from the environment for hours every day? The synaptic homeostasis hypothesis (SHY) proposes that sleep is the price the brain pays for plasticity. During a waking episode, learning statistical regularities about the current environment requires strengthening connections throughout the brain. This increases cellular needs for energy and supplies, decreases signal-to-noise ratios, and saturates learning. During sleep, spontaneous activity renormalizes net synaptic strength and restores cellular homeostasis. Activity-dependent down-selection of synapses can also explain the benefits of sleep on memory acquisition, consolidation, and integration. This happens through the offline, comprehensive sampling of statistical regularities incorporated in neuronal circuits over a lifetime. This Perspective considers the rationale and evidence for SHY and points to open issues related to sleep and plasticity.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| |
Collapse
|
142
|
Li Y, Panossian LA, Zhang J, Zhu Y, Zhan G, Chou YT, Fenik P, Bhatnagar S, Piel DA, Beck SG, Veasey S. Effects of chronic sleep fragmentation on wake-active neurons and the hypercapnic arousal response. Sleep 2014; 37:51-64. [PMID: 24470695 DOI: 10.5665/sleep.3306] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY OBJECTIVES Delayed hypercapnic arousals may occur in obstructive sleep apnea. The impaired arousal response is expected to promote more pronounced oxyhemoglobin desaturations. We hypothesized that long-term sleep fragmentation (SF) results in injury to or dysfunction of wake-active neurons that manifests, in part, as a delayed hypercapnic arousal response. DESIGN Adult male mice were implanted for behavioral state recordings and randomly assigned to 4 weeks of either orbital platform SF (SF4wk, 30 events/h) or control conditions (Ct4wk) prior to behavioral, histological, and locus coeruleus (LC) whole cell electrophysiological evaluations. MEASUREMENTS AND RESULTS SF was successfully achieved across the 4 week study, as evidenced by a persistently increased arousal index, P < 0.01 and shortened sleep bouts, P < 0.05, while total sleep/wake times and plasma corticosterone levels were unaffected. A multiple sleep latency test performed at the onset of the dark period showed a reduced latency to sleep in SF4wk mice (P < 0.05). The hypercapnic arousal latency was increased, Ct4wk 64 ± 5 sec vs. SF4wk 154 ± 6 sec, P < 0.001, and remained elevated after a 2 week recovery (101 ± 4 sec, P < 0.001). C-fos activation in noradrenergic, orexinergic, histaminergic, and cholinergic wake-active neurons was reduced in response to hypercapnia (P < 0.05-0.001). Catecholaminergic and orexinergic projections into the cingulate cortex were also reduced in SF4wk (P < 0.01). In addition, SF4wk resulted in impaired LC neuron excitability (P < 0.01). CONCLUSIONS Four weeks of sleep fragmentation (SF4wk) impairs arousal responses to hypercapnia, reduces wake neuron projections and locus coeruleus neuronal excitability, supporting the concepts that some effects of sleep fragmentation may contribute to impaired arousal responses in sleep apnea, which may not reverse immediately with therapy.
Collapse
Affiliation(s)
- Yanpeng Li
- Department of Neurology, Neuroscience Research Center, Shanghai Changzheng Hospital, the Affiliated Hospital to the Second Military Medical University, Shanghai City, China ; Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Lori A Panossian
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Jing Zhang
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Yan Zhu
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Guanxia Zhan
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Yu-Ting Chou
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Polina Fenik
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Seema Bhatnagar
- Department of Anesthesiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - David A Piel
- Department of Anesthesiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sheryl G Beck
- Department of Anesthesiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sigrid Veasey
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
143
|
Genzel L, Kroes MC, Dresler M, Battaglia FP. Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes? Trends Neurosci 2014; 37:10-9. [DOI: 10.1016/j.tins.2013.10.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 01/06/2023]
|
144
|
Dadok VM, Kirsch HE, Sleigh JW, Lopour BA, Szeri AJ. A probabilistic framework for a physiological representation of dynamically evolving sleep state. J Comput Neurosci 2013; 37:105-24. [PMID: 24363031 DOI: 10.1007/s10827-013-0489-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/19/2013] [Accepted: 11/14/2013] [Indexed: 12/29/2022]
Abstract
This work presents a probabilistic method for mapping human sleep electroencephalogram (EEG) signals onto a state space based on a biologically plausible mathematical model of the cortex. From a noninvasive EEG signal, this method produces physiologically meaningful pathways of the cortical state over a night of sleep. We propose ways in which these pathways offer insights into sleep-related conditions, functions, and complex pathologies. To address explicitly the noisiness of the EEG signal and the stochastic nature of the mathematical model, we use a probabilistic Bayesian framework to map each EEG epoch to a distribution of likelihoods over all model sleep states. We show that the mapping produced from human data robustly separates rapid eye movement sleep (REM) from slow wave sleep (SWS). A Hidden Markov Model (HMM) is incorporated to improve the path results using the prior knowledge that cortical physiology has temporal continuity.
Collapse
Affiliation(s)
- Vera M Dadok
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA,
| | | | | | | | | |
Collapse
|
145
|
Abstract
Previous studies of differential gene expression in sleep and wake pooled transcripts from all brain cells and showed that several genes expressed at higher levels during sleep are involved in the synthesis/maintenance of membranes in general and of myelin in particular, a surprising finding given the reported slow turnover of many myelin components. Other studies showed that oligodendrocyte precursor cells (OPCs) are responsible for the formation of new myelin in both the injured and the normal adult brain, and that glutamate released from neurons, via neuron-OPC synapses, can inhibit OPC proliferation and affect their differentiation into myelin-forming oligodendrocytes. Because glutamatergic transmission is higher in wake than in sleep, we asked whether sleep and wake can affect oligodendrocytes and OPCs. Using the translating ribosome affinity purification technology combined with microarray analysis in mice, we obtained a genome-wide profiling of oligodendrocytes after sleep, spontaneous wake, and forced wake (acute sleep deprivation). We found that hundreds of transcripts being translated in oligodendrocytes are differentially expressed in sleep and wake: genes involved in phospholipid synthesis and myelination or promoting OPC proliferation are transcribed preferentially during sleep, while genes implicated in apoptosis, cellular stress response, and OPC differentiation are enriched in wake. We then confirmed through BrdU and other experiments that OPC proliferation doubles during sleep and positively correlates with time spent in REM sleep, whereas OPC differentiation is higher during wake. Thus, OPC proliferation and differentiation are not perfectly matched at any given circadian time but preferentially occur during sleep and wake, respectively.
Collapse
|
146
|
Petit JM, Gyger J, Burlet-Godinot S, Fiumelli H, Martin JL, Magistretti PJ. Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifically regulated in cortical astrocytes following sleep deprivation in mice. Sleep 2013; 36:1445-58. [PMID: 24082304 DOI: 10.5665/sleep.3034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifically in astrocytes following sleep deprivation. Astrocytes were purified by fluorescence-activated cell sorting from transgenic mice expressing the green fluorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. DESIGN 6-hour instrumental sleep deprivation (TSD). SETTING Animal sleep research laboratory. PARTICIPANTS Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. INTERVENTIONS Basal sleep recordings and sleep deprivation achieved using a modified cage where animals were gently forced to move. MEASUREMENTS AND RESULTS Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, α-2-Na/K pump, Glt1, and Ldha mRNAs were significantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not significant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. CONCLUSIONS This study shows that TSD induces the expression of genes associated with ANLS specifically in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.
Collapse
Affiliation(s)
- Jean-Marie Petit
- LNDC, Brain Mind Institute, Life Sciences Faculty, Swiss Federal Institute of Technology, Lausanne, Switzerland ; Center for Psychiatric Neuroscience, Department of Psychiatry CHUV, Prilly, Switzerland
| | | | | | | | | | | |
Collapse
|
147
|
Pan W, Kastin AJ. Leptin: a biomarker for sleep disorders? Sleep Med Rev 2013; 18:283-90. [PMID: 24080454 DOI: 10.1016/j.smrv.2013.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 06/05/2013] [Accepted: 07/18/2013] [Indexed: 12/11/2022]
Abstract
Leptin, a pleiotropic protein hormone produced mainly by fat cells, regulates metabolic activity and many other physiological functions. The intrinsic circadian rhythm of blood leptin is modulated by gender, development, feeding, fasting, sleep, obesity, and endocrine disorders. Hyperleptinemia is implicated in leptin resistance. To determine the specificity and sensitivity of leptin concentrations in sleep disorders, we summarize here the alterations of leptin in four conditions in animal and human studies: short duration of sleep, sleep fragmentation, obstructive sleep apnea (OSA), and after use of continuous positive airway pressure (CPAP) to treat OSA. The presence and causes of contradictory findings are discussed. Though sustained insufficient sleep lowers fasting blood leptin and therefore probably contributes to increased appetite, obesity and OSA independently result in hyperleptinemia. Successful treatment of OSA by CPAP is predicted to decrease hyperleptinemia, making leptin an ancillary biomarker for treatment efficacy. Current controversies also call for translational studies to determine how sleep disorders regulate leptin homeostasis and how the information can be used to improve sleep treatment.
Collapse
Affiliation(s)
- Weihong Pan
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | - Abba J Kastin
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| |
Collapse
|
148
|
Abstract
Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep deprivation to impair memory consolidation and plasticity. In this review, we address these topics with a focus on the detrimental effects of post-learning sleep deprivation on memory consolidation. Obtaining adequate sleep is challenging in a society that values "work around the clock." Therefore, the development of interventions to combat the negative cognitive effects of sleep deprivation is key. However, there are a limited number of therapeutics that are able to enhance cognition in the face of insufficient sleep. The identification of molecular pathways implicated in the deleterious effects of sleep deprivation on memory could potentially yield new targets for the development of more effective drugs.
Collapse
Affiliation(s)
- Toni-Moi Prince
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
149
|
Abstract
Chronotherapeutics refers to treatments based on the principles of circadian rhythm organization and sleep physiology, which control the exposure to environmental stimuli that act on biological rhythms, in order to achieve therapeutic effects in the treatment of psychiatric conditions. It includes manipulations of the sleep-wake cycle such as sleep deprivation and sleep phase advance, and controlled exposure to light and dark. The antidepressant effects of chronotherapeutics are evident in difficult-to-treat conditions such as bipolar depression, which has been associated with extremely low success rates of antidepressant drugs in naturalistic settings and with stable antidepressant response to chronotherapeutics in more than half of the patients. Recent advances in the study of the effects of chronotherapeutics on neurotransmitter systems, and on the biological clock machinery, allow us to pinpoint its mechanism of action and to transform it from a neglected or “orphan” treatment to a powerful clinical instrument in everyday psychiatric practice.
Collapse
Affiliation(s)
- Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
150
|
Lavreysen H, Langlois X, Ahnaou A, Drinkenburg W, te Riele P, Biesmans I, Van der Linden I, Peeters L, Megens A, Wintmolders C, Cid JM, Trabanco AA, Andrés JI, Dautzenberg FM, Lütjens R, Macdonald G, Atack JR. Pharmacological characterization of JNJ-40068782, a new potent, selective, and systemically active positive allosteric modulator of the mGlu2 receptor and its radioligand [3H]JNJ-40068782. J Pharmacol Exp Ther 2013; 346:514-27. [PMID: 23766542 DOI: 10.1124/jpet.113.204990] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modulation of the metabotropic glutamate type 2 (mGlu2) receptor is considered a promising target for the treatment of central nervous system diseases such as schizophrenia. Here, we describe the pharmacological properties of the novel mGlu2 receptor positive allosteric modulator (PAM) 3-cyano-1-cyclopropylmethyl-4-(4-phenyl-piperidin-1-yl)-pyridine-2(1H)-one (JNJ-40068782) and its radioligand [(3)H]JNJ-40068782. In guanosine 5'-O-(3-[(35)S]thio)triphosphate binding, JNJ-40068782 produced a leftward and upward shift in the glutamate concentration-effect curve at human recombinant mGlu2 receptors. The EC50 of JNJ-40068782 for potentiation of an EC20-equivalent concentration of glutamate was 143 nM. Although JNJ-40068782 did not affect binding of the orthosteric antagonist [(3)H]2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid (LY-341495), it did potentiate the binding of the agonist [(3)H](2S,2'R,3'R)-2-(2',3'-dicarboxylcyclopropyl)glycine (DCG-IV), demonstrating that it can allosterically affect binding at the agonist recognition site. The binding of [(3)H]JNJ-40068782 to human recombinant mGlu2 receptors in Chinese hamster ovary cells and rat brain receptors was saturable with a KD of ∼10 nM. In rat brain, the anatomic distribution of [(3)H]JNJ-40068782 was consistent with mGlu2 expression previously described and was most abundant in cortex and hippocampus. The ability of structurally unrelated PAMs to displace [(3)H]JNJ-40068782 suggests that PAMs may bind to common determinants within the same site. It is noteworthy that agonists also increased the binding affinity of [(3)H]JNJ-40068782. JNJ-40068782 influenced rat sleep-wake organization by decreasing rapid eye movement sleep with a lowest active dose of 3 mg/kg PO. In mice, JNJ-40068782 reversed phencyclidine-induced hyperlocomotion with an ED50 of 5.7 mg/kg s.c. Collectively, the present data demonstrate that JNJ-40068782 has utility in investigating the potential of mGlu2 modulation for the treatment of diseases characterized by disturbed glutamatergic signaling and highlight the value of [(3)H]JNJ-40068782 in exploring allosteric binding.
Collapse
|