101
|
Gil-Perotín S, Duran-Moreno M, Cebrián-Silla A, Ramírez M, García-Belda P, García-Verdugo JM. Adult neural stem cells from the subventricular zone: a review of the neurosphere assay. Anat Rec (Hoboken) 2013; 296:1435-52. [PMID: 23904071 DOI: 10.1002/ar.22746] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/18/2013] [Indexed: 01/17/2023]
Abstract
The possibility of obtaining large numbers of cells with potential to become functional neurons implies a great advance in regenerative medicine. A source of cells for therapy is the subventricular zone (SVZ) where adult neural stem cells (NSCs) retain the ability to proliferate, self-renew, and differentiate into several mature cell types. The neurosphere assay, a method to isolate, maintain, and expand these cells has been extensively utilized by research groups to analyze the biological properties of aNSCs and to graft into injured brains from animal models. In this review we briefly describe the neurosphere assay and its limitations, the methods to optimize culture conditions, the identity and the morphology of aNSC-derived neurospheres (including new ultrastructural data). The controversy regarding the identity and "stemness" of cells within the neurosphere is revised. The fine morphology of neurospheres, described thoroughly, allows for phenotypical characterization of cells in the neurospheres and may reveal slight changes that indirectly inform about cell integrity, cell damage, or oncogenic transformation. Along this review we largely highlight the critical points that researchers have to keep in mind before extrapolating results or translating experimental transplantation of neurosphere-derived cells to the clinical setting.
Collapse
Affiliation(s)
- Sara Gil-Perotín
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, University of Valencia, C/Catedratico Jose Beltran no 2, Paterna, Valencia, CIBERNED, Spain
| | | | | | | | | | | |
Collapse
|
102
|
Functional genomic screen of human stem cell differentiation reveals pathways involved in neurodevelopment and neurodegeneration. Proc Natl Acad Sci U S A 2013; 110:12361-6. [PMID: 23836664 DOI: 10.1073/pnas.1309725110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human embryonic stem cells (hESCs) can be induced and differentiated to form a relatively homogeneous population of neuronal precursors in vitro. We have used this system to screen for genes necessary for neural lineage development by using a pooled human short hairpin RNA (shRNA) library screen and massively parallel sequencing. We confirmed known genes and identified several unpredicted genes with interrelated functions that were specifically required for the formation or survival of neuronal progenitor cells without interfering with the self-renewal capacity of undifferentiated hESCs. Among these are several genes that have been implicated in various neurodevelopmental disorders (i.e., brain malformations, mental retardation, and autism). Unexpectedly, a set of genes mutated in late-onset neurodegenerative disorders and with roles in the formation of RNA granules were also found to interfere with neuronal progenitor cell formation, suggesting their functional relevance in early neurogenesis. This study advances the feasibility and utility of using pooled shRNA libraries in combination with next-generation sequencing for a high-throughput, unbiased functional genomic screen. Our approach can also be used with patient-specific human-induced pluripotent stem cell-derived neural models to obtain unparalleled insights into developmental and degenerative processes in neurological or neuropsychiatric disorders with monogenic or complex inheritance.
Collapse
|
103
|
Kmet M, Guo C, Edmondson C, Chen B. Directed differentiation of human embryonic stem cells into corticofugal neurons uncovers heterogeneous Fezf2-expressing subpopulations. PLoS One 2013; 8:e67292. [PMID: 23826257 PMCID: PMC3691138 DOI: 10.1371/journal.pone.0067292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/17/2013] [Indexed: 12/24/2022] Open
Abstract
Understanding how neuronal diversity is achieved within the cerebral cortex remains a major challenge in neuroscience. The advent of human embryonic stem cells (hESCs) as a model system provides a unique opportunity to study human corticogenesis in vitro and to identify the mechanisms that promote neuronal differentiation to achieve neuronal diversity in human brain. The transcription factor Fezf2 is necessary and sufficient for the specification of subcerebral projection neurons in mouse. However, its function during human corticogenesis is poorly understood. This study reports the differentiation of a hFezf2-YFP hESC reporter line into corticofugal projection neurons capable of extending axons toward the spinal cord upon transplantation into neonatal mouse brains. Additionally, we show that triple inhibition of the TGFß/BMP/Wnt-Shh pathway promotes the generation of hFezf2-expressing cells in vitro. Finally, this study unveils the isolation of two novel and distinct populations of hFezf2-YFP expressing cells reminiscent of the distinct Fezf2-expressing neuronal subtypes in the developing mouse brain. Overall our data suggest that the directed differentiation of hESCs into corticofugal neurons provides a useful model to identify the molecular mechanisms regulating human corticofugal differentiation and survival.
Collapse
Affiliation(s)
- Muriel Kmet
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Chao Guo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Carina Edmondson
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
104
|
Turaç G, Hindley CJ, Thomas R, Davis JA, Deleidi M, Gasser T, Karaöz E, Pruszak J. Combined flow cytometric analysis of surface and intracellular antigens reveals surface molecule markers of human neuropoiesis. PLoS One 2013; 8:e68519. [PMID: 23826393 PMCID: PMC3691147 DOI: 10.1371/journal.pone.0068519] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/30/2013] [Indexed: 02/03/2023] Open
Abstract
Surface molecule profiles undergo dynamic changes in physiology and pathology, serve as markers of cellular state and phenotype and can be exploited for cell selection strategies and diagnostics. The isolation of well-defined cell subsets is needed for in vivo and in vitro applications in stem cell biology. In this technical report, we present an approach for defining a subset of interest in a mixed cell population by flow cytometric detection of intracellular antigens. We have developed a fully validated protocol that enables the co-detection of cluster of differentiation (CD) surface antigens on fixed, permeabilized neural cell populations defined by intracellular staining. Determining the degree of co-expression of surface marker candidates with intracellular target population markers (nestin, MAP2, doublecortin, TUJ1) on neuroblastoma cell lines (SH-SY5Y, BE(2)-M17) yielded a combinatorial CD49f-/CD200high surface marker panel. Its application in fluorescence-activated cell sorting (FACS) generated enriched neuronal cultures from differentiated cell suspensions derived from human induced pluripotent stem cells. Our data underlines the feasibility of using the described co-labeling protocol and co-expression analysis for quantitative assays in mammalian neurobiology and for screening approaches to identify much needed surface markers in stem cell biology.
Collapse
Affiliation(s)
- Gizem Turaç
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Christopher J. Hindley
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Ria Thomas
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jason A. Davis
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Michela Deleidi
- 4 Hertie, Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Thomas Gasser
- 4 Hertie, Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Erdal Karaöz
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Jan Pruszak
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- *
| |
Collapse
|
105
|
Sato C, Kitajima K. Disialic, oligosialic and polysialic acids: distribution, functions and related disease. J Biochem 2013; 154:115-36. [DOI: 10.1093/jb/mvt057] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
106
|
Chaubey S, Wolfe JH. Transplantation of CD15-enriched murine neural stem cells increases total engraftment and shifts differentiation toward the oligodendrocyte lineage. Stem Cells Transl Med 2013; 2:444-54. [PMID: 23681951 PMCID: PMC3673756 DOI: 10.5966/sctm.2012-0105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 03/01/2013] [Indexed: 01/08/2023] Open
Abstract
Neural stem cell (NSC) transplantation is a promising therapeutic approach for neurological diseases. However, only a limited number of cells can be transplanted into the brain, resulting in relatively low levels of engraftment. This study investigated the potential of using a cell surface marker to enrich a primary NSC population to increase stable engraftment in the recipient brain. NSCs were enriched from the neonatal mouse forebrain using anti-CD15 (Lewis X antigen, or SSEA-1) in a "gentle" fluorescence-activated cell sorting protocol, which yielded >98% CD15-positive cells. The CD15-positive cells differentiated into neurons, astrocytes, and oligodendrocytes in vitro, after withdrawal of growth factors, demonstrating multipotentiality. CD15-positive cells were expanded in vitro and injected bilaterally into the ventricles of neonatal mice. Cells from enriched and unenriched donor populations were found throughout the neuraxis, in both neurogenic and non-neurogenic regions. Total engraftment was similar at 7 days postinjection, but by 28 days postinjection, after brain organogenesis was complete, the survival of donor cells was significantly increased in CD15-enriched grafts over the unenriched cell grafts. The engrafted cells were heterogeneous in morphology and differentiated into all three neural lineages. Furthermore, in the CD15-enriched grafts, there was a significant shift toward differentiation into oligodendrocytes. This strategy may allow better delivery of therapeutic cells to the developing central nervous system and may be particularly useful for treating diseases involving white matter lesions.
Collapse
Affiliation(s)
- Sushma Chaubey
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John H. Wolfe
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, and
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
107
|
Hennen E, Safina D, Haussmann U, Wörsdörfer P, Edenhofer F, Poetsch A, Faissner A. A LewisX glycoprotein screen identifies the low density lipoprotein receptor-related protein 1 (LRP1) as a modulator of oligodendrogenesis in mice. J Biol Chem 2013; 288:16538-16545. [PMID: 23615909 DOI: 10.1074/jbc.m112.419812] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the developing and adult CNS multipotent neural stem cells reside in distinct niches. Specific carbohydrates and glycoproteins are expressed in these niche microenvironments which are important regulators of stem cell maintenance and differentiation fate. LewisX (LeX), also known as stage-specific embryonic antigen-1 or CD15, is a defined carbohydrate moiety expressed in niche microenvironments of the developing and adult CNS. LeX-glycans are involved in stem cell proliferation, migration, and stemness. A few LeX carrier proteins are known, but a systematic analysis of the targets of LeX glycosylation in vivo has not been performed so far. Using LeX glycosylation as a biomarker we aimed to discover new glycoproteins with a potential functional relevance for CNS development. By immunoaffinity chromatography we enriched LeX glycoproteins from embryonic and postnatal mouse brains and used one-dimensional nLC-ESI-MS/MS for their identification. We could validate phosphacan, tenascin-C, and L1-CAM as major LeX carrier proteins present in vivo. Furthermore, we identified LRP1, a member of the LDL receptor family, as a new LeX carrier protein expressed by mouse neural stem cells. Surprisingly, little is known about LRP1 function for neural stem cells. Thus, we generated Lrp1 knock-out neural stem cells by Cre-mediated recombination and investigated their properties. Here, we provide first evidence that LRP1 is necessary for the differentiation of neural stem cells toward oligodendrocytes. However, this function is independent of LeX glycosylation.
Collapse
Affiliation(s)
- Eva Hennen
- Departments of Cell Morphology and Molecular Neurobiology, D-44780 Bochum, Germany
| | - Dina Safina
- Departments of Cell Morphology and Molecular Neurobiology, D-44780 Bochum, Germany
| | - Ute Haussmann
- Plant Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Philipp Wörsdörfer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn-Life and Brain Center, D-53105 Bonn, Germany
| | - Frank Edenhofer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn-Life and Brain Center, D-53105 Bonn, Germany
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Andreas Faissner
- Departments of Cell Morphology and Molecular Neurobiology, D-44780 Bochum, Germany.
| |
Collapse
|
108
|
Kahler DJ, Ahmad FS, Ritz A, Hua H, Moroziewicz DN, Sproul AA, Dusenberry CR, Shang L, Paull D, Zimmer M, Weiss KA, Egli D, Noggle SA. Improved methods for reprogramming human dermal fibroblasts using fluorescence activated cell sorting. PLoS One 2013; 8:e59867. [PMID: 23555815 PMCID: PMC3612089 DOI: 10.1371/journal.pone.0059867] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 02/19/2013] [Indexed: 02/04/2023] Open
Abstract
Current methods to derive induced pluripotent stem cell (iPSC) lines from human dermal fibroblasts by viral infection rely on expensive and lengthy protocols. One major factor contributing to the time required to derive lines is the ability of researchers to identify fully reprogrammed unique candidate clones from a mixed cell population containing transformed or partially reprogrammed cells and fibroblasts at an early time point post infection. Failure to select high quality colonies early in the derivation process results in cell lines that require increased maintenance and unreliable experimental outcomes. Here, we describe an improved method for the derivation of iPSC lines using fluorescence activated cell sorting (FACS) to isolate single cells expressing the cell surface marker signature CD13NEGSSEA4POSTra-1-60POS on day 7–10 after infection. This technique prospectively isolates fully reprogrammed iPSCs, and depletes both parental and “contaminating” partially reprogrammed fibroblasts, thereby substantially reducing the time and reagents required to generate iPSC lines without the use of defined small molecule cocktails. FACS derived iPSC lines express common markers of pluripotency, and possess spontaneous differentiation potential in vitro and in vivo. To demonstrate the suitability of FACS for high-throughput iPSC generation, we derived 228 individual iPSC lines using either integrating (retroviral) or non- integrating (Sendai virus) reprogramming vectors and performed extensive characterization on a subset of those lines. The iPSC lines used in this study were derived from 76 unique samples from a variety of tissue sources, including fresh or frozen fibroblasts generated from biopsies harvested from healthy or disease patients.
Collapse
Affiliation(s)
- David J Kahler
- The New York Stem Cell Foundation, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Nawarathna D, Norouzi N, McLane J, Sharma H, Sharac N, Grant T, Chen A, Strayer S, Ragan R, Khine M. Shrink-induced sorting using integrated nanoscale magnetic traps. APPLIED PHYSICS LETTERS 2013; 102:63504. [PMID: 23479497 PMCID: PMC3585756 DOI: 10.1063/1.4790191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/19/2013] [Indexed: 05/04/2023]
Abstract
We present a plastic microfluidic device with integrated nanoscale magnetic traps (NSMTs) that separates magnetic from non-magnetic beads with high purity and throughput, and unprecedented enrichments. Numerical simulations indicate significantly higher localized magnetic field gradients than previously reported. We demonstrated >20 000-fold enrichment for 0.001% magnetic bead mixtures. Since we achieve high purity at all flow-rates tested, this is a robust, rapid, portable, and simple solution to sort target species from small volumes amenable for point-of-care applications. We used the NSMT in a 96 well format to extract DNA from small sample volumes for quantitative polymerase chain reaction (qPCR).
Collapse
|
110
|
Abstract
Stem cell therapy and translational stem cell research require large-scale supply of stem cells at high purity and viability, thus leading to the development of stem cell separation technologies. This review covers key technologies being applied to stem cell separation, and also highlights exciting new approaches in this field. First, we will cover conventional separation methods that are commercially available and have been widely adapted. These methods include Fluorescence-activated cell sorting (FACS), Magnet-activated cell sorting (MACS), pre-plating, conditioned expansion media, density gradient centrifugation, field flow fractionation (FFF), and dielectrophoresis (DEP). Next, we will introduce emerging novel methods that are currently under development. These methods include improved aqueous two-phase system, systematic evolution of ligands by exponential enrichment (SELEX), and various types of microfluidic platforms. Finally, we will discuss the challenges and directions towards future breakthroughs for stem cell isolation. Advancing stem cell separation techniques will be essential for clinical and research applications of stem cells.
Collapse
|
111
|
Bardy J, Chen AK, Lim YM, Wu S, Wei S, Weiping H, Chan K, Reuveny S, Oh SK. Microcarrier Suspension Cultures for High-Density Expansion and Differentiation of Human Pluripotent Stem Cells to Neural Progenitor Cells. Tissue Eng Part C Methods 2013; 19:166-80. [DOI: 10.1089/ten.tec.2012.0146] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jo'an Bardy
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Allen K. Chen
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Yu Ming Lim
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Selena Wu
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Shunhui Wei
- Singapore Bioimaging Consortium, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Han Weiping
- Singapore Bioimaging Consortium, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Ken Chan
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Shaul Reuveny
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Steve K.W. Oh
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| |
Collapse
|
112
|
Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:786475. [PMID: 23484157 PMCID: PMC3581246 DOI: 10.1155/2013/786475] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/16/2012] [Accepted: 12/11/2012] [Indexed: 02/07/2023]
Abstract
Cell transplantation, as a therapeutic intervention for spinal cord injury (SCI), has been extensively studied by researchers in recent years. A number of different kinds of stem cells, neural progenitors, and glial cells have been tested in basic research, and most have been excluded from clinical studies because of a variety of reasons, including safety and efficacy. The signaling pathways, protein interactions, cellular behavior, and the differentiated fates of experimental cells have been studied in vitro in detail. Furthermore, the survival, proliferation, differentiation, and effects on promoting functional recovery of transplanted cells have also been examined in different animal SCI models. However, despite significant progress, a "bench to bedside" gap still exists. In this paper, we comprehensively cover publications in the field from the last years. The most commonly utilized cell lineages were covered in this paper and specific areas covered include survival of grafted cells, axonal regeneration and remyelination, sensory and motor functional recovery, and electrophysiological improvements. Finally we also review the literature on the in vivo tracking techniques for transplanted cells.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurosurgery, Eberhard Karls University, 72076 Tübingen, Germany
- Department of Spine Surgery, The Affiliated Hospital of Luzhou Medical College, 646000 Luzhou, China
| | - Guilherme Lepski
- Department of Neurosurgery, Eberhard Karls University, 72076 Tübingen, Germany
- Division of Neurosurgery, Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, Avnida Dr. Enéas de Carvalho Aguiar 255, 05403-000 São Paulo, SP, Brazil
| |
Collapse
|
113
|
Nichols JE, Niles JA, DeWitt D, Prough D, Parsley M, Vega S, Cantu A, Lee E, Cortiella J. Neurogenic and neuro-protective potential of a novel subpopulation of peripheral blood-derived CD133+ ABCG2+CXCR4+ mesenchymal stem cells: development of autologous cell-based therapeutics for traumatic brain injury. Stem Cell Res Ther 2013; 4:3. [PMID: 23290300 PMCID: PMC3707064 DOI: 10.1186/scrt151] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 12/20/2012] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Nervous system injuries comprise a diverse group of disorders that include traumatic brain injury (TBI). The potential of mesenchymal stem cells (MSCs) to differentiate into neural cell types has aroused hope for the possible development of autologous therapies for central nervous system injury. METHODS In this study we isolated and characterized a human peripheral blood derived (HPBD) MSC population which we examined for neural lineage potential and ability to migrate in vitro and in vivo. HPBD CD133+, ATP-binding cassette sub-family G member 2 (ABCG2)+, C-X-C chemokine receptor type 4 (CXCR4)+ MSCs were differentiated after priming with β-mercaptoethanol (β-ME) combined with trans-retinoic acid (RA) and culture in neural basal media containing basic fibroblast growth factor (FGF2) and epidermal growth factor (EGF) or co-culture with neuronal cell lines. Differentiation efficiencies in vitro were determined using flow cytometry or fluorescent microscopy of cytospins made of FACS sorted positive cells after staining for markers of immature or mature neuronal lineages. RA-primed CD133+ABCG2+CXCR4+ human MSCs were transplanted into the lateral ventricle of male Sprague-Dawley rats, 24 hours after sham or traumatic brain injury (TBI). All animals were evaluated for spatial memory performance using the Morris Water Maze (MWM) Test. Histological examination of sham or TBI brains was done to evaluate MSC survival, migration and differentiation into neural lineages. We also examined induction of apoptosis at the injury site and production of MSC neuroprotective factors. RESULTS CD133+ABCG2+CXCR4+ MSCs consistently expressed markers of neural lineage induction and were positive for nestin, microtubule associated protein-1β (MAP-1β), tyrosine hydroxylase (TH), neuron specific nuclear protein (NEUN) or type III beta-tubulin (Tuj1). Animals in the primed MSC treatment group exhibited MWM latency results similar to the uninjured (sham) group with both groups showing improvements in latency. Histological examination of brains of these animals showed that in uninjured animals the majority of MSCs were found in the lateral ventricle, the site of transplantation, while in TBI rats MSCs were consistently found in locations near the injury site. We found that levels of apoptosis were less in MSC treated rats and that MSCs could be shown to produce neurotropic factors as early as 2 days following transplantation of cells. In TBI rats, at 1 and 3 months post transplantation cells were generated which expressed markers of neural lineages including immature as well as mature neurons. CONCLUSIONS These results suggest that PBD CD133+ABCG2+CXCR4+ MSCs have the potential for development as an autologous treatment for TBI and neurodegenerative disorders and that MSC derived cell products produced immediately after transplantation may aid in reducing the immediate cognitive defects of TBI.
Collapse
|
114
|
Malecki M. Improved targeting and enhanced retention of the human, autologous, fibroblast-derived, induced, pluripotent stem cells to the sarcomeres of the infarcted myocardium with the aid of the bioengineered, heterospecific, tetravalent antibodies. ACTA ACUST UNITED AC 2013; 3. [PMID: 23956947 DOI: 10.4172/2157-7633.1000138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical trials, to regenerate the human heart injured by myocardial infarction, involve the delivery of stem cells to the site of the injury. However, only a small fraction of the introduced stem cells are detected at the site of the injury, merely two weeks after this therapeutic intervention. This significantly hampers the effectiveness of the stem cell therapy. To resolve the aforementioned problem, we genetically and molecularly bioengineered heterospecific, tetravalent antibodies (htAbs), which have both exquisite specificity and high affinity towards human, pluripotent, stem cells through the htAbs' domains binding SSEA-4, SSEA-3, TRA-1-60, and TRA-1-81, as well as towards the injured cardiac muscle through the htAbs' domains binding human cardiac myosin, α-actinin, actin, and titin. The cardiac tissue was acquired from the patients, who were receiving heart transplants. The autologous, human, induced, pluripotent stem cells (hiPSCs) were generated from the patients' fibroblasts by non-viral delivery and transient expression of the DNA constructs for: Oct4, Nanog, Sox2, Lin28, Klf4, c-Myc. In the trials involving the htAbs, the human, induced, pluripotent stem cells anchored to the myocardial sarcomeres with the efficiency, statistically, significantly higher, than in the trials with non-specific or without antibodies (p < 0.0003). Moreover, application of the htAbs resulted in cross-linking of the sarcomeric proteins to create the stable scaffolds for anchoring of the stem cells. Thereafter, these human, induced pluripotent stem cells differentiated into cardiomyocytes at their anchorage sites. By bioengineering of these novel heterospecific, tetravalent antibodies and using them to guide and to anchor the stem cells specifically to the stabilized sarcomeric scaffolds, we demonstrated the proof of concept in vitro for improving effectiveness of regenerative therapy of myocardial infarction and created the foundations for the trials in vivo.
Collapse
Affiliation(s)
- Marek Malecki
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA
| |
Collapse
|
115
|
Zarogoulidis P, Darwiche K, Sakkas A, Yarmus L, Huang H, Li Q, Freitag L, Zarogoulidis K, Malecki M. Suicide Gene Therapy for Cancer - Current Strategies. ACTA ACUST UNITED AC 2013; 4. [PMID: 24294541 DOI: 10.4172/2157-7412.1000139] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Current cancer treatments may create profound iatrogenic outcomes. The adverse effects of these treatments still remain, as the serious problems that practicing physicians have to cope with in clinical practice. Although, non-specific cytotoxic agents constitute an effective treatment modality against cancer cells, they also tend to kill normal, quickly dividing cells. On the other hand, therapies targeting the genome of the tumors are both under investigation, and some others are already streamlined to clinical practice. Several approaches have been investigated in order to find a treatment targeting the cancer cells, while not affecting the normal cells. Suicide gene therapy is a therapeutic strategy, in which cell suicide inducing transgenes are introduced into cancer cells. The two major suicide gene therapeutic strategies currently pursued are: cytosine deaminase/5-fluorocytosine and the herpes simplex virus/ganciclovir. The novel strategies include silencing gene expression, expression of intracellular antibodies blocking cells' vital pathways, and transgenic expression of caspases and DNases. We analyze various elements of cancer cells' suicide inducing strategies including: targets, vectors, and mechanisms. These strategies have been extensively investigated in various types of cancers, while exploring multiple delivery routes including viruses, non-viral vectors, liposomes, nanoparticles, and stem cells. We discuss various stages of streamlining of the suicide gene therapy into clinical oncology as applied to different types of cancer. Moreover, suicide gene therapy is in the center of attention as a strategy preventing cancer from developing in patients participating in the clinical trials of regenerative medicine. In oncology, these clinical trials are aimed at regenerating, with the aid of stem cells, of the patients' organs damaged by pathologic and/or iatrogenic factors. However, the stem cells carry the risk of neoplasmic transformation. We discuss cell suicide inducing strategies aimed at preventing stem cell-originated cancerogenesis.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece, EU ; Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University Duisburg-Essen, Essen, Germany, EU
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Chan LY, Birch WR, Yim EK, Choo AB. Temporal application of topography to increase the rate of neural differentiation from human pluripotent stem cells. Biomaterials 2013; 34:382-92. [DOI: 10.1016/j.biomaterials.2012.09.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/16/2012] [Indexed: 10/27/2022]
|
117
|
Malecki M, Tombokan X, Anderson M, Malecki R, Beauchaine M. TRA-1-60 +, SSEA-4 +, POU5F1 +, SOX2 +, NANOG + Clones of Pluripotent Stem Cells in the Embryonal Carcinomas of the Testes. ACTA ACUST UNITED AC 2013; 3. [PMID: 23772337 DOI: 10.4172/2157-7633.1000134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Cancer of the testes is currently the most frequent neoplasm and a leading cause of morbidity in men 15-35 years of age. Its incidence is increasing. Embryonal carcinoma is its most malignant form, which either may be resistant or may develop resistance to therapies, which results in relapses. Cancer stem cells are hypothesized to be drivers of these phenomena. SPECIFIC AIM The specific aim of this work was identification and isolation of spectra of single, living cancer stem cells, which were acquired directly from the patients' biopsies, followed by testing of their pluripotency. PATIENTS METHODS Biopsies were obtained from the patients with the clinical and histological diagnoses of the primary, pure embryonal carcinomas of the testes. The magnetic and fluorescent antibodies were genetically engineered. The SSEA-4 and TRA-1-60 cell surface display was analyzed by multiphoton fluorescence spectroscopy (MPFS), flow cytometry (FCM), immunoblotting (IB), nuclear magnetic resonance spectroscopy (NMRS), energy dispersive x-ray spectroscopy (EDXS), and total reflection x-ray spectroscopy (TRXFS). The single, living cells were isolated by magnetic or fluorescent sorting followed by their clonal expansion. The OCT4A, SOX2, and NANOG genes' transcripts were analyzed by qRTPCR and the products by IB and MPFS. RESULTS The clones of cells, with the strong surface display of TRA-1-60 and SSEA-4, were identified and isolated directly from the biopsies acquired from the patients diagnosed with the pure embryonal carcinomas of the testes. These cells demonstrated high levels of transcription and translation of the pluripotency genes: OCT4A, SOX2, and NANOG. They formed embryoid bodies, which differentiated into ectoderm, mesoderm, and endoderm. CONCLUSION In the pure embryonal carcinomas of the testes, acquired directly from the patients, we identified, isolated with high viability and selectivity, and profiled the clones of the pluripotent stem cells. These results may help in explaining therapy-resistance and relapses of these neoplasms, as well as, in designing targeted, personalized therapy.
Collapse
Affiliation(s)
- Marek Malecki
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA ; University of Wisconsin, Madison, WI, USA
| | | | | | | | | |
Collapse
|
118
|
Lessons from the embryonic neural stem cell niche for neural lineage differentiation of pluripotent stem cells. Stem Cell Rev Rep 2012; 8:813-29. [PMID: 22628111 PMCID: PMC3412081 DOI: 10.1007/s12015-012-9381-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pluripotent stem cells offer an abundant and malleable source for the generation of differentiated cells for transplantation as well as for in vitro screens. Patterning and differentiation protocols have been developed to generate neural progeny from human embryonic or induced pluripotent stem cells. However, continued refinement is required to enhance efficiency and to prevent the generation of unwanted cell types. We summarize and interpret insights gained from studies of embryonic neuroepithelium. A multitude of factors including soluble molecules, interactions with the extracellular matrix and neighboring cells cooperate to control neural stem cell self-renewal versus differentiation. Applying these findings and concepts to human stem cell systems in vitro may yield more appropriately patterned cell types for biomedical applications.
Collapse
|
119
|
Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential. PLoS One 2012; 7:e48014. [PMID: 23144844 PMCID: PMC3489895 DOI: 10.1371/journal.pone.0048014] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/24/2012] [Indexed: 12/03/2022] Open
Abstract
In the stem cell field there is a lack of non invasive and fast methods to identify stem cell’s metabolic state, differentiation state and cell-lineage commitment. Here we describe a label-free method that uses NADH as an intrinsic biomarker and the Phasor approach to Fluorescence Lifetime microscopy to measure the metabolic fingerprint of cells. We show that different metabolic states are related to different cell differentiation stages and to stem cell bias to neuronal and glial fate, prior the expression of lineage markers. Our data demonstrate that the NADH FLIM signature distinguishes non-invasively neurons from undifferentiated neural progenitor and stem cells (NPSCs) at two different developmental stages (E12 and E16). NPSCs follow a metabolic trajectory from a glycolytic phenotype to an oxidative phosphorylation phenotype through different stages of differentiation. NSPCs are characterized by high free/bound NADH ratio, while differentiated neurons are characterized by low free/bound NADH ratio. We demonstrate that the metabolic signature of NPSCs correlates with their differentiation potential, showing that neuronal progenitors and glial progenitors have a different free/bound NADH ratio. Reducing conditions in NPSCs correlates with their neurogenic potential, while oxidative conditions correlate with glial potential. For the first time we show that FLIM NADH metabolic fingerprint provides a novel, and quantitative measure of stem cell potential and a label-free and non-invasive means to identify neuron- or glial- biased progenitors.
Collapse
|
120
|
Efficient neuronal in vitro and in vivo differentiation after immunomagnetic purification of mESC derived neuronal precursors. Stem Cell Res 2012; 10:133-46. [PMID: 23237958 DOI: 10.1016/j.scr.2012.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 10/22/2012] [Accepted: 10/25/2012] [Indexed: 02/06/2023] Open
Abstract
The cellular heterogeneity that is generated during the differentiation of pluripotent stem cells into specific neural subpopulations represents a major obstacle for experimental and clinical progress. To address this problem we developed an optimized strategy for magnetic isolation of PSA-NCAM positive neuronal precursors from embryonic stem cells (ESCs) derived neuronal cultures. PSA-NCAM enrichment at an early step of the in vitro differentiation process increased the number of ES cell derived neurons and reduced cellular diversity. Gene expression analysis revealed that mainly genes involved in neuronal activity were over-represented after purification. In vitro derived PSA-NCAM(+) enriched precursors were characterized in vivo through grafting into the forebrain of adult mice. While unsorted control cells 40 days post graft gave rise to a mixed population composed of immature precursors, early postmitotic neurons and glial cells, PSA-NCAM(+) enriched cells differentiated predominantly into NeuN positive cells. Furthermore, PSA-NCAM enriched population showed efficient migration towards the olfactory bulb after transplantation into the rostral migratory stream of the forebrain neurogenic system. Thus, enrichment of neuronal precursors based on PSA-NCAM expression represents a general and straightforward approach to narrow cellular heterogeneity during neuronal differentiation of pluripotent cells.
Collapse
|
121
|
Chu PM, Ma HI, Chen LH, Chen MT, Huang PI, Lin SZ, Chiou SH. Deregulated microRNAs identified in isolated glioblastoma stem cells: an overview. Cell Transplant 2012; 22:741-53. [PMID: 23127968 DOI: 10.3727/096368912x655190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common and aggressive primary brain tumor, is extremely resistant to current treatment paradigms and has a high rate of tumor recurrence. Recent progress in the field of tumor-initiating cells suggests that GBM stem cells (GBMSCs) may be responsible for tumor progression, resistance to treatment, and tumor relapse. Therefore, understanding the biologically significant pathways involved in modulating GBMSC-specific characteristics offers great promise for development of novel therapeutics, which may improve therapeutic efficacy and overcome present drug resistance. In addition, targeting deregulated microRNA (miRNA) has arisen as a new therapeutic strategy in treating malignant gliomas. In GBMSCs, miRNAs regulate a wide variety of tumorigenic processes including cellular proliferation, stemness maintenance, migration/invasion, apoptosis, and tumorigenicity. Nevertheless, the latest progress with GBMSCs and subsequent miRNA profiling is limited by the identification and isolation of GBMSCs. In this review, we thus summarize current markers and known features for isolation as well as the aberrant miRNAs that have been identified in GBM and GBMSCs.
Collapse
Affiliation(s)
- Pei-Ming Chu
- Department of Anatomy and Cell Biology, College of Medicine, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
122
|
Ogura A, Morizane A, Nakajima Y, Miyamoto S, Takahashi J. γ-secretase inhibitors prevent overgrowth of transplanted neural progenitors derived from human-induced pluripotent stem cells. Stem Cells Dev 2012; 22:374-82. [PMID: 23020188 DOI: 10.1089/scd.2012.0198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although transplanted pluripotent stem cell-derived neurons can contribute to functional recovery in animal models of Parkinson's disease, the risk of tumor formation hinders clinical applications of this approach. Removing undifferentiated cells from the donor population is critical to reduce tumorigenesis. Moreover, immature neural progenitors in transplants can proliferate unpredictably, resulting in neural overgrowth and long-term risks of compressing the surrounding host tissue. Because Notch signaling plays a role in maintaining the multipotency and proliferative capacity of neural progenitors, we used γ-secretase inhibitors (GSIs) to dampen Notch signaling in human-induced pluripotent stem cell-derived neural progenitors before transplantation and examined the effects on the growth of proliferative grafts. We observed a marked reduction in the percentage of dividing cells and increased neuronal maturation in GSI-treated samples in vitro. Next, grafts were transplanted into the striata of nonobese diabetic/severe combined immune deficiency mice. Histological analyses performed 8 weeks after the operation showed that grafts pretreated with GSIs--N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester or compound E--were significantly smaller than control samples. Immunohistologic analyses revealed that briefly treating the donor population with GSIs not only reduced the graft volume, but also altered the composition of the graft; control grafts showed neural overgrowth with numerous PAX6+ and Ki67+ neural rosettes, whereas GSI-treated samples developed into mature neuronal grafts containing primarily Tubβ3+ cells. These results suggest that pretreating potentially proliferative progenitors with GSIs may improve the safety of cell replacement therapies using pluripotent stem cells.
Collapse
Affiliation(s)
- Aya Ogura
- Department of Biological Repair, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
123
|
Brosnan K, Want A, Coopman K, Hewitt CJ. Multiparameter flow cytometry for the characterization of human embryonic stem cells. Biotechnol Lett 2012; 35:55-65. [DOI: 10.1007/s10529-012-1052-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/05/2012] [Indexed: 01/02/2023]
|
124
|
Vickers DAL, Chory EJ, Murthy SK. Separation of two phenotypically similar cell types via a single common marker in microfluidic channels. LAB ON A CHIP 2012; 12:3399-3407. [PMID: 22782544 DOI: 10.1039/c2lc40290d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To isolate clinically and biologically relevant cell types from a heterogeneous population, fluorescent or magnetic tagging together with knowledge of surface biomarker profiles represents the state of the art. To date, it remains exceedingly difficult to separate phenotypically and physically similar cell types from a mixed population. We report a microfluidic platform engineered to separate two highly similar cell types using a single antibody by taking advantage of subtle variations in surface receptor density and cell size. This platform utilizes antibody-conjugated surfaces in microfluidic channels together with precise modulation of fluid shear stresses to accomplish selective fractionation in a continuous flow process. Antibody conjugation density variation on the adhesive surfaces is achieved by covalently immobilizing an antibody in the presence of poly(ethylene glycol). This platform is used to demonstrate separation of two CD31 positive cell types, human umbilical vein endothelial cells and human micro vascular endothelial cells.
Collapse
Affiliation(s)
- Dwayne A L Vickers
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | | | | |
Collapse
|
125
|
Li L, Bennett SAL, Wang L. Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adh Migr 2012; 6:59-70. [PMID: 22647941 PMCID: PMC3364139 DOI: 10.4161/cam.19583] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The survival, proliferation, self-renewal and differentiation of human pluripotent stem cells (hPSCs, including human embryonic stem cells and human induced pluripotent stem cells) involve a number of processes that require cell-cell and cell-matrix interactions. The cell adhesion molecules (CAMs), a group of cell surface proteins play a pivotal role in mediating such interactions. Recent studies have provided insights into the essential roles and mechanisms of CAMs in the regulation of hPSC fate decisions. Here, we review the latest research progress in this field and focus on how E-cadherin and several other important CAMs including classic cadherins, Ig-superfamily CAMs, integrins and heparin sulfate proteoglycans control survival and differentiation of hPSCs.
Collapse
Affiliation(s)
- Li Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | | | | |
Collapse
|
126
|
Chan LY, Yim EKF, Choo ABH. Normalized median fluorescence: an alternative flow cytometry analysis method for tracking human embryonic stem cell states during differentiation. Tissue Eng Part C Methods 2012; 19:156-65. [PMID: 22838642 DOI: 10.1089/ten.tec.2012.0150] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human embryonic stem cells (hESCs) are a promising cell source for tissue engineering and regenerative medicine, but before they can be used in therapies, we must be able to accurately identify the state and progeny of hESCs. One of the most commonly used methods for identification is flow cytometry. Many flow cytometry applications use antibodies to detect the amount of antigen present on/in a cell. This allows for the identification of unique cell populations or the tracking of expression changes within a population during differentiation. The results are typically presented as a percentage of positively expressing cells (%Pos) for a marker of choice, relative to a negative control. However, this reporting term is vulnerable to distortion from outliers and inaccuracy from loss of information about the population's fluorescence intensity. In this article, we describe an alternate strategy that uses the normalized median fluorescence intensity (nMFI), in which the MFI of the stained sample is normalized to the MFI of the negative control, as the reporting term to more accurately describe a population of cells in culture. We observed that nMFI provides a more accurate representation for the quality of a starting population and comparing data of different experimental runs. In addition, we demonstrated that the nMFI is a more sensitive measure of pluripotent and differentiation markers expression changes during hESC differentiation into three germ layer lineages.
Collapse
Affiliation(s)
- Lesley Y Chan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | | | | |
Collapse
|
127
|
Cellular programming and reprogramming: sculpting cell fate for the production of dopamine neurons for cell therapy. Stem Cells Int 2012; 2012:412040. [PMID: 22988464 PMCID: PMC3441013 DOI: 10.1155/2012/412040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 07/05/2012] [Indexed: 12/14/2022] Open
Abstract
Pluripotent stem cells are regarded as a promising cell source to obtain human dopamine neurons in sufficient amounts and purity for cell replacement therapy. Importantly, the success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.
Collapse
|
128
|
Diogo MM, da Silva CL, Cabral JMS. Separation technologies for stem cell bioprocessing. Biotechnol Bioeng 2012; 109:2699-709. [PMID: 22887094 DOI: 10.1002/bit.24706] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 02/06/2023]
Abstract
Stem cells have been the focus of an intense research due to their potential in Regenerative Medicine, drug discovery, toxicology studies, as well as for fundamental studies on developmental biology and human disease mechanisms. To fully accomplish this potential, the successful application of separation processes for the isolation and purification of stem cells and stem cell-derived cells is a crucial issue. Although separation methods have been used over the past decades for the isolation and enrichment of hematopoietic stem/progenitor cells for transplantation in hemato-oncological settings, recent achievements in the stem cell field have created new challenges including the need for novel scalable separation processes with a higher resolution and more cost-effective. Important examples are the need for high-resolution methods for the separation of heterogeneous populations of multipotent adult stem cells to study their differential biological features and clinical utility, as well as for the depletion of tumorigenic cells after pluripotent stem cell differentiation. Focusing on these challenges, this review presents a critical assessment of separation processes that have been used in the stem cell field, as well as their current and potential applications. The techniques are grouped according to the fundamental principles that govern cell separation, which are defined by the main physical, biophysical, and affinity properties of cells. A special emphasis is given to novel and promising approaches such as affinity-based methods that take advantage of the use of new ligands (e.g., aptamers, lectins), as well as to novel biophysical-based methods requiring no cell labeling and integrated with microscale technologies.
Collapse
Affiliation(s)
- Maria Margarida Diogo
- Department of Bioengineering and Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
| | | | | |
Collapse
|
129
|
Doi D, Morizane A, Kikuchi T, Onoe H, Hayashi T, Kawasaki T, Motono M, Sasai Y, Saiki H, Gomi M, Yoshikawa T, Hayashi H, Shinoyama M, Refaat MM, Suemori H, Miyamoto S, Takahashi J. Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson's disease. Stem Cells 2012; 30:935-45. [PMID: 22328536 DOI: 10.1002/stem.1060] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
For the safe clinical application of embryonic stem cells (ESCs) for neurological diseases, it is critical to evaluate the tumorigenicity and function of human ESC (hESC)-derived neural cells in primates. We have herein, for the first time, compared the growth and function of hESC-derived cells with different stages of neural differentiation implanted in the brains of primate models of Parkinson's disease. We herein show that residual undifferentiated cells expressing ESC markers present in the cell preparation can induce tumor formation in the monkey brain. In contrast, a cell preparation matured by 42-day culture with brain-derived neurotrophic factor/glial cell line-derived neurotrophic factor (BDNF/GDNF) treatment did not form tumors and survived as primarily dopaminergic (DA) neurons. In addition, the monkeys with such grafts showed behavioral improvement for at least 12 months. These results support the idea that hESCs, if appropriately matured, can serve as a source for DA neurons without forming any tumors in a primate brain.
Collapse
Affiliation(s)
- Daisuke Doi
- Department of Biological Repair, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Farrell K, Barker RA. Stem cells and regenerative therapies for Parkinson's disease. Degener Neurol Neuromuscul Dis 2012; 2:79-92. [PMID: 30890881 DOI: 10.2147/dnnd.s16087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Currently the mainstay of Parkinson's disease (PD) therapy is the pharmacological replacement of the loss of the dopaminergic nigrostriatal pathway using drugs such as dopamine agonists and levodopa. Whilst these drugs effectively ameliorate some of the motor features of PD, they do not improve many of the nonmotor features that arise secondary to pathology outside of this system, nor do they slow the progressive neurodegeneration that is a characteristic of the disease. Regenerative therapies for PD seek to fill this therapeutic gap, with cell transplantation being the most explored approach to date. A number of different cell sources have been used in this therapeutic approach, but to date, the most successful has been the use of fetal ventral mesencephalic (VM) tissue that contains within it the developing nigral dopaminergic cells. Cell transplantation for PD was pioneered in the 1980-1990s, with several successful open-label trials of fetal VM transplantation in patients with relatively advanced PD. Whilst these findings were not replicated in two subsequent double-blind sham-surgery controlled trials, there were reasons to explain this outside of the one drawn at the time that these therapies are ineffective. Indeed all these studies have provided evidence that following the transplantation of fetal VM tissue, dopaminergic cells can survive long term, produce dopamine, and bring about clinical improvements in younger patients over many years. The use of fetal tissue, irrespective of its true efficacy, will never become a widely available therapy for PD for a host of practical and ethical reasons, and thus much work has been put in recently to exploring the utility of stem cells as a source of nigral dopaminergic neurons. In this respect, the advent of embryonic stem cell and induced pluripotent cells has heralded a new era in cell therapy for PD, and several groups have now demonstrated that these cells can form dopaminergic neurons which improve functional deficits in animal models of PD. Whilst encouraging, problems with respect to the immunogenicity and tumorigenicity of these cells means that they will need to be used in the clinic cautiously. Other regenerative therapies in PD have been tried over the years and include the use of trophic factors. This has primarily involved glial cell line-derived neurotrophic factor (GDNF) and again has produced mixed clinical effects, and in order to try and resolve this, a new trial of intraputamenal GDNF is now being planned. In addition, a new trial for platelet derived growth factor as a treatment for PD has just completed recruitment, and PYM50028 (Cogane) an oral agent shown in animal models to reduce the effects of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) lesioning by the induction of growth factors is currently under investigation in a multicentre Phase II trial. Overall, there are a number of promising new regenerative therapies being developed and tested in PD, although the true long-term efficacy of any of these in large numbers of patients is still not known.
Collapse
Affiliation(s)
- Krista Farrell
- Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, UK,
| | - Roger A Barker
- Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, UK,
| |
Collapse
|
131
|
Ganat YM, Calder EL, Kriks S, Nelander J, Tu EY, Jia F, Battista D, Harrison N, Parmar M, Tomishima MJ, Rutishauser U, Studer L. Identification of embryonic stem cell-derived midbrain dopaminergic neurons for engraftment. J Clin Invest 2012; 122:2928-39. [PMID: 22751106 DOI: 10.1172/jci58767] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 05/16/2012] [Indexed: 12/22/2022] Open
Abstract
Embryonic stem cells (ESCs) represent a promising source of midbrain dopaminergic (DA) neurons for applications in Parkinson disease. However, ESC-based transplantation paradigms carry a risk of introducing inappropriate or tumorigenic cells. Cell purification before transplantation may alleviate these concerns and enable identification of the specific DA neuron stage most suitable for cell therapy. Here, we used 3 transgenic mouse ESC reporter lines to mark DA neurons at 3 stages of differentiation (early, middle, and late) following induction of differentiation using Hes5::GFP, Nurr1::GFP, and Pitx3::YFP transgenes, respectively. Transplantation of FACS-purified cells from each line resulted in DA neuron engraftment, with the mid-stage and late-stage neuron grafts being composed almost exclusively of midbrain DA neurons. Mid-stage neuron cell grafts had the greatest amount of DA neuron survival and robustly induced recovery of motor deficits in hemiparkinsonian mice. Our data suggest that the Nurr1+ stage (middle stage) of neuronal differentiation is particularly suitable for grafting ESC-derived DA neurons. Moreover, global transcriptome analysis of progeny from each of the ESC reporter lines revealed expression of known midbrain DA neuron genes and also uncovered previously uncharacterized midbrain genes. These data demonstrate remarkable fate specificity of ESC-derived DA neurons and outline a sequential stage-specific ESC reporter line paradigm for in vivo gene discovery.
Collapse
Affiliation(s)
- Yosif M Ganat
- Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Carter RL, Chan AW. Pluripotent stem cells models for Huntington's disease: prospects and challenges. J Genet Genomics 2012; 39:253-9. [PMID: 22749012 PMCID: PMC4075320 DOI: 10.1016/j.jgg.2012.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 11/28/2022]
Abstract
Pluripotent cellular models have shown great promise in the study of a number of neurological disorders. Several advantages of using a stem cell model include the potential for cells to derive disease relevant neuronal cell types, providing a system for researchers to monitor disease progression during neurogenesis, along with serving as a platform for drug discovery. A number of stem cell derived models have been employed to establish in vitro research models of Huntington's disease that can be used to investigate cellular pathology and screen for drug and cell-based therapies. Although some progress has been made, there are a number of challenges and limitations that must be overcome before the true potential of this research strategy is achieved. In this article we review current stem cell models that have been reported, as well as discuss the issues that impair these studies. We also highlight the prospective application of Huntington's disease stem cell models in the development of novel therapeutic strategies and advancement of personalized medicine.
Collapse
Affiliation(s)
- Richard L. Carter
- Yerkes National Primate Research Center, 954 Gatewood Rd., N.E. Atlanta, GA 39329
- Genetic and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| | - Anthony W.S. Chan
- Yerkes National Primate Research Center, 954 Gatewood Rd., N.E. Atlanta, GA 39329
- Genetic and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| |
Collapse
|
133
|
LewisX: A neural stem cell specific glycan? Int J Biochem Cell Biol 2012; 44:830-3. [DOI: 10.1016/j.biocel.2012.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/28/2012] [Accepted: 02/28/2012] [Indexed: 01/06/2023]
|
134
|
Identification and characterisation of the early differentiating cells in neural differentiation of human embryonic stem cells. PLoS One 2012; 7:e37129. [PMID: 22615918 PMCID: PMC3352872 DOI: 10.1371/journal.pone.0037129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 04/13/2012] [Indexed: 01/06/2023] Open
Abstract
One of the challenges in studying early differentiation of human embryonic stem cells (hESCs) is being able to discriminate the initial differentiated cells from the original pluripotent stem cells and their committed progenies. It remains unclear how a pluripotent stem cell becomes a lineage-specific cell type during early development, and how, or if, pluripotent genes, such as Oct4 and Sox2, play a role in this transition. Here, by studying the dynamic changes in the expression of embryonic surface antigens, we identified the sequential loss of Tra-1-81 and SSEA4 during hESC neural differentiation and isolated a transient Tra-1-81(−)/SSEA4(+) (TR−/S4+) cell population in the early stage of neural differentiation. These cells are distinct from both undifferentiated hESCs and their committed neural progenitor cells (NPCs) in their gene expression profiles and response to extracellular signalling; they co-express both the pluripotent gene Oct4 and the neural marker Pax6. Furthermore, these TR−/S4+ cells are able to produce cells of both neural and non-neural lineages, depending on their environmental cues. Our results demonstrate that expression of the pluripotent factor Oct4 is progressively downregulated and is accompanied by the gradual upregulation of neural genes, whereas the pluripotent factor Sox2 is consistently expressed at high levels, indicating that these pluripotent factors may play different roles in the regulation of neural differentiation. The identification of TR-S4+ cells provides a cell model for further elucidation of the molecular mechanisms underlying hESC neural differentiation.
Collapse
|
135
|
Schriebl K, Satianegara G, Hwang A, Tan HL, Fong WJ, Yang HH, Jungbauer A, Choo A. Selective Removal of Undifferentiated Human Embryonic Stem Cells Using Magnetic Activated Cell Sorting Followed by a Cytotoxic Antibody. Tissue Eng Part A 2012; 18:899-909. [DOI: 10.1089/ten.tea.2011.0311] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kornelia Schriebl
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Gernalia Satianegara
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Austin Hwang
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Heng Liang Tan
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Wey Jia Fong
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Henry He Yang
- Singapore Immunology Network, A*STAR (Agency of Science, Technology and Research), Biopolis, Singapore
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andre Choo
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| |
Collapse
|
136
|
Outten JT, Gadue P, French DL, Diamond SL. High-throughput screening assay for embryoid body differentiation of human embryonic stem cells. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2012; Chapter 1:Unit 1D.6. [PMID: 22415836 DOI: 10.1002/9780470151808.sc01d06s20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serum-free human pluripotent stem cell media offer the potential to develop reproducible clinically applicable differentiation strategies and protocols. The vast array of possible growth factor and cytokine combinations for media formulations makes differentiation protocol optimization both labor and cost-intensive. This unit describes a 96-well plate, 4-color flow cytometry-based screening assay to optimize pluripotent stem cell differentiation protocols. We provide conditions both to differentiate human embryonic stem cells (hESCs) into the three primary germ layers, ectoderm, endoderm, and mesoderm, and to utilize flow cytometry to distinguish between them. This assay exhibits low inter-well variability and can be utilized to efficiently screen a variety of media formulations, reducing cost, incubator space, and labor. Protocols can be adapted to a variety of differentiation stages and lineages.
Collapse
Affiliation(s)
- Joel T Outten
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
137
|
Expression analysis of pluripotency-associated genes in human fetal cortical and striatal neural stem cells during differentiation. Transl Neurosci 2012. [DOI: 10.2478/s13380-012-0033-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AbstractIn the field of developmental biology, there is compelling evidence for a network of activity of pluripotency and stem-associated genes comprising of Oct4, Nanog and nestin. During neurogenesis, the choice between enhancement versus suppression of transcriptional modulation of these identified genes determines the balance between self-renewal neural stem cells (NSC) and immature neuronal phenotypes. By using immunocytochemistry and RT-PCR techniques, our study aims to address the question whether and to what extent mRNA and protein profiles are expressed in human fetal neurospheres obtained from cortical and striatal brain regions, both in expansion (undifferentiated cells) and differentiation conditions monitored after 1 and 4 weeks in vitro culturing. Our results clearly demonstrate the sustained presence of opposite signals: strong downregulation of Oct4 and Nanog genes in cortical differentiating cells and significant up-regulation for nestin gene both in cortical and striatal differentiating cells. Notably, by immunostaining techniques, Oct4 and Nanog protein expression have indicated the presence of both nuclear and cytoplasmic content followed by their rapid turnover (immediately after 1 week). Moreover, during the differentiation process, dissociated neurospheres displayed unexpected number of nestin positive cells accompanied by a constant level of staining intensity. In conclusion, the present study provides new insights into brain region related features in terms of Oct4, Nanog and nestin expression both at cellular and molecular level.
Collapse
|
138
|
Translating stem cell research to the clinic: A constant crosstalk between basic and applied research. Transl Neurosci 2012. [DOI: 10.2478/s13380-012-0016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractPluripotent stem cells hold great promise for the generation of patient-specific cells for disease modeling and regenerative medicine. Focusing on a recent study reporting the successful generation of midbrain dopaminergic neurons and their efficient grafting in animal models of Parkinson’s disease, I discuss how crosstalk between basic and applied stem cell research more generally paves the road toward clinical translation.
Collapse
|
139
|
Characterization and criteria of embryonic stem and induced pluripotent stem cells for a dopamine replacement therapy. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23195423 DOI: 10.1016/b978-0-444-59575-1.00012-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human pluripotent stem cells provide new choices for sources of A9-type dopaminergic (DA) neurons in clinical trials of neural transplantation for patients with Parkinson's disease (PD). For example, "self" and HLA-matched A9 DA neurons may improve the patient-to-patient variability observed in previous clinical trials using fetal DA neurons and obviate the need for long-term immunosuppression in the patient. Normal chromosomal structure and minimal somatic mutations in pluripotent stem cells are necessary criteria for assuring the safe and reproducible transplantation of differentiated DA neurons into patients with PD in clinical trials. However, with these new choices of cell source, the application of pluripotency assays as criteria to ensure pluripotent stem cell quality becomes less relevant. New more relevant standards of quality control, assurance, and function are required. We suggest that quality assurance measures for pluripotent stem cells need to focus upon readouts for authentic midbrain DA neurons, their integration and growth using in vivo assays, and their long-term functional stability.
Collapse
|
140
|
Chang YL, Chen SJ, Kao CL, Hung SC, Ding DC, Yu CC, Chen YJ, Ku HH, Lin CP, Lee KH, Chen YC, Wang JJ, Hsu CC, Chen LK, Li HY, Chiou SH. Docosahexaenoic Acid Promotes Dopaminergic Differentiation in Induced Pluripotent Stem Cells and Inhibits Teratoma Formation in Rats with Parkinson-Like Pathology. Cell Transplant 2012; 21:313-32. [PMID: 21669041 DOI: 10.3727/096368911x580572] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic (DA) neurons in the midbrain. Induced pluripotent stem (iPS) cells have shown potential for differentiation and may become a resource of functional neurons for the treatment of PD. However, teratoma formation is a major concern for transplantation-based therapies. This study examined whether functional neurons could be efficiently generated from iPS cells using a five-step induction procedure combined with docosahexaenoic acid (DHA) treatment. We demonstrated that DHA, a ligand for the RXR/Nurr1 heterodimer, significantly activated expression of the Nurr1 gene and the Nurr1-related pathway in iPS cells. DHA treatment facilitated iPS differentiation into tyrosine hydroxylase (TH)-positive neurons in vitro and in vivo and functionally increased dopamine release in transplanted grafts in PD-like animals. Furthermore, DHA dramatically upregulated the endogenous expression levels of neuroprotective genes ( Bcl-2, Bcl-xl, brain-derived neurotrophic factor, and glial cell-derived neurotrophic factor) and protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced apoptosis in iPS-derived neuronal precursor cells. DHA-treated iPS cells significantly improved the behavior of 6-hydroxydopamine (6-OHDA)-treated PD-like rats compared to control or eicosapentaenoic acid-treated group. Importantly, the in vivo experiment suggests that DHA induces the differentiation of functional dopaminergic precursors and improves the abnormal behavior of 6-OHDA-treated PD-like rats by 4 months after transplantation. Furthermore, we found that DHA treatment in iPS cell-grafted rats significantly downregulated the mRNA expression of embryonic stem cell-specific genes (Oct-4 and c-Myc) in the graft and effectively blocked teratoma formation. Importantly, 3 Tesla-magnetic resonance imaging and ex vivo green fluorescence protein imaging revealed that no teratomas were present in transplanted grafts of DHA-treated iPS-derived DA neurons 4 months after implantation. Therefore, our data suggest that DHA plays a crucial role in iPS differentiation into functional DA neurons and that this approach could provide a novel therapeutic approach for PD treatment.
Collapse
Affiliation(s)
- Yuh-Lih Chang
- Institute of Pharmacology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Lan Kao
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Chieh Hung
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Dah-Ching Ding
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital & Tzu Chi University, Taipei, Taiwan
| | - Cheng-Chia Yu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Oral Biology and Biomaterial Science, Chung-Shan Medical University & Department of Dentistry, Chung Shan Medical University Hospital, Taipei, Taiwan
| | - Yi-Jen Chen
- Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hung-Hai Ku
- Institute of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Po Lin
- Brain Research Center, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Hsiung Lee
- Division of Biotechnology, Animal Technology Institute Taiwan, Chunan, Miaoli, Taiwan
| | - Yu-Chih Chen
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jhi-Joung Wang
- Department of Surgery, Chi-Mei Medical Center & Chia Nan University of Pharmacy & Science, Taipei, Taiwan
| | - Chuan-Chih Hsu
- Department of Surgery, Chi-Mei Medical Center & Chia Nan University of Pharmacy & Science, Taipei, Taiwan
| | - Liang-Kung Chen
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yang Li
- Institute of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Pharmacology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
141
|
Suter DM, Preynat-Seauve O, Tirefort D, Feki A, Krause KH. Phenazopyridine induces and synchronizes neuronal differentiation of embryonic stem cells. J Cell Mol Med 2011; 13:3517-27. [PMID: 20196783 PMCID: PMC4516505 DOI: 10.1111/j.1582-4934.2009.00660.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Embryonic stem (ES) cells are powerful tools to understand mechanisms of neuronal differentiation and to engineer neurons for in vitro studies and cell therapy. We developed a screening approach to identify small organic molecules driving neuronal differentiation of ES cells. For this purpose, we used a lentivector carrying a dual luciferase reporter system to engineer an ES cell line which allowed us to screen for small organic molecules enhancing neuronal differentiation. One of them, phenazopyridine, was further analysed in human ES cells. Phenazopyridine: (i) enhanced neuronal differentiation, (ii) increased cell survival, (iii) decreased the amount of non-neuronal and undifferentiated cells and (iv) synchronized the cellular differentiation state. Phenazopyridine allowed the development of a differentiation protocol compatible with the generation of clinical grade neural precursors, which were able differentiate into different neuronal subtypes, astrocytes and oligodendrocytes. In summary, we describe a powerful approach to identify small molecules directing stem cell differentiation. This led to the establishment of a new application for an old drug and the development of a novel clinical grade protocol for neuronal differentiation of ES cells.
Collapse
Affiliation(s)
- David M Suter
- Department of Pathology and Immunology, University of Geneva Medical School, Switzerland
| | | | | | | | | |
Collapse
|
142
|
Guo W, Gong K, Shi H, Zhu G, He Y, Ding B, Wen L, Jin Y. Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root. Biomaterials 2011; 33:1291-302. [PMID: 22088889 DOI: 10.1016/j.biomaterials.2011.09.068] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/25/2011] [Indexed: 01/01/2023]
Abstract
Tissue engineering strategies to reconstruct tooth roots are an effective therapy for the treatment of tooth loss. However, strategies to successfully regenerate tooth roots have not been developed and optimized. In the present study, rat dental follicle stem cells (DFCs) were characterized, followed by a thorough investigation of tooth roots regeneration for a combination of DFCs seeding cells, treated dentin matrix (TDM) scaffolds, and an inductive alveolar fossa microenvironment. Eighteen clones derived from single DFCs were harvested; however, only three clones were amplified successfully more than five passages and 90-95 days in culture. Following 270 days or 30 passages, the heterogeneous DFCs showed suitable characteristics for seeding cells to regenerate tooth roots. However, various features, such as variable proliferation rates, differentiation characteristics, apoptosis rates, and total lifespan were observed in DFCs and the three clones. Importantly, upon transplantation of DFCs combined with TDM for four weeks, root-like tissues stained positive for markers of dental pulp and periodontal tissues were regenerated in the alveolar fossa, but not in the skull and omental pockets. These results indicate that tooth roots were successfully regenerated and suggest that the combination of DFCs with TDM in the alveolar fossa is a feasible strategy for tooth roots regeneration. This strategy could be a promising approach for the treatment of clinical tooth loss and provides a perspective with potential applications to regeneration of other tissues and organs.
Collapse
Affiliation(s)
- Weihua Guo
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Kiss R, Bock H, Pells S, Canetta E, Adya AK, Moore AJ, De Sousa P, Willoughby NA. Elasticity of Human Embryonic Stem Cells as Determined by Atomic Force Microscopy. J Biomech Eng 2011; 133:101009. [DOI: 10.1115/1.4005286] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expansive growth and differentiation potential of human embryonic stem cells (hESCs) make them a promising source of cells for regenerative medicine. However, this promise is off set by the propensity for spontaneous or uncontrolled differentiation to result in heterogeneous cell populations. Cell elasticity has recently been shown to characterize particular cell phenotypes, with undifferentiated and differentiated cells sometimes showing significant differences in their elasticities. In this study, we determined the Young’s modulus of hESCs by atomic force microscopy using a pyramidal tip. Using this method we are able to take point measurements of elasticity at multiple locations on a single cell, allowing local variations due to cell structure to be identified. We found considerable differences in the elasticity of the analyzed hESCs, reflected by a broad range of Young’s modulus (0.05-10 kPa). This surprisingly high variation suggests that elasticity could serve as the basis of a simple and efficient large scale purification/separation technique to discriminate subpopulations of hESCs.
Collapse
Affiliation(s)
- Robert Kiss
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Henry Bock
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Steve Pells
- MRC Centre for Regenerative Medicine, College of Medicine and Veterinary Medicine, Edinburgh University, Edinburgh EH16 4SB, U.K
| | - Elisabetta Canetta
- BIONTHE (Bio- and Nano-Technologies for Health and Environment) Center, Division of Biotechnology and Forensic Sciences, School of Contemporary Sciences, University of Abertay Dundee, Dundee DD1 1HG, U.K
| | - Ashok K. Adya
- BIONTHE (Bio- and Nano-Technologies for Health and Environment) Center, Division of Biotechnology and Forensic Sciences, School of Contemporary Sciences, University of Abertay Dundee, Dundee DD1 1HG, U.K
| | - Andrew J. Moore
- Mechanical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Paul De Sousa
- MRC Centre for Regenerative Medicine, College of Medicine and Veterinary Medicine, Edinburgh University, Edinburgh EH16 4SB, U.K
| | - Nicholas A. Willoughby
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| |
Collapse
|
144
|
Abstract
Angiogenesis/vasculogenesis and neurogenesis are essential for pulp regeneration. Two subfractions of side-population (SP) cells, CD31(-)/CD146(-) SP cells and CD105(+) cells with angiogenic and neurogenic potential, were isolated by flow cytometry from canine dental pulp. In an experimental model of mouse hindlimb ischemia, transplantation of these cell populations resulted in an increase in blood flow, including high-density capillary formation. In a model of rat cerebral ischemia, stem cell transplantations enhanced neuronal regeneration and recovery from motor disability. Autologous transplantation of the CD31(-)/CD146(-) SP cells into an in vivo model of amputated pulp resulted in complete regeneration of pulp tissue with vascular and neuronal processes within 14 days. The transplanted cells expressed pro-angiogenic factors, implying trophic action on endothelial cells. Autologous transplantation of CD31(-)/CD146(-) SP cells or CD105(+) cells with stromal-cell-derived factor-1 (SDF-1) into root canals after whole pulp removal of mature teeth resulted in complete regeneration of pulp replete with nerves and vasculature by day 14, followed by dentin formation along the dentinal wall by day 35. Therefore, the potential utility of fractionated SP cells and CD105(+) cells in angiogenesis and neurogenesis was demonstrated by treatment of limb and cerebral ischemia following pulpotomy and pulpectomy.
Collapse
Affiliation(s)
- M Nakashima
- Center for Advanced Medicine for Dental and Oral Disease, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, Japan.
| | | |
Collapse
|
145
|
Petros TJ, Tyson JA, Anderson SA. Pluripotent stem cells for the study of CNS development. Front Mol Neurosci 2011; 4:30. [PMID: 22016722 PMCID: PMC3191505 DOI: 10.3389/fnmol.2011.00030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/23/2011] [Indexed: 11/13/2022] Open
Abstract
The mammalian central nervous system is a complex neuronal network consisting of a diverse array of cellular subtypes generated in a precise spatial and temporal pattern throughout development. Achieving a greater understanding of the molecular and genetic mechanisms that direct a relatively uniform population of neuroepithelial progenitors into diverse neuronal subtypes remains a significant challenge. The advent of pluripotent stem cell (PSC) technology allows researchers to generate diverse neural populations in vitro. Although the primary focus of PSC-derived neural cells has been their therapeutic potential, utilizing PSCs to study neurodevelopment is another frequently overlooked and equally important application. In this review, we explore the potential for utilizing PSCs to study neural development. We introduce the types of neurodevelopmental questions that PSCs can help to address, and we discuss the different strategies and technologies that researchers use to generate diverse subtypes of PSC-derived neurons. Additionally, we highlight the derivation of several thoroughly characterized neural subtypes; spinal motoneurons, midbrain dopaminergic neurons and cortical neurons. We hope that this review encourages researchers to develop innovative strategies for using PSCs for the study of mammalian, and specifically human, neurodevelopment.
Collapse
Affiliation(s)
- Timothy J. Petros
- Department of Psychiatry, Weill Cornell Medical CollegeNew York, NY, USA
| | - Jennifer A. Tyson
- Department of Psychiatry, Weill Cornell Medical CollegeNew York, NY, USA
- Program in Neuroscience, Weill Cornell Medical CollegeNew York, NY, USA
| | | |
Collapse
|
146
|
Probst CE, Zrazhevskiy P, Gao X. Rapid multitarget immunomagnetic separation through programmable DNA linker displacement. J Am Chem Soc 2011; 133:17126-9. [PMID: 21988124 DOI: 10.1021/ja2072324] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immunomagnetic separation has become an essential tool for high-throughput and low-cost isolation of biomolecules and cells from heterogeneous samples. However, as magnetic selection is essentially a "black-and-white" assay, its application has been largely restricted to single-target and single-parameter studies. To address this issue, we have developed an immunomagnetic separation technology that can quickly sort multiple targets in high yield and purity using selectively displaceable DNA linkers. We envision that this technology will be readily adopted for experiments requiring high-throughput selection of multiple targets or further adapted for selection of a single target based on multiple surface epitopes.
Collapse
Affiliation(s)
- Christine E Probst
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
147
|
Downes A, Mouras R, Bagnaninchi P, Elfick A. Raman spectroscopy and CARS microscopy of stem cells and their derivatives. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2011; 42:1864-1870. [PMID: 22319014 PMCID: PMC3272468 DOI: 10.1002/jrs.2975] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The characterisation of stem cells is of vital importance to regenerative medicine. Failure to separate out all stem cells from differentiated cells before therapies can result in teratomas - tumours of multiple cell types. Typically, characterisation is performed in a destructive manner with fluorescent assays. A truly non-invasive method of characterisation would be a major breakthrough in stem cell-based therapies. Raman spectroscopy has revealed that DNA and RNA levels drop when a stem cell differentiates into other cell types, which we link to a change in the relative sizes of the nucleus and cytoplasm. We also used Raman spectroscopy to investigate the biochemistry within an early embryo, or blastocyst, which differs greatly from colonies of embryonic stem cells. Certain cell types that differentiate from stem cells can be identified by directly imaging the biochemistry with CARS microscopy; examples presented are hydroxyapatite - a precursor to bone, and lipids in adipocytes.
Collapse
Affiliation(s)
- Andrew Downes
- Centre for Biomedical Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Rabah Mouras
- Centre for Biomedical Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Pierre Bagnaninchi
- Centre for Biomedical Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Alistair Elfick
- Centre for Biomedical Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK
| |
Collapse
|
148
|
Koehler KR, Tropel P, Theile JW, Kondo T, Cummins TR, Viville S, Hashino E. Extended passaging increases the efficiency of neural differentiation from induced pluripotent stem cells. BMC Neurosci 2011; 12:82. [PMID: 21831300 PMCID: PMC3167757 DOI: 10.1186/1471-2202-12-82] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 08/10/2011] [Indexed: 11/10/2022] Open
Abstract
Background The use of induced pluripotent stem cells (iPSCs) for the functional replacement of damaged neurons and in vitro disease modeling is of great clinical relevance. Unfortunately, the capacity of iPSC lines to differentiate into neurons is highly variable, prompting the need for a reliable means of assessing the differentiation capacity of newly derived iPSC cell lines. Extended passaging is emerging as a method of ensuring faithful reprogramming. We adapted an established and efficient embryonic stem cell (ESC) neural induction protocol to test whether iPSCs (1) have the competence to give rise to functional neurons with similar efficiency as ESCs and (2) whether the extent of neural differentiation could be altered or enhanced by increased passaging. Results Our gene expression and morphological analyses revealed that neural conversion was temporally delayed in iPSC lines and some iPSC lines did not properly form embryoid bodies during the first stage of differentiation. Notably, these deficits were corrected by continual passaging in an iPSC clone. iPSCs with greater than 20 passages (late-passage iPSCs) expressed higher expression levels of pluripotency markers and formed larger embryoid bodies than iPSCs with fewer than 10 passages (early-passage iPSCs). Moreover, late-passage iPSCs started to express neural marker genes sooner than early-passage iPSCs after the initiation of neural induction. Furthermore, late-passage iPSC-derived neurons exhibited notably greater excitability and larger voltage-gated currents than early-passage iPSC-derived neurons, although these cells were morphologically indistinguishable. Conclusions These findings strongly suggest that the efficiency neuronal conversion depends on the complete reprogramming of iPSCs via extensive passaging.
Collapse
|
149
|
Marchetto MC, Brennand KJ, Boyer LF, Gage FH. Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises. Hum Mol Genet 2011; 20:R109-15. [PMID: 21828073 DOI: 10.1093/hmg/ddr336] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The systematic generation of neurons from patients with neurological disorders can provide important insights into disease pathology, progression and mechanism. This review will discuss recent progress in modeling neurodegenerative and neurodevelopmental diseases using induced pluripotent stem cells (iPSCs) and highlight some of the current challenges in the field. Combined with other technologies previously used to study brain disease, iPSC modeling has the promise to influence modern medicine on several fronts: early diagnosis, drug development and effective treatment.
Collapse
Affiliation(s)
- Maria C Marchetto
- Laboratory of Genetics (LOG-G), The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
150
|
Wu SM, Tan KS, Chen H, Beh TT, Yeo HC, Ng SKL, Wei S, Lee DY, Choo ABH, Chan KKK. Enhanced production of neuroprogenitors, dopaminergic neurons, and identification of target genes by overexpression of sonic hedgehog in human embryonic stem cells. Stem Cells Dev 2011; 21:729-41. [PMID: 21649559 DOI: 10.1089/scd.2011.0134] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Molecular and cellular signaling pathways are involved in the process of neural differentiation from human embryonic stem cells (hESC) to terminally differentiated neurons. The Sonic hedgehog (SHH) morphogen is required to direct the differentiation of hESC to several neural subtypes, for example, dopaminergic (DA) or motor neurons. However, the roles of SHH signaling and the pathway target genes that regulate the diversity of cellular responses arising from SHH activation during neurogenesis of hESC have yet to be elucidated. In this study, we report that overexpression of SHH in hESC promotes the derivation of neuroprogenitors (NP), increases proliferation of NP, and subsequently increases the yield of DA neurons. Next, gene expression changes resulting from the overexpression of SHH in hESC-derived NP were examined by genome-wide transcriptional profiling. Categorizing the differentially expressed genes according to the Gene Ontology biological processes showed that they are involved in numerous cellular processes, including neural development, NP proliferation, and neural specification. In silico GLI-binding sites analysis of the differentially expressed genes also identified a set of putative novel direct target genes of SHH in hESC-derived NP, which are involved in nervous system development. Electrophoretic mobility shift assays and promoter-luciferase assays confirmed that GLI1 binds to the promoter region and activates transcription of HEY2, a NOTCH signaling target gene. Taken together, our data provide evidence for the first time that there is cross-talk between the NOTCH and SHH signaling pathways in hESC-derived NP and also provide significant new insights into transcriptional targets in SHH-mediated neural differentiation of hESC.
Collapse
Affiliation(s)
- Selena Meiyun Wu
- Stem Cell Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|