101
|
Swenson-Fields KI, Ward CJ, Lopez ME, Fross S, Heimes Dillon AL, Meisenheimer JD, Rabbani AJ, Wedlock E, Basu MK, Jansson KP, Rowe PS, Stubbs JR, Wallace DP, Vitek MP, Fields TA. Caspase-1 and the inflammasome promote polycystic kidney disease progression. Front Mol Biosci 2022; 9:971219. [PMID: 36523654 PMCID: PMC9745047 DOI: 10.3389/fmolb.2022.971219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/15/2022] [Indexed: 05/03/2024] Open
Abstract
We and others have previously shown that the presence of renal innate immune cells can promote polycystic kidney disease (PKD) progression. In this study, we examined the influence of the inflammasome, a key part of the innate immune system, on PKD. The inflammasome is a system of molecular sensors, receptors, and scaffolds that responds to stimuli like cellular damage or microbes by activating Caspase-1, and generating critical mediators of the inflammatory milieu, including IL-1β and IL-18. We provide evidence that the inflammasome is primed in PKD, as multiple inflammasome sensors were upregulated in cystic kidneys from human ADPKD patients, as well as in kidneys from both orthologous (PKD1 RC/RC or RC/RC) and non-orthologous (jck) mouse models of PKD. Further, we demonstrate that the inflammasome is activated in female RC/RC mice kidneys, and this activation occurs in renal leukocytes, primarily in CD11c+ cells. Knock-out of Casp1, the gene encoding Caspase-1, in the RC/RC mice significantly restrained cystic disease progression in female mice, implying sex-specific differences in the renal immune environment. RNAseq analysis implicated the promotion of MYC/YAP pathways as a mechanism underlying the pro-cystic effects of the Caspase-1/inflammasome in females. Finally, treatment of RC/RC mice with hydroxychloroquine, a widely used immunomodulatory drug that has been shown to inhibit the inflammasome, protected renal function specifically in females and restrained cyst enlargement in both male and female RC/RC mice. Collectively, these results provide evidence for the first time that the activated Caspase-1/inflammasome promotes cyst expansion and disease progression in PKD, particularly in females. Moreover, the data suggest that this innate immune pathway may be a relevant target for therapy in PKD.
Collapse
Affiliation(s)
- Katherine I. Swenson-Fields
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Christopher J. Ward
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | - Micaila E. Lopez
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shaneann Fross
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Anna L. Heimes Dillon
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - James D. Meisenheimer
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Adib J. Rabbani
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Emily Wedlock
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Malay K. Basu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Kyle P. Jansson
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | - Peter S. Rowe
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jason R. Stubbs
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | - Darren P. Wallace
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael P. Vitek
- Duke University Medical Center, Durham, NC, United States
- Resilio Therapeutics LLC, Durham, NC, United States
| | - Timothy A. Fields
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
102
|
O’Sullivan ED, Mylonas KJ, Bell R, Carvalho C, Baird DP, Cairns C, Gallagher KM, Campbell R, Docherty M, Laird A, Henderson NC, Chandra T, Kirschner K, Conway B, Dihazi GH, Zeisberg M, Hughes J, Denby L, Dihazi H, Ferenbach DA. Single-cell analysis of senescent epithelia reveals targetable mechanisms promoting fibrosis. JCI Insight 2022; 7:e154124. [PMID: 36509292 PMCID: PMC9746814 DOI: 10.1172/jci.insight.154124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Progressive fibrosis and maladaptive organ repair result in significant morbidity and millions of premature deaths annually. Senescent cells accumulate with aging and after injury and are implicated in organ fibrosis, but the mechanisms by which senescence influences repair are poorly understood. Using 2 murine models of injury and repair, we show that obstructive injury generated senescent epithelia, which persisted after resolution of the original injury, promoted ongoing fibrosis, and impeded adaptive repair. Depletion of senescent cells with ABT-263 reduced fibrosis in reversed ureteric obstruction and after renal ischemia/reperfusion injury. We validated these findings in humans, showing that senescence and fibrosis persisted after relieved renal obstruction. We next characterized senescent epithelia in murine renal injury using single-cell RNA-Seq. We extended our classification to human kidney and liver disease and identified conserved profibrotic proteins, which we validated in vitro and in human disease. We demonstrated that increased levels of protein disulfide isomerase family A member 3 (PDIA3) augmented TGF-β-mediated fibroblast activation. Inhibition of PDIA3 in vivo significantly reduced kidney fibrosis during ongoing renal injury and as such represented a new potential therapeutic pathway. Analysis of the signaling pathways of senescent epithelia connected senescence to organ fibrosis, permitting rational design of antifibrotic therapies.
Collapse
Affiliation(s)
- Eoin D. O’Sullivan
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | - Katie J. Mylonas
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Rachel Bell
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Cyril Carvalho
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - David P. Baird
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Carolynn Cairns
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin M. Gallagher
- Department of Urology, Western General Hospital, Edinburgh, United Kingdom
| | - Ross Campbell
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie Docherty
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexander Laird
- Department of Urology, Western General Hospital, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C. Henderson
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Tamir Chandra
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kristina Kirschner
- The Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Bryan Conway
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Jeremy Hughes
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Denby
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | - Hassan Dihazi
- Clinic for Nephrology and Rheumatology, and
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| | - David A. Ferenbach
- Centre for Inflammation Research, Queen’s Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
103
|
Chauveau B, Garric A, Di Tommaso S, Raymond AA, Visentin J, Vermorel A, Dugot-Senant N, Déchanet-Merville J, Duong Van Huyen JP, Rabant M, Couzi L, Saltel F, Merville P. WARS1, TYMP and GBP1 display a distinctive microcirculation pattern by immunohistochemistry during antibody-mediated rejection in kidney transplantation. Sci Rep 2022; 12:19094. [PMID: 36352007 PMCID: PMC9646783 DOI: 10.1038/s41598-022-23078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022] Open
Abstract
Antibody-mediated rejection (ABMR) is the leading cause of allograft failure in kidney transplantation. Defined by the Banff classification, its gold standard diagnosis remains a challenge, with limited inter-observer reproducibility of the histological scores and efficient immunomarker availability. We performed an immunohistochemical analysis of 3 interferon-related proteins, WARS1, TYMP and GBP1 in a cohort of kidney allograft biopsies including 17 ABMR cases and 37 other common graft injuries. Slides were interpreted, for an ABMR diagnosis, by four blinded nephropathologists and by a deep learning framework using convolutional neural networks. Pathologists identified a distinctive microcirculation staining pattern in ABMR with all three antibodies, displaying promising diagnostic performances and a substantial reproducibility. The deep learning analysis supported the microcirculation staining pattern and achieved similar diagnostic performance from internal validation, with a mean area under the receiver operating characteristic curve of 0.89 (± 0.02) for WARS1, 0.80 (± 0.04) for TYMP and 0.89 (± 0.04) for GBP1. The glomerulitis and peritubular capillaritis scores, the hallmarks of histological ABMR, were the most highly correlated Banff scores with the deep learning output, whatever the C4d status. These novel immunomarkers combined with a CNN framework could help mitigate current challenges in ABMR diagnosis and should be assessed in larger cohorts.
Collapse
Affiliation(s)
- Bertrand Chauveau
- Department of Pathology, Pellegrin Hospital, Bordeaux University Hospital, Place Amélie Raba Léon, 33000, Bordeaux, France.
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 146 Rue Léo Saignat, 33000, Bordeaux, France.
| | - Antoine Garric
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 146 Rue Léo Saignat, 33000, Bordeaux, France
- Department of Nephrology, Transplantation Dialysis, Apheresis, Pellegrin Hospital, Bordeaux University Hospital, Place Amélie Raba Léon, 33000, Bordeaux, France
| | - Sylvaine Di Tommaso
- University of Bordeaux, Oncoprot Platform, TBM-Core US 005, 33000, Bordeaux, France
- University of Bordeaux, INSERM UMR1312, BoRdeaux Institute of onCology (BRIC), 33000, Bordeaux, France
| | - Anne-Aurélie Raymond
- University of Bordeaux, Oncoprot Platform, TBM-Core US 005, 33000, Bordeaux, France
- University of Bordeaux, INSERM UMR1312, BoRdeaux Institute of onCology (BRIC), 33000, Bordeaux, France
| | - Jonathan Visentin
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 146 Rue Léo Saignat, 33000, Bordeaux, France
- Laboratory of Immunology and Immunogenetics, Pellegrin Hospital, Bordeaux University Hospital, Place Amélie Raba Léon, 33000, Bordeaux, France
| | - Agathe Vermorel
- Department of Nephrology, Transplantation Dialysis, Apheresis, Pellegrin Hospital, Bordeaux University Hospital, Place Amélie Raba Léon, 33000, Bordeaux, France
| | - Nathalie Dugot-Senant
- University of Bordeaux, Platform of Histopathology, TBMCore - INSERM US005 - CNRS UAR 3427, 33000, Bordeaux, France
| | - Julie Déchanet-Merville
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 146 Rue Léo Saignat, 33000, Bordeaux, France
| | - Jean-Paul Duong Van Huyen
- INSERM U970, Paris, France
- Department of Pathology, Necker Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Marion Rabant
- Department of Pathology, Necker Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
- INSERM U1151, Paris, France
| | - Lionel Couzi
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 146 Rue Léo Saignat, 33000, Bordeaux, France
- Department of Nephrology, Transplantation Dialysis, Apheresis, Pellegrin Hospital, Bordeaux University Hospital, Place Amélie Raba Léon, 33000, Bordeaux, France
| | - Frédéric Saltel
- University of Bordeaux, Oncoprot Platform, TBM-Core US 005, 33000, Bordeaux, France
- University of Bordeaux, INSERM UMR1312, BoRdeaux Institute of onCology (BRIC), 33000, Bordeaux, France
| | - Pierre Merville
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 146 Rue Léo Saignat, 33000, Bordeaux, France
- Department of Nephrology, Transplantation Dialysis, Apheresis, Pellegrin Hospital, Bordeaux University Hospital, Place Amélie Raba Léon, 33000, Bordeaux, France
| |
Collapse
|
104
|
Villalvazo P, Carriazo S, Rojas-Rivera J, Ramos AM, Ortiz A, Perez-Gomez MV. Gain-of-function TLR7 and loss-of-function A20 gene variants identify a novel pathway for Mendelian lupus and lupus nephritis. Clin Kidney J 2022; 15:1973-1980. [PMID: 36324999 PMCID: PMC9613427 DOI: 10.1093/ckj/sfac152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic and inflammatory autoimmune disease of unknown origin that may cause kidney disease, i.e. lupus nephritis (LN). Within a wider trend towards an expanding field of genetic causes of kidney disease, two recent reports have emphasized the role of Mendelian autoimmune disorders in causing LN both in children and in young adults. Loss-of-function (LOF) variants of tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and gain of function (GOF) variants of Toll-like receptor 7 (TLR7) cause SLE and LN, respectively. Interestingly, both genes regulate the same signaling route, as A20, the protein encoded by TNFAIP3, inhibits nuclear factor ĸB (NF-ĸB) activation while TLR7 promoted NF-ĸB activation. Moreover, TNFAIP3 and TLR7 variants are relatively frequent, potentially contributing to polygenic risk for LN. Finally, they both may be expressed by kidney cells, potentially contributing to the severity of kidney injury in persons who have already developed autoimmunity. The fact that both genes regulate the same pathway may lead to novel therapeutic approaches targeting the shared molecular pathway.
Collapse
Affiliation(s)
- Priscila Villalvazo
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sol Carriazo
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jorge Rojas-Rivera
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Adrián M Ramos
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040,Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040,Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040,Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
105
|
McDaniels JM, Shetty AC, Rousselle TV, Bardhi E, Maluf DG, Mas VR. The cellular landscape of the normal kidney allograft: Main players balancing the alloimmune response. FRONTIERS IN TRANSPLANTATION 2022; 1:988238. [PMID: 38994377 PMCID: PMC11235379 DOI: 10.3389/frtra.2022.988238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 07/13/2024]
Abstract
Despite recent advances made in short-term outcomes; minimal improvements have been observed in long-term kidney transplantation outcomes. Due to an imbalance between organ transplant availability and patient waiting list, expanding kidney allograft longevity is a critical need in the field. Prior studies have either focused on early ischemic and immunological conditions affecting kidney allografts (e.g., delayed graft function, acute rejection) or late stage chronic injury when interventions are no longer feasible. However, studies characterizing kidney allografts with normal function by its cellular distribution, cell-cell interactions, and associated molecular pathways are lacking. Herein, we used single nuclei RNA-sequencing to uncover the cellular landscape and transcriptome of the normal kidney allograft. We profiled 40,950 nuclei from seven human kidney biopsies (normal native, N = 3; normal allograft, N = 4); normal allograft protocol biopsies were collected ≥15-months post-transplant. A total of 17 distinct cell clusters were identified with proximal tubules (25.70 and 21.01%), distal tubules (15.22 and 18.20%), and endothelial cells (EC) (4.26 and 9.94%) constituting the major cell populations of normal native and normal allograft kidneys, respectively. A large proportion of cycling cells from normal native kidneys were in G1-phase (43.96%) whereas cells from normal allograft were predominantly in S-phase (32.69%). This result suggests that transcriptional differences between normal native and normal allograft biopsies are dependent on the new host environment, immunosuppression, and injury-affliction. In the normal allograft, EC-specific genes upregulated metabolism, the immune response, and cellular growth, emphasizing their role in maintaining homeostasis during the ongoing alloreactive stress response. Immune cells, including B (2.81%), macrophages (24.96%), monocytes (15.29%), natural killer (NK) (12.83%), neutrophils (8.44%), and T cells (14.41%, were increased in normal allografts despite lack of histological or clinical evidence of acute rejection. Phenotypic characterization of immune cell markers supported lymphocyte activation and proinflammatory cytokines signaling pathways (i.e., IL-15, IL-32). The activation of B, NK, and T cells reveals potential immune cells underlying subclinical inflammation and repair. These single nuclei analyses provide novel insights into kidney and immune cell associated signaling pathways that portray kidney grafts with normal allograft function beyond 2-years post-transplant, revealing a novel perspective in understanding long-term allograft graft survival.
Collapse
Affiliation(s)
- Jennifer M McDaniels
- Surgical Sciences Division, Department of Surgery, University of Maryland, Baltimore, MD, United States
| | - Amol C Shetty
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Thomas V Rousselle
- Surgical Sciences Division, Department of Surgery, University of Maryland, Baltimore, MD, United States
| | - Elissa Bardhi
- Surgical Sciences Division, Department of Surgery, University of Maryland, Baltimore, MD, United States
| | - Daniel G Maluf
- Program in Transplantation, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Valeria R Mas
- Surgical Sciences Division, Department of Surgery, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
106
|
Chen XY, Chen Y, Fang WH, Wu ZY, Wang DL, Xu YW, Yu LH, Lin YX, Kang DZ, Ding CY. Integrative and comparative single-cell analysis reveals transcriptomic difference between human tumefactive demyelinating lesion and glioma. Commun Biol 2022; 5:941. [PMID: 36085357 PMCID: PMC9463163 DOI: 10.1038/s42003-022-03900-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Tumefactive demyelinating lesion (TDL) is an immune-mediated disease which can be misdiagnosed as glioma. At present, there is no study comparing difference between the two disorders at the cellular level. Here, we perform integrative and comparative single-cell RNA sequencing (ScRNA-seq) transcriptomic analysis on TDL and glioma lesions. At single-cell resolution, TDL is comprised primarily of immune cells, which is completely different from glioma. The integrated analysis reveals a TDL-specific microglial subset involving in B cell activation and proliferation. Comparative analysis highlights remyelination function of glial cells and demyelination function of T cells in TDL. Subclustering and pseudotime trajectory analysis of T cells in TDL reveal their heterogeneity and diverse functions involving in TDL pathogenesis and recovery process. Our study identifies substantial differences between TDL and glioma at single-cell resolution. The observed heterogeneity and potentially diverse functions of cells in TDL may be critical in disease progression. Integrative and comparative single-cell analysis reveals transcriptomic difference between human tumefactive demyelinating lesion and glioma.
Collapse
|
107
|
Madhavan SM, Konieczkowski M, Bruggeman LA, DeWalt M, Nguyen JK, O'Toole JF, Sedor JR. Essential role of Wtip in mouse development and maintenance of the glomerular filtration barrier. Am J Physiol Renal Physiol 2022; 323:F272-F287. [PMID: 35862649 PMCID: PMC9394782 DOI: 10.1152/ajprenal.00051.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Wilms' tumor interacting protein (Wtip) has been implicated in cell junction assembly and cell differentiation and interacts with proteins in the podocyte slit diaphragm, where it regulates podocyte phenotype. To define Wtip expression and function in the kidney, we created a Wtip-deleted mouse model using β-galactosidase-neomycin (β-geo) gene trap technology. Wtip gene trap mice were embryonic lethal, suggesting additional developmental roles outside kidney function. Using β-geo heterozygous and normal mice, Wtip expression was identified in the developing kidneys, heart, and eyes. In the kidney, expression was restricted to podocytes, which appeared initially at the capillary loop stage coinciding with terminal podocyte differentiation. Heterozygous mice had an expected lifespan and showed no evidence of proteinuria or glomerular pathology. However, heterozygous mice were more susceptible to glomerular injury than wild-type littermates and developed more significant and prolonged proteinuria in response to lipopolysaccharide or adriamycin. In normal human kidneys, WTIP expression patterns were consistent with observations in mice and were lost in glomeruli concurrent with loss of synaptopodin expression in disease. Mechanistically, we identified the Rho guanine nucleotide exchange factor 12 (ARHGEF12) as a binding partner for WTIP. ARHGEF12 was expressed in human podocytes and formed high-affinity interactions through their LIM- and PDZ-binding domains. Our findings suggest that Wtip is essential for early murine embryonic development and maintaining normal glomerular filtration barrier function, potentially regulating slit diaphragm and foot process function through Rho effector proteins.NEW & NOTEWORTHY This study characterized dynamic expression patterns of Wilms' tumor interacting protein (Wtip) and demonstrates the novel role of Wtip in murine development and maintenance of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Sethu M Madhavan
- Department of Medicine, The Ohio State University, Columbus, Ohio
| | | | - Leslie A Bruggeman
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
- Department of Nephrology, Cleveland Clinic, Cleveland, Ohio
| | - Megan DeWalt
- Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Jane K Nguyen
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - John F O'Toole
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
- Department of Nephrology, Cleveland Clinic, Cleveland, Ohio
| | - John R Sedor
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
- Department of Nephrology, Cleveland Clinic, Cleveland, Ohio
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
108
|
Fink EE, Sona S, Tran U, Desprez PE, Bradley M, Qiu H, Eltemamy M, Wee A, Wolkov M, Nicolas M, Min B, Haber GP, Wessely O, Lee BH, Ting AH. Single-cell and spatial mapping Identify cell types and signaling Networks in the human ureter. Dev Cell 2022; 57:1899-1916.e6. [PMID: 35914526 PMCID: PMC9381170 DOI: 10.1016/j.devcel.2022.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/18/2022] [Accepted: 07/05/2022] [Indexed: 01/16/2023]
Abstract
Tissue engineering offers a promising treatment strategy for ureteral strictures, but its success requires an in-depth understanding of the architecture, cellular heterogeneity, and signaling pathways underlying tissue regeneration. Here, we define and spatially map cell populations within the human ureter using single-cell RNA sequencing, spatial gene expression, and immunofluorescence approaches. We focus on the stromal and urothelial cell populations to enumerate the distinct cell types composing the human ureter and infer potential cell-cell communication networks underpinning the bi-directional crosstalk between these compartments. Furthermore, we analyze and experimentally validate the importance of the sonic hedgehog (SHH) signaling pathway in adult progenitor cell maintenance. The SHH-expressing basal cells support organoid generation in vitro and accurately predict the differentiation trajectory from basal progenitor cells to terminally differentiated umbrella cells. Our results highlight the essential processes involved in adult ureter tissue homeostasis and provide a blueprint for guiding ureter tissue engineering.
Collapse
Affiliation(s)
- Emily E Fink
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Surbhi Sona
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Uyen Tran
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Pierre-Emmanuel Desprez
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Urology, CHU Lille, Claude Huriez Hospital, Université Lille, 59000 Lille, France
| | - Matthew Bradley
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hong Qiu
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mohamed Eltemamy
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alvin Wee
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Madison Wolkov
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Marlo Nicolas
- Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Georges-Pascal Haber
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Oliver Wessely
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Byron H Lee
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Angela H Ting
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
109
|
Abstract
The single-cell revolution in the field of genomics is in full bloom, with clever new molecular biology tricks appearing regularly that allow researchers to explore new modalities or scale up their projects to millions of cells and beyond. Techniques abound to measure RNA expression, DNA alterations, protein abundance, chromatin accessibility, and more, all with single-cell resolution and often in combination. Despite such a rapidly changing technology landscape, there are several fundamental principles that are applicable to the majority of experimental workflows to help users avoid pitfalls and exploit the advantages of the chosen platform. In this overview article, we describe a variety of popular single-cell genomics technologies and address some common questions pertaining to study design, sample preparation, quality control, and sequencing strategy. As the majority of relevant publications currently revolve around single-cell RNA-seq, we will prioritize this genomics modality in our discussion. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Claire Regan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | |
Collapse
|
110
|
Yu L, Lin W, Shen C, Meng T, Jin P, Ding X, Eggenhuizen PJ, Ooi JD, Tang R, Nie W, Li X, Xiao X, Zhong Y. Intrarenal Single-Cell Sequencing of Hepatitis B Virus Associated Membranous Nephropathy. Front Med (Lausanne) 2022; 9:869284. [PMID: 35935760 PMCID: PMC9355751 DOI: 10.3389/fmed.2022.869284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
To date, the pathogenesis of hepatitis B virus (HBV)-associated membranous nephropathy (MN) remains elusive. This study aimed to decipher the etiopathogenesis of HBV-associated MN by performing single-cell RNA sequencing (scRNA-seq) of kidney biopsy specimens from a patient with HBV-associated MN and two healthy individuals. We generated 4,114 intrarenal single-cell transcriptomes from the HBV-associated MN patient by scRNA-seq. Compared to healthy individuals, podocytes in the HBV-associated MN patient showed an increased expression of extracellular matrix formation-related genes, including HSPA5, CTGF, and EDIL3. Kidney endothelial cells (ECs) in the HBV-associated MN were enriched in inflammatory pathways, including NF-kappa B signaling, IL-17 signaling, TNF signaling and NOD-like receptor signaling. Gene ontology (GO) functional enrichment analysis and Gene Set Variation Analysis (GSVA) further revealed that differentially expressed genes (DEGs) of ECs from the HBV-associated MN patients were enriched in apoptotic signaling pathway, response to cytokine and leukocyte cell-cell adhesion. The up-regulated DEGs in glomerular ECs of HBV-associated MN patients were involved in biological processes such as viral gene expression, and protein targeting to endoplasmic reticulum. We further verified that the overexpressed genes in ECs from HBV-associated MN were mainly enriched in regulation of protein targeting to endoplasmic reticulum, exocytosis, viral gene expression, IL-6 and IL-1 secretion when compared with anti-phospholipase A2 receptor (PLA2R)-positive idiopathic membranous nephropathy (IMN). The receptor-ligand crosstalk analysis revealed potential interactions between endothelial cells and other cells in HBV-associated-MN. These results offer new insight into the pathogenesis of HBV-associated MN and may identify new therapeutic targets for HBV-associated MN.
Collapse
Affiliation(s)
- Leilin Yu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Jiujiang Traditional Medicine Hospital, Jiujiang, China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, China
| | - Chanjuan Shen
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Changsha, China
| | - Ting Meng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Jin
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Ding
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | | | - Joshua D. Ooi
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Wannian Nie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xia Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, China
- Xiangcheng Xiao
| | - Yong Zhong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yong Zhong
| |
Collapse
|
111
|
Balzer MS, Doke T, Yang YW, Aldridge DL, Hu H, Mai H, Mukhi D, Ma Z, Shrestha R, Palmer MB, Hunter CA, Susztak K. Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration. Nat Commun 2022; 13:4018. [PMID: 35821371 PMCID: PMC9276703 DOI: 10.1038/s41467-022-31772-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/01/2022] [Indexed: 01/14/2023] Open
Abstract
The kidney has tremendous capacity to repair after acute injury, however, pathways guiding adaptive and fibrotic repair are poorly understood. We developed a model of adaptive and fibrotic kidney regeneration by titrating ischemic injury dose. We performed detailed biochemical and histological analysis and profiled transcriptomic changes at bulk and single-cell level (> 110,000 cells) over time. Our analysis highlights kidney proximal tubule cells as key susceptible cells to injury. Adaptive proximal tubule repair correlated with fatty acid oxidation and oxidative phosphorylation. We identify a specific maladaptive/profibrotic proximal tubule cluster after long ischemia, which expresses proinflammatory and profibrotic cytokines and myeloid cell chemotactic factors. Druggability analysis highlights pyroptosis/ferroptosis as vulnerable pathways in these profibrotic cells. Pharmacological targeting of pyroptosis/ferroptosis in vivo pushed cells towards adaptive repair and ameliorates fibrosis. In summary, our single-cell analysis defines key differences in adaptive and fibrotic repair and identifies druggable pathways for pharmacological intervention to prevent kidney fibrosis.
Collapse
Affiliation(s)
- Michael S Balzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ya-Wen Yang
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel L Aldridge
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hung Mai
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ziyuan Ma
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rojesh Shrestha
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew B Palmer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
112
|
Westerling-Bui AD, Fast EM, Soare TW, Venkatachalan S, DeRan M, Fanelli AB, Kyrychenko S, Hoang H, Corriea GM, Zhang W, Yu M, Daniels M, Malojcic G, Pan-Zhou XR, Ledeboer MW, Harmange JC, Emani M, Tibbitts TT, Reilly JF, Mundel P. Transplanted organoids empower human preclinical assessment of drug candidate for the clinic. SCIENCE ADVANCES 2022; 8:eabj5633. [PMID: 35857479 PMCID: PMC9258952 DOI: 10.1126/sciadv.abj5633] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pharmacodynamic (PD) studies are an essential component of preclinical drug discovery. Current approaches for PD studies, including the analysis of novel kidney disease targeting therapeutic agents, are limited to animal models with unclear translatability to the human condition. To address this challenge, we developed a novel approach for PD studies using transplanted, perfused human kidney organoids. We performed pharmacokinetic (PK) studies with GFB-887, an investigational new drug now in phase 2 trials. Orally dosed GFB-887 to athymic rats that had undergone organoid transplantation resulted in measurable drug exposure in transplanted organoids. We established the efficacy of orally dosed GFB-887 in PD studies, where quantitative analysis showed significant protection of kidney filter cells in human organoids and endogenous rat host kidneys. This widely applicable approach demonstrates feasibility of using transplanted human organoids in preclinical PD studies with an investigational new drug, empowering organoids to revolutionize drug discovery.
Collapse
Affiliation(s)
- Amy D. Westerling-Bui
- Goldfinch Bio Inc., Cambridge, MA 02142, USA
- Corresponding author. (A.D.W.-B.); (P.M.)
| | | | | | | | | | | | | | - Hien Hoang
- Goldfinch Bio Inc., Cambridge, MA 02142, USA
| | | | - Wei Zhang
- Goldfinch Bio Inc., Cambridge, MA 02142, USA
| | - Maolin Yu
- Goldfinch Bio Inc., Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | - Peter Mundel
- Goldfinch Bio Inc., Cambridge, MA 02142, USA
- Corresponding author. (A.D.W.-B.); (P.M.)
| |
Collapse
|
113
|
Raghubar AM, Pham DT, Tan X, Grice LF, Crawford J, Lam PY, Andersen SB, Yoon S, Teoh SM, Matigian NA, Stewart A, Francis L, Ng MSY, Healy HG, Combes AN, Kassianos AJ, Nguyen Q, Mallett AJ. Spatially Resolved Transcriptomes of Mammalian Kidneys Illustrate the Molecular Complexity and Interactions of Functional Nephron Segments. Front Med (Lausanne) 2022; 9:873923. [PMID: 35872784 PMCID: PMC9300864 DOI: 10.3389/fmed.2022.873923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Available transcriptomes of the mammalian kidney provide limited information on the spatial interplay between different functional nephron structures due to the required dissociation of tissue with traditional transcriptome-based methodologies. A deeper understanding of the complexity of functional nephron structures requires a non-dissociative transcriptomics approach, such as spatial transcriptomics sequencing (ST-seq). We hypothesize that the application of ST-seq in normal mammalian kidneys will give transcriptomic insights within and across species of physiology at the functional structure level and cellular communication at the cell level. Here, we applied ST-seq in six mice and four human kidneys that were histologically absent of any overt pathology. We defined the location of specific nephron structures in the captured ST-seq datasets using three lines of evidence: pathologist's annotation, marker gene expression, and integration with public single-cell and/or single-nucleus RNA-sequencing datasets. We compared the mouse and human cortical kidney regions. In the human ST-seq datasets, we further investigated the cellular communication within glomeruli and regions of proximal tubules-peritubular capillaries by screening for co-expression of ligand-receptor gene pairs. Gene expression signatures of distinct nephron structures and microvascular regions were spatially resolved within the mouse and human ST-seq datasets. We identified 7,370 differentially expressed genes (p adj < 0.05) distinguishing species, suggesting changes in energy production and metabolism in mouse cortical regions relative to human kidneys. Hundreds of potential ligand-receptor interactions were identified within glomeruli and regions of proximal tubules-peritubular capillaries, including known and novel interactions relevant to kidney physiology. Our application of ST-seq to normal human and murine kidneys confirms current knowledge and localization of transcripts within the kidney. Furthermore, the generated ST-seq datasets provide a valuable resource for the kidney community that can be used to inform future research into this complex organ.
Collapse
Affiliation(s)
- Arti M. Raghubar
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Duy T. Pham
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Xiao Tan
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Laura F. Grice
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Joanna Crawford
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Pui Yeng Lam
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Stacey B. Andersen
- Genome Innovation Hub, University of Queensland, Brisbane, QLD, Australia
- UQ Sequencing Facility, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Sohye Yoon
- Genome Innovation Hub, University of Queensland, Brisbane, QLD, Australia
| | - Siok Min Teoh
- UQ Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nicholas A. Matigian
- QCIF Facility for Advanced Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Anne Stewart
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
| | - Leo Francis
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
| | - Monica S. Y. Ng
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Nephrology Department, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Helen G. Healy
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Alexander N. Combes
- Department of Anatomy and Developmental Biology, Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Andrew J. Kassianos
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Mallett
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Townsville, Queensland, QLD, Australia
- Department of Renal Medicine, Townsville University Hospital, Townsville, Queensland, QLD, Australia
| |
Collapse
|
114
|
Zhang Y, Cai J, Lu W, Xu S, Qu M, Zhao S, Ding X. Comprehensive Network-Based Analyses Reveal Novel Renal Function-Related Targets in Acute Kidney Injury. Front Genet 2022; 13:907145. [PMID: 35860471 PMCID: PMC9289212 DOI: 10.3389/fgene.2022.907145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Acute kidney injury (AKI) is a common clinical syndrome with limited methods of treatment and diagnosis. Although several molecules associated with AKI have been discovered, molecular mechanisms underlying AKI still remain unclear. Weighted gene co-expression network analysis (WGCNA) is a novel method to uncover the relationship between co-expression genes and clinical traits at the system level. Methods: First, by employing WGCNA in transcriptional data on 30 patients with well/poor functioning kidney graft, we identified two co-expression modules that were significantly related to serum creatinine (SCr). Second, based on the modules, potential small molecular compound candidates for developing targeted therapeutics were obtained by connectivity map analysis. Furthermore, multiple validations of expression in space/time were carried out with two classical AKI models in vivo and other five databases of over 152 samples. Results: Two of the 14 modules were found to be closely correlated with SCr. Function enrichment analysis illustrated that one module was enriched in the immune system, while the other was in the metabolic process. Six key renal function-related genes (RFRGs) were finally obtained. Such genes performed well in cisplatin-induced or cecal ligation and puncture-induced AKI mouse models. Conclusion: The analysis suggests that WGCNA is a proper method to connect clinical traits with genome data to find novel targets in AKI. The kidney tissue with worse renal function tended to develop a “high immune but low metabolic activity” expression pattern. Also, ACSM2A, GLYAT, CORO1A, DPEP1, ALDH7A1, and EPHX2 are potential targets of molecular diagnosis and treatment in AKI.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieru Cai
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Kidney and Dialysis Institute of Shanghai, Shanghai, China
- Kidney and Blood Purification Key Laboratory of Shanghai, Shanghai, China
| | - Wei Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sujuan Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuan Zhao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Kidney and Dialysis Institute of Shanghai, Shanghai, China
- Kidney and Blood Purification Key Laboratory of Shanghai, Shanghai, China
- *Correspondence: Xiaoqiang Ding, ; Shuan Zhao,
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Kidney and Dialysis Institute of Shanghai, Shanghai, China
- Kidney and Blood Purification Key Laboratory of Shanghai, Shanghai, China
- *Correspondence: Xiaoqiang Ding, ; Shuan Zhao,
| |
Collapse
|
115
|
Chen Y, Zhang B, Liu T, Chen X, Wang Y, Zhang H. T Cells With Activated STAT4 Drive the High-Risk Rejection State to Renal Allograft Failure After Kidney Transplantation. Front Immunol 2022; 13:895762. [PMID: 35844542 PMCID: PMC9283858 DOI: 10.3389/fimmu.2022.895762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
In kidney transplantation, deteriorated progression of rejection is considered to be a leading course of postoperative mortality. However, the conventional histologic diagnosis is limited in reading the rejection status at the molecular level, thereby triggering mismatched pathogenesis with clinical phenotypes. Here, by applying uniform manifold approximation and projection and Leiden algorithms to 2,611 publicly available microarray datasets of renal transplantation, we uncovered six rejection states with corresponding signature genes and revealed a high-risk (HR) state that was essential in promoting allograft loss. By identifying cell populations from single-cell RNA sequencing data that were associated with the six rejection states, we identified a T-cell population to be the pathogenesis-triggering cells associated with the HR rejection state. Additionally, by constructing gene regulatory networks, we identified that activated STAT4, as a core transcription factor that was regulated by PTPN6 in T cells, was closely linked to poor allograft function and prognosis. Taken together, our study provides a novel strategy to help with the precise diagnosis of kidney allograft rejection progression, which is powerful in investigating the underlying molecular pathogenesis, and therefore, for further clinical intervention.
Collapse
Affiliation(s)
- Yihan Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bao Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianliang Liu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yaning Wang, ; Hongbo Zhang,
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yaning Wang, ; Hongbo Zhang,
| |
Collapse
|
116
|
Röck R, Rizzo L, Lienkamp SS. Kidney Development: Recent Insights from Technological Advances. Physiology (Bethesda) 2022; 37:0. [PMID: 35253460 DOI: 10.1152/physiol.00041.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The kidney is a complex organ, and how it forms is a fascinating process. New technologies, such as single-cell transcriptomics, and enhanced imaging modalities are offering new approaches to understand the complex and intertwined processes during embryonic kidney development.
Collapse
Affiliation(s)
- Ruth Röck
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Swiss National Centres of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland
| | - Ludovica Rizzo
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Swiss National Centres of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland.,PhD program "Molecular and Translational Biomedicine," Life Science Zurich Graduate School, Zurich, Switzerland
| | - Soeren S Lienkamp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Swiss National Centres of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland
| |
Collapse
|
117
|
Hill C, Avila-Palencia I, Maxwell AP, Hunter RF, McKnight AJ. Harnessing the Full Potential of Multi-Omic Analyses to Advance the Study and Treatment of Chronic Kidney Disease. FRONTIERS IN NEPHROLOGY 2022; 2:923068. [PMID: 37674991 PMCID: PMC10479694 DOI: 10.3389/fneph.2022.923068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/30/2022] [Indexed: 09/08/2023]
Abstract
Chronic kidney disease (CKD) was the 12th leading cause of death globally in 2017 with the prevalence of CKD estimated at ~9%. Early detection and intervention for CKD may improve patient outcomes, but standard testing approaches even in developed countries do not facilitate identification of patients at high risk of developing CKD, nor those progressing to end-stage kidney disease (ESKD). Recent advances in CKD research are moving towards a more personalised approach for CKD. Heritability for CKD ranges from 30% to 75%, yet identified genetic risk factors account for only a small proportion of the inherited contribution to CKD. More in depth analysis of genomic sequencing data in large cohorts is revealing new genetic risk factors for common diagnoses of CKD and providing novel diagnoses for rare forms of CKD. Multi-omic approaches are now being harnessed to improve our understanding of CKD and explain some of the so-called 'missing heritability'. The most common omic analyses employed for CKD are genomics, epigenomics, transcriptomics, metabolomics, proteomics and phenomics. While each of these omics have been reviewed individually, considering integrated multi-omic analysis offers considerable scope to improve our understanding and treatment of CKD. This narrative review summarises current understanding of multi-omic research alongside recent experimental and analytical approaches, discusses current challenges and future perspectives, and offers new insights for CKD.
Collapse
Affiliation(s)
| | | | | | | | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
118
|
Hansen J, Sealfon R, Menon R, Eadon MT, Lake BB, Steck B, Anjani K, Parikh S, Sigdel TK, Zhang G, Velickovic D, Barwinska D, Alexandrov T, Dobi D, Rashmi P, Otto EA, Rivera M, Rose MP, Anderton CR, Shapiro JP, Pamreddy A, Winfree S, Xiong Y, He Y, de Boer IH, Hodgin JB, Barisoni L, Naik AS, Sharma K, Sarwal MM, Zhang K, Himmelfarb J, Rovin B, El-Achkar TM, Laszik Z, He JC, Dagher PC, Valerius MT, Jain S, Satlin LM, Troyanskaya OG, Kretzler M, Iyengar R, Azeloglu EU. A reference tissue atlas for the human kidney. SCIENCE ADVANCES 2022; 8:eabn4965. [PMID: 35675394 PMCID: PMC9176741 DOI: 10.1126/sciadv.abn4965] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/20/2022] [Indexed: 05/08/2023]
Abstract
Kidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level functional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney disease when multiple molecular mechanisms underlie convergent clinical phenotypes.
Collapse
Affiliation(s)
- Jens Hansen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Sealfon
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
| | - Rajasree Menon
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Blue B. Lake
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Becky Steck
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kavya Anjani
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Samir Parikh
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Tara K. Sigdel
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Guanshi Zhang
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | | | - Daria Barwinska
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Dejan Dobi
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Priyanka Rashmi
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Edgar A. Otto
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Miguel Rivera
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Michael P. Rose
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Christopher R. Anderton
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - John P. Shapiro
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Annapurna Pamreddy
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | - Seth Winfree
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yuguang Xiong
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yongqun He
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ian H. de Boer
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
| | | | | | - Abhijit S. Naik
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kumar Sharma
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | - Minnie M. Sarwal
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jonathan Himmelfarb
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
| | - Brad Rovin
- Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Zoltan Laszik
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | | | | | - M. Todd Valerius
- Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Sanjay Jain
- Washington University in Saint Louis School of Medicine, St. Louis, MS, USA
| | - Lisa M. Satlin
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olga G. Troyanskaya
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
| | | | - Ravi Iyengar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kidney Precision Medicine Project
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
- University of Michigan School of Medicine, Ann Arbor, MI, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- University of California San Francisco School of Medicine, San Francisco, CA, USA
- Ohio State University College of Medicine, Columbus, OH, USA
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
- European Molecular Biology Laboratory, Heidelberg, Germany
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
- Duke University School of Medicine, Durham, NC, USA
- Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- Washington University in Saint Louis School of Medicine, St. Louis, MS, USA
| |
Collapse
|
119
|
Suryawanshi H, Yang H, Lubetzky M, Morozov P, Lagman M, Thareja G, Alonso A, Li C, Snopkowski C, Belkadi A, Mueller FB, Lee JR, Dadhania DM, Salvatore SP, Seshan SV, Sharma VK, Suhre K, Suthanthiran M, Tuschl T, Muthukumar T. Detection of infiltrating fibroblasts by single-cell transcriptomics in human kidney allografts. PLoS One 2022; 17:e0267704. [PMID: 35657798 PMCID: PMC9165878 DOI: 10.1371/journal.pone.0267704] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
We tested the hypothesis that single-cell RNA-sequencing (scRNA-seq) analysis of human kidney allograft biopsies will reveal distinct cell types and states and yield insights to decipher the complex heterogeneity of alloimmune injury. We selected 3 biopsies of kidney cortex from 3 individuals for scRNA-seq and processed them fresh using an identical protocol on the 10x Chromium platform; (i) HK: native kidney biopsy from a living donor, (ii) AK1: allograft kidney with transplant glomerulopathy, tubulointerstitial fibrosis, and worsening graft function, and (iii) AK2: allograft kidney after successful treatment of active antibody-mediated rejection. We did not study T-cell-mediated rejections. We generated 7217 high-quality single cell transcriptomes. Taking advantage of the recipient-donor sex mismatches revealed by X and Y chromosome autosomal gene expression, we determined that in AK1 with fibrosis, 42 months after transplantation, more than half of the kidney allograft fibroblasts were recipient-derived and therefore likely migratory and graft infiltrative, whereas in AK2 without fibrosis, 84 months after transplantation, most fibroblasts were donor-organ-derived. Furthermore, AK1 was enriched for tubular progenitor cells overexpressing profibrotic extracellular matrix genes. AK2, eight months after successful treatment of rejection, contained plasmablast cells with high expression of immunoglobulins, endothelial cell elaboration of T cell chemoattractant cytokines, and persistent presence of cytotoxic T cells. In addition to these key findings, our analysis revealed unique cell types and states in the kidney. Altogether, single-cell transcriptomics yielded novel mechanistic insights, which could pave the way for individualizing the care of transplant recipients.
Collapse
Affiliation(s)
- Hemant Suryawanshi
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, United States of America
| | - Hua Yang
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Michelle Lubetzky
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| | - Pavel Morozov
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, United States of America
| | - Mila Lagman
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Gaurav Thareja
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Alicia Alonso
- Epigenomics Core Facility, Weill Cornell Medical College, New York, NY, United States of America
| | - Carol Li
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Catherine Snopkowski
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Aziz Belkadi
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Franco B. Mueller
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - John R. Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| | - Darshana M. Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| | - Steven P. Salvatore
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Surya V. Seshan
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Vijay K. Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, United States of America
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| |
Collapse
|
120
|
Limonte CP, Valo E, Drel V, Natarajan L, Darshi M, Forsblom C, Henderson CM, Hoofnagle AN, Ju W, Kretzler M, Montemayor D, Nair V, Nelson RG, O’Toole JF, Toto RD, Rosas SE, Ruzinski J, Sandholm N, Schmidt IM, Vaisar T, Waikar SS, Zhang J, Rossing P, Ahluwalia TS, Groop PH, Pennathur S, Snell-Bergeon JK, Costacou T, Orchard TJ, Sharma K, de Boer IH. Urinary Proteomics Identifies Cathepsin D as a Biomarker of Rapid eGFR Decline in Type 1 Diabetes. Diabetes Care 2022; 45:1416-1427. [PMID: 35377940 PMCID: PMC9210873 DOI: 10.2337/dc21-2204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/04/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Understanding mechanisms underlying rapid estimated glomerular filtration rate (eGFR) decline is important to predict and treat kidney disease in type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS We performed a case-control study nested within four T1D cohorts to identify urinary proteins associated with rapid eGFR decline. Case and control subjects were categorized based on eGFR decline ≥3 and <1 mL/min/1.73 m2/year, respectively. We used targeted liquid chromatography-tandem mass spectrometry to measure 38 peptides from 20 proteins implicated in diabetic kidney disease. Significant proteins were investigated in complementary human cohorts and in mouse proximal tubular epithelial cell cultures. RESULTS The cohort study included 1,270 participants followed a median 8 years. In the discovery set, only cathepsin D peptide and protein were significant on full adjustment for clinical and laboratory variables. In the validation set, associations of cathepsin D with eGFR decline were replicated in minimally adjusted models but lost significance with adjustment for albuminuria. In a meta-analysis with combination of discovery and validation sets, the odds ratio for the association of cathepsin D with rapid eGFR decline was 1.29 per SD (95% CI 1.07-1.55). In complementary human cohorts, urine cathepsin D was associated with tubulointerstitial injury and tubulointerstitial cathepsin D expression was associated with increased cortical interstitial fractional volume. In mouse proximal tubular epithelial cell cultures, advanced glycation end product-BSA increased cathepsin D activity and inflammatory and tubular injury markers, which were further increased with cathepsin D siRNA. CONCLUSIONS Urine cathepsin D is associated with rapid eGFR decline in T1D and reflects kidney tubulointerstitial injury.
Collapse
Affiliation(s)
- Christine P. Limonte
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA
- Kidney Research Institute, University of Washington, Seattle, WA
| | - Erkka Valo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viktor Drel
- Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, TX
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Loki Natarajan
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health and Moores Cancer Center at UC San Diego Health, La Jolla, CA
| | - Manjula Darshi
- Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, TX
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Clark M. Henderson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Andrew N. Hoofnagle
- Kidney Research Institute, University of Washington, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Wenjun Ju
- Division of Nephrology, University of Michigan, Ann Arbor, MI
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Matthias Kretzler
- Division of Nephrology, University of Michigan, Ann Arbor, MI
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Daniel Montemayor
- Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, TX
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Viji Nair
- Division of Nephrology, University of Michigan, Ann Arbor, MI
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ
| | - John F. O’Toole
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, OH
| | - Robert D. Toto
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | | | - John Ruzinski
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA
- Kidney Research Institute, University of Washington, Seattle, WA
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Insa M. Schmidt
- Section of Nephrology, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Sushrut S. Waikar
- Section of Nephrology, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA
| | - Jing Zhang
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health and Moores Cancer Center at UC San Diego Health, La Jolla, CA
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tarunveer S. Ahluwalia
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Janet K. Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | | | - Kumar Sharma
- Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, TX
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Ian H. de Boer
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA
- Kidney Research Institute, University of Washington, Seattle, WA
| | | |
Collapse
|
121
|
Cheung MD, Agarwal A, George JF. Where Are They Now: Spatial and Molecular Diversity of Tissue-Resident Macrophages in the Kidney. Semin Nephrol 2022; 42:151276. [PMID: 36435683 DOI: 10.1016/j.semnephrol.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Kidney resident macrophages (KRMs) are involved in homeostasis, phagocytosis, defense against infectious agents, response to insults, inflammation, and tissue repair. They also play critical roles in the pathogenesis and recovery from many kidney diseases such as acute kidney injury. KRMs historically have been studied as one homogenous population, but the wide-ranging roles and phenotypes observed suggest that there is greater heterogeneity than previously understood. Advancements in RNA sequencing technologies (single-cell RNA sequencing and spatial transcriptomics) have identified specific subsets of KRMs that are molecularly, functionally, and spatially distinct with dynamic changes after kidney injury. Multiple studies have identified unique markers that represent these subpopulations, permitting further characterization of the function and roles they play in the kidney. Understanding the diversity of KRM subpopulations will be key in the development of novel therapies used in treating kidney diseases and promoting kidney health.
Collapse
Affiliation(s)
- Matthew D Cheung
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama; Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama; Nephrology Research and Training Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama; Nephrology Research and Training Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama; Department of Veteran Affairs, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama
| | - James F George
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama; Nephrology Research and Training Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama.
| |
Collapse
|
122
|
A Novel Machine Learning 13-Gene Signature: Improving Risk Analysis and Survival Prediction for Clear Cell Renal Cell Carcinoma Patients. Cancers (Basel) 2022; 14:cancers14092111. [PMID: 35565241 PMCID: PMC9103317 DOI: 10.3390/cancers14092111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Clear cell renal cell carcinoma is a type of kidney cancer which comprises the majority of all renal cell carcinomas. Many efforts have been made to identify biomarkers which could help healthcare professionals better treat this kind of cancer. With extensive public data available, we conducted a machine learning study to determine a gene signature that could indicate patient survival with high accuracy. Through the min-Redundancy and Max-Relevance algorithm we generated a signature of 13 genes highly correlated with patient outcomes. These findings reveal potential strategies for personalized medicine in the clinical practice. Abstract Patients with clear cell renal cell carcinoma (ccRCC) have poor survival outcomes, especially if it has metastasized. It is of paramount importance to identify biomarkers in genomic data that could help predict the aggressiveness of ccRCC and its resistance to drugs. Thus, we conducted a study with the aims of evaluating gene signatures and proposing a novel one with higher predictive power and generalization in comparison to the former signatures. Using ccRCC cohorts of the Cancer Genome Atlas (TCGA-KIRC) and International Cancer Genome Consortium (ICGC-RECA), we evaluated linear survival models of Cox regression with 14 signatures and six methods of feature selection, and performed functional analysis and differential gene expression approaches. In this study, we established a 13-gene signature (AR, AL353637.1, DPP6, FOXJ1, GNB3, HHLA2, IL4, LIMCH1, LINC01732, OTX1, SAA1, SEMA3G, ZIC2) whose expression levels are able to predict distinct outcomes of patients with ccRCC. Moreover, we performed a comparison between our signature and others from the literature. The best-performing gene signature was achieved using the ensemble method Min-Redundancy and Max-Relevance (mRMR). This signature comprises unique features in comparison to the others, such as generalization through different cohorts and being functionally enriched in significant pathways: Urothelial Carcinoma, Chronic Kidney disease, and Transitional cell carcinoma, Nephrolithiasis. From the 13 genes in our signature, eight are known to be correlated with ccRCC patient survival and four are immune-related. Our model showed a performance of 0.82 using the Receiver Operator Characteristic (ROC) Area Under Curve (AUC) metric and it generalized well between the cohorts. Our findings revealed two clusters of genes with high expression (SAA1, OTX1, ZIC2, LINC01732, GNB3 and IL4) and low expression (AL353637.1, AR, HHLA2, LIMCH1, SEMA3G, DPP6, and FOXJ1) which are both correlated with poor prognosis. This signature can potentially be used in clinical practice to support patient treatment care and follow-up.
Collapse
|
123
|
Tang Y, Wang J, Zhang Y, Li J, Chen M, Gao Y, Dai M, Lin S, He X, Wu C, Shi X. Single-Cell RNA Sequencing Identifies Intra-Graft Population Heterogeneity in Acute Heart Allograft Rejection in Mouse. Front Immunol 2022; 13:832573. [PMID: 35222420 PMCID: PMC8866760 DOI: 10.3389/fimmu.2022.832573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Transplant rejection remains a major barrier to graft survival and involves a diversity of cell types. However, the heterogeneity of each cell type in the allograft remains poorly defined. In the present study, we used single-cell RNA sequencing technology to analyze graft-infiltrating cells to describe cell types and states associated with acute rejection in a mouse heart transplant model. Unsupervised clustering analysis revealed 21 distinct cell populations. Macrophages formed five cell clusters: two resident macrophage groups, two infiltrating macrophage groups and one dendritic cell-like monocyte group. Infiltrating macrophages were predominantly from allogeneic grafts. Nevertheless, only one infiltrating macrophage cluster was in an active state with the upregulation of CD40, Fam26f and Pira2, while the other was metabolically silent. Re-clustering of endothelial cells identified five subclusters. Interestingly, one of the endothelial cell populations was almost exclusively from allogeneic grafts. Further analysis of this population showed activation of antigen processing and presentation pathway and upregulation of MHC class II molecules. In addition, Ubiquitin D was specifically expressed in such endothelial cell population. The upregulation of Ubiquitin D in rejection was validated by staining of mouse heart grafts and human kidney biopsy specimens. Our findings present a comprehensive analysis of intra-graft cell heterogeneity, describe specific macrophage and endothelial cell populations which mediate rejection, and provide a potential predictive biomarker for rejection in the clinic.
Collapse
Affiliation(s)
- Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jiali Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jun Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yifang Gao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Meiqin Dai
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Shengjie Lin
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Chenglin Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaomin Shi
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
124
|
Ma Z, Hu X, Ding HF, Zhang M, Huo Y, Dong Z. Single-Nucleus Transcriptional Profiling of Chronic Kidney Disease after Cisplatin Nephrotoxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:613-628. [PMID: 35092726 PMCID: PMC8978211 DOI: 10.1016/j.ajpath.2021.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
Abstract
Cisplatin induces both acute and chronic nephrotoxicity during chemotherapy in patients with cancer. Presented here is the first study of single-nucleus RNA sequencing (snRNA-seq) of cisplatin-induced nephrotoxicity. Repeated low-dose cisplatin treatment (RLDC) led to decreases in renal function and kidney weight in mice at 9 weeks. The kidneys of these mice showed tubular degeneration and dilation. snRNA-seq identified 16 cell types and 17 cell clusters in these kidneys. Cluster-by-cluster comparison demonstrated cell type-specific changes in gene expression and identified a unique proximal tubule (PT) injury/repair cluster that co-expressed the injury marker kidney injury molecule-1 (Kim1) and the proliferation marker Ki-67. Compared with control, post-RLDC kidneys had 424 differentially expressed genes in PT cells, including tubular transporters and cytochrome P450 enzymes involved in lipid metabolism. snRNA-seq also revealed transcriptional changes in potential PT injury markers (Krt222, Eda2r, Ltbp2, and Masp1) and repair marker (Bex4). RLDC induced inflammation and proinflammatory cytokines (RelB, TNF-α, Il7, Ccl2, and Cxcl2) and the expression of fibrosis markers (fibronectin, collagen I, connective tissue growth factor, vimentin, and α-smooth muscle actin). Together, these results provide new insights into RLDC-induced transcriptional changes at the single-cell level that may contribute to the development of chronic kidney problems in patients with cancer after cisplatin chemotherapy.
Collapse
Affiliation(s)
- Zhengwei Ma
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Augusta, Georgia.
| | - Xiaoru Hu
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Augusta, Georgia; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Han-Fei Ding
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Augusta, Georgia
| | - Yuqing Huo
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Augusta, Georgia; Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Augusta, Georgia; Charlie Norwood VA Medical Center, Augusta, Georgia.
| |
Collapse
|
125
|
Wang Z, Zhang Y, Li Q, Zou Q, Liu Q. A road map for happiness: The psychological factors related cell types in various parts of human body from single cell RNA-seq data analysis. Comput Biol Med 2022; 143:105286. [PMID: 35183972 DOI: 10.1016/j.compbiomed.2022.105286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
Massive evidence from all sources including zoology, neurobiology and immunology has confirmed that psychological factors can raise remarkable physiological effects. Researchers have long been aware of the potential value of these effects and wanted to harness them in the development of new drugs and therapies, for which the mechanism study is a necessary prerequisite. However, most of these studies are restricted to neuroscience, or starts with blood sample and fall into the area of immunity. In this study, we choose to focus on the psychological factor of happiness, mining existing publicly available single cell RNA sequencing (scRNA-seq) data for the expression of happiness-related genes collected from various sources of literature in all types of cells in the samples, finding that the expression of these genes is not restricted within neuro-regulated cells or tissue-resident immune cells, on the opposite, cell types that are unique to tissue and organ without direct regulation from nervous system account for the majority to express the happiness-related genes. Our research is a preliminary exploration of where our body respond to our mind at cell level, and lays the foundation for more detailed mechanism research.
Collapse
Affiliation(s)
- Ziwei Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology, China
| | - Ying Zhang
- Department of Anesthesiology, Hospital T.C.M Affiliated to Southwest Medical University, Luzhou, China
| | - Qun Li
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology, China; Yangtze Delta Region Institute Quzhou, University of Electronic Science and Technology of China, Quzhou, Zhejiang, China.
| | - Qing Liu
- Department of Algology, Hospital T.C.M Affiliated to Southwest Medical University, Luzhou, China.
| |
Collapse
|
126
|
Menon R, Otto EA, Berthier CC, Nair V, Farkash EA, Hodgin JB, Yang Y, Luo J, Woodside KJ, Zamani H, Norman SP, Wiggins RC, Kretzler M, Naik AS. Glomerular endothelial cell-podocyte stresses and crosstalk in structurally normal kidney transplants. Kidney Int 2022; 101:779-792. [PMID: 34952098 PMCID: PMC9067613 DOI: 10.1016/j.kint.2021.11.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022]
Abstract
Increased podocyte detachment begins immediately after kidney transplantation and is associated with long-term allograft failure. We hypothesized that cell-specific transcriptional changes in podocytes and glomerular endothelial cells after transplantation would offer mechanistic insights into the podocyte detachment process. To test this, we evaluated cell-specific transcriptional profiles of glomerular endothelial cells and podocytes from 14 patients of their first-year surveillance biopsies with normal histology from low immune risk recipients with no post-transplant complications and compared these to biopsies of 20 healthy living donor controls. Glomerular endothelial cells from these surveillance biopsies were enriched for genes related to fluid shear stress, angiogenesis, and interferon signaling. In podocytes, pathways were enriched for genes in response to growth factor signaling and actin cytoskeletal reorganization but also showed evidence of podocyte stress as indicated by reduced nephrin (adhesion protein) gene expression. In parallel, transcripts coding for proteins required to maintain podocyte adherence to the underlying glomerular basement membrane were downregulated, including the major glomerular podocyte integrin α3 and the actin cytoskeleton-related gene synaptopodin. The reduction in integrin α3 protein expression in surveillance biopsies was confirmed by immunoperoxidase staining. The combined growth and stress response of patient allografts post-transplantation paralleled similar changes in a rodent model of nephrectomy-induced glomerular hypertrophic stress that progress to develop proteinuria and glomerulosclerosis with shortened kidney life span. Thus, even among patients with apparently healthy allografts with no detectable histologic abnormality including alloimmune injury, transcriptomic changes reflecting cell stresses are already set in motion that could drive hypertrophy-associated glomerular disease progression.
Collapse
Affiliation(s)
- Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.
| | - Edgar A Otto
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Celine C Berthier
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Viji Nair
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Evan A Farkash
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yingbao Yang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jinghui Luo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kenneth J Woodside
- Division of Transplant Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Haniyeh Zamani
- School of Arts and Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Silas P Norman
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Roger C Wiggins
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Abhijit S Naik
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
127
|
A novel renal perivascular mesenchymal cell subset gives rise to fibroblasts distinct from classic myofibroblasts. Sci Rep 2022; 12:5389. [PMID: 35354870 PMCID: PMC8967907 DOI: 10.1038/s41598-022-09331-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Perivascular mesenchymal cells (PMCs), which include pericytes, give rise to myofibroblasts that contribute to chronic kidney disease progression. Several PMC markers have been identified; however, PMC heterogeneity and functions are not fully understood. Here, we describe a novel subset of renal PMCs that express Meflin, a glycosylphosphatidylinositol-anchored protein that was recently identified as a marker of fibroblasts essential for cardiac tissue repair. Tracing the lineage of Meflin+ PMCs, which are found in perivascular and periglomerular areas and exhibit renin-producing potential, showed that they detach from the vasculature and proliferate under disease conditions. Although the contribution of Meflin+ PMCs to conventional α-SMA+ myofibroblasts is low, they give rise to fibroblasts with heterogeneous α-SMA expression patterns. Genetic ablation of Meflin+ PMCs in a renal fibrosis mouse model revealed their essential role in collagen production. Consistent with this, human biopsy samples showed that progressive renal diseases exhibit high Meflin expression. Furthermore, Meflin overexpression in kidney fibroblasts promoted bone morphogenetic protein 7 signals and suppressed myofibroblastic differentiation, implicating the roles of Meflin in suppressing tissue fibrosis. These findings demonstrate that Meflin marks a PMC subset that is functionally distinct from classic pericytes and myofibroblasts, highlighting the importance of elucidating PMC heterogeneity.
Collapse
|
128
|
Abstract
Blood vessel endothelial cells (ECs) have long been known to modulate inflammation by regulating immune cell trafficking, activation status and function. However, whether the heterogeneous EC populations in various tissues and organs differ in their immunomodulatory capacity has received insufficient attention, certainly with regard to considering them for alternative immunotherapy. Recent single-cell studies have identified specific EC subtypes that express gene signatures indicative of phagocytosis or scavenging, antigen presentation and immune cell recruitment. Here we discuss emerging evidence suggesting a tissue-specific and vessel type-specific immunomodulatory role for distinct subtypes of ECs, here collectively referred to as 'immunomodulatory ECs' (IMECs). We propose that IMECs have more important functions in immunity than previously recognized, and suggest that these might be considered as targets for new immunotherapeutic approaches.
Collapse
|
129
|
Gupta N, Matsumoto T, Hiratsuka K, Saiz EG, Zhang C, Galichon P, Miyoshi T, Susa K, Tatsumoto N, Yamashita M, Morizane R. Modeling injury and repair in kidney organoids reveals that homologous recombination governs tubular intrinsic repair. Sci Transl Med 2022; 14:eabj4772. [PMID: 35235339 PMCID: PMC9161367 DOI: 10.1126/scitranslmed.abj4772] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Kidneys have the capacity for intrinsic repair, preserving kidney architecture with return to a basal state after tubular injury. When injury is overwhelming or repetitive, however, that capacity is exceeded and incomplete repair results in fibrotic tissue replacing normal kidney parenchyma. Loss of nephrons correlates with reduced kidney function, which defines chronic kidney disease (CKD) and confers substantial morbidity and mortality to the worldwide population. Despite the identification of pathways involved in intrinsic repair, limited treatments for CKD exist, partly because of the limited throughput and predictivity of animal studies. Here, we showed that kidney organoids can model the transition from intrinsic to incomplete repair. Single-nuclear RNA sequencing of kidney organoids after cisplatin exposure identified 159 differentially expressed genes and 29 signal pathways in tubular cells undergoing intrinsic repair. Homology-directed repair (HDR) genes including Fanconi anemia complementation group D2 (FANCD2) and RAD51 recombinase (RAD51) were transiently up-regulated during intrinsic repair but were down-regulated in incomplete repair. Single cellular transcriptomics in mouse models of obstructive and hemodynamic kidney injury and human kidney samples of immune-mediated injury validated HDR gene up-regulation during tubular repair. Kidney biopsy samples with tubular injury and varying degrees of fibrosis confirmed loss of FANCD2 during incomplete repair. Last, we performed targeted drug screening that identified the DNA ligase IV inhibitor, SCR7, as a therapeutic candidate that rescued FANCD2/RAD51-mediated repair to prevent the progression of CKD in the cisplatin-induced organoid injury model. Our findings demonstrate the translational utility of kidney organoids to identify pathologic pathways and potential therapies.
Collapse
Affiliation(s)
- Navin Gupta
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Takuya Matsumoto
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ken Hiratsuka
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Edgar Garcia Saiz
- Harvard Medical School, Boston, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Chengcheng Zhang
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Pierre Galichon
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tomoya Miyoshi
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Koichiro Susa
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Narihito Tatsumoto
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ryuji Morizane
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
130
|
Rashmi P, Sur S, Sigdel TK, Boada P, Schroeder AW, Damm I, Kretzler M, Hodgin J, Sarwal MM. Multiplexed droplet single-cell sequencing (Mux-Seq) of normal and transplant kidney. Am J Transplant 2022; 22:876-885. [PMID: 34687145 PMCID: PMC8897263 DOI: 10.1111/ajt.16871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/06/2021] [Accepted: 10/09/2021] [Indexed: 01/25/2023]
Abstract
Maintenance of systemic homeostasis by kidney requires the coordinated response of diverse cell types. The use of single-cell RNA sequencing (scRNAseq) for patient tissue samples remains fraught with difficulties with cell isolation, purity, and experimental bias. The ability to characterize immune and parenchymal cells during transplant rejection will be invaluable in defining transplant pathology where tissue availability is restricted to needle biopsy fragments. Herein, we present feasibility data for multiplexing approach for droplet scRNAseq (Mux-Seq). Mux-Seq has the potential to minimize experimental batch bias and variation even with very small sample input. In this first proof-of-concept study for this approach, explant tissues from six normal and two transplant recipients after multiple early post-transplant rejection episodes leading to nephrectomy due to aggressive antibody mediated rejection, were pooled for Mux-Seq. A computational tool, Demuxlet was applied for demultiplexing the individual cells from the pooled experiment. Each sample was also applied individually in a single microfluidic run (singleplex) to correlate results with the pooled data from the same sample. Our applied protocol demonstrated that data from Mux-Seq correlated highly with singleplex (Pearson coefficient 0.982) sequencing results, with the ability to identify many known and novel kidney cell types including different infiltrating immune cells. Trajectory analysis of proximal tubule and endothelial cells demonstrated separation between healthy and injured kidney from transplant explant suggesting evolving stages of cell- specific differentiation in alloimmune injury. This study provides the technical groundwork for understanding the pathogenesis of alloimmune injury and host tissue response in transplant rejection and normal human kidney and provides a protocol for optimized processing precious and low input human kidney biopsy tissue for larger scale studies.
Collapse
Affiliation(s)
- Priyanka Rashmi
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Swastika Sur
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Tara K. Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Patrick Boada
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Andrew W. Schroeder
- Department of Internal Medicine/Nephrology, University of Michigan, Ann Arbor, MI
| | - Izabella Damm
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Matthias Kretzler
- Department of Internal Medicine/Nephrology, University of Michigan, Ann Arbor, MI
| | - Jeff Hodgin
- Department of Internal Medicine/Nephrology, University of Michigan, Ann Arbor, MI
| | - Minnie M. Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA,Corresponding author: Minnie Sarwal, MD, PhD, MRCP, FRCP, Professor in Residence, Surgery/Medicine/Pediatrics, UCSF, Medical Director, Kidney Pancreas Transplant Program, UCSF, Co-Director, T32 Training Program, Transplant Surgery, UCSF, Director, Precision Transplant Medicine, UCSF,
| | | |
Collapse
|
131
|
Eadon MT, Dagher PC, El-Achkar TM. Cellular and molecular interrogation of kidney biopsy specimens. Curr Opin Nephrol Hypertens 2022; 31:160-167. [PMID: 34982521 PMCID: PMC8799512 DOI: 10.1097/mnh.0000000000000770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Traditional histopathology of the kidney biopsy specimen has been an essential and successful tool for the diagnosis and staging of kidney diseases. However, it is likely that the full potential of the kidney biopsy has not been tapped so far. Indeed, there is now a concerted worldwide effort to interrogate kidney biopsy samples at the cellular and molecular levels with unprecedented rigor and depth. This review examines these novel approaches to study kidney biopsy specimens and highlights their potential to refine our understanding of the pathophysiology of kidney disease and lead to precision-based diagnosis and therapy. RECENT FINDINGS Several consortia are now active at studying kidney biopsy samples from various patient cohorts with state-of-the art cellular and molecular techniques. These include advanced imaging approaches as well as deep molecular interrogation with tools such as epigenetics, transcriptomics, proteomics and metabolomics. The emphasis throughout is on rigor, reproducibility and quality control. SUMMARY Although these techniques to study kidney biopsies are complementary, each on its own can yield novel ways to define and classify kidney disease. Therefore, great efforts are needed in order to generate an integrated output that can propel the diagnosis and treatment of kidney disease into the realm of precision medicine.
Collapse
Affiliation(s)
- Michael T Eadon
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
132
|
Bell RMB, Conway BR. Macrophages in the kidney in health, injury and repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 367:101-147. [PMID: 35461656 DOI: 10.1016/bs.ircmb.2022.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Macrophages are a key component of the renal mononuclear phagocyte system, playing a major role in defense against infection, renal injury and repair. Yolk sac macrophage precursors seed the early embryonic kidney and are important for renal development. Later, renal macrophages are derived from hematopoietic stem cells and in adult life, there is a significant contribution from circulating monocytes, which is enhanced in response to infection or injury. Macrophages are highly plastic and can alter their phenotype in response to cues from parenchymal renal cells. Danger-associated molecules released from injured kidney cells may activate macrophages toward a pro-inflammatory phenotype, mediating further recruitment of inflammatory cells, exacerbating renal injury and activating renal fibroblasts to promote scarring. In acute kidney injury, once the injury stimulus has abated, macrophages may adopt a more reparative phenotype, dampening the immune response and promoting repair of renal tissue. However, in chronic kidney disease ongoing activation of pro-inflammatory monocytes and persistence of reparative macrophages leads to glomerulosclerosis and tubulointerstitial fibrosis, the hallmarks of end-stage kidney disease. Several strategies to inhibit the recruitment, activation and secretory products of pro-inflammatory macrophages have proven beneficial in pre-clinical models and are now undergoing clinical trials in patients with kidney disease. In addition, macrophages may be utilized in cell therapy as a "Trojan Horse" to deliver targeted therapies to the kidney. Single-cell RNA sequencing has identified a previously unappreciated spectrum of macrophage phenotypes, which may be selectively present in injury or repair, and ongoing functional analyses of these subsets may identify more specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel M B Bell
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Bryan R Conway
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
133
|
Wilson SB, Howden SE, Vanslambrouck JM, Dorison A, Alquicira-Hernandez J, Powell JE, Little MH. DevKidCC allows for robust classification and direct comparisons of kidney organoid datasets. Genome Med 2022. [PMID: 35189942 DOI: 10.1101/2021.01.20.427346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND While single-cell transcriptional profiling has greatly increased our capacity to interrogate biology, accurate cell classification within and between datasets is a key challenge. This is particularly so in pluripotent stem cell-derived organoids which represent a model of a developmental system. Here, clustering algorithms and selected marker genes can fail to accurately classify cellular identity while variation in analyses makes it difficult to meaningfully compare datasets. Kidney organoids provide a valuable resource to understand kidney development and disease. However, direct comparison of relative cellular composition between protocols has proved challenging. Hence, an unbiased approach for classifying cell identity is required. METHODS The R package, scPred, was trained on multiple single cell RNA-seq datasets of human fetal kidney. A hierarchical model classified cellular subtypes into nephron, stroma and ureteric epithelial elements. This model, provided in the R package DevKidCC ( github.com/KidneyRegeneration/DevKidCC ), was then used to predict relative cell identity within published kidney organoid datasets generated using distinct cell lines and differentiation protocols, interrogating the impact of such variations. The package contains custom functions for the display of differential gene expression within cellular subtypes. RESULTS DevKidCC was used to directly compare between distinct kidney organoid protocols, identifying differences in relative proportions of cell types at all hierarchical levels of the model and highlighting variations in stromal and unassigned cell types, nephron progenitor prevalence and relative maturation of individual epithelial segments. Of note, DevKidCC was able to distinguish distal nephron from ureteric epithelium, cell types with overlapping profiles that have previously confounded analyses. When applied to a variation in protocol via the addition of retinoic acid, DevKidCC identified a consequential depletion of nephron progenitors. CONCLUSIONS The application of DevKidCC to kidney organoids reproducibly classifies component cellular identity within distinct single-cell datasets. The application of the tool is summarised in an interactive Shiny application, as are examples of the utility of in-built functions for data presentation. This tool will enable the consistent and rapid comparison of kidney organoid protocols, driving improvements in patterning to kidney endpoints and validating new approaches.
Collapse
Affiliation(s)
- Sean B Wilson
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | | | - Aude Dorison
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
| | - Jose Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Parkville, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, Copenhagen, Denmark.
| |
Collapse
|
134
|
Wilson SB, Howden SE, Vanslambrouck JM, Dorison A, Alquicira-Hernandez J, Powell JE, Little MH. DevKidCC allows for robust classification and direct comparisons of kidney organoid datasets. Genome Med 2022; 14:19. [PMID: 35189942 PMCID: PMC8862535 DOI: 10.1186/s13073-022-01023-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background While single-cell transcriptional profiling has greatly increased our capacity to interrogate biology, accurate cell classification within and between datasets is a key challenge. This is particularly so in pluripotent stem cell-derived organoids which represent a model of a developmental system. Here, clustering algorithms and selected marker genes can fail to accurately classify cellular identity while variation in analyses makes it difficult to meaningfully compare datasets. Kidney organoids provide a valuable resource to understand kidney development and disease. However, direct comparison of relative cellular composition between protocols has proved challenging. Hence, an unbiased approach for classifying cell identity is required. Methods The R package, scPred, was trained on multiple single cell RNA-seq datasets of human fetal kidney. A hierarchical model classified cellular subtypes into nephron, stroma and ureteric epithelial elements. This model, provided in the R package DevKidCC (github.com/KidneyRegeneration/DevKidCC), was then used to predict relative cell identity within published kidney organoid datasets generated using distinct cell lines and differentiation protocols, interrogating the impact of such variations. The package contains custom functions for the display of differential gene expression within cellular subtypes. Results DevKidCC was used to directly compare between distinct kidney organoid protocols, identifying differences in relative proportions of cell types at all hierarchical levels of the model and highlighting variations in stromal and unassigned cell types, nephron progenitor prevalence and relative maturation of individual epithelial segments. Of note, DevKidCC was able to distinguish distal nephron from ureteric epithelium, cell types with overlapping profiles that have previously confounded analyses. When applied to a variation in protocol via the addition of retinoic acid, DevKidCC identified a consequential depletion of nephron progenitors. Conclusions The application of DevKidCC to kidney organoids reproducibly classifies component cellular identity within distinct single-cell datasets. The application of the tool is summarised in an interactive Shiny application, as are examples of the utility of in-built functions for data presentation. This tool will enable the consistent and rapid comparison of kidney organoid protocols, driving improvements in patterning to kidney endpoints and validating new approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01023-z.
Collapse
Affiliation(s)
- Sean B Wilson
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | | | - Aude Dorison
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
| | - Jose Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.,UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia. .,Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Parkville, Australia. .,Novo Nordisk Foundation Centre for Stem Cell Medicine, Copenhagen, Denmark.
| |
Collapse
|
135
|
Abstract
The kidney maintains electrolyte, water, and acid-base balance, eliminates foreign and waste compounds, regulates blood pressure, and secretes hormones. There are at least 16 different highly specialized epithelial cell types in the mammalian kidney. The number of specialized endothelial cells, immune cells, and interstitial cell types might even be larger. The concerted interplay between different cell types is critical for kidney function. Traditionally, cells were defined by their function or microscopical morphological appearance. With the advent of new single-cell modalities such as transcriptomics, epigenetics, metabolomics, and proteomics we are entering into a new era of cell type definition. This new technological revolution provides new opportunities to classify cells in the kidney and understand their functions.
Collapse
Affiliation(s)
- Michael S Balzer
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, Philadelphia, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, Philadelphia, USA
| |
Collapse
|
136
|
Latt KZ, Heymann J, Jessee JH, Rosenberg AZ, Berthier CC, Arazi A, Eddy S, Yoshida T, Zhao Y, Chen V, Nelson GW, Cam M, Kumar P, Mehta M, Kelly MC, Kretzler M, Ray PE, Moxey-Mims M, Gorman GH, Lechner BL, Regunathan-Shenk R, Raj DS, Susztak K, Winkler CA, Kopp JB. Urine Single-Cell RNA Sequencing in Focal Segmental Glomerulosclerosis Reveals Inflammatory Signatures. Kidney Int Rep 2022; 7:289-304. [PMID: 35155868 PMCID: PMC8821042 DOI: 10.1016/j.ekir.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Individuals with focal segmental glomerular sclerosis (FSGS) typically undergo kidney biopsy only once, which limits the ability to characterize kidney cell gene expression over time. METHODS We used single-cell RNA sequencing (scRNA-seq) to explore disease-related molecular signatures in urine cells from subjects with FSGS. We collected 17 urine samples from 12 FSGS subjects and captured these as 23 urine cell samples. The inflammatory signatures from renal epithelial and immune cells were evaluated in bulk gene expression data sets of FSGS and minimal change disease (MCD) (The Nephrotic Syndrome Study Network [NEPTUNE] study) and an immune single-cell data set from lupus nephritis (Accelerating Medicines Partnership). RESULTS We identified immune cells, predominantly monocytes, and renal epithelial cells in the urine. Further analysis revealed 2 monocyte subtypes consistent with M1 and M2 monocytes. Shed podocytes in the urine had high expression of marker genes for epithelial-to-mesenchymal transition (EMT). We selected the 16 most highly expressed genes from urine immune cells and 10 most highly expressed EMT genes from urine podocytes as immune signatures and EMT signatures, respectively. Using kidney biopsy transcriptomic data from NEPTUNE, we found that urine cell immune signature and EMT signature genes were more highly expressed in FSGS biopsies compared with MCD biopsies. CONCLUSION The identification of monocyte subsets and podocyte expression signatures in the urine samples of subjects with FSGS suggests that urine cell profiling might serve as a diagnostic and prognostic tool in nephrotic syndrome. Furthermore, this approach may aid in the development of novel biomarkers and identifying personalized therapies targeting particular molecular pathways in immune cells and podocytes.
Collapse
Affiliation(s)
- Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jurgen Heymann
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph H. Jessee
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Celine C. Berthier
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Arnon Arazi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yongmei Zhao
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Vicky Chen
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - George W. Nelson
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Margaret Cam
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Parimal Kumar
- Center for Cancer Research Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Monika Mehta
- Center for Cancer Research Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Michael C. Kelly
- Cancer Research Technology Program, Single-Cell Analysis Facility, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - The Nephrotic Syndrome Study Network (NEPTUNE)
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
- Center for Cancer Research Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
- Cancer Research Technology Program, Single-Cell Analysis Facility, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
- Section on Pediatric Nephrology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Department of Pediatrics, Uniformed Services University, Bethesda, Maryland, USA
- Division of Kidney Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - The Accelerating Medicines Partnership in Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Consortium
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
- Center for Cancer Research Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
- Cancer Research Technology Program, Single-Cell Analysis Facility, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
- Section on Pediatric Nephrology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Department of Pediatrics, Uniformed Services University, Bethesda, Maryland, USA
- Division of Kidney Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Patricio E. Ray
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Marva Moxey-Mims
- Division of Nephrology, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Gregory H. Gorman
- Section on Pediatric Nephrology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Department of Pediatrics, Uniformed Services University, Bethesda, Maryland, USA
| | - Brent L. Lechner
- Section on Pediatric Nephrology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Department of Pediatrics, Uniformed Services University, Bethesda, Maryland, USA
| | - Renu Regunathan-Shenk
- Division of Kidney Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Dominic S. Raj
- Division of Kidney Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cheryl A. Winkler
- Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
137
|
Ivy JR. Does renal ischaemia/reperfusion injury bite the DUSP3? Acta Physiol (Oxf) 2022; 234:e13763. [PMID: 34978749 DOI: 10.1111/apha.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/01/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Jessica R. Ivy
- Centre for Cardiovascular Science The University of Edinburgh Edinburgh UK
| |
Collapse
|
138
|
Cheung MD, Erman EN, Liu S, Erdmann NB, Ghajar-Rahimi G, Moore KH, Edberg JC, George JF, Agarwal A. Single-Cell RNA Sequencing of Urinary Cells Reveals Distinct Cellular Diversity in COVID-19-Associated AKI. KIDNEY360 2022; 3:28-36. [PMID: 35368565 PMCID: PMC8967619 DOI: 10.34067/kid.0005522021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/03/2021] [Indexed: 01/10/2023]
Abstract
Background AKI is a common sequela of infection with SARS-CoV-2 and contributes to the severity and mortality from COVID-19. Here, we tested the hypothesis that kidney alterations induced by COVID-19-associated AKI could be detected in cells collected from urine. Methods We performed single-cell RNA sequencing (scRNAseq) on cells recovered from the urine of eight hospitalized patients with COVID-19 with (n=5) or without AKI (n=3) as well as four patients with non-COVID-19 AKI (n=4) to assess differences in cellular composition and gene expression during AKI. Results Analysis of 30,076 cells revealed a diverse array of cell types, most of which were kidney, urothelial, and immune cells. Pathway analysis of tubular cells from patients with AKI showed enrichment of transcripts associated with damage-related pathways compared with those without AKI. ACE2 and TMPRSS2 expression was highest in urothelial cells among cell types recovered. Notably, in one patient, we detected SARS-CoV-2 viral RNA in urothelial cells. These same cells were enriched for transcripts associated with antiviral and anti-inflammatory pathways. Conclusions We successfully performed scRNAseq on urinary sediment from hospitalized patients with COVID-19 to noninvasively study cellular alterations associated with AKI and established a dataset that includes both injured and uninjured kidney cells. Additionally, we provide preliminary evidence of direct infection of urinary bladder cells by SARS-CoV-2. The urinary sediment contains a wealth of information and is a useful resource for studying the pathophysiology and cellular alterations that occur in kidney diseases.
Collapse
Affiliation(s)
- Matthew D. Cheung
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elise N. Erman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shanrun Liu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nathaniel B. Erdmann
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gelare Ghajar-Rahimi
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kyle H. Moore
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey C. Edberg
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - James F. George
- Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
139
|
Sudarikova AV, Fomin MV, Sultanova RF, Zhao Y, Perez S, Domondon M, Shamatova M, Lysikova DV, Spires DR, Ilatovskaya DV. Functional role of histamine receptors in the renal cortical collecting duct cells. Am J Physiol Cell Physiol 2022; 322:C775-C786. [PMID: 35081320 PMCID: PMC8993525 DOI: 10.1152/ajpcell.00420.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histamine is an important immunomodulator, as well as a regulator of allergic inflammation, gastric acid secretion, and neurotransmission. Although substantial histamine level has been reported in the kidney, renal pathological and physiological effects of this compound have not been clearly defined. The goal of this study was to provide insight into the role of histamine-related pathways in the kidney, with emphasis on the collecting duct (CD), a distal part of the nephron important for the regulation of blood pressure. We report that all four histamine receptors (HRs) as well as enzymes responsible for histamine metabolism and synthesis are expressed in cultured mouse mpkCCDcl4 cells, and histamine evokes a dose-dependent transient increase in intracellular Ca2+ in these cells. Furthermore, we observed a dose-dependent increase in cAMP in the CD cells in response to histamine. Short-circuit current studies aimed at measuring Na+ reabsorption via ENaC (epithelial Na+ channel) demonstrated inhibition of ENaC-mediated currents by histamine after a 4-hr incubation, and single-channel patch-clamp analysis revealed similar ENaC open probability before and after acute histamine application. The long-term (4 hr) effect on ENaC was corroborated in immunocytochemistry and qPCR, which showed a decrease in protein and gene expression for αENaC upon histamine treatment. In summary, our data highlight the functional importance of HRs in the CD cells and suggest potential implications of histamine in inflammation-related renal conditions. Further research is required to discern the molecular pathways downstream of HRs and assess the role of specific receptors in renal pathophysiology.
Collapse
Affiliation(s)
- Anastasia V Sudarikova
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia, St. Petersburg
| | - Mikhail V Fomin
- Department of Physiology, Augusta University, Augusta, United States
| | - Regina F Sultanova
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, Charleston, United States
| | - Ying Zhao
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, Charleston, United States
| | - Samantha Perez
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, Charleston, United States
| | - Mark Domondon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, Charleston, United States
| | - Margarita Shamatova
- grid.410427.4Augusta University (Augusta, Georgia, United States), Augusta, United States
| | - Daria V Lysikova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia; Department of Physiology, Augusta University, United States, Augusta, United States
| | - Denisha R Spires
- Department of Physiology, Augusta University, Augusta, Georgia, United States
| | | |
Collapse
|
140
|
Guo T, Chen Y, Shi M, Li X, Zhang MQ. Integration of single cell data by disentangled representation learning. Nucleic Acids Res 2022; 50:e8. [PMID: 34850092 PMCID: PMC8788944 DOI: 10.1093/nar/gkab978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022] Open
Abstract
Recent developments of single cell RNA-sequencing technologies lead to the exponential growth of single cell sequencing datasets across different conditions. Combining these datasets helps to better understand cellular identity and function. However, it is challenging to integrate different datasets from different laboratories or technologies due to batch effect, which are interspersed with biological variances. To overcome this problem, we have proposed Single Cell Integration by Disentangled Representation Learning (SCIDRL), a domain adaption-based method, to learn low-dimensional representations invariant to batch effect. This method can efficiently remove batch effect while retaining cell type purity. We applied it to thirteen diverse simulated and real datasets. Benchmark results show that SCIDRL outperforms other methods in most cases and exhibits excellent performances in two common situations: (i) effective integration of batch-shared rare cell types and preservation of batch-specific rare cell types; (ii) reliable integration of datasets with different cell compositions. This demonstrates SCIDRL will offer a valuable tool for researchers to decode the enigma of cell heterogeneity.
Collapse
Affiliation(s)
- Tiantian Guo
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Minglei Shi
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiangyu Li
- School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing 100084, China
- Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX 75080-3021, USA
| |
Collapse
|
141
|
Mutsaers HA, Nørregaard R. Prostaglandin E2 receptors as therapeutic targets in renal fibrosis. Kidney Res Clin Pract 2022; 41:4-13. [PMID: 35108767 PMCID: PMC8816406 DOI: 10.23876/j.krcp.21.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 11/04/2022] Open
Affiliation(s)
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Correspondence: Rikke Nørregaard Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark E-mail:
| |
Collapse
|
142
|
Wang Q, Zhang Y, Zhang B, Fu Y, Zhao X, Zhang J, Zuo K, Xing Y, Jiang S, Qin Z, Li E, Guo H, Liu Z, Yang J. Single-cell chromatin accessibility landscape in kidney identifies additional cell-of-origin in heterogenous papillary renal cell carcinoma. Nat Commun 2022; 13:31. [PMID: 35013217 PMCID: PMC8748507 DOI: 10.1038/s41467-021-27660-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/02/2021] [Indexed: 01/14/2023] Open
Abstract
Papillary renal cell carcinoma (pRCC) is the most heterogenous renal cell carcinoma. Patient survival varies and no effective therapies for advanced pRCC exist. Histological and molecular characterization studies have highlighted the heterogeneity of pRCC tumours. Recent studies identified the proximal tubule (PT) cell as a cell-of-origin for pRCC. However, it remains elusive whether other pRCC subtypes have different cell-of-origin. Here, by obtaining genome-wide chromatin accessibility profiles of normal human kidney cells using single-cell transposase-accessible chromatin-sequencing and comparing the profiles with pRCC samples, we discover that besides PT cells, pRCC can also originate from kidney collecting duct principal cells. We show pRCCs with different cell-of-origin exhibit different molecular characteristics and clinical behaviors. Further, metabolic reprogramming appears to mediate the progression of pRCC to the advanced state. Here, our results suggest that determining cell-of-origin and monitoring origin-dependent metabolism could potentially be useful for early diagnosis and treatment of pRCC.
Collapse
Affiliation(s)
- Qi Wang
- Medical School of Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yang Zhang
- Medical School of Nanjing University, Nanjing, Jiangsu, 210093, China
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Bolei Zhang
- School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, 210023, China
| | - Yao Fu
- Department of Pathology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xiaozhi Zhao
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jing Zhang
- Medical School of Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Ke Zuo
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Yuexian Xing
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Song Jiang
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Erguang Li
- Medical School of Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Zhihong Liu
- Medical School of Nanjing University, Nanjing, Jiangsu, 210093, China.
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China.
| | - Jingping Yang
- Medical School of Nanjing University, Nanjing, Jiangsu, 210093, China.
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
143
|
Unraveling B cell trajectories at single cell resolution. Trends Immunol 2022; 43:210-229. [DOI: 10.1016/j.it.2022.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/31/2022]
|
144
|
Kakade VR, Weiss M, Cantley LG. Using Imaging Mass Cytometry to Define Cell Identities and Interactions in Human Tissues. Front Physiol 2021; 12:817181. [PMID: 35002783 PMCID: PMC8727440 DOI: 10.3389/fphys.2021.817181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
In the evolving landscape of highly multiplexed imaging techniques that can be applied to study complex cellular microenvironments, this review characterizes the use of imaging mass cytometry (IMC) to study the human kidney. We provide technical details for antibody validation, cell segmentation, and data analysis specifically tailored to human kidney samples, and elaborate on phenotyping of kidney cell types and novel insights that IMC can provide regarding pathophysiological processes in the injured or diseased kidney. This review will provide the reader with the necessary background to understand both the power and the limitations of IMC and thus support better perception of how IMC analysis can improve our understanding of human disease pathogenesis and can be integrated with other technologies such as single cell sequencing and proteomics to provide spatial context to cellular data.
Collapse
Affiliation(s)
| | | | - Lloyd G. Cantley
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
145
|
Gong E, Perin L, Da Sacco S, Sedrakyan S. Emerging Technologies to Study the Glomerular Filtration Barrier. Front Med (Lausanne) 2021; 8:772883. [PMID: 34901088 PMCID: PMC8655839 DOI: 10.3389/fmed.2021.772883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Kidney disease is characterized by loss of glomerular function with clinical manifestation of proteinuria. Identifying the cellular and molecular changes that lead to loss of protein in the urine is challenging due to the complexity of the filtration barrier, constituted by podocytes, glomerular endothelial cells, and glomerular basement membrane. In this review, we will discuss how technologies like single cell RNA sequencing and bioinformatics-based spatial transcriptomics, as well as in vitro systems like kidney organoids and the glomerulus-on-a-chip, have contributed to our understanding of glomerular pathophysiology. Knowledge gained from these studies will contribute toward the development of personalized therapeutic approaches for patients affected by proteinuric diseases.
Collapse
Affiliation(s)
- Emma Gong
- Division of Urology, GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States
| | - Laura Perin
- Division of Urology, GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States.,Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Stefano Da Sacco
- Division of Urology, GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States.,Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sargis Sedrakyan
- Division of Urology, GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States.,Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
146
|
Zambrano S, He L, Kano T, Sun Y, Charrin E, Lal M, Betsholtz C, Suzuki Y, Patrakka J. Molecular insights into the early stage of glomerular injury in IgA nephropathy using single-cell RNA sequencing. Kidney Int 2021; 101:752-765. [DOI: 10.1016/j.kint.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
|
147
|
Caza TN, Al-Rabadi LF, Beck LH. How Times Have Changed! A Cornucopia of Antigens for Membranous Nephropathy. Front Immunol 2021; 12:800242. [PMID: 34899763 PMCID: PMC8662735 DOI: 10.3389/fimmu.2021.800242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The identification of the major target antigen phospholipase A2 receptor (PLA2R) in the majority of primary (idiopathic) cases of membranous nephropathy (MN) has been followed by the rapid identification of numerous minor antigens that appear to define phenotypically distinct forms of disease. This article serves to review all the known antigens that have been shown to localize to subepithelial deposits in MN, as well as the distinctive characteristics associated with each subtype of MN. We will also shed light on the novel proteomic approaches that have allowed identification of the most recent antigens. The paradigm of an antigen normally expressed on the podocyte cell surface leading to in-situ immune complex formation, complement activation, and subsequent podocyte injury will be discussed and challenged in light of the current repertoire of multiple MN antigens. Since disease phenotypes associated with each individual target antigens can often blur the distinction between primary and secondary disease, we encourage the use of antigen-based classification of membranous nephropathy.
Collapse
Affiliation(s)
| | - Laith F. Al-Rabadi
- Department of Internal Medicine (Nephrology & Hypertension), University of Utah, Salt Lake City, UT, United States
| | - Laurence H. Beck
- Department of Medicine (Nephrology), Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| |
Collapse
|
148
|
Bell RM, Denby L. Myeloid Heterogeneity in Kidney Disease as Revealed through Single-Cell RNA Sequencing. KIDNEY360 2021; 2:1844-1851. [PMID: 35372996 PMCID: PMC8785845 DOI: 10.34067/kid.0003682021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/27/2021] [Indexed: 02/04/2023]
Abstract
Kidney disease represents a global health burden of increasing prevalence and is an independent risk factor for cardiovascular disease. Myeloid cells are a major cellular compartment of the immune system; they are found in the healthy kidney and in increased numbers in the damaged and/or diseased kidney, where they act as key players in the progression of injury, inflammation, and fibrosis. They possess enormous plasticity and heterogeneity, adopting different phenotypic and functional characteristics in response to stimuli in the local milieu. Although this inherent complexity remains to be fully understood in the kidney, advances in single-cell genomics promise to change this. Specifically, single-cell RNA sequencing (scRNA-seq) has had a transformative effect on kidney research, enabling the profiling and analysis of the transcriptomes of single cells at unprecedented resolution and throughput, and subsequent generation of cell atlases. Moving forward, combining scRNA- and single-nuclear RNA-seq with greater-resolution spatial transcriptomics will allow spatial mapping of kidney disease of varying etiology to further reveal the patterning of immune cells and nonimmune renal cells. This review summarizes the roles of myeloid cells in kidney health and disease, the experimental workflow in currently available scRNA-seq technologies, and published findings using scRNA-seq in the context of myeloid cells and the kidney.
Collapse
Affiliation(s)
- Rachel M.B. Bell
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Denby
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
149
|
Fava A, Rao DA, Mohan C, Zhang T, Rosenberg A, Fenaroli P, Belmont HM, Izmirly P, Clancy R, Monroy Trujillo J, Fine D, Arazi A, Berthier CC, Davidson A, James JA, Diamond B, Hacohen N, Wofsy D, Raychaudhuri S, Apruzzese W, Buyon J, Petri M. Urine Proteomics and Renal Single Cell Transcriptomics Implicate IL-16 in Lupus Nephritis. Arthritis Rheumatol 2021; 74:829-839. [PMID: 34783463 PMCID: PMC9050800 DOI: 10.1002/art.42023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Current treatments are effective only in 30% of lupus nephritis patients emphasizing the need for novel therapeutic strategies. To develop mechanistic hypotheses and explore novel biomarkers, we analyzed the longitudinal urinary proteomic profiles in patients with lupus nephritis undergoing treatment. METHODS We quantified 1,000 urinary proteins in 30 patients with lupus nephritis at the time of the diagnostic renal biopsy and after 3, 6, and 12 months. The proteins and molecular pathways detected in the urine proteome were then analyzed with respect to baseline clinical features and longitudinal trajectories. The intrarenal expression of candidate biomarkers was evaluated using single cell transcriptomics of renal biopsies from lupus nephritis patients. RESULTS Our analysis revealed multiple biological pathways including chemotaxis, neutrophil activation, platelet degranulation, and extracellular matrix organization that could be noninvasively quantified and monitored in the urine. We identified 237 urinary biomarkers associated with lupus nephritis as compared to controls without SLE. IL-16, CD163, and TGF-β mirrored intrarenal nephritis activity. Response to treatment was paralleled by a reduction of urinary IL-16, a CD4 ligand with proinflammatory and chemotactic properties. Single cell RNA sequencing independently demonstrated that IL16 is the second most expressed cytokine by most infiltrating immune cells in lupus nephritis kidneys. IL-16 producing cells were found at key sites of kidney injury. CONCLUSION Urine proteomics may profoundly change the diagnosis and management of lupus nephritis by noninvasively monitor active intrarenal biological pathways. These findings implicate IL-16 in lupus nephritis pathogenesis designating it as a potentially treatable target and biomarker.
Collapse
Affiliation(s)
- Andrea Fava
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, USA
| | - Deepak A Rao
- Division of Rheumatology, Immunology, Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Avi Rosenberg
- Division of Renal Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Paride Fenaroli
- Division of Renal Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Medicine and Surgery, Nephrology Unit, Parma University Hospital, Parma, Italy
| | | | - Peter Izmirly
- New York University School of Medicine, New York, New York, USA
| | - Robert Clancy
- New York University School of Medicine, New York, New York, USA
| | | | - Derek Fine
- Division of Nephrology, Johns Hopkins University, Baltimore, MD, USA
| | - Arnon Arazi
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | | | - Judith A James
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Betty Diamond
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - David Wofsy
- University of California San Francisco, San Francisco, CA, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Immunology, Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
| | - William Apruzzese
- Division of Rheumatology, Immunology, Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jill Buyon
- New York University School of Medicine, New York, New York, USA
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
150
|
Shi T, Roskin K, Baker BM, Woodle ES, Hildeman D. Advanced Genomics-Based Approaches for Defining Allograft Rejection With Single Cell Resolution. Front Immunol 2021; 12:750754. [PMID: 34721421 PMCID: PMC8551864 DOI: 10.3389/fimmu.2021.750754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Solid organ transplant recipients require long-term immunosuppression for prevention of rejection. Calcineurin inhibitor (CNI)-based immunosuppressive regimens have remained the primary means for immunosuppression for four decades now, yet little is known about their effects on graft resident and infiltrating immune cell populations. Similarly, the understanding of rejection biology under specific types of immunosuppression remains to be defined. Furthermore, development of innovative, rationally designed targeted therapeutics for mitigating or preventing rejection requires a fundamental understanding of the immunobiology that underlies the rejection process. The established use of microarray technologies in transplantation has provided great insight into gene transcripts associated with allograft rejection but does not characterize rejection on a single cell level. Therefore, the development of novel genomics tools, such as single cell sequencing techniques, combined with powerful bioinformatics approaches, has enabled characterization of immune processes at the single cell level. This can provide profound insights into the rejection process, including identification of resident and infiltrating cell transcriptomes, cell-cell interactions, and T cell receptor α/β repertoires. In this review, we discuss genomic analysis techniques, including microarray, bulk RNAseq (bulkSeq), single-cell RNAseq (scRNAseq), and spatial transcriptomic (ST) techniques, including considerations of their benefits and limitations. Further, other techniques, such as chromatin analysis via assay for transposase-accessible chromatin sequencing (ATACseq), bioinformatic regulatory network analyses, and protein-based approaches are also examined. Application of these tools will play a crucial role in redefining transplant rejection with single cell resolution and likely aid in the development of future immunomodulatory therapies in solid organ transplantation.
Collapse
Affiliation(s)
- Tiffany Shi
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Krishna Roskin
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | - E Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|