101
|
Hall H, Perelman D, Breschi A, Limcaoco P, Kellogg R, McLaughlin T, Snyder M. Glucotypes reveal new patterns of glucose dysregulation. PLoS Biol 2018; 16:e2005143. [PMID: 30040822 PMCID: PMC6057684 DOI: 10.1371/journal.pbio.2005143] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
Diabetes is an increasing problem worldwide; almost 30 million people, nearly 10% of the population, in the United States are diagnosed with diabetes. Another 84 million are prediabetic, and without intervention, up to 70% of these individuals may progress to type 2 diabetes. Current methods for quantifying blood glucose dysregulation in diabetes and prediabetes are limited by reliance on single-time-point measurements or on average measures of overall glycemia and neglect glucose dynamics. We have used continuous glucose monitoring (CGM) to evaluate the frequency with which individuals demonstrate elevations in postprandial glucose, the types of patterns, and how patterns vary between individuals given an identical nutrient challenge. Measurement of insulin resistance and secretion highlights the fact that the physiology underlying dysglycemia is highly variable between individuals. We developed an analytical framework that can group individuals according to specific patterns of glycemic responses called "glucotypes" that reveal heterogeneity, or subphenotypes, within traditional diagnostic categories of glucose regulation. Importantly, we found that even individuals considered normoglycemic by standard measures exhibit high glucose variability using CGM, with glucose levels reaching prediabetic and diabetic ranges 15% and 2% of the time, respectively. We thus show that glucose dysregulation, as characterized by CGM, is more prevalent and heterogeneous than previously thought and can affect individuals considered normoglycemic by standard measures, and specific patterns of glycemic responses reflect variable underlying physiology. The interindividual variability in glycemic responses to standardized meals also highlights the personal nature of glucose regulation. Through extensive phenotyping, we developed a model for identifying potential mechanisms of personal glucose dysregulation and built a webtool for visualizing a user-uploaded CGM profile and classifying individualized glucose patterns into glucotypes.
Collapse
Affiliation(s)
- Heather Hall
- Stanford University, Stem Cell Biology and Regenerative Medicine, Stanford, California, United States of America
- Stanford University, Department of Genetics, Stanford, California, United States of America
| | - Dalia Perelman
- Stanford University, Department of Genetics, Stanford, California, United States of America
| | - Alessandra Breschi
- Stanford University, Department of Genetics, Stanford, California, United States of America
| | - Patricia Limcaoco
- Stanford University, Department of Genetics, Stanford, California, United States of America
| | - Ryan Kellogg
- Stanford University, Department of Genetics, Stanford, California, United States of America
| | - Tracey McLaughlin
- Stanford University, Department of Medicine, Division of Endocrinology, Stanford, California, United States of America
| | - Michael Snyder
- Stanford University, Department of Genetics, Stanford, California, United States of America
| |
Collapse
|
102
|
Perl SH, Bloch O, Zelnic-Yuval D, Love I, Mendel-Cohen L, Flor H, Rapoport MJ. Sepsis-induced activation of endogenous GLP-1 system is enhanced in type 2 diabetes. Diabetes Metab Res Rev 2018; 34:e2982. [PMID: 29334697 DOI: 10.1002/dmrr.2982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 12/03/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND High levels of circulating GLP-1 are associated with severity of sepsis in critically ill nondiabetic patients. Whether patients with type 2 diabetes (T2D) display different activation of the endogenous GLP-1 system during sepsis and whether it is affected by diabetes-related metabolic parameters are not known. METHODS Serum levels of GLP-1 (total and active forms) and its inhibitor enzyme sDPP-4 were determined by ELISA on admission and after 2 to 4 days in 37 sepsis patients with (n = 13) and without T2D (n = 24) and compared to normal healthy controls (n = 25). Correlations between GLP-1 system activation and clinical, inflammatory, and diabetes-related metabolic parameters were performed. RESULTS A 5-fold (P < .001) and 2-fold (P < .05) increase in active and total GLP-1 levels, respectively, were found on admission as compared to controls. At 2 to 4 days from admission, the level of active GLP-1 forms in surviving patients were decreased significantly (P < .005), and positively correlated with inflammatory marker CRP (r = 0.33, P = .05). T2D survivors displayed a similar but more enhanced pattern of GLP-1 response than nondiabetic survivors. Nonsurvivors demonstrate an early extreme increase of both total and active GLP-1 forms, 9.5-fold and 5-fold, respectively (P < .05). The initial and late levels of circulating GLP-1 inhibitory enzyme sDPP-4 were twice lower in all studied groups (P < .001), compared with healthy controls. CONCLUSIONS Taken together, these data indicate that endogenous GLP-1 system is activated during sepsis. Patients with T2D display an enhanced and prolonged activation as compared to nondiabetic patients. Extreme early increased GLP-1 levels during sepsis indicate poor prognosis.
Collapse
Affiliation(s)
- Sivan H Perl
- Department 'C' of Internal Medicine, Assaf Harofeh Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
| | - Olga Bloch
- Diabetes Research Laboratory, Assaf Harofeh Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
| | - Dana Zelnic-Yuval
- Department 'C' of Internal Medicine, Assaf Harofeh Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
| | - Itamar Love
- Department 'C' of Internal Medicine, Assaf Harofeh Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
| | - Lior Mendel-Cohen
- Department 'C' of Internal Medicine, Assaf Harofeh Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
| | - Hadar Flor
- Department 'C' of Internal Medicine, Assaf Harofeh Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
| | - Micha J Rapoport
- Department 'C' of Internal Medicine, Assaf Harofeh Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
- Diabetes Research Laboratory, Assaf Harofeh Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
| |
Collapse
|
103
|
|
104
|
Parboiled rice metabolism differs in healthy and diabetic individuals with similar improvement in glycemic response. Nutrition 2018; 47:43-49. [DOI: 10.1016/j.nut.2017.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/17/2017] [Indexed: 12/20/2022]
|
105
|
Human GIP(3-30)NH 2 inhibits G protein-dependent as well as G protein-independent signaling and is selective for the GIP receptor with high-affinity binding to primate but not rodent GIP receptors. Biochem Pharmacol 2018; 150:97-107. [PMID: 29378179 DOI: 10.1016/j.bcp.2018.01.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022]
Abstract
GIP(3-30)NH2 is a high affinity antagonist of the GIP receptor (GIPR) in humans inhibiting insulin secretion via G protein-dependent pathways. However, its ability to inhibit G protein-independent signaling is unknown. Here we determine its action on arrestin-recruitment and receptor internalization in recombinant cells. As GIP is adipogenic, we evaluate the inhibitory actions of GIP(3-30)NH2 in human adipocytes. Finally, we determine the receptor selectivity of GIP(3-30)NH2 among other human and animal GPCRs. cAMP accumulation and β-arrestin 1 and 2 recruitment were studied in transiently transfected HEK293 cells and real-time internalization in transiently transfected HEK293A and in HEK293A β-arrestin 1 and 2 knockout cells. Furthermore, human subcutaneous adipocytes were assessed for cAMP accumulation following ligand stimulation. Competition binding was examined in transiently transfected COS-7 cells using human 125I-GIP(3-30)NH2. The selectivity of human GIP(3-30)NH2 was examined by testing for agonistic and antagonistic properties on 62 human GPCRs. Human GIP(3-30)NH2 inhibited GIP(1-42)-induced cAMP and β-arrestin 1 and 2 recruitment on the human GIPR and Schild plot analysis showed competitive antagonism with a pA2 and Hill slope of 16.8 nM and 1.11 ± 0.02 in cAMP, 10.6 nM and 1.15 ± 0.05 in β-arrestin 1 recruitment, and 10.2 nM and 1.06 ± 0.05 in β-arrestin 2 recruitment. Efficient internalization of the GIPR was dependent on the presence of either β-arrestin 1 or 2. Moreover, GIP(3-30)NH2 inhibited GIP(1-42)-induced internalization in a concentration-dependent manner and notably also inhibited GIP-mediated signaling in human subcutaneous adipocytes. Finally, the antagonist was established as GIPR selective among 62 human GPCRs being species-specific with high affinity binding to the human and non-human primate (Macaca fascicularis) GIPRs, and low affinity binding to the rat and mouse GIPRs (Kd values of 2.0, 2.5, 31.6 and 100 nM, respectively). In conclusion, human GIP(3-30)NH2 is a selective and species-specific GIPR antagonist with broad inhibition of signaling and internalization in transfected cells as well as in human adipocytes.
Collapse
|
106
|
Conlon JM, Mechkarska M, Abdel-Wahab YH, Flatt PR. Peptides from frog skin with potential for development into agents for Type 2 diabetes therapy. Peptides 2018; 100:275-281. [PMID: 28887047 DOI: 10.1016/j.peptides.2017.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022]
Abstract
Several frog skin peptides, first identified as result of their antimicrobial or immunomodulatory activities, have subsequently been shown to stimulate insulin release both in vitro and in vivo and so show potential for development into incretin-based drugs for treatment of patients with Type 2 diabetes mellitus. However, their therapeutic potential as anti-diabetic agents is not confined to this activity as certain frog skin-derived peptides, such as magainin-AM2 and CPF-SE1 and analogs of hymenochirin-1B, tigerinin-1R, and esculentin-2CHa, have been shown to increase insulin sensitivity, promote β-cell proliferation, suppress pancreatic and circulating glucagon concentrations, improve the lipid profile, and selectively alter expression of genes involved in insulin secretion and action in mice with diet-induced obesity, insulin resistance and impaired glucose tolerance. This review assesses the therapeutic possibilities of peptides from frogs belonging to the Pipidae, Dicroglossidae, and Ranidae families, focusing upon work that has been carried out since 2014.
Collapse
Affiliation(s)
- J Michael Conlon
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Milena Mechkarska
- Department of Life Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Yasser H Abdel-Wahab
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
107
|
Nair AK, Sutherland JR, Traurig M, Piaggi P, Chen P, Kobes S, Hanson RL, Bogardus C, Baier LJ. Functional and association analysis of an Amerindian-derived population-specific p.(Thr280Met) variant in RBPJL, a component of the PTF1 complex. Eur J Hum Genet 2018; 26:238-246. [PMID: 29302047 PMCID: PMC5839029 DOI: 10.1038/s41431-017-0062-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/13/2017] [Accepted: 11/18/2017] [Indexed: 02/08/2023] Open
Abstract
PTF1 complex is critical for pancreatic development and maintenance of adult exocrine pancreas. As a part of our ongoing studies to identify genetic variation that contributes to type 2 diabetes (T2D) in American Indians, we analyzed variation in genes that form this complex, namely PTF1A, RBPJ, and its paralogue RBPJL. A c.839C>T (p.(Thr280Met)) variant (rs200998587:C>T, risk allele frequency = 0.03) in RBPJL, identified only in Amerindian-derived populations, associated with T2D (OR = 1.60[1.21-2.13] per Met allele, P = 0.001) and age of diabetes onset (HR = 1.40[1.14-1.72], P = 0.001). Knockdown of Rbpjl in mouse pancreatic acinar cells resulted in a significant decrease in the mRNA expression of genes encoding exocrine enzymes including Ctrb. CTRB1/2 is an established T2D locus where the protective allele associates with increased GLP-1-stimulated insulin secretion and higher expression of CTRB1/2. In vitro studies show that cells expressing the Met280 allele had lower RBPJL protein levels than cells expressing the Thr280 allele, despite having comparable levels of RNA, suggesting that the Met280 RBPJL is less stable. Additionally, luciferase assays in HEK293 cells which examined two different RBPJL responsive promoters, including the promoter for CTRB1, also identified reduced transactivation by the Met280 RBPJL. Similarly, overexpression of both Met280 and Thr280 RBPJL in mouse pancreatic acinar cells identified a significant impairment in the expression of Cel when transactivated by the Met280 RBPJL. In summary, we identified a functional, Amerindian-derived population-specific c.839C>T (p.(Thr280Met)) variant in the pancreas specific RBPJL that may modify T2D risk by regulating exocrine enzyme expression.
Collapse
Affiliation(s)
- Anup K Nair
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Jeff R Sutherland
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Michael Traurig
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Peng Chen
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 445N 5th Street, Phoenix, AZ, 85004, USA.
| |
Collapse
|
108
|
Adams E, Genter P, Keefe E, Sandow K, Gray V, Rotter JI, Chen YDI, Ipp E. The GLP-1 response to glucose does not mediate beta and alpha cell dysfunction in Hispanics with abnormal glucose metabolism. Diabetes Res Clin Pract 2018; 135:185-191. [PMID: 29155153 PMCID: PMC5801173 DOI: 10.1016/j.diabres.2017.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/16/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022]
Abstract
AIMS Glucagon-like peptide-1 (GLP-1) contributes to insulin secretion after meals. Though Hispanics have increased risk for type 2 diabetes mellitus, it is unknown if impaired GLP-1 secretion contributes to this risk. We therefore studied plasma GLP-1 secretion and action in Hispanic adults. METHODS Hispanic (H; n = 31) and non-Hispanic (nH; n = 15) participants underwent an oral glucose tolerance test (OGTT). All participants were categorized by glucose tolerance into four groups: normal glucose tolerant non-Hispanic (NGT-nH; n = 15), normal glucose tolerant Hispanic (NGT-H; n = 12), impaired glucose tolerant Hispanic (IGT-H; n = 11), or newly diagnosed type 2 diabetes mellitus, Hispanic (T2D-H; n = 8). RESULTS Glucose-induced increments in plasma GLP-1 (Δ-GLP-1) were not different in NGT-H and NGT-nH (p = .38), nor amongst Hispanic subgroups with varying degrees of glucose homeostasis (p = .6). In contrast, the insulinogenic index in T2D-H group was lower than the other groups (p = .016). Subjects with abnormal glucose homeostasis (AGH), i.e., T2D-H plus IGT-H, had a diminished glucagon suppression index compared to patients with normal glucose homeostasis (NGT-H plus NGT-nH) (p = .035). CONCLUSIONS GLP-1 responses to glucose were similar in Hispanic and Non-Hispanic NGT. Despite similar glucose-induced Δ-GLP-1, insulin and glucagon responses were abnormal in T2D-H and AGH, respectively. Thus, impaired GLP-1 secretion is unlikely to play a role in islet dysfunction in T2D. Although GLP-1 therapeutics enhance insulin secretion and glucagon suppression, it is likely due to pharmacological amplification of the GLP-1 pathways rather than treatment of hormonal deficiency.
Collapse
Affiliation(s)
- Elizabeth Adams
- California State University, Long Beach, CA, United States; Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, United States
| | - Pauline Genter
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, United States.
| | - Emma Keefe
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, United States
| | - Kevin Sandow
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, United States
| | - Virginia Gray
- California State University, Long Beach, CA, United States
| | - Jerome I Rotter
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, United States
| | - Yii-Der Ida Chen
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, United States
| | - Eli Ipp
- Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, United States
| |
Collapse
|
109
|
McCool KE, Rudinsky AJ, Parker VJ, Herbert CO, Gilor C. The effect of diet, adiposity, and weight loss on the secretion of incretin hormones in cats. Domest Anim Endocrinol 2018; 62:67-75. [PMID: 29128557 DOI: 10.1016/j.domaniend.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 01/14/2023]
Abstract
Degree of adiposity and dietary macronutrient composition affect incretin hormone secretion in humans and mice, but little is known about their effect in cats. In this study, 7 overweight cats were fed a maintenance diet (MD) for at least 2 wk followed by a reduced calorie diet (RCD), which was lower in fat and higher in carbohydrates and fiber. Cats were fed ad libitum initially, and then, food was restricted to achieve 1%-2% loss of body weight weekly (11 wk). When lean, cats were fed MD for 2 wk. A standardized meal test (SMT) using a third diet was performed after at least 7 d on each diet, before and after weight loss (four SMT's total). Glucose, insulin, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic peptide (GIP) concentrations were measured immediately before and over 6 h after feeding the SMT. Area under the curve (AUC) was compared for GLP-1, GIP, and insulin concentrations using 2-way analysis of variance. Leaner cats had increased GIPAUC compared to obese cats (P = 0.025). There was a trend toward increased GIPAUC on RCD compared to the MD (P = 0.085). There was a moderate negative correlation between body fat percentage and GLP-1AUC (r = -0.45; P = 0.05). There was no effect of diet on GLP-1AUC. In conclusion, degree of adiposity and dietary macronutrient content could be important in determining GIP responses not only acutely but also on a long-term basis. Further investigation of GIP responses in cats should take both diet and degree of adiposity into account.
Collapse
Affiliation(s)
- K E McCool
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L Tharp St, Columbus, OH 43210, USA
| | - A J Rudinsky
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L Tharp St, Columbus, OH 43210, USA
| | - V J Parker
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L Tharp St, Columbus, OH 43210, USA
| | - C O Herbert
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L Tharp St, Columbus, OH 43210, USA
| | - C Gilor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L Tharp St, Columbus, OH 43210, USA.
| |
Collapse
|
110
|
Duan L, Rao X, Braunstein Z, Toomey AC, Zhong J. Role of Incretin Axis in Inflammatory Bowel Disease. Front Immunol 2017; 8:1734. [PMID: 29270177 PMCID: PMC5723660 DOI: 10.3389/fimmu.2017.01734] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/23/2017] [Indexed: 12/25/2022] Open
Abstract
The inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic inflammatory conditions of the gastrointestinal tract and involve a complicated reciprocity of environmental, genetic, and immunologic factors. Despite substantial advances in the foundational understanding of the immunological pathogenesis of IBD, the detailed mechanism of the pathological progression in IBD remains unknown. In addition to Th1/Th2 cells, whose role in IBD has been previously well defined, recent evidence indicates that Th17 cells and Tregs also play a crucial role in the development of IBD. Diets which contain excess sugars, salt, and fat may also be important actors in the pathogenesis of IBD, which may be the cause of high IBD incidence in western developed and industrialized countries. Up until now, the reason for the variance in prevalence of IBD between developed and developing countries has been unknown. This is partly due to the increasing popularity of western diets in developing countries, which makes the data harder to interpret. The enterocrinins glucagon-like peptides (GLPs), including GLP-1 and GLP-2, exhibit notable benefits on lipid metabolism, atherosclerosis formation, plasma glucose levels, and maintenance of gastric mucosa integrity. In addition to the regulation of nutrient metabolism, the emerging role of GLPs and their degrading enzyme dipeptidyl peptidase-4 (DPP-4) in gastrointestinal diseases has gained increasing attention. Therefore, here we review the function of the DPP-4/GLP axis in IBD.
Collapse
Affiliation(s)
- Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiaoquan Rao
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Zachary Braunstein
- Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Amelia C Toomey
- Department of Health Sciences, University of Missouri, Columbia, MO, United States
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
111
|
GLP-1 response to sequential mixed meals: influence of insulin resistance. Clin Sci (Lond) 2017; 131:2901-2910. [PMID: 29097626 DOI: 10.1042/cs20171409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 12/25/2022]
Abstract
Previous work has shown that potentiation of insulin release is impaired in non-diabetic insulin resistance; we tested the hypothesis that this defect may be related to altered glucagon-like peptide-1 (GLP-1) release. On consecutive days, 82 non-diabetic individuals, classified as insulin sensitive (IS, n=41) or insulin resistant (IR, n=41) by the euglycaemic clamp, were given two sequential mixed meals with standard (75 g, LCD) or double (150 g, HCD) carbohydrate content. Plasma glucose, insulin, C-peptide, non-esterified fatty acids (NEFA) and GLP-1 concentrations were measured; β-cell function (glucose sensitivity and potentiation) was resolved by mathematical modelling. Fasting GLP-1 levels were higher in IR than IS (by 15%, P=0.006), and reciprocally related to insulin sensitivity after adjustment for sex, age, fat mass, fasting glucose or insulin concentrations. Mean postprandial GLP-1 responses were tightly correlated with fasting GLP-1, were higher for the second than the first meal, and higher in IR than IS subjects but only with LCD. In contrast, incremental GLP-1 responses were higher during (i) the second than the first meal, (ii) on HCD than LCD, and (iii) significantly smaller in IR than IS independently of meal and load. Potentiation of insulin release was markedly reduced in IR vs IS across meal and carbohydrate loading. In the whole dataset, incremental GLP-1 was directly related to potentiation, and both were inversely related to mean NEFA concentrations. We conclude that (a) raised GLP-1 tone may be inherently linked with a reduced GLP-1 response and (b) defective post-meal GLP-1 response may be one mechanism for impaired potentiation of insulin release in insulin resistance.
Collapse
|
112
|
Tura A, Bagger JI, Ferrannini E, Holst JJ, Knop FK, Vilsbøll T, Mari A. Impaired beta cell sensitivity to incretins in type 2 diabetes is insufficiently compensated by higher incretin response. Nutr Metab Cardiovasc Dis 2017; 27:1123-1129. [PMID: 29162361 DOI: 10.1016/j.numecd.2017.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/15/2017] [Accepted: 10/05/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS The incretin effect is impaired in type 2 diabetes (T2D), but the underlying mechanisms are only partially understood. We investigated the relationships between the time course of the incretin effect and that of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) during oral glucose tolerance tests (OGTTs), thereby estimating incretin sensitivity of the beta cell, and its associated factors. METHODS AND RESULTS Eight patients with T2D and eight matched subjects with normal glucose tolerance (NGT) received 25, 75, and 125 g OGTTs and corresponding isoglycemic glucose infusions (IIGI). The time course of the incretin effect, representing potentiation of insulin secretion by incretins (PINCR), was determined by mathematical modelling as the time-dependent fold increase in insulin secretion during OGTT compared to IIGI. The time course of PINCR was correlated with that of both GIP and GLP-1 in each subject (median r = 0.67 in NGT and 0.45 in T2D). We calculated an individual beta cell sensitivity to incretins (SINCR) using a weighted average of GIP and GLP-1 (pooled incretin concentration, PIC), as the slope of the relationship between PINCR and PIC. SINCR was reduced in T2D (p < 0.01). In the whole group, mean PIC, GIP and GLP-1 concentrations during the OGTT were inversely correlated with SINCR, but T2D had lower PIC, GIP and GLP-1 levels at the same SINCR (p < 0.05). CONCLUSION Relative incretin insensitivity is partly compensated for by higher incretin secretory responses. However, T2D shows both impairment in incretin sensitivity and abnormal compensation by incretin secretion.
Collapse
Affiliation(s)
- A Tura
- CNR Institute of Neuroscience, Padova, Italy
| | - J I Bagger
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - E Ferrannini
- Department of Internal Medicine, University of Pisa School of Medicine, Pisa, Italy; CNR Institute of Clinical Physiology, Pisa, Italy
| | - J J Holst
- The NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - F K Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; The NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - T Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A Mari
- CNR Institute of Neuroscience, Padova, Italy.
| |
Collapse
|
113
|
Burlina S, Dalfrà MG, Lapolla A. Short- and long-term consequences for offspring exposed to maternal diabetes: a review. J Matern Fetal Neonatal Med 2017; 32:687-694. [PMID: 28969466 DOI: 10.1080/14767058.2017.1387893] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The prevalence of gestational diabetes mellitus is increasing, as is the worldwide prevalence of type 2 diabetes and obesity, even in children and adolescents. Exposure in utero to maternal diabetes carries several short-term consequences due mainly to maternal hyperglycemia, and consequent fetal hyperinsulinemia. Current evidence also supports the hypothesis that adult health and disease have developmental origins, and that disorders in early-life environments prompt metabolic imprinting that results in a greater risk of negative metabolic outcomes later in life. In particular, exposure in utero to maternal diabetes seems to influence long-term metabolic outcomes, carrying a higher risk of obesity and type 2 diabetes, and thus creating a vicious cycle for future generations. In this paper, the short- and long-term consequences of exposure in utero to hyperglycemia are reviewed, focusing particularly on the long-term metabolic consequences, and investigating the possible pathogenic mechanisms involved.
Collapse
Affiliation(s)
- S Burlina
- a Department of Medicine , University of Padua , Padua , Italy
| | - M G Dalfrà
- a Department of Medicine , University of Padua , Padua , Italy
| | - A Lapolla
- a Department of Medicine , University of Padua , Padua , Italy
| |
Collapse
|
114
|
Shalaby SM, Zidan HE, Shokry A, Saeed J, El-Sokkary RH. Association of incretin receptors genetic polymorphisms with type 2 diabetes mellitus in Egyptian patients. J Gene Med 2017; 19:e2973. [DOI: 10.1002/jgm.2973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Sally M. Shalaby
- Medical Biochemistry Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Haidy E. Zidan
- Medical Biochemistry Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Amira Shokry
- Internal Medicine Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Jehan Saeed
- Internal Medicine Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Rehab H. El-Sokkary
- Microbiology & Immunolgy Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| |
Collapse
|
115
|
Men P, He N, Song C, Zhai S. Dipeptidyl peptidase-4 inhibitors and risk of arthralgia: A systematic review and meta-analysis. DIABETES & METABOLISM 2017; 43:493-500. [PMID: 28778563 DOI: 10.1016/j.diabet.2017.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/27/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The US Food and Drug Administration has warned that treatment with dipeptidyl peptidase (DPP)-4 inhibitors may promote serious arthralgia. However, the clinical evidence for this is relatively lacking. OBJECTIVE For this reason, a systematic review and meta-analysis of randomized controlled trials (RCTs) were carried out to determine the relationship between DPP-4 inhibitors and risk of arthralgia, and also to investigate any potential risk factors. METHODS An extensive electronic search for RCTs comparing DPP-4 inhibitors with any comparators was performed up to July 2016. Outcomes of interest were overall and serious arthralgia. Summary risk ratios (RRs) with 95% confidence intervals (CIs) were calculated. RESULTS A total of 67 RCTs (involving 79,110 patients) was ultimately included. Pooled results showed that DPP-4 inhibitors were associated with a slightly but significantly increased risk of overall arthralgia (RR: 1.13, 95% CI: 1.04-1.22; P=0.003) and a non-significant increased risk of serious arthralgia (RR: 1.44, 95% CI: 0.83-2.51; P=0.20). Also, subgroup analyses showed that add-on/combination therapy and longer diabetes duration (>5years) were possible factors associated with the increased risk of overall arthralgia. CONCLUSION These findings suggest that DPP-4 inhibitors can increase the risk of arthralgia. Thus, the benefits of glycaemic control must be weighed against the risk of arthralgia when prescribing DPP-4 inhibitors. Further studies are now needed to identify and confirm these risk factors.
Collapse
Affiliation(s)
- P Men
- Department of Pharmacy, Peking University Third Hospital, 49, Huayuan North Road, 100191 Beijing, Haidian District, China
| | - N He
- Department of Pharmacy, Peking University Third Hospital, 49, Huayuan North Road, 100191 Beijing, Haidian District, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - C Song
- Department of Orthopaedic, Peking University Third Hospital, Beijing, China
| | - S Zhai
- Department of Pharmacy, Peking University Third Hospital, 49, Huayuan North Road, 100191 Beijing, Haidian District, China.
| |
Collapse
|
116
|
Foghsgaard S, Vedtofte L, Andreasen C, Andersen ES, Bahne E, Bagger JI, Svare JA, Holst JJ, Clausen TD, Mathiesen ER, Damm P, Knop FK, Vilsbøll T. Women with prior gestational diabetes mellitus and prediabetes are characterised by a decreased incretin effect. Diabetologia 2017; 60:1344-1353. [PMID: 28364253 DOI: 10.1007/s00125-017-4265-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS We investigated whether a reduced incretin effect, as observed in patients with type 2 diabetes, can be detected in high-risk individuals, such as women with prior gestational diabetes mellitus (pGDM). METHODS In this cross-sectional study, 102 women without diabetes with pGDM and 15 control participants without pGDM and with normal glucose tolerance (NGT) underwent a 4 h 75 g OGTT and an isoglycaemic i.v. glucose infusion (IIGI). Women with pGDM were classified as having NGT or prediabetes (impaired fasting glucose and/or impaired glucose tolerance). Insulin sensitivity was assessed using the Matsuda index and HOMA2-IR and the incretin effect was calculated from insulin responses during the study (100% × [AUCinsulin,OGTT - AUCinsulin,IIGI]/AUCinsulin,OGTT). RESULTS Sixty-three of the 102 women with pGDM (62%) had prediabetes (median [interquartile range]: age, 38.3 [6.5] years; BMI, 32.1 [5.8] kg/m2) and 39 women (38%) had NGT (age, 39.5 [5.6] years; BMI, 31.0 [6.7] kg/m2). Control participants (n = 15) were not significantly different from the pGDM group with regards to age (39.2 [7.4] years) and BMI (28.8 [9.2] kg/m2). Compared with women with NGT and control participants, women with prediabetes had lower insulin sensitivity, as measured by the Matsuda index (3.0 [2.4] vs 5.0 [2.6] vs 1.5 [1.8], respectively; p < 0.001). The incretin effect was 55.3% [27.8], 73.8% [19.0] and 76.7% [24.6] in women with prediabetes, women with normal glucose tolerance and control participants, respectively (p < 0.01). CONCLUSION/INTERPRETATION Prediabetes was highly prevalent in women with pGDM, and alterations in the incretin effect were detected in this group before the development of type 2 diabetes. TRIAL REGISTRATION clinicaltrialsregister.eu 2012-001371-37-DK.
Collapse
Affiliation(s)
- Signe Foghsgaard
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Diabetes Academy, Odense University Hospital, Odense, Denmark
| | - Louise Vedtofte
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
| | - Camilla Andreasen
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
| | - Emilie S Andersen
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
| | - Emilie Bahne
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
| | - Jonatan I Bagger
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
| | - Jens A Svare
- Department of Gynecology and Obstetrics, Herlev Hospital, Herlev, Denmark
| | - Jens J Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tine D Clausen
- Department of Gynecology and Obstetrics, Nordsjællands Hospital, Hillerød, Denmark
| | - Elisabeth R Mathiesen
- Center for Pregnant Women with Diabetes, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | - Filip K Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, DK-2900, Hellerup, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
117
|
Holst JJ, Pedersen J, Wewer Albrechtsen NJ, Knop FK. The Gut: A Key to the Pathogenesis of Type 2 Diabetes? Metab Syndr Relat Disord 2017; 15:259-262. [PMID: 28605280 DOI: 10.1089/met.2017.0015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this communication we discuss the role of the gut for the development of type 2 diabetes mellitus (T2DM). Gastric emptying rates importantly determine postprandial glucose excursions and regulate postprandial secretion of the incretin hormones, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide-1 (GLP-1). It thereby also determines their powerful, amplifying effect on glucose-induced insulin secretion and thus the ability of the body to regulate glucose disposal. Although disturbances in gastric emptying are not consistent findings in type 2 diabetes, the incretin system is seriously impaired, probably associated with insulin resistance and obesity. Both of the incretin hormones lose (part of) their insulinotropic activity resulting, together with (genetically) defective beta cell function, in the impaired postprandial insulin secretion of T2DM. In addition, glucagon responses are inappropriately increased and importantly contribute to both fasting and postprandial hyperglycemia. This may involve stimulation by GIP, but evidence also points to a role of circulating amino acids, which are elevated due to steatosis-induced impaired glucagon-mediated hepatic clearance, in line with recent work suggesting that the alpha cells and the liver are linked in a close, amino acid-mediated feedback circuit. Thus, the gut plays an important role in the development of T2DM spurred by overeating and defective beta cells.
Collapse
Affiliation(s)
- Jens Juul Holst
- 1 Department of Biomedical Sciences, Faculty of Health and Medical Sciences, NNF Center for Basic Metabolic Research, University of Copenhagen , Copenhagen, Denmark
| | - Jens Pedersen
- 1 Department of Biomedical Sciences, Faculty of Health and Medical Sciences, NNF Center for Basic Metabolic Research, University of Copenhagen , Copenhagen, Denmark
| | - Nicolai Jacob Wewer Albrechtsen
- 1 Department of Biomedical Sciences, Faculty of Health and Medical Sciences, NNF Center for Basic Metabolic Research, University of Copenhagen , Copenhagen, Denmark
| | - Filip Krag Knop
- 2 Center for Diabetes Research, Gentofte Hospital, University of Copenhagen , Copenhagen, Denmark
| |
Collapse
|
118
|
Characterization of signal bias at the GLP-1 receptor induced by backbone modification of GLP-1. Biochem Pharmacol 2017; 136:99-108. [PMID: 28363772 DOI: 10.1016/j.bcp.2017.03.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/27/2017] [Indexed: 12/23/2022]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor that is a major therapeutic target for the treatment of type 2 diabetes. Activation of this receptor promotes insulin secretion and blood glucose regulation. The GLP-1R can initiate signaling through several intracellular pathways upon activation by GLP-1. GLP-1R ligands that preferentially stimulate subsets among the natural signaling pathways ("biased agonists") could be useful as tools for elucidating the consequences of specific pathways and might engender therapeutic agents with tailored effects. Using HEK-293 cells recombinantly expressing human GLP-1R, we have previously reported that backbone modification of GLP-1, via replacement of selected α-amino acid residues with β-amino acid residues, generates GLP-1 analogues with distinctive preferences for promoting G protein activation versus β-arrestin recruitment. Here, we have explored the influence of cell background across these two parameters and expanded our analysis to include affinity and other key signaling pathways (intracellular calcium mobilization and ERK phosphorylation) using recombinant human GLP-1R expressed in a CHO cell background, which has been used extensively to demonstrate biased agonism of GLP-1R ligands. The new data indicate that α/β-peptide analogues of GLP-1 exhibit a range of distinct bias profiles relative to GLP-1 and that broad assessment of signaling endpoints is required to reveal the spectrum of behavior of modified peptides. These results support the view that backbone modification via α→β amino acid replacement can enable rapid discovery of peptide hormone analogues that display substantial signal bias at a cognate GPCR.
Collapse
|
119
|
Hasib A, Ng MT, Gault VA, Khan D, Parthsarathy V, Flatt PR, Irwin N. An enzymatically stable GIP/xenin hybrid peptide restores GIP sensitivity, enhances beta cell function and improves glucose homeostasis in high-fat-fed mice. Diabetologia 2017; 60:541-552. [PMID: 28004148 PMCID: PMC6518372 DOI: 10.1007/s00125-016-4186-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Glucose-dependent insulinotropic polypeptide (GIP) and xenin, regulatory gut hormones secreted from enteroendocrine K cells, exert important effects on metabolism. In addition, xenin potentiates the biological actions of GIP. The present study assessed the actions and therapeutic utility of a (DAla2)GIP/xenin-8-Gln hybrid peptide, in comparison with the parent peptides (DAla2)GIP and xenin-8-Gln. METHODS Following confirmation of enzymatic stability, insulin secretory activity of (DAla2)GIP/xenin-8-Gln was assessed in BRIN-BD11 beta cells. Acute and persistent glucose-lowering and insulin-releasing effects were then examined in vivo. Finally, the metabolic benefits of twice daily injection of (DAla2)GIP/xenin-8-Gln was determined in high-fat-fed mice. RESULTS All peptides significantly (p < 0.05 to p < 0.001) enhanced in vitro insulin secretion from pancreatic clonal BRIN-BD11 cells, with xenin (and particularly GIP)-related signalling pathways, being important for this action. Administration of (DAla2)GIP or (DAla2)GIP/xenin-8-Gln in combination with glucose significantly (p < 0.05) lowered blood glucose and increased plasma insulin in mice, with a protracted response of up to 4 h. All treatments elicited appetite-suppressive effects (p < 0.05), particularly (DAla2)GIP/xenin-8-Gln and xenin-8-Gln at elevated doses of 250 nmol/kg. Twice-daily administration of (DAla2)GIP/xenin-8-Gln or (DAla2)GIP for 21 days to high-fat-fed mice returned circulating blood glucose to lean control levels. In addition, (DAla2)GIP/xenin-8-Gln treatment significantly (p < 0.05) reduced glycaemic levels during a 24 h glucose profile assessment. Neither of the treatment regimens had an effect on body weight, energy intake or circulating insulin concentrations. However, insulin sensitivity was significantly (p < 0.001) improved by both treatments. Interestingly, GIP-mediated glucose-lowering (p < 0.05) and insulin-releasing (p < 0.05 to p < 0.01) effects were substantially improved by (DAla2)GIP and (DAla2)GIP/xenin-8-Gln treatment. Pancreatic islet and beta cell area (p < 0.001), as well as pancreatic insulin content (p < 0.05), were augmented in (DAla2)GIP/xenin-8-Gln-treated mice, related to enhanced proliferation and decreased apoptosis of beta cells, whereas (DAla2)GIP evoked increases (p < 0.05 to p < 0.01) in islet number. CONCLUSIONS/INTERPRETATION These studies highlight the clear potential of GIP/xenin hybrids for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Annie Hasib
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Ming T Ng
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Dawood Khan
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Vadivel Parthsarathy
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK.
| |
Collapse
|
120
|
Lee S, Lee DY. Glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes. Ann Pediatr Endocrinol Metab 2017; 22:15-26. [PMID: 28443255 PMCID: PMC5401818 DOI: 10.6065/apem.2017.22.1.15] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022] Open
Abstract
The prevalence of type 2 diabetes (T2D) is increasing worldwide. Patients with T2D suffer from various diabetes-related complications. Since there are many patients with T2D that cannot be controlled by previously developed drugs, it has been necessary to develop new drugs, one of which is a glucagon-like peptide-1 (GLP-1) based therapy. GLP-1 has been shown to ameliorate diabetes-related conditions by augmenting pancreatic β-cell insulin secretion and having the low risk of causing hypoglycemia. Because of a very short half-life of GLP-1, many researches have been focused on the development of GLP-1 receptor (GLP-1R) agonists with long half-lives such as exenatide and dulaglutide. Now GLP-1R agonists have a variety of dosing-cycle forms to meet the needs of various patients. In this article, we review the physiological features of GLP-1, the effects of GLP-1 on T2D, the features of several GLP-1R agonists, and the therapeutic effect on T2D.
Collapse
Affiliation(s)
- Seungah Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Korea.,Institute of Nano Science & Technology (INST), Hanyang University, Seoul, Korea
| |
Collapse
|
121
|
Short-term, high-fat overfeeding impairs glycaemic control but does not alter gut hormone responses to a mixed meal tolerance test in healthy, normal-weight individuals. Br J Nutr 2017; 117:48-55. [PMID: 28115026 DOI: 10.1017/s0007114516004475] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is undoubtedly caused by a chronic positive energy balance. However, the early metabolic and hormonal responses to overeating are poorly described. This study determined glycaemic control and selected gut hormone responses to nutrient intake before and after 7 d of high-fat overfeeding. Nine healthy individuals (five males, four females) performed a mixed meal tolerance test (MTT) before and after consuming a high-fat (65 %), high-energy (+50 %) diet for 7 d. Measurements of plasma glucose, NEFA, acylated ghrelin, glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP) and serum insulin were taken before (fasting) and at 30-min intervals throughout the 180-min MTT (postprandial). Body mass increased by 0·79 (sem 0·14) kg after high-fat overfeeding (P<0·0001), and BMI increased by 0·27 (sem 0·05) kg/m2 (P=0·002). High-fat overfeeding also resulted in an 11·6 % increase in postprandial glucose AUC (P=0·007) and a 25·9 % increase in postprandial insulin AUC (P=0·005). Acylated ghrelin, GLP-1 and GIP responses to the MTT were all unaffected by the high-fat, high-energy diet. These findings demonstrate that even brief periods of overeating are sufficient to disrupt glycaemic control. However, as the postprandial orexigenic (ghrelin) and anorexigenic/insulintropic (GLP-1 and GIP) hormone responses were unaffected by the diet intervention, it appears that these hormones are resistant to short-term changes in energy balance, and that they do not play a role in the rapid reduction in glycaemic control.
Collapse
|
122
|
Mechanisms of Cardiovascular Injury in Type 2 Diabetes and Potential Effects of Dipeptidyl Peptidase-4 Inhibition. J Cardiovasc Nurs 2017; 31:274-83. [PMID: 25829138 DOI: 10.1097/jcn.0000000000000245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cardiovascular (CV) disease is the major cause of mortality and morbidity in patients with type 2 diabetes mellitus (T2DM). The pathogenesis of CV disease in T2DM is complex and multifactorial and involves direct and indirect injury to the vasculature and heart. The impact of intensive glucose-lowering therapy with antihyperglycemic agents on CV outcomes is not clear, and questions remain as to which glucose-lowering agents may be beneficial to CV health in patients with T2DM. PURPOSE This review discusses findings regarding the known mechanisms of CV injury in T2DM and current knowledge regarding the potential cardioprotective effects of dipeptidyl peptidase-4 (DPP-4) inhibitors. CONCLUSIONS Dipeptidyl peptidase-4 inhibitors are relatively new antihyperglycemic agents. Their main mechanism of action is to inhibit the degradation of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic peptide by DPP-4. By increasing levels of glucagon-like peptide-1, glucose-dependent insulin secretion is enhanced, glucagon secretion is suppressed, and the rate of gastric emptying is decreased. Dipeptidyl peptidase-4 also degrades other substances that are important in the regulation of CV function and inflammation. Animal studies, small observational studies in humans, and analyses of clinical trial data suggest that DPP-4 inhibitors may have beneficial CV effects. Recent prospectively designed CV outcomes trials with saxagliptin and alogliptin in patients with T2DM and high CV risk presented evidence that these DPP-4 inhibitors neither increased nor decreased adverse CV outcomes in this select patient population. CLINICAL IMPLICATIONS Dipeptidyl peptidase-4 inhibitors are promising therapies for the treatment of T2DM. Able to improve glycemic control without the risk of weight gain or hypoglycemia, they provide a safe alternative to sulfonylureas and are an effective adjunct to metformin. To date, this class of drugs seems to be at least neutral in terms of CV effects. Time will tell if these findings translate into a benefit for our patients.
Collapse
|
123
|
Tagliavini A, Pedersen MG. Spatiotemporal Modeling of Triggering and Amplifying Pathways in GLP-1 Secreting Intestinal L Cells. Biophys J 2017; 112:162-171. [PMID: 28076808 PMCID: PMC5232896 DOI: 10.1016/j.bpj.2016.11.3199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 01/06/2023] Open
Abstract
Glucagon-like peptide 1 (GLP-1) is secreted by intestinal L-cells, and augments glucose-induced insulin secretion, thus playing an important role in glucose control. The stimulus-secretion pathway in L-cells is still incompletely understood and a topic of debate. It is known that GLP-1 secreting cells can sense glucose to promote electrical activity either by the electrogenic sodium-glucose cotransporter SGLT1, or by closure of ATP-sensitive potassium channels after glucose metabolism. Glucose also has an effect on GLP-1 secretion downstream of electrical activity. An important aspect to take into account is the spatial organization of the cell. Indeed, the glucose transporter GLUT2 is located at the basolateral, vascular side, while SGLT1 is exposed to luminal glucose at the apical side of the cell, suggesting that the two types of transporters play different roles in glucose sensing. Here, we extend our recent model of electrical activity in primary L-cells to include spatiotemporal glucose and Ca2+ dynamics, and GLP-1 secretion. The model confirmed that glucose transportation into the cell through SGLT1 cotransporters can induce Ca2+ influx and release of GLP-1 as a result of electrical activity, while glucose metabolism alone is insufficient to depolarize the cell and evoke GLP-1 secretion in the model, suggesting a crucial role for SGLT1 in triggering GLP-1 release in agreement with experimental studies. We suggest a secondary, but participating, role of GLUT2 and glucose metabolism for GLP-1 secretion via an amplifying pathway that increases the secretion rate at a given Ca2+ level.
Collapse
Affiliation(s)
- Alessia Tagliavini
- Department of Information Engineering, University of Padova, Padova, Italy
| | | |
Collapse
|
124
|
Rate of Homologous Desensitization and Internalization of the GLP-1 Receptor. Molecules 2016; 22:molecules22010022. [PMID: 28035964 PMCID: PMC6155907 DOI: 10.3390/molecules22010022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is an important target in the treatment of type 2 diabetes mellitus. The aim of this study was to compare the rate of agonist stimulated desensitization and internalization of GLP-1R. To this end, an N-terminally myc-tagged GLP-1R was stably expressed in HEK-293 cells. Homologous desensitization was assessed by measuring the cAMP response to agonist stimulation following pre-incubation with agonist for up to 120 min. Receptor internalization was monitored using an indirect ELISA-based method and confocal microscopy. Pre-incubation with GLP-1 resulted in a time-dependent loss of response to a second stimulation. Washing cells following pre-incubation failed to bring cAMP levels back to basal. Taking this into account, two desensitization rates were calculated: “apparent” (t1/2 = 19.27 min) and “net” (t1/2 = 2.99 min). Incubation of cells with GLP-1 also resulted in a time-dependent loss of receptor cell surface expression (t1/2 = 2.05 min). Rapid agonist-stimulated internalization of GLP-1R was confirmed using confocal microscopy. Stimulation of GLP-1R with GLP-1 results in rapid desensitization and internalization of the receptor. Interestingly, the rate of “net” desensitization closely matches the rate of internalization. Our results suggest that agonist-bound GLP-1R continues to generate cAMP after it has been internalized.
Collapse
|
125
|
Cahn A, Cernea S, Raz I. An update on DPP-4 inhibitors in the management of type 2 diabetes. Expert Opin Emerg Drugs 2016; 21:409-419. [PMID: 27809608 DOI: 10.1080/14728214.2016.1257608] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION DPP-4 inhibitors are a class of compounds used for the treatment of type 2 diabetes. The drugs inhibit the degradation of GLP-1, thus amplifying the incretin effect. They have moderate glycemic efficacy, a low propensity of causing hypoglycaemia and are weight neutral. The drugs are often used as second line therapy after metformin. Areas covered: This review summarizes the available compounds in the market and discusses the novel compounds that are currently under development. Several large cardiovascular outcome trials with some of the compounds have been completed, and their results and implications are considered. Fixed dose combination pills are currently the main focus of research and the contribution of these to the care of patients with diabetes is further discussed. Expert opinion: The DPP-4 inhibitors have been a successful class in drug development for diabetes. Taken orally and available as fixed dose combinations with metformin or with SGLT-2 inhibitors, they have reached a large market share of over 7 billion dollars. Other than retagliptin, it does not appear that any additional compound will be launched soon. Currently, the main focus is on the development of additional fixed dose combinations with SGLT-2 inhibitors, but the success of these combinations remains to be seen.
Collapse
Affiliation(s)
- Avivit Cahn
- a The Diabetes Research Unit, Internal Medicine Section , Hadassah Hebrew University Hospital , Jerusalem , Israel.,b Endocrinology and Metabolism Unit, Internal Medicine Section , Hadassah Hebrew University Hospital , Jerusalem , Israel
| | - Simona Cernea
- c Department M3/Internal Medicine IV , University of Medicine and Pharmacy , Târgu Mureş , Romania.,d Diabetes, Nutrition and Metabolic Diseases Unit , Emergency County Clinical Hospital , Târgu Mureş , Romania
| | - Itamar Raz
- a The Diabetes Research Unit, Internal Medicine Section , Hadassah Hebrew University Hospital , Jerusalem , Israel
| |
Collapse
|
126
|
Li F, Peng Y, Zhang M, Yang P, Qu S. Sleeve gastrectomy activates the GLP-1 pathway in pancreatic β cells and promotes GLP-1-expressing cells differentiation in the intestinal tract. Mol Cell Endocrinol 2016; 436:33-40. [PMID: 27436347 DOI: 10.1016/j.mce.2016.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/25/2016] [Accepted: 07/16/2016] [Indexed: 01/19/2023]
Abstract
Db/db mouse was used to study the underlying mechanisms by which Sleeve gastrectomy (SG) improves β-cell function. We investigated β-cell function, plasma active GLP-1 levels, the GLP-1R pathway in β cells and L cell differentiation. After SG, β-cell function was significantly increased, and the GLP-1R-PKCζ-PDX-1 pathway was active in β cells. Plasma active GLP-1 levels, as well as the number of L cells in the jejunum, were significantly increased after SG. The expression of early transcription factors (TF), including Ngn3, FoxA1 and Nkx2.2, was not compromised by chronic hyperglycemia. In contrast, the expression of the downstream TF PAX6 was affected, and this down-regulation could be reversed by SG. So, SG can maintain L cell differentiation, increase plasma active GLP-1 level, sustain the activation of the GLP-1R pathway and improve β cell function in Db/db mice. Our results show that SG can overall improve the function of the entero-insular axis.
Collapse
Affiliation(s)
- Feng Li
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, Shanghai, 200072, China.
| | - Ying Peng
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Endocrine and Metabolic Diseases and Shanghai Institute of Endocrinology and Metabolism, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, 197 Rui-Jin 2nd Road, Shanghai, 200025, China
| | - Manna Zhang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, Shanghai, 200072, China
| | - Peng Yang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, Shanghai, 200072, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, Shanghai, 200072, China.
| |
Collapse
|
127
|
Wu T, Rayner CK, Horowitz M. Inter-regulation of gastric emptying and incretin hormone secretion: implications for postprandial glycemic control. Biomark Med 2016; 10:1167-1179. [PMID: 27734721 DOI: 10.2217/bmm-2016-0164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The GI tract is central to the regulation of postprandial glycemia, with the rate of gastric emptying and the secretion of the incretin hormones, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, being key determinants. Gastric emptying exhibits a large interindividual variation; the latter not only accounts for differences in postprandial glycemia but also determines postprandial incretin profiles. Accordingly, the rate of gastric emptying may affect the glucose-lowering efficacy of dipeptidyl peptidase-4 inhibitors. In contrast, glucagon-like peptide-1 receptor agonists lower postprandial glycemia predominantly by their action to slow gastric emptying. This review discusses the inter-relationship between gastric emptying and the incretin axis in the context of changes in blood glucose, with an emphasis on the relevant clinical implications.
Collapse
Affiliation(s)
- Tongzhi Wu
- Discipline of Medicine & Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia
| | - Christopher K Rayner
- Discipline of Medicine & Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia
| | - Michael Horowitz
- Discipline of Medicine & Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia
| |
Collapse
|
128
|
Lin PJ, Borer KT. Third Exposure to a Reduced Carbohydrate Meal Lowers Evening Postprandial Insulin and GIP Responses and HOMA-IR Estimate of Insulin Resistance. PLoS One 2016; 11:e0165378. [PMID: 27798656 PMCID: PMC5087910 DOI: 10.1371/journal.pone.0165378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/06/2016] [Indexed: 12/28/2022] Open
Abstract
Background Postprandial hyperinsulinemia, hyperglycemia, and insulin resistance increase the risk of type 2 diabetes (T2D) and cardiovascular disease mortality. Postprandial hyperinsulinemia and hyperglycemia also occur in metabolically healthy subjects consuming high-carbohydrate diets particularly after evening meals and when carbohydrate loads follow acute exercise. We hypothesized the involvement of dietary carbohydrate load, especially when timed after exercise, and mediation by the glucose-dependent insulinotropic peptide (GIP) in this phenomenon, as this incretin promotes insulin secretion after carbohydrate intake in insulin-sensitive, but not in insulin-resistant states. Methods Four groups of eight metabolically healthy weight-matched postmenopausal women were provided with three isocaloric meals (a pre-trial meal and two meals during the trial day) containing either 30% or 60% carbohydrate, with and without two-hours of moderate-intensity exercise before the last two meals. Plasma glucose, insulin, glucagon, GIP, glucagon-like peptide 1 (GLP-1), free fatty acids (FFAs), and D-3-hydroxybutyrate concentrations were measured during 4-h postprandial periods and 3-h exercise periods, and their areas under the curve (AUCs) were analyzed by mixed-model ANOVA, and insulin resistance during fasting and meal tolerance tests within each diet was estimated using homeostasis-model assessment (HOMA-IR). Results The third low-carbohydrate meal, but not the high-carbohydrate meal, reduced: (1) evening insulin AUC by 39% without exercise and by 31% after exercise; (2) GIP AUC by 48% without exercise and by 45% after exercise, and (3) evening insulin resistance by 37% without exercise and by 24% after exercise. Pre-meal exercise did not alter insulin-, GIP- and HOMA-IR- lowering effects of low-carbohydrate diet, but exacerbated evening hyperglycemia. Conclusions Evening postprandial insulin and GIP responses and insulin resistance declined by over 30% after three meals that limited daily carbohydrate intake to 30% compared to no such changes after three 60%-carbohydrate meals, an effect that was independent of pre-meal exercise. The parallel timing and magnitude of postprandial insulin and GIP changes suggest their dependence on a delayed intestinal adaptation to a low-carbohydrate diet. Pre-meal exercise exacerbated glucose intolerance with both diets most likely due to impairment of insulin signaling by pre-meal elevation of FFAs.
Collapse
Affiliation(s)
- Po-Ju Lin
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Katarina T. Borer
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
129
|
Gupta P, Bala M, Gupta S, Dua A, Dabur R, Injeti E, Mittal A. Efficacy and risk profile of anti-diabetic therapies: Conventional vs traditional drugs—A mechanistic revisit to understand their mode of action. Pharmacol Res 2016; 113:636-674. [DOI: 10.1016/j.phrs.2016.09.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022]
|
130
|
Jendle J, Grunberger G, Blevins T, Giorgino F, Hietpas RT, Botros FT. Efficacy and safety of dulaglutide in the treatment of type 2 diabetes: a comprehensive review of the dulaglutide clinical data focusing on the AWARD phase 3 clinical trial program. Diabetes Metab Res Rev 2016; 32:776-790. [PMID: 27102969 DOI: 10.1002/dmrr.2810] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/18/2016] [Accepted: 04/13/2016] [Indexed: 01/24/2023]
Abstract
Dulaglutide (DU) is a once weekly glucagon-like peptide-1 receptor agonist (GLP-1 RA) approved for the treatment of type 2 diabetes mellitus (T2DM). Glycaemic efficacy and safety characteristics of dulaglutide have been assessed in six Phase 3 studies in the AWARD program. The objective of this review article is to summarize these results from the six completed AWARD studies. At the primary endpoint, in five of the six studies, once weekly dulaglutide 1.5 mg was superior to the active comparator [exenatide, insulin glargine (two studies), metformin, and sitagliptin], with a greater proportion of patients reaching glycated hemoglobin A1c (HbA1c) targets of <7.0% (53.0 mmol/mol) and ≤6.5% (47.5 mmol/mol). Dulaglutide 1.5 mg was non-inferior to liraglutide in AWARD-6. Once weekly dulaglutide 0.75 mg was evaluated in five of these trials and demonstrated superiority to the active comparator in four of five AWARD studies (exenatide, glargine, metformin, and sitagliptin), and non-inferiority to glargine in the AWARD-2 study. Similar to other GLP-1 receptor agonists, treatment with dulaglutide was associated with weight loss or attenuation of weight gain and low rates of hypoglycaemia when used alone or with non-insulin-secretagogue therapy. The most frequently reported adverse events were gastrointestinal, including nausea, vomiting, and diarrhea. The incidence of dulaglutide antidrug antibody formation was 1-2.8% with rare injection site reactions. In conclusion, dulaglutide is an effective treatment for T2DM and has an acceptable tolerability and safety profile. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Johan Jendle
- School of Medical Sciences, Örebro University, Örebro, Sweden.
| | | | | | | | | | | |
Collapse
|
131
|
Hassing HA, Fares S, Larsen O, Pad H, Hauge M, Jones RM, Schwartz TW, Hansen HS, Rosenkilde MM. Biased signaling of lipids and allosteric actions of synthetic molecules for GPR119. Biochem Pharmacol 2016; 119:66-75. [DOI: 10.1016/j.bcp.2016.08.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/22/2016] [Indexed: 02/08/2023]
|
132
|
Gilor C, Rudinsky AJ, Hall MJ. New Approaches to Feline Diabetes Mellitus: Glucagon-like peptide-1 analogs. J Feline Med Surg 2016; 18:733-43. [PMID: 27562982 PMCID: PMC11148896 DOI: 10.1177/1098612x16660441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CLINICAL RELEVANCE Incretin-based therapies are revolutionizing the field of human diabetes mellitus (DM) by replacing insulin therapy with safer and more convenient long-acting drugs. MECHANISM OF ACTION Incretin hormones (glucagon-like peptide-1 [GLP-1] and glucose-dependent insulinotropic peptide [GIP]) are secreted from the intestinal tract in response to the presence of food in the intestinal lumen. GLP-1 delays gastric emptying and increases satiety. In the pancreas, GLP-1 augments insulin secretion and suppresses glucagon secretion during hyperglycemia in a glucose-dependent manner. It also protects beta cells from oxidative and toxic injury and promotes expansion of beta cell mass. ADVANTAGES Clinical data have revealed that GLP-1 analog drugs are as effective as insulin in improving glycemic control while reducing body weight in people suffering from type 2 DM. Furthermore, the incidence of hypoglycemia is low with these drugs because of their glucose-dependent mechanism of action. Another significant advantage of these drugs is their duration of action. While insulin injections are administered at least once daily, long-acting GLP-1 analogs have been developed as once-a-week injections and could potentially be administered even less frequently than that in diabetic cats. OUTLINE This article reviews the physiology of incretin hormones, and the pharmacology and use of GLP-1 analogs, with emphasis on recent research in cats. Further therapies that are based on incretin hormones, such as DPP-4 inhibitors, are also briefly discussed, as are some other treatment modalities that are currently under investigation.
Collapse
Affiliation(s)
- Chen Gilor
- University of California School of Veterinary Medicine, 2118A Tupper Hall, Davis, CA 95616, USA
| | - Adam J Rudinsky
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Melanie J Hall
- Sheridan Animal Hospital & Veterinary Specialists of Western New York, 2288 Sheridan Drive, Buffalo, NY 14223, USA
| |
Collapse
|
133
|
Gilor C, Niessen S, Furrow E, DiBartola S. What's in a Name? Classification of Diabetes Mellitus in Veterinary Medicine and Why It Matters. J Vet Intern Med 2016; 30:927-40. [PMID: 27461721 PMCID: PMC5108445 DOI: 10.1111/jvim.14357] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/07/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022] Open
Abstract
Diabetes Mellitus (DM) is a syndrome caused by various etiologies. The clinical manifestations of DM are not indicative of the cause of the disease, but might be indicative of the stage and severity of the disease process. Accurately diagnosing and classifying diabetic dogs and cats by the underlying disease process is essential for current and future studies on early detection, prevention, and treatment of underlying disease. Here, we review the current etiology-based classification of DM and definitions of DM types in human medicine and discuss key points on the pathogenesis of each DM type and prediabetes. We then review current evidence for application of this etiology-based classification scheme in dogs and cats. In dogs, we emphasize the lack of consistent evidence for autoimmune DM (Type 1) and the possible importance of other DM types such as DM associated with exocrine pancreatic disease. While most dogs are first examined because of DM in an insulin-dependent state, early and accurate diagnosis of the underlying disease process could change the long-term outcome and allow some degree of insulin independence. In cats, we review the appropriateness of using the umbrella term of Type 2 DM and differentiating it from DM secondary to other endocrine disease like hypersomatotropism. This differentiation could have crucial implications on treatment and prognosis. We also discuss the challenges in defining and diagnosing prediabetes in cats.
Collapse
Affiliation(s)
- C. Gilor
- Department of Veterinary Clinical SciencesCollege of Veterinary MedicineThe Ohio State UniversityColumbusOH
| | - S.J.M. Niessen
- Department of Clinical Science and ServicesRoyal Veterinary CollegeUniversity of LondonNorth MymmsHertfordshireUK
| | - E. Furrow
- Department of Veterinary Clinical SciencesCollege of Veterinary MedicineUniversity of MinnesotaSt. PaulMN
| | - S.P. DiBartola
- Department of Veterinary Clinical SciencesCollege of Veterinary MedicineThe Ohio State UniversityColumbusOH
| |
Collapse
|
134
|
Abraham KA, Kearney ML, Reynolds LJ, Thyfault JP. Red wine enhances glucose-dependent insulinotropic peptide (GIP) and insulin responses in type 2 diabetes during an oral glucose tolerance test. Diabetol Int 2016; 7:173-180. [PMID: 30603261 PMCID: PMC6224998 DOI: 10.1007/s13340-015-0234-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Ingestion of ethanol before a glucose challenge enhances the insulin response by an unknown mechanism. In addition, epidemiological studies consistently indicate that moderate alcohol consumption reduces the risk of developing type 2 diabetes (T2D). The purposes of this study were to evaluate the potential involvement of glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide 1 (GLP-1) in alcohol-induced augmentation of the insulin response and to determine if red wine acutely improves glucose tolerance during an oral glucose tolerance test (OGTT). METHODS Nine subjects (eight T2D and one pre-diabetes) completed two OGTT 30 min after consumption of 263 ml water or red wine (28 g ethanol). Blood samples were obtained for 3 h and analyzed for glucose, insulin, C-peptide, GIP, and GLP-1. RESULTS Compared with water, consumption of red wine increased the incremental area under the curve (iAUC) for insulin by 50 % (14,837 ± 4759 vs. 9885 ± 2686 µU/ml × min; p < 0.05) and for GIP by 25 % (7729 ± 1548 vs. 6191 ± 1049 pmol/l × min; p < 0.05). Glucose and GLP-1 responses were not affected by red wine. CONCLUSION Wine consumption before an OGTT augments the insulin response, which may be partially driven by a greater GIP response. Because glucose levels were not reduced, acute wine consumption may not be effective treatment for enhancing glycemic control or may need to be combined with therapy that improves insulin sensitivity.
Collapse
Affiliation(s)
- Kirk A. Abraham
- Exercise Science Program, Transylvania University, 300 N. Broadway, Lexington, KY 40508 USA
| | - Monica L. Kearney
- Department of Nutrition and Exercise Physiology, McKee Gymnasium, University of Missouri, Columbia, MO 65211 USA
| | - Leryn J. Reynolds
- Department of Nutrition and Exercise Physiology, McKee Gymnasium, University of Missouri, Columbia, MO 65211 USA
| | - John P. Thyfault
- Department of Nutrition and Exercise Physiology and Medicine, McKee Gymnasium, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
135
|
From organophosphate poisoning to diabetes mellitus: The incretin effect. Med Hypotheses 2016; 91:53-55. [DOI: 10.1016/j.mehy.2016.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/02/2016] [Indexed: 12/16/2022]
|
136
|
Finan B, Müller TD, Clemmensen C, Perez-Tilve D, DiMarchi RD, Tschöp MH. Reappraisal of GIP Pharmacology for Metabolic Diseases. Trends Mol Med 2016; 22:359-376. [DOI: 10.1016/j.molmed.2016.03.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/31/2022]
|
137
|
Junker AE, Gluud L, Holst JJ, Knop FK, Vilsbøll T. Diabetic and nondiabetic patients with nonalcoholic fatty liver disease have an impaired incretin effect and fasting hyperglucagonaemia. J Intern Med 2016; 279:485-93. [PMID: 26728692 DOI: 10.1111/joim.12462] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE We evaluated whether patients with histologically verified nonalcoholic fatty liver disease (NAFLD) have an impaired incretin effect and hyperglucagonaemia. METHODS Four groups matched for age, sex and body mass index were studied: (i) 10 patients with normal glucose tolerance and NAFLD; (ii) 10 patients with type 2 diabetes and NAFLD; (iii) eight patients with type 2 diabetes and no liver disease; and (iv) 10 controls. All participants underwent a 50-g oral glucose tolerance test (OGTT) and an isoglycaemic intravenous glucose infusion (IIGI). We determined the incretin effect by relating the beta cell secretory responses during the OGTT and IIGI. Data are presented as medians (interquartile range), and the groups were compared by using the Kruskal-Wallis test. RESULTS Controls exhibited a higher incretin effect [55% (43-73%)] compared with the remaining three groups (P < 0.001): 39% (44-71%) in the nondiabetic NAFLD patients, 20% (-5-50%) in NAFLD patients with type 2 diabetes, and 2% (-8-6%) in patients with type 2 diabetes and no liver disease. We found fasting hyperglucagonaemia in NAFLD patients with [7.5 pmol L(-1) (6.8-15 pmol L(-1))] and without diabetes [7.5 pmol L(-1) (5.0-8.0 pmol L(-1))]. Fasting glucagon levels were lower but similar in patients with type 2 diabetes and no liver disease [4.5 pmol L(-1) (3.0-6.0 pmol L(-1))] and controls [3.4 pmol L(-1) (1.8-6.0 pmol L(-1) )]. All groups had similar glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide responses. CONCLUSIONS Patients with NAFLD have a reduced incretin effect and fasting hyperglucagonaemia, with the latter occurring independently of glucose (in)tolerance.
Collapse
Affiliation(s)
- A E Junker
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Biomedical Science, NNF Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - L Gluud
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Gastroenterology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - J J Holst
- Department of Biomedical Science, NNF Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - F K Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Biomedical Science, NNF Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - T Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| |
Collapse
|
138
|
Aulinger BA, Vahl TP, Prigeon RL, D'Alessio DA, Elder DA. The incretin effect in obese adolescents with and without type 2 diabetes: impaired or intact? Am J Physiol Endocrinol Metab 2016; 310:E774-81. [PMID: 26979523 PMCID: PMC4867309 DOI: 10.1152/ajpendo.00496.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/07/2016] [Indexed: 01/11/2023]
Abstract
The incretin effect reflects the actions of enteral stimuli to promote prandial insulin secretion. Impairment of this measure has been proposed as an early marker of β-cell dysfunction and described in T2D, IGT, and even obesity without IGT. We sought to determine the effects of obesity and diabetes on the incretin effect in young subjects with short exposures to metabolic abnormalities and a few other confounding medical conditions. Subjects with T2D (n = 10; 18.0 ± 0.4 yr) or NGT, either obese (n = 11; 17.7 ± 0.4 yr) or lean (n = 8; 26.5 ± 2.3 yr), had OGTT and iso-iv. The incretin effect was calculated as the difference in insulin secretion during these tests and was decreased ∼50% in both the NGT-Ob and T2D subjects relative to the NGT-Ln group. The T2D group had impaired glucose tolerance and insulin secretion during the OGTT, whereas the lean and obese NGT subjects had comparable glucose excursions and β-cell function. During the iso-iv test, the NGT-Ob subjects had significantly greater insulin secretion than the NGT-Ln and T2D groups. These findings demonstrate that in young subjects with early, well-controlled T2D the incretin effect is reduced, similar to what has been described in diabetic adults. The lower incretin effect calculated for the obese subjects with NGT is driven by a disproportionately greater insulin response to iv glucose and does not affect postprandial glucose regulation. These findings confirm that the incretin effect is an early marker of impaired insulin secretion in persons with abnormal glucose tolerance but suggest that in obese subjects with NGT the incretin effect calculation can be confounded by exaggerated insulin secretion to iv glucose.
Collapse
Affiliation(s)
- Benedikt A Aulinger
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio; Department of Internal Medicine II, Ludwig-Maximillian's University, Munich, Germany
| | - Torsten P Vahl
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio; Department of Medicine, Columbia University, New York, New York
| | - Ron L Prigeon
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - David A D'Alessio
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio; Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio; and david.d'
| | - Deborah A Elder
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| |
Collapse
|
139
|
Owolabi BO, Ojo OO, Srinivasan DK, Conlon JM, Flatt PR, Abdel-Wahab YHA. Glucoregulatory, endocrine and morphological effects of [P5K]hymenochirin-1B in mice with diet-induced glucose intolerance and insulin resistance. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:769-81. [DOI: 10.1007/s00210-016-1243-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/04/2016] [Indexed: 12/25/2022]
|
140
|
Junker AE, Gluud LL, van Hall G, Holst JJ, Knop FK, Vilsbøll T. Effects of glucagon-like peptide-1 on glucagon secretion in patients with non-alcoholic fatty liver disease. J Hepatol 2016; 64:908-15. [PMID: 26626496 DOI: 10.1016/j.jhep.2015.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS We evaluated the glucagon-suppressive effect of glucagon-like peptide-1 (GLP-1) and its potential effects on endogenous glucose production and whole body lipolysis in non-diabetic patients with non-alcoholic fatty liver disease (NAFLD). METHODS On two separate days, 10 non-diabetic patients with liver biopsy-verified NAFLD (NAFLD activity score 2.5±1.0) and 10 matched controls underwent 2h intravenous infusions of GLP-1 (0.8 pmol×kg(-1)×min(-1)) and placebo. Since GLP-1-mediated glucagon suppression has been shown to be glucose-dependent, plasma glucose was clamped at fasting level during the first hour, and then raised and clamped at 'postprandial level' (fasting plasma glucose level plus 3 mmol/L) for the remaining hour. We evaluated relative plasma levels of glucagon, endogenous glucose production and whole body lipolysis rates with stable isotopes and respiratory quotient using indirect calorimetry. RESULTS Compared to controls, patients with NAFLD were insulin resistant (homeostasis model assessment (HOMA(IR)): 3.8±2.2 vs. 1.6±1.5, p=0.003) and had fasting hyperglucagonaemia (7.5±5.3 vs. 5.8±1.5 mmol/L, p=0.045). Similar relative glucagon suppression was seen in both groups during GLP-1 infusion at fasting (-97±75 vs. -93±41 pmol/L×min(-1)p=0.566) and 'postprandial' plasma glucose levels (-108±101 vs. -97±53 pmol/L×min(-1), p=0.196). Increased insulinotropic effect of GLP-1 was observed in NAFLD patients. No effect of GLP-1 on endogenous glucose production was observed in any of the groups. CONCLUSIONS Patients with NAFLD exhibited fasting hyperglucagonaemia, but intact GLP-1-mediated glucagon suppression independently of plasma glucose concentrations. Preserved glucagonostatic effect and increased insulinotropic effects of GLP-1 in NAFLD may be important to maintain normo-glycaemia in these patients.
Collapse
Affiliation(s)
- Anders E Junker
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; NNF Centre for Basic Metabolic Research and Department of Biomedical Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise L Gluud
- Department of Gastroenterology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Gerrit van Hall
- Clinical Metabolomics Core Facility, Rigshospitalet, University of Copenhagen, Denmark
| | - Jens J Holst
- NNF Centre for Basic Metabolic Research and Department of Biomedical Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; NNF Centre for Basic Metabolic Research and Department of Biomedical Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.
| |
Collapse
|
141
|
Parthsarathy V, Irwin N, Hasib A, Martin CM, McClean S, Bhat VK, Ng MT, Flatt PR, Gault VA. A novel chemically modified analogue of xenin-25 exhibits improved glucose-lowering and insulin-releasing properties. Biochim Biophys Acta Gen Subj 2016; 1860:757-64. [DOI: 10.1016/j.bbagen.2016.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/16/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
|
142
|
Jafri L, Saleem S, Calderwood D, Gillespie A, Mirza B, Green BD. Naturally-occurring TGR5 agonists modulating glucagon-like peptide-1 biosynthesis and secretion. Peptides 2016; 78:51-8. [PMID: 26820940 DOI: 10.1016/j.peptides.2016.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
Abstract
Selective GLP-1 secretagogues represent a novel potential therapy for type 2 diabetes mellitus. This study examined the GLP-1 secretory activity of the ethnomedicinal plant, Fagonia cretica, which is postulated to possess anti-diabetic activity. After extraction and fractionation extracts and purified compounds were tested for GLP-1 and GIP secretory activity in pGIP/neo STC-1 cells. Intracellular levels of incretin hormones and their gene expression were also determined. Crude F. cretica extracts stimulated both GLP-1 and GIP secretion, increased cellular hormone content, and upregulated gene expression of proglucagon, GIP and prohormone convertase. However, ethyl acetate partitioning significantly enriched GLP-1 secretory activity and this fraction underwent bioactivity-guided fractionation. Three isolated compounds were potent and selective GLP-1 secretagogues: quinovic acid (QA) and two QA derivatives, QA-3β-O-β-D-glycopyranoside and QA-3β-O-β-D-glucopyranosyl-(28→1)-β-D-glucopyranosyl ester. All QA compounds activated the TGR5 receptor and increased intracellular incretin levels and gene expression. QA derivatives were more potent GLP-1 secretagogues than QA. This is the first time that QA and its naturally-occurring derivatives have been shown to activate TGR5 and stimulate GLP-1 secretion. These data provide a plausible mechanism for the ethnomedicinal use of F. cretica and may assist in the ongoing development of selective GLP-1 agonists.
Collapse
Affiliation(s)
- Laila Jafri
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan; Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Samreen Saleem
- University Institute of Biochemistry & Biotechnology (UIBB), PMAS-Arid Agriculture University Rawalpindi, Murree Road, Rawalpindi, Pakistan; Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Danielle Calderwood
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | - Anna Gillespie
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Brian D Green
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
143
|
Martin CM, Parthsarathy V, Hasib A, Ng MT, McClean S, Flatt PR, Gault VA, Irwin N. Biological Activity and Antidiabetic Potential of C-Terminal Octapeptide Fragments of the Gut-Derived Hormone Xenin. PLoS One 2016; 11:e0152818. [PMID: 27032106 PMCID: PMC4816510 DOI: 10.1371/journal.pone.0152818] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
Xenin is a peptide that is co-secreted with the incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), from intestinal K-cells in response to feeding. Studies demonstrate that xenin has appetite suppressive effects and modulates glucose-induced insulin secretion. The present study was undertaken to determine the bioactivity and antidiabetic properties of two C-terminal fragment xenin peptides, namely xenin 18-25 and xenin 18-25 Gln. In BRIN-BD11 cells, both xenin fragment peptides concentration-dependently stimulated insulin secretion, with similar efficacy as the parent peptide. Neither fragment peptide had any effect on acute feeding behaviour at elevated doses of 500 nmol/kg bw. When administered together with glucose to normal mice at 25 nmol/kg bw, the overall insulin secretory effect was significantly enhanced in both xenin 18-25 and xenin 18-25 Gln treated mice, with better moderation of blood glucose levels. Twice daily administration of xenin 18-25 or xenin 18-25 Gln for 21 days in high fat fed mice did not affect energy intake, body weight, circulating blood glucose or body fat stores. However, circulating plasma insulin concentrations had a tendency to be elevated, particularly in xenin 18-25 Gln mice. Both treatment regimens significantly improved insulin sensitivity by the end of the treatment period. In addition, sustained treatment with xenin 18-25 Gln significantly reduced the overall glycaemic excursion and augmented the insulinotropic response to an exogenous glucose challenge on day 21. In harmony with this, GIP-mediated glucose-lowering and insulin-releasing effects were substantially improved by twice daily xenin 18-25 Gln treatment. Overall, these data provide evidence that C-terminal octapeptide fragments of xenin, such as xenin 18-25 Gln, have potential therapeutic utility for type 2 diabetes.
Collapse
Affiliation(s)
- Christine M. Martin
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Vadivel Parthsarathy
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Annie Hasib
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Ming T. Ng
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Stephen McClean
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Peter R. Flatt
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Victor A. Gault
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
- * E-mail:
| |
Collapse
|
144
|
Yokoi N, Gheni G, Takahashi H, Seino S. β-Cell glutamate signaling: Its role in incretin-induced insulin secretion. J Diabetes Investig 2016; 7 Suppl 1:38-43. [PMID: 27186354 PMCID: PMC4854503 DOI: 10.1111/jdi.12468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 11/30/2022] Open
Abstract
Insulin secretion from the pancreatic β-cell (referred to as β-cell hereafter) plays a central role in glucose homeostasis. Impaired insulin secretion is a major factor contributing to the development of diabetes and, therefore, is an important target for treatment of the disease. Cyclic adenosine monophosphate is a key second messenger in β-cells that amplifies insulin secretion. Incretins released by the gut potentiate insulin secretion through cyclic adenosine monophosphate signaling in β-cells, which is the basis for the incretin-based diabetes therapies now being used worldwide. Despite its importance, the interaction between glucose metabolism and incretin/cyclic adenosine monophosphate signaling in β-cells has long been unknown. A recent study showed that cytosolic glutamate produced by glucose metabolism in β-cells is a key signal in incretin-induced insulin secretion. Here we review the physiological and pathophysiological roles of β-cell glutamate signaling in incretin-induced insulin secretion.
Collapse
Affiliation(s)
- Norihide Yokoi
- Division of Molecular and Metabolic Medicine Kobe University Graduate School of Medicine Kobe Japan
| | - Ghupurjan Gheni
- Division of Molecular and Metabolic Medicine Kobe University Graduate School of Medicine Kobe Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine Kobe University Graduate School of Medicine Kobe Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine Kobe University Graduate School of Medicine Kobe Japan
| |
Collapse
|
145
|
Kampmann K, Ueberberg S, Menge BA, Breuer TGK, Uhl W, Tannapfel A, Meier JJ. Abundance and turnover of GLP-1 producing L-cells in ileal mucosa are not different in patients with and without type 2 diabetes. Metabolism 2016; 65:84-91. [PMID: 26892519 DOI: 10.1016/j.metabol.2015.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/01/2015] [Accepted: 10/18/2015] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The gastrointestinal hormone GLP-1 is released from enteroendocrine L-cells and augments postprandial insulin secretion. In patients with type 2 diabetes, the incretin effect is markedly diminished. It is unclear, whether this is due to a reduction in the abundance of L-cells in the intestine. METHODS Ileal tissue samples from 10 patients with and 10 patients without diabetes that underwent surgery for the removal of colon tumors were included. Tissue sections were stained for GLP-1, Ki67, TUNEL and chromogranin A. RESULTS The number of L-cells was not different between patients with and without diabetes in either crypts (1.81±0.21% vs. 1.49±0.24%, respectively; p=0.31) or villi (1.07±0.16% vs. 0.83±0.10%, respectively; p=0.23). L-cell number was higher in crypts than in villi (p<0.0001). L-cell replication was detected rarely and not different between the groups. L-cell apoptosis was similar in patients with and without diabetes in both crypts (7.84±2.77% vs. 8.65±3.77%, p=0.85) and villi (4.48±2.89% vs. 8.62±4.64%, p=0.42). Chromogranin A staining was found in a subset of L-cells only. CONCLUSIONS Intestinal L-cell density is higher in crypts than in villi. Chromogranin A is not a prerequisite for GLP-1 production. L-cell density and turnover are not different between patients with and without diabetes. Thus, alterations in the number of GLP-1 producing cells do not explain the reduced incretin effect in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Kirsten Kampmann
- Diabetes Division, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, Bochum, 44791, Germany
| | - Sandra Ueberberg
- Diabetes Division, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, Bochum, 44791, Germany
| | - Bjoern A Menge
- Diabetes Division, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, Bochum, 44791, Germany
| | - Thomas G K Breuer
- Diabetes Division, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, Bochum, 44791, Germany
| | - Waldemar Uhl
- Department of Surgery, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, Bochum, 44791, Germany
| | - Andrea Tannapfel
- Institute of Pathology, Ruhr-University Bochum, Bürkle de la Camp-Platz 1, Bochum, 44789, Germany
| | - Juris J Meier
- Diabetes Division, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, Bochum, 44791, Germany.
| |
Collapse
|
146
|
Smits MM, Tonneijck L, Muskiet MHA, Kramer MHH, Cahen DL, van Raalte DH. Gastrointestinal actions of glucagon-like peptide-1-based therapies: glycaemic control beyond the pancreas. Diabetes Obes Metab 2016; 18:224-35. [PMID: 26500045 DOI: 10.1111/dom.12593] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/22/2015] [Accepted: 10/17/2015] [Indexed: 12/23/2022]
Abstract
The gastrointestinal hormone glucagon-like peptide-1 (GLP-1) lowers postprandial glucose concentrations by regulating pancreatic islet-cell function, with stimulation of glucose-dependent insulin and suppression of glucagon secretion. In addition to endocrine pancreatic effects, mounting evidence suggests that several gastrointestinal actions of GLP-1 are at least as important for glucose-lowering. GLP-1 reduces gastric emptying rate and small bowel motility, thereby delaying glucose absorption and decreasing postprandial glucose excursions. Furthermore, it has been suggested that GLP-1 directly stimulates hepatic glucose uptake, and suppresses hepatic glucose production, thereby adding to reduction of fasting and postprandial glucose levels. GLP-1 receptor agonists, which mimic the effects of GLP-1, have been developed for the treatment of type 2 diabetes. Based on their pharmacokinetic profile, GLP-1 receptor agonists can be broadly categorized as short- or long-acting, with each having unique islet-cell and gastrointestinal effects that lower glucose levels. Short-acting agonists predominantly lower postprandial glucose excursions, by inhibiting gastric emptying and intestinal glucose uptake, with little effect on insulin secretion. By contrast, long-acting agonists mainly reduce fasting glucose levels, predominantly by increased insulin and reduced glucagon secretion, with potential additional direct inhibitory effects on hepatic glucose production. Understanding these pharmacokinetic and pharmacodynamic differences may allow personalized antihyperglycaemic therapy in type 2 diabetes. In addition, it may provide the rationale to explore treatment in patients with no or little residual β-cell function.
Collapse
Affiliation(s)
- M M Smits
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - L Tonneijck
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - M H A Muskiet
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - M H H Kramer
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - D L Cahen
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - D H van Raalte
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
147
|
Hansen LS, Sparre-Ulrich AH, Christensen M, Knop FK, Hartmann B, Holst JJ, Rosenkilde MM. N-terminally and C-terminally truncated forms of glucose-dependent insulinotropic polypeptide are high-affinity competitive antagonists of the human GIP receptor. Br J Pharmacol 2016; 173:826-38. [PMID: 26572091 PMCID: PMC4761099 DOI: 10.1111/bph.13384] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 12/25/2022] Open
Abstract
Background and Purpose Glucose‐dependent insulinotropic polypeptide (GIP) affects lipid, bone and glucose homeostasis. High‐affinity ligands for the GIP receptor are needed to elucidate the physiological functions and pharmacological potential of GIP in vivo. GIP(1–30)NH2 is a naturally occurring truncation of GIP(1–42). Here, we have characterized eight N‐terminal truncations of human GIP(1–30)NH2. Experimental Approach COS‐7 cells were transiently transfected with human GIP receptors and assessed for cAMP accumulation upon ligand stimulation or competition binding with 125I‐labelled GIP(1–42), GIP(1–30)NH2, GIP(2–30)NH2 or GIP(3–30)NH2. Key Results GIP(1–30)NH2 displaced 125I‐GIP(1–42) as effectively as GIP(1–42) (Ki 0.75 nM), whereas the eight truncations displayed lower affinities (Ki 2.3–347 nM) with highest affinities for GIP(3–30)NH2 and GIP(5–30)NH2 (5–30)NH2. Only GIP(1–30)NH2 (Emax 100% of GIP(1–42)) and GIP(2–30)NH2 (Emax 20%) were agonists. GIP(2‐ to 9–30)NH2 displayed antagonism (IC50 12–450 nM) and Schild plot analyses identified GIP(3–30)NH2 and GIP(5–30)NH2 as competitive antagonists (Ki 15 nM). GIP(3–30) NH2 was a 26‐fold more potent antagonist than GIP(3–42). Binding studies with agonist (125I‐GIP(1–30)NH2), partial agonist (125I‐GIP(2–30)NH2) and competitive antagonist (125I‐GIP(3–30)NH2) revealed distinct receptor conformations for these three ligand classes. Conclusions and Implications The N‐terminus is crucial for GIP agonist activity. Removal of the C‐terminus of the endogenous GIP(3–42) creates another naturally occurring, more potent, antagonist GIP(3–30)NH2, which like GIP(5–30)NH2, was a high‐affinity competitive antagonist. These peptides may be suitable tools for basic GIP research and future pharmacological interventions.
Collapse
Affiliation(s)
- L S Hansen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - A H Sparre-Ulrich
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Christensen
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - F K Knop
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - B Hartmann
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J J Holst
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M M Rosenkilde
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
148
|
Guo XH. The value of short- and long-acting glucagon-like peptide-1 agonists in the management of type 2 diabetes mellitus: experience with exenatide. Curr Med Res Opin 2016; 32:61-76. [PMID: 26439329 DOI: 10.1185/03007995.2015.1103214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Only about half of patients with type 2 diabetes treated with antihyperglycemic drugs achieve glycemic control (HbA1c <7%), most commonly due to poor treatment adherence. Glucagon-like peptide-1 (GLP-1) receptor agonists act on multiple targets involved in glucose homeostasis and have a low risk of causing hypoglycemia. While GLP-1 receptor (GLP-1R) agonists share the same mechanism of action, clinical profiles of individual agents differ, particularly between short- and long-acting agents. In this article, recent findings regarding the pharmacology of GLP-1 agonists are reviewed, and the clinical effects of short- versus long-acting agents are compared. DATA SOURCES Relevant articles were identified through a search of PubMed using the keywords glucagon-like peptide-1, GLP-1, glucagon-like peptide-1 receptor agonist, GLP-1R agonist, and exenatide for publications up to 22 May 2015. Supporting data were obtained from additional searches for albiglutide, dulaglutide, liraglutide and lixisenatide as well as from the bibliographies of key articles. FINDINGS Short-acting GLP-1R agonists produce greater reductions in postprandial glucose levels by slowing gastric emptying, whereas long-acting GLP-1R agonists produce greater reductions in fasting blood glucose by stimulating insulin secretion from the pancreas. These characteristics can be exploited to provide individualized treatment to patients. A large body of evidence supports the benefits of short- and long-acting exenatide as add-on therapy in patients with inadequate glycemic control despite maximum tolerated doses of metformin and/or sulfonylurea. Exenatide is generally well tolerated and no new safety concerns were identified during long-term follow-up of up to 5 years. A limitation of this review of short-and long-acting GLP-1 receptor agonists is that it focuses on exenatide rather than all the drugs in this class. However, the focus on a single molecule helps to avoid any confusion that may be introduced as a result of differences in molecular structure and size. CONCLUSIONS Short-acting GLP-1R agonists including exenatide are well suited to patients with type 2 diabetes with exaggerated postprandial glucose excursions and for co-administration with basal insulin therapy. Long-acting GLP-1R agonists including once weekly exenatide offer greater convenience and are well suited to patients who require specific control of fasting hyperglycemia.
Collapse
Affiliation(s)
- Xiao-Hui Guo
- a Endocrinology Department , Peking University First Hospital , Beijing , China
| |
Collapse
|
149
|
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are important regulators of insulin and glucagon secretion as well as lipid metabolism and appetite. These biological functions make their respective receptors (GIPR and GLP-1R) attractive targets in the treatment of both type 2 diabetes mellitus (T2DM) and obesity. The use of these native peptides in the treatment of these conditions is limited by their short half-lives. However, long-acting GLP-1R agonists and inhibitors of the enzyme that rapidly inactivates GIP and GLP-1 (dipeptidyl peptidase IV) are in clinical use. Although there is a loss of response to both hormones in T2DM, this effect appears to be more pronounced for GIP. This has made targeting GIPR less successful than GLP-1R. Furthermore, results demonstrating that GIPR knockout mice were resistant to diet-induced obesity suggested that GIPR antagonists may prove to be useful therapeutics. More recently, molecules that activate both receptors have shown promise in terms of glycemic and body weight control. This review focused on recent advances in the understanding of the signaling mechanisms and regulation of these two clinically important receptors.
Collapse
Affiliation(s)
- Suleiman Al-Sabah
- *Dr. Suleiman Al-Sabah, Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
150
|
Gyldenløve M, Vilsbøll T, Zachariae C, Holst JJ, Knop FK, Skov L. Impaired incretin effect is an early sign of glucose dysmetabolism in nondiabetic patients with psoriasis. J Intern Med 2015; 278:660-70. [PMID: 26174490 DOI: 10.1111/joim.12388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Patients with psoriasis have an increased risk of type 2 diabetes. The gastrointestinal system plays a major role in normal glucose metabolism, and in healthy individuals, postprandial insulin secretion is largely mediated by the gut incretin hormones. This potentiation is termed the incretin effect and is reduced in type 2 diabetes. The impact of psoriasis on gastrointestinal factors involved in glucose metabolism has not previously been examined. OBJECTIVE To investigate whether the incretin effect, gastrointestinal-mediated glucose disposal (GIGD) and/or secretion of glucagon and gut incretin hormones are impaired in normal glucose-tolerant patients with psoriasis. METHODS Oral glucose tolerance tests and intravenous isoglycaemic glucose infusions were performed in 12 patients with moderate-to-severe psoriasis and 12 healthy matched control subjects. RESULTS In patients with psoriasis, the incretin effect (39% vs. 57%, P = 0.02) and GIGD (53% vs. 61%, P = 0.04) were significantly reduced compared to control subjects. In addition, patients were glucose intolerant and showed exaggerated glucose-dependent insulinotropic polypeptide responses. CONCLUSION These novel findings support the notion that psoriasis is a prediabetic condition and suggest that gastrointestinal-related mechanisms are involved in the increased susceptibility to type 2 diabetes in patients with psoriasis.
Collapse
Affiliation(s)
- M Gyldenløve
- Department of Dermato-Allergology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - T Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - C Zachariae
- Department of Dermato-Allergology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - J J Holst
- NNF Centre for Basic Metabolic Research, Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - F K Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,NNF Centre for Basic Metabolic Research, Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - L Skov
- Department of Dermato-Allergology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| |
Collapse
|