101
|
Li C, Li C, Zhang AJX, To KKW, Lee ACY, Zhu H, Wu HWL, Chan JFW, Chen H, Hung IFN, Li L, Yuen KY. Avian influenza A H7N9 virus induces severe pneumonia in mice without prior adaptation and responds to a combination of zanamivir and COX-2 inhibitor. PLoS One 2014; 9:e107966. [PMID: 25232731 PMCID: PMC4169509 DOI: 10.1371/journal.pone.0107966] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/16/2014] [Indexed: 12/26/2022] Open
Abstract
Background Human infection caused by the avian influenza A H7N9 virus has a case-fatality rate of over 30%. Systematic study of the pathogenesis of avian H7N9 isolate and effective therapeutic strategies are needed. Methods BALB/c mice were inoculated intranasally with an H7N9 virus isolated from a chicken in a wet market epidemiologically linked to a fatal human case, (A/chicken/Zhejiang/DTID-ZJU01/2013 [CK1]), and with an H7N9 virus isolated from a human (A/Anhui/01/2013 [AH1]). The pulmonary viral loads, cytokine/chemokine profiles and histopathological changes of the infected mice were compared. The therapeutic efficacy of a non-steroidal anti-inflammatory drug (NSAID), celecoxib, was assessed. Results Without prior adaptation, intranasal inoculation of 106 plaque forming units (PFUs) of CK1 caused a mortality rate of 82% (14/17) in mice. Viral nucleoprotein and RNA expression were limited to the respiratory system and no viral RNA could be detected from brain, liver and kidney tissues. CK1 caused heavy alveolar inflammatory exudation and pulmonary hemorrhage, associated with high pulmonary levels of proinflammatory cytokines. In the mouse lung cell line LA-4, CK1 also induced high levels of interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) mRNA. Administration of the antiviral zanamivir did not significantly improve survival in mice infected with CK1, but co-administration of the non-steroidal anti-inflammatory drug (NSAID) celecoxib in combination with zanamivir improved survival and lung pathology. Conclusions Our findings suggested that H7N9 viruses isolated from chicken without preceding trans-species adaptation can cause lethal mammalian pulmonary infection. The severe proinflammatory responses might be a factor contributing to the mortality. Treatment with combination of antiviral and NSAID could ameliorate pulmonary inflammation and may improve survival.
Collapse
MESH Headings
- Adaptation, Physiological/immunology
- Animals
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Cell Line
- Cyclooxygenase 2/metabolism
- Cyclooxygenase 2 Inhibitors/pharmacology
- Cyclooxygenase 2 Inhibitors/therapeutic use
- Cytokines/metabolism
- Drug Evaluation, Preclinical
- Drug Synergism
- Drug Therapy, Combination
- Female
- Humans
- Influenza A Virus, H7N9 Subtype/drug effects
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/physiology
- Lung/pathology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/immunology
- Pneumonia, Viral/virology
- Virus Replication
- Zanamivir/pharmacology
- Zanamivir/therapeutic use
Collapse
Affiliation(s)
- Can Li
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Chuangen Li
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Anna J. X. Zhang
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- * E-mail: (K-YY); (AJXZ)
| | - Kelvin K. W. To
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
| | - Andrew C. Y. Lee
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Houshun Zhu
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hazel W. L. Wu
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Jasper F. W. Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
| | - Honglin Chen
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Zhejiang University, Hangzhou, China
| | - Ivan F. N. Hung
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Zhejiang University, Hangzhou, China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Zhejiang University, Hangzhou, China
- * E-mail: (K-YY); (AJXZ)
| |
Collapse
|
102
|
Si Y, Li J, Niu Y, Liu X, Ren L, Guo L, Cheng M, Zhou H, Wang J, Jin Q, Yang W. Entry properties and entry inhibitors of a human H7N9 influenza virus. PLoS One 2014; 9:e107235. [PMID: 25222852 PMCID: PMC4164620 DOI: 10.1371/journal.pone.0107235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/08/2014] [Indexed: 11/18/2022] Open
Abstract
The recently identified human infections with a novel avian influenza H7N9 virus in China raise important questions regarding possible risk to humans. However, the entry properties and tropism of this H7N9 virus were poorly understood. Moreover, neuraminidase inhibitor resistant H7N9 isolates were recently observed in two patients and correlated with poor clinical outcomes. In this study, we aimed to elucidate the entry properties of H7N9 virus, design and evaluate inhibitors for H7N9 virus entry. We optimized and developed an H7N9-pseudotyped particle system (H7N9pp) that could be neutralized by anti-H7 antibodies and closely mimicked the entry process of the H7N9 virus. Avian, human and mouse-derived cultured cells showed high, moderate and low permissiveness to H7N9pp, respectively. Based on influenza virus membrane fusion mechanisms, a potent anti-H7N9 peptide (P155-185-chol) corresponding to the C-terminal ectodomain of the H7N9 hemagglutinin protein was successfully identified. P155-185-chol demonstrated H7N9pp-specific inhibition of infection with IC50 of 0.19 µM. Importantly, P155-185-chol showed significant suppression of A/Anhui/1/2013 H7N9 live virus propagation in MDCK cells and additive effects with NA inhibitors Oseltamivir and Zanamivir. These findings expand our knowledge of the entry properties of the novel H7N9 viruses, and they highlight the potential for developing a new class of inhibitors targeting viral entry for use in the next pandemic.
Collapse
Affiliation(s)
- Youhui Si
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianguo Li
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuqiang Niu
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiuying Liu
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lili Ren
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Guo
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Cheng
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongli Zhou
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (WY); (QJ); (JW)
| | - Qi Jin
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (WY); (QJ); (JW)
| | - Wei Yang
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (WY); (QJ); (JW)
| |
Collapse
|
103
|
Mutations to PB2 and NP proteins of an avian influenza virus combine to confer efficient growth in primary human respiratory cells. J Virol 2014; 88:13436-46. [PMID: 25210184 DOI: 10.1128/jvi.01093-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Influenza pandemics occur when influenza A viruses (IAV) adapted to other host species enter humans and spread through the population. Pandemics are relatively rare due to host restriction of IAV: strains adapted to nonhuman species do not readily infect, replicate in, or transmit among humans. IAV can overcome host restriction through reassortment or adaptive evolution, and these are mechanisms by which pandemic strains arise in nature. To identify mutations that facilitate growth of avian IAV in humans, we have adapted influenza A/duck/Alberta/35/1976 (H1N1) (dk/AB/76) virus to a high-growth phenotype in differentiated human tracheo-bronchial epithelial (HTBE) cells. Following 10 serial passages of three independent lineages, the bulk populations showed similar growth in HTBE cells to that of a human seasonal virus. The coding changes present in six clonal isolates were determined. The majority of changes were located in the polymerase complex and nucleoprotein (NP), and all isolates carried mutations in the PB2 627 domain and regions of NP thought to interact with PB2. Using reverse genetics, the impact on growth and polymerase activity of individual and paired mutations in PB2 and NP was evaluated. The results indicate that coupling of the mammalian-adaptive mutation PB2 E627K or Q591K to selected mutations in NP further augments the growth of the corresponding viruses. In addition, minimal combinations of three (PB2 Q236H, E627K, and NP N309K) or two (PB2 Q591K and NP S50G) mutations were sufficient to recapitulate the efficient growth in HTBE cells of dk/AB/76 viruses isolated after 10 passages in this substrate. IMPORTANCE Influenza A viruses adapted to birds do not typically grow well in humans. However, as has been seen recently with H5N1 and H7N9 subtype viruses, productive and virulent infection of humans with avian influenza viruses can occur. The ability of avian influenza viruses to adapt to new host species is a consequence of their high mutation rate that supports their zoonotic potential. Understanding of the adaptation of avian viruses to mammals strengthens public health efforts aimed at controlling influenza. In particular, it is critical to know how readily and through mutation to which functional components avian influenza viruses gain the ability to grow efficiently in humans. Our data show that as few as three mutations, in the PB2 and NP proteins, support robust growth of a low-pathogenic, H1N1 duck isolate in primary human respiratory cells.
Collapse
|
104
|
Sakurai A, Takayama K, Nomura N, Yamamoto N, Sakoda Y, Kobayashi Y, Kida H, Shibasaki F. Multi-colored immunochromatography using nanobeads for rapid and sensitive typing of seasonal influenza viruses. J Virol Methods 2014; 209:62-8. [PMID: 25218175 DOI: 10.1016/j.jviromet.2014.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/19/2014] [Accepted: 08/28/2014] [Indexed: 12/09/2022]
Abstract
Immunochromatography (IC) is an antigen-detection assay that plays an important role in the rapid diagnosis of influenza viruses because of its rapid turnaround and ease of use. Despite the usefulness of IC, the limit of detection of common IC kits is as high as 10(3)-10(4) plaque forming units (pfu) per reaction, resulting in their limited sensitivities. Early diagnosis within 24h would provide more appropriate timing of treatment. In this study, a multi-colored NanoAct™ bead IC was established to detect seasonal influenza viruses. This method has approximately 10-fold higher sensitivity than that of colloidal gold or colored latex bead IC assays, and does not require specific instruments. More notably, NanoAct™ bead IC can distinguish influenza A and B viruses from clinical samples with a straightforward readout composed of colored lines. Our results will provide new strategies for the diagnosis, treatment, and a chance to survey of influenza viruses in developing countries and in the field research.
Collapse
Affiliation(s)
- Akira Sakurai
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | - Namiko Nomura
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Naoki Yamamoto
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan
| | | | - Hiroshi Kida
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan
| | - Futoshi Shibasaki
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
105
|
Marjuki H, Mishin VP, Chesnokov AP, Jones J, De La Cruz JA, Sleeman K, Tamura D, Nguyen HT, Wu HS, Chang FY, Liu MT, Fry AM, Cox NJ, Villanueva JM, Davis CT, Gubareva LV. Characterization of drug-resistant influenza A(H7N9) variants isolated from an oseltamivir-treated patient in Taiwan. J Infect Dis 2014; 211:249-57. [PMID: 25124927 DOI: 10.1093/infdis/jiu447] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Patients contracting influenza A(H7N9) infection often developed severe disease causing respiratory failure. Neuraminidase (NA) inhibitors (NAIs) are the primary option for treatment, but information on drug-resistance markers for influenza A(H7N9) is limited. METHODS Four NA variants of A/Taiwan/1/2013(H7N9) virus containing a single substitution (NA-E119V, NA-I222K, NA-I222R, or NA-R292K) recovered from an oseltamivir-treated patient were tested for NAI susceptibility in vitro; their replicative fitness was evaluated in cell culture, mice, and ferrets. RESULTS NA-R292K led to highly reduced inhibition by oseltamivir and peramivir, while NA-E119V, NA-I222K, and NA-I222R caused reduced inhibition by oseltamivir. Mice infected with any virus showed severe clinical signs with high mortality rates. NA-I222K virus was the most virulent in mice, whereas virus lacking NA change (NA-WT) and NA-R292K virus seemed the least virulent. Sequence analysis suggests that PB2-S714N increased virulence of NA-I222K virus in mice; NS1-K126R, alone or in combination with PB2-V227M, produced contrasting effects in NA-WT and NA-R292K viruses. In ferrets, all viruses replicated to high titers in the upper respiratory tract but produced only mild illness. NA-R292K virus, showed reduced replicative fitness in this animal model. CONCLUSIONS Our data highlight challenges in assessment of the replicative fitness of H7N9 NA variants that emerged in NAI-treated patients.
Collapse
Affiliation(s)
- Henju Marjuki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention
| | - Vasiliy P Mishin
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention
| | - Anton P Chesnokov
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention Battelle Memorial Institute, Atlanta, Georgia
| | - Joyce Jones
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention
| | - Juan A De La Cruz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention Battelle Memorial Institute, Atlanta, Georgia
| | - Katrina Sleeman
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention
| | - Daisuke Tamura
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention Oak Ridge Institute for Science and Education, Tennessee
| | - Ha T Nguyen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention Battelle Memorial Institute, Atlanta, Georgia
| | - Ho-Sheng Wu
- Taiwan Centers for Disease Control, Taipei City
| | | | | | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention
| | - Nancy J Cox
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention
| | - Julie M Villanueva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention
| | - Charles T Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention
| | - Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention
| |
Collapse
|
106
|
Influenza virus A/Anhui/1/2013 (H7N9) replicates efficiently in the upper and lower respiratory tracts of cynomolgus macaques. mBio 2014; 5:mBio.01331-14. [PMID: 25118237 PMCID: PMC4145683 DOI: 10.1128/mbio.01331-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In March 2013, three fatal human cases of infection with influenza A virus (H7N9) were reported in China. Since then, human cases have been accumulating. Given the public health importance of this virus, we performed a pathogenicity study of the H7N9 virus in the cynomolgus macaque model, focusing on clinical aspects of disease, radiographic, histological, and gene expression profile changes in the upper and lower respiratory tracts, and changes in systemic cytokine and chemokine profiles during infection. Cynomolgus macaques developed transient, mild to severe disease with radiographic evidence of pulmonary infiltration. Virus replicated in the upper as well as lower respiratory tract, with sustained replication in the upper respiratory tract until the end of the experiment at 6 days after inoculation. Virus shedding occurred mainly via the throat. Histopathological changes in the lungs were similar to those observed in humans, albeit less severe, with diffuse alveolar damage, infiltration of polymorphonuclear cells, formation of hyaline membranes, pneumocyte hyperplasia, and fibroproliferative changes. Analysis of gene expression profiles in lung lesions identified pathways involved in tissue damage during H7N9 infection as well as leads for development of therapeutics targeting host responses rather than virus replication. Overall, H7N9 infection was not as severe in cynomolgus macaques as in humans, supporting the possible role of underlying medical complications in disease severity as discussed for human H7N9 infection (H. N. Gao et al., N. Engl. J. Med. 368:2277–2285, 2013, doi:10.1056/NEJMoa1305584). Influenza A virus H7N9 emerged early in 2013, and human cases have continued to emerge since then. Although H7N9 virus-induced disease in humans is often very severe and even lethal, the majority of reported H7N9 cases occurred in older people and people with underlying medical conditions. To better understand the pathogenicity of this virus, healthy cynomolgus macaques were inoculated with influenza A virus H7N9. Cynomolgus macaques were used as a model because the receptor distribution for H7N9 virus in macaques was recently shown to be more similar to that in humans than that of other frequently used animal models. From comparison with previous studies, we conclude that the emerging H7N9 influenza virus was more pathogenic in cynomolgus macaques than seasonal influenza A viruses and most isolates of the pandemic H1N1 virus but less pathogenic than the 1918 Spanish influenza virus or highly pathogenic avian influenza (HPAI) H5N1 virus.
Collapse
|
107
|
Glycan receptor specificity as a useful tool for characterization and surveillance of influenza A virus. Trends Microbiol 2014; 22:632-41. [PMID: 25108746 DOI: 10.1016/j.tim.2014.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 01/28/2023]
Abstract
Influenza A viruses are rapidly evolving pathogens with the potential for novel strains to emerge and result in pandemic outbreaks in humans. Some avian-adapted subtypes have acquired the ability to bind to human glycan receptors and cause severe infections in humans but have yet to adapt to and transmit between humans. The emergence of new avian strains and their ability to infect humans has confounded their distinction from circulating human virus strains through linking receptor specificity to human adaptation. Herein we review the various structural and biochemical analyses of influenza hemagglutinin-glycan receptor interactions. We provide our perspectives on how receptor specificity can be used to monitor evolution of the virus to adapt to human hosts so as to facilitate improved surveillance and pandemic preparedness.
Collapse
|
108
|
Epidemiological situation and genetic analysis of H7N9 influenza viruses in Shanghai in 2013. Arch Virol 2014; 159:3029-41. [PMID: 25085623 DOI: 10.1007/s00705-014-2177-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/30/2014] [Indexed: 01/15/2023]
Abstract
The first reported human case of H7N9 influenza virus infection in Shanghai prompted a survey of local avian strains of influenza virus, involving the analysis of a large number of samples taken from poultry, wild birds, horses, pigs, dogs and mice. Seven instances of H7N9 virus infection were identified by real-time RT-PCR (1.47 % of samples), all in chickens sold in live-poultry markets. H7N9 antibody was not detected in serum samples collected from local poultry farms since 2006. The two H7N9 virus strains in the live-poultry markets and one H9N2 virus strain in the same market were genetically characterized. Resequencing of two of the seven isolates confirmed that they closely resembled H7N9 virus strains characterized elsewhere. Various strains co-exist in the same market, presenting a continuing risk of strain re-assortment. The closure of live-poultry markets has been an effective short-term means of minimizing human exposure to H7N9 virus.
Collapse
|
109
|
Kalthoff D, Bogs J, Grund C, Tauscher K, Teifke JP, Starick E, Harder T, Beer M. Avian influenza H7N9/13 and H7N7/13: a comparative virulence study in chickens, pigeons, and ferrets. J Virol 2014; 88:9153-65. [PMID: 24899194 PMCID: PMC4136250 DOI: 10.1128/jvi.01241-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/28/2014] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Human influenza cases caused by a novel avian H7N9 virus in China emphasize the zoonotic potential of that subtype. We compared the infectivity and pathogenicity of the novel H7N9 virus with those of a recent European avian H7N7 strain in chickens, pigeons, and ferrets. Neither virus induced signs of disease despite substantial replication in inoculated chickens and rapid transmission to contact chickens. Evidence of the replication of both viruses in pigeons, albeit at lower levels of RNA excretion, was also detected. No clear-cut differences between the two H7 isolates emerged regarding replication and antibody development in avian hosts. In ferrets, in contrast, greater replication of the avian H7N9 virus than of the H7N7 strain was observed with significant differences in viral presence, e.g., in nasal wash, lung, and cerebellum samples. Importantly, both viruses showed the potential to spread to the mammal brain. We conclude that efficient asymptomatic viral replication and shedding, as shown in chickens, facilitate the spread of H7 viruses that may harbor zoonotic potential. Biosafety measures are required for the handling of poultry infected with avian influenza viruses of the H7 subtype, independently of their pathogenicity for gallinaceous poultry. IMPORTANCE This study is important to the field since it provides data about the behavior of the novel H7N9 avian influenza virus in chickens, pigeons, and ferrets in comparison with that of a recent low-pathogenicity H7N7 strain isolated from poultry. We clearly show that chickens, but not pigeons, are highly permissive hosts of both H7 viruses, allowing high-titer replication and virus shedding without any relevant clinical signs. In the ferret model, the potential of both viruses to infect mammals could be demonstrated, including infection of the brain. However, the replication efficiency of the H7N9 virus in ferrets was higher than that of the H7N7 strain. In conclusion, valuable data for the risk analysis of low-pathogenicity avian influenza viruses of the H7 subtype are provided that could also be used for the risk assessment of zoonotic potentials and necessary biosafety measures.
Collapse
Affiliation(s)
- Donata Kalthoff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jessica Bogs
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kerstin Tauscher
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jens P Teifke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Elke Starick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
110
|
A single amino acid substitution in the novel H7N9 influenza A virus NS1 protein increases CPSF30 binding and virulence. J Virol 2014; 88:12146-51. [PMID: 25078692 PMCID: PMC4178744 DOI: 10.1128/jvi.01567-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although an effective interferon antagonist in human and avian cells, the novel H7N9 influenza virus NS1 protein is defective at inhibiting CPSF30. An I106M substitution in H7N9 NS1 can restore CPSF30 binding together with the ability to block host gene expression. Furthermore, a recombinant virus expressing H7N9 NS1-I106M replicates to higher titers in vivo, and is subtly more virulent, than the parental virus. Natural polymorphisms in H7N9 NS1 that enhance CPSF30 binding may be cause for concern.
Collapse
|
111
|
Dengler L, Kühn N, Shin DL, Hatesuer B, Schughart K, Wilk E. Cellular changes in blood indicate severe respiratory disease during influenza infections in mice. PLoS One 2014; 9:e103149. [PMID: 25058639 PMCID: PMC4110021 DOI: 10.1371/journal.pone.0103149] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/27/2014] [Indexed: 12/23/2022] Open
Abstract
Influenza A infection is a serious threat to human and animal health. Many of the biological mechanisms of the host-pathogen-interactions are still not well understood and reliable biomarkers indicating the course of the disease are missing. The mouse is a valuable model system enabling us to study the local inflammatory host response and the influence on blood parameters under controlled circumstances. Here, we compared the lung and peripheral changes after PR8 (H1N1) influenza A virus infection in C57BL/6J and DBA/2J mice using virus variants of different pathogenicity resulting in non-lethal and lethal disease. We monitored hematological and immunological parameters revealing that the granulocyte to lymphocyte ratio in the blood represents an early indicator of severe disease progression already two days after influenza A infection in mice. These findings might be relevant to optimize early diagnostic options of severe influenza disease and to monitor successful therapeutic treatment in humans.
Collapse
Affiliation(s)
- Leonie Dengler
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nora Kühn
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dai-Lun Shin
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bastian Hatesuer
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- University of Veterinary Medicine Hannover, Hannover, Germany
- University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| | - Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
112
|
Rajapaksha H, Petrovsky N. In silico structural homology modelling and docking for assessment of pandemic potential of a novel H7N9 influenza virus and its ability to be neutralized by existing anti-hemagglutinin antibodies. PLoS One 2014; 9:e102618. [PMID: 25047593 PMCID: PMC4105636 DOI: 10.1371/journal.pone.0102618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 06/22/2014] [Indexed: 11/26/2022] Open
Abstract
The unpredictable nature of pandemic influenza and difficulties in early prediction of pandemic potential of new isolates present a major challenge for health planners. Vaccine manufacturers, in particular, are reluctant to commit resources to development of a new vaccine until after a pandemic is declared. We hypothesized that a structural bioinformatics approach utilising homology-based molecular modelling and docking approaches would assist prediction of pandemic potential of new influenza strains alongside more traditional laboratory and sequence-based methods. The newly emerged Chinese A/Hangzhou/1/2013 (H7N9) influenza virus provided a real-life opportunity to test this hypothesis. We used sequence data and a homology-based approach to construct a 3D-structural model of H7-Hangzhou hemagglutinin (HA) protein. This model was then used to perform docking to human and avian sialic acid receptors to assess respective binding affinities. The model was also used to perform docking simulations with known neutralizing antibodies to assess their ability to neutralize the newly emerged virus. The model predicted H7N9 could bind to human sialic acid receptors thereby indicating pandemic potential. The model also confirmed that existing antibodies against the HA head region are unable to neutralise H7N9 whereas antibodies, e.g. Cr9114, targeting the HA stalk region should bind with high affinity to H7N9. This indicates that existing stalk antibodies initially raised against H5N1 or other influenza A viruses could be therapeutically beneficial in prevention and/or treatment of H7N9 infections. The subsequent publication of the H7N9 HA crystal structure confirmed the accuracy of our in-silico structural model. Antibody docking studies performed using the H7N9 HA crystal structure supported the model's prediction that existing stalk antibodies could cross-neutralise the H7N9 virus. This study demonstrates the value of using in-silico structural modelling approaches to complement physical studies in characterization of new influenza viruses.
Collapse
Affiliation(s)
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, Adelaide, South Australia, Australia
- Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide, South Australia, Australia
- Vaxine Pty Ltd, Flinders Medical Centre/Flinders University, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
113
|
Linster M, van Boheemen S, de Graaf M, Schrauwen EJA, Lexmond P, Mänz B, Bestebroer TM, Baumann J, van Riel D, Rimmelzwaan GF, Osterhaus ADME, Matrosovich M, Fouchier RAM, Herfst S. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell 2014; 157:329-339. [PMID: 24725402 DOI: 10.1016/j.cell.2014.02.040] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022]
Abstract
Recently, A/H5N1 influenza viruses were shown to acquire airborne transmissibility between ferrets upon targeted mutagenesis and virus passage. The critical genetic changes in airborne A/Indonesia/5/05 were not yet identified. Here, five substitutions proved to be sufficient to determine this airborne transmission phenotype. Substitutions in PB1 and PB2 collectively caused enhanced transcription and virus replication. One substitution increased HA thermostability and lowered the pH of membrane fusion. Two substitutions independently changed HA binding preference from α2,3-linked to α2,6-linked sialic acid receptors. The loss of a glycosylation site in HA enhanced overall binding to receptors. The acquired substitutions emerged early during ferret passage as minor variants and became dominant rapidly. Identification of substitutions that are essential for airborne transmission of avian influenza viruses between ferrets and their associated phenotypes advances our fundamental understanding of virus transmission and will increase the value of future surveillance programs and public health risk assessments.
Collapse
Affiliation(s)
- Martin Linster
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Sander van Boheemen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Eefje J A Schrauwen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Benjamin Mänz
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Jan Baumann
- Institute of Virology, Philipps-University, 35043 Marburg, Germany
| | - Debby van Riel
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Albert D M E Osterhaus
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands.
| | - Sander Herfst
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| |
Collapse
|
114
|
Adaptation of a natural reassortant H5N2 avian influenza virus in mice. Vet Microbiol 2014; 172:568-74. [PMID: 25037995 DOI: 10.1016/j.vetmic.2014.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 01/27/2023]
Abstract
It is reported that the H5N2 highly pathogenic avian influenza virus A/chicken/Hebei/1102/2010 (HB10) is a natural reassortant between circulating H5N1 and endemic H9N2 influenza viruses. To evaluate the potential of its interspecies transmission, the wild-type HB10 was adapted in mice through serial lung passages. Increased virulence was detectable in 5 sequential lung passages in mice and a highly virulent mouse-adapted strain (HB10-MA) with a 50% mouse lethal dose of 10(2.5) 50% egg infectious dose was obtained in 15 passages. The virulence and the replication efficiency of HB10-MA in mice were significantly higher than those of HB10 while HB10-MA grew faster and to significantly higher titers than HB10 in MDCK and A549 cells. Only five amino acid mutations in four viral proteins (HA-S227N, PB2-Q591K, PB2-D701N, PA-I554V and NP-R351K) of HB10-MA virus were found when compared with those of HB10, indicating that they may be responsible for the adaptation of the novel reassortant H5N2 avian influenza virus in mice with increased virulence and replication efficiency. The results in this study provide helpful insights into the pathogenic potential of novel reassortant H5N2 viruses to mammals that deserves further attentions.
Collapse
|
115
|
Xiao XC, Li KB, Chen ZQ, Di B, Yang ZC, Yuan J, Luo HB, Ye SL, Liu H, Lu JY, Nie Z, Tang XP, Wang M, Zheng BJ. Transmission of avian influenza A(H7N9) virus from father to child: a report of limited person-to-person transmission, Guangzhou, China, January 2014. ACTA ACUST UNITED AC 2014; 19. [PMID: 24993555 DOI: 10.2807/1560-7917.es2014.19.25.20837] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated a possible person-to-person transmission within a family cluster of two confirmed influenza A(H7N9) patients in Guangzhou, China. The index case, a man in his late twenties, worked in a wet market that was confirmed to be contaminated by the influenza A(H7N9) virus. He developed a consistent fever and severe pneumonia after 4 January 2014. In contrast, the second case, his five-year-old child, who only developed a mild disease 10 days after disease onset of the index case, did not have any contact with poultry and birds but had unprotected and very close contact with the index case. The sequences of the haemagglutinin (HA) genes of the virus stains isolated from the two cases were 100% identical. These findings strongly suggest that the second case might have acquired the infection via transmission of the virus from the sick father. Fortunately, all 40 close contacts, including the other four family members who also had unprotected and very close contact with the cases, did not acquire influenza A(H7N9) virus infection, indicating that the person-to-person transmissibility of the virus remained limited. Our finding underlines the importance of carefully, thoroughly and punctually following-up close contacts of influenza A(H7N9) cases to allow detection of any secondary cases, as these may constitute an early warning signal of the virus's increasing ability to transmit from person-to-person.
Collapse
Affiliation(s)
- X C Xiao
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Molecular mechanism of the airborne transmissibility of H9N2 avian influenza A viruses in chickens. J Virol 2014; 88:9568-78. [PMID: 24920791 DOI: 10.1128/jvi.00943-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED H9N2 avian influenza virus has been prevalent in poultry in many parts of the world since the 1990s and occasionally crosses the host barrier, transmitting to mammals, including humans. In recent years, these viruses have contributed genes to H5N1 and H7N9 influenza viruses, threatening public health. To explore the molecular mechanism for the airborne transmission of H9N2 virus, we compared two genetically close strains isolated from chickens in 2001, A/chicken/Shanghai/7/2001(SH7) and A/chicken/Shanghai/14/2001 (SH14). SH7 is airborne transmissible between chickens, whereas SH14 is not. We used reverse genetics and gene swapping to derive recombinant SH7 (rSH7), rSH14, and a panel of reassortant viruses. Among the reassortant viruses, we identified segments HA and PA as governing the airborne transmission among chickens. In addition, the NP and NS genes also contributed to a lesser extent. Furthermore, the mutational analyses showed the transmissibility phenotype predominantly mapped to the HA and PA genes, with HA-K363 and PA-L672 being important for airborne transmissibility among chickens. In addition, the viral infectivity and acid stability are related to the airborne transmissibility. Importantly, airborne transmission studies of 18 arbitrarily chosen H9N2 viruses from our collections confirmed the importance of both 363K in HA and 672L in PA in determining their levels of transmissibility. Our finding elucidates the genetic contributions to H9N2 transmissibility in chickens and highlights the importance of their prevalence in poultry. IMPORTANCE Our study investigates the airborne transmissibility of H9N2 viruses in chickens and the subsequent epidemic. H9N2 virus is the donor for several prevalent reassortant influenza viruses, such as H7N9/2013 and the H5N1 viruses. Poultry as the reservoir hosts of influenza virus is closely associated with human society. Airborne transmission is an efficient pathway for influenza virus transmission among flocks and individuals. Exploring the mechanism of the airborne transmission of the H9N2 virus in chickens could provide essential data regarding prevention and control of influenza endemics and pandemics.
Collapse
|
117
|
Low infectivity of a novel avian-origin H7N9 influenza virus in pigs. Arch Virol 2014; 159:2745-9. [PMID: 24906526 DOI: 10.1007/s00705-014-2143-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
Abstract
We studied the pathogenesis and transmissibility of a novel avian-origin H7N9 influenza virus in pigs. When pigs were infected with H7N9 influenza virus, they did not show any clear clinical signs (such as sneezing, fever and loss of body weight), and they shed viruses through their noses for 2 days after infection. No transmission occurred between infected and naïve pigs. Pigs suffered from mild pneumonia, which was accompanied by the induction of inflammatory cytokines and chemokines such as IL-8 and CCL1. Taken together, our results suggest that pigs may not play an active role in transmitting H7N9 influenza virus to mammals.
Collapse
|
118
|
Molecular epidemiology and evolution of A(H1N1)pdm09 and H3N2 virus during winter 2012-2013 in Beijing, China. INFECTION GENETICS AND EVOLUTION 2014; 26:228-40. [PMID: 24911284 DOI: 10.1016/j.meegid.2014.05.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/12/2014] [Accepted: 05/30/2014] [Indexed: 12/12/2022]
Abstract
In order to evaluate the epidemiology of influenza A and its surface antigens (haemagglutinin [HA] and neuraminidase [NA]) for molecular epidemiology and evolution analysis during winter 2012-2013 in Beijing, China, we worked within the framework of the Chinese National Influenza Center and collected nasal swabs of patients presenting with influenza-like illness. We found that both A(H1N1)pdm09 (46.8%) and H3N2 (53.2%) viruses were the predominant strains during the 2012-2013 influenza epidemic. The peak phase started at the second week of 2013 and lasted about 1month. We obtained HA and NA sequences of viruses from 44 patients by using Sanger sequencing. None of the strains had the oseltamivir resistance site H274Y. Phylogenetic analysis of 29 A(H1N1)pdm09 viruses showed a genetic drift from the vaccine strain A/California/07/2009 with mutations (H155Q/R and L178I) at the antigenic sites Ca and Sa of HA; the strains were classified into genetic groups 6 and 7 because of the presence of D114N, S160G, S202T, and A214T mutations in HA. H3N2 viruses formed seasonal phylogenetic clusters representative for each season from 2000 to 2013; 15 of the 2012-2013 H3N2 strains were assigned to the A/Victoria/361/2011 genetic clade with mutations at the antigenic sites A, B and C of HA, including R158K/G, N161S, Q172H, and N294K; the 2012-2013 strains with V239I, S61N, T64I, and A214S HA mutations were classified into subgroup 3C. The mutation of potential N-linked glycosylation residues at the antigenic sites of HA and around the enzymatic active center of NA may have increased viral pathogenicity by masking antigenic sites from immune recognition. Our data suggest that influenza vaccines are generally effective, but still provide suboptimal protection due to antigenic variation. This study increases the understanding of influenza A viruses in humans and is informative for future vaccine strain selection.
Collapse
|
119
|
Accuracy of epidemiological inferences based on publicly available information: retrospective comparative analysis of line lists of human cases infected with influenza A(H7N9) in China. BMC Med 2014; 12:88. [PMID: 24885692 PMCID: PMC4066833 DOI: 10.1186/1741-7015-12-88] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/10/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Appropriate public health responses to infectious disease threats should be based on best-available evidence, which requires timely reliable data for appropriate analysis. During the early stages of epidemics, analysis of 'line lists' with detailed information on laboratory-confirmed cases can provide important insights into the epidemiology of a specific disease. The objective of the present study was to investigate the extent to which reliable epidemiologic inferences could be made from publicly-available epidemiologic data of human infection with influenza A(H7N9) virus. METHODS We collated and compared six different line lists of laboratory-confirmed human cases of influenza A(H7N9) virus infection in the 2013 outbreak in China, including the official line list constructed by the Chinese Center for Disease Control and Prevention plus five other line lists by HealthMap, Virginia Tech, Bloomberg News, the University of Hong Kong and FluTrackers, based on publicly-available information. We characterized clinical severity and transmissibility of the outbreak, using line lists available at specific dates to estimate epidemiologic parameters, to replicate real-time inferences on the hospitalization fatality risk, and the impact of live poultry market closure. RESULTS Demographic information was mostly complete (less than 10% missing for all variables) in different line lists, but there were more missing data on dates of hospitalization, discharge and health status (more than 10% missing for each variable). The estimated onset to hospitalization distributions were similar (median ranged from 4.6 to 5.6 days) for all line lists. Hospital fatality risk was consistently around 20% in the early phase of the epidemic for all line lists and approached the final estimate of 35% afterwards for the official line list only. Most of the line lists estimated >90% reduction in incidence rates after live poultry market closures in Shanghai, Nanjing and Hangzhou. CONCLUSIONS We demonstrated that analysis of publicly-available data on H7N9 permitted reliable assessment of transmissibility and geographical dispersion, while assessment of clinical severity was less straightforward. Our results highlight the potential value in constructing a minimum dataset with standardized format and definition, and regular updates of patient status. Such an approach could be particularly useful for diseases that spread across multiple countries.
Collapse
|
120
|
Gong Z, Lv H, Ding H, Han J, Sun J, Chai C, Cai J, Yu Z, Chen E. Epidemiology of the avian influenza A (H7N9) outbreak in Zhejiang Province, China. BMC Infect Dis 2014; 14:244. [PMID: 24886478 PMCID: PMC4028008 DOI: 10.1186/1471-2334-14-244] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 04/30/2014] [Indexed: 11/27/2022] Open
Abstract
Background A novel influenza A virus infection was identified on March 31, 2013 in China and a total of 134 cases were identified in 12 provinces of China between March 25 and September 31, 2013. Of these, 46 cases occurred in Zhejiang Province and the number of patients is the largest in China. Methods Field investigations were conducted for each confirmed H7N9 case. A standardized questionnaire was used to collect information about demographics, exposure history, clinical signs and symptoms, timelines of medical visits and care after onset of illness, and close contacts. Descriptive statistics were used to analyze the epidemiological and clinical characteristics. Samples from the patients were collected and tested by real time reverse transcriptase-polymerase chain reaction and viral culture. Results A total of 46 laboratory confirmed cases of H7N9 influenza infection were identified in the Zhejiang province between March 31 and September 31, 2013 of which 29 were male and 17 were female. The median age of patients was 61.5 years and 76.09% of cases occurred in persons aged ≥50 years old. Unlike other province, 34.78% of cases in Zhejiang Province were rural residents. Among 11 deaths, 9 were male, 10 were older than 60 years old, and 10 had underlying diseases. 30 of 38 cases with available data had a recent history of poultry exposures and 8 cases had multi-exposure history. The estimated median incubation period was two days which was shorter than corresponding data in other provinces. All cases were hospitalized and the median time from illness onset to hospitalization was 5 days. Symptoms at the onset of the illness included fever, cough, expectoration, shivering, fatigue, muscular aches, nausea, vomiting. Only 4.91% contacts developed respiratory symptoms, but their samples were tested negative for H7N9 virus designating lack of human-to-human transmission of the virus. Conclusions All cases were sporadic and there was no evidence of an epidemiologic link between them. Control measures including closing affected poultry and slaughtering backyard poultry are needed not only in urban areas but also in rural areas to reduce human H7N9 infection risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Enfu Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| |
Collapse
|
121
|
Abstract
Influenza virus remains one of the most important disease-causing viruses owing to its high adaptability and even higher contagious nature. Thus, it poses a constant threat of pandemic, engulfing a large population within the smallest possible time interval. A similar threat was anticipated with the identification of the novel H7N9 virus in China on 30 March 2013. Detection of transmission of the virus between humans has caused a stir with the identification of family clusters along with sporadic infections all across China. In this review we analyze the potential of the novel H7N9 virus as a probable cause of a pandemic and the possible consequences thereof.
Collapse
Affiliation(s)
- Himani Nailwal
- a Virology Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
122
|
Analysis of recombinant H7N9 wild-type and mutant viruses in pigs shows that the Q226L mutation in HA is important for transmission. J Virol 2014; 88:8153-65. [PMID: 24807722 DOI: 10.1128/jvi.00894-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The fact that there have been more than 300 human infections with a novel avian H7N9 virus in China indicates that this emerging strain has pandemic potential. Furthermore, many of the H7N9 viruses circulating in animal reservoirs contain putative mammalian signatures in the HA and PB2 genes that are believed to be important in the adaptation of other avian strains to humans. To date, the definitive roles of these mammalian-signature substitutions in transmission and pathogenesis of H7N9 viruses remain unclear. To address this we analyzed the biological characteristics, pathogenicity, and transmissibility of A/Anhui/1/2013 (H7N9) virus and variants in vitro and in vivo using a synthetically created wild-type virus (rAnhui-WT) and two mutants (rAnhui-HA-226Q and rAnhui-PB2-627E). All three viruses replicated in lungs of intratracheally inoculated pigs, yet nasal shedding was limited. The rAnhui-WT and rAnhui-PB2-627E viruses were transmitted to contact animals. In contrast, the rAnhui-HA-226Q virus was not transmitted to sentinel pigs. Deep sequencing of viruses from the lungs of infected pigs identified substitutions arising in the viral population (e.g., PB2-T271A, PB2-D701N, HA-V195I, and PB2-E627K reversion) that may enhance viral replication in pigs. Collectively, the results demonstrate that critical mutations (i.e., HA-Q226L) enable the H7N9 viruses to be transmitted in a mammalian host and suggest that the myriad H7N9 genotypes circulating in avian species in China and closely related strains (e.g., H7N7) have the potential for further adaptation to human or other mammalian hosts (e.g., pigs), leading to strains capable of sustained human-to-human transmission. Importance: The genomes of the zoonotic avian H7N9 viruses emerging in China have mutations in critical genes (PB2-E627K and HA-Q226L) that may be important in their pandemic potential. This study shows that (i) HA-226L of zoonotic H7N9 strains is critical for binding the α-2,6-linked receptor and enables transmission in pigs; (ii) wild-type A/Anhui/1/2013 (H7N9) shows modest replication, virulence, and transmissibility in pigs, suggesting that it is not well adapted to the mammalian host; and (iii) both wild-type and variant H7N9 viruses rapidly develop additional mammalian-signature mutations in pigs, indicating that they represent an important potential intermediate host. This is the first study analyzing the phenotypic effects of specific mutations within the HA and PB2 genes of the novel H7N9 viruses created by reverse genetics in an important mammalian host model. Finally, this study illustrates that loss-of-function mutations can be used to effectively identify residues critical to zoonosis/transmission.
Collapse
|
123
|
Wang Q, Ju L, Liu P, Zhou J, Lv X, Li L, Shen H, Su H, Jiang L, Jiang Q. Serological and virological surveillance of avian influenza A virus H9N2 subtype in humans and poultry in Shanghai, China, between 2008 and 2010. Zoonoses Public Health 2014; 62:131-40. [PMID: 24803167 PMCID: PMC4345435 DOI: 10.1111/zph.12133] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Indexed: 11/28/2022]
Abstract
We report the serological evidence of low-pathogenic avian influenza (LPAI) H9N2 infection in an occupational poultry-exposed population and a general population. A serological survey of an occupational poultry-exposed population and a general population was conducted using a haemagglutinin-inhibiting (HI) assay in Shanghai, China, from January 2008 to December 2010. Evidence of higher anti-H9 antibodies was found in serum samples collected from poultry workers. During this period, 239 H9N2 avian influenza viruses (AIVs) were isolated from 9297 tracheal and cloacal paired specimens collected from the poultry in live poultry markets. In addition, a total of 733 influenza viruses were isolated from 1569 nasal and throat swabs collected from patients with influenza-like symptoms in a sentinel hospital, which include H3N2, H1N1, pandemic H1N1 and B, but no H9N2 virus was detected. These findings highlight the need for long-term surveillance of avian influenza viruses in occupational poultry-exposed workers.
Collapse
Affiliation(s)
- Q Wang
- The MOE Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Arilahti V, Mäkelä SM, Tynell J, Julkunen I, Österlund P. Novel avian influenza A (H7N9) virus induces impaired interferon responses in human dendritic cells. PLoS One 2014; 9:e96350. [PMID: 24804732 PMCID: PMC4012951 DOI: 10.1371/journal.pone.0096350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/07/2014] [Indexed: 01/01/2023] Open
Abstract
In March 2013 a new avian influenza A(H7N9) virus emerged in China and infected humans with a case fatality rate of over 30%. Like the highly pathogenic H5N1 virus, H7N9 virus is causing severe respiratory distress syndrome in most patients. Based on genetic analysis this avian influenza A virus shows to some extent adaptation to mammalian host. In the present study, we analyzed the activation of innate immune responses by this novel H7N9 influenza A virus and compared these responses to those induced by the avian H5N1 and seasonal H3N2 viruses in human monocyte-derived dendritic cells (moDCs). We observed that in H7N9 virus-infected cells, interferon (IFN) responses were weak although the virus replicated as well as the H5N1 and H3N2 viruses in moDCs. H7N9 virus-induced expression of pro-inflammatory cytokines remained at a significantly lower level as compared to H5N1 virus-induced “cytokine storm” seen in human moDCs. However, the H7N9 virus was extremely sensitive to the antiviral effects of IFN-α and IFN-β in pretreated cells. Our data indicates that different highly pathogenic avian viruses may show considerable differences in their ability to induce host antiviral responses in human primary cell models such as moDCs. The unexpected appearance of the novel H7N9 virus clearly emphasizes the importance of the global influenza surveillance system. It is, however, equally important to systematically characterize in normal human cells the replication capacity of the new viruses and their ability to induce and respond to natural antiviral substances such as IFNs.
Collapse
Affiliation(s)
- Veera Arilahti
- Virology Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Sanna M. Mäkelä
- Virology Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Janne Tynell
- Virology Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Ilkka Julkunen
- Virology Unit, National Institute for Health and Welfare, Helsinki, Finland
- Department of Virology, University of Turku, Turku, Finland
| | - Pamela Österlund
- Virology Unit, National Institute for Health and Welfare, Helsinki, Finland
- * E-mail:
| |
Collapse
|
125
|
Abdelwhab EM, Veits J, Mettenleiter TC. Prevalence and control of H7 avian influenza viruses in birds and humans. Epidemiol Infect 2014; 142:896-920. [PMID: 24423384 PMCID: PMC9151109 DOI: 10.1017/s0950268813003324] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/21/2013] [Accepted: 12/04/2013] [Indexed: 01/20/2023] Open
Abstract
The H7 subtype HA gene has been found in combination with all nine NA subtype genes. Most exhibit low pathogenicity and only rarely high pathogenicity in poultry (and humans). During the past few years infections of poultry and humans with H7 subtypes have increased markedly. This review summarizes the emergence of avian influenza virus H7 subtypes in birds and humans, and the possibilities of its control in poultry. All H7Nx combinations were reported from wild birds, the natural reservoir of the virus. Geographically, the most prevalent subtype is H7N7, which is endemic in wild birds in Europe and was frequently reported in domestic poultry, whereas subtype H7N3 is mostly isolated from the Americas. In humans, mild to fatal infections were caused by subtypes H7N2, H7N3, H7N7 and H7N9. While infections of humans have been associated mostly with exposure to domestic poultry, infections of poultry have been linked to wild birds or live-bird markets. Generally, depopulation of infected poultry was the main control tool; however, inactivated vaccines were also used. In contrast to recent cases caused by subtype H7N9, human infections were usually self-limiting and rarely required antiviral medication. Close genetic and antigenic relatedness of H7 viruses of different origins may be helpful in development of universal vaccines and diagnostics for both animals and humans. Due to the wide spread of H7 viruses and their zoonotic importance more research is required to better understand the epidemiology, pathobiology and virulence determinants of these viruses and to develop improved control tools.
Collapse
Affiliation(s)
- E M Abdelwhab
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald - Insel Riems, Germany
| | - J Veits
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald - Insel Riems, Germany
| | - T C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald - Insel Riems, Germany
| |
Collapse
|
126
|
Wiwanitkit V. Thrombohemostatic disorders in the new emerging H7N9 influenza. Rev Bras Hematol Hemoter 2014; 36:235-6. [PMID: 25031066 PMCID: PMC4109743 DOI: 10.1016/j.bjhh.2014.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 12/07/2013] [Indexed: 10/25/2022] Open
|
127
|
Chu DH, Sakoda Y, Nishi T, Hiono T, Shichinohe S, Okamatsu M, Kida H. Potency of an inactivated influenza vaccine prepared from A/duck/Mongolia/119/2008 (H7N9) against the challenge with A/Anhui/1/2013 (H7N9). Vaccine 2014; 32:3473-9. [PMID: 24793949 DOI: 10.1016/j.vaccine.2014.04.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/06/2014] [Accepted: 04/21/2014] [Indexed: 11/18/2022]
Abstract
H7N9 influenza virus infection in humans was reported in China on March 31, 2013. Humans are immunologically naïve to the H7N9 subtype, for which the seasonal influenza vaccine is not effective. Thus, the development of an H7N9 influenza virus vaccine is an urgent issue. To prepare for the emergence of an influenza pandemic, we have established a library comprising more than 1300 influenza virus strains with 144 different combinations of 16 HA and 9 NA subtypes. An H7N9 virus strain isolated from a 35-year-old woman, A/Anhui/1/2013 (H7N9), was found to be antigenically similar to H7N9 influenza viruses isolated from migratory ducks. In the present study, the potency of an inactivated whole virus particle vaccine prepared from an H7N9 low pathogenic avian influenza virus, A/duck/Mongolia/119/2008 (H7N9), selected from the library, was assessed by a challenge with A/Anhui/1/2013 (H7N9). The results indicate that the test vaccine was potent enough to induce sufficient immunity to reduce the impact of disease caused by the challenge with A/Anhui/1/2013 (H7N9) in mice. The present results indicate that an inactivated whole virus particle vaccine prepared from an influenza virus strain stored in the library could be useful as a vaccine strain in case of an influenza pandemic.
Collapse
Affiliation(s)
- Duc-Huy Chu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Tatsuya Nishi
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Shintaro Shichinohe
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Hiroshi Kida
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan.
| |
Collapse
|
128
|
Characterization of H7 influenza A virus in wild and domestic birds in Korea. PLoS One 2014; 9:e91887. [PMID: 24776918 PMCID: PMC4002436 DOI: 10.1371/journal.pone.0091887] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/17/2014] [Indexed: 11/19/2022] Open
Abstract
During surveillance programs in Korea between January 2006 and March 2011, 31 H7 avian influenza viruses were isolated from wild birds and domestic ducks and genetically characterized using large-scale sequence data. All Korean H7 viruses belonged to the Eurasian lineage, which showed substantial genetic diversity, in particular in the wild birds. The Korean H7 viruses from poultry were closely related to those of wild birds. Interestingly, two viruses originating in domestic ducks in our study had the same gene constellations in all segment genes as viruses originating in wild birds. The Korean H7 isolates contained avian-type receptors (Q226 and G228), no NA stalk deletion (positions 69-73), no C-terminal deletion (positions 218-230) in NS1, and no substitutions in PB2-627, PB1-368, and M2-31, compared with H7N9 viruses. In pathogenicity experiments, none of the Korean H7 isolates tested induced clinical signs in domestic ducks or mice. Furthermore, while they replicated poorly, with low titers (10⁰·⁷⁻¹·³ EID₅₀/50 µl) in domestic ducks, all five viruses replicated well (up to 7-10 dpi, 10⁰·⁷⁻⁴·³EID₅₀/50 µl) in the lungs of mice, without prior adaptation. Our results suggest that domestic Korean viruses were transferred directly from wild birds through at least two independent introductions. Our data did not indicate that wild birds carried poultry viruses between Korea and China, but rather, that wild-type H7 viruses were introduced several times into different poultry populations in eastern Asia.
Collapse
|
129
|
Nakauchi M, Takayama I, Takahashi H, Tashiro M, Kageyama T. Development of a reverse transcription loop-mediated isothermal amplification assay for the rapid diagnosis of avian influenza A (H7N9) virus infection. J Virol Methods 2014; 204:101-4. [PMID: 24747008 DOI: 10.1016/j.jviromet.2014.03.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/04/2014] [Accepted: 03/07/2014] [Indexed: 02/05/2023]
Abstract
A genetic diagnosis system for detecting avian influenza A (H7N9) virus infection using reverse transcription-loop-mediated isothermal amplification (RT-LAMP) technology was developed. The RT-LAMP assay showed no cross-reactivity with seasonal influenza A (H3N2 and H1N1pdm09) or influenza B viruses circulating in humans or with avian influenza A (H5N1) viruses. The sensitivity of the RT-LAMP assay was 42.47 copies/reaction. Considering the high specificity and sensitivity of the assay for detecting the avian influenza A (H7N9) virus and that the reaction was completed within 30 min, the RT-LAMP assay developed in this study is a promising rapid diagnostic tool for avian influenza A (H7N9) virus infection.
Collapse
Affiliation(s)
- Mina Nakauchi
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Ikuyo Takayama
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Hitoshi Takahashi
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Masato Tashiro
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.
| |
Collapse
|
130
|
Development of a high-yield live attenuated H7N9 influenza virus vaccine that provides protection against homologous and heterologous H7 wild-type viruses in ferrets. J Virol 2014; 88:7016-23. [PMID: 24719414 DOI: 10.1128/jvi.00100-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Live attenuated H7N9 influenza vaccine viruses that possess the hemagglutinin (HA) and neuraminidase (NA) gene segments from the newly emerged wild-type (wt) A/Anhui/1/2013 (H7N9) and six internal protein gene segments from the cold-adapted influenza virus A/Ann Arbor/6/60 (AA ca) were generated by reverse genetics. The reassortant virus containing the original wt A/Anhui/1/2013 HA and NA sequences replicated poorly in eggs. Multiple variants with amino acid substitutions in the HA head domain that improved viral growth were identified by viral passage in eggs and MDCK cells. The selected vaccine virus containing two amino acid changes (N133D/G198E) in the HA improved viral titer by more than 10-fold (reached a titer of 10(8.6) fluorescent focus units/ml) without affecting viral antigenicity. Introduction of these amino acid changes into an H7N9 PR8 reassortant virus also significantly improved viral titers and HA protein yield in eggs. The H7N9 ca vaccine virus was immunogenic in ferrets. A single dose of vaccine conferred complete protection of ferrets from homologous wt A/Anhui/1/2013 (H7N9) and nearly complete protection from heterologous wt A/Netherlands/219/2003 (H7N7) challenge infection. Therefore, this H7N9 live attenuated influenza vaccine (LAIV) candidate has been selected for vaccine manufacture and clinical evaluation to protect humans from wt H7N9 virus infection. IMPORTANCE In response to the recent avian H7N9 influenza virus infection in humans, we developed a live attenuated H7N9 influenza vaccine (LAIV) with two amino acid substitutions in the viral HA protein that improved vaccine yield by 10-fold in chicken embryonated eggs, the substrate for vaccine manufacture. The two amino acids also improved the antigen yield for inactivated H7N9 vaccines, demonstrating that this finding could great facilitate the efficiency of H7N9 vaccine manufacture. The candidate H7N9 LAIV was immunogenic and protected ferrets against homologous and heterologous wild-type H7 virus challenge, making it suitable for use in protecting humans from H7 infection.
Collapse
|
131
|
Siegers JY, Short KR, Leijten LME, de Graaf M, Spronken MIJ, Schrauwen EJA, Marshall N, Lowen AC, Gabriel G, Osterhaus ADME, Kuiken T, van Riel D. Novel avian-origin influenza A (H7N9) virus attachment to the respiratory tract of five animal models. J Virol 2014; 88:4595-9. [PMID: 24478425 PMCID: PMC3993775 DOI: 10.1128/jvi.03190-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/27/2014] [Indexed: 11/20/2022] Open
Abstract
We determined the pattern of attachment of the avian-origin H7N9 influenza viruses A/Anhui/1/2013 and A/Shanghai/1/2013 to the respiratory tract in ferrets, macaques, mice, pigs, and guinea pigs and compared it to that in humans. The H7N9 attachment pattern in macaques, mice, and to a lesser extent pigs and guinea pigs resembled that in humans more closely than the attachment pattern in ferrets. This information contributes to our knowledge of the different animal models for influenza.
Collapse
Affiliation(s)
- Jurre Y. Siegers
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Kirsty R. Short
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Miranda de Graaf
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Nicolle Marshall
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gülsah Gabriel
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Thijs Kuiken
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
132
|
Shanmuganatham K, Feeroz MM, Jones-Engel L, Smith GJD, Fourment M, Walker D, McClenaghan L, Alam SMR, Hasan MK, Seiler P, Franks J, Danner A, Barman S, McKenzie P, Krauss S, Webby RJ, Webster RG. Antigenic and molecular characterization of avian influenza A(H9N2) viruses, Bangladesh. Emerg Infect Dis 2014; 19. [PMID: 23968540 PMCID: PMC3810925 DOI: 10.3201/eid1909.130336] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human infection with avian influenza A(H9N2) virus was identified in Bangladesh in 2011. Surveillance for influenza viruses in apparently healthy poultry in live-bird markets in Bangladesh during 2008-2011 showed that subtype H9N2 viruses are isolated year-round, whereas highly pathogenic subtype H5N1 viruses are co-isolated with subtype H9N2 primarily during the winter months. Phylogenetic analysis of the subtype H9N2 viruses showed that they are reassortants possessing 3 gene segments related to subtype H7N3; the remaining gene segments were from the subtype H9N2 G1 clade. We detected no reassortment with subtype H5N1 viruses. Serologic analyses of subtype H9N2 viruses from chickens revealed antigenic conservation, whereas analyses of viruses from quail showed antigenic drift. Molecular analysis showed that multiple mammalian-specific mutations have become fixed in the subtype H9N2 viruses, including changes in the hemagglutinin, matrix, and polymerase proteins. Our results indicate that these viruses could mutate to be transmissible from birds to mammals, including humans.
Collapse
Affiliation(s)
- Karthik Shanmuganatham
- St. Jude Children’s Research Hospital, Department of Infectious Diseases, MS 330, 262 Danny Thomas Pl, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Tate MD, Job ER, Deng YM, Gunalan V, Maurer-Stroh S, Reading PC. Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 2014; 6:1294-316. [PMID: 24638204 PMCID: PMC3970151 DOI: 10.3390/v6031294] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 12/22/2022] Open
Abstract
Seasonal influenza A viruses (IAV) originate from pandemic IAV and have undergone changes in antigenic structure, including addition of glycans to the hemagglutinin (HA) glycoprotein. The viral HA is the major target recognized by neutralizing antibodies and glycans have been proposed to shield antigenic sites on HA, thereby promoting virus survival in the face of widespread vaccination and/or infection. However, addition of glycans can also interfere with the receptor binding properties of HA and this must be compensated for by additional mutations, creating a fitness barrier to accumulation of glycosylation sites. In addition, glycans on HA are also recognized by phylogenetically ancient lectins of the innate immune system and the benefit provided by evasion of humoral immunity is balanced by attenuation of infection. Therefore, a fine balance must exist regarding the optimal pattern of HA glycosylation to offset competing pressures associated with recognition by innate defenses, evasion of humoral immunity and maintenance of virus fitness. In this review, we examine HA glycosylation patterns of IAV associated with pandemic and seasonal influenza and discuss recent advancements in our understanding of interactions between IAV glycans and components of innate and adaptive immunity.
Collapse
Affiliation(s)
- Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia.
| | - Emma R Job
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia.
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia.
| | - Vithiagaran Gunalan
- Bioinformatics Institute, Agency for Science, Technology and Research, 138671, Singapore.
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research, 138671, Singapore.
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia.
| |
Collapse
|
134
|
Duvvuri VR, Duvvuri B, Alice C, Wu GE, Gubbay JB, Wu J. Preexisting CD4+ T-cell immunity in human population to avian influenza H7N9 virus: whole proteome-wide immunoinformatics analyses. PLoS One 2014; 9:e91273. [PMID: 24609014 PMCID: PMC3946744 DOI: 10.1371/journal.pone.0091273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/09/2014] [Indexed: 01/05/2023] Open
Abstract
In 2013, a novel avian influenza H7N9 virus was identified in human in China. The antigenically distinct H7N9 surface glycoproteins raised concerns about lack of cross-protective neutralizing antibodies. Epitope-specific preexisting T-cell immunity was one of the protective mechanisms in pandemic 2009 H1N1 even in the absence of cross-protective antibodies. Hence, the assessment of preexisting CD4+ T-cell immunity to conserved epitopes shared between H7N9 and human influenza A viruses (IAV) is critical. A comparative whole proteome-wide immunoinformatics analysis was performed to predict the CD4+ T-cell epitopes that are commonly conserved within the proteome of H7N9 in reference to IAV subtypes (H1N1, H2N2, and H3N2). The CD4+ T-cell epitopes that are commonly conserved (∼556) were further screened against the Immune Epitope Database (IEDB) to validate their immunogenic potential. This analysis revealed that 45.5% (253 of 556) epitopes are experimentally proven to induce CD4+ T-cell memory responses. In addition, we also found that 23.3% of CD4+ T-cell epitopes have ≥90% of sequence homology with experimentally defined CD8+ T-cell epitopes. We also conducted the population coverage analysis across different ethnicities using commonly conserved CD4+ T-cell epitopes and corresponding HLA-DRB1 alleles. Interestingly, the indigenous populations from Canada, United States, Mexico and Australia exhibited low coverage (28.65% to 45.62%) when compared with other ethnicities (57.77% to 94.84%). In summary, the present analysis demonstrate an evidence on the likely presence of preexisting T-cell immunity in human population and also shed light to understand the potential risk of H7N9 virus among indigenous populations, given their high susceptibility during previous pandemic influenza events. This information is crucial for public health policy, in targeting priority groups for immunization programs.
Collapse
Affiliation(s)
- Venkata R. Duvvuri
- Centre for Disease Modelling, York Institute of Health Research, Toronto, Canada
- * E-mail:
| | - Bhargavi Duvvuri
- Centre for Disease Modelling, York Institute of Health Research, Toronto, Canada
| | - Christilda Alice
- Centre for Disease Modelling, York Institute of Health Research, Toronto, Canada
| | | | - Jonathan B. Gubbay
- The Hospital for Sick Children, Toronto, Canada
- Public Health Ontario, Toronto, Canada
- University of Toronto, Toronto, Canada
- Mount Sinai Hospital, Toronto, Canada
| | - Jianhong Wu
- Centre for Disease Modelling, York Institute of Health Research, Toronto, Canada
- York University, Toronto, Canada
| |
Collapse
|
135
|
Olson SH, Parmley J, Soos C, Gilbert M, Latorre-Margalef N, Hall JS, Hansbro PM, Leighton F, Munster V, Joly D. Sampling strategies and biodiversity of influenza A subtypes in wild birds. PLoS One 2014; 9:e90826. [PMID: 24599502 PMCID: PMC3944928 DOI: 10.1371/journal.pone.0090826] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/04/2014] [Indexed: 02/07/2023] Open
Abstract
Wild aquatic birds are recognized as the natural reservoir of avian influenza A viruses (AIV), but across high and low pathogenic AIV strains, scientists have yet to rigorously identify most competent hosts for the various subtypes. We examined 11,870 GenBank records to provide a baseline inventory and insight into patterns of global AIV subtype diversity and richness. Further, we conducted an extensive literature review and communicated directly with scientists to accumulate data from 50 non-overlapping studies and over 250,000 birds to assess the status of historic sampling effort. We then built virus subtype sample-based accumulation curves to better estimate sample size targets that capture a specific percentage of virus subtype richness at seven sampling locations. Our study identifies a sampling methodology that will detect an estimated 75% of circulating virus subtypes from a targeted bird population and outlines future surveillance and research priorities that are needed to explore the influence of host and virus biodiversity on emergence and transmission.
Collapse
Affiliation(s)
- Sarah H. Olson
- Wildlife Conservation Society, Bronx, New York, United States of America
| | - Jane Parmley
- Canadian Cooperative Wildlife Health Centre – Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Catherine Soos
- Environment Canada, Science & Technology Branch, Saskatoon, Saskatchewan, Canada
| | - Martin Gilbert
- Wildlife Conservation Society, Bronx, New York, United States of America
| | - Neus Latorre-Margalef
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Department of Population Health, College of Veterinary Medicine, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, United States of America
| | - Jeffrey S. Hall
- United States Geological Survey (USGS) National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Phillip M. Hansbro
- Priority Research Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Frederick Leighton
- Canadian Cooperative Wildlife Health Centre, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Damien Joly
- Metabiota, Nanaimo, British Columbia, Canada
| |
Collapse
|
136
|
Miller RS, Sweeney SJ, Akkina JE, Saito EK. Potential Intercontinental Movement of Influenza A(H7N9) Virus into North America by Wild Birds: Application of a Rapid Assessment Framework. Transbound Emerg Dis 2014; 62:650-68. [PMID: 24589158 DOI: 10.1111/tbed.12213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Indexed: 11/28/2022]
Abstract
A critical question surrounding emergence of novel strains of avian influenza viruses (AIV) is the ability for wild migratory birds to translocate a complete (unreassorted whole genome) AIV intercontinentally. Virus translocation via migratory birds is suspected in outbreaks of highly pathogenic strain A(H5N1) in Asia, Africa and Europe. As a result, the potential intercontinental translocation of newly emerging AIV such as A(H7N9) from Eurasia to North America via migratory movements of birds remains a concern. An estimated 2.91 million aquatic birds move annually between Eurasia and North America with an estimated AIV prevalence as high as 32.2%. Here, we present a rapid assessment to address the likelihood of whole (unreassorted)-genome translocation of Eurasian strain AIV into North America. The scope of this assessment was limited specifically to assess the weight of evidence to support the movement of an unreassorted AIV intercontinentally by migratory aquatic birds. We developed a rapid assessment framework to assess the potential for intercontinental movement of avian influenzas by aquatic birds. This framework was iteratively reviewed by a multidisciplinary panel of scientific experts until a consensus was established. Our assessment framework identified four factors that may contribute to the potential for introduction of any AIV intercontinentally into North America by wild aquatic birds. These factors, in aggregate, provide a framework for evaluating the likelihood of new forms of AIV from Eurasia to be introduced by aquatic birds into North America. Based on our assessment, we determined that the potential for introduction of A(H7N9) into North America through aquatic migratory birds is possible, but the likelihood ranges from extremely low to low.
Collapse
Affiliation(s)
- R S Miller
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - S J Sweeney
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - J E Akkina
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - E K Saito
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| |
Collapse
|
137
|
Wiwanitkit V. H7N9 influenza and its impact on pregnancy. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2014. [PMCID: PMC7149006 DOI: 10.1016/s2305-0500(14)60008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This short article specifically focuses on the new emerging H7N9 influenza which has just been observed since early 2013. As a new disease, it is lack for the knowledge on the new H7N9 influenza. Here, the author will discuss on the impact of emerging H7N9 influenza on pregnancy.
Collapse
|
138
|
Pasricha G, Mukherjee S, Chakrabarti AK. Comprehensive sequence analysis of HA protein of H7 subtype avian influenza viruses: an emphasis on mutations in novel H7N9 viruses. Future Virol 2014. [DOI: 10.2217/fvl.13.132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Aim: H7 avian influenza viruses pose a major public health threat raising concerns regarding their pandemic potential, especially after the recent outbreak in China of H7N9 subtype viruses. The objective was to gain insight into the geographical and host-wise distribution of H7 subtype viruses, and to understand molecular determinants responsible for their adaptation in humans. Materials & methods: In this study we carried out a global comprehensive analysis of 1749 HA sequences belonging to the H7 subtype available in the Global Initiative on Sharing All Influenza Data (GISAID) EpiFlu™ database. We also analyzed full-genome sequences of the 27 influenza strains belonging to the H7N9 subtype isolated recently from China. Results: Most of the H7 strains were from North America (749) followed by in Europe (659) and Asia (284). The majority of the sequences belonged to the H7N7 subtype (524) followed by H7N3 (440) and H7N2 (411), while 107 belonged to H7N9. Comparison of HA sequences of H7 viruses isolated from humans showed the presence of mutations and determinants that could have played a pivotal role in avian-to-human transmission and adaptability in humans. Mutational analysis of all the segments of the recent H7N9 viruses isolated from humans in China revealed that these viruses possessed several characteristic features of mammalian influenza viruses. Conclusion: H7 viruses, irrespective of being of high or low pathogenicity have a propensity to adapt to humans causing mild to severe infections. These viruses have signature mutations that have been associated with interspecies transmission and human adaptability, raising concerns regarding their pandemic potential.
Collapse
Affiliation(s)
- Gunisha Pasricha
- Microbial Containment Complex, National Institute of Virology, Sus Road, Pashan, Pune, 411021, India
| | - Sanjay Mukherjee
- Microbial Containment Complex, National Institute of Virology, Sus Road, Pashan, Pune, 411021, India
| | - Alok K Chakrabarti
- Microbial Containment Complex, National Institute of Virology, Sus Road, Pashan, Pune, 411021, India
| |
Collapse
|
139
|
Jones JC, Sonnberg S, Koçer ZA, Shanmuganatham K, Seiler P, Shu Y, Zhu H, Guan Y, Peiris M, Webby RJ, Webster RG. Possible role of songbirds and parakeets in transmission of influenza A(H7N9) virus to humans. Emerg Infect Dis 2014; 20:380-5. [PMID: 24572739 PMCID: PMC3944875 DOI: 10.3201/eid2003.131271] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Avian-origin influenza A(H7N9) recently emerged in China, causing severe human disease. Several subtype H7N9 isolates contain influenza genes previously identified in viruses from finch-like birds. Because wild and domestic songbirds interact with humans and poultry, we investigated the susceptibility and transmissibility of subtype H7N9 in these species. Finches, sparrows, and parakeets supported replication of a human subtype H7N9 isolate, shed high titers through the oropharyngeal route, and showed few disease signs. Virus was shed into water troughs, and several contact animals seroconverted, although they shed little virus. Our study demonstrates that a human isolate can replicate in and be shed by such songbirds and parakeets into their environment. This finding has implications for these birds' potential as intermediate hosts with the ability to facilitate transmission and dissemination of A(H7N9) virus.
Collapse
|
140
|
Mok CKP, Lee HHY, Lestra M, Nicholls JM, Chan MCW, Sia SF, Zhu H, Poon LLM, Guan Y, Peiris JSM. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J Virol 2014; 88:3568-76. [PMID: 24403592 PMCID: PMC3957932 DOI: 10.1128/jvi.02740-13] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/02/2014] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED A novel avian-origin influenza A/H7N9 virus emerged in 2013 to cause more than 130 cases of zoonotic human disease, with an overall case fatality rate of around 30% in cases detected. It has been shown that an E-to-K amino acid change at residue 627 of polymerase basic protein 2 (PB2) occurred frequently in the H7N9 isolates obtained from humans but not in viruses isolated from poultry. Although this mutation has been reported to confer increased mammalian pathogenicity in other avian influenza subtypes, it has not been experimentally investigated in the H7N9 virus. In this study, we determined the contribution of PB2-E627K in H7N9 virus to its pathogenicity in mammalian hosts. In addition, the compensatory role of the PB2 mutations T271A, Q591K, and D701N in H7N9 virus was investigated. We characterized the activity of polymerase complexes with these PB2 mutations and found that they enhance the polymerase activity in human 293T cells. The rescued mutants enhanced growth in mammalian cells in vitro. Mice infected with the H7N9 mutant containing the avian signature protein PB2-627E showed a marked decrease in disease severity (weight loss) and pathology compared to mice infected with the wild-type strain (PB2-627K) or other PB2 mutants. Also, mutants with PB2-627E showed lower virus replication and proinflammatory cytokine responses in the lungs of the virus-infected mice, which may contribute to pathogenicity. Our results suggest that these amino acid substitutions contribute to mouse pathogenicity and mammalian adaptation. IMPORTANCE A novel avian H7N9 influenza A virus emerged in east China in 2013 to cause zoonotic human disease associated with significant mortality. It is important to understand the viral genetic markers of mammalian adaptation and disease severity in this H7N9 virus. Since many human (but not avian) H7N9 virus isolates have an amino acid substitution at position E627K in the polymerase basic protein 2 (PB2) gene, we investigated the role of this and other functionally related mutations for polymerase activity in vitro, virus replication competence, and pathogenicity in the mouse model. We found that E627K and functionally related mutations are associated with increased polymerase activity, increased viral replication competence, and increased disease severity in mice.
Collapse
Affiliation(s)
- Chris Ka Pun Mok
- Centre of Influenza Research, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Horace Hok Yeung Lee
- Centre of Influenza Research, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Maxime Lestra
- HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - John Malcolm Nicholls
- Department of Pathology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Michael Chi Wai Chan
- Centre of Influenza Research, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Sin Fun Sia
- Centre of Influenza Research, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Huachen Zhu
- Centre of Influenza Research, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Leo Lit Man Poon
- Centre of Influenza Research, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Yi Guan
- Centre of Influenza Research, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Joseph Sriyal Malik Peiris
- Centre of Influenza Research, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
141
|
Yamayoshi S, Yamada S, Fukuyama S, Murakami S, Zhao D, Uraki R, Watanabe T, Tomita Y, Macken C, Neumann G, Kawaoka Y. Virulence-affecting amino acid changes in the PA protein of H7N9 influenza A viruses. J Virol 2014; 88:3127-34. [PMID: 24371069 PMCID: PMC3957961 DOI: 10.1128/jvi.03155-13] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/19/2013] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Novel avian-origin influenza A(H7N9) viruses were first reported to infect humans in March 2013. To date, 143 human cases, including 45 deaths, have been recorded. By using sequence comparisons and phylogenetic and ancestral inference analyses, we identified several distinct amino acids in the A(H7N9) polymerase PA protein, some of which may be mammalian adapting. Mutant viruses possessing some of these amino acid changes, singly or in combination, were assessed for their polymerase activities and growth kinetics in mammalian and avian cells and for their virulence in mice. We identified several mutants that were slightly more virulent in mice than the wild-type A(H7N9) virus, A/Anhui/1/2013. These mutants also exhibited increased polymerase activity in human cells but not in avian cells. Our findings indicate that the PA protein of A(H7N9) viruses has several amino acid substitutions that are attenuating in mammals. IMPORTANCE Novel avian-origin influenza A(H7N9) viruses emerged in the spring of 2013. By using computational analyses of A(H7N9) viral sequences, we identified several amino acid changes in the polymerase PA protein, which we then assessed for their effects on viral replication in cultured cells and mice. We found that the PA proteins of A(H7N9) viruses possess several amino acid substitutions that cause attenuation in mammals.
Collapse
Affiliation(s)
- Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satoshi Fukuyama
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
| | - Shin Murakami
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Dongming Zhao
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
| | - Ryuta Uraki
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tokiko Watanabe
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
| | - Yuriko Tomita
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
| | - Catherine Macken
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
142
|
Ou X, Chen F, Zhang R, Chen J, Liu R, Sun B. Analysis of the full-length genome of a novel strain of the H7N9 avian influenza virus. Exp Ther Med 2014; 7:1369-1375. [PMID: 24940441 PMCID: PMC3991519 DOI: 10.3892/etm.2014.1590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/05/2014] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to analyze the evolution and variation of a novel strain of the avian influenza virus. The virus-positive specimens [A/Changsha/2/2013 (H7N9)] from a patient infected with the novel avian influenza A (H7N9) virus was amplified by reverse transcription-PCR and the full genome was sequenced. The sequencing results were submitted to GenBank and then analyzed by phylogenetic tree analysis using BioEdit and Mega5 software. The phylogenetic tree of the hemagglutinin (HA) and neuraminidase genes revealed that A/Changsha/2/2013 (H7N9) and all the new H7N9 viruses in 2013 were in a large cluster, and their nucleotide evolutionary distances were closely associated. Phylogenetic tree analyses of the nucleoprotein and nonstructural genes demonstrated two main branches. One branch contained novel H7N9 viruses isolated from avian, human and environmental sources in different regions. The other branch contained three novel H7N9 virus strains isolated from environmental sources in Shanghai. All the phylogenetic trees of the matrix protein, polymerase acidic, polymerase basic protein 1 and polymerase basic protein 2 genes also showed two branches, with each branch including the novel H7N9 virus strains isolated from avian, human and environmental sources in different regions. Molecular characterization demonstrated that 52 novel H7N9 viruses sequenced to date contain the G228S and G186V mutations in the receptor binding site of the HA protein. The full-genome sequences of A/Changsha/2/2013 and analyses of its molecular characteristics suggest that the A/Changsha/2/2013 H7N9 virus strain has molecular characteristics that may facilitate adaptation of the virus to mammalian hosts and may even bind to human receptors.
Collapse
Affiliation(s)
- Xinhua Ou
- Changsha Center for Disease Control and Prevention, Changsha, Hunan 410001, P.R. China
| | - Faming Chen
- Changsha Center for Disease Control and Prevention, Changsha, Hunan 410001, P.R. China
| | - Rusheng Zhang
- Changsha Center for Disease Control and Prevention, Changsha, Hunan 410001, P.R. China
| | - Jingfang Chen
- Changsha Center for Disease Control and Prevention, Changsha, Hunan 410001, P.R. China
| | - Ruchun Liu
- Changsha Center for Disease Control and Prevention, Changsha, Hunan 410001, P.R. China
| | - Biancheng Sun
- Changsha Center for Disease Control and Prevention, Changsha, Hunan 410001, P.R. China
| |
Collapse
|
143
|
Towards a better understanding of the novel avian-origin H7N9 influenza A virus in China. Sci Rep 2014; 3:2318. [PMID: 23897131 PMCID: PMC3727058 DOI: 10.1038/srep02318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/15/2013] [Indexed: 01/02/2023] Open
Abstract
Recently, a highly dangerous bird flu has infected over 130 patients in China, and the outbreak was attributed to a novel avian-origin H7N9 virus. Here, we performed a systematic analysis of the virus. We clarified the controversial viewpoint on neuraminidase (NA) origin and confirmed it was reassorted from Korean wild birds with higher confidence, whereas common ancestors of pathogenic H7N9 genes existed only one or two years ago. Further analysis of NA sequences suggested that most variations are not drug resistant and current drugs are still effective for the therapy. We also identified a potentially optimal 9-mer epitope, which can be helpful for vaccine development. The interaction of hemagglutinin (HA) and human receptor analog was confirmed by structural modeling, while NA might influence cellular processes through a PDZ-binding motif. A simplified virus infection model was proposed. Taken together, our studies provide a better understanding of the newly reassorted H7N9 viruses.
Collapse
|
144
|
De Groot AS, Moise L, Liu R, Gutierrez AH, Terry F, Koita OA, Ross TM, Martin W. Cross-conservation of T-cell epitopes: now even more relevant to (H7N9) influenza vaccine design. Hum Vaccin Immunother 2014; 10:256-62. [PMID: 24525618 PMCID: PMC4185886 DOI: 10.4161/hv.28135] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 02/06/2014] [Indexed: 12/21/2022] Open
Abstract
A novel avian-origin H7N9 influenza strain emerged in China in April 2013. Since its re-emergence in October-November 2013, the number of reported cases has accelerated; more than 220 laboratory-confirmed cases and 112 deaths (case fatality rate of 20-30%) have been reported. The resurgence of H7N9 has re-emphasized the importance of making faster and more effective influenza vaccines than those that are currently available. Recombinant H7 hemagglutinin (H7-HA) vaccines have been produced, addressing the first problem. Unfortunately, these recombinant subunit vaccine products appear to have failed to address the second problem, influenza vaccine efficacy. Reported unadjuvanted H7N9 vaccine seroconversion rates were between 6% and 16%, nearly 10-fold lower than rates for unadjuvanted vaccine seroconversion to standard H1N1 monovalent (recombinant) vaccine (89% to pandemic H1N1). Could this state of affairs have been predicted? As it turns out, yes, and it was. In that previous analysis of available H7-HA sequences, we found fewer T-cell epitopes per protein than expected, and predicted that H7-HA-based vaccines would be much less antigenic than recent seasonal vaccines. Novel approaches to developing a more immunogenic HA were offered for consideration at the time, and now, as the low immunogenicity of H7N9 vaccines appears to indicate, they appear to be even more relevant. More effective H7N9 influenza vaccines can be produced, provided that the role of T-cell epitopes is carefully considered, and accumulated knowledge about the importance of cross-conserved epitopes between viral subtypes is applied to the design of those vaccines.
Collapse
MESH Headings
- Animals
- China/epidemiology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/isolation & purification
- Influenza, Human/epidemiology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Survival Analysis
- Treatment Outcome
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Subunit/isolation & purification
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Anne S De Groot
- Institute for Immunology and Informatics; University of Rhode Island; Providence, RI USA
- EpiVax, Inc.; Providence, RI USA
| | - Lenny Moise
- Institute for Immunology and Informatics; University of Rhode Island; Providence, RI USA
- EpiVax, Inc.; Providence, RI USA
| | - Rui Liu
- Institute for Immunology and Informatics; University of Rhode Island; Providence, RI USA
| | - Andres H Gutierrez
- Institute for Immunology and Informatics; University of Rhode Island; Providence, RI USA
| | | | - Ousmane A Koita
- Laboratory of Applied Molecular Biology; University of Bamako; Bamako, Mali
- Project SEREFO-NIAID (Centre de Recherche et de Formation sur le VIH/Sida et la Tuberculose-Institut National des Maladies Infectieuses et Allergiques); University of Science, Techniques and Technologies of Bamako; Bamako, Mali
| | - Ted M Ross
- Vaccine and Gene Therapy Institute of Florida; Port St. Lucie, FL USA
| | | |
Collapse
|
145
|
Assessment of human immune responses to H7 avian influenza virus of pandemic potential: results from a placebo-controlled, randomized double-blind phase I study of live attenuated H7N3 influenza vaccine. PLoS One 2014; 9:e87962. [PMID: 24533064 PMCID: PMC3922724 DOI: 10.1371/journal.pone.0087962] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 12/24/2013] [Indexed: 11/30/2022] Open
Abstract
Introduction Live attenuated influenza vaccines (LAIVs) are being developed to protect humans against future epidemics and pandemics. This study describes the results of a double–blinded randomized placebo–controlled phase I clinical trial of cold–adapted and temperature sensitive H7N3 live attenuated influenza vaccine candidate in healthy seronegative adults. Objective The goal of the study was to evaluate the safety, tolerability, immunogenicity and potential shedding and transmission of H7N3 LAIV against H7 avian influenza virus of pandemic potential. Methods and Findings Two doses of H7N3 LAIV or placebo were administered to 40 randomly divided subjects (30 received vaccine and 10 placebo). The presence of influenza A virus RNA in nasal swabs was detected in 60.0% and 51.7% of subjects after the first and second vaccination, respectively. In addition, vaccine virus was not detected among placebo recipients demonstrating the absence of person–to–person transmission. The H7N3 live attenuated influenza vaccine demonstrated a good safety profile and was well tolerated. The two–dose immunization resulted in measurable serum and local antibody production and in generation of antigen–specific CD4+ and CD8+ memory T cells. Composite analysis of the immune response which included hemagglutinin inhibition assay, microneutralization tests, and measures of IgG and IgA and virus–specific T cells showed that the majority (86.2%) of vaccine recipients developed serum and/or local antibodies responses and generated CD4+ and CD8+ memory T cells. Conclusions The H7N3 LAIV was safe and well tolerated, immunogenic in healthy seronegative adults and elicited production of antibodies broadly reactive against the newly emerged H7N9 avian influenza virus. Trial registration ClinicalTrials.gov NCT01511419
Collapse
|
146
|
Identification of amino acid changes that may have been critical for the genesis of A(H7N9) influenza viruses. J Virol 2014; 88:4877-96. [PMID: 24522919 DOI: 10.1128/jvi.00107-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Novel influenza A viruses of the H7N9 subtype [A(H7N9)] emerged in the spring of 2013 in China and had infected 163 people as of 10 January 2014; 50 of them died of the severe respiratory infection caused by these viruses. Phylogenetic studies have indicated that the novel A(H7N9) viruses emerged from reassortment of H7, N9, and H9N2 viruses. Inspections of protein sequences from A(H7N9) viruses and their immediate predecessors revealed several amino acid changes in A(H7N9) viruses that may have facilitated transmission and replication in the novel host. Since mutations that occurred more ancestrally may also have contributed to the genesis of A(H7N9) viruses, we inferred historical evolutionary events leading to the novel viruses. We identified a number of amino acid changes on the evolutionary path to A(H7N9) viruses, including substitutions that may be associated with host range, replicative ability, and/or host responses to infection. The biological significance of these amino acid changes can be tested in future studies. IMPORTANCE The novel influenza A viruses of the H7N9 subtype [A(H7N9)], which first emerged in the spring of 2013, cause severe respiratory infections in humans. Here, we performed a comprehensive evolutionary analysis of the progenitors of A(H7N9) viruses to identify amino acid changes that may have been critical for the emergence of A(H7N9) viruses and their ability to infect humans. We provide a list of potentially important amino acid changes that can be tested for their significance for the influenza virus host range, replicative ability, and/or host responses to infection.
Collapse
|
147
|
Transcriptomic characterization of the novel avian-origin influenza A (H7N9) virus: specific host response and responses intermediate between avian (H5N1 and H7N7) and human (H3N2) viruses and implications for treatment options. mBio 2014; 5:e01102-13. [PMID: 24496798 PMCID: PMC3950506 DOI: 10.1128/mbio.01102-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED A novel avian-origin H7N9 influenza A virus (IAV) emerged in China in 2013, causing mild to lethal human respiratory infections. H7N9 originated with multiple reassortment events between avian viruses and carries genetic markers of human adaptation. Determining whether H7N9 induces a host response closer to that with human or avian IAV is important in order to better characterize this emerging virus. Here we compared the human lung epithelial cell response to infection with A/Anhui/01/13 (H7N9) or highly pathogenic avian-origin H5N1, H7N7, or human seasonal H3N2 IAV. The transcriptomic response to H7N9 was highly specific to this strain but was more similar to the response to human H3N2 than to that to other avian IAVs. H7N9 and H3N2 both elicited responses related to eicosanoid signaling and chromatin modification, whereas H7N9 specifically induced genes regulating the cell cycle and transcription. Among avian IAVs, the response to H7N9 was closest to that elicited by H5N1 virus. Host responses common to H7N9 and the other avian viruses included the lack of induction of the antigen presentation pathway and reduced proinflammatory cytokine induction compared to that with H3N2. Repression of these responses could have an important impact on the immunogenicity and virulence of H7N9 in humans. Finally, using a genome-based drug repurposing approach, we identified several drugs predicted to regulate the host response to H7N9 that may act as potential antivirals, including several kinase inhibitors, as well as FDA-approved drugs, such as troglitazone and minocycline. Importantly, we validated that minocycline inhibited H7N9 replication in vitro, suggesting that our computational approach holds promise for identifying novel antivirals. IMPORTANCE Whether H7N9 will be the next pandemic influenza virus or will persist and sporadically infect humans from its avian reservoir, similar to H5N1, is not known yet. High-throughput profiling of the host response to infection allows rapid characterization of virus-host interactions and generates many hypotheses that will accelerate understanding and responsiveness to this potential threat. We show that the cellular response to H7N9 virus is closer to that induced by H3N2 than to that induced by H5N1, reflecting the potential of this new virus for adaptation to humans. Importantly, dissecting the host response to H7N9 may guide host-directed antiviral development.
Collapse
|
148
|
Jonges M, Welkers MRA, Jeeninga RE, Meijer A, Schneeberger P, Fouchier RAM, de Jong MD, Koopmans M. Emergence of the virulence-associated PB2 E627K substitution in a fatal human case of highly pathogenic avian influenza virus A(H7N7) infection as determined by Illumina ultra-deep sequencing. J Virol 2014; 88:1694-702. [PMID: 24257603 PMCID: PMC3911586 DOI: 10.1128/jvi.02044-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/12/2013] [Indexed: 11/20/2022] Open
Abstract
Avian influenza viruses are capable of crossing the species barrier and infecting humans. Although evidence of human-to-human transmission of avian influenza viruses to date is limited, evolution of variants toward more-efficient human-to-human transmission could result in a new influenza virus pandemic. In both the avian influenza A(H5N1) and the recently emerging avian influenza A(H7N9) viruses, the polymerase basic 2 protein (PB2) E627K mutation appears to be of key importance for human adaptation. During a large influenza A(H7N7) virus outbreak in the Netherlands in 2003, the A(H7N7) virus isolated from a fatal human case contained the PB2 E627K mutation as well as a hemagglutinin (HA) K416R mutation. In this study, we aimed to investigate whether these mutations occurred in the avian or the human host by Illumina Ultra-Deep sequencing of three previously uninvestigated clinical samples obtained from the fatal case. In addition, we investigated three chicken samples, two of which were obtained from the source farm. Results showed that the PB2 E627K mutation was not present in any of the chicken samples tested. Surprisingly, the avian samples were characterized by the presence of influenza virus defective RNA segments, suggestive for the synthesis of defective interfering viruses during infection in poultry. In the human samples, the PB2 E627K mutation was identified with increasing frequency during infection. Our results strongly suggest that human adaptation marker PB2 E627K has emerged during virus infection of a single human host, emphasizing the importance of reducing human exposure to avian influenza viruses to reduce the likelihood of viral adaptation to humans.
Collapse
Affiliation(s)
- Marcel Jonges
- Department of Virology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Rienk E. Jeeninga
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Adam Meijer
- Department of Virology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Peter Schneeberger
- Department of Medical Microbiology and Infection Control, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | | | - Menno D. de Jong
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Marion Koopmans
- Department of Virology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
149
|
Transmissibility of novel H7N9 and H9N2 avian influenza viruses between chickens and ferrets. Virology 2014; 450-451:316-23. [DOI: 10.1016/j.virol.2013.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/11/2013] [Accepted: 12/17/2013] [Indexed: 11/20/2022]
|
150
|
Gabbard JD, Dlugolenski D, Van Riel D, Marshall N, Galloway SE, Howerth EW, Campbell PJ, Jones C, Johnson S, Byrd-Leotis L, Steinhauer DA, Kuiken T, Tompkins SM, Tripp R, Lowen AC, Steel J. Novel H7N9 influenza virus shows low infectious dose, high growth rate, and efficient contact transmission in the guinea pig model. J Virol 2014; 88:1502-12. [PMID: 24227867 PMCID: PMC3911619 DOI: 10.1128/jvi.02959-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022] Open
Abstract
The zoonotic outbreak of H7N9 subtype avian influenza virus that occurred in eastern China in the spring of 2013 resulted in 135 confirmed human cases, 44 of which were lethal. Sequencing of the viral genome revealed a number of molecular signatures associated with virulence or transmission in mammals. We report here that, in the guinea pig model, a human isolate of novel H7N9 influenza virus, A/Anhui/1/2013 (An/13), is highly dissimilar to an H7N1 avian isolate and instead behaves similarly to a human seasonal strain in several respects. An/13 was found to have a low 50% infectious dose, grow to high titers in the upper respiratory tract, and transmit efficiently among cocaged guinea pigs. The pH of fusion of the hemagglutinin (HA) and the binding of virus to fixed guinea pig tissues were also examined. The An/13 HA displayed a relatively elevated pH of fusion characteristic of many avian strains, and An/13 resembled avian viruses in terms of attachment to tissues. One important difference was seen between An/13 and both the H3N2 human and the H7N1 avian viruses: when inoculated intranasally at a high dose, only the An/13 virus led to productive infection of the lower respiratory tract of guinea pigs. In sum, An/13 was found to retain fusion and attachment properties of an avian influenza virus but displayed robust growth and contact transmission in the guinea pig model atypical of avian strains and indicative of mammalian adaptation.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Female
- Guinea Pigs
- Humans
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza A Virus, H7N1 Subtype/genetics
- Influenza A Virus, H7N1 Subtype/physiology
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/growth & development
- Influenza A Virus, H7N9 Subtype/pathogenicity
- Influenza A Virus, H7N9 Subtype/physiology
- Influenza, Human/transmission
- Influenza, Human/virology
- Virulence
Collapse
Affiliation(s)
- Jon D. Gabbard
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Daniel Dlugolenski
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Debby Van Riel
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nicolle Marshall
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Summer E. Galloway
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Patricia J. Campbell
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cheryl Jones
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Scott Johnson
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Lauren Byrd-Leotis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David A. Steinhauer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - S. Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Ralph Tripp
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John Steel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|