101
|
Chen WY, Lu L, McDonald K, Osmond DG, Smith CE. Isolation of amelogenin-positive ameloblasts from rat mandibular incisor enamel organs by flow cytometry and fluorescence activated cell sorting. Connect Tissue Res 2001; 38:9-15; discussion 35-41. [PMID: 11063012 DOI: 10.3109/03008209809017012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to use amelogenin as a marker to examine the feasibility of isolating ameloblasts from enamel organ cell populations by fluorescence activated cell sorting. After treating dissected rat enamel organs with proteolytic enzymes to loosen cell attachments and labial connective tissues, dissociated cell suspensions were fixed, then immunostained with rabbit anti-rM179 recombinant amelogenin antibody and FITC-conjugated goat anti-rabbit Ig G antibody. Flow cytometry indicated that about 70% of the total cell sample and virtually all the larger cells therein were amelogenin-positive. Fluorescence activated cell sorting yielded a sample of amelogenin-positive cells at 97% purity. Immunofluorescence microscopy indicated that these isolated amelogenin-positive cells varied widely in size and morphology. This was attributed to loss of intercellular support for ameloblasts once they were dissociated from each other, and to some fragmentation caused when the cells were initially physically removed from the teeth. The results demonstrate that viable ameloblast cell fractions, especially representing cells at the secretory stage, can be purified from enzymic digests of rat enamel organ by sorting on the basis of cell size alone. From these fractions, subpopulations of ameloblasts may be identified when differentiation specific cell surface markers become available.
Collapse
Affiliation(s)
- W Y Chen
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
102
|
Paine CT, Paine ML, Snead ML. Identification of tuftelin- and amelogenin-interacting proteins using the yeast two-hybrid system. Connect Tissue Res 2001; 38:257-67;discussion 295-303. [PMID: 11063033 DOI: 10.3109/03008209809017046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Biomineralization of enamel is a complex process that involves the eventual replacement of an extracellular protein matrix by hydroxyapatite crystallites. To date four different enamel matrix proteins have been identified; the amelogenins, tuftelin, enamelin and ameloblastin. Assembly of the enamel extracellular matrix from these component proteins is believed to be critical in producing a matrix competent to undergo mineral replacement. Enamel formation is a complex process and additional proteins are likely to have a role in the assembly of the extracellular matrix. In order to identify additional proteins involved in the assembly process, the yeast two-hybrid system developed by Fields and Song (1989) has been implemented. This system allows for the identification of unknown proteins that interact with proteins of interest. Typically a known protein is used as "bait" to screen a cDNA expression library of interest. In our studies, tuftelin or amelogenin have been used to screen a mouse tooth library produced from one day old pups. A library screening of six million clones with amelogenin as bait resulted in eleven positive clones all of which show high homology to the human leukocyte antigen-B (HLA-B) associated transcript (BAT) family of genes. A library screening of one million clones using tuftelin as the bait identified twenty-one tuftelin-interacting proteins. Ten of these proteins are either keratin K5 or keratin K6, four are constitutively expressed and the remaining seven are novel. Further characterization of the proteins shown to interact with amelogenin or tuftelin may shed additional light on this complex process of enamel matrix assembly.
Collapse
Affiliation(s)
- C T Paine
- University of Southern California, School of Dentistry, Center for Craniofacial Molecular Biology, Los Angeles 90033, USA
| | | | | |
Collapse
|
103
|
Abstract
Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research.
Collapse
Affiliation(s)
- J R Couchman
- Department of Cell Biology and Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
104
|
Veis A, Tompkins K, Alvares K, Wei K, Wang L, Wang XS, Brownell AG, Jengh SM, Healy KE. Specific amelogenin gene splice products have signaling effects on cells in culture and in implants in vivo. J Biol Chem 2000; 275:41263-72. [PMID: 10998415 DOI: 10.1074/jbc.m002308200] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low molecular mass amelogenin-related polypeptides extracted from mineralized dentin have the ability to affect the differentiation pathway of embryonic muscle fibroblasts in culture and lead to the formation of mineralized matrix in in vivo implants. The objective of the present study was to determine whether the bioactive peptides could have been amelogenin protein degradation products or specific amelogenin gene splice products. Thus, the splice products were prepared, and their activities were determined in vitro and in vivo. A rat incisor tooth odontoblast pulp cDNA library was screened using probes based on the peptide amino acid sequencing data. Two specific cDNAs comprised from amelogenin gene exons 2,3,4,5,6d,7 and 2,3,5,6d, 7 were identified. The corresponding recombinant proteins, designated r[A+4] (8.1 kDa) and r[A-4] (6.9 kDa), were produced. Both peptides enhanced in vitro sulfate incorporation into proteoglycan, the induction of type II collagen, and Sox9 or Cbfa1 mRNA expression. In vivo implant assays demonstrated implant mineralization accompanied by vascularization and the presence of the bone matrix proteins, BSP and BAG-75. We postulate that during tooth development these specific amelogenin gene splice products, [A+4] and [A-4], may have a role in preodontoblast maturation. The [A+4] and [A-4] may thus be tissue-specific epithelial mesenchymal signaling molecules.
Collapse
Affiliation(s)
- A Veis
- Department of Basic and Behavioral Sciences, Northwestern University Dental School, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Fuangtharnthip P, Yamada Y, Takagi Y, Ohya K. Autoradiographic investigation of the effect of 1-hydroxyethylidene-1, 1-bisphosphonate on matrix protein synthesis and secretion by secretory ameloblasts in rat incisors. Arch Oral Biol 2000; 45:495-506. [PMID: 10775678 DOI: 10.1016/s0003-9969(00)00009-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Seven daily subcutaneous injections of 1-hydroxyethylidene-1, 1-bisphosphonate (HEBP) can induce enamel hypoplasia. Several enamel-free zones were observed along the crown-analogue side of rat incisors during the secretory stage of amelogenesis. Ameloblasts related to the enamel-free zones lay directly on the abnormally non-mineralized mantle dentine, whereas the adjacent ameloblasts, which were forming the enamel matrix layer, were associated with the region where mineralization of dentine was proceeding. The further purpose of this study was to investigate the synthetic and secretory activity of these two groups of ameloblasts and to trace the fate of the radioactively labelled proteins. [(3)H]-proline was administered to Wistar rats 12 h after the last injection of HEBP. Light-microscopic autoradiography was performed. Quantitative analysis indicated that the ameloblasts of the enamel-forming zones in the drug-treated group showed a distribution pattern of silver grains similar to that of the controls. The ameloblasts of the enamel-free zones also demonstrated incorporation of [(3)H]-proline at the same level. There was some labelling over the non-mineralized mantle dentine, which was supposed to indicate the penetration of ameloblast products. From these results, it is concluded that HEBP does not affect the ameloblast activity in protein synthesis. The complete failure of enamel-layer formation in some specific regions is probably due to the failure in protein secretion and protein deposition. This study provides additional evidence that the mineralization of dentine is an essential factor in successful enamel matrix secretion and deposition.
Collapse
Affiliation(s)
- P Fuangtharnthip
- Department of Pediatric Dentistry, Faculty of Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
106
|
Morris-Wiman J, Brinkley L, Sego R. An in vitro model for the study of taste papillae morphogenesis using branchial arch explants. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2000; 5:172-81. [PMID: 10775838 DOI: 10.1016/s1385-299x(00)00010-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is generally accepted that innervation is required for the maintenance of taste papillae and taste buds, but it is not entirely clear what role, if any, innervation plays in papillae and taste bud formation. Events in taste papillae formation and differentiation take place almost entirely in utero and, therefore, the study of the role of innervation in these events requires a suitable in vitro model. In the past, investigators have made use of various culture techniques to study mammalian taste papillae development in vitro and the role of innervation in this process with varying success. All of these models examined papillae development in isolated tongue or tongue fragments and have lacked the ability to manipulate the innervation of developing taste papillae in these explants. We have established a protocol for an in vitro model of taste papillae morphogenesis using branchial arch explants and roller tube culture methodology. Our results demonstrate that this model supports the morphogenesis of the circumvallate papilla with an integrated nerve. In addition, the use of branchial arch explants allows the inclusion or exclusion of geniculate and petrosal ganglia to examine directly the effects of the presence or absence of innervation on papillae formation and maintenance.
Collapse
Affiliation(s)
- J Morris-Wiman
- Department of Orthodontics, JHMHC University of Florida, Box 100444, Gainesville, FL 32610-0444, USA.
| | | | | |
Collapse
|
107
|
Lézot F, Thomas B, Hotton D, Forest N, Orestes-Cardoso S, Robert B, Sharpe P, Berdal A. Biomineralization, life-time of odontogenic cells and differential expression of the two homeobox genes MSX-1 and DLX-2 in transgenic mice. J Bone Miner Res 2000; 15:430-41. [PMID: 10750557 DOI: 10.1359/jbmr.2000.15.3.430] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Msx and Dlx homeobox genes encode for transcription factors that control early morphogenesis. More specifically, Msx-1, Msx-2, and Dlx-2 homeobox genes contribute to the initial patterning of the dentition. The present study is devoted to the potential role of those homeobox genes during the late formation of mineralized tissues, using the rodent incisor as an experimental system. The continuously erupting mandibular incisor allows (1) the coinvestigation of the whole sequences of amelogenesis and dentinogenesis, aligned along the main dental axis in a single sample in situ and (2) the differential characterization of transcripts generated by epithelial and ectomesenchymal odontogenic cells. Northern blot experiments on microdissected cells showed the continuing expression of Msx-2 and Dlx-2 in the later stages of dental biomineralization, differentially in epithelial and ectomesenchymal compartments. Transgenic mice produced with LacZ reporter constructs for Dlx-2 and Msx-1 were used to detect different components of the gene expression patterns with the sensitive beta-galactosidase histoenzymology. The results show a prominent epithelial involvement of Dlx-2, with stage-specific variations in the cells involved in enamel formation. Quantitative analyses identified specific modulations of Dlx-2 expression in ameloblasts depending on the anatomical sites of the incisor, showing more specifically an inverse linear relationship between the Dlx-2 promoter activity level and enamel thickness. This investigation extends the role of homeoproteins to postmitotic stages, which would control secretory cell activity, in a site-specific manner as shown here for Dlx-2.
Collapse
Affiliation(s)
- F Lézot
- Laboratoire de Biologie-Odontologie, EA2380, Institut Biomédical des Cordeliers, Université Paris VII, France
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Morris-Wiman J, Brinkley L, Sego R. An in vitro model for the study of the role of innervation in circumvallate papillae morphogenesis. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 116:141-50. [PMID: 10521558 DOI: 10.1016/s0165-3806(99)00086-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The following study was done to demonstrate the reliability of an in vitro model for use in the study of early events and the role of innervation in mouse circumvallate papillae development. Gestational day (gd)-11 fetuses were partially dissected to produce explants that included the mandibular, hyoid, third and fourth branchial arches and their ganglia. In ganglionectomized explants, the nodose ganglia and either the geniculate, petrosal or both ganglia were removed. Explants were cultivated in roller tube culture for 24, 48, 72, and 96 h of culture and examined for the presence of papillary structures. Innervation was verified by immunostaining for neural cell adhesion molecule (NCAM). In all control explants, circumvallate papillae had formed by 72 h in culture. These papillae were innervated by fibers originating in petrosal or nodose ganglia, although, in a small number, fibers from the geniculate also contributed. Circumvallate papillae also formed in some explants in which either the geniculate or petrosal ganglia had been removed. However, placodal structures failed to mature into papillary structures even by 96 h in explants in which both ganglia had been removed. Our results demonstrate that an in vitro model using branchial arch explants supports the morphogenesis of an epithelial placode through the formation of a definite papillary structure, the circumvallate papilla, with an integrated nerve. Our results also indicate that, whereas the initial stages in gustatory papillae formation, the formation of a placode, are nerve-independent, the maturation of the placodal structure to form a papilla requires the presence of an intact nerve.
Collapse
Affiliation(s)
- J Morris-Wiman
- Department of Orthodontics, University of Florida, Box 100444, JHMHC, Gainesville, FL 32610-0444, USA.
| | | | | |
Collapse
|
109
|
Monaghan AP, Kioschis P, Wu W, Zuniga A, Bock D, Poustka A, Delius H, Niehrs C. Dickkopf genes are co-ordinately expressed in mesodermal lineages. Mech Dev 1999; 87:45-56. [PMID: 10495270 DOI: 10.1016/s0925-4773(99)00138-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dickkopf-1 (dkk-1) is member of a novel family of secreted proteins and functions in head induction during Xenopus embryogenesis, acting as a potent inhibitor of Wnt signalling. Here we report: (1) the isolation of two additional murine members of the dkk family, dkk-2 and dkk-3; and (2) analysis of adult and embryonic gene expression of mouse dkk-1,-2, and -3, Xenopus dkk-1 as well as chicken dkk-3. Comparative developmental analyses of the dkk-1, dkk-2 and dkk-3 in mice indicate that these genes are both temporally and spatially regulated. They define overlapping deep domains in mesenchymal lineages suggesting a co-ordinated mode of action. All dkks show distinct and elevated expression patterns in tissues that mediate epithelial- mesenchyme transformations suggesting that they may participate in heart, tooth, hair and whisker follicle, limb and bone induction. In the limb buds expression of these genes are found in regions of programmed cell death. In a given organ, dkk-1 tends to be the earliest member expressed. Comparison with Xenopus dkk-1 and chicken dkk-3 shows evolutionarily conserved expression patterns. Our observations indicate that dkk genes constitute a new family of secreted proteins that may mediate inductive interactions between epithelial and mesenchymal cells.
Collapse
Affiliation(s)
- A P Monaghan
- Division of Molecular Biology of the Cell I, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Kimura S, Ward JM, Minoo P. Thyroid-specific enhancer-binding protein/thyroid transcription factor 1 is not required for the initial specification of the thyroid and lung primordia. Biochimie 1999; 81:321-7. [PMID: 10401665 DOI: 10.1016/s0300-9084(99)80077-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Targeted disruption of the homeobox gene T/ebp (Ttf1) in mice results in ablation of the thyroid and pituitary, and severe deformities in development of the lung and hypothalamus. T/ebp is expressed in the thyroid, lung, and ventral forebrain during normal embryogenesis. Examination of thyroid development in T/ebp homozygous null mutant embryos revealed that the thyroid rudiment is initially formed but is eliminated through apoptosis. Absence of T/EBP expression in the lung primordium does not activate apoptosis since a lung tissue, albeit dysmorphic, is nevertheless formed in T/ebp-/- embryos. These results demonstrate that T/EBP is not required for the initial specification of thyroid or lung primordia, but is absolutely essential for the development and morphogenesis of these organs.
Collapse
Affiliation(s)
- S Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
111
|
Otsuji W, Tanase S, Yoshida S, Bawden JW. The immunohistochemical localization of the interferon-gamma and granulocyte colony-stimulating factor receptors during early amelogenesis in rat molars. Arch Oral Biol 1999; 44:173-81. [PMID: 10206335 DOI: 10.1016/s0003-9969(98)00092-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous studies, in which the known janus kinase and signal transducer and activator of transcription (STAT) isoforms were immunohistochemically mapped in developing rat molars, implicated a sizeable list of cytokine superfamily receptor (CSR)/signal-transduction pathway (STP) linkages in the cells of the enamel organ involved in the events leading directly to early amelogenesis. Various combinations of upregulated janus kinases and STATs are known to be linked to single or small groups of CSRs. On the basis of the previous observations it was hypothesized that the interferon-gamma receptor (IFNgamma r) and the granulocyte colony-stimulating factor receptor (G-CSF receptor) would be localized in specific sites in the cells of the enamel organ during early amelogenesis. To verify this, whole-head, freeze-dried sections were here obtained at the level of the mandibular first and second molar from newborn and 5-day-old rats. These sections were not demineralized or fixed, reducing the possibility of false-negative results. Antibodies to the IFNgamma r and the G-CSF receptor were localized using a modification of the avidin-biotin complex method. In the newborn rats, IFNgamma r was localized in the preameloblasts in the cervical loop, the proximal and distal ends of presecretory ameloblasts, the outer enamel epithelium, the dental lamina, and in bone. In 5-day-old rats, it was confined to the proximal ends of the presecretory and secretory ameloblasts. The G-CSF receptor was observed in the molars of newborn rats in the preameloblasts, the proximal and distal ends of the presecretory ameloblasts, outer enamel epithelium, and in bone. In 5-day-old rats, G-CSF receptor was localized in the preameloblasts, the proximal ends of presecretory and secretory ameloblasts, the stellate reticulum, the outer enamel epithelium, and in bone. These findings indicate that the IFNgamma r and the G-CSF receptor, and their downstream STP linkages, are upregulated in the cells of the enamel organ and may be involved in the events leading directly to early enamel formation.
Collapse
Affiliation(s)
- W Otsuji
- The Department of Pediatric Dentistry, Asahi University School of Dentistry, Motosu, Gifu, Japan
| | | | | | | |
Collapse
|
112
|
Tucker AS, Yamada G, Grigoriou M, Pachnis V, Sharpe PT. Fgf-8 determines rostral-caudal polarity in the first branchial arch. Development 1999; 126:51-61. [PMID: 9834185 DOI: 10.1242/dev.126.1.51] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammals, rostral ectomesenchyme cells of the mandibular arch give rise to odontogenic cells, while more caudal cells form the distal skeletal elements of the lower jaw. Signals from the epithelium are required for the development of odontogenic and skeletogenic mesenchyme cells. We show that rostral-caudal polarity is first established in mandibular branchial arch ectomesenchymal cells by a signal, Fgf-8, from the rostral epithelium. All neural crest-derived ectomesenchymal cells are equicompetent to respond to Fgf-8. The restriction into rostral (Lhx-7-expressing) and caudal (Gsc-expressing) domains is achieved by cells responding differently according to their proximity to the source of the signal. Once established, spatial expression domains and cell fates are fixed and maintained by Fgf-8 in conjunction with another epithelial signal, endothelin-1, and by positional changes in ectomesenchymal cell competence to respond to the signal.
Collapse
Affiliation(s)
- A S Tucker
- Department of Craniofacial Development, UMDS Guy's Hospital, London SE1 9RT, UK
| | | | | | | | | |
Collapse
|
113
|
Dunbar ME, Young P, Zhang JP, McCaughern-Carucci J, Lanske B, Orloff JJ, Karaplis A, Cunha G, Wysolmerski JJ. Stromal cells are critical targets in the regulation of mammary ductal morphogenesis by parathyroid hormone-related protein. Dev Biol 1998; 203:75-89. [PMID: 9806774 DOI: 10.1006/dbio.1998.9029] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) was originally identified as the tumor product responsible for humoral hypercalcemia of malignancy. It is now known that PTHrP is produced by many normal tissues in which it appears to play a role as a developmental regulatory molecule. PTHrP is a normal product of mammary epithelial cells, and recent experiments in our laboratory have demonstrated that overexpression or underexpression of PTHrP in the murine mammary gland leads to severe disruptions in its development. The nature of these phenotypes suggests that PTHrP acts to modulate branching growth during mammary development by regulating mammary stromal cell function. We now demonstrate that throughout mammary development, during periods of active ductal-branching morphogenesis, PTHrP is produced by epithelial cells, whereas the PTH/PTHrP receptor is expressed on stromal cells. In addition, we show that mammary stromal cells in culture contain specific binding sites for amino terminal PTHrP and respond with an increase in intracellular cAMP. Finally, we demonstrate that the mammary mesenchyme must express the PTH/PTHrP receptor in order to support mammary epithelial cell morphogenesis. These results demonstrate that PTHrP and the PTH/PTHrP receptor represent an epithelial/mesenchymal signaling circuit that is necessary for mammary morphogenesis and that stromal cells are a critical target for PTHrP's action in the mammary gland.
Collapse
Affiliation(s)
- M E Dunbar
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Gao J, Symons AL, Bartold PM. Expression of transforming growth factor-beta 1 (TGF-beta1) in the developing periodontium of rats. J Dent Res 1998; 77:1708-16. [PMID: 9759668 DOI: 10.1177/00220345980770090701] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Transforming growth factor-beta 1 (TGF-beta1) has been reported to be expressed within several tissue compartments of developing molar crowns and therefore is implicated in tooth development. Additionally, TGF-beta1 may also play a crucial role in tissue repair and regeneration. The aim of this study was to determine the distribution of TGF-beta1 in the developing periodontal attachment apparatus (cementum, periodontal ligament, and alveolar bone) in Lewis rats. Animals aged 3, 6, and 12 wks were killed, their mandibles removed, fixed, demineralized, and processed in paraffin. The localization of TGF-beta1 in tissues was detected by polyclonal goat antibodies against human TGF-beta1 by means of immunoperoxidase techniques. TGF-beta1 messenger RNA was detected by in situ hybridization with a cocktail oligonucleotide probe. Cell counts were determined for analysis of the percentage of cells stained positive for TGF-beta1. Results revealed that TGF-beta1 was expressed in the developing alveolar bone, periodontal ligament, and cementum at all stages of tissue development studied. Staining was stronger at sites of cementum and alveolar bone compared with the periodontal ligament. Intensity of the positive staining, based on 3 grades, indicated a similarity between the tissues obtained from different ages, but varied between several cell types. Cementoblasts and osteoblasts stained more strongly than fibroblasts. Large numbers (approximately 90%) of the osteocytes in developing bone expressed TGF-beta1; however, in mature bone, fewer osteocytes stained for TGF-beta1. The percentages of positively stained cementoblasts, osteoblasts, and fibroblasts in the periodontal space were greater at the apical portion than at the cervical portion of the root. TGF-beta1 mRNA was expressed in osteoblasts, some bone marrow cells, cementoblasts, and fibroblasts. This study indicates that TGF-beta1 may play an important role in the modulation of tissue formation and development of the periodontium.
Collapse
Affiliation(s)
- J Gao
- Department of Dentistry, The University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
115
|
Quilhac A, Sire JY. Restoration of the subepidermal tissues and scale regeneration after wounding a cichlid fish,Hemichromis bimaculatus. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-010x(19980701)281:4<305::aid-jez6>3.0.co;2-s] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
116
|
Tziafas D, Alvanou A, Papadimitriou S, Gasic J, Komnenou A. Effects of recombinant basic fibroblast growth factor, insulin-like growth factor-II and transforming growth factor-beta 1 on dog dental pulp cells in vivo. Arch Oral Biol 1998; 43:431-44. [PMID: 9717581 DOI: 10.1016/s0003-9969(98)00026-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effects of recombinant basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF)-II and transforming growth factor (TGF)-beta 1 on dental pulp cells were investigated by light and transmission electron microscopy after their implantation for 1 and 3 weeks at central sites of mechanically exposed pulps in dog molar and canine teeth. The implants were Millipore filters that have been soaked with solutions containing 100 or 500 ng/ml of bFGF or IGF-II or 100 ng/ml of TGF-beta 1. Control filters were soaked with dog albumin. No changes in cell organization or matrix synthesis were seen after implantation of control filters. Groups of columnar, polarized cells with numerous mitochondria and Golgi elements or elongated cells unassociated with any matrix deposition were demonstrated after 1 or 3 weeks, respectively, in close proximity to the filters that had been soaked with bFGF solution; at a distance from these implants enhanced formation of an osteotypic matrix was seen beneath the exposure site. No particular response was found in close proximity to the filters that had been soaked with IGF-II solution after 1 or 3 weeks implantation but thick zones of osteodentine were found beneath the exposure site and at adjacent circumferential dentine sites. Numerous elongated, polarized cells with long cytoplasmic extensions invading the filter pores were consistently seen after 1 week in close proximity to the filters that had been soaked with TGF-beta 1 solution. After 3 weeks implantation of these filters, deposition of a tubular matrix surrounding the implants was seen in association with the highly elongated odontoblast-like cells, while enhancement of circumferential dentine formation was also found at adjacent peripheral sites. These experiments demonstrate that TGF-beta 1 when implanted for short term periods at central pulp sites exerted dentine-specific effects, inducing differentiation of odontoblast-like cells and stimulating primary odontoblasts. Implantation of bFGF and IGF-II did not result in reparative dentine formation, but did stimulate osteotypical matrix deposition at a distance from the implants.
Collapse
Affiliation(s)
- D Tziafas
- Department of Endodontology, School of Dentistry, Greece.
| | | | | | | | | |
Collapse
|
117
|
Kettunen P, Thesleff I. Expression and function of FGFs-4, -8, and -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn 1998; 211:256-68. [PMID: 9520113 DOI: 10.1002/(sici)1097-0177(199803)211:3<256::aid-aja7>3.0.co;2-g] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To elucidate the roles of fibroblast growth factors (FGF) in the regulation of tooth morphogenesis we have analyzed the expression patterns of Fgf-4, -8, and -9 in the developing mouse molar and incisor tooth germs from initiation to completion of morphogenesis by in situ hybridization analysis. The expression of these Fgfs was confined to dental epithelial cells at stages when epithelial-mesenchymal signaling regulates critical steps of tooth morphogenesis. Fgf-8 and Fgf-9 mRNAs were present in the oral epithelium of the first branchial arch at E10 and 1 day later expression became more restricted to the area of presumptive dental epithelium and persisted there until the start of epithelial budding. Fgf-8 mRNAs were not detected later in the developing tooth. Fgf-4 and Fgf-9 expression was upregulated in the primary enamel knot, which is a putative signaling center regulating tooth shape. Subsequently, Fgf-4 and Fgf-9 were expressed in the secondary enamel knots at the sites of tooth cusps. Fgf-9 expression spread from the primary enamel knot within the inner enamel epithelium where it remained until E18. In the continuously growing incisors Fgf-9 expression persisted in the epithelium of the cervical loops. The effects of FGFs were analyzed on the expression of the homeobox-containing transcription factors Msx-1 and Msx-2, which are associated with tissue interactions and regulated by the dental epithelium. Locally applied FGF-4, -8, and -9 stimulated intensely the expression of Msx-1 but not Msx-2 in the isolated dental mesenchyme. We suggest that the three FGFs act as epithelial signals mediating inductive interactions between dental epithelium and mesenchyme during several successive stages of tooth formation. This data suggest roles for FGF-8 and FGF-9 during initiation of tooth development, and for FGF-4 and FGF-9 during regulation of tooth shape. FGF-9 may also be involved in differentiation of odontoblasts. The coexpression of Fgfs with other signaling molecules including Shh and several Bmps and their partly similar effects suggest that the FGFs participate in the signaling networks during odontogenesis.
Collapse
Affiliation(s)
- P Kettunen
- Developmental Biology Programme, Institute of Biotechnology, University of Helsinki, Finland.
| | | |
Collapse
|
118
|
Abstract
BACKGROUND Biomolecular research and genetic manipulations have stressed the importance of thorough knowledge of normal organ morphology. Mouse molar teeth are convenient models for studying basic interactions in organ development and morphogenesis. The aim of the present study was to provide basic information on their morphology. METHODS Intact and sectioned/ground molars of mice of various ages were observed with SEM. RESULTS Enamel-free areas (EFA) were present on cusp tips at time of eruption. The dominating structural configuration in enamel was prism decussation in inner enamel and parallel prisms in outer enamel. Prism decussation tended to be absent at cusp ridges and in the bottom of grooves. In the former location, the distinction between prisms and interprism was often obscured in the middle enamel zone due to decreased difference in orientation of their crystals. A thin layer of enamel, often aprismatic, covered the distal aspect of cusps in maxillary molars and the mesial aspect of cusps in mandibular molars. The enamel abutting on EFA was often aprismatic. Aprismatic enamel exhibited incremental lines with a periodicity of about 1 microm and was often traversed by cracks. The enamel surface was porous in the bottom of grooves. Parts of mouse molar enamel were incompletely mineralized at the time of eruption. CONCLUSIONS SEM is a convenient method for combined studies of crown morphology and enamel structure. Based on morphological criteria, a modification of the cusp nomenclature is proposed. Enamel thickness and structure in mouse molars show regional variations. Fundamental similarities exist between mouse molar cusps and mouse incisors. Mouse molar enamel undergoes posteruptive maturation.
Collapse
Affiliation(s)
- S P Lyngstadaas
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Norway.
| | | | | |
Collapse
|
119
|
Zhang J, Zheng M, Eipper BA, Pintar JE. Embryonic and uterine expression patterns of peptidylglycine alpha-amidating monooxygenase transcripts suggest a widespread role for amidated peptides in development. Dev Biol 1997; 192:375-91. [PMID: 9441675 DOI: 10.1006/dbio.1997.8750] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Posttranslational processing of peptide precursors frequently includes COOH-terminal amidation by the bifunctional enzyme peptidylglycine alpha-amidating monooxygenase (PAM). We examined the ontogeny of PAM gene expression using in situ hybridization and detected expression in the cardiogenic region beginning at embryonic day 9 (e9) and in decidualizing uterine endometrium and myometrial smooth muscle at even earlier postimplantation stages. PAM expression in the CNS at e10 was highest in the dorsal spinal cord and floor plate and exhibited complex patterning in several CNS regions, including the ventricular zone, over the next several days with PAM expression first detected in neurons at e13. High levels of PAM expression characterized several nonneural cell populations as well, including limb mesoderm and the mesenchyme immediately adjacent to nasal, maxillary, palatal, and dental epithelia during tissue fusion and remodeling. Since alternative splicing generates PAM transcripts encoding proproteins that are differentially localized and processed, we used probes that distinguish major subsets of PAM transcripts to determine that transcripts encoding integral membrane PAM isoforms predominate in most, if not all, PAM-expressing cell types throughout development. Further, transcripts that encode soluble and cleavable PAM isoforms are essentially absent from two CNS areas that are rich in transcripts encoding integral membrane, bifunctional PAM: the ependymal region of the spinal cord and the ventricular zone of the hippocampus. These results provide evidence for widespread expression and cell-type-specific alternative splicing of PAM during development and raise the possibility that region-specific amidation of PAM substrates contributes significantly to several developmental processes.
Collapse
Affiliation(s)
- J Zhang
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | | | |
Collapse
|
120
|
Huysseune A, Sire JY. Structure and development of first-generation teeth in the cichlid Hemichromis bimaculatus (Teleostei, Cichlidae). Tissue Cell 1997; 29:679-97. [DOI: 10.1016/s0040-8166(97)80044-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/1997] [Accepted: 07/29/1997] [Indexed: 11/16/2022]
|
121
|
Aberg T, Wozney J, Thesleff I. Expression patterns of bone morphogenetic proteins (Bmps) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation. Dev Dyn 1997; 210:383-96. [PMID: 9415424 DOI: 10.1002/(sici)1097-0177(199712)210:4<383::aid-aja3>3.0.co;2-c] [Citation(s) in RCA: 289] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bone morphogenetic proteins (BMP) are secretory signal molecules which have a variety of regulatory functions during morphogenesis and cell differentiation. Teeth are typical examples of vertebrate organs in which development is controlled by sequential and reciprocal signaling between the epithelium and mesenchyme. In addition, tooth development is characterized by formation of mineralized tissues: the bone-like dentin and cementum as well as epithelially derived enamel. We have performed a comparative in situ hybridization analysis of the expression of six different Bmps (Bmp-2 to Bmp-7) starting from initiation of tooth development to completion of crown morphogenesis when dentine and enamel matrices are being deposited. Bmps-2, -4, and -7 were frequently codistributed and showed marked associations with epithelial-mesenchymal interactions. Their expression shifted between the epithelium and mesenchyme starting from the stage of tooth initiation. They were subsequently expressed in the enamel knot, the putative signaling center regulating tooth shape. Their expression domains prior to and during the differentiation of the dentine-forming odontoblasts and enamel-forming ameloblasts was in line with functions in regulation of cell differentiation and/or secretory activities of the cells. The expression of Bmp-3 was confined to mesenchymal cells, in particular to the dental follicle cells which give rise to the cementoblasts, forming the hard tissue covering the roots of teeth. Bmp-5 was expressed only in the epithelial ameloblasts. It was upregulated as the cells started to polarize and intense expression continued in the secretory ameloblasts. Bmp-6 was expressed only weakly in the dental mesenchyme during bud and cap stages. Our results are in line with regulatory functions of Bmps at all stages of tooth morphogenesis. Bmps-2, -4, and -7 are conceivably parts of signaling networks regulating tooth initiation and shape development. They as well as Bmp-5 may be involved in the induction and formation of dentine and enamel, and Bmp-3 in the development of cementum. The remarkable overlaps in the expression domains of different Bmp genes may implicate functional redundancy and/or formation of active heterodimers between different BMPs.
Collapse
Affiliation(s)
- T Aberg
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | |
Collapse
|
122
|
Karg H, Burger EH, Lyaruu DM, Bronckers AL, Wöltgens JH. Spatiotemporal expression of the homeobox gene S8 during mouse tooth development. Arch Oral Biol 1997; 42:625-31. [PMID: 9403116 DOI: 10.1016/s0003-9969(97)00057-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The murine S8 gene encodes a nuclear homeodomain containing transcription factor that is expressed at sites of epithelial-mesenchymal interactions, including those in cranofacial tissues. The spatiotemporal expression of S8 mRNA was examined in tooth primordia by in situ hybridization. S8 transcripts were found in all stages of tooth development in 13- to 16.5-day-old mouse embryos (E13-E16.5), covering the early bud stage up to the late bell stage. S8 mRNA was found exclusively in the ectomesenchyme and its derivatives that originate from the neural crest: future pulp cells, odontoblast precursors and dental follicle cells. Expression was highest at the late cap and early bud stages and declined at the mid-bell stage, in both first molar and incisor primordia. In E13 jaw explants grown in organ culture for 48 h, S8 mRNA was still present in first and second molar primordia after culture. At E15.5, S8 mRNA was also transiently present in the surrounding osteogenic tissue. It is concluded that the distribution pattern of S8 mRNA during tooth development indicates a role for the gene in defining the identity of dental papilla and follicle cells. It is speculated that the time-restricted expression of S8 in tooth primordia involves establishing the definitive form of the tooth organ.
Collapse
Affiliation(s)
- H Karg
- Department of Oral Cell Biology, ACTA, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
123
|
Lukinmaa PL, Leppäniemi A, Hietanen J, Allemanni G, Zardi L. Features of odontogenesis and expression of cytokeratins and tenascin-C in three cases of extraosseous and intraosseous calcifying odontogenic cyst. J Oral Pathol Med 1997; 26:265-72. [PMID: 9234186 DOI: 10.1111/j.1600-0714.1997.tb01235.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To characterize further the nature of calcifying odontogenic cyst (COC), we studied histologically and immunohistochemically an extraosseous and two intraosseous lesions. The extraosseous COC was in continuity with the stratified squamous epithelium of the alveolar mucosa. Immunostaining with monoclonal antibodies showed reactivity of both low- and high-molecular-weight cytokeratins, the degree of coexpression decreasing with the increasing morphological diversity of the cyst/tumour epithelium. Staining for the matrix glycoprotein tenascin-C was seen not only in the connective tissue, where its distribution patterns corresponded to the stage of hard tissue formation, but also in epithelial elements. The staining patterns were analogous to those described during normal tooth formation. Both the morphological characteristics and expression patterns of the various cytokeratin types and tenascin-C implied that COC represents a pathological counterpart of normal odontogenesis. In the case of the extraosseous COC, the correspondence could be traced back to early stages of tooth development.
Collapse
Affiliation(s)
- P L Lukinmaa
- Department of Oral Pathology, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
124
|
Abstract
In the course of an extensive comparative, structural and developmental study of the cranial and postcranial dermal skeleton (teeth and scales) in osteichthyan fishes, we have undertaken investigations on scale development in zebrafish (Danio (Brachydanio) rerio) using alizarin red staining, and light and transmission electron microscopy. The main goal was to know whether zebrafish scales can be used as a model for further research on the processes controlling the development of the dermal skeleton in general, especially epithelial-mesenchymal interactions. Growth series of laboratory bred specimens were used to study in detail: (1) the relationship of scale appearance with size and age; (2) the squamation pattern; and (3) the events taking place in the epidermis and in the dermis, before and during scale initiation and formation, with the aim of searching for morphological indications of epithelial-mesenchymal interactions. Scales form late in ontogeny, generally when zebrafish are more than 8.0 mm in standard length. Within a population of zebrafish of the same age scale appearance is related to standard length, but when comparing populations of different age the size of the fish at scale appearance is also related to age. Scales always appear first in the posterior region of the body and the squamation then extends anteriorly. Scales develop in the dermis but closely apposed to the epidermal-dermal boundary. Cellular modifications occurring in the basal layer of the epidermis and in the dermis before scale formation clearly indicate that the basal epidermal cells differentiate first, before any evidence of differentiation of the progenitors of the scale-forming cells in the dermis. This strongly suggests that scale differentiation could be initiated by the epidermal basal layer cells which probably produce a molecular signal towards the dermis below. Subsequently dermal cells accumulate close to the epidermis, and differentiate to form scale papillae. The late formation of the scales during ontogeny is due to a late colonisation of the dermis by the progenitors of the scale-forming cells. Because of their late formation during ontogeny and of their regular pattern of development, scales in zebrafish represent a good model for further investigations on the general mechanisms of epithelial-mesenchymal interactions during dermal skeleton development, and in particular for the study of the gene expression patterns.
Collapse
Affiliation(s)
- J Y Sire
- Equipe Formations squelettiques, CNRS URA 1137, Université Paris 7, France
| | | | | | | | | |
Collapse
|
125
|
Abstract
The mammalian dentition is a segmented organ system with shape differences among its serially homologous elements (individual teeth). It is believed to have evolved from simpler precursors with greater similarities in shape among teeth, and a wealth of descriptive data exist on changes to the dentition that have occurred within mammals. Recent progress has been made in determining the genetic basis of the processes that form an individual tooth, but patterning of the dentition as a whole (i.e. the number, location and shape of the teeth) is less well understood. In contrast to similarly organized systems, such as the vertebral column and limb, Hox genes are not involved in specifying differences among elements. Nevertheless, recent work on a variety of systems is providing clues to the transcription factors and extracellular signalling molecules involved.
Collapse
Affiliation(s)
- D W Stock
- Department of Anthropology, Pennsylvania State University, University Park 16802, USA
| | | | | |
Collapse
|
126
|
Abstract
OBJECTIVE Apert syndrome has been extensively studied and described. However, an area that has not been studied is the dental development of these individuals. The purpose of this study was to evaluate the development of the dentition and compare it with that of unaffected children. There appears to be clinical observations indicating delayed eruption of the permanent teeth in the Apert child. METHODS This retrospective study examined all Apert syndrome patients from four craniofacial centers who had a panoramic radiograph taken before the age of 16 years. Thirty-six individuals, 19 boys and 17 girls ranging in age from 4.1 to 15.8 (mean = 9.3) years were examined. The seven left mandibular permanent teeth, second molar to central incisor, were rated on an eight-stage scale (A-H) using methods described by Demirjian and Goldstein (1976). The stage of each tooth was converted to the corresponding numeric value, and then all seven values were added to obtain a dental maturity score, which corresponded to a dental age, based on the sample of 4500+ normal children of the Demirjian et al. study. The dental age and chronologic age were length of delay was also determined. RESULTS Thirty-one of 36 individuals had a dental age lower than their chronologic age. Compared to the normal sample, the mean developmental dental delay was 0.96 years (p < .001). The range in delay was 0.5 years advanced to 2.9 years delayed. There was a positive correlation to increased age with greater delay in dental development (p < .05). CONCLUSION Our study confirmed our clinical impressions: The results showed a mean developmental delay of 0.96 years, with a trend of increasing delay with increased age. This positive correlation found between increased age and increased delay parallels the general growth of Apert children, with a greater degree of delay as the child grows older.
Collapse
Affiliation(s)
- S Kaloust
- Department of Growth and Development, University of California at San Francisco 94143-0442, USA
| | | | | |
Collapse
|
127
|
Maas R, Bei M. The genetic control of early tooth development. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1997; 8:4-39. [PMID: 9063623 DOI: 10.1177/10454411970080010101] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Most vertebrate organs begin their initial formation by a common, developmentally conserved pattern of inductive tissue interactions between two tissues. The developing tooth germ is a prototype for such inductive tissue interactions and provides a powerful experimental system for elucidation of the genetic pathways involved in organogenesis. Members of the Msx homeobox gene family are expressed at sites of epithelial-mesenchymal interaction during embryogenesis, including the tooth. The important role that Msx genes play in tooth development is exemplified by mice lacking Msx gene function. Msxl-deficient mice exhibit an arrest in tooth development at the bud stage, while Msx2-deficient mice exhibit late defects in tooth development. The co-expression of Msx, Bmp, Lefl, and Activin beta A genes and the coincidence of tooth phenotypes in the various knockout mice suggest that these genes reside within a common genetic pathway. Results summarized here indicate that Msxl is required for the transmission of Bmp4 expression from dental epithelium to mesenchyme and also for Lefl expression. In addition, we consider the role of other signaling molecules in the epithelial-mesenchymal interactions leading to tooth formation, the role that transcription factors such as Msx play in the propagation of inductive signals, and the role of extracellular matrix. Last, as a unifying mechanism to explain the disparate tooth phenotypes in Msxl- and Msx2-deficient mice, we propose that later steps in tooth morphogenesis molecularly resemble those in early tooth development.
Collapse
Affiliation(s)
- R Maas
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
128
|
Abstract
The tooth is one of the vertebrate organs in which development at the molecular level is beginning to be understood. Secreted signaling molecules have been identified that mediate sequential and reciprocal inductive interactions between the dental epithelium and mesenchyme. Transcription factors have been found that participate in these signaling cascades. A signaling or organizing center was recently discovered in the dental enamel knot that expresses the same signals as other organizing centers in the embryo, and which presumably regulates tooth shape. It has recently become evident that the signaling networks that operate in the development of mammalian teeth are similar to those that are involved in the development of other vertebrate organs.
Collapse
Affiliation(s)
- I Thesleff
- Institute of Biotechnology, PO Box 56, FIN-00014 University of Helsinki, Finland.
| | | |
Collapse
|
129
|
Tanase S, Bawden JW. The immunohistochemical localization of stat-2, -3, -4 and -5 during early enamel and dentine formation in rat molars. Arch Oral Biol 1996; 41:1149-60. [PMID: 9134104 DOI: 10.1016/s0003-9969(96)00084-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
STATs (signal transduction and activators of transcription) are key components of the signal transduction pathways in the cytokine receptor superfamily-linked pathway. STATs are activated directly by members of the Jak (Janus kinase) family and, when activated, migrate to the nucleus to modify gene expression to produce a variety of cellular responses. Individual cytokines activate specific combinations of the Jak/STAT isoforms. A previous study localized the known Jak isoforms and STAT-1 in 5-day-old rat molars during the early stages of enamel and dentine formation. The present study was undertaken to localize immunohistochemically STAT isoforms STAT-2. -3, -4 and -5 in association with events involved in early dentine and enamel formation in 5-day-old rat molars. Each of the isoform localization patterns was different from the others. Combining the results of the previous study with the present findings, it appears that all of the known Jaks and STATs-1, -2, -3, -4 and -5 are located in the cells directly involved in early enamel or dentine formation. Using colocalization patterns of the individual Jaks and STATs, individual receptor locations may be predicted. In the proximal ends of differentiated ameloblasts, several cytokine receptors [interleukin (IL) -5, -6, -7, -9, -10, -12, growth hormone granulocyte colony-stimulating factor interferon-alpha/beta. -gamma] are predicted. In other areas of the early odontogenic cells, the proximal ends of differentiating ameloblasts are predicted to have IL-7 receptors, inner enamel epithelium IL-6 and IL-10 receptors, and stratum intermedium cells IL-6 receptors. In the early developing dentine, differentiating odontoblasts are predicted to have IL-6 and IL-10 receptors, and differentiated odontoblasts no cytokine receptors identified by known Jak/STAT combinations. Mapping of the Jak and STAT isoforms in the cells involved in early enamel and dentine formation indicates that a sizeable list of ligands and their respective cytokine receptor/pathway complexes are involved in the regulation of these processes.
Collapse
Affiliation(s)
- S Tanase
- Department of Pediatric Dentistry, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|
130
|
Bawden JW, Moran RA, Deaton TG, Saour CM. Immunohistochemical localization of signal transduction pathways during amelogenesis: an initial exploration. Adv Dent Res 1996; 10:105-10. [PMID: 9206326 DOI: 10.1177/08959374960100020101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study was undertaken to map signal transduction pathway (STP) components uniquely associated with the four major receptor groups and their related STPs in association with the events involved in amelogenesis in the rat. Whole-head, freeze-dried sagittal sections were obtained at the level of the maxillary first molars and picked up on transparent adhesive tape. The sections were not decalcified or fixed, providing optimum conditions for immunohistochemical (IHC) localization. Antibodies to pathway components Gs alpha, Gi alpha, Gq alpha, Sos-1, Grb-2, p125Fak, Jak2, and Vav were localized. The respective patterns of localization indicate that the Gq alpha-linked, the receptor tyrosine kinase-initiated, and the integrin receptor-initiated pathways are involved in the proliferating pre-ameloblast cells. In the differentiating and differentiated ameloblasts, the Gs alpha-linked cAMP pathway is involved, apparently reading a factor(s) released by the dentin matrix. The Gq alpha-linked, the receptor tyrosine kinase-initiated, the integrin receptor-initiated, and the cytokine receptor-initiated pathways are also up-regulated in the proximal ends of the ameloblasts. These observations indicate that all four of the major receptor groups are involved in amelogenesis and that the role of classes of ligands not previously implicated in enamel formation must now be considered. It seems that the cells of the enamel organ respond to the appearance and disappearance of autocrine and paracrine growth factors, but they also up-regulate specific STPs to enable them to respond to circulating hormones and growth factors whose concentrations in the extracellular fluids remain relatively constant.
Collapse
Affiliation(s)
- J W Bawden
- Department of Pediatric Dentistry, School of Dentistry, University of North Carolina Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
131
|
Tanase S, Bawden JW. The immunohistochemical localization of signal-transduction pathway components Jak1, Jak2, Jak3, Tyk2 and STAT-1 during early enamel and dentine formation in rat molars. Arch Oral Biol 1996; 41:925-40. [PMID: 9031700 DOI: 10.1016/s0003-9969(96)00048-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study sought to localize immunohistochemically Janus kinase (Jak) and Tyk isoforms and STAT-1 in association with events involved in early dentine and enamel formation in the rat molar. The Jaks and STATs (signal transducers and activators of transcription) are key signal-transduction pathway components in the cytokine receptor-linked pathway. The histological sections were not demineralized or fixed, providing optimum conditions for immunohistochemical localization. It appears that all of the Jak isoforms and STAT-1 are involved in enamel formation. Jak2 and STAT-1 colocalized in the proximal ends of presecretory and secretory-stage ameloblasts, supporting work by others that growth hormone receptor is located at that site. The colocalization of Jak1, Jak2 and STAT-1 along the proximal ends of presecretory and secretory ameloblasts suggests that the interferon receptor is up-regulated in these cells as well. Also, colocalization of Jak3 and STAT-1 in the proximal ends of the ameloblasts and the cells of the stratum intermedium predicts the location of the interleukin-7 receptor in those locations. Jak1, Tyk2 and STAT-1, but not Jak2 or Jak3, stain was seen in the odontoblasts.
Collapse
Affiliation(s)
- S Tanase
- Department of Pediatric Dentistry, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|
132
|
Phippard DJ, Weber-Hall SJ, Sharpe PT, Naylor MS, Jayatalake H, Maas R, Woo I, Roberts-Clark D, Francis-West PH, Liu YH, Maxson R, Hill RE, Dale TC. Regulation of Msx-1, Msx-2, Bmp-2 and Bmp-4 during foetal and postnatal mammary gland development. Development 1996; 122:2729-37. [PMID: 8787747 DOI: 10.1242/dev.122.9.2729] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the Msx-1 and Msx-2 homeobox genes have been shown to be coordinately regulated with the Bmp-2 and Bmp-4 ligands in a variety of developing tissues. Here we report that transcripts from all four genes are developmentally regulated during both foetal and postnatal mammary gland development. The location and time-course of the Bmp and Msx expression point to a role for Msx and Bmp gene products in the control of epithelial-mesenchymal interactions. Expression of Msx-2, but not Msx-1, Bmp-2 or Bmp-4 was decreased following ovariectomy, while expression of the human Msx-2 homologue was regulated by 17beta-oestradiol in the MCF-7 breast cancer cell line. The regulation of Msx-2 expression by oestrogen raises the possibility that hormonal regulation of mammary development is mediated through the control of epithelial-mesenchymal interactions.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Bone Morphogenetic Proteins/genetics
- DNA-Binding Proteins/genetics
- Estradiol/pharmacology
- Female
- Gene Expression Regulation, Developmental/drug effects
- Homeodomain Proteins/genetics
- Humans
- In Situ Hybridization
- MSX1 Transcription Factor
- Mammary Glands, Animal/embryology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mice
- Mice, Inbred Strains
- Mice, Transgenic
- Morphogenesis
- Ovariectomy
- Pregnancy
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription Factors
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- D J Phippard
- Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Thesleff I, Vaahtokari A, Vainio S, Jowett A. Molecular mechanisms of cell and tissue interactions during early tooth development. Anat Rec (Hoboken) 1996; 245:151-61. [PMID: 8769660 DOI: 10.1002/(sici)1097-0185(199606)245:2<151::aid-ar4>3.0.co;2-#] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Morphogenesis and cell differentiation during the development of all organs, including the tooth, are regulated by interactions between cells and tissues. The developing tooth is one of the organs in which the molecular mechanisms of such interactions are starting to be elucidated. RESULTS Homotypic cell interactions take place between cells of the same developmental history, and they are a central mechanism in the formation of mesenchymal cell condensates during the bud stage of tooth development. Syndecan-1, a cell surface heparan sulfate proteoglycan, is transiently expressed in the dental mesenchyme and may regulate dental mesenchymal cell condensation. It binds tenascin, a matrix glycoprotein abundant in dental mesenchyme, suggesting involvement of cell-matrix interactions. Syndecan also binds growth factors, and its association with cell proliferation in the dental mesenchyme suggests roles in the regulation of cell number in the condensing cells. Inductive interactions between the epithelial and mesenchymal tissues regulate tooth development at all stages. In the early dental mesenchyme, the expression of several molecules, including syndecan and tenascin, are regulated by the epithelium. There is evidence that growth factors act as diffusible signals mediating these interactions. BMP-2 and BMP-4 (bone morphogenetic proteins), which belong to the TGF beta superfamily, are expressed in the early dental epithelium, and their effects on the dental mesenchyme mimic those of the epithelium. In particular, BMPs induce the expression of the homeobox-containing transcription factors Msx-1 and Msx-2 in the dental mesenchyme. CONCLUSIONS Based on current knowledge about the molecular changes accompanying tooth development and the results of experimental studies, we present a model for molecular regulation of early tooth development.
Collapse
Affiliation(s)
- I Thesleff
- Institute of Dentistry, University of Helsinki, Finland
| | | | | | | |
Collapse
|
134
|
Lyngstadaas SP, Nordbo H, Gedde-Dahl T, Thrane PS. On the genetics of hypodontia and microdontia: synergism or allelism of major genes in a family with six affected members. J Med Genet 1996; 33:137-42. [PMID: 8929951 PMCID: PMC1051840 DOI: 10.1136/jmg.33.2.137] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Familial severe hypodontia of the permanent dentition is a rare condition. The genetics of this entity remains unclear and several modes of inheritance have been suggested. We report here an increase in the number of congenitally missing teeth after the mating of affected subjects from two unrelated Norwegian families. This condition may be the result of allelic mutations at a single gene locus. Alternatively, incompletely penetrant non-allelic genes may show a synergistic effect as expected for a multifactorial trait with interacting gene products. This and similar kindreds may allow identification of genes involved in growth and differentiation of dental tissues by linkage and haplotype association analysis. Brittle nails, delayed growth of the hair, and delayed teething in the probands support the grouping of these conditions among the ectodermal dysplasias.
Collapse
Affiliation(s)
- S P Lyngstadaas
- Laboratory for Molecular Biology, Department of Oral Pathology, Faculty of Dentistry, University of Oslo, Norway
| | | | | | | |
Collapse
|