101
|
Domínguez-Rebolledo ÁE, Fernández-Santos MR, Bisbal A, Ros-Santaella JL, Ramón M, Carmona M, Martínez-Pastor F, Garde JJ. Improving the effect of incubation and oxidative stress on thawed spermatozoa from red deer by using different antioxidant treatments. Reprod Fertil Dev 2010; 22:856-70. [DOI: 10.1071/rd09197] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 12/10/2009] [Indexed: 11/23/2022] Open
Abstract
Antioxidants could improve sperm media, extending the viability of spermatozoa and protecting their DNA. The protective ability of lipoic acid, melatonin, Trolox and crocin was tested on red deer spermatozoa incubated at 37°C. Cryopreserved spermatozoa were thawed and incubated with 1 mM or 0.1 mM of each antioxidant, with or without oxidative stress (100 μM Fe2+). Motility (CASA), viability, mitochondrial membrane potential and acrosomal status were assessed. Lipoperoxidation (malondialdehyde production), intracellular reactive oxygen species (ROS) and DNA status (TUNEL) were checked at 4 h. Incubation alone increased ROS and decreased motility. Oxidative stress intensified these effects, increasing lipoperoxidation and DNA damage. Lipoic acid had little protective effect, whereas 1 mM melatonin showed limited protection. Trolox lowered ROS and lipoperoxidation both in oxidised and non-oxidised samples. In oxidised samples, Trolox prevented DNA and acrosomal damage, and ameliorated motility. Crocin at 1 mM showed similar results to Trolox, but noticeably stimulated motility and had no effect on lipoperoxidation. In a second experiment, a broader range of crocin and melatonin concentrations were tested, confirming the effects of crocin (positive effects noticeable at 0.5–0.75 mM), but showing an increase in lipoperoxidation at 2 mM. Melatonin was increasingly effective at 2.5 and 5 mM (ROS, lipoperoxidation and DNA status). Crocin seems a promising new antioxidant, but its particular effects on sperm physiology must be further studied, especially the consequences of motility stimulation and confirming its effect on lipoperoxidation. Melatonin might be useful at relatively high concentrations, compared to Trolox.
Collapse
|
102
|
Lim SY, Bae EH, Jeong MH, Kim JH, Hong YJ, Sim DS, Kim YS, Park IK, Ahn Y, Song SJ, Cho DL, Kim KS, Kang JC. The effect of alpha lipoic acid in a porcine in-stent restenosis model. J Cardiol 2009; 54:375-85. [DOI: 10.1016/j.jjcc.2009.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/04/2009] [Accepted: 06/12/2009] [Indexed: 11/24/2022]
|
103
|
Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta Gen Subj 2009; 1790:1149-60. [PMID: 19664690 DOI: 10.1016/j.bbagen.2009.07.026] [Citation(s) in RCA: 620] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/23/2009] [Accepted: 07/29/2009] [Indexed: 12/15/2022]
Abstract
Alpha-lipoic acid (LA) has become a common ingredient in multivitamin formulas, anti-aging supplements, and even pet food. It is well-defined as a therapy for preventing diabetic polyneuropathies, and scavenges free radicals, chelates metals, and restores intracellular glutathione levels which otherwise decline with age. How do the biochemical properties of LA relate to its biological effects? Herein, we review the molecular mechanisms of LA discovered using cell and animal models, and the effects of LA on human subjects. Though LA has long been touted as an antioxidant, it has also been shown to improve glucose and ascorbate handling, increase eNOS activity, activate Phase II detoxification via the transcription factor Nrf2, and lower expression of MMP-9 and VCAM-1 through repression of NF-kappa B. LA and its reduced form, dihydrolipoic acid, may use their chemical properties as a redox couple to alter protein conformations by forming mixed disulfides. Beneficial effects are achieved with low micromolar levels of LA, suggesting that some of its therapeutic potential extends beyond the strict definition of an antioxidant. Current trials are investigating whether these beneficial properties of LA make it an appropriate treatment not just for diabetes, but also for the prevention of vascular disease, hypertension, and inflammation.
Collapse
Affiliation(s)
- Kate Petersen Shay
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512, USA
| | | | | | | | | |
Collapse
|
104
|
Sudheesh N, Ajith T, Janardhanan K, Krishnan C. Palladium α-lipoic acid complex formulation enhances activities of Krebs cycle dehydrogenases and respiratory complexes I–IV in the heart of aged rats. Food Chem Toxicol 2009; 47:2124-8. [PMID: 19500641 DOI: 10.1016/j.fct.2009.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/07/2009] [Accepted: 05/28/2009] [Indexed: 01/27/2023]
|
105
|
AKPINAR DENIZ, YARGIÇOĞLU PIRAYE, DERIN NARIN, ALICIGÜZEL YAKUP, ŞAHIN MEHMET, AĞAR AYSEL. THE EFFECT OF LIPOIC ACID ON LIPID PEROXIDATION AND VISUAL EVOKED POTENTIALS (VEPS) IN RATS EXPOSED TO CHRONIC RESTRAINT STRESS. Int J Neurosci 2009; 117:1691-706. [DOI: 10.1080/00207450601050287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
106
|
Ambrus A, Tretter L, Adam-Vizi V. Inhibition of the alpha-ketoglutarate dehydrogenase-mediated reactive oxygen species generation by lipoic acid. J Neurochem 2009; 109 Suppl 1:222-9. [PMID: 19393031 DOI: 10.1111/j.1471-4159.2009.05942.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dihydrolipoamide dehydrogenase (LADH) is a flavo-enzyme that serves as a subunit of alpha-ketoglutarate dehydrogenase complex (alpha-KGDHC). Reactive oxygen species (ROS) generation by alpha-KGDHC has been assigned to LADH (E3 subunit) and explained by the diaphorase activity of E3. Dysfunctions of alpha-KGDHC and concurrent ROS production have been implicated in neurodegeneration, ischemia-reperfusion, and other pathological conditions. In this work we investigated the in-depth details of ROS generation by isolated LADH and alpha-KGDHC. We found a parallel generation of superoxide and hydrogen peroxide by the E3 subunit of alpha-KGDHC which could be blocked by lipoic acid (LA) acting on a site upstream of the E3 subunit. The pathologically relevant ROS generation (at high NADH/NAD+ ratio and low pH) in the reverse mode of alpha-KGDHC could also be inhibited by LA. Our results contradict the previously proposed mechanism for pH-dependent ROS generation by LADH, showing no disassembling of the E3 functional homodimer at acidic pH using a physiologically relevant method for the examination. It is also suggested that LA could be beneficial in reducing the cell damage related to excessive ROS generation under pathological conditions.
Collapse
Affiliation(s)
- Attila Ambrus
- Department of Medical Biochemistry, Neurobiochemical Research Group, Hungarian Academy of Sciences and Szentagothai Janos Knowledge Center, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
107
|
Ziyatdinova GK, Grigor’eva LV, Budnikov GK. Electrochemical determination of unithiol and lipoic acid at electrodes modified with carbon nanotubes. JOURNAL OF ANALYTICAL CHEMISTRY 2009. [DOI: 10.1134/s1061934809020166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
108
|
Szabo C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol 2009; 156:713-27. [PMID: 19210748 DOI: 10.1111/j.1476-5381.2008.00086.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Here we overview the role of reactive nitrogen species (nitrosative stress) and associated pathways in the pathogenesis of diabetic vascular complications. Increased extracellular glucose concentration, a principal feature of diabetes mellitus, induces a dysregulation of reactive oxygen and nitrogen generating pathways. These processes lead to a loss of the vascular endothelium to produce biologically active nitric oxide (NO), which impairs vascular relaxations. Mitochondria play a crucial role in this process: endothelial cells placed in increase extracellular glucose respond with a marked increase in mitochondrial superoxide formation. Superoxide, when combining with NO generated by the endothelial cells (produced by the endothelial isoform of NO synthase), leads to the formation of peroxynitrite, a cytotoxic oxidant. Reactive oxygen and nitrogen species trigger endothelial cell dysfunction through a multitude of mechanisms including substrate depletion and uncoupling of endothelial isoform of NO synthase. Another pathomechanism involves DNA strand breakage and activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP). PARP-mediated poly(ADP-ribosyl)ation and inhibition of glyceraldehyde-3-phosphate dehydrogenase importantly contributes to the development of diabetic vascular complications: it induces activation of multiple pathways of injury including activation of nuclear factor kappa B, activation of protein kinase C and generation of intracellular advanced glycation end products. Reactive species generation and PARP play key roles in the pathogenesis of 'glucose memory' and in the development of injury in endothelial cells exposed to alternating high/low glucose concentrations.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555-0833, USA.
| |
Collapse
|
109
|
Szabo C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol 2009. [PMID: 19210748 DOI: 10.111/j.1476-5381.2008.00086.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Here we overview the role of reactive nitrogen species (nitrosative stress) and associated pathways in the pathogenesis of diabetic vascular complications. Increased extracellular glucose concentration, a principal feature of diabetes mellitus, induces a dysregulation of reactive oxygen and nitrogen generating pathways. These processes lead to a loss of the vascular endothelium to produce biologically active nitric oxide (NO), which impairs vascular relaxations. Mitochondria play a crucial role in this process: endothelial cells placed in increase extracellular glucose respond with a marked increase in mitochondrial superoxide formation. Superoxide, when combining with NO generated by the endothelial cells (produced by the endothelial isoform of NO synthase), leads to the formation of peroxynitrite, a cytotoxic oxidant. Reactive oxygen and nitrogen species trigger endothelial cell dysfunction through a multitude of mechanisms including substrate depletion and uncoupling of endothelial isoform of NO synthase. Another pathomechanism involves DNA strand breakage and activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP). PARP-mediated poly(ADP-ribosyl)ation and inhibition of glyceraldehyde-3-phosphate dehydrogenase importantly contributes to the development of diabetic vascular complications: it induces activation of multiple pathways of injury including activation of nuclear factor kappa B, activation of protein kinase C and generation of intracellular advanced glycation end products. Reactive species generation and PARP play key roles in the pathogenesis of 'glucose memory' and in the development of injury in endothelial cells exposed to alternating high/low glucose concentrations.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555-0833, USA.
| |
Collapse
|
110
|
Goralska M, Ferrell J, Harned J, Lall M, Nagar S, Fleisher LN, McGahan MC. Iron metabolism in the eye: a review. Exp Eye Res 2009; 88:204-15. [PMID: 19059397 PMCID: PMC3746754 DOI: 10.1016/j.exer.2008.10.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 10/31/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
Abstract
This review article covers all aspects of iron metabolism, which include studies of iron levels within the eye and the processes used to maintain normal levels of iron in ocular tissues. In addition, the involvement of iron in ocular pathology is explored. In each section there is a short introduction to a specific metabolic process responsible for iron homeostasis, which for the most part has been studied in non-ocular tissues. This is followed by a summary of our current knowledge of the process in ocular tissues.
Collapse
Affiliation(s)
- M Goralska
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Lipoic acid attenuates high fat diet-induced chronic oxidative stress and immunosuppression in mice jejunum: A microarray analysis. Cell Immunol 2009; 260:44-50. [DOI: 10.1016/j.cellimm.2009.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/30/2009] [Accepted: 08/07/2009] [Indexed: 01/18/2023]
|
112
|
Wang YJ, Yang MC, Pan MH. Dihydrolipoic acid inhibits tetrachlorohydroquinone-induced tumor promotion through prevention of oxidative damage. Food Chem Toxicol 2008; 46:3739-48. [DOI: 10.1016/j.fct.2008.09.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 09/10/2008] [Accepted: 09/23/2008] [Indexed: 11/30/2022]
|
113
|
Yang RL, Li W, Shi YH, Le GW. Lipoic acid prevents high-fat diet–induced dyslipidemia and oxidative stress: A microarray analysis. Nutrition 2008; 24:582-8. [DOI: 10.1016/j.nut.2008.02.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/21/2008] [Accepted: 02/01/2008] [Indexed: 01/05/2023]
|
114
|
O'Neill HC, Rancourt RC, White CW. Lipoic acid suppression of neutrophil respiratory burst: effect of NADPH. Antioxid Redox Signal 2008; 10:277-85. [PMID: 18158760 DOI: 10.1089/ars.2007.1890] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Lipoic acid (LA) and its reduced product dihydrolipoic acid (DHLA) are potent antioxidants with capacity to scavenge reactive oxygen species (ROS) and recycle endogenous antioxidants. LA may increase cellular glutathione (GSH), an antioxidant lacking in the lung's epithelial lining fluid in lung disorders such as idiopathic pulmonary fibrosis (IPF). Neutrophils (PMN) are key innate responders and are pivotal in clearing bacterial infection, therefore it is crucial to understand the impact LA may have on their function. Circulating neutrophils were isolated from healthy volunteers and pretreated with LA or diluent. Cells were subsequently activated with phorbol 12-myristate 13-acetate (PMA, 100 ng/ml) to induce ROS production. SOD-inhibitable reduction of acetylated cytochrome c demonstrated the PMA-dependent respiratory burst was suppressed by LA. Oxygen consumption also was diminished when PMA-stimulated cells were pretreated with LA. PMN respiratory burst was partially restored by addition of NADPH but not other pyridine nucleotides. LA did not inhibit glucose-6-phosphate dehydrogenase activity of PMN. These data together suggest that the reduction of LA to DHLA using cellular NADPH may limit the capacity of the PMN NADPH oxidase to produce superoxide. Further studies will be required to determine if LA can diminish excessive superoxide produced by PMN and/or alveolar macrophages in IPF or relevant disease models in vivo.
Collapse
Affiliation(s)
- Heidi C O'Neill
- Department of Pharmaceutical Sciences, Program in Toxicology, School of Pharmacy, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | |
Collapse
|
115
|
Comparison of Vasosol and University of Wisconsin solutions on early kidney function after 24 hours of cold ischemia in a canine autotransplantation model. J Surg Res 2008; 150:255-60. [PMID: 18561949 DOI: 10.1016/j.jss.2007.11.727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 10/15/2007] [Accepted: 11/12/2007] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Ischemia/reperfusion (I/R) injury is a significant cause of graft dysfunction in donor kidney transplantation. It has been suggested that improvements in organ preservation solutions can ameliorate some of deleterious effects of I/R on the transplanted graft. We evaluated herein the influence of Vasosol (VAS), a solution that is designed to target specific pathways of I/R injury, and University of Wisconsin (UW) solution on early graft status of donor kidneys in a canine autotransplant model. MATERIALS AND METHODS Left kidneys were recovered from 12 dogs, exsanguinated with either VAS or UW and cooled to 4 degrees C for 24 h. Kidneys were autotransplanted and the right kidneys were nephrectomized. Indices of post-transplant renal function were measured serially for seven days. All animals were euthanized at postoperative day 7. Kidney biopsies were taken at 1, 4, and 24 h postreperfusion for evaluation of tissue myeloperoxidase concentration. RESULTS All dogs survived the transplant surgery. Post-transplant serum creatinine (mg/dL) and blood urea nitrogen (mg/dL) were significantly elevated in the UW group compared with the VAS group in each of the postoperative days. Moreover, myeloperoxidase tissue levels were significantly elevated in the UW-treated group compared with the VAS-treated group. CONCLUSIONS Our data suggest that a cold storage preserving solution designed to target several modes of I/R injury can improve the function of the autotransplanted canine kidney compared with the current gold standard solution.
Collapse
|
116
|
COSAR E, SAHIN FK, KÖKEN G, TOY H, BASARALI K, BÜYÜKBAS S. The protective effect of α-lipoic acid in experimental ovarian ischaemia-reperfusion injury. Aust N Z J Obstet Gynaecol 2007; 47:499-503. [DOI: 10.1111/j.1479-828x.2007.00787.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
117
|
Gaitanaki C, Kalpachidou T, Aggeli IKS, Papazafiri P, Beis I. CoCl2 induces protective events via the p38-MAPK signalling pathway and ANP in the perfused amphibian heart. ACTA ACUST UNITED AC 2007; 210:2267-77. [PMID: 17575032 DOI: 10.1242/jeb.003178] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) constitute one of the most important intracellular signalling pathways. In particular, the p38-MAPK subfamily is known to be activated under various stressful conditions, such as mechanical or oxidative stress. Furthermore, cobalt chloride (CoCl2) has been shown to mimic hypoxic responses in various cell lines and cause overproduction of reactive oxygen species (ROS). In the current study, we investigated the effect of CoCl2 on p38-MAPK signalling pathway in the perfused Rana ridibunda heart. Immunoblot analysis of the phosphorylated, and thus activated, form of p38-MAPK revealed that maximum phosphorylation was attained at 500 micromol l(-1) CoCl2. A similar profile was observed for MAPKAPK2 and Hsp27 phosphorylation (direct and indirect p38-MAPK substrates, respectively). Time course analysis of p38-MAPK phosphorylation pattern showed that the kinase reached its peak within 15 min of treatment with 500 micromol l(-1) CoCl2. Similar results were obtained for Hsp27 phosphorylation. In the presence of the antioxidants Trolox or Lipoic acid, p38-MAPK CoCl2-induced phosphorylation was attenuated. Analogous results were obtained for Hsp27 and MAPKAPK2. In parallel, mRNA levels of the ANP gene, a hormone whose transcriptional regulation has previously been shown to be regulated by p38-MAPK, were examined (semi-quantitative ratiometric RT-PCR). CoCl2 treatment significantly increased ANP mRNA levels, whereas, in the presence of antioxidants, the transcript levels returned to basal values. All the above data indicate that CoCl2 stimulates compensatory mechanisms involving the p38-MAPK signalling cascade along with ANP.
Collapse
Affiliation(s)
- Catherine Gaitanaki
- Department of Animal and Human Physiology, School of Biology, University of Athens, Panepistimioupolis, 157 84 Athens, Greece
| | | | | | | | | |
Collapse
|
118
|
McMichael MA. Oxidative stress, antioxidants, and assessment of oxidative stress in dogs and cats. J Am Vet Med Assoc 2007; 231:714-20. [PMID: 17764429 DOI: 10.2460/javma.231.5.714] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Maureen A McMichael
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4474, USA
| |
Collapse
|
119
|
|
120
|
Yang R, Le G, Li A, Zheng J, Shi Y. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet. Nutrition 2006; 22:1185-91. [PMID: 17095404 DOI: 10.1016/j.nut.2006.08.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 08/27/2006] [Accepted: 08/28/2006] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The present study explored the effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase (LPL) activity of rats fed with a high-fat diet (HFD). Furthermore, the relation of the atherosclerotic index (AI) and LPL activity to total antioxidant capacity (TAC) was studied. METHODS Thirty-two Sprague-Dawley rats were randomly assigned to one of four groups (n = 8). The control group consumed an ordinary diet (5.1% fat, w/w). The other three experimental groups were fed with an HFD (14.1% fat, w/w), an HFD plus 0.1% lipoic acid (LA), or an HFD plus 0.1% N-acetylcysteine (NAC). After 4 wk, serum levels of triacylglycerol, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol and LPL activity were examined. To evaluate rats' antioxidant status, TAC and superoxide dismutase activities and malondialdehyde level were measured. RESULTS The HFD induced abnormal increases in lipid peroxidation, serum concentrations of total cholesterol, triacylglycerol, and low-density lipoprotein cholesterol, and a decrease in high-density lipoprotein cholesterol concentration. Decreased activity of LPL, accompanied by a depressed antioxidant defense system, was observed in HFD-fed rats. These changes were partially restored in the NAC- and LA-treated groups. There was a negative correlation between AI and TAC (r = -0.969, P < 0.05). In addition, a significant positive correlation between LPL activity and TAC was found (r = 0.979, P < 0.05). CONCLUSION Oxidative injury and lipid abnormalities were induced by an HFD. Administration of LA and NAC can improve the antioxidant capacity and activity of LPL and reduce blood lipid significantly. Antioxidant capacity is correlated with AI and LPL activity.
Collapse
Affiliation(s)
- RuiLi Yang
- Key Laboratory of Food Science and Security, Ministry of Education, Southern Yangtze University, Wuxi, Jiangsu, China
| | | | | | | | | |
Collapse
|
121
|
Abstract
Free radicals are reactive compounds that are naturally produced in the human body. They can exert positive effects (e.g. on the immune system) or negative effects (e.g. lipids, proteins or DNA oxidation). To limit these harmful effects, an organism requires complex protection - the antioxidant system. This system consists of antioxidant enzymes (catalase, glutathione peroxidase, superoxide dismutase) and non-enzymatic antioxidants (e.g. vitamin E [tocopherol], vitamin A [retinol], vitamin C [ascorbic acid], glutathione and uric acid). An imbalance between free radical production and antioxidant defence leads to an oxidative stress state, which may be involved in aging processes and even in some pathology (e.g. cancer and Parkinson's disease). Physical exercise also increases oxidative stress and causes disruptions of the homeostasis. Training can have positive or negative effects on oxidative stress depending on training load, training specificity and the basal level of training. Moreover, oxidative stress seems to be involved in muscular fatigue and may lead to overtraining.
Collapse
Affiliation(s)
- Julien Finaud
- Laboratoire Biologie Interuniversitaire des Activités Physiques et Sportives, Université Blaise Pascal de Clermont-Ferrand, Aubière, France.
| | | | | |
Collapse
|
122
|
Lee EY, Lee CK, Lee KU, Park JY, Cho KJ, Cho YS, Lee HR, Moon SH, Moon HB, Yoo B. Alpha-lipoic acid suppresses the development of collagen-induced arthritis and protects against bone destruction in mice. Rheumatol Int 2006; 27:225-33. [PMID: 16944157 DOI: 10.1007/s00296-006-0193-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 07/24/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To test the ability of alpha-lipoic acid (LA) to attenuate the development of collagen-induced arthritis (CIA) in mice. METHODS Mice were divided into three groups and treated with intraperitoneal administration of LA (10 or 100 mg/kg) or placebo. Clinical, histologic, and biochemical parameters were assessed. Human synovial fibroblasts and peripheral blood mononuclear cells were cocultured in various concentrations of LA to evaluate the effects on osteoclastogenesis. RESULTS LA was associated with a dose-dependent reduction of CIA, as well as preventing bone erosion and destructive changes. Intracellular reactive oxygen species in lymphocytes obtained from inguinal lymph nodes, which was significantly higher in CIA than control mice, was significantly reduced in CIA by LA. The concentrations of TNF-alpha, IL-1beta, and IL-6 in the paws, and synovial NF-kappaB binding, all of which were markedly higher in CIA than control mice, were reduced by treatment with LA. In addition, LA inhibited the formation of human osteoclasts in vitro. CONCLUSION Amelioration of joint disease by LA was associated with reduction in oxidative stress, as well as inhibition of inflammatory cytokine activation and NF-kappaB DNA binding activity. Moreover, LA inhibited bone destruction in vivo and osteoclastogenesis in vitro. Collectively, these results indicate that LA may be a new adjunctive therapy for rheumatoid arthritis.
Collapse
Affiliation(s)
- Eun Young Lee
- Division of Allergy and Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 138-736, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Cremer DR, Rabeler R, Roberts A, Lynch B. Safety evaluation of alpha-lipoic acid (ALA). Regul Toxicol Pharmacol 2006; 46:29-41. [PMID: 16904799 DOI: 10.1016/j.yrtph.2006.06.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Indexed: 02/08/2023]
Abstract
The safety of the antioxidant alpha-lipoic acid (racemic form) (ALA), also called thioctic acid (CAS RN 1077-28-7) was assessed in acute and subchronic toxicity studies as well as in in vitro and in vivo mutagenicity/genotoxicity studies. ALA was not acutely toxic to rats (LD(50)>2000mg/kg bw, OECD method 425). Administration of 31.6 or 61.9mg ALA/kg bw/day for 4 weeks to male/female Wistar rats did not show any adverse effects. Specifically, there was no significant difference between control and treated animals at 31.6 or 61.9mg ALA/kg bw with regard to body weight gain, feed consumption, animal behaviour, or haematological and clinical chemistry parameters. Only the high-dose of 121mg ALA/kg bw was associated with slight alterations in liver enzymes as well as histopathological effects on the liver and mammary gland. ALA did not possess any mutagenic activity in the Ames assays conducted with various bacterial strains of Salmonella typhimurium. Moreover, there was no evidence of genotoxic activity in a mouse micronucleus assay. The results of these studies support the safety of ALA. The no-observed-adverse-effect level (NOAEL) is considered to be 61.9mg/kg bw/day.
Collapse
Affiliation(s)
- D R Cremer
- Degussa Food Ingredients, GmbH, Lise Meitnerstr. 34, D-85354 Freising, Germany.
| | | | | | | |
Collapse
|
124
|
Muthuswamy AD, Vedagiri K, Ganesan M, Chinnakannu P. Oxidative stress-mediated macromolecular damage and dwindle in antioxidant status in aged rat brain regions: Role of l-carnitine and dl-α-lipoic acid. Clin Chim Acta 2006; 368:84-92. [PMID: 16480704 DOI: 10.1016/j.cca.2005.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Revised: 12/04/2005] [Accepted: 12/12/2005] [Indexed: 11/15/2022]
Abstract
BACKGROUND The free radical theory of aging has significant relevance in a number of age-related neurological disorders. Too many free radicals create cellular pollution that shuts down energy levels. They have also been implicated in the loss of physiological functioning associated with the aging of post mitotic cells such as the brain. The activities of enzymatic antioxidative defenses decrease in rat brain may be possible causes of age-associated increase in oxidative damage to macromolecules. METHODS We determined whether DL-alpha-lipoic acid (100 mg/kg body weight/day), and L-carnitine (300 mg/kg body weight/day) together when administered for 30 days declines the rate of oxidative stress-mediated macromolecular damages such as lipid peroxidation (LPO), protein carbonyl (PCO) and DNA protein cross-links in different anatomic regions (cortex, striatum and hippocampus). The activities of antioxidant enzymes in programmed aging were evaluated in the cortex, striatum and hippocampus of young and aged rat brain regions. RESULTS Aged rats elicited a significant decline in the antioxidant status and increase in LPO, PCO and DNA protein cross-links as compared to young rats in all the 3 brain regions. The increase in LPO, PCO and DNA protein cross-links were (35.8%, 35.6%, 43.5%) in cortex, (32.5%, 40.3%, 29.8%) in striatum and (62.7%, 42.4%, 34.9%) in hippocampus, respectively, in aged rats as compared to young rats. Co-supplementation of carnitine and lipoic acid was found to be effective in reducing brain regional LPO, PCO and DNA protein cross-links and in increasing the activities of enzymatic antioxidants in aged rats to near normalcy. CONCLUSION The combination of l-carnitine and lipoic acid overcame the oxidative stress induced rate of lipid peroxidation, protein carbonyl formation, accumulation of DNA protein cross-links and deficits in antioxidant enzyme activities in various brain regions of aged rats.
Collapse
Affiliation(s)
- Anusuya Devi Muthuswamy
- Department of Medical Biochemistry, Dr. AL. Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai-600 113, India
| | | | | | | |
Collapse
|
125
|
Prahalathan C, Selvakumar E, Varalakshmi P, Kumarasamy P, Saravanan R. Salubrious effects of lipoic acid against adriamycin-induced clastogenesis and apoptosis in Wistar rat bone marrow cells. Toxicology 2006; 222:225-32. [PMID: 16580770 DOI: 10.1016/j.tox.2006.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 11/24/2022]
Abstract
Adriamycin (ADR), an anthracycline antibiotic, which is widely used as an antineoplastic drug in the treatment of various solid tumors, has been shown to induce genotoxicity in erythropoietic system. The aim of the present study was to investigate the protective efficacy of DL-alpha-lipoic acid (LA) on ADR-induced clastogenicity and apoptosis in the bone marrow of rats. The animals were randomly divided into eight groups consisting of six rats each. Five groups were administered ADR (20 mg/kg body weight, i.v.) to induce genotoxicity; four of these groups received a single intraperitoneal injection of LA at a dose of either 100 or 200 mg/kg body weight, and either 30 or 60 min prior to ADR administration. A vehicle treated control group and LA control groups were also included. The beneficial effects of LA were monitored by DNA strand breaks, chromosomal aberrations, micronucleus assay and apoptotic studies in the bone marrow cells of rats after 24 h following single dose of ADR treatment. ADR treatment caused significant clastogenicity and apoptosis in rat bone marrow cells. The treatment with LA showed significant reduction in the frequency of chromosomal aberrations, DNA strand breaks and apoptosis in bone marrow cells as well as decreased the micronuclei formation in bone marrow and peripheral blood of rats treated with ADR. The protective effect of LA was found to be stronger at a dose of 200 mg/kg body weight than 100 mg/kg body weight dosage with respect to the above results, indicating the dose dependent effect of LA. However, the protection by LA was not dependent on the time intervals between LA and ADR administration. The results of this study illustrate the protective effect of LA on ADR-induced clastogenicity and apoptosis in the erythropoietic system of rats.
Collapse
Affiliation(s)
- C Prahalathan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India
| | | | | | | | | |
Collapse
|
126
|
Elliott RB. Diabetes--a man made disease. Med Hypotheses 2006; 67:388-91. [PMID: 16530335 DOI: 10.1016/j.mehy.2005.11.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 11/03/2005] [Accepted: 11/04/2005] [Indexed: 11/20/2022]
Abstract
The recent increase in both forms of diabetes must be caused by a modern change in the environment. Candidate agents must satisfy at least three criteria. Firstly, the agent must have increased in the environment recently, secondly that it causes diabetes in appropriate animal models, and thirdly that there is a plausible diabetogenic mechanism. Modern food processing can produce glycation end products, oxidised ascorbic acid and lipoic acid, all of which may cause diabetes. Infant formula in particular has high levels of glycation products, and added ascorbic acid. A casomorphin released from A1 beta-casein (but not the A2 variant) can become glycated and have adverse immune effects. Food processing and additives can be posited as a man made cause of the increase in both forms of diabetes. This hypothesis does not exclude other environmental agents which meet the above three criteria.
Collapse
Affiliation(s)
- R B Elliott
- Living Cell Technologies Limited, 19 Laureston Avenue, Papatoetoe, Auckland 1730, New Zealand.
| |
Collapse
|
127
|
Bucher G, Lu C, Sander W. The Photochemistry of Lipoic Acid: Photoionization and Observation of a Triplet Excited State of a Disulfide. Chemphyschem 2005; 6:2607-18. [PMID: 16331730 DOI: 10.1002/cphc.200500211] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Under short-wavelength UV irradiation, lipoic acid (LipSS) and its reduced form, dihydrolipoic acid (DHLA), undergo photoionization processes through a bi- or monophotonic pathway. After ionization, the LipSS radical cation (LipSS*+) and radical anion (LipSS*-) are generated. LipSS*- can be converted to equimolar amounts of LipSS and DHLA through second-order decay. Triplet acetone can be quenched by LipSS and DHLA with a rate close to the diffusion-controlled limit. The mechanism was further confirmed by continuous irradiation experiments. When LipSS is directly irradiated with UVA light, the first excited triplet state of LipSS is observed, with a lifetime tau=75 ns. Characteristic reactions include triplet energy transfer to oxygen and beta-carotene and addition to isoprene. The lifetime of triplet LipSS is also shortened by addition of water and methanol.
Collapse
Affiliation(s)
- Götz Bucher
- Lehrstuhl für Organische Chemie II, Ruhr-Universität, 44780 Bochum, Germany.
| | | | | |
Collapse
|
128
|
De Marco VG, Bosanquet JP, Rawlani VR, Skimming JW. Lipoic acid decreases exhaled nitric oxide concentrations in anesthetized endotoxemic rats. Vascul Pharmacol 2005; 43:404-10. [PMID: 16290090 DOI: 10.1016/j.vph.2005.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
We recently demonstrated that lipoic acid suppresses endotoxin-stimulated expression of inducible nitric oxide synthase and nitric oxide production in mouse macrophages. In this study, we tested whether lipoic acid suppresses these inflammatory mediators in the lungs of rats. Rats were assigned to receive either no special treatment, endotoxin alone, or pretreatment with lipoic acid followed by endotoxin. After anesthetizing the rats and injecting them intraperitoneally with lipoic acid (100 mg/kg) at 4 h and again at 1 h before treatment, the rats then received either endotoxin (0.01 mg/kg) or its vehicle solution. Exhaled gas was sampled every 15 min and concentrations of nitric oxide in the samples were measured using a chemiluminescence analyzer. After 150 min of exposure to endotoxin, the lungs were harvested and snap-frozen in liquid nitrogen for subsequent analysis. Lipoic acid attenuated endotoxin-induced increases in exhaled nitric oxide concentrations (P<0.001) and iNOS (P<0.05). These findings support the hypothesis that lipoic acid inhibits endotoxin-stimulated formation of intrapulmonary nitric oxide.
Collapse
|
129
|
Staniek K, Rosenau T, Gregor W, Nohl H, Gille L. The protection of bioenergetic functions in mitochondria by new synthetic chromanols. Biochem Pharmacol 2005; 70:1361-70. [PMID: 16150421 DOI: 10.1016/j.bcp.2005.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 07/29/2005] [Accepted: 07/29/2005] [Indexed: 10/25/2022]
Abstract
alpha-Tocopherol is the most important lipophilic antioxidant of the chromanol type protecting biomembranes from lipid peroxidation (LPO). Therefore, alpha-tocopherol and its derivatives are frequently used in the therapy or prevention of oxygen radical-derived diseases. In the present study, novel chromanol-type antioxidants (twin-chromanol, cis- and trans-oxachromanol) as well as the well-known short-chain analogue of alpha-tocopherol, pentamethyl-chromanol, were tested for their antioxidative potency in rat heart mitochondria (RHM). Our experiments revealed that the bioenergetic parameters of mitochondria were not deteriorated in the presence of chromanols (up to 50 nmol/mg protein). Exposure of RHM to cumene hydroperoxide and Fe2+ (final concentrations 50 microM each), inducing LPO, significantly affected their bioenergetic parameters which were determined in the presence of glutamate and malate (substrates of mitochondrial complex I). Alterations of the bioenergetic parameters were partially prevented in a concentration-dependent manner by preincubating RHM with antioxidants before adding the radical-generating system. In the lower concentration range, twin-chromanol turned out to be more efficient than pentamethyl-chromanol, both being far more protective than cis- and trans-oxachromanol. Measurement of protein-bound SH groups and thiobarbituric acid-reactive substances revealed that this protective effect was due to their antioxidative action. Furthermore, HPLC measurements of alpha-tocopherol and alpha-tocopheryl quinone in rat liver mitochondria demonstrated an alpha-tocopherol-sparing effect of twin-chromanol. In conclusion, new chromanol-type antioxidants, especially twin-chromanol, were able to improve bioenergetic and biochemical parameters of mitochondria exposed to oxidative stress.
Collapse
Affiliation(s)
- Katrin Staniek
- Research Institute for Biochemical Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | | | | | | | | |
Collapse
|
130
|
Lee RL, Rancourt RC, del Val G, Pack K, Pardee C, Accurso FJ, White CW. Thioredoxin and dihydrolipoic acid inhibit elastase activity in cystic fibrosis sputum. Am J Physiol Lung Cell Mol Physiol 2005; 289:L875-82. [PMID: 16214824 DOI: 10.1152/ajplung.00103.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excessive neutrophil elastase activity within airways of cystic fibrosis (CF) patients results in progressive lung damage. Disruption of disulfide bonds on elastase by reducing agents may modify its enzymatic activity. Three naturally occurring dithiol reducing systems were examined for their effects on elastase activity: 1) Escherichia coli thioredoxin (Trx) system, 2) recombinant human thioredoxin (rhTrx) system, and 3) dihydrolipoic acid (DHLA). The Trx systems consisted of Trx, Trx reductase, and NADPH. As shown by spectrophotometric assay of elastase activity, the two Trx systems and DHLA inhibited purified human neutrophil elastase as well as the elastolytic activity present in the soluble phase (sol) of CF sputum. Removal of any of the three Trx system constituents prevented inhibition. Compared with the monothiols N-acetylcysteine and reduced glutathione, the dithiols displayed greater elastase inhibition. To streamline Trx as an investigational tool, a stable reduced form of rhTrx was synthesized and used as a single component. Reduced rhTrx inhibited purified elastase and CF sputum sol elastase without NADPH or Trx reductase. Because Trx and DHLA have mucolytic effects, we investigated changes in elastase activity after mucolytic treatment. Unprocessed CF sputum was directly treated with reduced rhTrx, the Trx system, DHLA, or DNase. The Trx system and DHLA did not increase elastase activity, whereas reduced rhTrx treatment increased sol elastase activity by 60%. By contrast, the elastase activity after DNase treatment increased by 190%. The ability of Trx and DHLA to limit elastase activity combined with their mucolytic effects makes these compounds potential therapies for CF.
Collapse
Affiliation(s)
- Rees L Lee
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Bhatti F, Mankhey RW, Asico L, Quinn MT, Welch WJ, Maric C. Mechanisms of antioxidant and pro-oxidant effects of alpha-lipoic acid in the diabetic and nondiabetic kidney. Kidney Int 2005; 67:1371-80. [PMID: 15780089 DOI: 10.1111/j.1523-1755.2005.00214.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND alpha-Lipoic acid is a potent antioxidant that improves renal function in diabetes by lowering glycemia, however, the mechanisms by which alpha-lipoic acid exerts its antioxidant effects are not completely understood. METHODS Metabolic parameters, renal function, and morphology, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and subunit expression were analyzed in nondiabetic and streptozotocin-induced diabetic rats fed normal rat chow (control) with or without alpha-lipoic acid (30 mg/kg body weight) for 12 weeks. RESULTS Blood glucose was increased with diabetes (nondiabetic + control 89 +/- 3 mg/dL and diabetic + control 336 +/- 28 mg/dL) and was similar with alpha-lipoic acid treatment (diabetic +alpha-lipoic acid 351 +/- 14 mg/dL). In contrast, alpha-lipoic acid attenuated albuminuria (nondiabetic + control 8.9 +/- 1.3 mg/day; diabetic + control 28.1 +/- 4.6 mg/day; and diabetic +alpha-lipoic acid 17.8 +/- 1.2 mg/day) associated with diabetes. Similarly, alpha-lipoic acid attenuated glomerulosclerosis (nondiabetic + control 0.22 +/- 0.01; diabetic + control 0.55 +/- 0.04; diabetic +alpha-lipoic acid 0.36 +/- 0.03), tubulointerstitial fibrosis (nondiabetic + control 0.42 +/- 0.18; diabetic + control 1.52 +/- 0.05; diabetic +alpha-lipoic acid 1.10 +/- 0.05), superoxide anion (O(.-) (2)) generation (nondiabetic +control 15.8 +/- 1.7; diabetic +control 87.1 +/- 3.5; diabetic +alpha-lipoic acid 25.5 +/- 3.3 RLU/mg protein), and urine 8-isoprostane (8-iso) excretion (nondiabetic + control 7.4 +/- 1.4; diabetic + control 26.0 +/- 4.5; diabetic +alpha-lipoic acid 19.6 +/- 5.6 ng/day) associated with diabetes. alpha-Lipoic acid also reduced kidney expression of NADPH oxidase subunits p22phox and p47phox. Surprisingly, alpha-lipoic acid appears to cause pro-oxidant effects in nondiabetic animals, resulting in increased albuminuria (nondiabetic +alpha-lipoic acid 14.2 +/- 1.2 mg/day), increase in plasma creatinine levels (nondiabetic + control 59 +/- 6; diabetic + control 68 +/- 6; nondiabetic +alpha-lipoic acid 86 +/- 9; diabetic +alpha-lipoic acid 69 +/- 7 mumol/L), exacerbated glomerulosclerosis and tubulointerstitial fibrosis, increased O(.-) (2) generation, up-regulated p22phox and p47phox expression and increased 8-iso excretion. CONCLUSION We conclude that alpha-lipoic acid improves albuminuria and pathology in diabetes by reducing oxidative stress, while in healthy animals, alpha-lipoic acid may act as a pro-oxidant, contributing to renal dysfunction.
Collapse
Affiliation(s)
- Faizah Bhatti
- Department of Medicine, Division of Nephrology and Hypertension, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
132
|
Cakatay U. Pro-oxidant actions of alpha-lipoic acid and dihydrolipoic acid. Med Hypotheses 2005; 66:110-7. [PMID: 16165311 DOI: 10.1016/j.mehy.2005.07.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 07/29/2005] [Indexed: 11/25/2022]
Abstract
There is strong accumulating evidence that a alpha-lipoic acid (LA) supplement is good insurance, and would markedly improve human health. LA is readily absorbed from the diet, transported to cells and reduced to dihydrolipoic acid (DHLA). Of the two compounds, DHLA evidently has greater antioxidant activity. Much research has focused on the antioxidant properties of these compounds. Aside from its antioxidant role, in vitro and in vivo studies suggest that LA and its reduced form DHLA also act as a pro-oxidant properties. Limited number of studies concerning the pro-oxidant potential of LA and DHLA were performed only in recent years. The ability of LA and/or DHLA to function as either anti- or pro-oxidants, at least in part, is determined by the type of oxidant stress and the physiological circumstances. These pro-oxidant actions suggest that LA and DHLA act by multiple mechanisms, many of which are only now being explored. LA has been reported to have a number of potentially beneficial effects in both prevention and treatment of oxygen-related diseases. Selection of appropriate pharmacological doses of LA for use in oxygen-related diseases is critical. On the other hand, much of the discussion in clinical studies has been devoted to the pro-oxidant role of LA. This aspect remains to be elucidated. In further studies, careful evaluation will be necessary for the decision in the biological system whether LA administration is beneficial or harmful.
Collapse
Affiliation(s)
- Ufuk Cakatay
- Istanbul University, Istanbul Faculty of Medicine, Central Laboratory of Biochemistry, Capa 34390, Istanbul, Turkey.
| |
Collapse
|
133
|
Trujillo M, Folkes L, Bartesaghi S, Kalyanaraman B, Wardman P, Radi R. Peroxynitrite-derived carbonate and nitrogen dioxide radicals readily react with lipoic and dihydrolipoic acid. Free Radic Biol Med 2005; 39:279-88. [PMID: 15964519 DOI: 10.1016/j.freeradbiomed.2005.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 03/14/2005] [Accepted: 03/14/2005] [Indexed: 11/19/2022]
Abstract
Alpha-lipoic acid (LA) and dihydrolipoic acid (DHLA) may have a role as antioxidants against nitric oxide-derived oxidants. We previously reported that peroxynitrite reacts with LA and DHLA with second-order rate constants of 1400 and 500 M(-1) s(-1), respectively, but indicated that these direct reactions are not fast enough to protect against peroxynitrite-mediated damage in vivo. Moreover, the mechanism of the reaction of peroxynitrite with LA has been recently challenged (J. Biol. Chem.279:9693-9697; 2004). Pulse radiolysis studies indicate that LA and DHLA react with peroxynitrite-derived nitrogen dioxide (*NO2) (k2 = 1.3 x 10(6) and 2.9 x 10(7) M(-1) s(-1), respectively) and carbonate radicals (CO(3-)) (k2 = 1.6 x 10(9) and 1.7 x 10(8) M(-1) s(-1), respectively). Carbonate radical-mediated oxidation of LA led to the formation of the potent one-electron oxidant LA radical cation. LA inhibited peroxynitrite-mediated nitration of tyrosine and of a hydrophobic tyrosine analog, N-t-BOC L-tyrosine tert-butyl ester (BTBE), incorporated into liposomes but enhanced tyrosine dimerization. Moreover, while LA competitively inhibited the direct oxidation of glutathione by peroxynitrite, it was poorly effective against the radical-mediated thiol oxidation. The mechanisms of reaction defined herein allow to rationalize the biochemistry of peroxynitrite based on direct and free radical-mediated processes and contribute to the understanding of the antioxidant actions of LA and DHLA.
Collapse
Affiliation(s)
- Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
134
|
Dene BA, Maritim AC, Sanders RA, Watkins JB. Effects of antioxidant treatment on normal and diabetic rat retinal enzyme activities. J Ocul Pharmacol Ther 2005; 21:28-35. [PMID: 15718825 DOI: 10.1089/jop.2005.21.28] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus is characterized by hyperglycemia and, in chronic disease, by microvascular pathologies, especially in the kidney, peripheral nerve, and eye. Although hyperglycemia can be controlled with insulin and/or antihyperglycemic medications, diabetic retinopathy continues to be the leading cause of blindness in the United States. Because increased oxidative stress may be a cause of retinopathy, this study examined the hypothesis that administration of exogenous antioxidants can restore a more balanced oxidative condition. Normal and 30-day streptozotocin-induced diabetic Sprague-Dawley rats received daily intraperitoneal doses (10 mg/kg) of beta-carotene, alpha-lipoic, and Pycnogenol individually or in combinations for 14 days, after which retinae were dissected and fractionated for the assay of activities of glutathione reductase, glutathione peroxidase, gamma-glutamyl transferase, and superoxide dismutase. In normal rats, treatment with antioxidant combinations led to a decrease in gamma-glutamyl transferase activity; beta-carotene plus pycnogenol treatment decreased the activity of both glutathione-related enzymes. Decreased retinal gamma-glutamyl transferase activity of diabetic rats was normalized by the administration of pycnogenol alone or in combination with beta-carotene. In diabetic rats, retinal glutathione reductase activity increased after treatment with beta-carotene alone or with pycnogenol. Treatment with pycnogenol and alpha-lipoic acid alone or in combination decreased the activity of glutathione peroxidase, while this activity was increased after treatment with a combination of all antioxidants. Elevated activity of superoxide dismutase in diabetic retina was normalized by treatment with alpha-lipoic acid and with pycnogenol and beta-carotene in combination, but not with all three together. Antioxidants can access the retina and, once there, can alter antioxidant enzyme activities. In both normal and diabetic rats, combinations of antioxidants have different effects on retinal antioxidant enzyme activities than do individual antioxidants.
Collapse
Affiliation(s)
- Barbara A Dene
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405-7005, USA
| | | | | | | |
Collapse
|
135
|
Sola S, Mir MQS, Cheema FA, Khan-Merchant N, Menon RG, Parthasarathy S, Khan BV. Irbesartan and Lipoic Acid Improve Endothelial Function and Reduce Markers of Inflammation in the Metabolic Syndrome. Circulation 2005; 111:343-8. [PMID: 15655130 DOI: 10.1161/01.cir.0000153272.48711.b9] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
The metabolic syndrome is associated with increased angiotensin II activity, induction of a proinflammatory and oxidative state, and endothelial dysfunction. We evaluated the ability of irbesartan, an angiotensin receptor blocker, and lipoic acid, an antioxidant, to affect endothelial function and inflammation in patients with the metabolic syndrome.
Methods and Results—
We randomized 58 subjects with the metabolic syndrome in a double-blinded manner to irbesartan 150 mg/d (n=14), lipoic acid 300 mg/d (n=15), both irbesartan and lipoic acid (n=15), or matching placebo (n=14) for 4 weeks. Endothelium-dependent and -independent flow-mediated vasodilation was determined under standard conditions. Plasma levels of interleukin-6, plasminogen activator-1, and 8-isoprostane were measured. After 4 weeks of therapy, endothelium-dependent flow-mediated vasodilation of the brachial artery was increased by 67%, 44%, and 75% in the irbesartan, lipoic acid, and irbesartan plus lipoic acid groups, respectively, compared with the placebo group. Treatment with irbesartan and/or lipoic acid was associated with statistically significant reductions in plasma levels of interleukin-6 and plasminogen activator-1. In addition, treatment with irbesartan or irbesartan plus lipoic acid decreased 8-isoprostane levels. No significant changes in blood pressure were noted in any of the study groups.
Conclusions—
Administration of irbesartan and/or lipoic acid to patients with the metabolic syndrome improves endothelial function and reduces proinflammatory markers, factors that are implicated in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Srikanth Sola
- Division of Cardiology, Emory University School of Medicine, Atlanta, Ga 30303, USA
| | | | | | | | | | | | | |
Collapse
|
136
|
Santiago-Mejia J, Fuentes-Vargas M, Rios C, Vidrio H, Rodriguez R. Effect of ascorbic acid, dihydrolipoic acid,t-Butylhydroquinone, and phenylbutylnitrone on mortality and neurological impairment induced by sequential common carotid artery sectioning in mice. Drug Dev Res 2005. [DOI: 10.1002/ddr.10414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
137
|
Suh JH, Zhu BZ, deSzoeke E, Frei B, Hagen TM. Dihydrolipoic acid lowers the redox activity of transition metal ions but does not remove them from the active site of enzymes. Redox Rep 2004; 9:57-61. [PMID: 15035828 DOI: 10.1179/135100004225003923] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Alpha-lipoic acid (LA) and its reduced form, dihydrolipoic acid (DHLA), have been suggested to chelate transition metal ions and, hence, mitigate iron- and copper-mediated oxidative stress in biological systems. However, it remains unclear whether LA and DHLA chelate transition metal ions in a redox-inactive form, and whether they remove metal ions from the active site of enzymes. Therefore, we investigated the effects of LA and DHLA on iron- or copper-catalyzed oxidation of ascorbate, a sensitive assay for the redox activity of these metal ions. We found that DHLA, but not LA, significantly inhibited ascorbate oxidation mediated by Fe(III)-citrate, suggesting that reduced thiols are required for iron binding. DHLA also strongly inhibited Cu(II)(histidine)(2)-mediated ascorbate oxidation in a concentration-dependent manner, with complete inhibition at a DHLA:Cu(II) molar ratio of 3:1. In contrast, no inhibition of copper-catalyzed ascorbate oxidation was observed with LA. To investigate whether LA and DHLA remove copper or iron from the active site of enzymes, Cu,Zn superoxide dismutase and the iron-containing enzyme aconitase were used. We found that neither LA nor DHLA, even at high, millimolar concentrations, altered the activity of these enzymes. Our results suggest that DHLA chelates and inactivates redox-active transition metal ions in small-molecular, biological complexes without affecting iron- or copper-dependent enzyme activities.
Collapse
Affiliation(s)
- Jung H Suh
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | |
Collapse
|
138
|
McMichael M. Ischemia-reperfusion injury: assessment and treatment, part II. J Vet Emerg Crit Care (San Antonio) 2004. [DOI: 10.1111/j.1476-4431.2004.04005.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
139
|
Bubber P, Ke ZJ, Gibson GE. Tricarboxylic acid cycle enzymes following thiamine deficiency. Neurochem Int 2004; 45:1021-8. [PMID: 15337301 DOI: 10.1016/j.neuint.2004.05.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 05/12/2004] [Accepted: 05/18/2004] [Indexed: 11/26/2022]
Abstract
Thiamine (Vitamin B1) deficiency (TD) leads to memory deficits and neurological disease in animals and humans. The thiamine-dependent enzymes of the tricarboxylic acid (TCA) cycle are reduced following TD and in the brains of patients that died from multiple neurodegenerative diseases. Whether reductions in thiamine or thiamine-dependent enzymes leads to changes in all TCA cycle enzymes has never been tested. In the current studies, the pyruvate dehydrogenase complex (PDHC) and all of enzymes of the TCA cycle were measured in the brains of TD mice. Non-thiamine-dependent enzymes such as succinate dehydrogenase (SDH), succinate thiokinase (STH) and malate dehydrogenase (MDH) were altered as much or more than thiamine-dependent enzymes such as the alpha-ketoglutarate dehydrogenase complex (KGDHC) (-21.5%) and PDHC (-10.5%). Succinate dehydrogenase (SDH) activity decreased by 27% and succinate thiokinase (STH) decreased by 24%. The reductions in these other enzymes may result from oxidative stress because of TD or because these other enzymes of the TCA cycle are part of a metabolon that respond as a group of enzymes. The results suggest that other TCA cycle enzymes should be measured in brains from patients that died from neurological disease in which thiamine-dependent enzymes are known to be reduced. The diminished activities of multiple TCA cycle enzymes may be important in our understanding of how metabolic lesions alter brain function in neurodegenerative disorders.
Collapse
Affiliation(s)
- Parvesh Bubber
- Department of Neurology and Neuroscience, Burke Medical Research Institute, Weill Medical College, Cornell University, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
| | | | | |
Collapse
|
140
|
Lin JY, Lin FH, Burch JA, Selim MA, Monteiro-Riviere NA, Grichnik JM, Pinnell SR. α-Lipoic Acid Is Ineffective as a Topical Antioxidant for Photoprotection of Skin11This work was done in Durham, North Carolina, USA. J Invest Dermatol 2004; 123:996-8. [PMID: 15482491 DOI: 10.1111/j.0022-202x.2004.23446.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
141
|
Hill AS, Werner JA, Rogers QR, O'Neill SL, Christopher MM. Lipoic acid is 10 times more toxic in cats than reported in humans, dogs or rats. J Anim Physiol Anim Nutr (Berl) 2004; 88:150-6. [PMID: 15059240 DOI: 10.1111/j.1439-0396.2003.00472.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The antioxidant lipoic acid (LA) is administered to humans and pets. We described acute toxicity and maximum tolerated dose (MTD) of LA in cats. In progression, 10 healthy adult male cats received orally 60 (high), 30 (low), or 0 mg LA/kg (control). Serum enzyme activities and concentrations of bile acids, ammonia, amino acids (AA), LA and dihydrolipoic acid (DHLA) were measured, and tissues examined microscopically. Significant clinical toxicity with changes in ammonia and AA concentrations occurred in all high-dose cats. Oral LA produced hepatocellular toxicity and MTD was < 30 mg/kg in cats.
Collapse
Affiliation(s)
- A S Hill
- Department of Molecular Biosciences Clinical Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | | | | | | | | |
Collapse
|
142
|
Bernkop-Schnürch A, Reich-Rohrwig E, Marschütz M, Schuhbauer H, Kratzel M. Development of a sustained release dosage form for alpha-lipoic acid. II. Evaluation in human volunteers. Drug Dev Ind Pharm 2004; 30:35-42. [PMID: 15000428 DOI: 10.1081/ddc-120027509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Within this study an oral sustained release dosage form of alpha-lipoic acid (thioctic acid) has been generated and evaluated in healthy volunteers. A granulate comprising 56.8% alpha-lipoic acid and 43.2% chitosan acetate was compressed to tablets (weight: 0.45 g; diameter: 10.0 mm; thickness: 4 mm). Three of these tablets were administered at once orally to each volunteer. Prior to administration and then every hour for 12 hours blood samples were taken from the antebrachial vein. alpha-Lipoic acid concentrations in plasma were quantified via precolumn derivatization and reversed-phase high-performance liquid chromatography (HPLC). Results demonstrated that an increased plasma level of alpha-lipoic acid can be achieved by this formulation for at least 12 hours. Within this time period at least two maximum plasma concentrations were reached. The first one is based on the release of alpha-lipoic acid, which is not ionically and therefore only loosely bound to chitosan, whereas a second maximum is based on the release of the drug during the enzymatic degradation of the chitosan matrix in the colon. The AUC(0-12) was determined to be 183.8 +/- 101.4 microg x min/mL (mean +/- SD; n = 8). Because of the pulsed sustained release of alpha-lipoic acid, the dosage form described here seems to be highly beneficial in order to stimulate the glucose uptake in the case of diabetes type II.
Collapse
Affiliation(s)
- Andreas Bernkop-Schnürch
- Institute of Pharmacy, Department of Pharmaceutical Technology, Leopold-Franzens-University Innsbruck, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
143
|
Nalvarte I, Damdimopoulos AE, Spyrou G. Human mitochondrial thioredoxin reductase reduces cytochrome c and confers resistance to complex III inhibition. Free Radic Biol Med 2004; 36:1270-8. [PMID: 15110392 DOI: 10.1016/j.freeradbiomed.2004.02.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 02/09/2004] [Accepted: 02/19/2004] [Indexed: 11/16/2022]
Abstract
The ubiquitously expressed mammalian thioredoxin reductases are selenoproteins that together with NADPH regenerate active reduced thioredoxins and are involved in diverse actions mediated by redox control. Two main forms of mammalian thioredoxin reductases have been isolated, one cytosolic (TrxR1) and one present in mitochondria (TrxR2). Although the principal target for TrxRs is thioredoxin, the cytosolic form can regenerate several important antioxidants such as ascorbic acid, lipoic acid, and ubiquinone. In this study we demonstrate that cytochrome c is a substrate for both TrxR1 and TrxR2. In addition, cells overexpressing TrxR2 are more resistant to impairment of complex III in the mitochondrial respiratory chain upon both antimycin A and myxothiazol treatments, suggesting a complex III bypassing function of TrxR2. Furthermore, we show that cytochrome c is reduced by TrxR2 in vitro, not only by using NADPH as an electron donor but also by using NADH, pointing at TrxR2 as an important redox protein on complex III impairment. These findings may be valuable in understanding respiratory disorders in mitochondrial diseases.
Collapse
Affiliation(s)
- Ivan Nalvarte
- Department of Biosciences at Novum, Center for Biotechnology, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| | | | | |
Collapse
|
144
|
D'Amico ML, Navari-Izzo F, Sgherri C, Izzo R. The role of lipoic acid in the regulation of the redox status of wheat irrigated with 20% sea water. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:329-334. [PMID: 15120118 DOI: 10.1016/j.plaphy.2004.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 02/26/2004] [Indexed: 05/24/2023]
Abstract
The effect of irrigation with 20% sea water was studied in 14 and 21-day-old seedlings of durum wheat (Triticum durum, cv. Ofanto). Comparisons between control (Hoagland's 2 solution) and treated (20% sea water in Hoagland's solution) plants included, besides HPLC determination of reduced (DHLA) and oxidised (LA) forms of lipoic acid, ascorbate and glutathione contents, their redox status, the activity of ascorbate peroxidase (APX, EC 1.11.1.11.) and glutathione reductase (GR, EC 1.6.4.2.). The results indicated a more relevant presence of lipoic acid in the roots in comparison to the shoots. An involvement of its reduced form in the regeneration of the reduced glutathione, at least at 14 days of treatment, suggested, besides its role as dehydrogenase enzyme cofactor, a role in the recycling of the other antioxidants. The amount of LA always increased with growth in shoots and decreased in roots, while DHLA remained constant in control and increased in treated plants. Besides, the oxidised form always decreased with sea water while the reduced form decreased in shoots and increased in roots. The ascorbate pool exerted its positive influence especially in the shoots, while APX and GR activities resulted differently modulated by the salinity level.
Collapse
Affiliation(s)
- Maria Lucia D'Amico
- Dipartimento di Chimica e Biotecnologie Agrarie, Via del Borghetto, 80-56124 Pisa, Italy
| | | | | | | |
Collapse
|
145
|
Guo Q, Detweiler CD, Mason RP. Protein Radical Formation during Lactoperoxidase-mediated Oxidation of the Suicide Substrate Glutathione. J Biol Chem 2004; 279:13272-83. [PMID: 14724284 DOI: 10.1074/jbc.m310034200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A novel anti-5,5-dimethyl-1-pyrroline N-oxide (DMPO) polyclonal antiserum that specifically recognizes protein radical-derived DMPO nitrone adducts has been developed. In this study, we employed this new approach, which combines the specificity of spin trapping and the sensitivity of antigen-antibody interactions, to investigate protein radical formation from lactoperoxidase (LPO). When LPO reacted with GSH in the presence of DMPO, we detected an LPO radical-derived DMPO nitrone adduct using enzyme-linked immunosorbent assay and Western blotting. The formation of this nitrone adduct depended on the concentrations of GSH, LPO, and DMPO as well as pH values, and GSH could not be replaced by H(2)O(2). The level of this nitrone adduct was decreased significantly by azide, catalase, ascorbate, iodide, thiocyanate, phenol, or nitrite. However, its formation was unaffected by chemical modification of free cysteine, tyrosine, and tryptophan residues on LPO. ESR spectra showed that a glutathiyl radical was formed from the LPO/GSH/DMPO system, but no protein radical adduct could be detected by ESR. Its formation was decreased by azide, catalase, ascorbate, iodide, or thiocyanate, whereas phenol or nitrite increased it. GSH caused marked changes in the spectrum of compound II of LPO, indicating that GSH binds to the heme of compound II, whereas phenol or nitrite prevented these changes and reduced compound II back to the native enzyme. GSH also dose-dependently inhibited the peroxidase activity of LPO as determined by measuring 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) oxidation. Taken together, these results demonstrate that the GSH-dependent LPO radical formation is mediated by the glutathiyl radical, possibly via the reaction of the glutathiyl radical with the heme of compound II to form a heme-centered radical trapped by DMPO.
Collapse
Affiliation(s)
- Qiong Guo
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
146
|
Kyselova Z, Stefek M, Bauer V. Pharmacological prevention of diabetic cataract. J Diabetes Complications 2004; 18:129-40. [PMID: 15120709 DOI: 10.1016/s1056-8727(03)00009-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Revised: 01/14/2003] [Accepted: 01/22/2003] [Indexed: 11/23/2022]
Abstract
Cataract--opacification of the lens--is closely related to diabetes as one of its major late complications. This review deals with three molecular mechanisms that may be involved in the development of diabetic cataract: nonenzymatic glycation of eye lens proteins, oxidative stress, and activated polyol pathway in glucose disposition. Implications resulting from these mechanisms for possible pharmacological interventions to prevent diabetic cataract are discussed. The article reviews research on potential anticataract agents, including glycation inhibitors, antioxidants, and aldose reductase inhibitors. Information on possible benefits of putative anticataract agents comes from a variety of approaches, ranging from laboratory experiments, both in vitro and in vivo, to epidemiological studies in patients.
Collapse
Affiliation(s)
- Z Kyselova
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia.
| | | | | |
Collapse
|
147
|
Bernkop-Schnürch A, Schuhbauer H, Clausen AE, Hanel R. Development of a Sustained Release Dosage Form for α‐Lipoic Acid. I. Design and In Vitro Evaluation. Drug Dev Ind Pharm 2004; 30:27-34. [PMID: 15000427 DOI: 10.1081/ddc-120027508] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The purpose of this study was the design and evaluation of a sustained release dosage form for the oral administration of alpha-lipoic acid. The cationic polymer chitosan was used in order to provide a controlled drug release based on ionic interactions with the anionic drug. The effect of such ionic interactions on the release of alpha-lipoic acid could be verified by diffusion studies. In vitro release studies with tablets (diameter: 10.0 mm; thickness: approximately 4 mm) containing 80% alpha-lipoic acid and 20% chitosan acetate showed a controlled drug release over a time period of 24 h. Raising the ratio of chitosan acetate in such delivery systems led to an even stronger retardation of drug release. In addition, permeation studies carried out in Ussing-type chambers with freshly excised intestinal mucosa from guinea pigs demonstrated no significant (p < 0.05) influence of the degree of drug ionization on its absorption behavior. The apparent permeability coefficient (Papp) for alpha-lipoic acid was determined to be 1.39 +/- 0.28 x 10(-5) cm/sec at pH 6.4 (means +/- SD). The use of a sustained delivery system for alpha-lipoic acid, which is based on ionic interactions, should therefore have no influence on the absorption behavior of the drug. The sustained release dosage forms described here might provide a constant plasma level of the drug being highly beneficial for various therapeutic reasons.
Collapse
Affiliation(s)
- Andreas Bernkop-Schnürch
- Institute of Pharmacy, Department of Pharmaceutical Technology, Leopold-Franzens-University Innsbruck, Innsbruck, Austria.
| | | | | | | |
Collapse
|
148
|
Mamiya T, Asanuma T, Kise M, Ito Y, Mizukuchi A, Aoto H, Ukai M. Effects of Pre-Germinated Brown Rice on .BETA.-Amyloid Protein-Induced Learning and Memory Deficits in Mice. Biol Pharm Bull 2004; 27:1041-5. [PMID: 15256737 DOI: 10.1248/bpb.27.1041] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated the effects of pre-germinated brown rice (hatsuga genmai, PGR) on learning and memory and compared them with those of polished rice or cornstarch. In mice that were fed pellets of polished rice or PGR for two weeks, the learning ability in the Morris water maze test was significantly enhanced compared with mice that were fed cornstarch pellets. In the Y-maze test, the intake of food pellets for two weeks failed to affect spontaneous alternation behavior. Beta-amyloid(25-35) (Abeta(25-35): 3 nmol/mouse, i.c.v.) protein impaired spontaneous alternation behavior in mice that were fed pellets of cornstarch or polished rice. In contrast, PGR pellets prevented the Abeta(25-35)-induced impairment of spontaneous alternation behavior. These results suggest that polished rice and PGR have facilitating effects on spatial learning. In particular, it is surmised that PGR may prevent Alzheimer's disease associated with Abeta.
Collapse
Affiliation(s)
- Takayoshi Mamiya
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
149
|
Arivazhagan P, Panneerselvam SR, Panneerselvam C. Effect of DL- -Lipoic Acid on the Status of Lipid Peroxidation and Lipids in Aged Rats. J Gerontol A Biol Sci Med Sci 2003; 58:B788-91. [PMID: 14528033 DOI: 10.1093/gerona/58.9.b788] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The effect of dextro and levo (DL)-alpha-lipoic acid on lipid peroxidation and lipids has been evaluated in plasma, liver, and kidney of young and aged rats. The levels of thiobarbituric acid reactive substances (TBARS) and lipids were considerably higher in aged rats compared with younger controls. DL-alpha-lipoic acid (100 mg/kg body wt/day) was administered intraperitoneally for 7 and 14 days. Supplementation of lipoic acid in aged rats prevents the elevated levels of TBARS and lipids. From our observations, we conclude that lipoic acid is very effective in normalizing age-related alterations in lipids, and it can be implemented in the aged to minimize age-associated disorders where free radicals are the major cause.
Collapse
Affiliation(s)
- Palaniyappan Arivazhagan
- Department of Medical Biochemistry, Dr ALM Post Graduate Institute of Basic Medical Sciences,University of Madras, Chennai, India
| | | | | |
Collapse
|
150
|
do Vale OC, Fonteles DSR, Cabral FR, Fonteles MC. A dual action of alpha-lipoic acid in the brain: an electrophysiological evaluation. ARQUIVOS DE NEURO-PSIQUIATRIA 2003; 61:738-45. [PMID: 14595475 DOI: 10.1590/s0004-282x2003000500007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative stress causes metabolic and structural abnormalities during reperfusion. In an animal model of electrophysiological evaluation of cerebral ischemia-reperfusion, alpha-lipoic acid effect on the oxidative stress was studied by mean absolute amplitude of EEG spectra evaluation. The left carotideal infusion of 3.03 mM alpha-lipoic acid in Wistar rats after cerebral ischemia and reperfusion caused initial reduction and partial final recuperation of the various EEG spectral frequency mean absolute amplitudes (p<0.05). The left intracarotideal infusion of 6.06 mM alpha-lipoic acid significantly reverted the induced depression of mean absolute amplitude of theta and delta spectra. Nevertheless there was an increasing pattern of ischemia demonstrated by mean absolute amplitude depression of almost all EEG spectra with 60.6 mM alpha-lipoic acid infusion. These observations suggest that, depending on the administered concentration, alpha-lipoic acid may act in a dual way, protecting from ischemia at lower concentrations and worsening this process at higher doses.
Collapse
Affiliation(s)
- Otoni Cardoso do Vale
- Departamento de Medicina Clínica, Faculdade de Medicina, Universidade Federal do Ceará, Botucatu, SP, Brasil
| | | | | | | |
Collapse
|