101
|
Burke SM, Manzouri AH, Savic I. Structural connections in the brain in relation to gender identity and sexual orientation. Sci Rep 2017; 7:17954. [PMID: 29263327 PMCID: PMC5738422 DOI: 10.1038/s41598-017-17352-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/23/2017] [Indexed: 12/22/2022] Open
Abstract
Both transgenderism and homosexuality are facets of human biology, believed to derive from different sexual differentiation of the brain. The two phenomena are, however, fundamentally unalike, despite an increased prevalence of homosexuality among transgender populations. Transgenderism is associated with strong feelings of incongruence between one's physical sex and experienced gender, not reported in homosexual persons. The present study searches to find neural correlates for the respective conditions, using fractional anisotropy (FA) as a measure of white matter connections that has consistently shown sex differences. We compared FA in 40 transgender men (female birth-assigned sex) and 27 transgender women (male birth-assigned sex), with both homosexual (29 male, 30 female) and heterosexual (40 male, 40 female) cisgender controls. Previously reported sex differences in FA were reproduced in cis-heterosexual groups, but were not found among the cis-homosexual groups. After controlling for sexual orientation, the transgender groups showed sex-typical FA-values. The only exception was the right inferior fronto-occipital tract, connecting parietal and frontal brain areas that mediate own body perception. Our findings suggest that the neuroanatomical signature of transgenderism is related to brain areas processing the perception of self and body ownership, whereas homosexuality seems to be associated with less cerebral sexual differentiation.
Collapse
Affiliation(s)
- Sarah M Burke
- Brain & Development Research Centre, Department of Developmental and Educational Psychology, Leiden University, Leiden, The Netherlands.
- Department of Women's and Children's Health, Karolinska Institute and University Hospital, Stockholm, Sweden.
| | - Amir H Manzouri
- Stressmotagningen, S:t Göransgatan 84, 112 38, Stockholm, Sweden
| | - Ivanka Savic
- Department of Women's and Children's Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| |
Collapse
|
102
|
Hirsiger S, Koppelmans V, Mérillat S, Erdin C, Narkhede A, Brickman AM, Jäncke L. Executive Functions in Healthy Older Adults Are Differentially Related to Macro- and Microstructural White Matter Characteristics of the Cerebral Lobes. Front Aging Neurosci 2017; 9:373. [PMID: 29249957 PMCID: PMC5715235 DOI: 10.3389/fnagi.2017.00373] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/31/2017] [Indexed: 01/13/2023] Open
Abstract
Aging is associated with microstructural white matter (WM) changes. WM microstructural characteristics, measured with diffusion tensor imaging (DTI), are different in normal appearing white matter (NAWM) and WM hyperintensities (WMH). It is largely unknown how the microstructural properties of WMH are associated with cognition and if there are regional effects for specific cognitive domains. We therefore examined within 200 healthy older participants (a) differences in microstructural characteristics of NAWM and WMH per cerebral lobe; and (b) the association of macrostructural (WMH volume) and microstructural characteristics (within NAWM and WMH separately) of each lobe with measures of executive function and processing speed. Multi-modal imaging (i.e., T1, DTI, and FLAIR) was used to assess WM properties. The Stroop and the Trail Making Test were used to measure inhibition, task-switching (both components of executive function), and processing speed. We observed that age was associated with deterioration of white matter microstructure of the NAWM, most notably in the frontal lobe. Older participants had larger WMH volumes and lowest fractional anisotropy values within WMH were found in the frontal lobe. Task-switching was associated with cerebral NAWM volume and NAWM volume of all lobes. Processing speed was associated with total NAWM volume, and microstructural properties of parietal NAWM, the parietal WMH, and the temporal NAWM. Task-switching was related to microstructural properties of WMH of the frontal lobe and WMH volume of the parietal lobe. Our results confirm that executive functioning and processing speed are uniquely associated with macro- and microstructural properties of NAWM and WMH. We further demonstrate for the first time that these relationships differ by lobar region. This warrants the consideration of these distinct WM indices when investigating cognitive function.
Collapse
Affiliation(s)
- Sarah Hirsiger
- International Normal Aging and Plasticity Imaging Center, University of Zurich, Zurich, Switzerland.,University Research Priority Program Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland
| | - Vincent Koppelmans
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States.,School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Susan Mérillat
- International Normal Aging and Plasticity Imaging Center, University of Zurich, Zurich, Switzerland.,University Research Priority Program Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland
| | - Cornelia Erdin
- International Normal Aging and Plasticity Imaging Center, University of Zurich, Zurich, Switzerland.,University Research Priority Program Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland
| | - Atul Narkhede
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Lutz Jäncke
- International Normal Aging and Plasticity Imaging Center, University of Zurich, Zurich, Switzerland.,University Research Priority Program Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland.,Division of Neuropsychology, University of Zurich, Zurich, Switzerland.,Department of Special Education, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
103
|
Relation of Retinal and Serum Lutein and Zeaxanthin to White Matter Integrity in Older Adults: A Diffusion Tensor Imaging Study. Arch Clin Neuropsychol 2017; 33:861-874. [DOI: 10.1093/acn/acx109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2017] [Indexed: 01/21/2023] Open
|
104
|
Global structural integrity and effective connectivity in patients with disorders of consciousness. Brain Stimul 2017; 11:358-365. [PMID: 29162503 DOI: 10.1016/j.brs.2017.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/07/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Previous studies have separately reported impaired functional, structural, and effective connectivity in patients with disorders of consciousness (DOC). The perturbational complexity index (PCI) is a transcranial magnetic stimulation (TMS) derived marker of effective connectivity. The global fractional anisotropy (FA) is a marker of structural integrity. Little is known about how these parameters are related to each other. OBJECTIVE We aimed at testing the relationship between structural integrity and effective connectivity. METHODS We assessed 23 patients with severe brain injury more than 4 weeks post-onset, leading to DOC or locked-in syndrome, and 14 healthy subjects. We calculated PCI using repeated single pulse TMS coupled with high-density electroencephalography, and used it as a surrogate of effective connectivity. Structural integrity was measured using the global FA, derived from diffusion weighted imaging. We used linear regression modelling to test our hypothesis, and computed the correlation between PCI and FA in different groups. RESULTS Global FA could predict 74% of PCI variance in the whole sample and 56% in the patients' group. No other predictors (age, gender, time since onset, behavioural score) improved the models. FA and PCI were correlated in the whole population (r = 0.86, p < 0.0001), the patients, and the healthy subjects subgroups. CONCLUSION We here demonstrated that effective connectivity correlates with structural integrity in brain-injured patients. Increased structural damage level decreases effective connectivity, which could prevent the emergence of consciousness.
Collapse
|
105
|
Kavroulakis E, Simos PG, Kalaitzakis G, Maris TG, Karageorgou D, Zaganas I, Panagiotakis S, Basta M, Vgontzas A, Papadaki E. Myelin content changes in probable Alzheimer's disease and mild cognitive impairment: Associations with age and severity of neuropsychiatric impairment. J Magn Reson Imaging 2017; 47:1359-1372. [PMID: 28861929 DOI: 10.1002/jmri.25849] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/18/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Existing indices of white matter integrity such as fractional anisotropy and magnetization transfer ratio may not provide optimal specificity to myelin content. In contrast, myelin water fraction (MWF) derived from the multiecho T2 relaxation time technique may serve as a more direct measure of myelin content. PURPOSE/HYPOTHESIS The goal of the present study was to identify markers of regional demyelination in patients with probable Alzheimer's disease (AD) and mild cognitive impairment (MCI) in relation to age and severity of neuropsychiatric impairment. POPULATION The sample included patients diagnosed with probable AD (n = 25) or MCI (n = 43), and cognitively intact elderly controls (n = 33). FIELD STRENGTH/SEQUENCE ASSESSMENT Long T2 , short T2 , and MWF values were measured with a 1.5T scanner in periventricular and deep normal-appearing white matter (NAWM), serving as indices of intra/extracellular water content and myelin content. A comprehensive neuropsychological and neuropsychiatric assessment was administered to all participants. STATISTICAL TESTS, RESULTS AD patients displayed higher age-adjusted long and short T2 values and reduced MWF values in left temporal/parietal and bilateral periventricular NAWM than controls and MCI patients (P < 0.004; one-way analysis of covariance [ANCOVA] tests). Short T2 /MWF values in temporal, frontal, and periventricular NAWM of controls and/or MCI patients were significantly associated with episodic and semantic memory performance and depressive symptomatology (P < 0.004; partial correlation indices). The impact of age on memory performance was significantly (P < 0.01; mediated linear regression analyses) mediated by age-related changes in short T2 and MWF values in these regions. DATA CONCLUSION Age-related demyelination is associated with memory impairment (especially in prodromal dementia states) and symptoms of depression in an anatomically specific manner. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1359-1372.
Collapse
Affiliation(s)
| | - Panagiotis G Simos
- Department of Psychiatry, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Kalaitzakis
- Department of Medical Physics, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Thomas G Maris
- Department of Medical Physics, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Dimitra Karageorgou
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Ioannis Zaganas
- Department of Neurology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | | | - Maria Basta
- Department of Psychiatry, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Alexandros Vgontzas
- Department of Psychiatry, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Efrosini Papadaki
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
106
|
Case LK, Brang D, Landazuri R, Viswanathan P, Ramachandran VS. Altered White Matter and Sensory Response to Bodily Sensation in Female-to-Male Transgender Individuals. ARCHIVES OF SEXUAL BEHAVIOR 2017; 46:1223-1237. [PMID: 27646840 PMCID: PMC5357597 DOI: 10.1007/s10508-016-0850-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
While most people take identification with their body for granted, conditions such as phantom limb pain, alien hand syndrome, and xenomelia suggest that the feeling of bodily congruence is constructed and susceptible to alteration. Individuals with xenomelia typically experience one of their limbs as over-present and aversive, leading to a desire to amputate the limb. Similarly, many transgender individuals describe their untreated sexed body parts as incongruent and aversive, and many experience phantom body parts of the sex they identify with (Ramachandran, 2008). This experience may relate to differences in brain representation of the sexed body part, as suggested in xenomelia (McGeoch et al., 2011). We utilized magnetoencephalography imaging to record brain activity during somatosensory stimulation of the breast-a body part that feels incongruent to most presurgical female-to-male (FtM)-identified transgender individuals-and the hand, a body part that feels congruent. We measured the sensory evoked response in right hemisphere somatosensory and body-related brain areas and found significantly reduced activation in the supramarginal gyrus and secondary somatosensory cortex, but increased activation at the temporal pole for chest sensation in the FtM group (N = 8) relative to non-transgender females (N = 8). In addition, we found increased white matter coherence in the supramarginal gyrus and temporal pole and decreased white matter diffusivity in the anterior insula and temporal pole in the FtM group. These findings suggest that dysphoria related to gender-incongruent body parts in FtM individuals may be tied to differences in neural representation of the body and altered white matter connectivity.
Collapse
Affiliation(s)
- Laura K Case
- Department of Psychology, University of California, San Diego, CA, USA.
- Pain and Integrative Neuroscience Branch, National Center for Complementary and Integrative Health, Bethesda, MD, 20892, USA.
- Department of Cognitive Science, University of California, San Diego, CA, USA.
| | - David Brang
- Department of Psychology, University of California, San Diego, CA, USA
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Cognitive Science, University of California, San Diego, CA, USA
| | - Rosalynn Landazuri
- Department of Psychology, University of California, San Diego, CA, USA
- Department of Cognitive Science, University of California, San Diego, CA, USA
| | - Pavitra Viswanathan
- Department of Psychology, University of California, San Diego, CA, USA
- Department of Cognitive Science, University of California, San Diego, CA, USA
| | - Vilayanur S Ramachandran
- Department of Psychology, University of California, San Diego, CA, USA
- Department of Cognitive Science, University of California, San Diego, CA, USA
| |
Collapse
|
107
|
Kranz GS, Seiger R, Kaufmann U, Hummer A, Hahn A, Ganger S, Tik M, Windischberger C, Kasper S, Lanzenberger R. Effects of sex hormone treatment on white matter microstructure in individuals with gender dysphoria. Neuroimage 2017; 150:60-67. [DOI: 10.1016/j.neuroimage.2017.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/02/2016] [Accepted: 02/10/2017] [Indexed: 11/28/2022] Open
|
108
|
Smith KW, Gierski F, Andre J, Dowell NG, Cercignani M, Naassila M, Duka T. Altered white matter integrity in whole brain and segments of corpus callosum, in young social drinkers with binge drinking pattern. Addict Biol 2017; 22:490-501. [PMID: 26687067 DOI: 10.1111/adb.12332] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 08/07/2015] [Accepted: 10/21/2015] [Indexed: 11/28/2022]
Abstract
Binge drinking is associated with impaired cognitive functioning, but the relationship of cognitive impairments and white matter integrity is less known. We used diffusion tensor imaging (DTI) to investigate the relationships of binge drinking, whole brain white matter integrity and cognitive performance during young adulthood (18 to 25 years), a period of continued brain development in two sessions 1 year apart. Binge drinkers (n = 20) and non-binge drinkers (n = 20) underwent DTI and completed measures of spatial working memory and motor impulsivity. Fractional anisotropy (FA), a measure derived from DTI, was estimated from whole brain and from five segments of the corpus callosum (CC): prefrontal, premotor/supplementary motor, motor, (SMA) sensory and parietal/temporal/occipital (PTO). FA was lower for binge than for non-binge men but not women at Session 1 and 2 for all measurements except for FA in the motor segment, which was significantly increased from Session 1 to Session 2. Lower FA in the prefrontal and PTO CC segments was associated with higher binge score, whereas lower FA in all five segments was associated with greater drug use in men and worse spatial working memory both in men and women. These findings extend the literature by showing that in early adulthood, binge drinking and drug use are linked with degradations in neural white matter and that compromised white matter at this period of brain development is linked with impaired cognitive functioning.
Collapse
Affiliation(s)
- Kathleen W. Smith
- Behavioural and Clinical Neuroscience, School of Psychology; University of Sussex; Brighton UK
- Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Equipe Région INSERM 24; Université de Picardie Jules Verne; Amiens France
| | - Fabien Gierski
- Cognition, Health, Socialization Laboratory (C2S, EA6291); University of Reims; Reims France
| | - Judith Andre
- Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Equipe Région INSERM 24; Université de Picardie Jules Verne; Amiens France
| | - Nicholas G. Dowell
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School; University of Sussex; Brighton UK
| | - Mara Cercignani
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School; University of Sussex; Brighton UK
| | - Mickaël Naassila
- Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Equipe Région INSERM 24; Université de Picardie Jules Verne; Amiens France
| | - Theodora Duka
- Behavioural and Clinical Neuroscience, School of Psychology; University of Sussex; Brighton UK
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School; University of Sussex; Brighton UK
| |
Collapse
|
109
|
Aging of cerebral white matter. Ageing Res Rev 2017; 34:64-76. [PMID: 27865980 DOI: 10.1016/j.arr.2016.11.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022]
Abstract
White matter (WM) occupies a large volume of the human cerebrum and is mainly composed of myelinated axons and myelin-producing glial cells. The myelinated axons within WM are the structural foundation for efficient neurotransmission between cortical and subcortical areas. Similar to neuron-enriched gray matter areas, WM undergoes a series of changes during the process of aging. WM malfunction can induce serious neurobehavioral and cognitive impairments. Thus, age-related changes in WM may contribute to the functional decline observed in the elderly. In addition, aged WM becomes more susceptible to neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegeneration. In this review, we summarize the structural and functional alterations of WM in natural aging and speculate on the underlying mechanisms. We also discuss how age-related WM changes influence the progression of various brain disorders, including ischemic and hemorrhagic stroke, TBI, Alzheimer's disease, and Parkinson's disease. Although the physiology of WM is still poorly understood relative to gray matter, WM is a rational therapeutic target for a number of neurological and psychiatric conditions.
Collapse
|
110
|
Kruggel F, Masaki F, Solodkin A. Analysis of longitudinal diffusion-weighted images in healthy and pathological aging: An ADNI study. J Neurosci Methods 2017; 278:101-115. [DOI: 10.1016/j.jneumeth.2016.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/28/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022]
|
111
|
Góngora D, Domínguez M, Bobes MA. Characterization of ten white matter tracts in a representative sample of Cuban population. BMC Med Imaging 2016; 16:59. [PMID: 27784268 PMCID: PMC5082362 DOI: 10.1186/s12880-016-0163-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/20/2016] [Indexed: 12/02/2022] Open
Abstract
Background The diffusion tensor imaging technique (DTI) combined with tractography methods, has achieved the tridimensional reconstruction of white matter tracts in the brain. It allows their characterization in vivo in a non-invasive way. However, one of the largest sources of variability originates from the location of regions of interest, is therefore necessary schemes which make it possible to establish a protocol to be insensitive to variations in drawing thereof. The purpose of this paper is to stablish a reliable protocol to reconstruct ten prominent tracts of white matter and characterize them according to volume, fractional anisotropy and mean diffusivity. Also we explored the relationship among these factors with gender and hemispheric symmetry. Methods This study aims to characterize ten prominent tracts of white matter in a representative sample of Cuban population using this technique, including 84 healthy subjects. Diffusion tensors and subsequently fractional anisotropy and mean diffusivity maps were calculated from each subject’s DTI scans. The trajectory of ten brain tracts was estimated by using deterministic tractography methods of fiber tracking. In such tracts, the volume, the FA and MD were calculated, creating a reference for their study in the Cuban population. The interactions between these variables with age, cerebral hemispheres and gender factors were explored using Repeated Measure Analysis of Variance. Results The volume values showed that a most part of tracts have bigger volume in left hemisphere. Also, the data showed bigger values of MD for males than females in all the tracts, an inverse behavior than FA values. Conclusions This work showed that is possible reconstruct white matter tracts using a unique region of interest scheme defined from standard to native space. Also, this study indicates differing developmental trajectories in white matter for males and females and the importance of taking gender into account in developmental DTI studies and in underlie gender-related cognitive differences. Electronic supplementary material The online version of this article (doi:10.1186/s12880-016-0163-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D Góngora
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 61000, China. .,Cuban Neuroscience Center, 190th Ave between 25th and 27th Ave, Havana, 11300, Cuba.
| | - M Domínguez
- IDIBELL Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - M A Bobes
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 61000, China.,Cuban Neuroscience Center, 190th Ave between 25th and 27th Ave, Havana, 11300, Cuba
| |
Collapse
|
112
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Yamamoto Y, Hanawa S, Araki T, Makoto Miyauchi C, Shinada T, Sakaki K, Sassa Y, Nozawa T, Ikeda S, Yokota S, Daniele M, Kawashima R. Creative females have larger white matter structures: Evidence from a large sample study. Hum Brain Mapp 2016; 38:414-430. [PMID: 27647672 DOI: 10.1002/hbm.23369] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 01/12/2023] Open
Abstract
The importance of brain connectivity for creativity has been theoretically suggested and empirically demonstrated. Studies have shown sex differences in creativity measured by divergent thinking (CMDT) as well as sex differences in the structural correlates of CMDT. However, the relationships between regional white matter volume (rWMV) and CMDT and associated sex differences have never been directly investigated. In addition, structural studies have shown poor replicability and inaccuracy of multiple comparisons over the whole brain. To address these issues, we used the data from a large sample of healthy young adults (776 males and 560 females; mean age: 20.8 years, SD = 0.8). We investigated the relationship between CMDT and WMV using the newest version of voxel-based morphometry (VBM). We corrected for multiple comparisons over whole brain using the permutation-based method, which is known to be quite accurate and robust. Significant positive correlations between rWMV and CMDT scores were observed in widespread areas below the neocortex specifically in females. These associations with CMDT were not observed in analyses of fractional anisotropy using diffusion tensor imaging. Using rigorous methods, our findings further supported the importance of brain connectivity for creativity as well as its female-specific association. Hum Brain Mapp 38:414-430, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan.,Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuka Kotozaki
- Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Psychiatry, Tohoku Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Adult Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Yamamoto
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tsuyoshi Araki
- Department of Advanced Brain Science, Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Carlos Makoto Miyauchi
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Takamitsu Shinada
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Sakaki
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Magistro Daniele
- School of Electronic, Electrical and Systems Engineering, Loughborough University, England
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
113
|
Rathee R, Rallabandi VPS, Roy PK. Age-Related Differences in White Matter Integrity in Healthy Human Brain: Evidence from Structural MRI and Diffusion Tensor Imaging. MAGNETIC RESONANCE INSIGHTS 2016; 9:9-20. [PMID: 27279747 PMCID: PMC4898444 DOI: 10.4137/mri.s39666] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022]
Abstract
The aim is to investigate the relationship between microstructural white matter (WM) diffusivity indices and macrostructural WM volume (WMV) among healthy individuals (20–85 years). Whole-brain diffusion measures were calculated from diffusion tensor imaging using FMRIB software library while WMV was estimated through voxel-based morphometry, and voxel-based analysis was carried out using tract-based spatial statistics. Our results revealed that mean diffusivity, axial diffusivity, and radial diffusivity had shown good correlation with WMV but not for fractional anisotropy (FA). Voxel-wise tract-based spatial statistics analysis for FA showed a significant decrease in four regions for middle-aged group compared to young-aged group, in 22 regions for old-aged group compared to middle-aged group, and in 26 regions for old-aged group compared to young-aged group (P < 0.05). We found significantly lower WMV, FA, and mean diffusivity values in females than males and inverted-U trend for FA in males. We conclude differential age- and gender-related changes for structural WMV and WM diffusion indices.
Collapse
Affiliation(s)
- Rishu Rathee
- Computational Neuroscience and Neuroimaging Division, National Brain Research Center, Manesar, Gurgaon, Haryana, India
| | - V P Subramanyam Rallabandi
- Computational Neuroscience and Neuroimaging Division, National Brain Research Center, Manesar, Gurgaon, Haryana, India
| | - Prasun K Roy
- Computational Neuroscience and Neuroimaging Division, National Brain Research Center, Manesar, Gurgaon, Haryana, India
| |
Collapse
|
114
|
A Sensitive and Automatic White Matter Fiber Tracts Model for Longitudinal Analysis of Diffusion Tensor Images in Multiple Sclerosis. PLoS One 2016; 11:e0156405. [PMID: 27224308 PMCID: PMC4880200 DOI: 10.1371/journal.pone.0156405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 05/13/2016] [Indexed: 12/12/2022] Open
Abstract
Diffusion tensor imaging (DTI) is a sensitive tool for the assessment of microstructural alterations in brain white matter (WM). We propose a new processing technique to detect, local and global longitudinal changes of diffusivity metrics, in homologous regions along WM fiber-bundles. To this end, a reliable and automatic processing pipeline was developed in three steps: 1) co-registration and diffusion metrics computation, 2) tractography, bundle extraction and processing, and 3) longitudinal fiber-bundle analysis. The last step was based on an original Gaussian mixture model providing a fine analysis of fiber-bundle cross-sections, and allowing a sensitive detection of longitudinal changes along fibers. This method was tested on simulated and clinical data. High levels of F-Measure were obtained on simulated data. Experiments on cortico-spinal tract and inferior fronto-occipital fasciculi of five patients with Multiple Sclerosis (MS) included in a weekly follow-up protocol highlighted the greater sensitivity of this fiber scale approach to detect small longitudinal alterations.
Collapse
|
115
|
Ueda R, Yamada N, Kakuda W, Abo M, Senoo A. White matter structure and clinical characteristics of stroke patients: A diffusion tensor MRI study. Brain Res 2016; 1635:61-70. [PMID: 26783693 DOI: 10.1016/j.brainres.2015.12.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 12/17/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022]
Abstract
Fractional anisotropy has been used in many studies that examined post-stroke changes in white matter. This study was performed to clarify cerebral white matter changes after stroke using generalized fractional anisotropy (GFA). White matter structure was visualized using diffusion tensor imaging in 72 patients with post-stroke arm paralysis. Exercise-related brain regions were examined in cerebral white matter using GFA. The relationship between GFA and clinical characteristics was examined. Overall, the mean GFA of the lesioned hemisphere was significantly lower than that of the non-lesioned hemisphere (P<0.05), the white matter of the lesioned side was severely affected by stroke. A weak negative correlation between GFA and time since stroke onset was found in Brodmann area 5 of the non-lesioned hemisphere. Age correlated negatively with GFA in Brodmann areas 5 and 7 of the lesioned hemisphere. Though these results may be due to a decrease in the frequency of use of the paralyzed limb over time, GFA overall was significantly and negatively affected by the subject's age. The GFA values of patients with paralysis of the dominant hand were significantly different from those of patients with paralysis of the nondominant hand in Brodmann areas 4 and 6 of the non-lesioned hemisphere and Brodmann area 4 of the lesioned hemisphere (P<0.05). The stroke size and location were not associated with GFA differences. Differences between the GFA of the lesioned and non-lesioned hemispheres varied depending on the affected brain region, age at onset of paralysis, and paralysis of the dominant or non-dominant hand.
Collapse
Affiliation(s)
- Ryo Ueda
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-ku, Tokyo 116-8551, Japan.
| | - Naoki Yamada
- Department of Rehabilitation Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo 105-8461, Japan.
| | - Wataru Kakuda
- Department of Rehabilitation Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo 105-8461, Japan.
| | - Masahiro Abo
- Department of Rehabilitation Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo 105-8461, Japan.
| | - Atsushi Senoo
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-ku, Tokyo 116-8551, Japan.
| |
Collapse
|
116
|
Lin L, Jin C, Fu Z, Zhang B, Bin G, Wu S. Predicting healthy older adult's brain age based on structural connectivity networks using artificial neural networks. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 125:8-17. [PMID: 26718834 DOI: 10.1016/j.cmpb.2015.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
Brain ageing is followed by changes of the connectivity of white matter (WM) and changes of the grey matter (GM) concentration. Neurodegenerative disease is more vulnerable to an accelerated brain ageing, which is associated with prospective cognitive decline and disease severity. Accurate detection of accelerated ageing based on brain network analysis has a great potential for early interventions designed to hinder atypical brain changes. To capture the brain ageing, we proposed a novel computational approach for modeling the 112 normal older subjects (aged 50-79 years) brain age by connectivity analyses of networks of the brain. Our proposed method applied principal component analysis (PCA) to reduce the redundancy in network topological parameters. Back propagation artificial neural network (BPANN) improved by hybrid genetic algorithm (GA) and Levenberg-Marquardt (LM) algorithm is established to model the relation among principal components (PCs) and brain age. The predicted brain age is strongly correlated with chronological age (r=0.8). The model has mean absolute error (MAE) of 4.29 years. Therefore, we believe the method can provide a possible way to quantitatively describe the typical and atypical network organization of human brain and serve as a biomarker for presymptomatic detection of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Lan Lin
- Biomedical Engineering Department, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Cong Jin
- Biomedical Engineering Department, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Zhenrong Fu
- Biomedical Engineering Department, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Baiwen Zhang
- Biomedical Engineering Department, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Guangyu Bin
- Biomedical Engineering Department, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Shuicai Wu
- Biomedical Engineering Department, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
117
|
Maruta J, Palacios EM, Zimmerman RD, Ghajar J, Mukherjee P. Chronic Post-Concussion Neurocognitive Deficits. I. Relationship with White Matter Integrity. Front Hum Neurosci 2016; 10:35. [PMID: 26903842 PMCID: PMC4748060 DOI: 10.3389/fnhum.2016.00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/21/2016] [Indexed: 11/18/2022] Open
Abstract
We previously identified visual tracking deficits and associated degradation of integrity in specific white matter tracts as characteristics of concussion. We re-explored these characteristics in adult patients with persistent post-concussive symptoms using independent new data acquired during 2009–2012. Thirty-two patients and 126 normal controls underwent cognitive assessments and MR-DTI. After data collection, a subset of control subjects was selected to be individually paired with patients based on gender and age. We identified patients’ cognitive deficits through pairwise comparisons between patients and matched control subjects. Within the remaining 94 normal subjects, we identified white matter tracts whose integrity correlated with metrics that indicated performance degradation in patients. We then tested for reduced integrity in these white matter tracts in patients relative to matched controls. Most patients showed no abnormality in MR images unlike the previous study. Patients’ visual tracking was generally normal. Patients’ response times in an attention task were slowed, but could not be explained as reduced integrity of white matter tracts relating to normal response timing. In the present patient cohort, we did not observe behavioral or anatomical deficits that we previously identified as characteristic of concussion. The recent cohort likely represented those with milder injury compared to the earlier cohort. The discrepancy may be explained by a change in the patient recruitment pool circa 2007 associated with an increase in public awareness of concussion.
Collapse
Affiliation(s)
- Jun Maruta
- Brain Trauma Foundation New York, NY USA
| | - Eva M Palacios
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California, San Francisco San Francisco, CA USA
| | | | - Jamshid Ghajar
- Brain Trauma FoundationNew York, NY USA; Department of Neurosurgery, Stanford UniversityStanford, CA USA
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California, San Francisco San Francisco, CA USA
| |
Collapse
|
118
|
Wagner J, Schoene-Bake JC, Witt JA, Helmstaedter C, Malter MP, Stoecker W, Probst C, Weber B, Elger CE. Distinct white matter integrity in glutamic acid decarboxylase and voltage-gated potassium channel-complex antibody-associated limbic encephalitis. Epilepsia 2016; 57:475-83. [PMID: 26749370 DOI: 10.1111/epi.13297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Autoantibodies against glutamic acid decarboxylase (GAD) and the voltage-gated potassium channel (VGKC) complex are associated with distinct subtypes of limbic encephalitis regarding clinical presentation, response to therapy, and outcome. The aim of this study was to investigate white matter changes in these two limbic encephalitis subtypes by means of diffusion tensor imaging (DTI). METHODS Diffusion data were obtained in 14 patients with GAD antibodies and 16 patients with VGKC-complex antibodies and compared with age- and gender-matched control groups. Voxelwise statistical analysis was carried out using tract-based spatial statistics. The results were furthermore compared with those of 15 patients with unilateral histologically confirmed hippocampal sclerosis and correlated with verbal and figural memory performance. RESULTS We found widespread changes of fractional anisotropy and all diffusivity parameters in GAD-associated limbic encephalitis, whereas no changes were found in VGKC-complex-associated limbic encephalitis. The changes observed in the GAD group were even more extensive when compared against those of the hippocampal sclerosis group, although the disease duration was markedly shorter in patients with GAD antibodies. Correlation analysis revealed areas with a trend toward a negative correlation of diffusivity parameters with figural memory performance located mainly in the right temporal lobe in the GAD group as well. SIGNIFICANCE The present study provides further evidence that, depending on the associated antibody, limbic encephalitis features clearly distinct imaging characteristics by showing widespread white matter changes in GAD-associated limbic encephalitis and preserved white matter integrity in VGKC-complex-associated limbic encephalitis. Furthermore, our results contribute to a better understanding of the specific pathophysiologic properties in these two subforms of limbic encephalitis by revealing that patients with GAD antibodies show widespread affections of white matter across various regions of the brain. In contrast to this, the inflammatory process seems to be more localized in VGKC-complex-associated limbic encephalitis, primarily affecting mesiotemporal gray matter.
Collapse
Affiliation(s)
- Jan Wagner
- Department of Epileptology, University of Bonn, Bonn, Germany.,Department of NeuroCognition/Imaging, Life & Brain Center, Bonn, Germany
| | - Jan-Christoph Schoene-Bake
- Department of Epileptology, University of Bonn, Bonn, Germany.,Department of NeuroCognition/Imaging, Life & Brain Center, Bonn, Germany.,Department of Pediatrics, Klinikum Braunschweig, Braunschweig, Germany
| | | | | | - Michael P Malter
- Department of Epileptology, University of Bonn, Bonn, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - Winfried Stoecker
- Institute of Experimental Immunology, affiliated with Euroimmun AG Luebeck, Luebeck, Germany
| | - Christian Probst
- Institute of Experimental Immunology, affiliated with Euroimmun AG Luebeck, Luebeck, Germany
| | - Bernd Weber
- Department of Epileptology, University of Bonn, Bonn, Germany.,Department of NeuroCognition/Imaging, Life & Brain Center, Bonn, Germany.,Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
| | - Christian E Elger
- Department of Epileptology, University of Bonn, Bonn, Germany.,Department of NeuroCognition/Imaging, Life & Brain Center, Bonn, Germany.,Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
| |
Collapse
|
119
|
Badve C, Yu A, Rogers M, Ma D, Liu Y, Schluchter M, Sunshine J, Griswold M, Gulani V. Simultaneous T 1 and T 2 Brain Relaxometry in Asymptomatic Volunteers using Magnetic Resonance Fingerprinting. ACTA ACUST UNITED AC 2015; 1:136-144. [PMID: 26824078 PMCID: PMC4727840 DOI: 10.18383/j.tom.2015.00166] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Magnetic resonance fingerprinting (MRF) is an imaging tool that produces multiple magnetic resonance imaging parametric maps from a single scan. Herein we describe the normal range and progression of MRF-derived relaxometry values with age in healthy individuals. In total, 56 normal volunteers (24 men and 32 women) aged 11-71 years were scanned. Regions of interest were drawn on T1 and T2 maps in 38 areas, including lobar and deep white matter (WM), deep gray nuclei, thalami, and posterior fossa structures. Relaxometry differences were assessed using a forward stepwise selection of a baseline model that included either sex, age, or both, where variables were included if they contributed significantly (P < .05). In addition, differences in regional anatomy, including comparisons between hemispheres and between anatomical subcomponents, were assessed by paired t tests. MRF-derived T1 and T2 in frontal WM regions increased with age, whereas occipital and temporal regions remained relatively stable. Deep gray nuclei such as substantia nigra, were found to have age-related decreases in relaxometry. Differences in sex were observed in T1 and T2 of temporal regions, the cerebellum, and pons. Men were found to have more rapid age-related changes in frontal and parietal WM. Regional differences were identified between hemispheres, between the genu and splenium of the corpus callosum, and between posteromedial and anterolateral thalami. In conclusion, MRF quantification measures relaxometry trends in healthy individuals that are in agreement with the current understanding of neurobiology and has the ability to uncover additional patterns that have not yet been explored.
Collapse
Affiliation(s)
- Chaitra Badve
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Alice Yu
- School of Medicine, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Matthew Rogers
- School of Medicine, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Yiying Liu
- Biostatistics and Bioinformatics Core, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Mark Schluchter
- Biostatistics and Bioinformatics Core, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Jeffrey Sunshine
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Mark Griswold
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Vikas Gulani
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| |
Collapse
|
120
|
Monnig MA, Yeo RA, Tonigan JS, McCrady BS, Thoma RJ, Sabbineni A, Hutchison KE. Associations of White Matter Microstructure with Clinical and Demographic Characteristics in Heavy Drinkers. PLoS One 2015; 10:e0142042. [PMID: 26529515 PMCID: PMC4631485 DOI: 10.1371/journal.pone.0142042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022] Open
Abstract
Damage to the brain’s white matter is a signature injury of alcohol use disorders (AUDs), yet understanding of risks associated with clinical and demographic characteristics is incomplete. This study investigated alcohol problem severity, recent drinking behavior, and demographic factors in relation to white matter microstructure in heavy drinkers. Magnetic resonance imaging (MRI) scans, including diffusion tensor imaging (DTI), were collected from 324 participants (mean age = 30.9 ± 9.1 years; 30% female) who reported five or more heavy drinking episodes in the past 30 days. Drinking history and alcohol problem severity were assessed. A common white matter factor was created from fractional anisotropy (FA) values of five white matter tracts: body of corpus callosum, fornix, external capsule, superior longitudinal fasciculus, and cingulate gyrus. Previous research has implicated these tracts in heavy drinking. Structural equation modeling (SEM) analyses tested the hypothesis that, after controlling for duration of alcohol exposure, clinical and behavioral measures of alcohol use severity would be associated with lower white matter factor scores. Potential interactions with smoking status, gender, age, treatment-seeking status, and depression or anxiety symptoms also were tested. Controlling for number of years drinking, greater alcohol problem severity and recent drinking frequency were significantly associated with lower white matter factor scores. The effect of drinking frequency differed significantly for men and women, such that higher drinking frequency was linked to lower white matter factor scores in women but not in men. In conclusion, alcohol problem severity was a significant predictor of lower white matter FA in heavy drinkers, after controlling for duration of alcohol exposure. In addition, more frequent drinking contributed to lower FA in women but not men, suggesting gender-specific vulnerability to alcohol neurotoxicity.
Collapse
Affiliation(s)
- Mollie A. Monnig
- Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| | - Ronald A. Yeo
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - J. Scott Tonigan
- Center on Alcoholism, Substance Abuse, and Addictions, Albuquerque, New Mexico, United States of America
| | - Barbara S. McCrady
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Center on Alcoholism, Substance Abuse, and Addictions, Albuquerque, New Mexico, United States of America
| | - Robert J. Thoma
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Amithrupa Sabbineni
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Kent E. Hutchison
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
121
|
Suetomi Y, Kanchiku T, Nishijima S, Imajo Y, Suzuki H, Yoshida Y, Nishida N, Taguchi T. Application of diffusion tensor imaging for the diagnosis of segmental level of dysfunction in cervical spondylotic myelopathy. Spinal Cord 2015; 54:390-5. [DOI: 10.1038/sc.2015.192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 07/01/2015] [Accepted: 09/16/2015] [Indexed: 11/09/2022]
|
122
|
Brain diffusivity pattern is individual-specific information. Neuroscience 2015; 301:395-402. [DOI: 10.1016/j.neuroscience.2015.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/08/2015] [Accepted: 06/17/2015] [Indexed: 12/20/2022]
|
123
|
Billiet T, Vandenbulcke M, Mädler B, Peeters R, Dhollander T, Zhang H, Deprez S, Van den Bergh BR, Sunaert S, Emsell L. Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI. Neurobiol Aging 2015; 36:2107-21. [PMID: 25840837 DOI: 10.1016/j.neurobiolaging.2015.02.029] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/26/2015] [Accepted: 02/28/2015] [Indexed: 10/23/2022]
|
124
|
Civier O, Kronfeld-Duenias V, Amir O, Ezrati-Vinacour R, Ben-Shachar M. Reduced fractional anisotropy in the anterior corpus callosum is associated with reduced speech fluency in persistent developmental stuttering. BRAIN AND LANGUAGE 2015; 143:20-31. [PMID: 25728013 DOI: 10.1016/j.bandl.2015.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 06/04/2023]
Abstract
Developmental stuttering is a speech disorder that severely limits one's ability to communicate. White matter anomalies were reported in stuttering, but their functional significance is unclear. We analyzed the relation between white matter properties and speech fluency in adults who stutter (AWS). We used diffusion tensor imaging with tract-based spatial statistics, and examined group differences as well as correlations with behavioral fluency measures. We detected a region in the anterior corpus callosum with significantly lower fractional anisotropy in AWS relative to controls. Within the AWS group, reduced anisotropy in that region is associated with reduced fluency. A statistically significant interaction was found between group and age in two additional regions: the left Rolandic operculum and the left posterior corpus callosum. Our findings suggest that anterior callosal anomaly in stuttering may represent a maladaptive reduction in interhemispheric inhibition, possibly leading to a disadvantageous recruitment of right frontal cortex in speech production.
Collapse
Affiliation(s)
- Oren Civier
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
| | - Vered Kronfeld-Duenias
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Ofer Amir
- The Department of Communication Disorders, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Ezrati-Vinacour
- The Department of Communication Disorders, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel; Department of English Literature and Linguistics, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
125
|
Kullmann S, Schweizer F, Veit R, Fritsche A, Preissl H. Compromised white matter integrity in obesity. Obes Rev 2015; 16:273-81. [PMID: 25676886 DOI: 10.1111/obr.12248] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/14/2014] [Accepted: 12/01/2014] [Indexed: 12/13/2022]
Abstract
Obesity is associated with both structural and functional changes of the central nervous system. While gray matter alterations in obesity point to a consistent reduction with increasing body mass index (BMI), volumetric changes in white matter are more complex and less conclusive. Hence, more recently, diffusion tensor imaging (DTI) has been employed as a highly sensitive tool to investigate microstructural changes in white matter structure. Parameters of diffusivity and anisotropy are used to evaluate white matter and fibre integrity as well as axonal and myelin degeneration. Fractional anisotropy (FA) is the most commonly used parameter as it is the best estimate of fibre integrity. The focus of this review was on the relationship between obesity and brain alterations assessed by DTI. Altogether, these studies have shown a loss of white matter integrity with obesity-related factors, especially in tracts within the limbic system and those connecting the temporal and frontal lobe. More specifically, multiple studies found an inverse association between BMI and FA in the corpus callosum, fornix, cingulum and corona radiata in elderly and young adults as well as children. Furthermore, significant interactions were observed between BMI and age, pointing to accelerated ageing of white matter structure in obese.
Collapse
Affiliation(s)
- S Kullmann
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany; Institute of Medical Psychology and Behavioral Neurobiology, fMEG Center, University of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
126
|
Nenonen M, Hakulinen U, Brander A, Ohman J, Dastidar P, Luoto TM. Possible confounding factors on cerebral diffusion tensor imaging measurements. Acta Radiol Open 2015; 4:2047981614546795. [PMID: 25793107 PMCID: PMC4364398 DOI: 10.1177/2047981614546795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/15/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) is prone to numerous systemic confounding factors that should be acknowledged to avoid false conclusions. PURPOSE To investigate the possible effects of age, gender, smoking, alcohol consumption, and education on cerebral DTI parameters in a generally healthy homogenous sample with no neurological or psychiatric diseases. MATERIAL AND METHODS Forty (n = 40) subjects (mean age, 40.3 years; SD, 12.3) underwent brain DTI with 3 T magnetic resonance imaging (MRI). At enrolment, all the subjects were interviewed with respect to general health, education, history of smoking, and alcohol consumption. Studied DTI parameters included: (i) fractional anisotropy (FA); and (ii) apparent diffusion coefficient (ADC). Region-of-interest (ROI)-based measurements were estimated at 13 anatomical locations bilaterally on the axial images, except for the corpus callosum in which the ROIs were placed on the sagittal images. Circular ROI measurements were mainly used. Freehand ROI method was used with the forceps minor, uncinate fasciculus, and thalamus. Intra-observer variability and repeatability were assessed. RESULTS The most consistent finding was that aging decreased FA values in the frontal brain regions. Regarding the other confounding factors, the results were discontinuous and no concrete conclusions could be drawn from these findings. In general, intra-observer repeatability of the DTI measurement was considered relatively good. CONCLUSION Age should be noted as considerable confounding factors in ROI-based DTI analysis. More research on the effects of gender, smoking, alcohol consumption, and education is needed.
Collapse
Affiliation(s)
- Miina Nenonen
- Department of Neurosciences and Rehabilitation, Tampere University Hospital Tampere, Finland
| | - Ullamari Hakulinen
- Department of Neurosciences and Rehabilitation, Tampere University Hospital Tampere, Finland
| | - Antti Brander
- Department of Neurosciences and Rehabilitation, Tampere University Hospital Tampere, Finland
| | - Juha Ohman
- Department of Neurosciences and Rehabilitation, Tampere University Hospital Tampere, Finland
| | - Prasun Dastidar
- Department of Neurosciences and Rehabilitation, Tampere University Hospital Tampere, Finland
| | - Teemu M Luoto
- Department of Neurosciences and Rehabilitation, Tampere University Hospital Tampere, Finland
| |
Collapse
|
127
|
Kazumata K, Tha KK, Narita H, Kusumi I, Shichinohe H, Ito M, Nakayama N, Houkin K. Chronic ischemia alters brain microstructural integrity and cognitive performance in adult moyamoya disease. Stroke 2014; 46:354-60. [PMID: 25538200 DOI: 10.1161/strokeaha.114.007407] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE The mechanisms underlying frontal lobe dysfunction in moyamoya disease (MMD) are unknown. We aimed to determine whether chronic ischemia induces subtle microstructural brain changes in adult MMD and evaluated the association of changes with neuropsychological performance. METHODS MRI, including 3-dimensional T1-weighted imaging and diffusion tensor imaging, was performed in 23 adult patients with MMD and 23 age-matched controls and gray matter density and major diffusion tensor imaging indices were compared between them; any alterations in the patients were tested for associations with age, ischemic symptoms, hemodynamic compromise, and neuropsychological performance. RESULTS Decrease in gray matter density, associated with hemodynamic compromise (P<0.05), was observed in the posterior cingulate cortex of patients with MMD. Widespread reduction in fractional anisotropy and increases in radial diffusivity and mean diffusivity in some areas were also observed in bilateral cerebral white matter. The fractional anisotropy (r=0.54; P<0.0001) and radial diffusivity (r=-0.41; P<0.01) of white matter significantly associated with gray matter density of the cingulate cortex. The mean fractional anisotropy of the white matter tracts of the lateral prefrontal, cingulate, and inferior parietal regions were significantly associated with processing speed, executive function/attention, and working memory. CONCLUSIONS In adult MMD, there were more white matter abnormalities than gray matter changes. Disruption of white matter may play a pivotal role in the development of cognitive dysfunction.
Collapse
Affiliation(s)
- Ken Kazumata
- From the Departments of Neurosurgery (K.K., H.S., M.I., N.N., K.H.), Radiobiology and Medical Engineering (K.K.T.), and Psychiatry (H.N., I.K.), Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Khin Khin Tha
- From the Departments of Neurosurgery (K.K., H.S., M.I., N.N., K.H.), Radiobiology and Medical Engineering (K.K.T.), and Psychiatry (H.N., I.K.), Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hisashi Narita
- From the Departments of Neurosurgery (K.K., H.S., M.I., N.N., K.H.), Radiobiology and Medical Engineering (K.K.T.), and Psychiatry (H.N., I.K.), Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ichiro Kusumi
- From the Departments of Neurosurgery (K.K., H.S., M.I., N.N., K.H.), Radiobiology and Medical Engineering (K.K.T.), and Psychiatry (H.N., I.K.), Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideo Shichinohe
- From the Departments of Neurosurgery (K.K., H.S., M.I., N.N., K.H.), Radiobiology and Medical Engineering (K.K.T.), and Psychiatry (H.N., I.K.), Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masaki Ito
- From the Departments of Neurosurgery (K.K., H.S., M.I., N.N., K.H.), Radiobiology and Medical Engineering (K.K.T.), and Psychiatry (H.N., I.K.), Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoki Nakayama
- From the Departments of Neurosurgery (K.K., H.S., M.I., N.N., K.H.), Radiobiology and Medical Engineering (K.K.T.), and Psychiatry (H.N., I.K.), Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kiyohiro Houkin
- From the Departments of Neurosurgery (K.K., H.S., M.I., N.N., K.H.), Radiobiology and Medical Engineering (K.K.T.), and Psychiatry (H.N., I.K.), Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
128
|
Csete G, Bognár A, Csibri P, Kaposvári P, Sáry G. Aging alters visual processing of objects and shapes in inferotemporal cortex in monkeys. Brain Res Bull 2014; 110:76-83. [PMID: 25526896 DOI: 10.1016/j.brainresbull.2014.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 12/14/2022]
Abstract
Visual perception declines with age. Perceptual deficits may originate not only in the optical system serving vision but also in the neural machinery processing visual information. Since homologies between monkey and human vision permit extrapolation from monkeys to humans, data from young, middle aged and old monkeys were analyzed to show age-related changes in the neuronal activity in the inferotemporal cortex, which is critical for object and shape vision. We found an increased neuronal response latency, and a decrease in the stimulus selectivity in the older animals and suggest that these changes may underlie the perceptual uncertainties found frequently in the elderly.
Collapse
Affiliation(s)
- G Csete
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; Department of Neurology, Faculty of Medicine, Semmelweis u. 6, H-6725 Szeged, Hungary.
| | - A Bognár
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - P Csibri
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - P Kaposvári
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - Gy Sáry
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| |
Collapse
|
129
|
Yang Y, Bender AR, Raz N. Age related differences in reaction time components and diffusion properties of normal-appearing white matter in healthy adults. Neuropsychologia 2014; 66:246-58. [PMID: 25460349 DOI: 10.1016/j.neuropsychologia.2014.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/13/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
Deterioration of the white matter (WM) is viewed as the neural substrate of age differences in speed of information processing (reaction time, RT). However, the relationship between WM and RT components is rarely examined in healthy aging. We assessed the relationship between RT components derived from the Ratcliff diffusion model and micro-structural properties of normal-appearing WM (NAWM) in 90 healthy adults (age 18-82 years). We replicated all major extant findings pertaining to age differences in RT components and WM: lower drift rate, greater response conservativeness, longer non-decision time, lower fractional anisotropy (FA), greater mean (MD), axial (AD) and radial (RD) diffusivity were associated with advanced age. Age differences in anterior regions of the cerebral WM exceeded those in posterior regions. However, the only relationship between RT components and WM was the positive association between DR in the body of the corpus callosum and non-decision time. Thus, in healthy adults, age differences in NAWM diffusion properties are not a major contributor to age differences in RT components. Longitudinal studies with more precise and specific estimates of regional myelin content and evaluation of the contribution of age-related vascular risk factors are necessary to understand cerebral substrates of age-related cognitive slowing.
Collapse
Affiliation(s)
- Yiqin Yang
- Institute of Gerontology, Wayne State University, USA; Department of Psychology, Wayne State University, USA
| | - Andrew R Bender
- Institute of Gerontology, Wayne State University, USA; Department of Psychology, Wayne State University, USA
| | - Naftali Raz
- Institute of Gerontology, Wayne State University, USA; Department of Psychology, Wayne State University, USA.
| |
Collapse
|
130
|
Autism spectrum disorder as early neurodevelopmental disorder: evidence from the brain imaging abnormalities in 2-3 years old toddlers. J Autism Dev Disord 2014; 44:1633-40. [PMID: 24419870 PMCID: PMC4057630 DOI: 10.1007/s10803-014-2033-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that occurs within the first 3 years of life, which is marked by social skills and communication deficits along with stereotyped repetitive behavior. Although great efforts have been made to clarify the underlying neuroanatomical abnormalities and brain-behavior relationships in adolescents and adults with ASD, literature is still limited in information about the neurobiology of ASD in the early age of life. Brain images of 50 toddlers with ASD and 28 age, gender, and developmental quotient matched toddlers with developmental delay (DD) (control group) between ages 2 and 3 years were captured using combined magnetic resonance-based structural imaging and diffusion tensor imaging (DTI). Structural magnetic resonance imaging was applied to assess overall gray matter (GM) and white matter (WM) volumes, and regional alterations were assessed by voxel-based morphometry. DTI was used to investigate the white matter tract integrity. Compared with DD, significant increases were observed in ASD, primarily in global GM and WM volumes and in right superior temporal gyrus regional GM and WM volumes. Higher fractional anisotropy value was also observed in the corpus callosum, posterior cingulate cortex, and limbic lobes of ASD. The converging findings of structural and white matter abnormalities in ASD suggest that alterations in neural-anatomy of different brain regions may be involved in behavioral and cognitive deficits associated with ASD, especially in an early age of 2-3 years old toddlers.
Collapse
|
131
|
Kranz GS, Hahn A, Kaufmann U, Küblböck M, Hummer A, Ganger S, Seiger R, Winkler D, Swaab DF, Windischberger C, Kasper S, Lanzenberger R. White matter microstructure in transsexuals and controls investigated by diffusion tensor imaging. J Neurosci 2014; 34:15466-75. [PMID: 25392513 PMCID: PMC4699258 DOI: 10.1523/jneurosci.2488-14.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/16/2014] [Accepted: 10/02/2014] [Indexed: 12/22/2022] Open
Abstract
Biological causes underpinning the well known gender dimorphisms in human behavior, cognition, and emotion have received increased attention in recent years. The advent of diffusion-weighted magnetic resonance imaging has permitted the investigation of the white matter microstructure in unprecedented detail. Here, we aimed to study the potential influences of biological sex, gender identity, sex hormones, and sexual orientation on white matter microstructure by investigating transsexuals and healthy controls using diffusion tensor imaging (DTI). Twenty-three female-to-male (FtM) and 21 male-to-female (MtF) transsexuals, as well as 23 female (FC) and 22 male (MC) controls underwent DTI at 3 tesla. Fractional anisotropy, axial, radial, and mean diffusivity were calculated using tract-based spatial statistics (TBSS) and fiber tractography. Results showed widespread significant differences in mean diffusivity between groups in almost all white matter tracts. FCs had highest mean diffusivities, followed by FtM transsexuals with lower values, MtF transsexuals with further reduced values, and MCs with lowest values. Investigating axial and radial diffusivities showed that a transition in axial diffusivity accounted for mean diffusivity results. No significant differences in fractional anisotropy maps were found between groups. Plasma testosterone levels were strongly correlated with mean, axial, and radial diffusivities. However, controlling for individual estradiol, testosterone, or progesterone plasma levels or for subjects' sexual orientation did not change group differences. Our data harmonize with the hypothesis that fiber tract development is influenced by the hormonal environment during late prenatal and early postnatal brain development.
Collapse
Affiliation(s)
| | | | | | - Martin Küblböck
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria, and
| | - Allan Hummer
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria, and
| | | | - Rene Seiger
- Departments of Psychiatry and Psychotherapy and
| | | | - Dick F Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Christian Windischberger
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria, and
| | | | | |
Collapse
|
132
|
Gong NJ, Wong CS, Chan CC, Leung LM, Chu YC. Aging in deep gray matter and white matter revealed by diffusional kurtosis imaging. Neurobiol Aging 2014; 35:2203-16. [DOI: 10.1016/j.neurobiolaging.2014.03.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 03/08/2014] [Accepted: 03/13/2014] [Indexed: 11/26/2022]
|
133
|
Tract‐specific white matter degeneration in aging: The Rotterdam Study. Alzheimers Dement 2014; 11:321-30. [DOI: 10.1016/j.jalz.2014.06.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/16/2014] [Accepted: 06/10/2014] [Indexed: 11/19/2022]
|
134
|
Forkel SJ, Thiebaut de Schotten M, Dell'Acqua F, Kalra L, Murphy DGM, Williams SCR, Catani M. Anatomical predictors of aphasia recovery: a tractography study of bilateral perisylvian language networks. ACTA ACUST UNITED AC 2014; 137:2027-39. [PMID: 24951631 DOI: 10.1093/brain/awu113] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Stroke-induced aphasia is associated with adverse effects on quality of life and the ability to return to work. For patients and clinicians the possibility of relying on valid predictors of recovery is an important asset in the clinical management of stroke-related impairment. Age, level of education, type and severity of initial symptoms are established predictors of recovery. However, anatomical predictors are still poorly understood. In this prospective longitudinal study, we intended to assess anatomical predictors of recovery derived from diffusion tractography of the perisylvian language networks. Our study focused on the arcuate fasciculus, a language pathway composed of three segments connecting Wernicke's to Broca's region (i.e. long segment), Wernicke's to Geschwind's region (i.e. posterior segment) and Broca's to Geschwind's region (i.e. anterior segment). In our study we were particularly interested in understanding how lateralization of the arcuate fasciculus impacts on severity of symptoms and their recovery. Sixteen patients (10 males; mean age 60 ± 17 years, range 28-87 years) underwent post stroke language assessment with the Revised Western Aphasia Battery and neuroimaging scanning within a fortnight from symptoms onset. Language assessment was repeated at 6 months. Backward elimination analysis identified a subset of predictor variables (age, sex, lesion size) to be introduced to further regression analyses. A hierarchical regression was conducted with the longitudinal aphasia severity as the dependent variable. The first model included the subset of variables as previously defined. The second model additionally introduced the left and right arcuate fasciculus (separate analysis for each segment). Lesion size was identified as the only independent predictor of longitudinal aphasia severity in the left hemisphere [beta = -0.630, t(-3.129), P = 0.011]. For the right hemisphere, age [beta = -0.678, t(-3.087), P = 0.010] and volume of the long segment of the arcuate fasciculus [beta = 0.730, t(2.732), P = 0.020] were predictors of longitudinal aphasia severity. Adding the volume of the right long segment to the first-level model increased the overall predictive power of the model from 28% to 57% [F(1,11) = 7.46, P = 0.02]. These findings suggest that different predictors of recovery are at play in the left and right hemisphere. The right hemisphere language network seems to be important in aphasia recovery after left hemispheric stroke.
Collapse
Affiliation(s)
- Stephanie J Forkel
- 1 Research Department of Clinical, Educational, and Health Psychology (RDCEHP), Division of Psychology and Language Sciences, Faculty of Brain Sciences, University College London, UK2 Natbrainlab, Department of Neuroimaging, Institute of Psychiatry, King's College London, UK
| | - Michel Thiebaut de Schotten
- 3 Natbrainlab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, London, UK4 Inserm U1127; UPMC-Paris6, UMR_S 1127; CNRS UMR 7225, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| | - Flavio Dell'Acqua
- 2 Natbrainlab, Department of Neuroimaging, Institute of Psychiatry, King's College London, UK5 NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Lalit Kalra
- 6 Department of Clinical Neuroscience, Institute of Psychiatry, King's College London, London, UK
| | - Declan G M Murphy
- 7 Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, UK
| | - Steven C R Williams
- 2 Natbrainlab, Department of Neuroimaging, Institute of Psychiatry, King's College London, UK5 NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Marco Catani
- 3 Natbrainlab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, London, UK
| |
Collapse
|
135
|
Hoefnagels FWA, De Witt Hamer P, Sanz-Arigita E, Idema S, Kuijer JPA, Pouwels PJW, Barkhof F, Vandertop WP. Differentiation of edema and glioma infiltration: proposal of a DTI-based probability map. J Neurooncol 2014; 120:187-98. [PMID: 25079117 DOI: 10.1007/s11060-014-1544-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 07/05/2014] [Indexed: 12/22/2022]
Abstract
Conflicting results on differentiating edema and glioma by diffusion tensor imaging (DTI) are possibly attributable to dissimilar spatial distribution of the lesions. Combining DTI-parameters and enhanced registration might improve prediction. Regions of edema surrounding 22 metastases were compared to tumor-infiltrated regions from WHO grade 2 (12), 3 (10) and 4 (18) gliomas. DTI data was co-registered using Tract Based Spatial Statistics (TBSS), to measure Fractional Anisotropy (FA) and Mean Diffusivity (MD) for white matter only, and relative changes compared to matching reference regions (dFA and dMD). A two-factor principal component analysis (PCA) on metastasis and grade 2 glioma was performed to explore a possible differentiating combined factor. Edema demonstrated equal MD and higher FA compared to grade 2 and 3 glioma (P < 0.001), but did not differ from glioblastoma. Differences were non-significant when corrected for spatial distribution, since reference regions differed strongly (P < 0.001). The second component of the PCA (PCA-C2) did differentiate edema and low-grade tumor (sensitivity 91.7%, specificity 86.4%). PCA-C2 scores were plotted voxel-wise as a probability-map, discerning distinct areas of presumed edema or tumor infiltration. Correction of spatial dependency appears essential when differentiating glioma from edema. A tumor-infiltration probability-map is presented, based on supplementary information of multiple DTI parameters and spatial normalization.
Collapse
Affiliation(s)
- Friso W A Hoefnagels
- Department Neurosurgery, Neurosurgical Center Amsterdam, VU University Medical Center, P.O. Box 7057, 1007, MB, Amsterdam, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Yasuno F, Taguchi A, Yamamoto A, Kajimoto K, Kazui H, Sekiyama A, Matsuoka K, Kitamura S, Kiuchi K, Kosaka J, Kishimoto T, Iida H, Nagatsuka K. Microstructural abnormalities in white matter and their effect on depressive symptoms after stroke. Psychiatry Res 2014; 223:9-14. [PMID: 24816338 DOI: 10.1016/j.pscychresns.2014.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/01/2013] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
The aim of the study was to investigate the existence of microstructural abnormalities in the white matter of the brain in stroke patients, as well as the relationship between these microstructural abnormalities and changes in depressive symptoms over 6 months. Participants were 29 acute ischemic stroke patients and 37 healthy control subjects. Depressive symptoms were assessed in all subjects using the Hamilton Rating Scale for Depression and the Zung Self-rating Depression Scale. Whole brain voxel-based analysis was used to compare diffusion tensor imaging measures of Fractional Anisotropy (FA) between the groups. Six-month follow-up examinations were conducted. Patients showed significantly lower white matter FA values in the left and right anterior limbs of the internal capsule, and 6 months after the stroke they showed significantly increased FA values in these regions. We found a significant negative correlation between the increased ratio of the FA values and the change in depression scale scores at 6-month follow-up. Regional white matter damage may reflect abnormalities in neuroanatomical pathways related to the pathophysiology of depression.
Collapse
Affiliation(s)
- Fumihiko Yasuno
- Department of Psychiatry, Nara Medical University, 840 Shijocho, Kashihara, Nara 634-8522, Japan; Department of Investigative Radiology, National Cerebral and Cardiovascular Center, Suita, Japan.
| | - Akihiko Taguchi
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan; Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Akihide Yamamoto
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Katsufumi Kajimoto
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiroaki Kazui
- Department of Neuropsychiatry, Osaka University Medical School, Suita, Japan
| | - Atsuo Sekiyama
- Department of Brain Science, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kiwamu Matsuoka
- Department of Psychiatry, Nara Medical University, 840 Shijocho, Kashihara, Nara 634-8522, Japan
| | - Soichiro Kitamura
- Department of Psychiatry, Nara Medical University, 840 Shijocho, Kashihara, Nara 634-8522, Japan
| | - Kuniaki Kiuchi
- Department of Psychiatry, Nara Medical University, 840 Shijocho, Kashihara, Nara 634-8522, Japan
| | - Jun Kosaka
- Department of Psychiatry, Nara Medical University, 840 Shijocho, Kashihara, Nara 634-8522, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University, 840 Shijocho, Kashihara, Nara 634-8522, Japan
| | - Hidehiro Iida
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kazuyuki Nagatsuka
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
137
|
Trait aggressiveness is not related to structural connectivity between orbitofrontal cortex and amygdala. PLoS One 2014; 9:e101105. [PMID: 24977414 PMCID: PMC4076229 DOI: 10.1371/journal.pone.0101105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/22/2014] [Indexed: 12/02/2022] Open
Abstract
Studies in both pathological and healthy samples have suggested altered functional connectivity between orbitofrontal cortex (OFC) and amygdala as a possible cause of anger and aggression. In patient populations presenting with pathological aggression, there is also evidence for changes in structural connectivity between OFC and amygdala. In healthy samples, however, the relationship between white matter integrity and aggression has not been studied to date. Here, we investigated the relationship between trait aggressiveness and structural OFC-amygdala connectivity in a large sample (n = 93) of healthy young men. Using diffusion tensor imaging, we measured the distribution of fractional anisotropy and mean diffusivity along the uncinate fascicle bilaterally. We found no differences in either measure between participants high and low in physical aggressiveness, or between those high and low in trait anger. Our results therefore argue against a direct relationship between structural OFC-amygdala connectivity and normal-range trait aggressiveness.
Collapse
|
138
|
Fakhran S, Yaeger K, Collins M, Alhilali L. Sex differences in white matter abnormalities after mild traumatic brain injury: localization and correlation with outcome. Radiology 2014; 272:815-23. [PMID: 24802388 DOI: 10.1148/radiol.14132512] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE To evaluate sex differences in diffusion-tensor imaging (DTI) white matter abnormalities after mild traumatic brain injury (mTBI) using tract-based spatial statistics (TBSS) and to compare associated clinical outcomes. MATERIALS AND METHODS The institutional review board approved this study, with waiver of informed consent. DTI in 69 patients with mTBI (47 male and 22 female patients) and 21 control subjects (10 male and 11 female subjects) with normal conventional magnetic resonance (MR) images were retrospectively reviewed. Fractional anisotropy (FA) maps were generated as a measure of white matter integrity. Patients with mTBI underwent serial neurocognitive testing with Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT). Correlation between sex, white matter FA values, ImPACT scores, and time to symptom resolution (TSR) were analyzed with multivariate analysis and TBSS. RESULTS No significant difference in age was seen between males and females (control subjects, P = .3; patients with mTBI, P = .34). No significant difference was seen in initial ImPACT symptom scores (P = .33) between male and female patients with mTBI. Male patients with mTBI had significantly decreased FA values in the uncinate fasciculus (UF) bilaterally (mean FA, 0.425; 95% confidence interval: 0.375, 0.476) compared with female patients with mTBI and control subjects (P < .05), with a significantly longer TSR (P = .04). Multivariate analysis showed sex and UF FA values independently correlated with TSR longer than 3 months (adjusted odds ratios, 2.27 and 2.38; P = .04 and P < .001, respectively), but initial symptom severity did not (adjusted odds ratio, 1.15; P = .35). CONCLUSION Relative sparing of the UF is seen in female compared with male patients after mTBI, with sex and UF FA values as stronger predictors of TSR than initial symptom severity.
Collapse
Affiliation(s)
- Saeed Fakhran
- From the Department of Radiology (S.F., K.Y., L.A.) and Sports Medicine Concussion Program (M.C.), University of Pittsburgh School of Medicine, 200 Lothrop St, Presby South Tower, 8th Floor, 8 North, Pittsburgh, PA 15213
| | | | | | | |
Collapse
|
139
|
Ugwu ID, Amico F, Carballedo A, Fagan AJ, Frodl T. Childhood adversity, depression, age and gender effects on white matter microstructure: a DTI study. Brain Struct Funct 2014; 220:1997-2009. [PMID: 24744150 DOI: 10.1007/s00429-014-0769-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 04/01/2014] [Indexed: 11/26/2022]
Abstract
Previous diffusion tensor imaging (DTI) studies have shown that various factors can affect white matter (WM) tract diffusivity. The aim of the present study was to investigate the effects of childhood adversity (CA), age and gender on WM diffusivity in tracts that are thought to be involved in emotional regulation in individuals with major depressive disorder (MDD) and healthy controls (HC). DTI was obtained from 46 subjects with MDD and 46 HC subjects. Data were pre-processed and deterministic tractography was applied in the cingulum, uncinate fasciculus (UF), fornix, superior longitudinal fasciculus (SLF) and fronto-occipital fasciculus (FOF). In subjects with a history of CA, fractional anisotropy (FA) was greater in the rostral cingulum (RC) and dorsal cingulum, whereas radial diffusivity (RD) was smaller in the RC when compared with subjects with no history of CA. In the UF, FOF and parahippocampal cingulum, FA was greater in the left hemisphere in the subjects with CA when compared with those without CA. Age affected FA, longitudinal diffusivity and RD in the UF, fornix, FOF and SLF, reflecting axonal and myelin degeneration with increasing age. Depression or gender did not have any effects on the diffusivity measures. Due to the cross-sectional nature of the study, a recall bias for CA and possible effects of medical treatment on diffusivity measures could have played a role. CA and age could increase the likelihood to develop WM microstructural anomalies in the brain affective network. Moreover, subjects with CA could be more vulnerable to FA changes.
Collapse
Affiliation(s)
- Izuchukwu D Ugwu
- Adelaide and Meath Hospital Incorporating the National Children's Hospital, Tallaght, Dublin 24, Dublin, Ireland
| | | | | | | | | |
Collapse
|
140
|
Levin O, Fujiyama H, Boisgontier MP, Swinnen SP, Summers JJ. Aging and motor inhibition: a converging perspective provided by brain stimulation and imaging approaches. Neurosci Biobehav Rev 2014; 43:100-17. [PMID: 24726575 DOI: 10.1016/j.neubiorev.2014.04.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/18/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
The ability to inhibit actions, one of the hallmarks of human motor control, appears to decline with advancing age. Evidence for a link between changes in inhibitory functions and poor motor performance in healthy older adults has recently become available with transcranial magnetic stimulation (TMS). Overall, these studies indicate that the capacity to modulate intracortical (ICI) and interhemispheric (IHI) inhibition is preserved in high-performing older individuals. In contrast, older individuals exhibiting motor slowing and a declined ability to coordinate movement appear to show a reduced capability to modulate GABA-mediated inhibitory processes. As a decline in the integrity of the GABA-ergic inhibitory processes may emerge due to age-related loss of white and gray matter, a promising direction for future research would be to correlate individual differences in structural and/or functional integrity of principal brain networks with observed changes in inhibitory processes within cortico-cortical, interhemispheric, and/or corticospinal pathways. Finally, we underscore the possible links between reduced inhibitory functions and age-related changes in brain activation patterns.
Collapse
Affiliation(s)
- Oron Levin
- KU Leuven Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Group Biomedical Sciences, 3001 Leuven, Belgium.
| | - Hakuei Fujiyama
- KU Leuven Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Group Biomedical Sciences, 3001 Leuven, Belgium; Human Motor Control Laboratory, School of Psychology, University of Tasmania, Australia
| | - Matthieu P Boisgontier
- KU Leuven Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Group Biomedical Sciences, 3001 Leuven, Belgium
| | - Stephan P Swinnen
- KU Leuven Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Group Biomedical Sciences, 3001 Leuven, Belgium; KU Leuven, Leuven Research Institute for Neuroscience & Disease (LIND), 3001 Leuven, Belgium
| | - Jeffery J Summers
- Human Motor Control Laboratory, School of Psychology, University of Tasmania, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5UX United Kingdom
| |
Collapse
|
141
|
Gooijers J, Swinnen SP. Interactions between brain structure and behavior: the corpus callosum and bimanual coordination. Neurosci Biobehav Rev 2014; 43:1-19. [PMID: 24661987 DOI: 10.1016/j.neubiorev.2014.03.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/30/2014] [Accepted: 03/13/2014] [Indexed: 12/12/2022]
Abstract
Bimanual coordination skills are required for countless everyday activities, such as typing, preparing food, and driving. The corpus callosum (CC) is the major collection of white matter bundles connecting both hemispheres that enables the coordination between the two sides of the body. Principal evidence for this brain-behavior relationship in humans was first provided by research on callosotomy patients, showing that sectioning (parts of) the CC affected interactions between both hands directly. Later, new noninvasive in vivo imaging techniques, such as diffusion tensor imaging, have energized the study of the link between microstructural properties of the CC and bimanual performance in normal volunteers. Here we discuss the principal factors (such as age, pathology and training) that mediate the relationship between specific bimanual functions and distinct anatomical CC subdivisions. More specifically, the question is whether different bimanual task characteristics can be mapped onto functionally distinct CC subregions. We review the current status of this mapping endeavor, and propose future perspectives to inspire research on this unique link between brain structure and behavior.
Collapse
Affiliation(s)
- J Gooijers
- KU Leuven, Department of Kinesiology, Movement Control and Neuroplasticity Research Group, Tervuursevest 101, 3001 Leuven, Belgium.
| | - S P Swinnen
- KU Leuven, Department of Kinesiology, Movement Control and Neuroplasticity Research Group, Tervuursevest 101, 3001 Leuven, Belgium; KU Leuven, Leuven Research Institute for Neuroscience & Disease (LIND), Belgium.
| |
Collapse
|
142
|
Lamar M, Zhou XJ, Charlton RA, Dean D, Little D, Deoni SC. In vivo quantification of white matter microstructure for use in aging: a focus on two emerging techniques. Am J Geriatr Psychiatry 2014; 22:111-21. [PMID: 24080382 PMCID: PMC3947219 DOI: 10.1016/j.jagp.2013.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/31/2013] [Accepted: 08/12/2013] [Indexed: 12/30/2022]
Abstract
Human brain imaging has seen many advances in the quantification of white matter in vivo. For example, these advances have revealed the association between white matter damage and vascular disease as well as their impact on risk for and development of dementia and depression in an aging population. Current neuroimaging methods to quantify white matter damage provide a foundation for understanding such age-related neuropathology; however, these methods are not as adept at determining the underlying microstructural abnormalities signaling at risk tissue or driving white matter damage in the aging brain. This review will begin with a brief overview of the use of diffusion tensor imaging (DTI) in understanding white matter alterations in aging before focusing in more detail on select advances in both diffusion-based methods and multi-component relaxometry techniques for imaging white matter microstructural integrity within myelin sheaths and the axons they encase. Although DTI greatly extended the field of white matter interrogation, these more recent technological advances will add clarity to the underlying microstructural mechanisms that contribute to white matter damage. More specifically, the methods highlighted in this review may prove more sensitive (and specific) for determining the contribution of myelin versus axonal integrity to the aging of white matter in brain.
Collapse
Affiliation(s)
- Melissa Lamar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL; Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL.
| | - Xiaohong Joe Zhou
- Center for Magnetic Resonance Research and Departments of Radiology and Neurosurgery, University of Illinois at Chicago, Chicago, IL
| | - Rebecca A Charlton
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| | - Douglas Dean
- School of Engineering, Brown University, Providence, RI
| | - Deborah Little
- Scott & White Healthcare and Texas A&M Health Sciences, Temple, TX
| | - Sean C Deoni
- School of Engineering, Brown University, Providence, RI
| |
Collapse
|
143
|
Gupta PK, Gupta RK, Garg RK, Rai Y, Roy B, Pandey CM, Malhotra HS, Narayana PA. DTI correlates of cognition in conventional MRI of normal-appearing brain in patients with clinical features of subacute combined degeneration and biochemically proven vitamin B(12) deficiency. AJNR Am J Neuroradiol 2013; 35:872-7. [PMID: 24263693 DOI: 10.3174/ajnr.a3785] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Vitamin B12 deficiency may cause neural injury that results in cognitive deficits. The main purpose of our study was to evaluate morphometric and microstructural changes in the brain and relate them to cognition in subacute combined degeneration of the spinal cord and patients with biochemically deficient vitamin B12. MATERIALS AND METHODS Fifty-one patients were recruited and underwent nerve-conduction velocity tests and routine hematologic examinations. Serum vitamin B12 and homocystine levels were also measured. All patients and 46 age- and sex-matched controls underwent cervical spine and brain MR imaging along with cognition tests. MR imaging included conventional scans and DTI. Voxel-based morphometry was performed for determining the WM and GM volumes, based on T1-weighted images. DTI measures that included fractional anisotropy, ADC, radial diffusivity, and axial diffusivity were determined by using tract-based statistics. RESULTS None of the patients showed any abnormality on conventional MR imaging. No significant changes in GM and WM volumes were observed in patients compared with controls. Significant reductions in the fractional anisotropy and an increase in ADC and radial diffusivity values were observed in multiple brain regions in patients compared with controls. These changes were confirmed on the region-of-interest analysis. Neuropsychological scores were significantly different in patients compared with controls and showed significant correlation with fractional anisotropy and radial diffusivity in a few brain regions. CONCLUSIONS Microstructural changes are seen in WM regions on DTI in patients with vitamin B12 deficiency and correlate with cognition scores. DTI can be used for objective assessment of microstructural changes in the brain in vitamin B12 deficiency.
Collapse
Affiliation(s)
- P K Gupta
- From the Department of Neurology (P.K.G., R.K.Garg, H.S.M.), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - R K Gupta
- Department of Radiology and Imaging (R.K.Gupta, B.R.), Fortis Memorial Research Institute, Gurgaon, Haryana, India
| | - R K Garg
- From the Department of Neurology (P.K.G., R.K.Garg, H.S.M.), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Y Rai
- Department of Radiodiagnosis (Y.R.)
| | - B Roy
- Department of Radiology and Imaging (R.K.Gupta, B.R.), Fortis Memorial Research Institute, Gurgaon, Haryana, India
| | - C M Pandey
- Biostatistics (C.M.P.), Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - H S Malhotra
- From the Department of Neurology (P.K.G., R.K.Garg, H.S.M.), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - P A Narayana
- Department of Diagnostic and Interventional Imaging (P.A.N.), University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|
144
|
Phillips OR, Clark KA, Luders E, Azhir R, Joshi SH, Woods RP, Mazziotta JC, Toga AW, Narr KL. Superficial white matter: effects of age, sex, and hemisphere. Brain Connect 2013; 3:146-59. [PMID: 23461767 DOI: 10.1089/brain.2012.0111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Structural and diffusion imaging studies demonstrate effects of age, sex, and asymmetry in many brain structures. However, few studies have addressed how individual differences might influence the structural integrity of the superficial white matter (SWM), comprised of short-range association (U-fibers), and intracortical axons. This study thus applied a sophisticated computational analysis approach to structural and diffusion imaging data obtained from healthy individuals selected from the International Consortium for Brain Mapping (ICBM) database across a wide adult age range (n=65, age: 18-74 years, all Caucasian). Fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were sampled and compared at thousands of spatially matched SWM locations and within regions-of-interest to examine global and local variations in SWM integrity across age, sex, and hemisphere. Results showed age-related reductions in FA that were more pronounced in the frontal SWM than in the posterior and ventral brain regions, whereas increases in RD and AD were observed across large areas of the SWM. FA was significantly greater in left temporoparietal regions in men and in the posterior callosum in women. Prominent leftward FA and rightward AD and RD asymmetries were observed in the temporal, parietal, and frontal regions. Results extend previous findings restricted to the deep white matter pathways to demonstrate regional changes in the SWM microstructure relating to processes of demyelination and/or to the number, coherence, or integrity of axons with increasing age. SWM fiber organization/coherence appears greater in the left hemisphere regions spanning language and other networks, while more localized sex effects could possibly reflect sex-specific advantages in information strategies.
Collapse
Affiliation(s)
- Owen R Phillips
- Laboratory of Neuro Imaging, Department of Neurology, Geffen School of Medicine at UCLA, Los Angeles, California 90095-7334, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Xiao F, Chen Q, Yu X, Tang Y, Luo C, Fang J, Liu L, Huang X, Gong Q, Zhou D. Hemispheric lateralization of microstructural white matter abnormalities in children with active benign childhood epilepsy with centrotemporal spikes (BECTS): a preliminary DTI study. J Neurol Sci 2013; 336:171-9. [PMID: 24210075 DOI: 10.1016/j.jns.2013.10.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/05/2013] [Accepted: 10/21/2013] [Indexed: 02/05/2023]
Abstract
PURPOSE The deficit of white matter is reported to be involved during the disease progression in patients with benign childhood epilepsy with centrotemporal spikes (BECTS). The aim of this study is to investigate patterns of white matter damage in children with BECTS with left- or right-hemispheric focus by using diffusion tensor imaging (DTI), and its relationship with the cofactors such duration, seizure frequency and handedness. METHODS Diffusion tensor imaging (DTI) was performed in twenty-eight children with BECTS and eighteen healthy controls. The data were analyzed using both tract-based spatial statistics (TBSS) and region of interest (ROI) analyses. Correlations were investigated between the fractional anisotropy (FA) values of the identified altered regions and clinical features such as age, age of onset and seizure frequency. RESULTS The TBSS analysis revealed that white matter impairment in children with rolandic spikes on the ipsilateral hemisphere was much wider. The FA value was significantly lower in the body of the corpus callosum and forceps minor in BECTS patients with spikes on the ipsilateral hemisphere. The seizure frequency correlated positively with the FA values of body of corpus callosum (CC), bilateral cingulate gyrus and left uncinate fasciculi (UA). CONCLUSION The impaired WM integrity in patients with BECTS was greater in patients with spikes on the dominant hemisphere, possibly due to the greater vulnerability of the left hemisphere and excitotoxic effects of seizures.
Collapse
Affiliation(s)
- Fenglai Xiao
- Department of Neurology, West China Hospital, SiChuan University, Chengdu, Sichuan, People's Republic of China
| | - Qin Chen
- Department of Neurology, West China Hospital, SiChuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiaofeng Yu
- Department of Neurology, West China Hospital, SiChuan University, Chengdu, Sichuan, People's Republic of China
| | - Yingying Tang
- Department of Neurology, West China Hospital, SiChuan University, Chengdu, Sichuan, People's Republic of China
| | - Chunyan Luo
- Department of Neurology, West China Hospital, SiChuan University, Chengdu, Sichuan, People's Republic of China
| | - Jiajia Fang
- Department of Neurology, West China Hospital, SiChuan University, Chengdu, Sichuan, People's Republic of China
| | - Ling Liu
- Department of Neurology, West China Hospital, SiChuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiaoqi Huang
- Huaxi MR Research Center, Department of Radiology, West China Hospital, SiChuan University, Chengdu, Sichuan, People's Republic of China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, SiChuan University, Chengdu, Sichuan, People's Republic of China
| | - Dong Zhou
- Department of Neurology, West China Hospital, SiChuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
146
|
Serbruyns L, Gooijers J, Caeyenberghs K, Meesen RL, Cuypers K, Sisti HM, Leemans A, Swinnen SP. Bimanual motor deficits in older adults predicted by diffusion tensor imaging metrics of corpus callosum subregions. Brain Struct Funct 2013; 220:273-90. [DOI: 10.1007/s00429-013-0654-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/07/2013] [Indexed: 12/13/2022]
|
147
|
Takao H, Hayashi N, Ohtomo K. Sex dimorphism in the white matter: Fractional anisotropy and brain size. J Magn Reson Imaging 2013; 39:917-23. [DOI: 10.1002/jmri.24225] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 04/18/2013] [Indexed: 11/08/2022] Open
Affiliation(s)
- Hidemasa Takao
- Department of Radiology; Graduate School of Medicine, University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Naoto Hayashi
- Department of Computational Diagnostic Radiology and Preventive Medicine; Graduate School of Medicine; University of Tokyo Tokyo Japan
| | - Kuni Ohtomo
- Department of Radiology; Graduate School of Medicine, University of Tokyo; Bunkyo-ku Tokyo Japan
| |
Collapse
|
148
|
Aine CJ, Sanfratello L, Adair JC, Knoefel JE, Qualls C, Lundy SL, Caprihan A, Stone D, Stephen JM. Characterization of a normal control group: are they healthy? Neuroimage 2013; 84:796-809. [PMID: 24060318 DOI: 10.1016/j.neuroimage.2013.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/28/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022] Open
Abstract
We examined the health of a control group (18-81years) in our aging study, which is similar to control groups used in other neuroimaging studies. The current study was motivated by our previous results showing that one third of the elder control group had moderate to severe white matter hyperintensities and/or cortical volume loss which correlated with poor performance on memory tasks. Therefore, we predicted that cardiovascular risk factors (e.g., hypertension, high cholesterol) within the control group would account for significant variance on working memory task performance. Fifty-five participants completed 4 verbal and spatial working memory tasks, neuropsychological exams, diffusion tensor imaging (DTI), and blood tests to assess vascular risk. In addition to using a repeated measures ANOVA design, a cluster analysis was applied to the vascular risk measures as a data reduction step to characterize relationships between conjoint risk factors. The cluster groupings were used to predict working memory performance. The results show that higher levels of systolic blood pressure were associated with: 1) poor spatial working memory accuracy; and 2) lower fractional anisotropy (FA) values in multiple brain regions. In contrast, higher levels of total cholesterol corresponded with increased accuracy in verbal working memory. An association between lower FA values and higher cholesterol levels were identified in different brain regions from those associated with systolic blood pressure. The conjoint risk analysis revealed that Risk Cluster Group 3 (the group with the greatest number of risk factors) displayed: 1) the poorest performance on the spatial working memory tasks; 2) the longest reaction times across both spatial and verbal memory tasks; and 3) the lowest FA values across widespread brain regions. Our results confirm that a considerable range of vascular risk factors are present in a typical control group, even in younger individuals, which have robust effects on brain anatomy and function. These results present a new challenge to neuroimaging studies both for defining a cohort from which to characterize 'normative' brain circuitry and for establishing a control group to compare with other clinical populations.
Collapse
Affiliation(s)
- C J Aine
- Department of Radiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Hori M, Fukunaga I, Masutani Y, Taoka T, Kamagata K, Suzuki Y, Aoki S. Visualizing non-Gaussian diffusion: clinical application of q-space imaging and diffusional kurtosis imaging of the brain and spine. Magn Reson Med Sci 2013; 11:221-33. [PMID: 23269009 DOI: 10.2463/mrms.11.221] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently, non-Gaussian diffusion-weighted imaging (DWI) techniques, including q-space imaging (QSI) and diffusional kurtosis imaging (DKI), have emerged as advanced methods to evaluate tissue microstructure in vivo using water diffusion. QSI and DKI have shown promising results in clinical applications, such as in the evaluation of brain tumors (e.g., grading gliomas), degenerative diseases (e.g., specific diagnosis of Parkinson disease), demyelinating diseases (e.g., assessment of normal-appearing tissue of multiple sclerosis), and cerebrovascular diseases (e.g., assessment of the microstructural environment of fresh infarctions). Representative metrics in clinical use are the full width at half maximum, also known as the mean displacement of the probability density function curve, which is derived from QSI, and diffusional kurtosis, which is derived from DKI. These new metrics may provide information on tissue structure in addition to that provided by conventional Gaussian DWI investigations that use the apparent diffusion coefficient and fractional anisotropy, recognized indices for evaluating disease and normal development in the brain and spine. In some clinical situations, sensitivity for detecting pathological conditions is higher using QSI and DKI than conventional DWI and diffusion tensor imaging (DTI) because DWI and DTI calculations are based on the assumption that water molecules follow a Gaussian distribution, whereas hindrance of the distribution of water molecules by complex and restricted structures in actual neural tissues produces distributions that are far from Gaussian. We review the technical aspects and clinical applications of QSI and DKI, focusing on clinical use and in vivo studies and highlighting differences from conventional diffusional metrics.
Collapse
Affiliation(s)
- Masaaki Hori
- Department of Radiology, School of Medicine, Juntendo University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
150
|
de Kwaasteniet B, Ruhe E, Caan M, Rive M, Olabarriaga S, Groefsema M, Heesink L, van Wingen G, Denys D. Relation between structural and functional connectivity in major depressive disorder. Biol Psychiatry 2013; 74:40-7. [PMID: 23399372 DOI: 10.1016/j.biopsych.2012.12.024] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/04/2012] [Accepted: 12/20/2012] [Indexed: 01/12/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by abnormalities in both brain structure and function within a frontolimbic network. However, little is known about the relation between structural and functional abnormalities in MDD. Here, we used a multimodal neuroimaging approach to investigate the relation between structural connectivity and functional connectivity within the frontolimbic network. METHODS Eighteen MDD and 24 healthy control subjects were included, of which the integrity of the uncinate fasciculus was assessed that connects the subgenual anterior cingulate cortex (ACC) to the medial temporal lobe (MTL) with diffusion tensor imaging. Furthermore, we assessed the functional connectivity between these brain regions with functional magnetic resonance imaging. RESULTS The results showed that white matter integrity of the uncinate fasciculus was reduced and that functional connectivity between the subgenual ACC and MTL was enhanced in MDD. Importantly, we identified a negative correlation between uncinate fasciculus integrity and subgenual ACC functional connectivity with the bilateral hippocampus in MDD but not in healthy control subjects. Moreover, this negative structure-function relation in MDD was positively associated with depression severity. CONCLUSIONS These findings suggest that structural abnormalities in MDD are associated with increased functional connectivity between subgenual ACC and MTL and that these changes are concomitant with severity of depressive symptoms. This association indicates that structural abnormalities in MDD contribute to increased functional connectivity within the frontolimbic network.
Collapse
|