101
|
Senotherapeutics: Targeting senescent cells for the main age-related diseases. Mech Ageing Dev 2021; 197:111526. [PMID: 34166689 DOI: 10.1016/j.mad.2021.111526] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
The review aims to summarize and discuss the current knowledge on targeting senescent cells to reduce the risk of age-related diseases in animal models and human studies. The role of cellular senescence in aging and the major age-related diseases -including Alzheimer's disease, atherosclerosis, and type 2 diabetes- as well as the use of senotherapeutic strategies in both experimental and preclinical studies, will be described. A large number of molecules, including synthetic agents and natural compounds, have been proposed for anti-senescence activities. Research on senotherapeutics, which includes senolytic and senomorphic, has a growing interest, and their safety and reliability as anti-aging drugs have been tested in clinical trials. Initial findings suggest that the senotherapeutic approach may be translatable to humans. Due to the lack of evidence, caution must be used against senolytic agents due to their potential side-effects. In this context, natural senolytic compounds should have the advantage of low toxicity and potentially more useful in humans, although the mechanisms of action need to be defined.
Collapse
|
102
|
Dreher ML. A Comprehensive Review of Almond Clinical Trials on Weight Measures, Metabolic Health Biomarkers and Outcomes, and the Gut Microbiota. Nutrients 2021; 13:1968. [PMID: 34201139 PMCID: PMC8229803 DOI: 10.3390/nu13061968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 02/06/2023] Open
Abstract
This comprehensive narrative review of 64 randomized controlled trials (RCTs) and 14 systematic reviews and/or meta-analyses provides an in-depth analysis of the effect of almonds on weight measures, metabolic health biomarkers and outcomes, and the colonic microbiota, with extensive use of figures and tables. Almonds are a higher energy-dense (ED) food that acts like a lower ED food when consumed. Recent systematic reviews and meta-analyses of nut RCTs showed that almonds were the only nut that had a small but significant decrease in both mean body mass and fat mass, compared to control diets. The biological mechanisms for almond weight control include enhanced displacement of other foods, decreased macronutrient bioavailability for a lower net metabolizable energy (ME), upregulation of acute signals for reduced hunger, and elevated satiety and increased resting energy expenditure. The intake of 42.5 g/day of almonds significantly lowered low-density lipoprotein cholesterol (LDL-C), 10-year Framingham estimated coronary heart disease (CHD) risk and associated cardiovascular disease (CVD) medical expenditures. Diastolic blood pressure (BP) was modestly but significantly lowered when almonds were consumed at >42.5 g/day or for >6 weeks. Recent RCTs suggest possible emerging health benefits for almonds such as enhanced cognitive performance, improved heart rate variability under mental stress, and reduced rate of facial skin aging from exposure to ultraviolet (UV) B radiation. Eight RCTs show that almonds can support colonic microbiota health by promoting microflora richness and diversity, increasing the ratio of symbiotic to pathogenic microflora, and concentrations of health-promoting colonic bioactives. Almonds are a premier healthy snack for precision nutrition diet plans.
Collapse
Affiliation(s)
- Mark L Dreher
- Nutrition Science Solutions, LLC, 900 S Rainbow Ranch Rd, Wimberley, TX 78676, USA
| |
Collapse
|
103
|
Babaei P, Eyvani K, Kouhestani S. Sex-Independent Cognition Improvement in Response to Kaempferol in the Model of Sporadic Alzheimer's Disease. Neurochem Res 2021; 46:1480-1486. [PMID: 33710535 DOI: 10.1007/s11064-021-03289-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is associated with neural oxidative stress and inflammation, and it is assumed to affect more women than men with unknown mechanisms. Kaempferol (KMP) as a potent natural antioxidant has been known to exhibit various biological and pharmacological functions, including antioxidant and anti-inflammatory. We aimed here to evaluate the role of gender difference in response to KMP on the rat model of sporadic AD. Forty-six female and male Wistar rats were divided into six groups of sham, streptozotocin (STZ) + saline (SAL), STZ + KMP. Female rats were ovariectomized, and then all animals received an intracerebroventricular bilateral injection of STZ (3 mg/kg) to induce the AD model. KMP (10 mg/kg) was intraperitoneally administered for 21 consecutive days. Afterward, spatial learning and memory were assessed via the Morris water maze task (MWM). Finally, the hippocampus level of superoxide dismutase (SOD), glutathione, and malondialdehyde were measured using calorimetric kits. Data showed a significant cognition deficit in STZ + SAL compared with the sham. To sum up, we reported that chronic KMP treatment increase significantly improved acquisition and retrieval of spatial memory as evident by longer TTS (total time spent) and short-latency to the platform in MWM. In addition, KMP increased the levels of SOD and glutathione in the hippocampus of rats. Also, KMP decreased hippocampal levels of malondialdehyde in both genders. In conclusion, KMP successfully restores spatial memory impairment independent of gender difference. This memory restoration may at least in part be mediated through boosting the hippocampal level of SOD and glutathione.
Collapse
Affiliation(s)
- Parvin Babaei
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kimia Eyvani
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Somayeh Kouhestani
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
104
|
Wang L, Jing R, Wang X, Wang B, Guo K, Zhao J, Gao S, Xu N, Xuan X. A method for the expression of fibroblast growth factor 14 and assessment of its neuroprotective effect in an Alzheimer's disease model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:994. [PMID: 34277794 PMCID: PMC8267273 DOI: 10.21037/atm-21-2492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/11/2021] [Indexed: 11/29/2022]
Abstract
Background Fibroblast growth factor (FGF) 14 is a member of the FGF family that is mainly expressed in the central nervous system. FGF14 has a close association with the occurrence of neurodegenerative conditions; however, its significance in Alzheimer’s disease (AD) has yet to be evaluated. Therefore, we sought to obtain a large amount of exogenous FGF14 protein and explore its effect in a cellular model of AD. Methods FGF14 protein was expressed in an Escherichia coli system using gene recombination technology. Purified protein was obtained through washing and renaturation of inclusion bodies combined with nickel column affinity chromatography. The AD model was established via Aβ25-35-induced injury in PC12 cells. Changes in the levels of lactate dehydrogenase and malondialdehyde were detected, and the neuroprotective effect of recombinant human FGF14 (rhFGF14) was evaluated through double-fluorescence staining and flow cytometry apoptosis detection. For further exploration of rhFGF14-mediated regulation of mitogen-activated protein kinase (MAPK) signaling, western blot was employed. Results We successfully induced large amounts of insoluble rhFGF14. Following solubilization and refolding of the rhFGF14 from inclusion bodies, high purity rhFGF14 was purified by Nickel affinity column chromatography. The results showed that rhFGF14 alleviated Aβ25-3-induced PC12 cell injury by inhibiting the phosphorylation of p38, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase, thus suppressing the MAPK signaling pathway. Conclusions FGF14 performed a neuroprotective role in our in vitro AD model via its inhibition of MAPK signaling, highlighting its potential as a therapeutic drug for neurodegenerative conditions.
Collapse
Affiliation(s)
- Lusheng Wang
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Rongrong Jing
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xing Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Baohui Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Keke Guo
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jungang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Shuang Gao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xuan Xuan
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
105
|
Costa M, Páez A. Emerging insights into the role of albumin with plasma exchange in Alzheimer's disease management. Transfus Apher Sci 2021; 60:103164. [PMID: 34083161 DOI: 10.1016/j.transci.2021.103164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative process that inexorably leads to progressive deterioration of cognition function and, ultimately, death. Central pathophysiologic features of AD include the accumulation of extracellular plaques comprised of amyloid-β peptide (Aβ) and the presence of intraneuronal neurofibrillary tangles. However, a large body of evidence suggests that oxidative stress and inflammation are major contributors to the pathogenesis and progression of AD. To date, available pharmacologic treatments are only symptomatic. Clinical trials focused on amyloid and non-amyloid-targeted treatments with small molecule pharmacotherapy and immunotherapies have accumulated a long list of failures. Considering that around 90 % of the circulating Aβ is bound to albumin, and that a dynamic equilibrium exists between peripheral and central Aβ, plasma exchange with albumin replacement has emerged as a new approach in a multitargeted AD therapeutic strategy (AMBAR Program). In plasma exchange, a patient's plasma is removed by plasmapheresis to eliminate toxic endogenous substances, including Aβ and functionally impaired albumin. The fluid replacement used is therapeutic albumin, which acts not only as a plasma volume expander but also has numerous pleiotropic functions (e.g., circulating Aβ- binding capacity, transporter, detoxifier, antioxidant) that are clinically relevant for the treatment of AD. Positive results from the AMBAR Program (phase 1, 2, an 2b/3 trials), i.e., slower decline or stabilization of disease symptoms in the most relevant clinical efficacy and safety endpoints, offer a glimmer of hope to both AD patients and caregivers.
Collapse
Affiliation(s)
| | - Antonio Páez
- Alzheimer's Research Group, Grifols, Barcelona, Spain.
| |
Collapse
|
106
|
Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021; 82:71-105. [PMID: 34024838 DOI: 10.3233/jad-210234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost 115 years ago, Alois Alzheimer described Alzheimer's disease (AD) for the first time. Since then, many hypotheses have been proposed. However, AD remains a severe health public problem. The current medical approaches for AD are limited to symptomatic interventions and the complexity of this disease has led to a failure rate of approximately 99.6%in AD clinical trials. In fact, no new drug has been approved for AD treatment since 2003. These failures indicate that we are failing in mimicking this disease in experimental models. Although most studies have focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost opportunities. In this review, we aim to present the striking points of the long scientific path followed since the description of the first AD case and the main AD hypotheses discussed over the last decades. We also propose insulin resistance as a common link between many other hypotheses.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Rui Milton Patrício da Silva-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School -University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Šalković-Petrišić
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
107
|
Robert C, Wilson CS, Lipton RB, Arreto CD. Evolution of the Research Literature and the Scientific Community of Alzheimer's Disease from 1983-2017: A 35-Year Survey. J Alzheimers Dis 2021; 75:1105-1134. [PMID: 32390624 DOI: 10.3233/jad-191281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study surveys the development of Alzheimer's disease (AD) in the research literature, the scientific community, and the journals containing AD papers over a 35-year period. Research papers on AD published from 1983 to 2017 in journals indexed in the Web of Science were analyzed in seven five-year periods. The number of AD papers increased from 1,095 in 1983-1987 to 50,532 by 2013-2017 and in the same time period, the number of participating countries went from 27 to 152. The US was the most prolific country throughout, followed by several European countries, Canada, Australia, and Japan. Asian countries have emerged and by 2013-2017, China surpassed all but the US in productivity. Countries in Latin America and Africa have also contributed to AD research. Additionally, several new non-governmental institutions (e.g., ADNI, ADI) have emerged and now play a key role in the fight against AD. Likewise the AD scientific publishing universe evolved in various aspects: an increase in number of journals containing AD papers (227 journals in 1983-1987 to 3,257 in 2013-2017); appearance of several AD-focused journals, e.g., Alzheimer's & Dementia, Journal of Alzheimer's Disease; and the development of special issues dedicated to AD. Our paper complements the numerous extant papers on theoretical and clinical aspects of AD and provides a description of the research landscape of the countries and journals contributing papers related to AD.
Collapse
Affiliation(s)
- Claude Robert
- Université Paris Descartes, Paris, France.,Gliaxone, Saint Germain Sous Doue, France
| | - Concepción S Wilson
- Formerly at: School of Information Systems, Technology and Management, University of New South Wales, UNSW Sydney, Australia
| | - Richard B Lipton
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Charles-Daniel Arreto
- Gliaxone, Saint Germain Sous Doue, France.,Université Paris Descartes, Faculté de Chirurgie Dentaire, Hôpital Bretonneau, HUPNVS, AP-HP, Paris, France
| |
Collapse
|
108
|
Pratiwi R, Nantasenamat C, Ruankham W, Suwanjang W, Prachayasittikul V, Prachayasittikul S, Phopin K. Mechanisms and Neuroprotective Activities of Stigmasterol Against Oxidative Stress-Induced Neuronal Cell Death via Sirtuin Family. Front Nutr 2021; 8:648995. [PMID: 34055852 PMCID: PMC8149742 DOI: 10.3389/fnut.2021.648995] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Accumulating studies have confirmed that oxidative stress leads to the death of neuronal cells and is associated with the progression of neurodegenerative diseases, including Alzheimer's disease (AD). Despite the compelling evidence, there is a drawback to the use of the antioxidant approach for AD treatment, partly due to limited blood-brain barrier (BBB) permeability. Phytosterol is known to exhibit BBB penetration and exerts various bioactivities such as antioxidant and anticancer effects, and displays a potential treatment for dyslipidemia, cardiovascular disease, and dementia. Objective: In this study, the protective effects of stigmasterol, a phytosterol compound, on cell death induced by hydrogen peroxide (H2O2) were examined in vitro using human neuronal cells (SH-SY5Y cells). Methods: MTT assay, reactive oxygen species measurement, mitochondrial membrane potential assay, apoptotic cell measurement, and protein expression profiles were performed to determine the neuroprotective properties of stigmasterol. Results: H2O2 exposure significantly increased the levels of reactive oxygen species (ROS) within the cells thereby inducing apoptosis. On the contrary, pretreatment with stigmasterol maintained ROS levels inside the cells and prevented oxidative stress-induced cell death. It was found that pre-incubation with stigmasterol also facilitated the upregulation of forkhead box O (FoxO) 3a, catalase, and anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) in the neurons. In addition, the expression levels of sirtuin 1 (SIRT1) were also increased while acetylated lysine levels were decreased, indicating that SIRT1 activity was stimulated by stigmasterol, and the result was comparable with the known SIRT1 activator, resveratrol. Conclusion: Taken together, these results suggest that stigmasterol could be potentially useful to alleviate neurodegeneration induced by oxidative stress.
Collapse
Affiliation(s)
- Reny Pratiwi
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Department of Medical Laboratory Technology, Faculty of Health Science, Setia Budi University, Surakarta, Indonesia
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Waralee Ruankham
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
109
|
Amini Y, Saif N, Greer C, Hristov H, Isaacson R. The Role of Nutrition in Individualized Alzheimer's Risk Reduction. Curr Nutr Rep 2021; 9:55-63. [PMID: 32277428 DOI: 10.1007/s13668-020-00311-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Decades of research suggests nutritional interventions can be an effective tool for reducing risk of Alzheimer's disease (AD), especially as part of an individualized clinical management plan. This review aims to emphasize new findings examining how specific dietary changes may delay or possibly prevent AD onset, and highlight how interventions can be adopted in clinical practice based on emerging principles of precision medicine. RECENT FINDINGS Specific dietary patterns and varied nutrient combinations can have a protective effect on brain health, promote cognitive function, and mediate the comorbidity of chronic conditions associated with increased AD risk. Individuals at risk for AD may see a greater impact of evidence-based dietary changes when initiated earlier in the AD spectrum. Depending on individual clinical profiles, incorporation of nutrition strategies is an essential component of an AD risk reduction plan in clinical practice.
Collapse
Affiliation(s)
- Yasmin Amini
- Department of Neurology, Weill Cornell Medicine & New York-Presbyterian, 428 East 72th St, Suite 500, New York, NY, 10021, USA
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nabeel Saif
- Department of Neurology, Weill Cornell Medicine & New York-Presbyterian, 428 East 72th St, Suite 500, New York, NY, 10021, USA
| | - Christine Greer
- Department of Neurology, Weill Cornell Medicine & New York-Presbyterian, 428 East 72th St, Suite 500, New York, NY, 10021, USA
| | - Hollie Hristov
- Department of Neurology, Weill Cornell Medicine & New York-Presbyterian, 428 East 72th St, Suite 500, New York, NY, 10021, USA
| | - Richard Isaacson
- Department of Neurology, Weill Cornell Medicine & New York-Presbyterian, 428 East 72th St, Suite 500, New York, NY, 10021, USA.
| |
Collapse
|
110
|
Nutritional cognitive neuroscience of aging: Focus on carotenoids and cognitive frailty. Redox Biol 2021; 44:101996. [PMID: 34090844 PMCID: PMC8212151 DOI: 10.1016/j.redox.2021.101996] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
The term „nutritional cognitive neuroscience” was recently established to define a research field focusing on the impact of nutrition on cognition and brain health across the life span. In this overview, we summarize the robust evidence on the role of carotenoids as micronutrients with different biological properties in persons with cognitive (pre)frailty. As neurodegenerative processes during aging occur in a continuum from brain aging to dementia, we propose the name „nutritional cognitive neuroscience of aging“ to define research on the role of nutrition and micronutrients in cognitive frailty. Further studies are warranted which integrate carotenoid interventions in multidomain, personalized lifestyle strategies. Cognitive integrity is an essential element of healthy and active ageing. Oxidative distress is strongly linked to neurodegeneration. Consumption and levels of carotenoids are linked to cognitive frailty. There is conflict of evidence for intervention trials with carotenoids in dementia. Future studies with carotenoids should be within personalized and multidomain strategies.
Collapse
|
111
|
Zhang RY, Zhang X, Zhang L, Wu YC, Sun XJ, Li L. Tetrahydroxystilbene glucoside protects against sodium azide-induced mitochondrial dysfunction in human neuroblastoma cells. CHINESE HERBAL MEDICINES 2021; 13:255-260. [PMID: 36117503 PMCID: PMC9476786 DOI: 10.1016/j.chmed.2020.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/10/2020] [Accepted: 11/12/2020] [Indexed: 12/02/2022] Open
Abstract
Objective Mitochondrial dysfunction is evident in the early stage of Alzheimer’s disease (AD). Therefore development of drugs that protect mitochondrial function is a promising strategy for AD. The present work was to investigate the effects of 2, 3, 5, 4′-Tetrahydroxystilbene-2-O-β-d-glucosides (TSG) on a mitochondrial dysfunction cell model induced by sodium azide and elucidate the underlying mechanisms. Methods Mitochondrial membrane potential (MMP) was detected by a fluorescence method. Cellular adenosine triphosphate (ATP) level was measured using a firefly luciferase-based kit. Reactive oxygen species (ROS) was detected using dichlorofluorescin diacetate (DCFH-DA). The expression levels of Bcl-2 and Bax were measured by Western blotting assay. Flow cytometry was utilized to measure apoptosis. Results Pretreatment of TSG (25–200 μmol/L) for 24 h significantly elevated MMP and ATP content, reduced ROS level and Bax/Bcl-2 ratio, and inhibited apoptosis in SH-SY5Y cells exposed to sodium azide. Conclusion These results suggest that TSG protects SH-SY5Y cells against sodium azide-induced mitochondrial dysfunction and apoptosis. These findings are helpful to understand the protective effect of TSG on mitochondria, which are involved in the early stage of AD.
Collapse
|
112
|
Carter B, Justin HS, Gulick D, Gamsby JJ. The Molecular Clock and Neurodegenerative Disease: A Stressful Time. Front Mol Biosci 2021; 8:644747. [PMID: 33889597 PMCID: PMC8056266 DOI: 10.3389/fmolb.2021.644747] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Circadian rhythm dysfunction occurs in both common and rare neurodegenerative diseases. This dysfunction manifests as sleep cycle mistiming, alterations in body temperature rhythms, and an increase in symptomatology during the early evening hours known as Sundown Syndrome. Disruption of circadian rhythm homeostasis has also been implicated in the etiology of neurodegenerative disease. Indeed, individuals exposed to a shifting schedule of sleep and activity, such as health care workers, are at a higher risk. Thus, a bidirectional relationship exists between the circadian system and neurodegeneration. At the heart of this crosstalk is the molecular circadian clock, which functions to regulate circadian rhythm homeostasis. Over the past decade, this connection has become a focal point of investigation as the molecular clock offers an attractive target to combat both neurodegenerative disease pathogenesis and circadian rhythm dysfunction, and a pivotal role for neuroinflammation and stress has been established. This review summarizes the contributions of molecular clock dysfunction to neurodegenerative disease etiology, as well as the mechanisms by which neurodegenerative diseases affect the molecular clock.
Collapse
Affiliation(s)
- Bethany Carter
- Gamsby Laboratory, USF Health Byrd Alzheimer's Center and Research Institute, University of South Florida Health, Tampa, FL, United States
| | - Hannah S Justin
- Gamsby Laboratory, USF Health Byrd Alzheimer's Center and Research Institute, University of South Florida Health, Tampa, FL, United States
| | - Danielle Gulick
- Gamsby Laboratory, USF Health Byrd Alzheimer's Center and Research Institute, University of South Florida Health, Tampa, FL, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Joshua J Gamsby
- Gamsby Laboratory, USF Health Byrd Alzheimer's Center and Research Institute, University of South Florida Health, Tampa, FL, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
113
|
Tan MA, Zakharova E, An SSA. Diaportheone A Analogues Instigate a Neuroprotective Effect by Protecting Neuroblastoma SH-SY5Y Cells from Oxidative Stress. BIOLOGY 2021; 10:biology10030199. [PMID: 33807686 PMCID: PMC8002093 DOI: 10.3390/biology10030199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) remains an incurable neurodegenerative illness. Oxidative stress resulting in the formation of reactive oxygen species (ROS) and the abnormal deposition of amyloid-beta (Aβ) are the major pathological hallmarks associated with AD. In search for small molecules targeting multiple pathways of AD and of no known molecular targets, the neuroprotective effects of the synthetic chromones diaportheone A1 and diaportheone A2, analogues of the natural product diaportheone A, were investigated. Chromones are heterocyclic compounds bearing the benzoannelated γ-pyrone moiety and were regarded as an important class of organic molecules due to their diverse pharmacological activities. The influence of the compounds on the inhibition of Aβ aggregation was determined by Thioflavin T (ThT) assay, and the cell viability, ROS, and mitochondrial membrane potential were evaluated with human neuroblastoma SH-SY5Y cells. Results showed that both compounds inhibited the Aβ aggregation at 80.41% and 73.68% for diaportheone A1 and diaportheone A2, respectively. Increased cell viabilities were observed from the protection by both compounds using Aβ- or H2O2-induced SH-SY5Y cells. Both compounds also reduced the intracellular ROS level in Aβ- or H2O2-induced SH-SY5Y cells at 10 and 20 μM concentrations, and increased the mitochondrial membrane potentials in Aβ-induced SH-SY5Y cells at 20 μM concentration. Molecular docking experiments using the Aβ protein models 2MXU and 2BEG also indicated a good agreement with the experimental data. The results demonstrated for the first time the oxidative stress effects associated with the chromones diaportheone A1 and diaportheone A2 as potential neuroprotective therapeutic agents against AD.
Collapse
Affiliation(s)
- Mario A. Tan
- Department of Bionano Technology, Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Korea
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana, Manila 1015, Philippines
- Correspondence: (M.A.T.); (S.S.A.A.); Tel.: +63-2-7314031 (M.A.T.); +82-31-7508755 (S.S.A.A.)
| | - Elena Zakharova
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland;
| | - Seong Soo A. An
- Department of Bionano Technology, Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Korea
- Correspondence: (M.A.T.); (S.S.A.A.); Tel.: +63-2-7314031 (M.A.T.); +82-31-7508755 (S.S.A.A.)
| |
Collapse
|
114
|
Ratto F, Franchini F, Musicco M, Caruso G, Di Santo SG. A narrative review on the potential of tomato and lycopene for the prevention of Alzheimer's disease and other dementias. Crit Rev Food Sci Nutr 2021; 62:4970-4981. [PMID: 33577362 DOI: 10.1080/10408398.2021.1880363] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress is a major factor in aging and is implicated in the pathogenesis of tumors, diabetes mellitus, cardiovascular and neurodegenerative diseases, including Alzheimer Disease (AD). Bioactive constituents of tomato as polyphenols and carotenoids, among which lycopene (LYC) are effective in reducing markers of oxidative stress, and appear to have a protective modulator role on the pathogenetic mechanisms, cognitive symptoms and behavioral manifestations of these diseases in cell cultures and animal models. Epidemiological evidence indicates a consistent association between the intake of tomatoes and reduced cardiovascular and neoplastic risk. LYC deficiency is common in elders and AD patients and it is strongly predictive of mortality and poor cardiovascular (CV) outcomes. Dietary intake of tomatoes seems to be more effective than tomato/LYC supplementation. Limited evidence from human intervention trials suggests that increasing tomato intake, besides improving CV markers, enhances cognitive performances. In this narrative review, we analyze the existing evidence on the beneficial effects of tomatoes on AD-related processes or risk factors. Results support the development of promising nutritional strategies to increase the levels of tomato consumption for the prevention or treatment of AD and other dementias. Extensive well-structured research, however, is mandatory to confirm the neuroprotective effects of tomato/LYC in humans.
Collapse
Affiliation(s)
- Federica Ratto
- Department of Clinical and Behavioral Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Flaminia Franchini
- Department of Clinical and Behavioral Neurology, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Neuroscience, University of Rome "Tor Vergata", Rome, Italy
| | - Massimo Musicco
- Institute of Biomedical Technologies, National Research Council, Segrate (Milan), Italy
| | - Giulia Caruso
- Department of Clinical and Behavioral Neurology, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Neuroscience, University of Rome "Tor Vergata", Rome, Italy
| | - Simona Gabriella Di Santo
- Department of Clinical and Behavioral Neurology, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Neuroscience, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
115
|
Mladenovic Djordjevic A, Loncarevic-Vasiljkovic N, Gonos ES. Dietary Restriction and Oxidative Stress: Friends or Enemies? Antioxid Redox Signal 2021; 34:421-438. [PMID: 32242468 DOI: 10.1089/ars.2019.7959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Significance: It is well established that lifestyle and dietary habits have a tremendous impact on life span, the rate of aging, and the onset/progression of age-related diseases. Specifically, dietary restriction (DR) and other healthy dietary patterns are usually accompanied by physical activity and differ from Western diet that is rich in fat and sugars. Moreover, as the generation of reactive oxidative species is the major causative factor of aging, while DR could modify the level of oxidative stress, it has been proposed that DR increases both survival and longevity. Recent Advances: Despite the documented links between DR, aging, and oxidative stress, many issues remain to be addressed. For instance, the free radical theory of aging is under "re-evaluation," while DR as a golden standard for prolonging life span and ameliorating the effects of aging is also under debate. Critical Issues: This review article pays special attention to highlight the link between DR and oxidative stress in both aging and age-related diseases. We discuss in particular DR's capability to counteract the consequences of oxidative stress and the molecular mechanisms involved in these processes. Future Directions: Although DR is undoubtedly beneficial, several considerations must be taken into account when designing the best dietary intervention. Use of intermittent fasting, daily food reduction, or DR mimetics? Future research should unravel the pros and cons of all these processes. Antioxid. Redox Signal. 34, 421-438.
Collapse
Affiliation(s)
- Aleksandra Mladenovic Djordjevic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natasa Loncarevic-Vasiljkovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
116
|
Downregulation of autophagy by 12/15Lipoxygenase worsens the phenotype of an Alzheimer's disease mouse model with plaques, tangles, and memory impairments. Mol Psychiatry 2021; 26:604-613. [PMID: 30279460 DOI: 10.1038/s41380-018-0268-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/03/2018] [Accepted: 09/06/2018] [Indexed: 11/08/2022]
Abstract
Among the different initiating events in Alzheimer's disease (AD) pathogenesis, oxidative stress and neuroinflammation are some of the most iimportant. In the central nervous system, the 12/15Lipoxygenase (12/15LO) enzyme is the source of potent pro-oxidants and inflammatory lipid mediators. Previous works showed that this pathway is up-regulated in AD brains and that its pharmacological targeting modulates the phenotype of transgenic mouse models of the disease. Here we investigate the effect of brain 12/15LO gene delivery on the AD-like phenotype of a mouse model with plaques, tangles and behavioral deficits, the 3xTg mice. Compared with controls, mice over-expressing 12/15LO manifested an exacerbation of spatial learning and memory impairments, which was associated with significant increase in Aβ formation and deposition, and accumulation of hyper-phosphorylated insoluble tau secondary to a down-regulation of autophagy. In addition, the same mice manifested a worsening of neuroinflammation and synaptic pathology. Taken together our study supports the hypothesis that the 12/15LO enzymatic pathway by impairing neuronal autophagy plays a functional role in exacerbating AD-related neuropathologies and cognitive impairments. It provides further critical preclinical evidence to justify developing and testing new and selective 12/15LO inhibitors for AD treatment.
Collapse
|
117
|
Ali M, Saleem U, Anwar F, Imran M, Nadeem H, Ahmad B, Ali T, Ismail T. Screening of Synthetic Isoxazolone Derivative Role in Alzheimer's Disease: Computational and Pharmacological Approach. Neurochem Res 2021; 46:905-920. [PMID: 33486698 DOI: 10.1007/s11064-021-03229-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is age-dependent neurological disorder with progressive loss of cognition and memory. This multifactorial disease is characterized by intracellular neurofibrillary tangles, beta amyloid plaques, neuroinflammation, and increased oxidative stress. The increased cellular manifestations of these markers play a critical role in neurodegeneration and pathogenesis of AD. Therefore, reducing neurodegeneration by decreasing one or more of these markers may provide a potential therapeutic roadmap for the treatment of AD. AD causes a devastating loss of cognition with no conclusive and effective treatment. Many synthetic compound containing isoxazolone nucleus have been reported as neuroprotective agents. The aim of this study was to explore the anti-Alzheimer's potential of a newly synthesized 3,4,5-trimethoxy isoxazolone derivative (TMI) that attenuated the beta amyloid (Aβ1-42) and tau protein levels in streptozotocin (STZ) induced Alzheimer's disease mouse model. Molecular analysis revealed increased beta amyloid (Aβ1-42) protein levels, increased tau protein levels, increased cellular oxidative stress and reduced antioxidant enzymes in STZ exposed mice brains. Furthermore, ELISA and PCR were used to validate the expression of Aβ1-42. Pre-treatment with TMI significantly improved the memory and cognitive behavior along with ameliorated levels of Aβ1-42 proteins. TMI treated mice further showed marked increase in GSH, CAT, SOD levels while decreased levels of acetylcholinesterase inhibitors (AChEI's) and MDA intermediate. The multidimensional nature of isoxazolone derivatives and its versatile affinity towards various targets highpoint its multistep targeting nature. These results indicated the neuroprotective potential of TMI which may be considered for the treatment of neurodegenerative disease specifically in AD.
Collapse
Affiliation(s)
- Meissam Ali
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Pakistan
| | - Uzma Saleem
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Pakistan.
| | - Muhammad Imran
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Pakistan
| | - Tahir Ali
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, COMSATS University, Abbottabad, 22060, Pakistan
| |
Collapse
|
118
|
Zhang Q, Hao C, Miao Y, Yun Y, Sun X, Pan Y, Sun J, Wang X. Design and synthesis of benzyl aminocoumarin and its anti-Alzheimer's activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj02950a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Benzylaminocoumarin is a kind of compound with coumarin skeleton and benzylamino side chain structure at positions 3 and 4.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Canhua Hao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Yuhang Miao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Yinling Yun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Xiaoya Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Yinbo Pan
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Jie Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, P. R. China
| |
Collapse
|
119
|
The impact of aging in dementia: It is time to refocus attention on the main risk factor of dementia. Ageing Res Rev 2021; 65:101210. [PMID: 33186671 DOI: 10.1016/j.arr.2020.101210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) represents the most common form of dementia among old age subjects, and despite decades of studies, the underlying etiopathogenetic mechanisms remain unsolved, and no cure is available. The amyloid hypothesis has been recently questioned due to the failure of amyloid-centered treatments. The fact that cognitively normal old age subjects have substantial amyloid deposition in the brain comparable to the levels observed in AD patients suggests that amyloid accumulation may enter into the normal process of aging and what really triggers neuronal death and clinical manifestation is the loss of function due to an energetic failure. With this viewpoint article, we aim to challenge the traditional view of amyloid as the leading cause of AD. Conversely, we propose the core feature of aging, that is the progressive brain energy decline, as the main risk factor for dementia in older persons. Thus, a bioenergetic deficit secondary to mitochondrial dysfunction may lead to progressive neuronal death and clinical expression of dementia. The optimization of brain energetics should become a key component in future strategies for preventing and treating dementia.
Collapse
|
120
|
Khorshidi F, Poljak A, Liu Y, Lo JW, Crawford JD, Sachdev PS. Resveratrol: A "miracle" drug in neuropsychiatry or a cognitive enhancer for mice only? A systematic review and meta-analysis. Ageing Res Rev 2021; 65:101199. [PMID: 33303422 DOI: 10.1016/j.arr.2020.101199] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/07/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Over the last decade resveratrol has been trialled for the prevention and treatment of cognitive decline; however, the results have shown a conflict between human studies compared with animal studies, especially on cognition, blood pressure, neuroimaging, and mood. METHODS Human clinical trials and animal studies published prior to January 2020, were identified searching across major electronic databases. PRISMA guidelines were used for data extraction, which was independently performed by two authors. Pooled standard mean difference (SMD, random effect model) and odds ratios (ORs) were calculated. RESULTS Most publications on animal models reported positive outcomes on cognition and brain function following exposure to resveratrol or grape seed extracts. By contrast, 11 meta-analyses of data from human placebo vs resveratrol, grape or wine treatment trials identified no statistically significant effect on a variety of measures, including cognitive and mood assessments, grey matter volume and blood pressure. CONCLUSIONS Based on currently available data, the promising effects of resveratrol in animal models is not replicated in human clinical trials. The effects, if any, of resveratrol on human cognition are likely to be small. This work may be useful for the design and implementation of future pre-clinical and clinical studies using resveratrol in a neurological setting.
Collapse
Affiliation(s)
- Fatemeh Khorshidi
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia; Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia; School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Yue Liu
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Jessica W Lo
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | - John D Crawford
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder Singh Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia.
| |
Collapse
|
121
|
Farkhondeh T, Ashrafizadeh M, Azimi-Nezhad M, Samini F, Aschner M, Samarghandian S. Curcumin Efficacy in a Serum/Glucose Deprivation-Induced Neuronal PC12 Injury Model. Curr Mol Pharmacol 2021; 14:1146-1155. [PMID: 33538682 PMCID: PMC8329120 DOI: 10.2174/1874467214666210203211312] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Glucose/serum deprivation (GSD), has been used for understanding molecular mechanisms of neuronal damage during ischemia. It has been suggested that curcumin may improve neurodegenerative diseases. AIM In this study, the protective effects of curcumin and its underlying mechanisms were investigated in PC12 cells upon GSD-induced stress. METHODS PC12 cells were cultured in DMEM overnight and then incubated in GSD condition for either 6 or 12h. GSD-treated cells were pretreated with various concentrations of curcumin (10, 20, and 40 μM) for 5h. The cell viability, apoptosis, reactive oxygen species (ROS) level, oxidative stress, expression of apoptosis-related genes, and IL-6 were determined. RESULTS Curcumin increased cell viability and caused an anti-apoptotic effect in PC12 cells exposed for 12h to GSD . Curcumin also increased antioxidant enzyme expression, suppressed lipid peroxidation, and decreased interleukin-6 secretion in PC12 cells subjected to GSD. In addition, pretreatment with curcumin down-regulated pro-apoptotic (Bax), and up-regulated antiapoptotic (Bcl2) mediators. CONCLUSION Curcumin mitigates many of the adverse effects of ischemia, and therefore, should be considered as an adjunct therapy in ischemic patients.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC),
Birjand University of Medical Sciences (BUMS), Birjand. Iran
- Faculty of Pharmacy, Birjand University of Medical
Sciences, Birjand, Iran
- Innovative Medical Research Center, Mashhad Branch, Islamic
Azad University, Mashhad, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla,
34956 Istanbul, Turkey
| | - Mohsen Azimi-Nezhad
- Noncommunicable Diseases Research Center, Neyshabur
University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, IGE-PCV “Interactions
Gène-Environnement en Physiopathologie CardioVasculaire”,
Université de Lorraine, 54000, Nancy, France
| | - Fariborz Samini
- Department of Neurosurgery, Faculty of Medicine, Mashhad
University of Medical Sciences, Mashhad, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein
College of Medicine, Bronx, New York, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur
University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
122
|
Butterfield DA. Brain lipid peroxidation and alzheimer disease: Synergy between the Butterfield and Mattson laboratories. Ageing Res Rev 2020; 64:101049. [PMID: 32205035 PMCID: PMC7502429 DOI: 10.1016/j.arr.2020.101049] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 02/05/2023]
Abstract
Brains from persons with Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI), exhibit high levels of oxidative damage, including that to phospholipids. One type of oxidative damage is lipid peroxidation, the most important index of which is protein-bound 4-hydroxy-2-trans-nonenal (HNE). This highly reactive alkenal changes the conformations and lowers the activities of brain proteins to which HNE is covalently bound. Evidence exists that suggests that lipid peroxidation is the first type of oxidative damage associated with amyloid β-peptide (Aβ), a 38-42 amino acid peptide that is highly neurotoxic and critical to the pathophysiology of AD. The Butterfield laboratory is one of, if not the, first research group to show that Aβ42 oligomers led to lipid peroxidation and to demonstrate this modification in brains of subjects with AD and MCI. The Mattson laboratory, particularly when Dr. Mattson was a faculty member at the University of Kentucky, also showed evidence for lipid peroxidation associated with Aβ peptides, mostly in in vitro systems. Consequently, there is synergy between our two laboratories. Since this special tribute issue of Aging Research Reviews is dedicated to the career of Dr. Mattson, a review of some aspects of this synergy of lipid peroxidation and its relevance to AD, as well as the role of lipid peroxidation in the progression of this dementing disorder seems germane. Accordingly, this review outlines some of the individual and/or complementary research on lipid peroxidation related to AD published from our two laboratories either separately or jointly.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University Of Kentucky, Lexington, KY, 40506, United States.
| |
Collapse
|
123
|
Boccardi V, Paolacci L, Remondini D, Giampieri E, Poli G, Curti N, Cecchetti R, Villa A, Ruggiero C, Brancorsini S, Mecocci P. Cognitive Decline and Alzheimer's Disease in Old Age: A Sex-Specific Cytokinome Signature. J Alzheimers Dis 2020; 72:911-918. [PMID: 31658056 DOI: 10.3233/jad-190480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Elevated peripheral levels of different cytokines and chemokines in subjects with Alzheimer's disease (AD), as compared with healthy controls (HC), have emphasized the role of inflammation in such a disease. Considering the cross-talking between the central nervous system and the periphery, the inflammatory analytes may provide utility as biomarkers to identify AD at earlier stages. OBJECTIVE Using an advanced statistical approach, we can discriminate the interactive network of cytokines/chemokines and propose a useful tool to follow the progression and evolution of AD, also in light of sex differences. METHODS A cohort of 289 old-age subjects was screened for cytokine and chemokine profiling, measured in plasma, after a thorough clinical and neuropsychological evaluation. A custom algorithm based on Fisher linear discriminant analysis was applied to ascertain a classification signature able to discriminate HC from mild cognitive impairment (MCI) and AD. RESULTS We observed that a joint expression of three proteins (a "signature" composed by IFN-α2, IL-1α, TNFα) can discriminate HC from AD with an accuracy of 65.24%. Using this signature on MCI samples, 84.93% of them were classified as "non-HC". Stratifying MCI samples by sex, we observed that 87.23% of women were classified as "non-HC", and only 57.69% of males. Indeed, in a scatter plot of IFN-α2 and IL-1α, the HC group was better separated from MCI and AD in women as compared with men. CONCLUSION These findings suggest that AD is accompanied by a peripheral inflammatory response that can already be present in MCI subjects, thus providing a mean for detecting this at-risk status and allow an anticipated intervention.
Collapse
Affiliation(s)
- Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Lucia Paolacci
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, and INFN Bologna, Bologna, Italy
| | - Enrico Giampieri
- Department of Physics and Astronomy, University of Bologna, and INFN Bologna, Bologna, Italy
| | - Giulia Poli
- Department of Experimental Medicine, Section of Terni, University of Perugia, Perugia, Italy
| | - Nico Curti
- Department of Physics and Astronomy, University of Bologna, and INFN Bologna, Bologna, Italy
| | - Roberta Cecchetti
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alfredo Villa
- Department of Clinical Pathology, S.M. della Misericordia Hospital, Perugia, Italy
| | - Carmelinda Ruggiero
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Stefano Brancorsini
- Department of Experimental Medicine, Section of Terni, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
124
|
Zhang J, Zhang J, Li XJ, Xiao J, Ye F. Hypoxic Preconditioning Ameliorates Amyloid-β Pathology and Longterm Cognitive Decline in AβPP/PS1 Transgenic Mice. Curr Alzheimer Res 2020; 17:626-634. [PMID: 33030131 DOI: 10.2174/1567205017666201007121730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Hypoxic Preconditioning (HPC) has been well established to trigger endogenous mechanisms of neuroprotection basing on models of hypoxic and ischemic diseases in the Central Nervous System (CNS). However, its effects against Alzheimer's Disease (AD) still lack substantial evidence and in-depth exploration. The present study aimed to investigate the impacts of HPC on AD-related memory decline and amyloid-β (Aβ) pathology in AβPP/PS1 transgenic mice. METHODS Seven-week-old AβPP/PS1 transgenic mice were randomized into HPC and non-HPC groups. The HPC groups were treated with early and repetitive HPC for four weeks, while the non-HPC group was raised under normoxia condition. All the animals were then raised until the age of 28 weeks when Morris water maze tests were conducted to examine the animals' spatial memory. Indicators for Aβ pathology (soluble Aβ levels and numbers of Aβ plaques) and the expression of relevant proteins were measured to explore potential mechanisms. RESULTS The results showed that HPC ameliorated memory decline and Aβ pathology in AβPP/PS1 mice. The protein levels of Amyloid-β Precursor Protein (AβPP) and β-site APP Cleaving Enzyme 1 (BACE1) were reduced while that of Hypoxic inducible factor 1α (HIF-1α) was elevated in HPC groups. CONCLUSION HPC might be a promising strategy for AD intervention. Its potential protection might be realized via downregulating the expressions of AβPP and BACE1 and hence inhibiting Aβ pathology. Notably, HIF-1α might play a key role in mediating subsequent neuroadaptive changes following HPC.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Public Health, Affiliated Hospital of Sichuan Nursing Vocational College, Chengdu,
China,Department of Operating Room, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital,
Chengdu, China
| | - Ji Zhang
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu,
China,Department of Neurology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital,
Chengdu, China,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao-Jia Li
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu,
China,Department of Neurology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital,
Chengdu, China
| | - Jun Xiao
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu,
China,Department of Neurology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital,
Chengdu, China
| | - Fang Ye
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu,
China,Department of Neurology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital,
Chengdu, China
| |
Collapse
|
125
|
Wang Y, Cui X, Lin Q, Cai J, Tang L, Liang Y. Active Peptide KF-8 from Rice Bran Attenuates Oxidative Stress in a Mouse Model of Aging Induced by d-Galactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12271-12283. [PMID: 32942847 DOI: 10.1021/acs.jafc.0c04358] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study investigated the effects of a physiologically active peptide derived from rice bran (KF-8) on oxidative stress in d-galactose (d-gal)-induced aging mice and the underlying molecular mechanisms. The aging model was developed by subcutaneously injecting Institute of Cancer Research mice with 250 mg/kg d-gal daily for 12 weeks and simultaneously treating them with 30 mg/kg KF-8. The relative expression levels of Nrf2 and NF-κB in the liver were determined by the western blot. The regulation of Nrf2 and NF-κBp65 by KF-8 was further validated in NIH/3T3 cells. Compared with the control mice, the aging mice had significantly decreased body weights as well as superoxide dismutase and GSH-Px levels (p < 0.05); however, they had increased serum reactive oxygen species and malondialdehyde and 8-hydroxydeoxyguanosine levels accompanied by aortic and brain injuries. They also had elevated RAGE, TLR4, IκB, Bax, and caspase-8 expressions and NF-κB/p65 phosphorylation but reduced BcL-2 expression in the liver. Moreover, in vitro experiments demonstrated that the pretreatment of H2O2-treated NIH/3T3 cells with KF-8 significantly mitigated the NF-κB signaling and attenuated the Nrf2 nuclear transport (both p < 0.05). In conclusion, KF-8 treatment inhibited aging-induced oxidative stress-related organ injury in mice by attenuating NF-κB/p38 signaling and preserving Nrf2 activity.
Collapse
Affiliation(s)
- Yuqian Wang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiaoji Cui
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Jie Cai
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Liuhuan Tang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
126
|
Scassellati C, Galoforo AC, Bonvicini C, Esposito C, Ricevuti G. Ozone: a natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Res Rev 2020; 63:101138. [PMID: 32810649 PMCID: PMC7428719 DOI: 10.1016/j.arr.2020.101138] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Systems medicine is founded on a mechanism-based approach and identifies in this way specific therapeutic targets. This approach has been applied for the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Nrf2 plays a central role in different pathologies including neurodegenerative disorders (NDs), which are characterized by common pathogenetic features. We here present wide scientific background indicating how a natural bioactive molecule with antioxidant/anti-apoptotic and pro-autophagy properties such as the ozone (O3) can represent a potential new strategy to delay neurodegeneration. Our hypothesis is based on different evidence demonstrating the interaction between O3 and Nrf2 system. Through a meta-analytic approach, we found a significant modulation of O3 on endogenous antioxidant-Nrf2 (p < 0.00001, Odd Ratio (OR) = 1.71 95%CI:1.17-2.25) and vitagene-Nrf2 systems (p < 0.00001, OR = 1.80 95%CI:1.05-2.55). O3 activates also immune, anti-inflammatory signalling, proteasome, releases growth factors, improves blood circulation, and has antimicrobial activity, with potential effects on gut microbiota. Thus, we provide a consistent rationale to implement future clinical studies to apply the oxygen-ozone (O2-O3) therapy in an early phase of aging decline, when it is still possible to intervene before to potentially develop a more severe neurodegenerative pathology. We suggest that O3 along with other antioxidants (polyphenols, mushrooms) implicated in the same Nrf2-mechanisms, can show neurogenic potential, providing evidence as new preventive strategies in aging and in NDs.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Antonio Carlo Galoforo
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy; University of Pavia, Pavia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, Italy; P.D. High School in Geriatrics, University of Pavia, Italy; St.Camillus Medical University, Rome, Italy
| |
Collapse
|
127
|
Lv X, Zhou D, Ge B, Chen H, Du Y, Liu S, Ji Y, Sun C, Wang G, Gao Y, Li W, Huang G. Association of Folate Metabolites and Mitochondrial Function in Peripheral Blood Cells in Alzheimer's Disease: A Matched Case-Control Study. J Alzheimers Dis 2020; 70:1133-1142. [PMID: 31306134 DOI: 10.3233/jad-190477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The nutrition state plays an important role in the progress of aging. Folate may play a role in protecting mitochondrial (mt) DNA by reducing oxidative stress. OBJECTIVE The primary aim of this study was to examine the association of mitochondrial oxidative damage with risk of Alzheimer's disease (AD), and to explore the possible role of folate metabolites in this association in a matched case-control study. METHODS Serum folate metabolites and mitochondrial function in peripheral blood cells were determined in 82 AD cases and 82 healthy controls, individually matched by age, gender, and education. RESULTS AD patients had lower serum levels of folate and higher homocysteine (Hcy) concentration. AD patients had a reduced mtDNA copy number, higher mtDNA deletions, and increased 8-OHdG content in mtDNA indicative of reduced mitochondrial function. The highest level of mtDNA copy number would decrease the risk of AD (OR = 0.157, 95% CI: 0.058-0.422) compared to the lowest level, independently of serum folate, and Hcy levels. Serum folate levels correlated with low 8-OHdG content in mtDNA both in AD patients and controls, independently of serum Hcy level. Moreover, serum Hcy levels correlated with low copy number in mtDNA both in AD patients and controls, independently of serum folate levels. CONCLUSION In conclusion, mitochondrial function in peripheral blood cells could be associated with risk of AD independent of multiple covariates. AD patients with a folate deficiency or hyperhomocysteinemia had low mitochondrial function in peripheral blood cells. However, further randomized controlled trials are need to determine a causal effect.
Collapse
Affiliation(s)
- Xin Lv
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Dongtao Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Baojin Ge
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Hui Chen
- School of Nursing, Tianjin Medical University, Tianjin, China
| | - Yue Du
- Department of Social Medicine and Health Management, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shuai Liu
- Department of Neurology, and Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Yong Ji
- Department of Neurology, and Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Changqing Sun
- Neurosurgical Department of Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Guangshun Wang
- Department of Tumor, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Yuxia Gao
- Department of Cardiology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
128
|
Rh-CSF1 Attenuates Oxidative Stress and Neuronal Apoptosis via the CSF1R/PLCG2/PKA/UCP2 Signaling Pathway in a Rat Model of Neonatal HIE. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6801587. [PMID: 33101590 PMCID: PMC7568161 DOI: 10.1155/2020/6801587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress (OS) and neuronal apoptosis are major pathological processes after hypoxic-ischemic encephalopathy (HIE). Colony stimulating factor 1 (CSF1), binding to CSF1 receptor (CSF1R), has been shown to reduce neuronal loss after hypoxic-ischemia- (HI-) induced brain injury. In the present study, we hypothesized that CSF1 could alleviate OS-induced neuronal degeneration and apoptosis through the CSF1R/PLCG2/PKA/UCP2 signaling pathway in a rat model of HI. A total of 127 ten-day old Sprague Dawley rat pups were used. HI was induced by right common carotid artery ligation with subsequent exposure to hypoxia for 2.5 h. Exogenous recombinant human CSF1 (rh-CSF1) was administered intranasally at 1 h and 24 h after HI. The CSF1R inhibitor, BLZ945, or phospholipase C-gamma 2 (PLCG2) inhibitor, U73122, was injected intraperitoneally at 1 h before HI induction. Brain infarct volume measurement, cliff avoidance test, righting reflex test, double immunofluorescence staining, western blot assessment, 8-OHdG and MitoSOX staining, Fluoro-Jade C staining, and TUNEL staining were used. Our results indicated that the expressions of endogenous CSF1, CSF1R, p-CSF1R, p-PLCG2, p-PKA, and uncoupling protein2 (UCP2) were increased after HI. CSF1 and CSF1R were expressed in neurons and astrocytes. Rh-CSF1 treatment significantly attenuated neurological deficits, infarct volume, OS, neuronal apoptosis, and degeneration at 48 h after HI. Moreover, activation of CSF1R by rh-CSF1 significantly increased the brain tissue expressions of p-PLCG2, p-PKA, UCP2, and Bcl2/Bax ratio, but reduced the expression of cleaved caspase-3. The neuroprotective effects of rh-CSF1 were abolished by BLZ945 or U73122. These results suggested that rh-CSF1 treatment attenuated OS-induced neuronal degeneration and apoptosis after HI, at least in part, through the CSF1R/PLCG2/PKA/UCP2 signaling pathway. Rh-CSF1 may serve as therapeutic strategy against brain damage in patients with HIE.
Collapse
|
129
|
Kollarova M, Puzserova A, Balis P, Radosinska D, Tothova L, Bartekova M, Barancik M, Radosinska J. Age- and Phenotype-Dependent Changes in Circulating MMP-2 and MMP-9 Activities in Normotensive and Hypertensive Rats. Int J Mol Sci 2020; 21:E7286. [PMID: 33023122 PMCID: PMC7582756 DOI: 10.3390/ijms21197286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are important in the pathogenesis of numerous diseases. The present study aimed to monitor the activation of MMP-2 and MMP-9 in spontaneously hypertensive rats (SHR) and their normotensive counterparts-Wistar-Kyoto rats (WKY). The animals were divided according to age (7, 20, and 52 weeks) and phenotype into: WKY-7, WKY-20, WKY-52, SHR-7, SHR-20 and SHR-52 groups. MMP plasma activities were determined by gelatine zymography. We monitored selected parameters of oxidative stress and antioxidant status. N-terminal pro-brain natriuretic peptide (NT-proBNP) was determined as a marker of heart function and neurohumoral activation. SHR-7 showed higher MMP-2 activity compared with WKY-7, while SHR-52 showed lower MMP-2 and MMP-9 activities compared with WKY-52. Examining age-dependent changes in MMP activities, we found a decrease in MMP-2 activity and increase in MMP-9 activity with increasing age in both phenotypes. Parameters of oxidative stress and antioxidant status as well as NT-proBNP levels were not significantly worsened due to aging in SHR. Our results suggest that hypertension is accompanied by varying MMP activation during aging. The results of our study may indicate that MMP-2 inhibition is therapeutically applicable during the development of hypertension, while in developed, stabilized and uncomplicated hypertension, systemic MMP-2 and MMP-9 inhibition may not be desirable.
Collapse
Affiliation(s)
- Marta Kollarova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (M.K.); (M.B.)
| | - Angelika Puzserova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia; (A.P.); (P.B.)
| | - Peter Balis
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia; (A.P.); (P.B.)
| | - Dominika Radosinska
- Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia;
| | - Lubomira Tothova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia;
| | - Monika Bartekova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (M.K.); (M.B.)
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovakia;
| | - Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovakia;
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (M.K.); (M.B.)
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovakia;
| |
Collapse
|
130
|
Cosarderelioglu C, Nidadavolu LS, George CJ, Oh ES, Bennett DA, Walston JD, Abadir PM. Brain Renin-Angiotensin System at the Intersect of Physical and Cognitive Frailty. Front Neurosci 2020; 14:586314. [PMID: 33117127 PMCID: PMC7561440 DOI: 10.3389/fnins.2020.586314] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
The renin–angiotensin system (RAS) was initially considered to be part of the endocrine system regulating water and electrolyte balance, systemic vascular resistance, blood pressure, and cardiovascular homeostasis. It was later discovered that intracrine and local forms of RAS exist in the brain apart from the endocrine RAS. This brain-specific RAS plays essential roles in brain homeostasis by acting mainly through four angiotensin receptor subtypes; AT1R, AT2R, MasR, and AT4R. These receptors have opposing effects; AT1R promotes vasoconstriction, proliferation, inflammation, and oxidative stress while AT2R and MasR counteract the effects of AT1R. AT4R is critical for dopamine and acetylcholine release and mediates learning and memory consolidation. Consequently, aging-associated dysregulation of the angiotensin receptor subtypes may lead to adverse clinical outcomes such as Alzheimer’s disease and frailty via excessive oxidative stress, neuroinflammation, endothelial dysfunction, microglial polarization, and alterations in neurotransmitter secretion. In this article, we review the brain RAS from this standpoint. After discussing the functions of individual brain RAS components and their intracellular and intracranial locations, we focus on the relationships among brain RAS, aging, frailty, and specific neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and vascular cognitive impairment, through oxidative stress, neuroinflammation, and vascular dysfunction. Finally, we discuss the effects of RAS-modulating drugs on the brain RAS and their use in novel treatment approaches.
Collapse
Affiliation(s)
- Caglar Cosarderelioglu
- Division of Geriatrics, Department of Internal Medicine, Ankara University School of Medicine, Ankara, Turkey.,Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lolita S Nidadavolu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Claudene J George
- Division of Geriatrics, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Esther S Oh
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter M Abadir
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
131
|
Uzor NE, Scheihing DM, Kim GS, Moruno-Manchon JF, Zhu L, Reynolds CR, Stephenson JM, Holmes A, McCullough LD, Tsvetkov AS. Aging lowers PEX5 levels in cortical neurons in male and female mouse brains. Mol Cell Neurosci 2020; 107:103536. [PMID: 32777345 PMCID: PMC7484460 DOI: 10.1016/j.mcn.2020.103536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 08/03/2020] [Indexed: 01/10/2023] Open
Abstract
Peroxisomes exist in nearly every cell, oxidizing fats, synthesizing lipids and maintaining redox balance. As the brain ages, multiple pathways are negatively affected, but it is currently unknown if peroxisomal proteins are affected by aging in the brain. While recent studies have investigated a PEX5 homolog in aging C. elegans models and found that it is reduced in aging, it is unclear if PEX5, a mammalian peroxisomal protein that plays a role in peroxisomal homeostasis and degradation, is affected in the aging brain. To answer this question, we first determined the amount of PEX5, in brain homogenates from young (3 months) and aged (26 through 32+ months of age) wild-type mice of both sexes. PEX5 protein was decreased in aged male brains, but this reduction was not significant in female brains. RNAScope and real-time qPCR analyses showed that Pex5 mRNA was also reduced in aged male brain cortices, but not in females. Immunohistochemistry assays of cortical neurons in young and aged male brains showed that the amount of neuronal PEX5 was reduced in aged male brains. Cortical neurons in aged female mice also had reduced PEX5 levels in comparison to younger female mice. In conclusion, total PEX5 levels and Pex5 gene expression both decrease with age in male brains, and neuronal PEX5 levels lower in an age-dependent manner in the cortices of animals of both sexes.
Collapse
Affiliation(s)
- Ndidi-Ese Uzor
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA
| | - Diego Morales Scheihing
- Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA
| | - Gab Seok Kim
- Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA
| | - Jose Felix Moruno-Manchon
- Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA
| | - Liang Zhu
- Biostatistics and Epidemiology Research Design, University of Texas Health Science Center at Houston, Houston 77030, TX, USA
| | - Caroline R Reynolds
- Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA
| | - Jessica M Stephenson
- Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA
| | - Aleah Holmes
- Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA
| | - Louise D McCullough
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA; UTHealth Consortium on Aging, the University of Texas McGovern Medical School, Houston 77030, TX, USA
| | - Andrey S Tsvetkov
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Neurology, the University of Texas McGovern Medical School at Houston, Houston 77030, TX, USA; UTHealth Consortium on Aging, the University of Texas McGovern Medical School, Houston 77030, TX, USA.
| |
Collapse
|
132
|
Honeybush Extracts ( Cyclopia spp.) Rescue Mitochondrial Functions and Bioenergetics against Oxidative Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1948602. [PMID: 32831989 PMCID: PMC7428828 DOI: 10.1155/2020/1948602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022]
Abstract
Mitochondrial dysfunction plays a major role not only in the pathogenesis of many oxidative stress or age-related diseases such as neurodegenerative as well as mental disorders but also in normal aging. There is evidence that oxidative stress and mitochondrial dysfunction are the most upstream and common events in the pathomechanisms of neurodegeneration. Cyclopia species are endemic South African plants and some have a long tradition of use as herbal tea, known as honeybush tea. Extracts of the tea are gaining more scientific attention due to their phenolic composition. In the present study, we tested not only the in vitro mitochondria-enhancing properties of honeybush extracts under physiological conditions but also their ameliorative properties under oxidative stress situations. Hot water and ethanolic extracts of C. subternata, C. genistoides, and C. longifolia were investigated. Pretreatment of human neuroblastoma SH-SY5Y cells with honeybush extracts, at a concentration range of 0.1-1 ng/ml, had a beneficial effect on bioenergetics as it increased ATP production, respiration, and mitochondrial membrane potential (MMP) after 24 hours under physiological conditions. The aqueous extracts of C. subternata and C. genistoides, in particular, showed a protective effect by rescuing the bioenergetic and mitochondrial deficits under oxidative stress conditions (400 μM H2O2 for 3 hours). These findings indicate that honeybush extracts could constitute candidates for the prevention of oxidative stress with an impact on aging processes and age-related neurodegenerative disorders potentially leading to the development of a condition-specific nutraceutical.
Collapse
|
133
|
Gorni D, Finco A. Oxidative stress in elderly population: A prevention screening study. Aging Med (Milton) 2020; 3:205-213. [PMID: 33103041 PMCID: PMC7574639 DOI: 10.1002/agm2.12121] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Background Aging is a multifactorial phenomenon, characterized by a progressive decline in the efficiency of biochemical and physiological processes and an increased susceptibility to disease. There is increasing evidence that aging and age‐related disease are correlated with an oxidative stress (OS) condition. The latter is characterized by an imbalance between reactive species (RS), in particular reactive oxygen species (ROS) and antioxidant reserve. Objectives The aim of this study is to evaluate the two main markers of oxidative stress, plasmatic peroxide concentration (through d‐ROMs FAST test, derivates‐Reactive Oxygen Metabolites) and plasmatic antioxidant power measured by iron‐reducing power (PAT test, Plasma Antioxidant Test) in 290 apparently healthy volunteers over 60, and their possible correlation with age and gender. Materials and methods Human capillary blood samples from healthy volunteers were used in this observational study for the evaluation of the markers of OS. Results The data obtained broadly demonstrate that the majority of elderly people display an OS condition characterized by increased levels of peroxides and a slight reduction in antioxidant reserve. Conclusions Seniors have a greater propensity to develop a condition of oxidative stress, and therefore it is important to associate the monitoring of oxidative stress markers and, if necessary, antioxidant supplementation, with a healthy lifestyle.
Collapse
Affiliation(s)
- Davide Gorni
- Department of Oxidation Research Cor. Con. International Srl Parma Italy
| | - Annarosa Finco
- Department of Oxidation Research Cor. Con. International Srl Parma Italy
| |
Collapse
|
134
|
Mohajer B, Abbasi N, Mohammadi E, Khazaie H, Osorio RS, Rosenzweig I, Eickhoff CR, Zarei M, Tahmasian M, Eickhoff SB. Gray matter volume and estimated brain age gap are not linked with sleep-disordered breathing. Hum Brain Mapp 2020; 41:3034-3044. [PMID: 32239749 PMCID: PMC7336142 DOI: 10.1002/hbm.24995] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) and sleep-disordered breathing (SDB) are prevalent conditions with a rising burden. It is suggested that SDB may contribute to cognitive decline and advanced aging. Here, we assessed the link between self-reported SDB and gray matter volume in patients with AD, mild cognitive impairment (MCI) and healthy controls (HCs). We further investigated whether SDB was associated with advanced brain aging. We included a total of 330 participants, divided based on self-reported history of SDB, and matched across diagnoses for age, sex and presence of the Apolipoprotein E4 allele, from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Gray-matter volume was measured using voxel-wise morphometry and group differences in terms of SDB, cognitive status, and their interaction were assessed. Further, using an age-prediction model fitted on gray-matter data of external datasets, we predicted study participants' age from their structural images. Cognitive decline and advanced age were associated with lower gray matter volume in various regions, particularly in the bilateral temporal lobes. Brains age was well predicted from the morphological data in HCs and, as expected, elevated in MCI and particularly in AD subjects. However, there was neither a significant difference between regional gray matter volume in any diagnostic group related to the SDB status, nor in SDB-by-cognitive status interaction. Moreover, we found no difference in estimated chronological age gap related to SDB, or by-cognitive status interaction. Contrary to our hypothesis, we were not able to find a general or a diagnostic-dependent association of SDB with either gray-matter volumetric or brain aging.
Collapse
Affiliation(s)
- Bahram Mohajer
- Institute of Medical Science and Technology, Shahid Beheshti UniversityTehranIran
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Nooshin Abbasi
- McConnell Brain Imaging CentreMontreal Neurological Institute, McGill UniversityMontrealQuebecCanada
| | - Esmaeil Mohammadi
- Institute of Medical Science and Technology, Shahid Beheshti UniversityTehranIran
- Non‐Communicable Diseases Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Habibolah Khazaie
- Sleep Disorders Research CenterKermanshah University of Medical SciencesKermanshahIran
| | - Ricardo S. Osorio
- Department of Psychiatry, Center for Brain Health, NYU Langone Medical CenterNew YorkNew YorkUSA
- Nathan S. Kline Institute for Psychiatric ResearchNew YorkNew YorkUSA
| | - Ivana Rosenzweig
- Sleep Disorders CentreGuy's and St Thomas' Hospital, GSTT NHSLondonUK
- Sleep and Brain Plasticity Centre, Department of NeuroimagingIOPPN, King's College LondonLondonUK
| | - Claudia R. Eickhoff
- Institute of Neuroscience and Medicine (INM‐1; INM‐7), Research Center JülichJülichGermany
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine UniversityDüsseldorfGermany
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti UniversityTehranIran
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti UniversityTehranIran
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine (INM‐1; INM‐7), Research Center JülichJülichGermany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich‐Heine UniversityDüsseldorfGermany
| | | |
Collapse
|
135
|
Michalska P, Mayo P, Fernández-Mendívil C, Tenti G, Duarte P, Buendia I, Ramos MT, López MG, Menéndez JC, León R. Antioxidant, Anti-inflammatory and Neuroprotective Profiles of Novel 1,4-Dihydropyridine Derivatives for the Treatment of Alzheimer's Disease. Antioxidants (Basel) 2020; 9:antiox9080650. [PMID: 32708053 PMCID: PMC7463999 DOI: 10.3390/antiox9080650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease is a chronic and irreversible pathological process that has become the most prevalent neurodegenerative disease. Currently, it is considered a multifactorial disease where oxidative stress and chronic neuroinflammation play a crucial role in its onset and development. Its characteristic neuronal loss has been related to the formation of neurofibrillary tangles mainly composed by hyperphosphorylated tau protein. Hyperphosphorylation of tau protein is related to the over-activity of GSK-3β, a kinase that participates in several pathological mechanisms including neuroinflammation. Neuronal loss is also related to cytosolic Ca2+ homeostasis dysregulation that triggers apoptosis and free radicals production, contributing to oxidative damage and, finally, neuronal death. Under these premises, we have obtained a new family of 4,7-dihydro-2H-pyrazolo[3–b]pyridines as multitarget directed ligands showing potent antioxidant properties and able to scavenge both oxygen and nitrogen radical species, and also, with anti-inflammatory properties. Further characterization has demonstrated their capacity to inhibit GSK-3β and to block L-type voltage dependent calcium channels. Novel derivatives have also demonstrated an interesting neuroprotective profile on in vitro models of neurodegeneration. Finally, compound 4g revokes cellular death induced by tau hyperphosphorylation in hippocampal slices by blocking reactive oxygen species (ROS) production. In conclusion, the multitarget profile exhibited by these compounds is a novel therapeutic strategy of potential interest in the search of novel treatments for Alzheimer’s disease.
Collapse
Affiliation(s)
- Patrycja Michalska
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Paloma Mayo
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Cristina Fernández-Mendívil
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Giammarco Tenti
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (G.T.); (M.T.R.); (J.C.M.)
| | - Pablo Duarte
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Izaskun Buendia
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - María Teresa Ramos
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (G.T.); (M.T.R.); (J.C.M.)
| | - Manuela G. López
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (G.T.); (M.T.R.); (J.C.M.)
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Correspondence: ; Tel.: +34-914-972-766
| |
Collapse
|
136
|
Askari M, Abbaszadeh A, Saharkhiz M, Karbasi S, Talebpour A, Fashami AAA, Rezapour H, Hoseini ZS, Mahmoudzadeh S, Ayadilord M, Ferns GA, Bahrami A. A study of the association between cognitive abilities and dietary intake in young women. Nutr Health 2020; 26:263-270. [PMID: 32646288 DOI: 10.1177/0260106020940116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cognitive abilities comprise activities that relate to receiving and responding to information from the environment, internal processing, making complex decisions, and then responding to this in the context of behavior. AIM The current study investigated the association between dietary intake and seven aspects of cognitive abilities among healthy young women. METHODS The study was carried out among 182 women aged 18-25 years. A valid and reliable food frequency questionnaire containing 65 food items was used to estimate dietary intake. Neuropsychological function and cognitive abilities of participants were determined using standard questionnaires. RESULTS Significant differences were found in depression, anxiety, stress, physical, and mental health-related quality of life as well as daytime sleepiness for the participants in different quartiles of cognitive abilities score (p<0.05). Participants in the fourth quartile of cognitive abilities score consumed significantly higher energy, carbohydrate, protein, calcium, iron, zinc, vitamin A, thiamin, and riboflavin compared to those in the lowest quartile (p<0.05). There were strong correlations between total cognitive abilities score and dietary sodium, calcium, phosphorus, and thiamin (p<0.05). Using stepwise multiple linear regression analysis, iron and thiamin were statistically significant factors for the prediction of cognitive abilities. CONCLUSIONS These findings demonstrate that neurocognitive function is related to dietary macro and micronutrients including energy, carbohydrate, protein, calcium, iron, zinc, vitamin A, thiamin, and riboflavin on cognitive performance among young women without memory deficit.
Collapse
Affiliation(s)
- Masoumeh Askari
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Arefeh Abbaszadeh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mansoore Saharkhiz
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Samira Karbasi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Talebpour
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Hadis Rezapour
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Sara Mahmoudzadeh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Malaksima Ayadilord
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
137
|
Darzian Rostami Z, Asghari A, Jahandideh A, Mortazavi P, Akbarzadeh A. Effect of Oat (Avena Sativa L.) Extract on Experimental Sciatic Nerve Injury in Rats. ARCHIVES OF RAZI INSTITUTE 2020; 75:249-256. [PMID: 32621455 DOI: 10.22092/ari.2019.124805.1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 03/11/2019] [Indexed: 09/30/2022]
Abstract
Peripheral nerve disorders are the most common neurological problems; therefore, it is important to intervene to treat or stop the resulting side effects. This study aimed to investigate the effect of oat extract on experimental sciatic nerve injury in rats. Totally, 50 adult male rats were divided into five groups (n=10). Group 1 was exposed to sham condition, and group 2 was regarded as the control group (nerve injury without treatment). Moreover, groups 3-5 were subjected to sciatic nerve injury, and they received oral gavages of the oat extract (100, 200, and 400 mg/kg), respectively. Subsequently, 2 and 4 weeks later, the rats were euthanized for pathological evaluation of nerve repair. The results showed an increase in the formation of the perineurium and epineurium dose in the oat-treated groups (100, 200, and 400 mg/kg), compared to the control group after 2 weeks (P&lt;0.05). Furthermore, the presence of inflammatory cells in the oat extract-treated groups (100, 200, and 400 mg/kg) decreased, compared to that in the control group after 2 weeks (P&lt;0.05). In addition, the swelling of the axon significantly decreased in the oat extract-treated groups (200 and 400 mg/kg), compared to the control group (P&lt;0.05). However, the axon dose-dependently increased in oat-treated groups (100, 200, and 400 mg/kg), compared to that in the control group after 4 weeks (P&lt;0.05). These results suggest that oat extract has positive effects on sciatic nerve repair in rats.
Collapse
Affiliation(s)
- Z Darzian Rostami
- Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - A Asghari
- Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - A Jahandideh
- Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - P Mortazavi
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - A Akbarzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Universal Scientific Education and Research Network, Tabriz, Iran
| |
Collapse
|
138
|
Singh T, Yadav S. Role of microRNAs in neurodegeneration induced by environmental neurotoxicants and aging. Ageing Res Rev 2020; 60:101068. [PMID: 32283224 DOI: 10.1016/j.arr.2020.101068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
The progressive loss of neuronal structure and functions resulting in the death of neurons is considered as neurodegeneration. Environmental toxicants induced degeneration of neurons is accelerated with aging. In adult brains, most of the neurons are post-mitotic, and their loss results in the development of diseases like amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). Neurodegenerative diseases have several similarities at the sub-cellular and molecular levels, such as synaptic degeneration, oxidative stress, inflammation, and cognitive decline, which are also known in brain aging. Identification of these similarities at the molecular level offers hope for the development of new therapeutics to ameliorate all neurodegenerative diseases simultaneously. Aging is known as the most strongly associated additive factor in the pathogenesis of neurodegenerative diseases. Studies carried out so far identified several genes, which are responsible for selective degeneration of neurons in different neurodegenerative diseases. Countless efforts have been made in identifying therapeutics for neurodegenerative diseases; however, the discovery of effective therapy remains elusive. Findings made in the last two decades identified microRNAs (miRNAs) as the most potent post-transcription regulatory RNA molecule, which can condition protein levels in the cell and tissue-specific manner. Identification of miRNAs, which regulate both neurotoxicant and aging-associated degeneration of brain cells, raises the possibility that roads leading to aging and neurotoxicant induced neurodegeneration cross at some point. Identification of miRNAs, which are common to aging and neurotoxicant induced neurodegeneration, will help in understanding the complex mechanism of neurodegenerative disease development. In the future, the use of natural miRNAs in vivo in therapy will be able to tackle several issues of aging and neurodegeneration. In the present review, we have provided a summary of findings made on the role of miRNAs in neurodegeneration and explored the common link made by miRNAs between aging and neurotoxicants induced neurodegeneration.
Collapse
Affiliation(s)
- Tanisha Singh
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Neurological Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, Pennsylvania-15213, USA.
| | - Sanjay Yadav
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, Munsiganj, Raebareli 229405, UP, India.
| |
Collapse
|
139
|
Kostyuk AI, Kokova AD, Podgorny OV, Kelmanson IV, Fetisova ES, Belousov VV, Bilan DS. Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants (Basel) 2020; 9:E516. [PMID: 32545356 PMCID: PMC7346190 DOI: 10.3390/antiox9060516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia is characterized by low oxygen content in the tissues. The central nervous system (CNS) is highly vulnerable to a lack of oxygen. Prolonged hypoxia leads to the death of brain cells, which underlies the development of many pathological conditions. Despite the relevance of the topic, different approaches used to study the molecular mechanisms of hypoxia have many limitations. One promising lead is the use of various genetically encoded tools that allow for the observation of intracellular parameters in living systems. In the first part of this review, we provide the classification of oxygen/hypoxia reporters as well as describe other genetically encoded reporters for various metabolic and redox parameters that could be implemented in hypoxia studies. In the second part, we discuss the advantages and disadvantages of the primary hypoxia model systems and highlight inspiring examples of research in which these experimental settings were combined with genetically encoded reporters.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
140
|
Chang CC, Li HH, Tsou SH, Hung HC, Liu GY, Korolenko TA, Lai TJ, Ho YJ, Lin CL. The Pluripotency Factor Nanog Protects against Neuronal Amyloid β-Induced Toxicity and Oxidative Stress through Insulin Sensitivity Restoration. Cells 2020; 9:cells9061339. [PMID: 32471175 PMCID: PMC7348813 DOI: 10.3390/cells9061339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022] Open
Abstract
Amyloid β (Aβ) is a peptide fragment of the amyloid precursor protein that triggers the progression of Alzheimer's Disease (AD). It is believed that Aβ contributes to neurodegeneration in several ways, including mitochondria dysfunction, oxidative stress and brain insulin resistance. Therefore, protecting neurons from Aβ-induced neurotoxicity is an effective strategy for attenuating AD pathogenesis. Recently, applications of stem cell-based therapies have demonstrated the ability to reduce the progression and outcome of neurodegenerative diseases. Particularly, Nanog is recognized as a stem cell-related pluripotency factor that enhances self-renewing capacities and helps reduce the senescent phenotypes of aged neuronal cells. However, whether the upregulation of Nanog can be an effective approach to alleviate Aβ-induced neurotoxicity and senescence is not yet understood. In the present study, we transiently overexpressed Nanog-both in vitro and in vivo-and investigated the protective effects and underlying mechanisms against Aβ. We found that overexpression of Nanog is responsible for attenuating Aβ-triggered neuronal insulin resistance, which restores cell survival through reducing intracellular mitochondrial superoxide accumulation and cellular senescence. In addition, upregulation of Nanog expression appears to increase secretion of neurotrophic factors through activation of the Nrf2 antioxidant defense pathway. Furthermore, improvement of memory and learning were also observed in rat model of Aβ neurotoxicity mediated by upregulation of Nanog in the brain. Taken together, our study suggests a potential role for Nanog in attenuating the neurotoxic effects of Aβ, which in turn, suggests that strategies to enhance Nanog expression may be used as a novel intervention for reducing Aβ neurotoxicity in the AD brain.
Collapse
Affiliation(s)
- Ching-Chi Chang
- Institute of Medicine, Chung Shan Medical University, Taichung 402367, Taiwan; (C.-C.C.); (H.-H.L.); (S.-H.T.); (G.-Y.L.); (T.-J.L.)
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung 402367, Taiwan
| | - Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung 402367, Taiwan; (C.-C.C.); (H.-H.L.); (S.-H.T.); (G.-Y.L.); (T.-J.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402367, Taiwan
| | - Sing-Hua Tsou
- Institute of Medicine, Chung Shan Medical University, Taichung 402367, Taiwan; (C.-C.C.); (H.-H.L.); (S.-H.T.); (G.-Y.L.); (T.-J.L.)
| | - Hui-Chih Hung
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402204, Taiwan;
| | - Guang-Yaw Liu
- Institute of Medicine, Chung Shan Medical University, Taichung 402367, Taiwan; (C.-C.C.); (H.-H.L.); (S.-H.T.); (G.-Y.L.); (T.-J.L.)
| | - Tatiana A. Korolenko
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk 630117, Russia;
| | - Te-Jen Lai
- Institute of Medicine, Chung Shan Medical University, Taichung 402367, Taiwan; (C.-C.C.); (H.-H.L.); (S.-H.T.); (G.-Y.L.); (T.-J.L.)
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung 402367, Taiwan
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University, Taichung 402367, Taiwan
- Correspondence: (Y.-J.H.); (C.-L.L.); Tel.: +886-4-2473-0022-11673 (Y.-J.H.); +886-4-2473-0022-11690 (C.-L.L.)
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402367, Taiwan; (C.-C.C.); (H.-H.L.); (S.-H.T.); (G.-Y.L.); (T.-J.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402367, Taiwan
- Correspondence: (Y.-J.H.); (C.-L.L.); Tel.: +886-4-2473-0022-11673 (Y.-J.H.); +886-4-2473-0022-11690 (C.-L.L.)
| |
Collapse
|
141
|
Warraich UEA, Hussain F, Kayani HUR. Aging - Oxidative stress, antioxidants and computational modeling. Heliyon 2020; 6:e04107. [PMID: 32509998 PMCID: PMC7264715 DOI: 10.1016/j.heliyon.2020.e04107] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
Aging is a degenerative, biological, time-dependent, universally conserved process thus designed as one of the highest known risk factors for morbidity and mortality. Every individual has its own aging mechanisms as both environmental conditions (75%) and genetics (25%) account for aging. Several theories have been proposed until now but not even a single theory solves this mystery. There are still some queries un-answered to the scientific community regarding mechanisms behind aging. However, oxidative stress theory (OST) is considered one of the famous theories that sees mitochondria as one of the leading organelles which largely contribute to the aging process. Many reactive oxygen species (ROS) are produced endogenously and exogenously that are associated with aging. But the mitochondrial ROS contribute largely to the aging process as mitochondrial dysfunction due to oxidative stress is considered one of the contributors toward aging. Although ROS is known to damage cell machinery, new evidence suggests their role in signal transduction to regulate biological and physiological processes. Moreover, besides mitochondria, other important cell organelles such as peroxisome and endoplasmic reticulum also produce ROS that contribute to aging. However, nature has provided humans with free radical scavengers called antioxidants that protect from harmful effects of ROS. Future predictions regarding aging, biochemical mechanisms involved, biomarkers internal and external factors can be easily done with machine learning algorithms and other computational models. This review explains important aspects of aging, the contribution of ROS producing organelles in aging, importance of antioxidants fighting against ROS, different computational models developed to understand the complexities of the aging.
Collapse
Affiliation(s)
- Umm-e-Ammara Warraich
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Fatma Hussain
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
142
|
Kandlur A, Satyamoorthy K, Gangadharan G. Oxidative Stress in Cognitive and Epigenetic Aging: A Retrospective Glance. Front Mol Neurosci 2020; 13:41. [PMID: 32256315 PMCID: PMC7093495 DOI: 10.3389/fnmol.2020.00041] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
Brain aging is the critical and common factor among several neurodegenerative disorders and dementia. Cellular, biochemical and molecular studies have shown intimate links between oxidative stress and cognitive dysfunction during aging and age-associated neuronal diseases. Brain aging is accompanied by oxidative damage of nuclear as well as mitochondrial DNA, and diminished repair. Recent studies have reported epigenetic alterations during aging of the brain which involves reactive oxygen species (ROS) that regulates various systems through distinct mechanisms. However, there are studies which depict differing roles of reactive oxidant species as a major factor during aging. In this review, we describe the evidence to show how oxidative stress is intricately linked to age-associated cognitive decline. The review will primarily focus on implications of age-associated oxidative damage on learning and memory, and the cellular events, with special emphasis on associated epigenetic machinery. A comprehensive understanding of these mechanisms may provide a perspective on the development of potential therapeutic targets within the oxidative system.
Collapse
Affiliation(s)
| | | | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
143
|
Sala-Vila A, Valls-Pedret C, Rajaram S, Coll-Padrós N, Cofán M, Serra-Mir M, Pérez-Heras AM, Roth I, Freitas-Simoes TM, Doménech M, Calvo C, López-Illamola A, Bitok E, Buxton NK, Huey L, Arechiga A, Oda K, Lee GJ, Corella D, Vaqué-Alcázar L, Sala-Llonch R, Bartrés-Faz D, Sabaté J, Ros E. Effect of a 2-year diet intervention with walnuts on cognitive decline. The Walnuts And Healthy Aging (WAHA) study: a randomized controlled trial. Am J Clin Nutr 2020; 111:590-600. [PMID: 31912155 DOI: 10.1093/ajcn/nqz328] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Walnut consumption counteracts oxidative stress and inflammation, 2 drivers of cognitive decline. Clinical data concerning effects on cognition are lacking. OBJECTIVES The Walnuts And Healthy Aging study is a 2-center (Barcelona, Spain; Loma Linda, CA) randomized controlled trial examining the cognitive effects of a 2-y walnut intervention in cognitively healthy elders. METHODS We randomly allocated 708 free-living elders (63-79 y, 68% women) to a diet enriched with walnuts at ∼15% energy (30-60 g/d) or a control diet (abstention from walnuts). We administered a comprehensive neurocognitive test battery at baseline and 2 y. Change in the global cognition composite was the primary outcome. We performed repeated structural and functional brain MRI in 108 Barcelona participants. RESULTS A total of 636 participants completed the intervention. Besides differences in nutrient intake, participants from Barcelona smoked more, were less educated, and had lower baseline neuropsychological test scores than those from Loma Linda. Walnuts were well tolerated and compliance was good. Modified intention-to-treat analyses (n = 657) uncovered no between-group differences in the global cognitive composite, with mean changes of -0.072 (95% CI: -0.100, -0.043) in the walnut diet group and -0.086 (95% CI: -0.115, -0.057) in the control diet group (P = 0.491). Post hoc analyses revealed significant differences in the Barcelona cohort, with unadjusted changes of -0.037 (95% CI: -0.077, 0.002) in the walnut group and -0.097 (95% CI: -0.137, -0.057) in controls (P = 0.040). Results of brain fMRI in a subset of Barcelona participants indicated greater functional network recruitment in a working memory task in controls. CONCLUSIONS Walnut supplementation for 2 y had no effect on cognition in healthy elders. However, brain fMRI and post hoc analyses by site suggest that walnuts might delay cognitive decline in subgroups at higher risk. These encouraging but inconclusive results warrant further investigation, particularly targeting disadvantaged populations, in whom greatest benefit could be expected.This trial was registered at clinicaltrials.gov as NCT01634841.
Collapse
Affiliation(s)
- Aleix Sala-Vila
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain.,Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Cinta Valls-Pedret
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Nina Coll-Padrós
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Montserrat Cofán
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| | - Mercè Serra-Mir
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana M Pérez-Heras
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Irene Roth
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Tania M Freitas-Simoes
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mónica Doménech
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carlos Calvo
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| | - Anna López-Illamola
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Edward Bitok
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Natalie K Buxton
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Lynnley Huey
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Adam Arechiga
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, USA
| | - Keiji Oda
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Grace J Lee
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, USA
| | - Dolores Corella
- CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain.,Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, Spain
| | - Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Roser Sala-Llonch
- Department of Biomedicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Joan Sabaté
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
144
|
Abstract
This study aimed to evaluate the risk of dementia after distal radius, hip, and spine fractures.Data from the Korean National Health Insurance Service-National Sample Cohort were collected for the population ≥ 60 years of age from 2002 to 2013. A total of 10,387 individuals with dementia were matched for age, sex, income, region of residence, and history of hypertension, diabetes, and dyslipidemia with 41,548 individuals comprising the control group. Previous histories of distal radius, hip, and spine fractures were evaluated in both the dementia and control groups. Using ICD-10 codes, dementia (G30 and F00) and distal radius (S525), hip (S720, S721, and S722), and spine (S220 and S320) fractures were investigated. The crude and adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of dementia in distal radius, hip, and spine fracture patients were analyzed using conditional logistic regression analyses. Subgroup analyses were conducted according to age, sex and region of residence.The adjusted ORs for dementia were higher in the distal radius, hip, and spine fracture group than in the non-fracture group (adjusted OR = 1.23, 95% CI = 1.10 -1.37, P < .001 for distal radius fracture; adjusted OR = 1.64, 95% CI = 1.48 - 1.83, P < .001 for hip fracture; adjusted OR = 1.31, 95% CI = 1.22 - 1.41, P < .001 for spine fracture). The results in subgroup analyses according to age, sex and region of residence were consistent.Distal radius, hip, and spine fractures increase the risk of dementia.
Collapse
Affiliation(s)
- So Young Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA Bundang Medical Center, CHA University
| | - Joon Kyu Lee
- Department of Orthopaedic Surgery, Hallym University Sacred Heart Hospital
| | - Jae-Sung Lim
- Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Bumjung Park
- Department of Otorhinolaryngology-Head & Neck Surgery
| | - Hyo Geun Choi
- Department of Otorhinolaryngology-Head & Neck Surgery
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang, Republic of Korea
| |
Collapse
|
145
|
Butterfield DA, Mattson MP. Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer's disease. Neurobiol Dis 2020; 138:104795. [PMID: 32036033 DOI: 10.1016/j.nbd.2020.104795] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/26/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
Inheritance of apolipoprotein E4 (APOE4) is a major risk factor for development of Alzheimer's disease (AD). This lipoprotein, in contrast to apoE2, has arginine residues at positions 112 and 158 in place of cysteines in the latter isoform. In apoE3, the Cys at residue 158 is replaced by an arginine residue. This differential amino acid composition of the three genotypes of APOE have profound influence on the structure, binding properties, and multiple functions of this lipoprotein. Moreover, AD brain is under a high degree of oxidative stress, including that associated with amyloid β-peptide (Aβ) oligomers. Lipid peroxidation produces the highly reactive and neurotoxic molecule, 4-hydroxynonenal (HNE) that forms covalent bonds with cysteine residues (Cys) [as well as with Lys and His residues]. Covalently modified Cys significantly alter structure and function of modified proteins. HNE bound to Cys residue(s) on apoE2 and apoE3 lessens the chance of HNE damage other proteins. apoE4, lacking Cys residues, is unable to scavenge HNE, permitting this latter neurotoxic molecule to lead to oxidative modification of neuronal proteins and eventual cell death. We posit that this lack of HNE scavenging activity in apoE4 significantly contributes to the association of APOE4 inheritance and increased risk of developing AD. Apoe knock-out mice provide insights into the role of this lipoprotein in oxidative stress. Targeted replacement mice in which the mouse gene of Apoe is separately replaced by the human APOE2, APOE3, or APOE4 genes, while keeping the mouse promoter assures the correct location and amount of the human protein isoform. Human APOE targeted replacement mice have been used to investigate the notion that oxidative damage to and death of neurons in AD and its earlier stages is related to APOE genotype. This current paper reviews the intersection of human APOE genotype, oxidative stress, and diminished function of this lipoprotein as a major contributing risk factor for development of AD. Discussion of potential therapeutic strategies to mitigate against the elevated risk of developing AD with inheritance of the APOE4 allele also is presented.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
146
|
Salvatore T, Pafundi PC, Morgillo F, Di Liello R, Galiero R, Nevola R, Marfella R, Monaco L, Rinaldi L, Adinolfi LE, Sasso FC. Metformin: An old drug against old age and associated morbidities. Diabetes Res Clin Pract 2020; 160:108025. [PMID: 31954752 DOI: 10.1016/j.diabres.2020.108025] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 12/26/2022]
Abstract
Metformin represents a striking example of a "historical nemesis" of a drug. About 40 years after its marketing in Europe, once demonstrated its efficacy and safety, metformin was registered also in the U.S. A few years later, it has become a mainstay in T2DM treatment, according to all international Scientific Societies guidelines. Today, despite the advent of new innovative drugs, metformin still persists as a first-choice drug in T2DM. This success is largely justified. In fact, over the years, also positive effects on health increased. In particular, evidence has been accumulated on a beneficial impact against many other aging-related morbidities (obesity, metabolic syndrome, cardiovascular disease, cancer, cognitive decline and mortality). This literature review describes preclinical and clinical evidence favoring the "anti-aging" therapeutic potential of metformin outside of T2DM. The rationale to the use of metformin as part of a combined therapy in a variety of clinical settings, allowing for a reduction of the chemotherapy dose in cancer patients, has also been discussed. In particular, the focus was on metformin action on RAS/RAF/MAPK pathway. In the end, the real challenge for metformin could be to fully demonstrate beneficial effects on health even in non-diabetic subjects.
Collapse
Affiliation(s)
- Teresa Salvatore
- Unit of Internal Medicine, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Pansini, 5, 80131 Naples, Italy.
| | - Pia Clara Pafundi
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Floriana Morgillo
- Division of Medical Oncology, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Pansini, 5, 80131 Naples, Italy.
| | - Raimondo Di Liello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Pansini, 5, 80131 Naples, Italy.
| | - Raffaele Galiero
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Riccardo Nevola
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Raffaele Marfella
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Lucio Monaco
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Luca Rinaldi
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Luigi Elio Adinolfi
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Ferdinando Carlo Sasso
- Unit of Internal Medicine, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| |
Collapse
|
147
|
|
148
|
Birla H, Minocha T, Kumar G, Misra A, Singh SK. Role of Oxidative Stress and Metal Toxicity in the Progression of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:552-562. [PMID: 31969104 PMCID: PMC7457422 DOI: 10.2174/1570159x18666200122122512] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/18/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is one of the life-threatening neurodegenerative disorders in the elderly (>60 years) and incurable across the globe to date. AD is caused by the involvement of various genetic, environmental and lifestyle factors that affect neuronal cells to degenerate over the period of time. The oxidative stress is engaged in the pathogenesis of various disorders and its key role is also linked to the etiology of AD. AD is attributed by neuronal loss, abnormal accumulation of Amyloid-β (Aβ) and neurofibrillary tangles (NFTs) with severe memory impairments and other cognitive dysfunctions which lead to the loss of synapses and neuronal death and eventual demise of the individual. Increased production of reactive oxygen species (ROS), loss of mitochondrial function, altered metal homeostasis, aberrant accumulation of senile plaque and mitigated antioxidant defense mechanism all are indulged in the progression of AD. In spite of recent advances in biomedical research, the underlying mechanism of disruption of redox balance and the actual source of oxidative stress is still obscure. This review highlights the generation of ROS through different mechanisms, the role of some important metals in the progression of AD and free radical scavenging by endogenous molecule and supplementation of nutrients in AD.
Collapse
Affiliation(s)
| | | | | | | | - Sandeep Kumar Singh
- Address correspondence to this author at the Indian Scientific Education and Technology Foundation, Lucknow-226002, India;E-mails: ;
| |
Collapse
|
149
|
Rizvi QM. Analysis of human brain by magnetic resonance imaging using content-based image retrieval. Int J Health Sci (Qassim) 2020; 14:3-9. [PMID: 32206054 PMCID: PMC7069661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Content-based image retrieval (CBIR) is the most suitable and alternative method for older text searches that use keywords. This article aims to improve feature extraction as well as matching techniques designed for more accurate and precise CBIR systems, especially for brain scan images associated with various brain diseases and abnormalities. Tests should be described at an appropriate success rate. METHODS Various methods of producing medical images are discussed, and examples of biological applications are given. The discussion emphasizes as an introduction to CBIR the new method of echo-planar imaging, which is fully described. We have done here many methods related to digital image processing and we had developed a code for retrieving everything automatically. This application has been developed in Matlab software. RESULTS Testing the correctness and effectiveness of the system evolved becomes more important when the system is going to be used in real-time and more when it is for humankind, i.e., medical diagnosis. Nowadays, our science and technology areas as develop as we can say that we have such advanced medical equipment so that our thought and program can be capable that it is giving us useful results. Determining if whether the two images are identical or not, it depends on the point of view of the person. CONCLUSIONS In this paper, the outcome of feature extraction and matching by setting cutoff limit and threshold is pretty promising. Further studies can be done apart from computed tomography scans for a more generalized CBIR system.
Collapse
Affiliation(s)
- Qaim Mehdi Rizvi
- Department of Computer Science, Deanship of Educational Services, Qassim University, Al-Qassim, Kingdom of Saudi Arabia,
Address for correspondence: Dr. Qaim Mehdi Rizvi, Department of Computer Science, Deanship of Educational Services, Qassim University, Al-Qassim, Kingdom of Saudi Arabia. E-mail:
| |
Collapse
|
150
|
Luo J, Mills K, le Cessie S, Noordam R, van Heemst D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res Rev 2020; 57:100982. [PMID: 31733333 DOI: 10.1016/j.arr.2019.100982] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Among other mechanisms, oxidative stress has been postulated to play an important role in the rate of ageing. Oxidative damage contributes to the hallmarks of ageing and essential components in pathological pathways which are thought to drive multiple age-related diseases. Nonetheless, results from studies testing the hypothesis of oxidative stress in ageing and diseases showed controversial results. While observational studies mainly found detrimental effects of high oxidative stress levels on disease status, randomized clinical trials examining the effect of antioxidant supplementation on disease status generally showed null effects. However, re-evaluations of these counterinitiative observations are required considering the lack of reliability and specificity of traditionally used biomarkers for measuring oxidative stress. To facilitate these re-evaluations, this review summarizes the basic knowledge of oxidative stress and the present findings regarding the role of oxidative damage in ageing and age-related diseases. Meanwhile, two approaches are highlighted, namely proper participants selection, together with the development of reliable biomarkers. We propose that oxidized vitamin E metabolites may be used to accurately monitor individual functional antioxidant level, which might serve as promising key solutions for future elucidating the impact of oxidative stress on ageing and age-related diseases.
Collapse
|