101
|
Wu S, Ma S, Zhang C, Cao G, Wu D, Gao C, Lakshmanan S. Cryogel biocomposite containing chitosan-gelatin/cerium-zinc doped hydroxyapatite for bone tissue engineering. Saudi J Biol Sci 2020; 27:2638-2644. [PMID: 32994722 PMCID: PMC7499119 DOI: 10.1016/j.sjbs.2020.05.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
The present examination includes manufacture and portrayal of cryogel bio-composite implants containing chitosan-gelatin (CS-GT), cerium–zinc doped hydroxyapatite (CS-GT/Ce-Zn-HA) by cryogelation technique. The prepared cryogel biocomposites (CS-GT/HA and CS-GT/Ce-Zn-HA) were described by scanning electron microscope (SEM) and X-Ray diffraction (XRD) contemplates. The expansion of Ce-Zn in the CS-GT implants essentially expanded growing, diminished swelling, expanded protein sorption, and expanded bactericidal movement. The CS-GT/Ce-Zn-HA biocomposite had non-toxic towards rodent osteoblast cells. So the created CS-GT/Ce-Zn-HA biocomposite has favorable and potential applications over the CS-GT/HA platforms for bone tissue engineering.
Collapse
Affiliation(s)
- Shiqing Wu
- Department of Spinal Surgery, The Second Hospital of Shandong University, No.247 Beiyuan Road, Tianqiao District, Jinan City, Shandong Province 250033, China
| | - Shengzhong Ma
- Department of Spinal Surgery, The Second Hospital of Shandong University, No.247 Beiyuan Road, Tianqiao District, Jinan City, Shandong Province 250033, China
| | - Cheng Zhang
- Department of Spinal Surgery, The Second Hospital of Shandong University, No.247 Beiyuan Road, Tianqiao District, Jinan City, Shandong Province 250033, China
| | - Guangqing Cao
- Department of Spinal Surgery, The Second Hospital of Shandong University, No.247 Beiyuan Road, Tianqiao District, Jinan City, Shandong Province 250033, China
| | - Dongjin Wu
- Department of Spinal Surgery, The Second Hospital of Shandong University, No.247 Beiyuan Road, Tianqiao District, Jinan City, Shandong Province 250033, China
| | - Chunzheng Gao
- Department of Spinal Surgery, The Second Hospital of Shandong University, No.247 Beiyuan Road, Tianqiao District, Jinan City, Shandong Province 250033, China
| | | |
Collapse
|
102
|
He Z, Liu G, Ma X, Yang D, Li Q, Li N. Comparison of small-diameter decellularized scaffolds from the aorta and carotid artery of pigs. Int J Artif Organs 2020; 44:350-360. [PMID: 32988264 DOI: 10.1177/0391398820959350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIM Tissue-specific extracellular matrix promotes tissue regeneration and repair. We aimed to identify the optimal decellularized matrices for tissue-engineered vascular graft (TEVG). METHODS Decellularized aorta of fetal pigs (DAFP, n = 6, group A), decellularized aorta of adult pigs (DAAP, n = 6, group B), and decellularized carotid artery of adult pigs (DCAP, n = 6, group C) were prepared. Scaffolds were compared using histology and ultrastructure. Endothelial cell (EC) and myofibroblast (MFB) infiltration assessments were performed in vitro. Cell infiltration was measured in vivo. Biomechanical properties were also determined. RESULTS Almost original cells were removed by the acellularization procedure, while the construction of the matrix basically remained. In vitro, monolayer ECs and multi-layer MFBs were formed onto the internal surface of the specimens after 3 weeks. In vivo, cell infiltration in group A significantly increased at the 6th and 8th week when compared with groups B and C (p < 0.01). The infiltrated cells were mainly MFBs and a few CD4+ T-lymphocytes/macrophages in the specimens. Groups A and B showed greater axial compliance than group C (p < 0.01). CONCLUSION DAFP was the most suitable for use as a small-caliber vascular graft.
Collapse
Affiliation(s)
- Zhijuan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guofeng Liu
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xu Ma
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Daping Yang
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingchun Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
103
|
Shaik TA, Alfonso-García A, Zhou X, Arnold KM, Haudenschild AK, Krafft C, Griffiths LG, Popp J, Marcu L. FLIm-Guided Raman Imaging to Study Cross-Linking and Calcification of Bovine Pericardium. Anal Chem 2020; 92:10659-10667. [PMID: 32598134 PMCID: PMC7539574 DOI: 10.1021/acs.analchem.0c01772] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bovine pericardium (BP) is a vascular biomaterial used in cardiovascular surgery that is typically cross-linked for masking antigenicity and enhance stability. There is a need for biochemical evaluation of the tissue properties prior to implantation to ensure that quality and reliability standards are met. Here, engineered antigen removed BP (ARBP) that was cross-linked with 0.2% and 0.6% glutaraldehyde (GA), and further calcified in vitro to simulate graft calcifications upon implantation was characterized nondestructively using fluorescence lifetime imaging (FLIm) to identify regions of interest which were then assessed by Raman spectroscopy. We observed that the tissue fluorescence lifetime shortened, and that Raman bands at 856, 935, 1282, and 1682 cm-1 decreased, and at 1032 and 1627 cm-1 increased with increasing GA cross-linking. Independent classification analysis based on fluorescence lifetime and on Raman spectra discriminated between GA-ARBP and untreated ARBP with an accuracy of 91% and 66%, respectively. Pearson's correlation analysis showed a strong correlation between pyridinium cross-links measured with high-performance liquid chromatography and fluorescence lifetime measured at 380-400 nm (R = -0.76, p = 0.00094), as well as Raman bands at 856 cm-1 for hydroxy-proline (R = -0.68, p = 0.0056) and at 1032 cm-1 for hydroxy-pyridinium (R = 0.74, p = 0.0016). Calcified areas of GA cross-linked tissue showed characteristic hydroxyapatite (959 and 1038 cm-1) bands in the Raman spectrum and fluorescence lifetime shortened by 0.4 ns compared to uncalcified regions. FLIm-guided Raman imaging could rapidly identify degrees of cross-linking and detected calcified regions with high chemical specificity, an ability that can be used to monitor tissue engineering processes for applications in regenerative medicine.
Collapse
Affiliation(s)
- Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology Jena e.V., Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Alba Alfonso-García
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Xiangnan Zhou
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Katherine M Arnold
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Anne K Haudenschild
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology Jena e.V., Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Leigh G Griffiths
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology Jena e.V., Albert-Einstein-Strasse 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Laura Marcu
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
104
|
Ding X, Chen Y, Chao CA, Wu Y, Wang Y. Control the Mechanical Properties and Degradation of Poly(Glycerol Sebacate) by Substitution of the Hydroxyl Groups with Palmitates. Macromol Biosci 2020; 20:e2000101. [DOI: 10.1002/mabi.202000101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/12/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Xiaochu Ding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University 277 Kimball Hall 134 Hollister Drive Ithaca NY 14853 USA
| | - Ying Chen
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University 277 Kimball Hall 134 Hollister Drive Ithaca NY 14853 USA
| | - Corson Andrew Chao
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University 277 Kimball Hall 134 Hollister Drive Ithaca NY 14853 USA
| | - Yen‐Lin Wu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University 277 Kimball Hall 134 Hollister Drive Ithaca NY 14853 USA
| | - Yadong Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University 277 Kimball Hall 134 Hollister Drive Ithaca NY 14853 USA
| |
Collapse
|
105
|
Mahara A, Li M, Ohya Y, Yamaoka T. Small-Diameter Synthetic Vascular Graft Immobilized with the REDV Peptide Reduces Early-Stage Fibrin Clot Deposition and Results in Graft Patency in Rats. Biomacromolecules 2020; 21:3092-3101. [DOI: 10.1021/acs.biomac.0c00457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shim-machi, Suita, Osaka 5645-8565, Japan
| | - Minglun Li
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shim-machi, Suita, Osaka 5645-8565, Japan
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka 565-8680, Japan
| | - Yuichi Ohya
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka 565-8680, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shim-machi, Suita, Osaka 5645-8565, Japan
| |
Collapse
|
106
|
Kimicata M, Allbritton-King JD, Navarro J, Santoro M, Inoue T, Hibino N, Fisher JP. Assessment of decellularized pericardial extracellular matrix and poly(propylene fumarate) biohybrid for small-diameter vascular graft applications. Acta Biomater 2020; 110:68-81. [PMID: 32305447 PMCID: PMC7294167 DOI: 10.1016/j.actbio.2020.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/05/2023]
Abstract
Autologous grafts are the current gold standard of care for coronary artery bypass graft surgeries, but are limited by availability and plagued by high failure rates. Similarly, tissue engineering approaches to small diameter vascular grafts using naturally derived and synthetic materials fall short, largely due to inappropriate mechanical properties. Alternatively, decellularized extracellular matrix from tissue is biocompatible and has comparable strength to vessels, while poly(propylene fumarate) (PPF) has shown promising results for vascular grafts. This study investigates the integration of decellularized pericardial extracellular matrix (dECM) and PPF to create a biohybrid scaffold (dECM+PPF) suitable for use as a small diameter vascular graft. Our method to decellularize the ECM was efficient at removing DNA content and donor variability, while preserving protein composition. PPF was characterized and added to dECM, where it acted to preserve dECM against degradative effects of collagenase without disturbing the material's overall mechanics. A transport study showed that diffusion occurs across dECM+PPF without any effect from collagenase. The modulus of dECM+PPF matched that of human coronary arteries and saphenous veins. dECM+PPF demonstrated ample circumferential stress, burst pressure, and suture retention strength to survive in vivo. An in vivo study showed re-endothelialization and tissue growth. Overall, the dECM+PPF biohybrid presents a robust solution to overcome the limitations of the current methods of treatment for small diameter vascular grafts. STATEMENT OF SIGNIFICANCE: In creating a dECM+PPF biohybrid graft, we have observed phenomena that will have a lasting impact within the scientific community. First, we found that we can reduce donor variability through decellularization, a unique use of the decellularization process. Additionally, we coupled a natural material with a synthetic polymer to capitalize on the benefits of each: the cues provided to cells and the ability to easily tune material properties, respectively. This principle can be applied to other materials in a variety of applications. Finally, we created an off-the-shelf alternative to autologous grafts with a newly developed material that has yet to be utilized in any scaffolds. Furthermore, bovine pericardium has not been investigated as a small diameter vascular graft.
Collapse
Affiliation(s)
- Megan Kimicata
- Department of Materials Science and Engineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Jules D Allbritton-King
- Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Javier Navarro
- Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Marco Santoro
- Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Takahiro Inoue
- Department of Surgery, Division of Cardiac Surgery, Johns Hopkins University, 1800 Orleans St, Baltimore, MD, 21287; Department of Surgery, Section of Cardiac Surgery, The University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, United States
| | - Narutoshi Hibino
- Department of Surgery, Division of Cardiac Surgery, Johns Hopkins University, 1800 Orleans St, Baltimore, MD, 21287; Department of Surgery, Section of Cardiac Surgery, The University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, United States
| | - John P Fisher
- Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States.
| |
Collapse
|
107
|
Baganha F, de Jong A, Jukema JW, Quax PHA, de Vries MR. The Role of Immunomodulation in Vein Graft Remodeling and Failure. J Cardiovasc Transl Res 2020; 14:100-109. [PMID: 32542547 PMCID: PMC7892738 DOI: 10.1007/s12265-020-10001-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Obstructive arterial disease is a major cause of morbidity and mortality in the developed world. Venous bypass graft surgery is one of the most frequently used revascularization strategies despite its considerable short and long time failure rate. Due to vessel wall remodeling, inflammation, intimal hyperplasia, and accelerated atherosclerosis, vein grafts may (ultimately) fail to revascularize tissues downstream to occlusive atherosclerotic lesions. In the past decades, little has changed in the prevention of vein graft failure (VGF) although new insights in the role of innate and adaptive immunity in VGF have emerged. In this review, we discuss the pathophysiological mechanisms underlying the development of VGF, emphasizing the role of immune response and associated factors related to VG remodeling and failure. Moreover, we discuss potential therapeutic options that can improve patency based on data from both preclinical studies and the latest clinical trials. This review contributes to the insights in the role of immunomodulation in vein graft failure in humans. We describe the effects of immune cells and related factors in early (thrombosis), intermediate (inward remodeling and intimal hyperplasia), and late (intimal hyperplasia and accelerated atherosclerosis) failure based on both preclinical (mouse) models and clinical data.
Collapse
Affiliation(s)
- Fabiana Baganha
- Department of Vascular Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, Aberdeen University, Aberdeen, UK
| | - Alwin de Jong
- Department of Vascular Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Margreet R de Vries
- Department of Vascular Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
108
|
Van de Walle AB, McFetridge PS. Flow with variable pulse frequencies accelerates vascular recellularization and remodeling of a human bioscaffold. J Biomed Mater Res A 2020; 109:92-103. [PMID: 32441862 DOI: 10.1002/jbm.a.37009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 11/07/2022]
Abstract
Despite significant advances in vascular tissue engineering, the ideal graft has not yet been developed and autologous vessels remain the gold standard substitutes for small diameter bypass procedures. Here, we explore the use of a flow field with variable pulse frequencies over the regeneration of an ex vivo-derived human scaffold as vascular graft. Briefly, human umbilical veins were decellularized and used as scaffold for cellular repopulation with human smooth muscle cells (SMC) and endothelial cells (EC). Over graft development, the variable flow, which mimics the real-time cardiac output of an individual performing daily activities (e.g., resting vs. exercising), was implemented and compared to the commonly used constant pulse frequency. Results show marked differences on SMC and EC function, with changes at the molecular level reflecting on tissue scales. First, variable frequencies significantly increased SMC proliferation rate and glycosaminoglycan production. These results can be tied with the SMC gene expression that indicates a synthetic phenotype, with a significant downregulation of myosin heavy chain. Additionally and quite remarkably, the variable flow frequencies motivated the re-endothelialization of the grafts, with a quiescent-like structure observed after 10 days of conditioning, contrasting with the low surface coverage and unaligned EC observed under constant frequency (CF). Besides, the overall biomechanics of the generated grafts (conditioned with both pulsed and CFs) evidence a significant remodeling after 55 days of culture, depicted by high burst pressure and Young's modulus. These last results demonstrate the positive recellularization and remodeling of a human-derived scaffold toward an arterial vessel.
Collapse
Affiliation(s)
- Aurore B Van de Walle
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA.,Laboratoire Matière et Systèmes, Complexes MSC, UMR 7057, CNRS, University Paris Diderot, Paris Cedex 13, France
| | - Peter S McFetridge
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
109
|
Černochová P, Blahová L, Medalová J, Nečas D, Michlíček M, Kaushik P, Přibyl J, Bartošíková J, Manakhov A, Bačáková L, Zajíčková L. Cell type specific adhesion to surfaces functionalised by amine plasma polymers. Sci Rep 2020; 10:9357. [PMID: 32518261 PMCID: PMC7283471 DOI: 10.1038/s41598-020-65889-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023] Open
Abstract
Our previously-obtained impressive results of highly increased C2C12 mouse myoblast adhesion to amine plasma polymers (PPs) motivated current detailed studies of cell resistance to trypsinization, cell proliferation, motility, and the rate of attachment carried out for fibroblasts (LF), keratinocytes (HaCaT), rat vascular smooth muscle cells (VSMC), and endothelial cells (HUVEC, HSVEC, and CPAE) on three different amine PPs. We demonstrated the striking difference in the resistance to trypsin treatment between endothelial and non-endothelial cells. The increased resistance observed for the non-endothelial cell types was accompanied by an increased rate of cellular attachment, even though spontaneous migration was comparable to the control, i.e., to the standard cultivation surface. As demonstrated on LF fibroblasts, the resistance to trypsin was similar in serum-supplemented and serum-free media, i.e., medium without cell adhesion-mediating proteins. The increased cell adhesion was also confirmed for LF cells by an independent technique, single-cell force spectroscopy. This method, as well as the cell attachment rate, proved the difference among the plasma polymers with different amounts of amine groups, but other investigated techniques could not reveal the differences in the cell behaviour on different amine PPs. Based on all the results, the increased resistance to trypsinization of C2C12, LF, HaCaT, and VSMC cells on amine PPs can be explained most probably by a non-specific cell adhesion such as electrostatic interaction between the cells and amine groups on the material surface, rather than by the receptor-mediated adhesion through serum-derived proteins adsorbed on the PPs.
Collapse
Affiliation(s)
- P Černochová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - L Blahová
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - J Medalová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - D Nečas
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Central European Institute of Technology - CEITEC, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
| | - M Michlíček
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - P Kaushik
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - J Přibyl
- Core Facility Nanobiotechnology, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - J Bartošíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - A Manakhov
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Research Institute of Clinical and Experimental Lymphology- Branch of the ICG SB RAS, 2 Timakova str., 630060, Novosibirsk, Russian Federation
| | - L Bačáková
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 142 20, Czech Republic
| | - L Zajíčková
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic. .,Central European Institute of Technology - CEITEC, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic. .,Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic.
| |
Collapse
|
110
|
In situ synthesized TiO 2-polyurethane nanocomposite for bypass graft application: In vitro endothelialization and degradation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111043. [PMID: 32993998 DOI: 10.1016/j.msec.2020.111043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/04/2020] [Accepted: 04/30/2020] [Indexed: 12/23/2022]
Abstract
The in vitro endothelial response of human umbilical vein endothelial cells was investigated on a poly (caprolactone)-based polyurethane surface vs an in situ TiO2-polyurethane nanocomposite surface, which has been produced as scaffolds for artificial vascular graft. The in situ synthesis of TiO2 nanoparticles in polyurethane provided surface properties that facilitated cellular adhesion, cell sensing, cell probing and especially cell migration. Cells on the nanocomposite surface have elongated morphology and were able to produce more extracellular matrix. All of these advantages led to an increase in the rate of endothelialization of the nanocomposite scaffold surface vs pure polyurethane. The presence of TiO2 nanoparticles with very good distribution in polyurethane increased the degradability of the scaffolds by increasing the phase separation and hydrophilicity in the nanocomposite film. The results showed that the degradation mechanism of nanocomposite films prompted the interconnectivity of spaces inside structures that probably could give extra chances to improve migration and proliferation of cells, as well as, the delivery of nutrients and metabolites inside the pores of the scaffold. The outcomes revealed that the rate of endothelialization of the nanocomposite scaffold after 7 days of in vitro cell culture was 1.5 times and the rate of degradation of the nanocomposite film was 2 times after 8 weeks of immersion scaffolds in PBS compared to the polyurethane scaffolds. In addition, the nanocomposite scaffold possessed good mechanical properties. Despite its high modulus, it was flexible with a 500% elongation at break.
Collapse
|
111
|
Jeong HJ, Nam H, Jang J, Lee SJ. 3D Bioprinting Strategies for the Regeneration of Functional Tubular Tissues and Organs. Bioengineering (Basel) 2020; 7:E32. [PMID: 32244491 PMCID: PMC7357036 DOI: 10.3390/bioengineering7020032] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023] Open
Abstract
It is difficult to fabricate tubular-shaped tissues and organs (e.g., trachea, blood vessel, and esophagus tissue) with traditional biofabrication techniques (e.g., electrospinning, cell-sheet engineering, and mold-casting) because these have complicated multiple processes. In addition, the tubular-shaped tissues and organs have their own design with target-specific mechanical and biological properties. Therefore, the customized geometrical and physiological environment is required as one of the most critical factors for functional tissue regeneration. 3D bioprinting technology has been receiving attention for the fabrication of patient-tailored and complex-shaped free-form architecture with high reproducibility and versatility. Printable biocomposite inks that can facilitate to build tissue constructs with polymeric frameworks and biochemical microenvironmental cues are also being actively developed for the reconstruction of functional tissue. In this review, we delineated the state-of-the-art of 3D bioprinting techniques specifically for tubular tissue and organ regeneration. In addition, this review described biocomposite inks, such as natural and synthetic polymers. Several described engineering approaches using 3D bioprinting techniques and biocomposite inks may offer beneficial characteristics for the physiological mimicry of human tubular tissues and organs.
Collapse
Affiliation(s)
- Hun-Jin Jeong
- Department of Mechanical Engineering, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea;
| | - Hyoryung Nam
- Department of Creative IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea;
| | - Jinah Jang
- Department of Creative IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea;
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Institute of Convergence Science, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seung-Jae Lee
- Department of Mechanical Engineering, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea;
- Department of Mechanical and Design Engineering, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea
| |
Collapse
|
112
|
Mallis P, Papapanagiotou A, Katsimpoulas M, Kostakis A, Siasos G, Kassi E, Stavropoulos-Giokas C, Michalopoulos E. Efficient differentiation of vascular smooth muscle cells from Wharton’s Jelly mesenchymal stromal cells using human platelet lysate: A potential cell source for small blood vessel engineering. World J Stem Cells 2020; 12:203-221. [PMID: 32266052 PMCID: PMC7118289 DOI: 10.4252/wjsc.v12.i3.203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/17/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The development of fully functional small diameter vascular grafts requires both a properly defined vessel conduit and tissue-specific cellular populations. Mesenchymal stromal cells (MSCs) derived from the Wharton’s Jelly (WJ) tissue can be used as a source for obtaining vascular smooth muscle cells (VSMCs), while the human umbilical arteries (hUAs) can serve as a scaffold for blood vessel engineering.
AIM To develop VSMCs from WJ-MSCs utilizing umbilical cord blood platelet lysate.
METHODS WJ-MSCs were isolated and expanded until passage (P) 4. WJ-MSCs were properly defined according to the criteria of the International Society for Cell and Gene Therapy. Then, these cells were differentiated into VSMCs with the use of platelet lysate from umbilical cord blood in combination with ascorbic acid, followed by evaluation at the gene and protein levels. Specifically, gene expression profile analysis of VSMCs for ACTA2, MYH11, TGLN, MYOCD, SOX9, NANOG homeobox, OCT4 and GAPDH, was performed. In addition, immunofluorescence against ACTA2 and MYH11 in combination with DAPI staining was also performed in VSMCs. HUAs were decellularized and served as scaffolds for possible repopulation by VSMCs. Histological and biochemical analyses were performed in repopulated hUAs.
RESULTS WJ-MSCs exhibited fibroblastic morphology, successfully differentiating into “osteocytes”, “adipocytes” and “chondrocytes”, and were characterized by positive expression (> 90%) of CD90, CD73 and CD105. In addition, WJ-MSCs were successfully differentiated into VSMCs with the proposed differentiation protocol. VSMCs successfully expressed ACTA2, MYH11, MYOCD, TGLN and SOX9. Immunofluorescence results indicated the expression of ACTA2 and MYH11 in VSMCs. In order to determine the functionality of VSMCs, hUAs were isolated and decellularized. Based on histological analysis, decellularized hUAs were free of any cellular or nuclear materials, while their extracellular matrix retained intact. Then, repopulation of decellularized hUAs with VSMCs was performed for 3 wk. Decellularized hUAs were repopulated efficiently by the VSMCs. Biochemical analysis revealed the increase of total hydroyproline and sGAG contents in repopulated hUAs with VSMCs. Specifically, total hydroxyproline and sGAG content after the 1st, 2nd and 3rd wk was 71 ± 10, 74 ± 9 and 86 ± 8 μg hydroxyproline/mg of dry tissue weight and 2 ± 1, 3 ± 1 and 3 ± 1 μg sGAG/mg of dry tissue weight, respectively. Statistically significant differences were observed between all study groups (P < 0.05).
CONCLUSION VSMCs were successfully obtained from WJ-MSCs with the proposed differentiation protocol. Furthermore, hUAs were efficiently repopulated by VSMCs. Differentiated VSMCs from WJ-MSCs could provide an alternative source of cells for vascular tissue engineering.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Aggeliki Papapanagiotou
- Department of Biological Chemistry, Medical School, National and Kapodistrian Univesity of Athens, Athens 15772, Greece
| | - Michalis Katsimpoulas
- Center of Experimental Surgery, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Alkiviadis Kostakis
- Center of Experimental Surgery, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Gerasimos Siasos
- Department of Biological Chemistry, Medical School, National and Kapodistrian Univesity of Athens, Athens 15772, Greece
- First Department of Cardiology, “Hippokration” Hospital, University of Athens Medical School, Athens 15231, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian Univesity of Athens, Athens 15772, Greece
- First Department of Internal Medicine, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | | | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| |
Collapse
|
113
|
Labarrere CA, Dabiri AE, Kassab GS. Thrombogenic and Inflammatory Reactions to Biomaterials in Medical Devices. Front Bioeng Biotechnol 2020; 8:123. [PMID: 32226783 PMCID: PMC7080654 DOI: 10.3389/fbioe.2020.00123] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Blood-contacting medical devices of different biomaterials are often used to treat various cardiovascular diseases. Thrombus formation is a common cause of failure of cardiovascular devices. Currently, there are no clinically available biomaterials that can totally inhibit thrombosis under the more challenging environments (e.g., low flow in the venous system). Although some biomaterials reduce protein adsorption or cell adhesion, the issue of biomaterial associated with thrombosis and inflammation still exists. To better understand how to develop more thrombosis-resistant medical devices, it is essential to understand the biology and mechano-transduction of thrombus nucleation and progression. In this review, we will compare the mechanisms of thrombus development and progression in the arterial and venous systems. We will address various aspects of thrombosis, starting with biology of thrombosis, mathematical modeling to integrate the mechanism of thrombosis, and thrombus formation on medical devices. Prevention of these problems requires a multifaceted approach that involves more effective and safer thrombolytic agents but more importantly the development of novel thrombosis-resistant biomaterials mimicking the biological characteristics of the endothelium and extracellular matrix tissues that also ameliorate the development and the progression of chronic inflammation as part of the processes associated with the detrimental generation of late thrombosis and neo-atherosclerosis. Until such developments occur, engineers and clinicians must work together to develop devices that require minimal anticoagulants and thrombolytics to mitigate thrombosis and inflammation without causing serious bleeding side effects.
Collapse
Affiliation(s)
| | - Ali E Dabiri
- California Medical Innovations Institute, San Diego, CA, United States
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
114
|
Li J, Cai Z, Cheng J, Wang C, Fang Z, Xiao Y, Feng ZG, Gu Y. Characterization of a heparinized decellularized scaffold and its effects on mechanical and structural properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:999-1023. [PMID: 32138617 DOI: 10.1080/09205063.2020.1736741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Decellularization is a promising approach in tissue engineering to generate small-diameter blood vessels. However, some challenges still exist. We performed two decellularization phases to develop an optimal decellularized scaffold and analyze the relationship between the extracellular matrix (ECM) composition and mechanical properties. In decellularization phase I, we tested sodium dodecylsulfate (SDS), Triton X-100 (TX100) and trypsin at different concentrations and exposure times. In decellularization phase II, we systematically compared five combined decellularization protocols based on the results of phase I to identify the optimal method. These protocols tested cell removal, ECM preservation, mechanical properties, and residual cytotoxicity. We further immobilized heparin to optimal decellularized scaffolds and determined its anticoagulant activity and mechanical properties. The combined decellularization protocol comprising treatment with 0.5% SDS followed by 1% TX100 could completely remove the cellular contents and preserve the mechanical properties and ECM architecture better. In addition, the heparinized decellularized scaffolds not only had sustained anticoagulant activity, but also similar mechanical properties to native vessels. In conclusion, heparinized decellularized scaffolds represent a promising direction for small-diameter vascular grafts, although further in vivo studies are needed.
Collapse
Affiliation(s)
- Ji Li
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiwen Cai
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jin Cheng
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiping Fang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
115
|
Wang D, Xu Y, Li Q, Turng LS. Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. J Mater Chem B 2020; 8:1801-1822. [PMID: 32048689 PMCID: PMC7155776 DOI: 10.1039/c9tb01849b] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases, especially ones involving narrowed or blocked blood vessels with diameters smaller than 6 millimeters, are the leading cause of death globally. Vascular grafts have been used in bypass surgery to replace damaged native blood vessels for treating severe cardio- and peripheral vascular diseases. However, autologous replacement grafts are not often available due to prior harvesting or the patient's health. Furthermore, autologous harvesting causes secondary injury to the patient at the harvest site. Therefore, artificial blood vessels have been widely investigated in the last several decades. In this review, the progress and potential outlook of small-diameter blood vessels (SDBVs) engineered in vitro are highlighted and summarized, including material selection and development, fabrication techniques, surface modification, mechanical properties, and bioactive functionalities. Several kinds of natural and synthetic polymers for artificial SDBVs are presented here. Commonly used fabrication techniques, such as extrusion and expansion, electrospinning, thermally induced phase separation (TIPS), braiding, 3D printing, hydrogel tubing, gas foaming, and a combination of these methods, are analyzed and compared. Different surface modification methods, such as physical immobilization, surface adsorption, plasma treatment, and chemical immobilization, are investigated and are compared here as well. Mechanical requirements of SDBVs are also reviewed for long-term service. In vitro biological functions of artificial blood vessels, including oxygen consumption, nitric oxide (NO) production, shear stress response, leukocyte adhesion, and anticoagulation, are also discussed. Finally, we draw conclusions regarding current challenges and attempts to identify future directions for the optimal combination of materials, fabrication methods, surface modifications, and biofunctionalities. We hope that this review can assist with the design, fabrication, and application of SDBVs engineered in vitro and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Dongfang Wang
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA and School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yiyang Xu
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
116
|
Joshi A, Xu Z, Ikegami Y, Yamane S, Tsurashima M, Ijima H. Co-culture of mesenchymal stem cells and human umbilical vein endothelial cells on heparinized polycaprolactone/gelatin co-spun nanofibers for improved endothelium remodeling. Int J Biol Macromol 2020; 151:186-192. [PMID: 32070734 DOI: 10.1016/j.ijbiomac.2020.02.163] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022]
Abstract
Endothelization of a tissue-engineered substrate is important for its application as an artificial vascular graft. Despite recent advancements in artificial graft fabrication, a graft of <5 mm is difficult to fabricate owing to insufficient endothelization that results in thrombosis after transplantation. We aimed to perform a co-culture of adipose-derived mesenchymal stem cells (MSCs) with human umbilical vein endothelial cells (HUVECs) on antithrombogenic polycaprolactone (PCL)/heparin-gelatin co-spun nanofibers to evaluate the role of co-culturing in promoting quick endothelization of vascular substrates without surface modification by growth factors or other ECM proteins that trigger the endothelization process. Using a co-axial electrospinning technique, we attempted to fabricate our scaffold balancing between mechanical properties and biocompatibility. Antithrombogenic characteristics were then imparted to the fabricated nanofiber substrate by grafting of heparin. Finally, we performed a co-culture of MSCs and HUVECs on the fabricated co-spun nanofiber substrate to obtain proper endothelization of our material under the in-vitro culture. Staining for CD-31 at seven days of culture revealed enhanced CD-31 expression under the co-culture condition; actin staining revealed healthy cobblestone HUVEC morphology, suggesting that MSCs can aid in proper endothelization. Hence, we conclude that co-culture is effective for quick endothelization of vascular substrates.
Collapse
Affiliation(s)
- Akshat Joshi
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Zhe Xu
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Yasuhiro Ikegami
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Soichiro Yamane
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Masanori Tsurashima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
117
|
Zhang X, Simmons CA, Paul Santerre J. Paracrine signalling from monocytes enables desirable extracellular matrix accumulation and temporally appropriate phenotype of vascular smooth muscle cell-like cells derived from adipose stromal cells. Acta Biomater 2020; 103:129-141. [PMID: 31821896 DOI: 10.1016/j.actbio.2019.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
In vascular tissue engineering, the ability to obtain a robust and safe vascular tissue cell source (e.g. vascular smooth muscle cells (VSMCs)) and to promote vascular tissue-specific extracellular matrix (ECM) protein production is critically important. Mature blood vessel-derived VSMCs are not practical for in vitro vascular tissue regeneration. The authors have conceived a strategy to differentiate adipose derived stromal cells (ASCs) into VSMC-like cells (ASC-VSMCs) that were similar to mature umbilical artery VSMCs at the transcriptional, protein and contraction function levels. Monocytes/macrophages are known as important regulators of the inflammation and regeneration processes within different tissue types of the body. However, our understanding of the potential interactions between specific tissue-like cells differentiated from stem/stromal cells (e.g. ASC-VSMCs) and monocytes/macrophages (cued by specific biomaterial scaffolds) is still limited. In this study, indirect and direct ASC-VSMC-monocyte co-cultures were constructed within a porous polyurethane scaffold (D-PHI) previously shown to have an immunomodulatory character. The effects of monocytes/macrophages on the cellularity (cell number detected with DNA quantification assay), ECM (glycosaminoglycan (GAG), collagen, and elastin) accumulation as well as the maintenance of contractile VSMC markers (calponin and smoothelin) of the ASC-VSMCs after a month of co-culture were investigated. It was found that monocyte paracrine signalling in D-PHI positively affected the cellularity and ECM accumulation of ASC-VSMCs in co-culture. Cause-effect relationships were also identified between the release of pro-inflammatory/anti-inflammatory factors (i.e. IL6, TGF-β1) in co-culture and the expression of contractile proteins (calponin and smoothelin) by ASC-VSMCs. This study demonstrated the importance of combining an immune cell strategy with stromal cell derived VSMCs (i.e. ASC-VSMCs) to achieve a practical vascular tissue engineering outcome. STATEMENT OF SIGNIFICANCE: Adipose stromal cell derived-vascular smooth muscle cells (ASC-VSMCs) are a promising cell source for vascular tissue engineering. Monocytes/monocyte derived macrophages can be harnessed as an immune-assisted strategy to promote vascular tissue regeneration. This study demonstrated that the co-culture of human ASC-VSMCs with monocytes significantly enhanced the cellularity and extracellular matrix (ECM) accumulation within anionic polyurethane (D-PHI) scaffolds, partially mediated by monocyte paracrine signalling mechanisms. In addition, specific VSMC contractile markers (calponin and smoothelin) were still present in ASC-VSMCs when the cells were exposed to monocytes for a month in vitro. This study corroborated the potential selection of ASC-VSMCs for in vitro engineering of vascular tissue in an immunomodulatory biomaterial scaffold (e.g. D-PHI) based co-culture system containing monocytes.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, 661 University Avenue, 14th floor, room 1435, Toronto, Ontario M5G 1M1, Canada
| | - Craig A Simmons
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada; Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, 661 University Avenue, 14th floor, room 1435, Toronto, Ontario M5G 1M1, Canada
| | - J Paul Santerre
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, 661 University Avenue, 14th floor, room 1435, Toronto, Ontario M5G 1M1, Canada.
| |
Collapse
|
118
|
Yang L, Li X, Wang D, Mu S, Lv W, Hao Y, Lu X, Zhang G, Nan W, Chen H, Xie L, Zhang Y, Dong Y, Zhang Q, Zhao L. Improved mechanical properties by modifying fibrin scaffold with PCL and its biocompatibility evaluation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:658-678. [PMID: 31903857 DOI: 10.1080/09205063.2019.1710370] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lei Yang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Xiafei Li
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Dongmei Wang
- The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Songfeng Mu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Wenhao Lv
- First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Yongwei Hao
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xiaosheng Lu
- Department of Orthopaedics, People’s Hospital of Baise, Baise, China
| | | | - Wenbin Nan
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Hongli Chen
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Liqin Xie
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yongjun Zhang
- First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Yuzhen Dong
- First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Qiqing Zhang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Liang Zhao
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
119
|
Abdulghani S, Mitchell GR. Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules 2019; 9:E750. [PMID: 31752393 PMCID: PMC6920773 DOI: 10.3390/biom9110750] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.
Collapse
Affiliation(s)
- Saba Abdulghani
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-080 Marinha Grande, Portugal;
| | | |
Collapse
|
120
|
Abstract
This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.
Collapse
|
121
|
Yuan H, Chen C, Liu Y, Lu T, Wu Z. Strategies in cell‐free tissue‐engineered vascular grafts. J Biomed Mater Res A 2019; 108:426-445. [PMID: 31657523 DOI: 10.1002/jbm.a.36825] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Haoyong Yuan
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Chunyang Chen
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Yuhong Liu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Ting Lu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Zhongshi Wu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| |
Collapse
|
122
|
Janani G, Kumar M, Chouhan D, Moses JC, Gangrade A, Bhattacharjee S, Mandal BB. Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 2:5460-5491. [DOI: 10.1021/acsabm.9b00576] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
123
|
Abdollahi S, Boktor J, Hibino N. Bioprinting of freestanding vascular grafts and the regulatory considerations for additively manufactured vascular prostheses. Transl Res 2019; 211:123-138. [PMID: 31201778 PMCID: PMC6702084 DOI: 10.1016/j.trsl.2019.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/31/2022]
Abstract
Vasculature is the network of blood vessels of an organ or body part that allow for the exchange of nutrients and waste to and from every cell, thus establishing a circulatory equilibrium. Vascular health is at risk from a variety of conditions that includes disease and trauma. In some cases, medical therapy can alleviate the impacts of the condition. Intervention is needed in other instances to restore the health of abnormal vasculature. The main approaches to treat vascular conditions are endovascular procedures and open vascular reconstruction that often requires a graft to accomplish. However, current vascular prostheses have limitations that include size mismatch with the native vessel, risk of immunogenicity from allografts and xenografts, and unavailability of autografts. In this review, we discuss efforts in bioprinting, an emerging method for vascular reconstruction. This includes an overview of 3D printing processes and materials, graft characterization strategies and the regulatory aspects to consider for the commercialization of 3D bioprinted vascular prostheses.
Collapse
Affiliation(s)
- Sara Abdollahi
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Joseph Boktor
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland; Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Narutoshi Hibino
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland.
| |
Collapse
|
124
|
Abstract
Tissue-engineered vascular grafts (TEVGs) are considered one of the most effective means of fabricating vascular grafts. However, for small-diameter TEVGs, there are ongoing issues regarding long-term patency and limitations related to long-term in vitro culture and immune reactions. The use of acellular TEVG is a more convincing method, which can achieve in situ blood vessel regeneration and better meet clinical needs. This review focuses on the current state of acellular TEVGs based on scaffolds and gives a summary of the methodologies and in vitro/in vivo test results related to acellular TEVGs obtained in recent years. Various strategies for improving the properties of acellular TEVGs are also discussed.
Collapse
|
125
|
Boyd R, Parisi F, Kalfa D. State of the Art: Tissue Engineering in Congenital Heart Surgery. Semin Thorac Cardiovasc Surg 2019; 31:807-817. [PMID: 31176798 DOI: 10.1053/j.semtcvs.2019.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 12/17/2022]
Abstract
Congenital heart disease is the leading cause of death secondary to congenital abnormalities in the United States and the incidence has increased significantly over the last 50 years. For those defects requiring surgical repair, bioprosthetic xenografts, allografts, and synthetic materials have traditionally been used. However, none of these modalities offer the potential for growth and accommodation within the pediatric population. Tissue engineering has been an area of great interest in a variety of cardiac applications as an innovative solution to create a product that can grow and regenerate within the body over time. Over the last 30 years, the original tissue engineering paradigm of a scaffold seeded with cells and cultured in a bioreactor has been expanded upon to include innovative methods of decellularization and production of "off-the-shelf" tissue-engineered products capable of in situ host cell repopulation. Despite progress in conceptual design and promising clinical results, widespread use of tissue-engineered products remains limited due to both regulatory and ongoing scientific challenges. Here, we describe the current state of the art with regards to in vitro, in vivo, and in situ tissue engineering as applicable within the field of congenital heart surgery and provide a brief overview of challenges and future directions.
Collapse
Affiliation(s)
- Rebekah Boyd
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York
| | - Frank Parisi
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York
| | - David Kalfa
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York.
| |
Collapse
|
126
|
Development of In Vitro Bioengineered Vascular Grafts for Microsurgery and Vascular Surgery Applications. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2264. [PMID: 31333980 PMCID: PMC6571351 DOI: 10.1097/gox.0000000000002264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022]
Abstract
Introduction The use of vascular grafts is continuing to rise due to the increasing prevalence of coronary artery bypass grafting and microvascular flap-based tissue reconstructions. The current options of using native vessels (saphenous vein) or the synthetic grafts (Dacron) have been unable to manage current needs. In this study, we employed an original tissue engineering approach to develop a multi-layered vascular graft that has the potential to address some of the limitations of the existing grafts. Materials and Methods Biomaterials, gelatin and fibrin, were used to develop a two-layered vascular graft. The graft was seeded with endothelial cells and imaged using confocal microscopy. The graft's architecture and its mechanical properties were also characterized using histology, Scanning Electron Microscopy and rheological studies. Results Our methodology resulted in the development of a vascular graft with precise spatial localization of the two layers. The endothelial cells fully covered the lumen of the developed vascular graft, thus providing a non-thrombogenic surface. The elastic modulus of the biomaterials employed in this graft was found to be 5.186 KPa, paralleling that of internal mammary artery. The burst pressure of this graft was also measured and was found close to that of the saphenous vein (~2000 mm Hg). Conclusions We were successfully able to employ a unique method to synthesize a multi-layered vascularized graft having adequate biological and mechanical properties. Studies are ongoing involving implantation of this developed vascular graft in the rat femoral artery and characterization of parameters such as vascular remodeling and patency.
Collapse
|
127
|
Brakenhielm E, Richard V. Therapeutic vascular growth in the heart. VASCULAR BIOLOGY 2019; 1:H9-H15. [PMID: 32923948 PMCID: PMC7439849 DOI: 10.1530/vb-19-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 12/03/2022]
Abstract
Despite tremendous efforts in preclinical research over the last decades, the clinical translation of therapeutic angiogenesis to grow stable and functional blood vessels in patients with ischemic diseases continues to prove challenging. In this mini review, we briefly present the current main approaches applied to improve pro-angiogenic therapies. Specific examples from research on therapeutic cardiac angiogenesis and arteriogenesis will be discussed, and finally some suggestions for future therapeutic developments will be presented.
Collapse
Affiliation(s)
- Ebba Brakenhielm
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France
| | - Vincent Richard
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France
| |
Collapse
|