101
|
Khoenkhoen S, Ádori M, Pedersen GK, Karlsson Hedestam GB. Flow Cytometry-Based Protocols for the Analysis of Human Plasma Cell Differentiation. Front Immunol 2020; 11:571321. [PMID: 33133085 PMCID: PMC7550473 DOI: 10.3389/fimmu.2020.571321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/28/2020] [Indexed: 12/02/2022] Open
Abstract
Humoral immunity is established after differentiation of antigen-specific B cells into plasma cells (PCs) that produce antibodies of relevant specificities. Defects in the development, activation, or differentiation of B cells severely compromises the immune response. Primary immunodeficiencies are often characterized by hypogammaglobulinemia and the inability to mount effective antigen-specific antibody responses, resulting in increased susceptibility to infections. After IgA deficiency, which is most often asymptomatic, common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency, but in most cases the underlying genetic causes are unknown or their roles in disease pathogenesis are poorly understood. In this study, we developed a protocol for in vitro stimulation of primary human B cells for subsequent analyses of PC differentiation and antibody production. With this approach, we were able to detect a population of CD38+ IRF4+ Blimp-1+ cells committed to PC fate and IgG production, including when starting from cryopreserved samples. The application of functional assays to characterize PC differentiation and possible defects therein in B cells from patients suffering from primary antibody deficiencies with late B cell defects could increase our understanding of the disease pathophysiology and underlying mechanisms.
Collapse
Affiliation(s)
- Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
102
|
Hartley GE, Edwards ESJ, Bosco JJ, Ojaimi S, Stirling RG, Cameron PU, Flanagan K, Plebanski M, Hogarth PM, O'Hehir RE, van Zelm MC. Influenza-specific IgG1 + memory B-cell numbers increase upon booster vaccination in healthy adults but not in patients with predominantly antibody deficiency. Clin Transl Immunology 2020; 9:e1199. [PMID: 33088507 PMCID: PMC7563650 DOI: 10.1002/cti2.1199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Background Annual influenza vaccination is recommended to all individuals over 6 months of age, including predominantly antibody deficiency (PAD) patients. Vaccination responses are typically evaluated by serology, and because PAD patients are by definition impaired in generating IgG and receive immunoglobulin replacement therapy (IgRT), it remains unclear whether they can mount an antigen-specific response. Objective To quantify and characterise the antigen-specific memory B (Bmem) cell compartment in healthy controls and PAD patients following an influenza booster vaccination. Methods Recombinant hemagglutinin (HA) from the A/Michigan/2015 H1N1 (AM15) strain with an AviTag was generated in a mammalian cell line, and following targeted biotinylation, was tetramerised with BUV395 or BUV737 streptavidin conjugates. Multicolour flow cytometry was applied on blood samples before and 28 days after booster influenza vaccination in 16 healthy controls and five PAD patients with circulating Bmem cells. Results Recombinant HA tetramers were specifically recognised by 0.5-1% of B cells in previously vaccinated healthy adults. HA-specific Bmem cell numbers were significantly increased following booster vaccination and predominantly expressed IgG1. Similarly, PAD patients carried HA-specific Bmem cells, predominantly expressing IgG1. However, these numbers were lower than in controls and did not increase following booster vaccination. Conclusion We have successfully identified AM15-specific Bmem cells in healthy controls and PAD patients. The presence of antigen-specific Bmem cells could offer an additional diagnostic tool to aid in the clinical diagnosis of PAD. Furthermore, alterations in the number or immunophenotype of HA-specific Bmem cells post-booster vaccination could assist in the evaluation of immune responses in individuals receiving IgRT.
Collapse
Affiliation(s)
- Gemma E Hartley
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia
| | - Emily S J Edwards
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Alfred Hospital Monash University and Allergy, Asthma and Clinical Immunology Service Melbourne VIC Australia
| | - Samar Ojaimi
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Infectious Diseases Monash Health Clayton VIC Australia.,Immunology Laboratory Monash Pathology Clayton VIC Australia.,Allergy and Immunology Monash Health Clayton VIC Australia
| | - Robert G Stirling
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Alfred Hospital Monash University and Allergy, Asthma and Clinical Immunology Service Melbourne VIC Australia
| | - Paul U Cameron
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Alfred Hospital Monash University and Allergy, Asthma and Clinical Immunology Service Melbourne VIC Australia
| | - Katie Flanagan
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,School of Medicine University of Tasmania Launceston TAS Australia.,School of Health and Biomedical Sciences RMIT Bundoora VIC Australia
| | | | - Philip Mark Hogarth
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,Immune Therapies Group Burnet Institute Melbourne VIC Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Alfred Hospital Monash University and Allergy, Asthma and Clinical Immunology Service Melbourne VIC Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies Melbourne VIC Australia.,Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Alfred Hospital Monash University and Allergy, Asthma and Clinical Immunology Service Melbourne VIC Australia
| |
Collapse
|
103
|
Lorenzini T, Fliegauf M, Klammer N, Frede N, Proietti M, Bulashevska A, Camacho-Ordonez N, Varjosalo M, Kinnunen M, de Vries E, van der Meer JWM, Ameratunga R, Roifman CM, Schejter YD, Kobbe R, Hautala T, Atschekzei F, Schmidt RE, Schröder C, Stepensky P, Shadur B, Pedroza LA, van der Flier M, Martínez-Gallo M, Gonzalez-Granado LI, Allende LM, Shcherbina A, Kuzmenko N, Zakharova V, Neves JF, Svec P, Fischer U, Ip W, Bartsch O, Barış S, Klein C, Geha R, Chou J, Alosaimi M, Weintraub L, Boztug K, Hirschmugl T, Dos Santos Vilela MM, Holzinger D, Seidl M, Lougaris V, Plebani A, Alsina L, Piquer-Gibert M, Deyà-Martínez A, Slade CA, Aghamohammadi A, Abolhassani H, Hammarström L, Kuismin O, Helminen M, Allen HL, Thaventhiran JE, Freeman AF, Cook M, Bakhtiar S, Christiansen M, Cunningham-Rundles C, Patel NC, Rae W, Niehues T, Brauer N, Syrjänen J, Seppänen MRJ, Burns SO, Tuijnenburg P, Kuijpers TW, Warnatz K, Grimbacher B. Characterization of the clinical and immunologic phenotype and management of 157 individuals with 56 distinct heterozygous NFKB1 mutations. J Allergy Clin Immunol 2020; 146:901-911. [PMID: 32278790 PMCID: PMC8246418 DOI: 10.1016/j.jaci.2019.11.051] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND An increasing number of NFKB1 variants are being identified in patients with heterogeneous immunologic phenotypes. OBJECTIVE To characterize the clinical and cellular phenotype as well as the management of patients with heterozygous NFKB1 mutations. METHODS In a worldwide collaborative effort, we evaluated 231 individuals harboring 105 distinct heterozygous NFKB1 variants. To provide evidence for pathogenicity, each variant was assessed in silico; in addition, 32 variants were assessed by functional in vitro testing of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB) signaling. RESULTS We classified 56 of the 105 distinct NFKB1 variants in 157 individuals from 68 unrelated families as pathogenic. Incomplete clinical penetrance (70%) and age-dependent severity of NFKB1-related phenotypes were observed. The phenotype included hypogammaglobulinemia (88.9%), reduced switched memory B cells (60.3%), and respiratory (83%) and gastrointestinal (28.6%) infections, thus characterizing the disorder as primary immunodeficiency. However, the high frequency of autoimmunity (57.4%), lymphoproliferation (52.4%), noninfectious enteropathy (23.1%), opportunistic infections (15.7%), autoinflammation (29.6%), and malignancy (16.8%) identified NF-κB1-related disease as an inborn error of immunity with immune dysregulation, rather than a mere primary immunodeficiency. Current treatment includes immunoglobulin replacement and immunosuppressive agents. CONCLUSIONS We present a comprehensive clinical overview of the NF-κB1-related phenotype, which includes immunodeficiency, autoimmunity, autoinflammation, and cancer. Because of its multisystem involvement, clinicians from each and every medical discipline need to be made aware of this autosomal-dominant disease. Hematopoietic stem cell transplantation and NF-κB1 pathway-targeted therapeutic strategies should be considered in the future.
Collapse
Affiliation(s)
- Tiziana Lorenzini
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST- Spedali Civili of Brescia, Brescia, Italy
| | - Manfred Fliegauf
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS (Centre for Integrative Biological Signalling Studies), University of Freiburg, Freiburg, Germany
| | - Nils Klammer
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Natalie Frede
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alla Bulashevska
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Matias Kinnunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Esther de Vries
- Laboratory for Medical Microbiology and Immunology, Elisabeth Tweesteden Hospital, and Department of Tranzo, Tilburg University, Tilburg, The Netherlands
| | - Jos W M van der Meer
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Rohan Ameratunga
- Department of Virology and Immunology and the Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Chaim M Roifman
- Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Yael D Schejter
- Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Robin Kobbe
- Department of Pediatrics, University Medical Centre Hamburg, Hamburg, Germany
| | - Timo Hautala
- Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
| | - Faranaz Atschekzei
- Division of Immunology and Rheumatology, Hannover Medical University, Hannover, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Reinhold E Schmidt
- Division of Immunology and Rheumatology, Hannover Medical University, Hannover, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Claudia Schröder
- Division of Immunology and Rheumatology, Hannover Medical University, Hannover, Germany
| | - Polina Stepensky
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Bella Shadur
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Immunology, Garvan Institute of Medical Research, and University of New South Wales, Graduate Research School, Sydney, Australia
| | - Luis A Pedroza
- Colegio de ciencias de la salud-Hospital de los Valles and Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador; Department of Pediatrics, Section of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, Tex
| | - Michiel van der Flier
- Department of Pediatric Infectious Diseases & Immunology and Nijmegen Institute for Infection, Immunity and Inflammation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mónica Martínez-Gallo
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain; Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Luis Ignacio Gonzalez-Granado
- Primary Immunodeficiencies Unit, Pediatrics, School of Medicine, Complutense University, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Luis M Allende
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Anna Shcherbina
- Department of Clinical Immunology, Dmitry Rogachev Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Natalia Kuzmenko
- Department of Clinical Immunology, Dmitry Rogachev Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Victoria Zakharova
- Department of Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefania, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | - Peter Svec
- Department of Paediatric Haematology and Oncology, Haematopoietic Stem Cell Transplantation Unit, Comenius University Children's Hospital, Bratislava, Slovakia
| | - Ute Fischer
- Department of Paediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Winnie Ip
- Department of Immunology and Molecular and Cellular Immunology Unit, Great Ormond Street Hospital & University College London (UCL), Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Oliver Bartsch
- Institute of Human Genetics, Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Safa Barış
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
| | - Christoph Klein
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Raif Geha
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Mohammed Alosaimi
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Lauren Weintraub
- Divisions of Pediatric Hematology/Oncology, Albany Medical Center, Albany, NY
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Department of Pediatrics and Adolescent Medicine and St Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Tatjana Hirschmugl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Department of Pediatrics and Adolescent Medicine and St Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Maria Marluce Dos Santos Vilela
- Laboratory of Pediatric Immunology, Center for Investigation in Pediatrics, Faculty of Medical Sciences, University of Campinas - UNICAMP, Campinas, Brazil
| | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency and Molecular Pathology, Department of Pathology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Vassilios Lougaris
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST- Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST- Spedali Civili of Brescia, Brescia, Italy
| | - Laia Alsina
- Pediatric Allergy and Clinical Immunology Department and Institut de Recerca, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Monica Piquer-Gibert
- Pediatric Allergy and Clinical Immunology Department and Institut de Recerca, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Angela Deyà-Martínez
- Pediatric Allergy and Clinical Immunology Department and Institut de Recerca, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Charlotte A Slade
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Melbourne, Australia
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Outi Kuismin
- PEDEGO Research Unit, Medical Research Center Oulu, and University of Oulu and Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Merja Helminen
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Hana Lango Allen
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, Md
| | - Matthew Cook
- Australian National University Medical School and John Curtin School of Medical Research, Australian National University, Acton, Australia; Department of Immunology, Canberra Hospital, Canberra, Australia
| | - Shahrzad Bakhtiar
- Division for Pediatric Stem-Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Mette Christiansen
- International Center for Immunodeficiency Diseases and Department of Clinical Immunology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | | | - Niraj C Patel
- Department of Pediatrics, Section of Infectious Disease and Immunology, Levine Children's Hospital, Atrium Health, Charlotte, NC
| | - William Rae
- Southampton NIHR Wellcome Trust Clinical Research Facility and NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Department of Allergy, Asthma and Clinical Immunology, University Hospital Southampton, Southampton, United Kingdom
| | - Tim Niehues
- Department of Pediatric Hematology and Oncology, Helios Klinikum Krefeld, Krefeld, Germany
| | - Nina Brauer
- Department of Pediatric Hematology and Oncology, Helios Klinikum Krefeld, Krefeld, Germany
| | - Jaana Syrjänen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Mikko R J Seppänen
- Rare Disease Center, New Children's Hospital and Adult immunodeficiency Unit, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Siobhan O Burns
- Department of Immunology, Royal Free London NHS Foundation Trust, University College London Institute of Immunity and Transplantation, London, United Kingdom
| | - Paul Tuijnenburg
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious diseases, Meibergdreef 9, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious diseases, Meibergdreef 9, Amsterdam, The Netherlands
| | -
- NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS (Centre for Integrative Biological Signalling Studies), University of Freiburg, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany; Institute of Immunology and Transplantation, Royal Free Hospital and University College London, London, United Kingdom; DZIF (German Center for Infection Research) Satellite Center Freiburg, Freiburg, Germany; Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|
104
|
Więsik-Szewczyk E, Jahnz-Różyk K. From infections to autoimmunity: Diagnostic challenges in common variable immunodeficiency. World J Clin Cases 2020; 8:3942-3955. [PMID: 33024751 PMCID: PMC7520788 DOI: 10.12998/wjcc.v8.i18.3942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/29/2020] [Accepted: 08/26/2020] [Indexed: 02/05/2023] Open
Abstract
Common variable immunodeficiency (CVID) is the most common clinically significant primary antibody deficiency diagnosed in adults. The early symptoms are not specific. They include common infections, mainly of the respiratory tract, caused by typical microorganisms, so cases can be missed in primary care. In the majority of patients increased susceptibility to infections coexists with signs or symptoms of autoimmunity, inflammation or polyclonal lymphoproliferation, which can divert diagnosis from immune deficiency. The overall incidence of malignancy is increased in CVID and certain cancers are significantly more common. Lymphomas and gastric carcinoma are the most frequently reported malignancies in CVID, so a high index of suspicion is recommended. Diagnostic delay in CVID is seen worldwide. The main goal of this paper is to increase the awareness about CVID among health care professionals. We aim to present features which can be helpful in CVID diagnosis in order to shorten the “latency” of proper management of CVID patients. We review clinical symptoms, complications and laboratory abnormalities of CVID. Immunoglobulin replacement therapy is regarded as the cornerstone of pharmacological intervention. New modes of Ig application, mainly subcutaneously and via the hyaluronidase-facilitated subcutaneous route, help to adjust therapy to patients’ needs and preferences. Still there remain unmet needs. It remains to be seen whether CVID complications can be avoided by earlier diagnosis, treatment and thorough monitoring in the context of increased risk of malignancy. Development of patient tailored protocols depending on the clinical phenotype and risk factors might be more appropriate. The most important consideration is to diagnose suspected cases and stratify patients in a precise and timely way. Work is needed to define features predictive of unfavorable prognosis.
Collapse
Affiliation(s)
- Ewa Więsik-Szewczyk
- Department of Internal Medicine, Pulmonology, Allergy and Clinical Immunology, Central Clinical Hospital of the Ministry of National Defense, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Karina Jahnz-Różyk
- Department of Internal Medicine, Pulmonology, Allergy and Clinical Immunology, Central Clinical Hospital of the Ministry of National Defense, Military Institute of Medicine, Warsaw 04-141, Poland
| |
Collapse
|
105
|
Current genetic landscape in common variable immune deficiency. Blood 2020; 135:656-667. [PMID: 31942606 DOI: 10.1182/blood.2019000929] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/14/2019] [Indexed: 12/14/2022] Open
Abstract
Using whole-exome sequencing to examine the genetic causes of immune deficiency in 235 common variable immunodeficiency (CVID) patients seen in the United States (Mount Sinai, New York), 128 patients from Sweden, and 208 from Iran revealed 68 known disease-causing genes underlying this heterogeneous immune defect. The patients at the time of study ranged from 4 to 90 years of age. Overall, 31%, 36%, and 54% of the patients in the US, Swedish, or Iranian cohorts had mutations. The multiplicity of genes identified in the 571 subjects reflects the complex requirements of B-cell antigen signaling, activation, survival, migration, maturation, and maintenance of antibody-secreting memory B-cell populations to the plasma cell stage. For the US and Swedish cohorts, CVID subjects with noninfectious complications, lymphoid infiltrations, inflamatory conditions, or autoimmunity were somewhat more likely to have an identifiable gene, but in both cohorts, numerous subjects with these medical conditions had no potential gene that could be assigned. Specific clinical patterns of illnesses were also not linked to any given gene defect as there was considerable overlap in clinical presentations. These observations led to a new perspective on the complexity of the immunologic phenotype found in CVID syndrome.
Collapse
|
106
|
Long-Term Survival after Progressive Multifocal Leukoencephalopathy in a Patient with Primary Immune Deficiency and NFKB1 Mutation. J Clin Immunol 2020; 40:1138-1143. [PMID: 32918165 DOI: 10.1007/s10875-020-00862-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE To describe the development of progressive multifocal leukoencephalopathy (PML) in a patient with primary immune deficiency (PID) due to a NFKB1 (nuclear factor kB subunit 1) mutation, who was treated successfully with a combination of mirtazapine and mefloquine. METHODS We've based the treatment of our patient on literature research and provide a review of PML in CVID patients. RESULTS Only a few reports have been published on the occurrence of PML in PID. PML is mainly observed in patients with reduced cellular immunity, which was not the case in our patient. Successful treatment options in this population are limited. Though severely disabled, our patient still survives, more than 4 years after symptom onset and shows consistent improvement on MRI (magnetic resonance imaging) and CSF (cerebrospinal fluid) analysis. CONCLUSION We conclude that some patients with PML might be treatable and can show long-term survival although neurological deficits remain. Involvement of humoral immunity in the pathogenesis of PML as well as the possible role of NFKB1 mutations in response to specific pathogens deserves further investigation.
Collapse
|
107
|
Chinn IK, Orange JS. A 2020 update on the use of genetic testing for patients with primary immunodeficiency. Expert Rev Clin Immunol 2020; 16:897-909. [DOI: 10.1080/1744666x.2020.1814145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ivan K. Chinn
- Department of Pediatrics, Section of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, USA
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, USA
| | - Jordan S. Orange
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, USA
- NewYork-Presbyterian Morgan Stanley Children's Hospita, New York, USA
| |
Collapse
|
108
|
Yesillik S, Gupta S. Phenotypically defined subpopulations of circulating follicular helper T cells in common variable immunodeficiency. Immun Inflamm Dis 2020; 8:441-446. [PMID: 32618135 PMCID: PMC7416056 DOI: 10.1002/iid3.326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is characterized by low immunoglobulin G and IgA/IgM, decreased switched memory B cells, impaired response to vaccine, and an increased susceptibility to infections and autoimmunity. TFH cells play an important role in germinal center reaction where it supports isotype switching, somatic hypermutation, generation of memory B cells, and differentiation of B cells to plasma cells. The objective was to study the distribution of three subsets of TFH cells and their relationship with autoimmune diseases associated with CVID. METHODS TFH cells have been divided into TFH 1 (interleukin 21 [IL-21] and interferon γ), TFH 2 (IL-21 and IL-4), and TFH 17 (IL-21 and IL-17) cells. Mononuclear cells from 25 patients with CVID and age and gender-matched controls were stained with various monoclonal antibodies (anti-CD4 APC, anti-CXCR5 FITC, anti-CCR6 PerCP, and anti-CXCR3 PE) and isotype controls and analyzed for TFH 1 (CD4+ CXCR5+ CXCR3+ CCR6- ), TFH 2 (CD4+ CXCR5+ CXCR3- CCR6- ), and TFH 17 (CD4+ CXCR5+ CXCR3- CCR6+ ) cells by multicolor flow cytometry. Twenty thousand cells were acquired and analyzed by FlowJo software. Statistical analysis of comparison of patients and healthy controls was performed by paired t test using PRISM 7 software. RESULTS TFH 2 and TFH 17 cells subpopulations of TFH cells were significantly decreased (P < .003 and P < .006, respectively) in CVID as compared with controls. No significant difference was observed in any of TFH cell subpopulations between CVID with and those without autoimmunity group. CONCLUSION Alterations in TFH cell subpopulation may play a role in defects in B cell compartment in CVID.
Collapse
Affiliation(s)
- Sait Yesillik
- Division of Basic and Clinical ImmunologyUniversity of CaliforniaIrvineCalifornia
| | - Sudhir Gupta
- Division of Basic and Clinical ImmunologyUniversity of CaliforniaIrvineCalifornia
| |
Collapse
|
109
|
Mukhina AA, Kuzmenko NB, Rodina YA, Kondratenko IV, Bologov AA, Latysheva TV, Prodeus AP, Pampura AN, Balashov DN, Ilyina NI, Latysheva EA, Deordieva EA, Shvets OA, Deripapa EV, Abramova IN, Pashenko OE, Vahlyarskaya SS, Zinovyeva NV, Zimin SB, Skorobogatova EV, Machneva EB, Fomina DS, Ipatova MG, Barycheva LY, Khachirova LS, Tuzankina IA, Bolkov MA, Shakhova NV, Kamaltynova EM, Sibgatullina FI, Guseva MN, Kuznetsova RN, Milichkina AM, Totolian AA, Kalinina NM, Goltsman EA, Sulima EI, Kutlyanceva AY, Moiseeva AA, Khoreva AL, Nesterenko Z, Tymofeeva EV, Ermakova A, Proligina DD, Kalmetieva LR, Davletbaieva GA, Mirsayapova IA, Richkova OA, Kuzmicheva KP, Grakhova MA, Yudina NB, Orlova EA, Selezneva OS, Piskunova SG, Samofalova TV, Bukina TV, Pechkurova AD, Migacheva N, Zhestkov A, Barmina EV, Parfenova NA, Isakova SN, Averina EV, Sazonova IV, Starikova SY, Shilova TV, Asekretova TV, Suprun RN, Kleshchenko EI, Lebedev VV, Demikhova EV, Demikhov VG, Kalinkina VA, Gorenkova AV, Duryagina SN, Pavlova TB, Shinkareva VM, Smoleva IV, Aleksandrova TP, Bambaeva ZV, Philippova MA, Gracheva EM, Tcyvkina GI, Efremenkov AV, Mashkovskaya D, Yarovaya IV, Alekseenko VA, Fisyun IV, Molokova GV, Troitskya EV, Piatkina LI, Vlasova EV, Ukhanova O, Chernishova EG, Vasilieva M, Laba OM, Volodina E, Safonova EV, Voronin KA, Gurkina MV, et alMukhina AA, Kuzmenko NB, Rodina YA, Kondratenko IV, Bologov AA, Latysheva TV, Prodeus AP, Pampura AN, Balashov DN, Ilyina NI, Latysheva EA, Deordieva EA, Shvets OA, Deripapa EV, Abramova IN, Pashenko OE, Vahlyarskaya SS, Zinovyeva NV, Zimin SB, Skorobogatova EV, Machneva EB, Fomina DS, Ipatova MG, Barycheva LY, Khachirova LS, Tuzankina IA, Bolkov MA, Shakhova NV, Kamaltynova EM, Sibgatullina FI, Guseva MN, Kuznetsova RN, Milichkina AM, Totolian AA, Kalinina NM, Goltsman EA, Sulima EI, Kutlyanceva AY, Moiseeva AA, Khoreva AL, Nesterenko Z, Tymofeeva EV, Ermakova A, Proligina DD, Kalmetieva LR, Davletbaieva GA, Mirsayapova IA, Richkova OA, Kuzmicheva KP, Grakhova MA, Yudina NB, Orlova EA, Selezneva OS, Piskunova SG, Samofalova TV, Bukina TV, Pechkurova AD, Migacheva N, Zhestkov A, Barmina EV, Parfenova NA, Isakova SN, Averina EV, Sazonova IV, Starikova SY, Shilova TV, Asekretova TV, Suprun RN, Kleshchenko EI, Lebedev VV, Demikhova EV, Demikhov VG, Kalinkina VA, Gorenkova AV, Duryagina SN, Pavlova TB, Shinkareva VM, Smoleva IV, Aleksandrova TP, Bambaeva ZV, Philippova MA, Gracheva EM, Tcyvkina GI, Efremenkov AV, Mashkovskaya D, Yarovaya IV, Alekseenko VA, Fisyun IV, Molokova GV, Troitskya EV, Piatkina LI, Vlasova EV, Ukhanova O, Chernishova EG, Vasilieva M, Laba OM, Volodina E, Safonova EV, Voronin KA, Gurkina MV, Rumyantsev AG, Novichkova GA, Shcherbina AY. Primary Immunodeficiencies in Russia: Data From the National Registry. Front Immunol 2020; 11:1491. [PMID: 32849507 PMCID: PMC7424007 DOI: 10.3389/fimmu.2020.01491] [Show More Authors] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Primary immunodeficiencies (PID) are a group of rare genetic disorders with a multitude of clinical symptoms. Characterization of epidemiological and clinical data via national registries has proven to be a valuable tool of studying these diseases. Materials and Methods: The Russian PID registry was set up in 2017, by the National Association of Experts in PID (NAEPID). It is a secure, internet-based database that includes detailed clinical, laboratory, and therapeutic data on PID patients of all ages. Results: The registry contained information on 2,728 patients (60% males, 40% females), from all Federal Districts of the Russian Federation. 1,851/2,728 (68%) were alive, 1,426/1,851 (77%) were children and 425/1,851 (23%) were adults. PID was diagnosed before the age of 18 in 2,192 patients (88%). Antibody defects (699; 26%) and syndromic PID (591; 22%) were the most common groups of PID. The minimum overall PID prevalence in the Russian population was 1.3:100,000 people; the estimated PID birth rate is 5.7 per 100,000 live births. The number of newly diagnosed patients per year increased dramatically, reaching the maximum of 331 patients in 2018. The overall mortality rate was 9.8%. Genetic testing has been performed in 1,740 patients and genetic defects were identified in 1,344 of them (77.2%). The median diagnostic delay was 2 years; this varied from 4 months to 11 years, depending on the PID category. The shortest time to diagnosis was noted in the combined PIDs-in WAS, DGS, and CGD. The longest delay was observed in AT, NBS, and in the most prevalent adult PID: HAE and CVID. Of the patients, 1,622 had symptomatic treatment information: 843 (52%) received IG treatment, mainly IVIG (96%), and 414 (25%) patients were treated with biological drugs. HSCT has been performed in 342/2,728 (16%) patients, of whom 67% are currently alive, 17% deceased, and 16% lost to follow-up. Three patients underwent gene therapy for WAS; all are currently alive. Conclusions: Here, we describe our first analysis of the epidemiological features of PID in Russia, allowing us to highlight the main challenges around PID diagnosis and treatment.
Collapse
Affiliation(s)
- Anna A Mukhina
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Natalya B Kuzmenko
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Yulia A Rodina
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Irina V Kondratenko
- Russian Children's Clinical Hospital of the N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow, Russia
| | - Andrei A Bologov
- Russian Children's Clinical Hospital of the N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow, Russia
| | - Tatiana V Latysheva
- National Research Center Institute of Immunology, Federal Biomedical Agency of Russia, Moscow, Russia
| | - Andrei P Prodeus
- Speransky Children's Municipal Clinical Hospital #9, Moscow, Russia
| | - Alexander N Pampura
- Research and Clinical Institute for Pediatrics named After Academician Yuri Veltischev of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Dmitrii N Balashov
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Natalya I Ilyina
- National Research Center Institute of Immunology, Federal Biomedical Agency of Russia, Moscow, Russia
| | - Elena A Latysheva
- National Research Center Institute of Immunology, Federal Biomedical Agency of Russia, Moscow, Russia
| | - Ekaterina A Deordieva
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Oksana A Shvets
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena V Deripapa
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Irina N Abramova
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Olga E Pashenko
- Russian Children's Clinical Hospital of the N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow, Russia
| | - Svetlana S Vahlyarskaya
- Russian Children's Clinical Hospital of the N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow, Russia
| | | | - Sergei B Zimin
- Speransky Children's Municipal Clinical Hospital #9, Moscow, Russia
| | - Elena V Skorobogatova
- Russian Children's Clinical Hospital of the N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow, Russia
| | - Elena B Machneva
- Russian Children's Clinical Hospital of the N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow, Russia
| | - Daria S Fomina
- Allergy and Immunology Centre, Clinical Hospital, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria G Ipatova
- Filatov Children's Municipal Clinical Hospital, Moscow, Russia
| | - Ludmila Yu Barycheva
- Stavropol State Medical University, Stavropol, Russia.,Regional Pediatric Clinical Hospital, Stavropol, Russia
| | | | - Irina A Tuzankina
- Institute of Immunology and Physiology-Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Michail A Bolkov
- Institute of Immunology and Physiology-Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | | | - Elena M Kamaltynova
- Department of Health of Tomsk Region, Tomsk, Russia.,Regional Children's Hospital, Tomsk, Russia.,Siberian State Medical University, Tomsk, Russia
| | | | - Marina N Guseva
- Saint-Petersburg Pasteur Institute, Saint-Petersburg, Russia.,Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| | | | | | - Areg A Totolian
- Saint-Petersburg Pasteur Institute, Saint-Petersburg, Russia
| | | | - Evgenia A Goltsman
- Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| | | | - Anastasia Yu Kutlyanceva
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna A Moiseeva
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna L Khoreva
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Zoya Nesterenko
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - A Ermakova
- Regional Pediatric Clinical Hospital, Nizhny Novgorod, Russia
| | - Dilyara D Proligina
- Republican Children's Clinical Hospital, Republic of Bashkortostan, Ufa, Russia
| | - Linara R Kalmetieva
- Republican Children's Clinical Hospital, Republic of Bashkortostan, Ufa, Russia
| | | | - Irina A Mirsayapova
- Republican Children's Clinical Hospital, Republic of Bashkortostan, Ufa, Russia
| | | | | | | | | | | | - Olga S Selezneva
- Rostov-na-Donu Regional Pediatric Clinical Hospital, Rostov-na-Donu, Russia
| | | | | | | | | | - N Migacheva
- Samara State Medical University, Samara, Russia
| | - A Zhestkov
- Samara State Medical University, Samara, Russia
| | | | | | - Svetlana N Isakova
- Federal State Budgetary Scientific Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | | | | | | | - Tatiana V Shilova
- Federal State Budgetary Educational Institution of Higher Education "South-Ural State Medical University" of the Ministry of Healthcare of the Russian Federation, Chelyabinsk, Russia
| | | | | | | | | | | | | | - Veronica A Kalinkina
- Department of Health of Khanty-Mansi Autonomous Region-Yugra, Khanty-Mansi, Russia
| | | | | | - Tatiana B Pavlova
- Irkutsk Regional Pediatric Hospital, Allergy and Immunology, Irkutsk, Russia
| | - Vera M Shinkareva
- Irkutsk Regional Pediatric Hospital, Allergy and Immunology, Irkutsk, Russia
| | | | | | - Zema V Bambaeva
- Children's Republican Clinical Hospital of Buryatiya, Ulan-Ude, Russia
| | | | | | - Galina I Tcyvkina
- Regional Clinical Allergy and Immunology Center, Vladivostok, Russia
| | | | | | | | | | | | | | | | | | | | - O Ukhanova
- Regional Clinical Hospital, Stavropol, Russia.,Regional Pediatric Hospital, Tula, Russia
| | | | - M Vasilieva
- Center of Allergy and Clinical Immunology, Regional Clinical Hospital named after Professor S.I. Sergeev, Khabarovsk, Russia
| | - Olga M Laba
- Regional Pediatric Hospital, Yaroslavl, Russia
| | | | - Ekaterina V Safonova
- Regional Clinical Center of Maternity and Childhood Protection, Krasnoyarsk, Russia
| | - Kirill A Voronin
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maria V Gurkina
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexander G Rumyantsev
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Galina A Novichkova
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Yu Shcherbina
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
110
|
Guevara-Hoyer K, Vasconcelos J, Marques L, Fernandes AA, Ochoa-Grullón J, Marinho A, Sequeira T, Gil C, Rodríguez de la Peña A, Serrano García I, Recio MJ, Fernández-Arquero M, Pérez de Diego R, Ramos JT, Neves E, Sánchez-Ramón S. Variable immunodeficiency study: Evaluation of two European cohorts within a variety of clinical phenotypes. Immunol Lett 2020; 223:78-88. [PMID: 32344018 DOI: 10.1016/j.imlet.2020.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/02/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Given the wide heterogeneity of common variable immunodeficiency (CVID), several groups have proposed clinical and immunological classifications to better define follow-up and prognostic algorithms. The present study aims to validate recent clinical and laboratory algorithms, based on different combinations of CVID biomarkers, to provide more personalized treatment and follow-up strategies. METHODS We analysed clinical and immunological features of 80 patients with suspected or diagnosed CVID, in two reference centres of Portugal and Spain. Clinical manifestations were categorized into clinical phenotyping proposed by Chapel et al. [1] that included cytopenia; polyclonal lymphocytic infiltration; unexplained enteropathy; and no disease-related complications. RESULTS 76% of patients in our cohort entered one of the four categories of clinical phenotyping, without overlap (cytopenia; polyclonal lymphocytic infiltration; unexplained enteropathy; and no disease-related complications). The most prominent phenotype was "cytopenia" (40%) followed by "polyclonal lymphocytic infiltration" (19%). The remaining 24% patients of our cohort had overlap of 2 clinical phenotypes (cytopenia and unexplained enteropathy mainly). A delay of CVID diagnosis in more than 6 years presented 3.7-fold higher risk of developing lymphoproliferation and/or malignancy (p < 0.05), and was associated with increased CD8+CD45RO + T-lymphocytes (p < 0.05). An association between decreased switched-memory B cells with lymphoproliferation and malignancy was observed (p < 0.03 and p < 0.05, respectively). CD4 + T-lymphocytopenia correlated with autoimmune phenotype, with 30% prevalence (p < 0.05). HLA-DR7 expression was related to CVID onset in early life in our patients (13 vs 25 years), and DQ2.5 or DQ2.2 with unexplained enteropathy (p < 0.05). CONCLUSIONS The phenotypic and genetic study is crucial for an adequate clinical orientation of CVID patients. In these two independent cohorts of patients, classification based in clinical and laboratory algorithms, provides more personalized treatment and follow-up strategies.
Collapse
Affiliation(s)
- Kissy Guevara-Hoyer
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain; Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain
| | - Julia Vasconcelos
- Department of Immunology, Centro Hospitalar e Universitário Do Porto, Porto, Portugal
| | - Laura Marques
- Department of Pediatrics, Centro Hospitalar e Universitário Do Porto, Porto, Portugal
| | | | - Juliana Ochoa-Grullón
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain; Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain
| | - Antonio Marinho
- Clinical Immunology Unit, Centro Hospitalar e Universitário Do Porto, Porto, Portugal
| | - Teresa Sequeira
- Clinical Immunology Unit, Centro Hospitalar e Universitário Do Porto, Porto, Portugal
| | - Celia Gil
- Department of Pediatrics, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Irene Serrano García
- Department of Epidemiology and Preventive Medicine, Hospital Clínico San Carlos, Madrid, Spain
| | - M José Recio
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain; Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain
| | - Miguel Fernández-Arquero
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain; Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain
| | - Rebeca Pérez de Diego
- Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain; Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, Madrid, Spain
| | - José Tomas Ramos
- Department of Pediatrics, Hospital Clínico San Carlos, Madrid, Spain
| | - Esmeralda Neves
- Department of Immunology, Centro Hospitalar e Universitário Do Porto, Porto, Portugal
| | - Silvia Sánchez-Ramón
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain; Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain.
| |
Collapse
|
111
|
Abstract
Primary antibody deficiencies (PADs) are the most common types of inherited primary immunodeficiency diseases (PIDs) presenting at any age, with a broad spectrum of clinical manifestations including susceptibility to infections, autoimmunity and cancer. Antibodies are produced by B cells, and consequently, genetic defects affecting B cell development, activation, differentiation or antibody secretion can all lead to PADs. Whole exome and whole genome sequencing approaches have helped identify genetic defects that are involved in the pathogenesis of PADs. Here, we summarize the clinical manifestations, causal genes, disease mechanisms and clinical treatments of different types of PADs.
Collapse
|
112
|
Ameratunga R, Allan C, Woon ST. Defining Common Variable Immunodeficiency Disorders in 2020. Immunol Allergy Clin North Am 2020; 40:403-420. [PMID: 32654689 DOI: 10.1016/j.iac.2020.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Common variable immunodeficiency disorders (CVID) are the most frequent symptomatic primary immune deficiency in adults. Because there is no known cause for these conditions, there is no single clinical feature or laboratory test that can confirm the diagnosis with certainty. If a causative mutation is identified, patients are deemed to have a CVID-like disorder caused by a specific primary immunodeficiency/inborn error of immunity. In the remaining patients, the explanation for these disorders remains unclear. The understanding of CVID continues to evolve and the authors review recent studies, which have addressed some of these uncertainties.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand; Auckland Healthcare Services, Park Road, Grafton, Auckland 1010, New Zealand; Clinical Immunology, Auckland City Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Caroline Allan
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
113
|
Whole-Exome Sequencing-Based Approach for Germline Mutations in Patients with Inborn Errors of Immunity. J Clin Immunol 2020; 40:729-740. [PMID: 32506361 DOI: 10.1007/s10875-020-00798-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Owing to recent technological advancements, using next-generation sequencing (NGS) and the accumulation of clinical experiences worldwide, more than 420 genes associated with inborn errors of immunity (IEI) have been identified, which exhibit large genotypic and phenotypic variations. Consequently, NGS-based comprehensive genetic analysis, including whole-exome sequencing (WES), have become more valuable in the clinical setting and have contributed to earlier diagnosis, improved treatment, and prognosis. However, these approaches have the following disadvantages that need to be considered: a relatively low diagnostic rate, high cost, difficulties in the interpretation of each variant, and the risk of incidental findings. Thus, the objective of this study is to review our WES results of a large number of patients with IEI and to elucidate patient characteristics, which are related to the positive WES result. METHODS We performed WES for 136 IEI patients with negative conventional screening results for candidate genes and classified these variants depending on validity of their pathogenicity. RESULTS We identified disease-causing pathogenic mutations in 36 (26.5%) of the patients which were found in known IEI-causing genes. Although the overall diagnostic rate was not high and was not apparently correlated with the clinical subcategories and severity, we revealed that earlier onset with longer duration of diseases were associated with positive WES results, especially in pediatric cases. CONCLUSIONS Most of the disease-causing germline mutations were located in the known IEI genes which could be predicted using patients' clinical characteristics. These results may be useful when considering appropriate genetic approaches in the clinical setting.
Collapse
|
114
|
Sun J, Yang L, Lu Y, Wang H, Peng X, Dong X, Cheng G, Cao Y, Wu B, Wang X, Zhou W. Screening for primary immunodeficiency diseases by next-generation sequencing in early life. Clin Transl Immunology 2020; 9:e1138. [PMID: 32431812 PMCID: PMC7231820 DOI: 10.1002/cti2.1138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Objective We aimed to use next-generation sequencing (NGS) for the early diagnosis of primary immunodeficiency diseases (PIDs) and define its effects on medical management for an infant cohort in early life. Methods A single-centre study was conducted from November 2015 to April 2018. Infants less than 3 months old with infections or abnormal white blood cell counts were enrolled in the study. Gene variants were analysed by NGS, and once a mutation was found in a PID-associated gene, the immune functions associated with this mutation were detected. The diagnosis rate of PIDs in the cohort was the main outcome. The patients received corresponding management and follow-up treatments. Results Among 2392 patients who were genetically tested with NGS, 51 infants were diagnosed with PIDs. Seven types of PIDs were detected, and the most common (25/51, 49%) were combined immunodeficiencies with associated or syndromic features. Thirty-five patients (68.6%) were cured or had improved outcomes after being diagnosed with PID. The NGS cost was US$280 per case. Conclusions This study not only highlighted the potential of NGS to rapidly deliver molecular diagnoses of PIDs but also indicated that the prevalence of PIDs is underestimated. With broader use, this approach has the potential to alter clinical strategies.
Collapse
Affiliation(s)
- Jinqiao Sun
- Department of Clinical Immunology Children's Hospital of Fudan University Shanghai China
| | - Lin Yang
- Clinical Genetic Center Children's Hospital of Fudan University Shanghai China
| | - Yulan Lu
- Children's Hospital & Institutes of Biomedical Sciences Fudan university Shanghai China.,Shanghai Key Laboratory of Birth Defects The Translational Medicine Center of Children Development and Disease of Fudan University Children's Hospital of Fudan University Shanghai China
| | - Huijun Wang
- Shanghai Key Laboratory of Birth Defects The Translational Medicine Center of Children Development and Disease of Fudan University Children's Hospital of Fudan University Shanghai China
| | - Xiaomin Peng
- Shanghai Key Laboratory of Birth Defects The Translational Medicine Center of Children Development and Disease of Fudan University Children's Hospital of Fudan University Shanghai China
| | - Xinran Dong
- Shanghai Key Laboratory of Birth Defects The Translational Medicine Center of Children Development and Disease of Fudan University Children's Hospital of Fudan University Shanghai China
| | - Guoqiang Cheng
- Department of Neonatology Children's Hospital of Fudan University Shanghai China
| | - Yun Cao
- Department of Neonatology Children's Hospital of Fudan University Shanghai China
| | - Bingbing Wu
- Shanghai Key Laboratory of Birth Defects The Translational Medicine Center of Children Development and Disease of Fudan University Children's Hospital of Fudan University Shanghai China
| | - Xiaochuan Wang
- Department of Clinical Immunology Children's Hospital of Fudan University Shanghai China
| | - Wenhao Zhou
- Department of Neonatology Children's Hospital of Fudan University Shanghai China
| |
Collapse
|
115
|
Deenick EK, Lau A, Bier J, Kane A. Molecular and cellular mechanisms underlying defective antibody responses. Immunol Cell Biol 2020; 98:467-479. [PMID: 32348596 DOI: 10.1111/imcb.12345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Primary immune deficiency is caused by genetic mutations that result in immune dysfunction and subsequent susceptibility to infection. Over the last decade there has been a dramatic increase in the number of genetically defined causes of immune deficiency including those which affect B-cell function. This has not only identified critical nonredundant pathways that control the generation of protective antibody responses but also revealed that immunodeficiency and autoimmunity are often closely linked. Here we explore the molecular and cellular mechanisms of these rare monogenic conditions that disrupt antibody production, which also have implications for understanding the causes of more common polygenic immune dysfunction.
Collapse
Affiliation(s)
- Elissa K Deenick
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony Lau
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Julia Bier
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Alisa Kane
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,South Western Sydney Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Department of Immunology and HIV, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Department of Immunology, Allergy and HIV, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
116
|
Abstract
Primary immunodeficiency disorders (PIDs) are genetic diseases that lead to increased susceptibility to infection. Hundreds of PIDs have now been described, but a select subset commonly presents in the neonatal period. Neonates, especially premature newborns, have relative immune immaturity that makes it challenging to differentiate PIDs from intrinsic immaturity. Nonetheless, early identification and appropriate management of PIDs are critical, and the neonatal clinician should be familiar with a range of PIDs and their presentations. The neonatal clinician should also be aware of the importance of consulting with an immunologist when a PID is suspected. The role of newborn screening for severe combined immunodeficiency, as well as the initial steps of laboratory evaluation for a PID should be familiar to those caring for neonates. Finally, it is important for providers to be familiar with the initial management steps that can be taken to reduce the risk of infection in affected patients.
Collapse
Affiliation(s)
- Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
117
|
Bokhari HA, Shaik NA, Banaganapalli B, Nasser KK, Ageel HI, Al Shamrani AS, Rashidi OM, Al Ghubayshi OY, Shaik J, Ahmad A, Alrayes NM, Al-Aama JY, Elango R, Saadah OI. Whole exome sequencing of a Saudi family and systems biology analysis identifies CPED1 as a putative causative gene to Celiac Disease. Saudi J Biol Sci 2020; 27:1494-1502. [PMID: 32489286 PMCID: PMC7254030 DOI: 10.1016/j.sjbs.2020.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 12/15/2022] Open
Abstract
Celiac disease (CD) is a gastrointestinal disorder whose genetic basis is not fully understood. Therefore, we studied a Saudi family with two CD affected siblings to discover the causal genetic defect. Through whole exome sequencing (WES), we identified that both siblings have inherited an extremely rare and deleterious CPED1 genetic variant (c.241 A > G; p.Thr81Ala) segregating as autosomal recessive mutation, suggesting its putative causal role in the CD. Saudi population specific minor allele frequency (MAF) analysis has confirmed its extremely rare prevalence in homozygous condition (MAF is 0.0004). The Sanger sequencing analysis confirmed the absence of this homozygous variant in 100 sporadic Saudi CD cases. Genotype-Tissue Expression (GTEx) data has revealed that CPED1 is abundantly expressed in gastrointestinal mucosa. By using a combination of systems biology approaches like protein 3D modeling, stability analysis and nucleotide sequence conservation analysis, we have further established that this variant is deleterious to the structural and functional aspects of CPED1 protein. To the best of our knowledge, this variant has not been previously reported in CD or any other gastrointestinal disease. The cell culture and animal model studies could provide further insight into the exact role of CPED1 p.Thr81Ala variant in the pathophysiology of CD. In conclusion, by using WES and systems biology analysis, present study for the first-time reports CPED1 as a potential causative gene for CD in a Saudi family with potential implications to both disease diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Hifaa A Bokhari
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalidah Khalid Nasser
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ali Saad Al Shamrani
- Department of Pedidatrics, Maternity and Children Hospital, Makkah, Saudi Arabia
| | - Omran M Rashidi
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | | | - Jilani Shaik
- Dept of Biochemistry, Genome Research Chair, Faculty of Science, King Saud University, Saudi Arabia
| | - Aftab Ahmad
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nuha Mohammad Alrayes
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Yousuf Al-Aama
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omar Ibrahim Saadah
- Pediatric Gastroenterology Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
118
|
Eis PS, Bruno CD, Richmond TA, Koralnik IJ, Hanson BA, Major EO, Chow CR, Hendel-Chavez H, Stankoff B, Gasnault J, Taoufik Y, Hatchwell E. Germline Genetic Risk Variants for Progressive Multifocal Leukoencephalopathy. Front Neurol 2020; 11:186. [PMID: 32256442 PMCID: PMC7094807 DOI: 10.3389/fneur.2020.00186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare demyelinating disorder of the brain caused by reactivation of the JC virus (JCV), a polyomavirus that infects at least 60% of the population but is asymptomatic or results in benign symptoms in most people. PML occurs as a secondary disease in a variety of disorders or as a serious adverse event from immunosuppressant agents, but is mainly found in three groups: HIV-infected patients, patients with hematological malignancies, or multiple sclerosis (MS) patients on the immunosuppressant therapy natalizumab. It is severely debilitating and is deadly in ~50% HIV cases, ~90% of hematological malignancy cases, and ~24% of MS-natalizumab cases. A PML risk prediction test would have clinical utility in all at risk patient groups but would be particularly beneficial in patients considering therapy with immunosuppressant agents known to cause PML, such as natalizumab, rituximab, and others. While a JC antibody test is currently used in the clinical decision process for natalizumab, it is suboptimal because of its low specificity and requirement to periodically retest patients for seroconversion or to assess if a patient's JCV index has increased. Whereas a high specificity genetic risk prediction test comprising host genetic risk variants (i.e., germline variants occurring at higher frequency in PML patients compared to the general population) could be administered one time to provide clinicians with additional risk prediction information that is independent of JCV serostatus. Prior PML case reports support the hypothesis that PML risk is greater in patients with a genetically caused immunodeficiency disorder. To identify germline PML risk variants, we performed exome sequencing on 185 PML cases (70 in a discovery cohort and 115 in a replication cohort) and used the gnomAD variant database for interpretation. Our study yielded 19 rare variants (maximum allele frequency of 0.02 in gnomAD ethnically matched populations) that impact 17 immune function genes (10 are known to cause inborn errors of immunity). Modeling of these variants in a PML genetic risk test for MS patients considering natalizumab treatment indicates that at least a quarter of PML cases may be preventable.
Collapse
Affiliation(s)
- Peggy S Eis
- Population Bio, Inc., New York, NY, United States
| | | | - Todd A Richmond
- Richmond Bioinformatics Consulting, Seattle, WA, United States
| | - Igor J Koralnik
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Barbara A Hanson
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eugene O Major
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | | | - Houria Hendel-Chavez
- Department of Hematology and Immunology, Hôpitaux Universitaires Paris-Sud, INSERM 1184, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Bruno Stankoff
- Department of Neurology, Hôpital Saint-Antoine, Paris, France
| | - Jacques Gasnault
- Department of Internal Medicine, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France
| | - Yassine Taoufik
- Department of Hematology and Immunology, Hôpitaux Universitaires Paris-Sud, INSERM 1184, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Eli Hatchwell
- Population Bio UK, Inc., Oxfordshire, United Kingdom
| |
Collapse
|
119
|
Phan ANL, Pham TTT, Huynh N, Nguyen TM, Cao CTT, Nguyen DT, Le DT, Bui C. Novel compound heterozygous stop-gain mutations of LRBA in a Vietnamese patient with Common Variable Immune Deficiency. Mol Genet Genomic Med 2020; 8:e1216. [PMID: 32154999 PMCID: PMC7216813 DOI: 10.1002/mgg3.1216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Lipopolysaccharide‐responsive and beige‐like anchor (LRBA) deficiency is a rare autosomal recessive common variable immunodeficiency (CVID), affecting 1:25,000–1:50,000 people worldwide. Biallelic mutations in the gene LRBA have been implicated in affected individuals. Methods We report a 16‐year‐old Vietnamese, male patient with recurrent CVID symptoms including chronic diarrhea, interstitial pneumonia, cutaneous granulomatous lesions, hepatosplenomegaly, and finger clubbing. Immunological analyses and whole exome sequencing (WES) were performed to investigate phenotypic and genotypic features. Results Immunological analyses revealed hypogammaglobulinemia and low ratios of CD4+/CD8+ T cells. Two novel compound heterozygous stop‐gain mutation in LRBA were identified: c.1933C > T (p.R645X) and c.949C > T (p.R317X). Sanger sequencing confirmed the segregation of these variants from the intact parents. The abolished LRBA protein expression was shown by immunoblot analysis. Subsequent treatment potentially saves the child from the same immune thrombocytopenia which led to his brother's untimely death; likely caused by the same LRBA mutations. Conclusion This first report of LRBA deficiency in Vietnam expands our knowledge of the diverse phenotypes and genotypes driving CVID. Finally, the utilization of WES shows great promise as an effective diagnostic for CVID in our setting.
Collapse
Affiliation(s)
| | - Thuy T. T. Pham
- Functional Genomic UnitDNA Medical TechnologyHo Chi Minh CityVietnam
| | - Nghia Huynh
- Department of HematologyHo Chi Minh City University of Medicine and PharmacyHo Chi Minh CityVietnam
| | | | | | | | - Duc T. Le
- Functional Genomic UnitDNA Medical TechnologyHo Chi Minh CityVietnam
| | - Chi‐Bao Bui
- Functional Genomic UnitDNA Medical TechnologyHo Chi Minh CityVietnam
- Biomedical Research CenterSchool of Medicine, Vietnam National University HCMCHo Chi Minh CityVietnam
- Molecular GeneticsCity Children’s HospitalHo Chi Minh CityVietnam
| |
Collapse
|
120
|
Pecoraro A, Crescenzi L, Varricchi G, Marone G, Spadaro G. Heterogeneity of Liver Disease in Common Variable Immunodeficiency Disorders. Front Immunol 2020; 11:338. [PMID: 32184784 PMCID: PMC7059194 DOI: 10.3389/fimmu.2020.00338] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent primary immunodeficiency (PID) in adulthood and is characterized by severe reduction of immunoglobulin serum levels and impaired antibody production in response to vaccines and pathogens. Beyond the susceptibility to infections, CVID encompasses a wide spectrum of clinical manifestations related to a complex immune dysregulation that also affects liver. Although about 50% CVID patients present persistently deranged liver function, burden, and nature of liver involvement have not been systematically investigated in most cohort studies published in the last decades. Therefore, the prevalence of liver disease in CVID widely varies depending on the study design and the sampling criteria. This review seeks to summarize the evidence about the most relevant causes of liver involvement in CVID, including nodular regenerative hyperplasia (NRH), infections and malignancies. We also describe the clinical features of liver disease in some monogenic forms of PID included in the clinical spectrum of CVID as ICOS, NFKB1, NFKB2, CTLA-4, PI3Kδ pathway, ADA2, and IL21-R genetic defects. Finally, we discuss the clinical applications of the various diagnostic tools and the possible therapeutic approaches for the management of liver involvement in the context of CVID.
Collapse
Affiliation(s)
- Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Ludovica Crescenzi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research, WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Monaldi Hospital, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research, WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| |
Collapse
|
121
|
Ho HE, Cunningham-Rundles C. Non-infectious Complications of Common Variable Immunodeficiency: Updated Clinical Spectrum, Sequelae, and Insights to Pathogenesis. Front Immunol 2020; 11:149. [PMID: 32117289 PMCID: PMC7025475 DOI: 10.3389/fimmu.2020.00149] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Non-infectious complications in common variable immunodeficiency (CVID) have emerged as a major clinical challenge. Detailed clinical spectrum, organ-specific pathologies and associated sequelae from 623 CVID patients followed in New York since 1974 were analyzed, and recent insights to pathogenesis were reviewed. Non-infectious manifestations were present in 68.1% of patients, and they do not tend to be present in isolation. They include autoimmunity (33.2%), chronic lung disease (30.3%), lymphoid hyperplasia/splenomegaly (20.9%), liver disease (12.7%), granulomas (9.3%), gastrointestinal disease (7.3%), lymphoma (6.7%), and other malignancies (6.4%). In the lungs, interstitial disease and bronchiectasis were the most common findings, with lymphoma at this site being a rare (n = 6), but serious, manifestation. Bronchiectasis was not a prerequisite for the development of interstitial disease. In the liver, granulomas and nodular regenerative hyperplasia were the most common. Gastrointestinal disease may affect any segment of the intestinal tract, with lymphoid infiltrations and villous blunting being the leading histologic findings. With progression of organ-specific diseases, a wide spectrum of associated sequelae was observed. Lymphoma was more common in females (P = 0.036)—all B cell types except in one subject. Solid organ transplantations (liver, n = 5; lung, n = 4; combined lung and heart, n = 2) and hematopoietic stem cell transplantations (for B cell lymphoma, n = 1) have rarely been performed in this cohort, with mixed outcomes. Recent identification of monogenic defects, in ~10–30% of various CVID cohorts, has highlighted the molecular pathways that can affect both antibody production and broader immune regulation. In addition, cellular defects in both innate and adaptive immune systems are increasingly recognized in this syndrome.
Collapse
Affiliation(s)
- Hsi-En Ho
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charlotte Cunningham-Rundles
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
122
|
Christiansen M, Offersen R, Jensen JMB, Petersen MS, Larsen CS, Mogensen TH. Identification of Novel Genetic Variants in CVID Patients With Autoimmunity, Autoinflammation, or Malignancy. Front Immunol 2020; 10:3022. [PMID: 32047491 PMCID: PMC6996488 DOI: 10.3389/fimmu.2019.03022] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by recurrent bacterial infections and defined by reduced levels of IgG, IgA, and/or IgM, insufficient response to polysaccharide vaccination, and an abnormal B-cell immunophenotype with a significantly reduced fraction of isotype-switched memory B cells. In addition to this infectious phenotype, at least one third of the patients experience autoimmune, autoinflammatory, granulomatous, and/or malignant complications. The very heterogeneous presentation strongly suggests a collection of different disease entities with somewhat different pathogeneses and most likely diverse genetic etiologies. Major progress has been made during recent years with the advent and introduction of next-generation sequencing, initially for research purposes, but more recently in clinical practice. In the present study, we performed whole exome sequencing on 20 CVID patients with autoimmunity, autoinflammation, and/or malignancy from the Danish CVID cohort with the aim to identify gene variants with a certain, possible, or potential disease-causing role in CVID. Through bioinformatics analyses, we identified variants with possible/probable disease-causing potential in nine of the patients. Of these, three patients had four variants in three different genes classified as likely pathogenic (NFKB1, TNFAIP3, and TTC37), whereas in six patients, we identified seven variants of possible pathogenic potential classified as variants of unknown significance (STAT3, IL17F, IRAK4, DDX41, NLRC3, TNFRSF1A, and PLCG2). In the remaining 11 patients, we did not identify possible genetic causes. Genetic findings were correlated to clinical disease presentation, clinical immunological phenotype, and disease complications. We suggest that the variants identified in the present work should lay the ground for future studies to functionally validate their disease-causing potential and to investigate at the mechanistic and molecular level their precise role in CVID pathogenesis. Overall, we believe that the present work contributes important new insights into the genetic basis of CVID and particular in the subset of CVID patients with a complex phenotype involving not only infection, but also autoimmunity, autoinflammation, and malignancy.
Collapse
Affiliation(s)
- Mette Christiansen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Rasmus Offersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Carsten S Larsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
123
|
Abolhassani H, Lim CK, Aghamohammadi A, Hammarström L. Histocompatibility Complex Status and Mendelian Randomization Analysis in Unsolved Antibody Deficiency. Front Immunol 2020; 11:14. [PMID: 32038658 PMCID: PMC6993084 DOI: 10.3389/fimmu.2020.00014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 01/06/2020] [Indexed: 11/13/2022] Open
Abstract
The pathogenesis in the majority of patients with common variable immunodeficiency (CVID), the most common symptomatic primary immunodeficiency, remains unknown. We aimed to compare the minor and major histocompatibility complex (MHC) markers as well as polygenic scores of common genetic variants between patients with monogenic CVID and without known genetic mutation detected. Monogenic patients were identified in a CVID cohort using whole exome sequencing. Computational full-resolution MHC typing and confirmatory PCR amplicon-based high-resolution typing were performed. Exome-wide polygenic scores were developed using significantly different variants and multi-variant Mendelian randomization (MR) analyses were used to test the causality of significant genetic variants on antibody levels and susceptibility to infectious diseases. Among 83 CVID patients (44.5% females), monogenic defects were found in 40 individuals. Evaluation of the remaining CVID patients without known genetic mutation detected showed 13 and 27 significantly associated MHC-class I and II alleles, respectively. The most significant partial haplotype linked with the unsolved CVID was W*01:01:01-DMA*01:01:01-DMB*01:03:01:02-TAP1*01:01:01 (P < 0.001), where carriers had a late onset of the disease, only infection clinical phenotype, a non-familial form of CVID, post-germinal center defects and a non-progressive form of their disease. Exclusion of monogenic diseases allowed MR analyses to identify significant genetic variants associated with bacterial infections and improved discrepancies observed in MR analyses of previous GWAS studies with low pleiotropy mainly for a lower respiratory infection, bacterial infection and Streptococcal infection. This is the first study on the full-resolution of minor and major MHC typing and polygenic scores on CVID patients and showed that exclusion of monogenic forms of the disease unraveled an independent role of MHC genes and common genetic variants in the pathogenesis of CVID.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Che Kang Lim
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
124
|
Kwon WK, Choi S, Kim HJ, Huh HJ, Kang JM, Kim YJ, Yoo KH, Ahn K, Cho HK, Peck KR, Jang JH, Ki CS, Kang ES. Flow Cytometry for the Diagnosis of Primary Immunodeficiency Diseases: A Single Center Experience. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:292-305. [PMID: 32009323 PMCID: PMC6997278 DOI: 10.4168/aair.2020.12.2.292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
Purpose While there is an urgent need for diagnosis and therapeutic intervention in patients with primary immunodeficiency diseases (PIDs), current genetic tests have drawbacks. We retrospectively reviewed the usefulness of flow cytometry (FCM) as a quick tool for immunophenotyping and functional assays in patients suspected to have PIDs at a single tertiary care institute. Methods Between January 2001 and June 2018, patients suspected of having PIDs were subjected to FCM tests, including lymphocyte subset analysis, detection of surface- or intracellular-target proteins, and functional analysis of immune cells, at Samsung Medical Center, Seoul, Korea. The genetic diagnosis was performed using Sanger or diagnostic exome sequencing. Results Of 60 patients diagnosed with definite or probable PID according to the European Society of Immune Deficiencies criteria, 24 patients were provided with useful information about immunological dysfunction after initial FCM testing. In 10 patients, the PID diagnosis was based on abnormal findings in FCM testing without genetic tests. The FCM findings provided strong evidence for the diagnosis of severe combined immunodeficiency (n = 6), X-linked chronic granulomatous diseases (CGD) (n = 6), leukocyte adhesion deficiency type 1 (n = 3), X-linked agammaglobulinemia (n = 11), autoimmune lymphoproliferative syndrome-FASLG (n = 1), and familial hemophagocytic lymphohistiocytosis type 2 (n = 1), and probable evidence for autosomal recessive-CGD (n = 2), autosomal dominant-hyper-immunoglobulin E (IgE)-syndrome (n = 1), and STAT1 gain-of-function mutation (n = 1). In PIDs derived from PIK3CD (n = 2), LRBA (n = 2), and CTLA4 mutations (n = 3), the FCM test provided useful evidence of immune abnormalities and a tool for treatment monitoring. Conclusions The initial application of FCM, particularly with known protein targets on immune cells, would facilitate the timely diagnosis of PIDs and thus would support clinical decisions and improve the clinical outcome.
Collapse
Affiliation(s)
- Won Kyung Kwon
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - SooIn Choi
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Soonchunhyang University Hospital, Cheonan, Korea
| | - Hee Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Man Kang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yae Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Kyung Cho
- Department of Pediatrics, Gachon University Gil Medical Center, Incheon, Korea
| | - Kyong Ran Peck
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ja Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Green Cross Genome, Yongin, Korea
| | | | - Eun Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
125
|
Silva SL, Fonseca M, Pereira MLM, Silva SP, Barbosa RR, Serra-Caetano A, Blanco E, Rosmaninho P, Pérez-Andrés M, Sousa AB, Raposo AASF, Gama-Carvalho M, Victorino RMM, Hammarstrom L, Sousa AE. Monozygotic Twins Concordant for Common Variable Immunodeficiency: Strikingly Similar Clinical and Immune Profile Associated With a Polygenic Burden. Front Immunol 2019; 10:2503. [PMID: 31824477 PMCID: PMC6882918 DOI: 10.3389/fimmu.2019.02503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/07/2019] [Indexed: 01/10/2023] Open
Abstract
Monozygotic twins provide a unique opportunity to better understand complex genetic diseases and the relative contribution of heritable factors in shaping the immune system throughout life. Common Variable Immunodeficiency Disorders (CVID) are primary antibody defects displaying wide phenotypic and genetic heterogeneity, with monogenic transmission accounting for only a minority of the cases. Here, we report a pair of monozygotic twins concordant for CVID without a family history of primary immunodeficiency. They featured a remarkably similar profile of clinical manifestations and immunological alterations at diagnosis (established at age 37) and along the subsequent 15 years of follow-up. Interestingly, whole-exome sequencing failed to identify a monogenic cause for CVID, but unraveled a combination of heterozygous variants, with a predicted deleterious impact. These variants were found in genes involved in relevant immunological pathways, such as JUN, PTPRC, TLR1, ICAM1, and JAK3. The potential for combinatorial effects translating into the observed disease phenotype is inferred from their roles in immune pathways, namely in T and B cell activation. The combination of these genetic variants is also likely to impose a significant constraint on environmental influences, resulting in a similar immunological phenotype in both twins, despite exposure to different living conditions. Overall, these cases stress the importance of integrating NGS data with clinical and immunological phenotypes at the single-cell level, as provided by multi-dimensional flow-cytometry, in order to understand the complex genetic landscape underlying the vast majority of patients with CVID, as well as those with other immunodeficiencies.
Collapse
Affiliation(s)
- Susana L Silva
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal.,Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Mariana Fonseca
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal
| | - Marcelo L M Pereira
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Sara P Silva
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal.,Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Rita R Barbosa
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Serra-Caetano
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal
| | - Elena Blanco
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC, Number CB16/12/00400, Institute of Health Carlos III, Madrid, Spain
| | - Pedro Rosmaninho
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal
| | - Martin Pérez-Andrés
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC, Number CB16/12/00400, Institute of Health Carlos III, Madrid, Spain
| | - Ana Berta Sousa
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal.,Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Alexandre A S F Raposo
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal
| | - Margarida Gama-Carvalho
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Rui M M Victorino
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal.,Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | | | - Ana E Sousa
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal
| |
Collapse
|
126
|
Gereige JD, Maglione PJ. Current Understanding and Recent Developments in Common Variable Immunodeficiency Associated Autoimmunity. Front Immunol 2019; 10:2753. [PMID: 31921101 PMCID: PMC6914703 DOI: 10.3389/fimmu.2019.02753] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency and comprises a group of disorders with similar antibody deficiency but a myriad of different etiologies, most of which remain undefined. The variable aspect of CVID refers to the approximately half of patients who develop non-infectious complications in addition to heightened susceptibility to infection. The pathogenesis of these complications is poorly understood and somewhat counterintuitive because these patients that are defined by their immune futility simultaneously have elevated propensity for autoimmune disease. There are numerous aspects of immune dysregulation associated with autoimmunity in CVID that have only begun to be studied. These findings include elevations of T helper type 1 and follicular helper T cells and B cells expressing low levels of CD21 as well as reciprocal decreases in regulatory T cells and isotype-switched memory B cells. Recently, advances in genomics have furthered our understanding of the fundamental biology underlying autoimmunity in CVID and led to precision therapeutic approaches. However, these genetic etiologies are also associated with clinical heterogeneity and incomplete penetrance, highlighting the fact that continued research efforts remain necessary to optimize treatment. Additional factors, such as commensal microbial dysbiosis, remain to be better elucidated. Thus, while recent advances in our understanding of CVID-associated autoimmunity have been exciting and substantial, these current scientific advances must now serve as building blocks for the next stages of discovery.
Collapse
Affiliation(s)
- Jessica D Gereige
- Department of Pulmonary, Allergy, Sleep & Critical Care Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
| | - Paul J Maglione
- Department of Pulmonary, Allergy, Sleep & Critical Care Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
127
|
Cunningham-Rundles C. Common variable immune deficiency: case studies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:449-456. [PMID: 31808912 PMCID: PMC6913496 DOI: 10.1182/hematology.2019002062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Common variable immune deficiency (CVID) is one of the most common congenital immune defects encountered in clinical practice. The condition occurs equally in males and females, and most commonly in the 20- to 40-year-old age group. The diagnosis is made by documenting reduced serum concentrations of immunoglobulin G (IgG), IgA, and usually IgM, together with loss of protective antibodies. The genetics of this syndrome are complex and are still being unraveled, but the hallmarks for most patients, as with other immune defects, include acute and chronic infections of the sinopulmonary tract. However, other noninfectious autoimmune or inflammatory conditions may also occur in CVID, and indeed these may be the first and only sign that a significant immune defect is present. These manifestations include episodes of immune thrombocytopenia, autoimmune hemolytic anemia, or neutropenia, in addition to splenomegaly, generalized or worrisome lymphadenopathy, and malignancy, especially lymphoma. These issues commonly bring the patient to the attention of hematologists for both evaluation and treatment. This article discusses 3 cases in which patients with CVID had some of these presenting issues and what hematology input was required.
Collapse
Affiliation(s)
- Charlotte Cunningham-Rundles
- Departments of Medicine and Pediatrics, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
128
|
Human diseases caused by impaired signal transducer and activator of transcription and Janus kinase signaling. Curr Opin Pediatr 2019; 31:843-850. [PMID: 31693596 DOI: 10.1097/mop.0000000000000841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The Janus kinase (JAK) and signal transducer of activation (STAT) pathway plays a key role in the immune system. It is employed by diverse cytokines, interferons, growth factors and related molecules. Mutations in JAK/STAT pathway have been implicated in human disease. Here we review JAK/STAT biology and diseases associated with mutations in this pathway. RECENT FINDINGS Over the past 10 years, many mutations in JAK/STAT pathway has been discovered. These disorders have provided insights to human immunology. SUMMARY In this review, we summarize the biology of each STAT and JAK as well as discuss the human disease that results from somatic or germline mutations to include typical presentation, immunological parameters and treatment.
Collapse
|
129
|
Ameratunga R, Lehnert K, Woon ST. All Patients With Common Variable Immunodeficiency Disorders (CVID) Should Be Routinely Offered Diagnostic Genetic Testing. Front Immunol 2019; 10:2678. [PMID: 31824486 PMCID: PMC6883368 DOI: 10.3389/fimmu.2019.02678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
130
|
Cunningham-Rundles C. Common variable immune deficiency: case studies. Blood 2019; 134:1787-1795. [PMID: 31751486 PMCID: PMC6872959 DOI: 10.1182/blood.2019002062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/10/2019] [Indexed: 12/18/2022] Open
Abstract
Common variable immune deficiency (CVID) is one of the most common congenital immune defects encountered in clinical practice. The condition occurs equally in males and females, and most commonly in the 20- to 40-year-old age group. The diagnosis is made by documenting reduced serum concentrations of immunoglobulin G (IgG), IgA, and usually IgM, together with loss of protective antibodies. The genetics of this syndrome are complex and are still being unraveled, but the hallmarks for most patients, as with other immune defects, include acute and chronic infections of the sinopulmonary tract. However, other noninfectious autoimmune or inflammatory conditions may also occur in CVID, and indeed these may be the first and only sign that a significant immune defect is present. These manifestations include episodes of immune thrombocytopenia, autoimmune hemolytic anemia, or neutropenia, in addition to splenomegaly, generalized or worrisome lymphadenopathy, and malignancy, especially lymphoma. These issues commonly bring the patient to the attention of hematologists for both evaluation and treatment. This article discusses 3 cases in which patients with CVID had some of these presenting issues and what hematology input was required.
Collapse
|
131
|
Edwards ESJ, Bosco JJ, Aui PM, Stirling RG, Cameron PU, Chatelier J, Hore-Lacy F, O'Hehir RE, van Zelm MC. Predominantly Antibody-Deficient Patients With Non-infectious Complications Have Reduced Naive B, Treg, Th17, and Tfh17 Cells. Front Immunol 2019; 10:2593. [PMID: 31803177 PMCID: PMC6873234 DOI: 10.3389/fimmu.2019.02593] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Patients with predominantly antibody deficiency (PAD) suffer from severe and recurrent infections that require lifelong immunoglobulin replacement and prophylactic antibiotic treatment. Disease incidence is estimated to be 1:25,000 worldwide, and up to 68% of patients develop non-infectious complications (NIC) including autoimmunity, which are difficult to treat, causing high morbidity, and early mortality. Currently, the etiology of NIC is unknown, and there are no diagnostic and prognostic markers to identify patients at risk. Objectives: To identify immune cell markers that associate with NIC in PAD patients. Methods: We developed a standardized 11-color flow cytometry panel that was utilized for in-depth analysis of B and T cells in 62 adult PAD patients and 59 age-matched controls. Results: Nine males had mutations in Bruton's tyrosine kinase (BTK) and were defined as having X-linked agammaglobulinemia. The remaining 53 patients were not genetically defined and were clinically diagnosed with agammaglobulinemia (n = 1), common variable immunodeficiency (CVID) (n = 32), hypogammaglobulinemia (n = 13), IgG subclass deficiency (n = 1), and specific polysaccharide antibody deficiency (n = 6). Of the 53, 30 (57%) had one or more NICs, 24 patients had reduced B-cell numbers, and 17 had reduced T-cell numbers. Both PAD–NIC and PAD+NIC groups had significantly reduced Ig class-switched memory B cells and naive CD4 and CD8 T-cell numbers. Naive and IgM memory B cells, Treg, Th17, and Tfh17 cells were specifically reduced in the PAD+NIC group. CD21lo B cells and Tfh cells were increased in frequencies, but not in absolute numbers in PAD+NIC. Conclusion: The previously reported increased frequencies of CD21lo B cells and Tfh cells are the indirect result of reduced naive B-cell and T-cell numbers. Hence, correct interpretation of immunophenotyping of immunodeficiencies is critically dependent on absolute cell counts. Finally, the defects in naive B- and T-cell numbers suggest a mild combined immunodeficiency in PAD patients with NIC. Together with the reductions in Th17, Treg, and Tfh17 numbers, these key differences could be utilized as biomarkers to support definitive diagnosis and to predict for disease progression.
Collapse
Affiliation(s)
- Emily S J Edwards
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Pei M Aui
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia
| | - Robert G Stirling
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Paul U Cameron
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Josh Chatelier
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Fiona Hore-Lacy
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology (Research), Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
132
|
Leiding JW, Ballow M. Redefining Precision Medicine in Disorders of Immune Dysregulation. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:2801-2803. [DOI: 10.1016/j.jaip.2019.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 01/09/2023]
|
133
|
Aggarwal V, Banday AZ, Jindal AK, Das J, Rawat A. Recent advances in elucidating the genetics of common variable immunodeficiency. Genes Dis 2019; 7:26-37. [PMID: 32181273 PMCID: PMC7063417 DOI: 10.1016/j.gendis.2019.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/19/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Common variable immunodeficiency disorders (CVID), a heterogeneous group of inborn errors of immunity, is the most common symptomatic primary immunodeficiency disorder. Patients with CVID have highly variable clinical presentation. With the advent of whole genome sequencing and genome wide association studies (GWAS), there has been a remarkable improvement in understanding the genetics of CVID. This has also helped in understanding the pathogenesis of CVID and has drastically improved the management of these patients. A multi-omics approach integrating the DNA sequencing along with RNA sequencing, proteomics, epigenetic and metabolomics profile is the need of the hour to unravel specific CVID associated disease pathways and novel therapeutic targets. In this review, we elaborate various techniques that have helped in understanding the genetics of CVID.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aaqib Zaffar Banday
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Kumar Jindal
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jhumki Das
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
134
|
Gowda C, Song C, Ding Y, Iyer S, Dhanyamraju PK, McGrath M, Bamme Y, Soliman M, Kane S, Payne JL, Dovat S. Cellular signaling and epigenetic regulation of gene expression in leukemia. Adv Biol Regul 2019; 75:100665. [PMID: 31623972 PMCID: PMC7239353 DOI: 10.1016/j.jbior.2019.100665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Alterations in normal regulation of gene expression is one of the key features of hematopoietic malignancies. In order to gain insight into the mechanisms that regulate gene expression in these diseases, we dissected the role of the Ikaros protein in leukemia. Ikaros is a DNA-binding, zinc finger protein that functions as a transcriptional regulator and a tumor suppressor in leukemia. The use of ChIP-seq, RNA-seq, and ATAC-seq—coupled with functional experiments—revealed that Ikaros regulates both the global epigenomic landscape and epigenetic signature at promoter regions of its target genes. Casein kinase II (CK2), an oncogenic kinase that is overexpressed in leukemia, directly phosphorylates Ikaros at multiple, evolutionarily-conserved residues. Phosphorylation of Ikaros impairs the protein's ability to regulate both the transcription of its target genes and global epigenetic landscape in leukemia. Treatment of leukemia cells with a specific inhibitor of CK2 restores Ikaros function, resulting in cytotoxicity of leukemia cells. Here, we review the mechanisms through which the CK2-Ikaros signaling axis regulates the global epigenomic landscape and expression of genes that control cellular proliferation in leukemia.
Collapse
Affiliation(s)
- Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Soumya Iyer
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Pavan K Dhanyamraju
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mary McGrath
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yevgeniya Bamme
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mario Soliman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Shriya Kane
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jonathon L Payne
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
135
|
Chinn IK, Chan AY, Chen K, Chou J, Dorsey MJ, Hajjar J, Jongco AM, Keller MD, Kobrynski LJ, Kumanovics A, Lawrence MG, Leiding JW, Lugar PL, Orange JS, Patel K, Platt CD, Puck JM, Raje N, Romberg N, Slack MA, Sullivan KE, Tarrant TK, Torgerson TR, Walter JE. Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: A working group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 2019; 145:46-69. [PMID: 31568798 DOI: 10.1016/j.jaci.2019.09.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/02/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
Abstract
Genetic testing has become an integral component of the diagnostic evaluation of patients with suspected primary immunodeficiency diseases. Results of genetic testing can have a profound effect on clinical management decisions. Therefore clinical providers must demonstrate proficiency in interpreting genetic data. Because of the need for increased knowledge regarding this practice, the American Academy of Allergy, Asthma & Immunology Primary Immunodeficiency Diseases Committee established a work group that reviewed and summarized information concerning appropriate methods, tools, and resources for evaluating variants identified by genetic testing. Strengths and limitations of tests frequently ordered by clinicians were examined. Summary statements and tables were then developed to guide the interpretation process. Finally, the need for research and collaboration was emphasized. Greater understanding of these important concepts will improve the diagnosis and management of patients with suspected primary immunodeficiency diseases.
Collapse
Affiliation(s)
- Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex.
| | - Alice Y Chan
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Karin Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Janet Chou
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Morna J Dorsey
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Joud Hajjar
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex
| | - Artemio M Jongco
- Departments of Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY; Center for Health Innovations and Outcomes Research, Feinstein Institute for Medical Research, Great Neck, NY; Division of Allergy & Immunology, Cohen Children's Medical Center of New York, Great Neck, NY
| | - Michael D Keller
- Department of Allergy and Immunology, Children's National Hospital, Washington, DC
| | - Lisa J Kobrynski
- Department of Pediatrics, Division of Allergy and Immunology, Emory University School of Medicine, Atlanta, Ga
| | - Attila Kumanovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Monica G Lawrence
- Department of Medicine, Division of Asthma, Allergy and Immunology, University of Virginia Health System, Charlottesville, Va
| | - Jennifer W Leiding
- Departments of Pediatrics and Medicine, University of South Florida, St Petersburg, Fla; Division of Pediatric Allergy/Immunology, Johns Hopkins-All Children's Hospital, St Petersburg, Fla; Cancer and Blood Disorders Institute, Johns Hopkins-All Children's Hospital, St Petersburg, Fla
| | - Patricia L Lugar
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC
| | - Jordan S Orange
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY; New York Presbyterian Morgan Stanley Children's Hospital, New York, NY
| | - Kiran Patel
- Department of Pediatrics, Division of Allergy and Immunology, Emory University School of Medicine, Atlanta, Ga
| | - Craig D Platt
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Jennifer M Puck
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Nikita Raje
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, Mo; Division of Allergy/Asthma/Immunology, Children's Mercy Hospital, Kansas City, Mo
| | - Neil Romberg
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Maria A Slack
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, Rochester, NY; Department of Pediatrics, Division of Pediatric Allergy and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Kathleen E Sullivan
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Teresa K Tarrant
- Department of Medicine, Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Jolan E Walter
- Departments of Pediatrics and Medicine, University of South Florida, St Petersburg, Fla; Division of Pediatric Allergy/Immunology, Johns Hopkins-All Children's Hospital, St Petersburg, Fla; Division of Pediatric Allergy Immunology, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|
136
|
Abstract
Primary immunodeficiency diseases are a heterogeneous group of rare inherited disorders of innate or adaptive immune system function. Patients with primary immunodeficiencies typically present with recurrent and severe infections in infancy or young adulthood. More recently, the co-occurrence of autoimmune, benign lymphoproliferative, atopic, and malignant complications has been described. The diagnosis of a primary immunodeficiency disorder requires a thorough assessment of a patient's underlying immune system function. Historically, this has been accomplished at the time of symptomatic presentation by measuring immunoglobulins, complement components, protective antibody titers, or immune cell counts in the peripheral blood. Although these data can be used to critically assess the degree of immune dysregulation in the patient, this approach fall short in at least 2 regards. First, this assessment often occurs after the patient has suffered life-threatening infectious or autoinflammatory complications. Second, these data fail to uncover an underlying molecular cause of the patient's primary immune dysfunction, prohibiting the use of molecularly targeted therapeutic interventions. Within the last decade, the field of primary immunodeficiency diagnostics has been revolutionized by 2 major molecular advancements: (1) the onset of newborn screening in 2008, and (2) the onset of next-generation sequencing in 2010. In this article, the techniques of newborn screening and next-generation sequencing are reviewed and their respective impacts on the field of primary immunodeficiency disorders are discussed with a specific emphasis on severe combined immune deficiency and common variable immune deficiency.
Collapse
Affiliation(s)
- Jocelyn R Farmer
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Center for Advanced Molecular Diagnostics, Brigham and Women's Hospital, Boston, MA, USA.
| | - Vinay S Mahajan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Center for Advanced Molecular Diagnostics, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
137
|
Ellyard JI, Tunningley R, Lorenzo AM, Jiang SH, Cook A, Chand R, Talaulikar D, Hatch AM, Wilson A, Vinuesa CG, Cook MC, Fulcher DA. Non-parametric Heat Map Representation of Flow Cytometry Data: Identifying Cellular Changes Associated With Genetic Immunodeficiency Disorders. Front Immunol 2019; 10:2134. [PMID: 31572362 PMCID: PMC6749093 DOI: 10.3389/fimmu.2019.02134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
Genetic primary immunodeficiency diseases are increasingly recognized, with pathogenic mutations changing the composition of circulating leukocyte subsets measured by flow cytometry (FCM). Discerning changes in multiple subpopulations is challenging, and subtle trends might be missed if traditional reference ranges derived from a control population are applied. We developed an algorithm where centiles were allocated using non-parametric comparison to controls, generating multiparameter heat maps to simultaneously represent all leukocyte subpopulations for inspection of trends within a cohort or segregation with a putative genetic mutation. To illustrate this method, we analyzed patients with Primary Antibody Deficiency (PAD) and kindreds harboring mutations in TNFRSF13B (encoding TACI), CTLA4, and CARD11. In PAD, loss of switched memory B cells (B-SM) was readily demonstrated, but as a continuous, not dichotomous, variable. Expansion of CXCR5+/CD45RA- CD4+ T cells (X5-Th cells) was a prominent feature in PAD, particularly in TACI mutants, and patients with expansion in CD21-lo B cells or transitional B cells were readily apparent. We observed differences between unaffected and affected TACI mutants (increased B cells and CD8+ T-effector memory cells, loss of B-SM cells and non-classical monocytes), cellular signatures that distinguished CTLA4 haploinsufficiency itself (expansion of plasmablasts, activated CD4+ T cells, regulatory T cells, and X5-Th cells) from its clinical expression (B-cell depletion), and those that were associated with CARD11 gain-of-function mutation (decreased CD8+ T effector memory cells, B cells, CD21-lo B cells, B-SM cells, and NK cells). Co-efficients of variation exceeded 30% for 36/54 FCM parameters, but by comparing inter-assay variation with disease-related variation, we ranked each parameter in terms of laboratory precision vs. disease variability, identifying X5-Th cells (and derivatives), naïve, activated, and central memory CD8+ T cells, transitional B cells, memory and SM-B cells, plasmablasts, activated CD4 cells, and total T cells as the 10 most useful cellular parameters. Applying these to cluster analysis of our PAD cohort, we could detect subgroups with the potential to reflect underlying genotypes. Heat mapping of normalized FCM data reveals cellular trends missed by standard reference ranges, identifies changes associating with a phenotype or genotype, and could inform hypotheses regarding pathogenesis of genetic immunodeficiency.
Collapse
Affiliation(s)
- Julia I Ellyard
- Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Robert Tunningley
- Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Ayla May Lorenzo
- Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Simon H Jiang
- Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Department of Nephrology, The Canberra Hospital, Canberra, ACT, Australia
| | - Amelia Cook
- Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Rochna Chand
- Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Department of Immunology, The Canberra Hospital, Canberra, ACT, Australia
| | - Dipti Talaulikar
- Department of Hematology, The Canberra Hospital, Canberra, ACT, Australia
| | - Ann-Maree Hatch
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Anastasia Wilson
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Carola G Vinuesa
- Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Matthew C Cook
- Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Department of Immunology, The Canberra Hospital, Canberra, ACT, Australia
| | - David A Fulcher
- Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
138
|
Romberg N, Lawrence MG. Birds of a feather: Common variable immune deficiencies. Ann Allergy Asthma Immunol 2019; 123:461-467. [PMID: 31382019 DOI: 10.1016/j.anai.2019.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To update the reader on recently proposed common variable immune deficiency (CVID) diagnostic criteria, newly uncovered CVID pathobiology, freshly identified CVID-related genes, and novel CVID therapies. DATA SOURCES PubMed Central. STUDY SELECTIONS We selected 60 clinical and translational research articles that have shaped CVID diagnostic criteria, introduced personalized therapies, and advanced our understanding of CVID biology and genetics. We have incorporated recent articles and older published work that are foundational to the modern understanding of this protean disease. RESULTS CVID has proven to be a heterogenous group of antibody deficiency diseases driven by defects in diverse biologic processes, including B-cell development, activation, tolerance, class-switch recombination, somatic hypermutation, and lymphoproliferation. Recent genetic advances have enabled identification of several CVID-related gene defects that may contribute to patients' infectious and noninfectious symptoms. CONCLUSION Improved understanding of the aberrant biologic processes that drive CVID and the disease's genetic basis may be useful in directing therapeutic decisions, especially in cases complicated by autoimmune, lymphoproliferative, and inflammatory features.
Collapse
Affiliation(s)
- Neil Romberg
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Monica G Lawrence
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
139
|
Yska HAF, Elsink K, Kuijpers TW, Frederix GWJ, van Gijn ME, van Montfrans JM. Diagnostic Yield of Next Generation Sequencing in Genetically Undiagnosed Patients with Primary Immunodeficiencies: a Systematic Review. J Clin Immunol 2019; 39:577-591. [PMID: 31250335 PMCID: PMC6697711 DOI: 10.1007/s10875-019-00656-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND As the application of next generation sequencing (NGS) is moving to earlier stages in the diagnostic pipeline for primary immunodeficiencies (PIDs), re-evaluation of its effectiveness is required. The aim of this study is to systematically review the diagnostic yield of NGS in PIDs. METHODS PubMed and Embase databases were searched for relevant studies. Studies were eligible when describing the use of NGS in patients that had previously been diagnosed with PID on clinical and/or laboratory findings. Relevant data on study characteristics, technological performance and diagnostic yield were extracted. RESULTS Fourteen studies were eligible for data extraction. Six studies described patient populations from specific PID subcategories. The remaining studies included patients with unsorted PIDs. The studies were based on populations from Italy, Iran, Turkey, Thailand, the Netherlands, Norway, Saudi Arabia, Sweden, the UK, and the USA. Eight studies used an array-based targeted gene panel, four used WES in combination with a PID filter, and two used both techniques. The mean reported reading depth ranged from 98 to 1337 times. Five studies described the sensitivity of the applied techniques, ranging from 83 to 100%, whereas specificity ranged from 45 to 99.9%. The percentage of patients who were genetically diagnosed ranged from 15 to 79%. Several studies described clinical implications of the genetic findings. DISCUSSION NGS has the ability to contribute significantly to the identification of molecular mechanisms in PID patients. The diagnostic yield highly depends on population and on the technical circumstances under which NGS is employed. Further research is needed to determine the exact diagnostic yield and clinical implications of NGS in patients with PID.
Collapse
Affiliation(s)
- Hemmo A F Yska
- Department of Pediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Kim Elsink
- Department of Pediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Geert W J Frederix
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Mariëlle E van Gijn
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
140
|
Wong GK, Barmettler S, Heather JM, Millar D, Penny SA, Huissoon A, Richter A, Cobbold M. Aberrant X chromosome skewing and acquired clonal hematopoiesis in adult-onset common variable immunodeficiency. JCI Insight 2019; 4:127614. [PMID: 31341110 PMCID: PMC6675553 DOI: 10.1172/jci.insight.127614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
Advances in genomic medicine have elucidated an increasing number of genetic etiologies for patients with common variable immunodeficiency (CVID). However, there is heterogeneity in clinical and immunophenotypic presentations and a limited understanding of the underlying pathophysiology of many cases. The primary defects in CVID may extend beyond the adaptive immune system, and the combined defect in both the myeloid and lymphoid compartments suggests the mechanism may involve bone marrow output and earlier progenitors. Using the methylation profile of the human androgen receptor (AR) gene as a surrogate epigenetic marker for bone marrow clonality, we examined the hematopoietic compartments of patients with CVID. Our data show that clonal hematopoiesis is common among patients with adult-onset CVID who do not have associated noninfectious complications. Nonblood tissues did not show a skewed AR methylation status, supporting a model of an acquired clonal hematopoietic event. Attenuation of memory B cell differentiation into long-lived plasma cells (CD20–CD27+CD38+CD138+) was associated with marked changes in the postdifferentiation methylation profile, demonstrating the functional consequence of clonal hematopoiesis on humoral immunity in these patients. This study sheds light on a potential etiology of a subset of patients with CVID, and the findings suggest that it is a stage of an acquired lymphocyte maturation disorder. Clonal hematopoiesis is common among a subset of patients with common variable immunodeficiency (CVID), suggesting that CVID may be a stage of lymphoid dysplasia.
Collapse
Affiliation(s)
- Gabriel K Wong
- Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Edgbaston, United Kingdom
| | - Sara Barmettler
- Allergy and Clinical Immunology Unit, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James M Heather
- Massachusetts General Hospital, Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - David Millar
- Massachusetts General Hospital, Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah A Penny
- Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Edgbaston, United Kingdom
| | - Aarnoud Huissoon
- Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Edgbaston, United Kingdom.,West Midlands Immunodeficiency Centre, Birmingham Heartlands Hospital, Birmingham, United Kingdom
| | - Alex Richter
- Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Edgbaston, United Kingdom
| | - Mark Cobbold
- Massachusetts General Hospital, Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
141
|
Agarwal S, Cunningham-Rundles C. Autoimmunity in common variable immunodeficiency. Ann Allergy Asthma Immunol 2019; 123:454-460. [PMID: 31349011 DOI: 10.1016/j.anai.2019.07.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Common variable immunodeficiency (CVID) is a primary immunodeficiency that is clinically heterogeneous, characterized by both infectious and noninfectious complications. Although the hallmark of disease presentation is commonly a history of recurrent sinopulmonary infections, autoimmunity and noninfectious inflammatory conditions are increasingly associated with CVID. DATA SOURCES A comprehensive literature search using PubMed of basic science and clinical articles was performed. STUDY SELECTIONS Articles discussing the association of autoimmunity with primary immunodeficiency, specifically CVID, were selected. RESULTS The most common autoimmune conditions are cytopenias, including immune thrombocytopenia purpura and hemolytic anemia, but organ-specific autoimmune/inflammatory complications involving the gastrointestinal, skin, joints, connective tissue, and respiratory tract. In most cases, immunoglobulin replacement therapy does not ameliorate or treat these inflammatory complications, and additional immunomodulatory treatments are needed. CONCLUSION Mechanisms producing these conditions are poorly understood but include cytokine and cellular inflammatory pathways, and loss of tolerance to self-antigens through the multiple signaling molecules and pathways common to tolerance and immune deficiency.
Collapse
Affiliation(s)
- Shradha Agarwal
- Icahn School of Medicine at Mount Sinai, Division of Allergy and Clinical Immunology, Department of Medicine, New York, New York.
| | - Charlotte Cunningham-Rundles
- Icahn School of Medicine at Mount Sinai, Division of Allergy and Clinical Immunology, Department of Medicine, New York, New York
| |
Collapse
|
142
|
Martínez-Cano J, Campos-Sánchez E, Cobaleda C. Epigenetic Priming in Immunodeficiencies. Front Cell Dev Biol 2019; 7:125. [PMID: 31355198 PMCID: PMC6635466 DOI: 10.3389/fcell.2019.00125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
Immunodeficiencies (IDs) are disorders of the immune system that increase susceptibility to infections and cancer, and are therefore associated with elevated morbidity and mortality. IDs can be primary (not caused by other condition or exposure) or secondary due to the exposure to different agents (infections, chemicals, aging, etc.). Most primary immunodeficiencies (PIDs) are of genetic origin, caused by mutations affecting genes with key roles in the development or function of the cells of the immune system. A large percentage of PIDs are associated with a defective development and/or function of lymphocytes and, especially, B cells, the ones in charge of generating the different types of antibodies. B-cell development is a tightly regulated process in which many different factors participate. Among the regulators of B-cell differentiation, a correct epigenetic control of cellular identity is essential for normal cell function. With the advent of next-generation sequencing (NGS) techniques, more and more alterations in different types of epigenetic regulators are being described at the root of PIDs, both in humans and in animal models. At the same time, it is becoming increasingly clear that epigenetic alterations triggered by the exposure to environmental agents have a key role in the development of secondary immunodeficiencies (SIDs). Due to their largely reversible nature, epigenetic modifications are quickly becoming key therapeutic targets in other diseases where their contribution has been known for more time, like cancer. Here, we establish a parallelism between IDs and the nowadays accepted role of epigenetics in cancer initiation and progression, and propose that epigenetics forms a "third axis" (together with genetics and external agents) to be considered in the etiology of IDs, and linking PIDs and SIDs at the molecular level. We therefore postulate that IDs arise due to a variable contribution of (i) genetic, (ii) environmental, and (iii) epigenetic causes, which in fact form a continuum landscape of all possible combinations of these factors. Additionally, this implies the possibility of a fully epigenetically triggered mechanism for some IDs. This concept would have important prophylactic and translational implications, and would also imply a more blurred frontier between primary and secondary immunodeficiencies.
Collapse
Affiliation(s)
| | | | - César Cobaleda
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas –Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
143
|
Identification of candidate disease genes in patients with common variable immunodeficiency. QUANTITATIVE BIOLOGY 2019. [DOI: 10.1007/s40484-019-0174-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
144
|
Modell V, Orange JS, Quinn J, Modell F. Global report on primary immunodeficiencies: 2018 update from the Jeffrey Modell Centers Network on disease classification, regional trends, treatment modalities, and physician reported outcomes. Immunol Res 2019; 66:367-380. [PMID: 29744770 DOI: 10.1007/s12026-018-8996-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Primary immunodeficiencies (PI) are genetic defects of the immune system that result in chronic, serious, and often life-threatening infections, if not diagnosed and treated. Many patients with PI are undiagnosed, underdiagnosed, or misdiagnosed. In fact, recent studies have shown that PI may be more common than previously estimated and that as many as 1% of the population may be affected with a PI when all types and varieties are considered. In order to raise awareness of PI with the overall goal of reducing associated morbidity and mortality, the Jeffrey Modell Foundation (JMF) established a network of specialized centers that could better identify, diagnose, treat, and follow patients with PI disorders. Over the past decade, the Jeffrey Modell Centers Network (JMCN) has provided the infrastructure to accept referrals, provide diagnosis, and offer treatments. Currently, the network consists of 792 Expert Physicians at 358 institutions, in 277 cities, and 86 countries spanning 6 continents. JMF developed an annual survey for physician experts within the JMCN, using the categories and gene defects identified by the International Union of Immunological Societies Expert Committee for the Classification of PI, to report on the number of patients identified with PI; treatment modalities, including immunoglobulins, transplantation, and gene therapy; and data on gender and age. Center Directors also provided physician-reported outcomes and differentials pre- and post-diagnosis. The current physician-reported data reflect an increase in diagnosed patients, as well as those receiving treatment. Suspected patients are being identified and referred so that they can receive early and appropriate diagnosis and treatment. The significant increase in patients identified with a PI is due, in part, to expanding education and awareness initiatives, newborn screening, and the expansion of molecular diagnosis and sequencing. To our knowledge, this is the most extensive single physician report on patients with PI around the world.
Collapse
Affiliation(s)
- Vicki Modell
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York City, NY, 10017, USA
| | - Jordan S Orange
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York City, NY, 10017, USA
| | - Jessica Quinn
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York City, NY, 10017, USA
| | - Fred Modell
- Jeffrey Modell Foundation, 780 Third Avenue, 47th Floor, New York City, NY, 10017, USA.
| |
Collapse
|
145
|
Arts P, Simons A, AlZahrani MS, Yilmaz E, AlIdrissi E, van Aerde KJ, Alenezi N, AlGhamdi HA, AlJubab HA, Al-Hussaini AA, AlManjomi F, Alsaad AB, Alsaleem B, Andijani AA, Asery A, Ballourah W, Bleeker-Rovers CP, van Deuren M, van der Flier M, Gerkes EH, Gilissen C, Habazi MK, Hehir-Kwa JY, Henriet SS, Hoppenreijs EP, Hortillosa S, Kerkhofs CH, Keski-Filppula R, Lelieveld SH, Lone K, MacKenzie MA, Mensenkamp AR, Moilanen J, Nelen M, Ten Oever J, Potjewijd J, van Paassen P, Schuurs-Hoeijmakers JHM, Simon A, Stokowy T, van de Vorst M, Vreeburg M, Wagner A, van Well GTJ, Zafeiropoulou D, Zonneveld-Huijssoon E, Veltman JA, van Zelst-Stams WAG, Faqeih EA, van de Veerdonk FL, Netea MG, Hoischen A. Exome sequencing in routine diagnostics: a generic test for 254 patients with primary immunodeficiencies. Genome Med 2019; 11:38. [PMID: 31203817 PMCID: PMC6572765 DOI: 10.1186/s13073-019-0649-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diagnosis of primary immunodeficiencies (PIDs) is complex and cumbersome yet important for the clinical management of the disease. Exome sequencing may provide a genetic diagnosis in a significant number of patients in a single genetic test. METHODS In May 2013, we implemented exome sequencing in routine diagnostics for patients suffering from PIDs. This study reports the clinical utility and diagnostic yield for a heterogeneous group of 254 consecutively referred PID patients from 249 families. For the majority of patients, the clinical diagnosis was based on clinical criteria including rare and/or unusual severe bacterial, viral, or fungal infections, sometimes accompanied by autoimmune manifestations. Functional immune defects were interpreted in the context of aberrant immune cell populations, aberrant antibody levels, or combinations of these factors. RESULTS For 62 patients (24%), exome sequencing identified pathogenic variants in well-established PID genes. An exome-wide analysis diagnosed 10 additional patients (4%), providing diagnoses for 72 patients (28%) from 68 families altogether. The genetic diagnosis directly indicated novel treatment options for 25 patients that received a diagnosis (34%). CONCLUSION Exome sequencing as a first-tier test for PIDs granted a diagnosis for 28% of patients. Importantly, molecularly defined diagnoses indicated altered therapeutic options in 34% of cases. In addition, exome sequencing harbors advantages over gene panels as a truly generic test for all genetic diseases, including in silico extension of existing gene lists and re-analysis of existing data.
Collapse
Affiliation(s)
- Peer Arts
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Annet Simons
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mofareh S AlZahrani
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Elanur Yilmaz
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Eman AlIdrissi
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Koen J van Aerde
- Department of Pediatric immunology, Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Njood Alenezi
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hamza A AlGhamdi
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hadeel A AlJubab
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdulrahman A Al-Hussaini
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fahad AlManjomi
- Department of Pediatric Hematology and Oncology, Comprehensive Cancer center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Alaa B Alsaad
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Badr Alsaleem
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdulrahman A Andijani
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali Asery
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Walid Ballourah
- Department of Pediatric Hematology and Oncology, Comprehensive Cancer center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Chantal P Bleeker-Rovers
- Radboud Expertise Center for Immunodeficiency and Autoinflammation, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel van Deuren
- Radboud Expertise Center for Immunodeficiency and Autoinflammation, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michiel van der Flier
- Department of Pediatric immunology, Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erica H Gerkes
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Murad K Habazi
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Jayne Y Hehir-Kwa
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Stefanie S Henriet
- Department of Pediatric immunology, Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esther P Hoppenreijs
- Department of Pediatric Rheumatology, Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sarah Hortillosa
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Chantal H Kerkhofs
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Riikka Keski-Filppula
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Stefan H Lelieveld
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Khurram Lone
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Marius A MacKenzie
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jukka Moilanen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Marcel Nelen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Ten Oever
- Radboud Expertise Center for Immunodeficiency and Autoinflammation, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judith Potjewijd
- Department of Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pieter van Paassen
- Department of Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Anna Simon
- Radboud Expertise Center for Immunodeficiency and Autoinflammation, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tomasz Stokowy
- Department of Clinical Science, Department of Informatics, Computational Biology Unit, University of Bergen, 5020, Bergen, Norway
| | - Maartje van de Vorst
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maaike Vreeburg
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Anja Wagner
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Gijs T J van Well
- Department of Pediatrics, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht University, Maastricht, The Netherlands
| | - Dimitra Zafeiropoulou
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Joris A Veltman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Eissa A Faqeih
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Frank L van de Veerdonk
- Radboud Expertise Center for Immunodeficiency and Autoinflammation, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Radboud Expertise Center for Immunodeficiency and Autoinflammation, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
- Radboud Expertise Center for Immunodeficiency and Autoinflammation, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Human Genetics and Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, The Netherlands.
| |
Collapse
|
146
|
Novel heterozygous NFKB1 mutation in a pediatric patient with cytopenias, splenomegaly, and lymphadenopathy. LYMPHOSIGN JOURNAL 2019. [DOI: 10.14785/lymphosign-2019-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: The nuclear factor κ-light-chain enhancer of activated B cells (NF-κB) signaling pathway is a critical regulator of many important adaptive and innate immune responses. The NF-κB transcription factor family consists of 5 structurally related core proteins, one of which is NFKB1. Mutations in the NFKB1 gene has been reported in patients with common variable immune deficiency (CVID) as well as with a large spectrum of clinical features including recurrent viral, bacterial, and fungal infections, autoimmunity, inflammation, and malignancy. Aim: We describe the clinical characteristics of a pediatric patient with a novel mutation in NFKB1. Methods: Patient informed consent was obtained in accordance with approved protocols from the Research Ethics Board at the Hospital for Sick Children. Gene panel testing was employed to identify the immune aberration. Results: Our patient, a previously well 18-month-old boy of Philippines descent, presented with multi-lineage cytopenias (thrombocytopenia, hemolytic anemia, neutropenia), splenomegaly, and lymphadenopathy. He did not have prior history of recurrent infections. Immunological work-up showed normal numbers of T and B cells, normal quantitative immunoglobulins, and adequate vaccination titres. Gene panel testing revealed a novel heterozygous missense variant c.425T>C (p. Ile142Thr) in the NFKB1 gene. Due to persistent cytopenias unresponsive to steroids and IVIG, he was started on Sirolimus with improvement in symptoms. Conclusion: NFKB1 encodes for p105, which is processed to generate the active p50 transcription factor that can interact with different proteins to activate or inhibit downstream signaling. Our patient was found to have a missense mutation in the Rel homology domain (RHD) of p50, which has distinct functions including DNA binding, protein dimerization, and inhibitory protein binding. The clinical presentation described here broadens the scope of characteristics associated with heterozygous NFKB1 mutations. Statement of novelty: We report a novel heterozygous missense variant c.425T>C (p. Ile142Thr) in the NFKB1 gene in a pediatric patient with cytopenias, lymphadenopathy, and splenomegaly. To the best of our knowledge, this variant has not been previously reported.
Collapse
|
147
|
Chandrakasan S, Chandra S, Davila Saldana BJ, Torgerson TR, Buchbinder D. Primary immune regulatory disorders for the pediatric hematologist and oncologist: A case-based review. Pediatr Blood Cancer 2019; 66:e27619. [PMID: 30697957 DOI: 10.1002/pbc.27619] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/20/2022]
Abstract
An array of monogenic immune defects marked by autoimmunity, lymphoproliferation, and hyperinflammation rather than infections have been described. Primary immune regulatory disorders pose a challenge to pediatric hematologists and oncologists. This paper focuses on primary immune regulatory disorders including autoimmune lymphoproliferative syndrome (ALPS) and ALPS-like syndromes, immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-like disorders, common variable immunodeficiency (CVID), CVID-like, and late-onset combined immunodeficiency (CID) disorders. Hyperinflammatory disorders and those associated with increased susceptibility to lymphoid malignancies are also discussed. Using a case-based approach, a review of clinical pearls germane to the clinical and laboratory evaluation as well as the treatment of these disorders is provided.
Collapse
Affiliation(s)
- Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Blachy J Davila Saldana
- Division of Blood and Marrow Transplantation, Children's National Medical Center, Washington, District of Columbia.,Department of Pediatrics, The George Washington University, Washington, District of Columbia
| | - Troy R Torgerson
- Department of Pediatrics, Divisions of Immunology/Rheumatology University of Washington and Seattle Children's Hospital, Seattle, Washington
| | - David Buchbinder
- Department of Hematology, Children's Hospital of Orange County, Orange, California.,Department of Pediatrics, University of California at Irvine, Orange, California
| |
Collapse
|
148
|
Del Pino-Molina L, Rodríguez-Ubreva J, Torres Canizales J, Coronel-Díaz M, Kulis M, Martín-Subero JI, van der Burg M, Ballestar E, López-Granados E. Impaired CpG Demethylation in Common Variable Immunodeficiency Associates With B Cell Phenotype and Proliferation Rate. Front Immunol 2019; 10:878. [PMID: 31105700 PMCID: PMC6492528 DOI: 10.3389/fimmu.2019.00878] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/05/2019] [Indexed: 01/01/2023] Open
Abstract
Common Variable Immunodeficiency (CVID) is characterized by impaired antibody production and poor terminal differentiation of the B cell compartment, yet its pathogenesis is still poorly understood. We first reported the occurrence of epigenetic alterations in CVID by high-throughput methylation analysis in CVID-discordant monozygotic twins. Data from a recent whole DNA methylome analysis throughout different stages of normal B cell differentiation allowed us to design a new experimental approach. We selected CpG sites for analysis based on two criteria: one, CpGs with potential association with the transcriptional status of relevant genes for B cell activation and differentiation; and two, CpGs that undergo significant demethylation from naïve to memory B cells in healthy individuals. DNA methylation was analyzed by bisulfite pyrosequencing of specific CpG sites in sorted naïve and memory B cell subsets from CVID patients and healthy donors. We observed impaired demethylation in two thirds of the selected CpGs in CVID memory B cells, in genes that govern B cell-specific processes or participate in B cell signaling. The degree of demethylation impairment associated with the extent of the memory B cell reduction. The impaired demethylation in such functionally relevant genes as AICDA in switched memory B cells correlated with a lower proliferative rate. Our new results reinforce the hypothesis of altered demethylation during B cell differentiation as a contributing pathogenic mechanism to the impairment of B cell function and maturation in CVID. In particular, deregulated epigenetic control of AICDA could play a role in the defective establishment of a post-germinal center B cell compartment in CVID.
Collapse
Affiliation(s)
- Lucía Del Pino-Molina
- Lymphocyte Pathophysiology in Immunodeficiencies Group, Department of Clinical Immunology, IdiPAZ Institute for Health Research, University Hospital La Paz, Madrid, Spain
| | - Javier Rodríguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Juan Torres Canizales
- Lymphocyte Pathophysiology in Immunodeficiencies Group, Department of Clinical Immunology, IdiPAZ Institute for Health Research, University Hospital La Paz, Madrid, Spain
| | - María Coronel-Díaz
- Lymphocyte Pathophysiology in Immunodeficiencies Group, Department of Clinical Immunology, IdiPAZ Institute for Health Research, University Hospital La Paz, Madrid, Spain
| | - Marta Kulis
- Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
| | - José I Martín-Subero
- Departamento de Fundamentos Clínicos, Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Eduardo López-Granados
- Lymphocyte Pathophysiology in Immunodeficiencies Group, Department of Clinical Immunology, IdiPAZ Institute for Health Research, University Hospital La Paz, Madrid, Spain
| |
Collapse
|
149
|
Eskandarian Z, Fliegauf M, Bulashevska A, Proietti M, Hague R, Smulski CR, Schubert D, Warnatz K, Grimbacher B. Assessing the Functional Relevance of Variants in the IKAROS Family Zinc Finger Protein 1 ( IKZF1) in a Cohort of Patients With Primary Immunodeficiency. Front Immunol 2019; 10:568. [PMID: 31057532 PMCID: PMC6477086 DOI: 10.3389/fimmu.2019.00568] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency. Patients with CVID are prone to recurrent bacterial infection due to the failure of adequate immunoglobulin production. Monogenetic defects have been identified in ~25% of CVID patients. Recently, mutations in IKZF1, encoding the zinc-finger transcription factor IKAROS which is broadly expressed in hematopoietic cells, have been associated with a CVID-like phenotype. Herein we describe 11 patients with heterozygous IKZF1 variants from eight different families with autosomal dominant CVID and two siblings with an IKZF1 variant presenting with inflammatory bowel disease (IBD). This study shows that mutations affecting the DNA binding domain of IKAROS can impair the interaction with the target DNA sequence thereby preventing heterochromatin and pericentromeric localization (HC-PC) of the protein. Our results also indicate an impairment of pericentromeric localization of IKAROS by overexpression of a truncated variant, caused by an immature stop codon in IKZF1. We also describe an additional variant in TNFSF10, encoding Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL), additionally presented in individuals of Family A. Our results indicate that this variant may impair the TRAIL-induced apoptosis in target cell lines and prohibit the NFκB activation by TRAIL and may act as a modifier in Family A.
Collapse
Affiliation(s)
- Zoya Eskandarian
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Manfred Fliegauf
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Alla Bulashevska
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Rosie Hague
- Royal Hospital for Children, Glasgow, United Kingdom
| | - Cristian Roberto Smulski
- Department of Medical Physics, Centro Atómico Bariloche, CONICET, San Carlos de Bariloche, Argentina
| | - Desirée Schubert
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Clinic for Rheumatology and Clinical Immunology, Faculty of Medicine, CCI, Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Satellite Center Freiburg, RESIST-Cluster of Excellence 2155, Hanover Medical School, Freiburg, Germany.,Satellite Center Freiburg, German Center for Infection Research, Freiburg, Germany.,Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
150
|
Habibi S, Zaki-Dizaji M, Rafiemanesh H, Lo B, Jamee M, Gámez-Díaz L, Salami F, Kamali AN, Mohammadi H, Abolhassani H, Yazdani R, Aghamohammadi A, Anaya JM, Azizi G. Clinical, Immunologic, and Molecular Spectrum of Patients with LPS-Responsive Beige-Like Anchor Protein Deficiency: A Systematic Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:2379-2386.e5. [PMID: 30995531 DOI: 10.1016/j.jaip.2019.04.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND LPS-responsive beige-like anchor protein (LRBA) deficiency is a primary immunodeficiency and immune dysregulation syndrome caused by biallelic mutations in the LRBA gene. These mutations usually abrogate the protein expression of LRBA, leading to a broad spectrum of clinical phenotypes including autoimmunity, chronic diarrhea, hypogammaglobulinemia, and recurrent infections. OBJECTIVE Our aim was to systematically collect all studies reporting on the clinical manifestations, molecular and laboratory findings, and management of patients with LRBA deficiency. METHODS We searched in PubMed, Web of Science, and Scopus without any restrictions on study design and publication time. A total of 109 LRBA-deficient cases were identified from 45 eligible articles. For all patients, demographic information, clinical records, and immunologic and molecular data were collected. RESULTS Of the patients with LRBA deficiency, 93 had homozygous and 16 had compound heterozygous mutations in LRBA. The most common clinical manifestations were autoimmunity (82%), enteropathy (63%), splenomegaly (57%), and pneumonia (49%). Reduction in numbers of CD4+ T cells and regulatory T cells as well as IgG levels was recorded for 21.6%, 65.6%, and 54.2% of evaluated patients, respectively. B-cell subpopulation analysis revealed low numbers of switched-memory and increased numbers of CD21low B cells in 73.5% and 77.8% of patients, respectively. Eighteen (16%) patients underwent hematopoietic stem cell transplantation due to the severity of complications and the outcomes improved in 13 of them. CONCLUSIONS Autoimmune disorders are the main clinical manifestations of LRBA deficiency. Therefore, LRBA deficiency should be included in the list of monogenic autoimmune diseases, and screening for LRBA mutations should be routinely performed for patients with these conditions.
Collapse
Affiliation(s)
- Sima Habibi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Hosein Rafiemanesh
- Student Research Committee, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bernice Lo
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Laura Gámez-Díaz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali N Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hamed Mohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|