101
|
Watanabe R, Berry GJ, Liang DH, Goronzy JJ, Weyand CM. Cellular Signaling Pathways in Medium and Large Vessel Vasculitis. Front Immunol 2020; 11:587089. [PMID: 33072134 PMCID: PMC7544845 DOI: 10.3389/fimmu.2020.587089] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Autoimmune and autoinflammatory diseases of the medium and large arteries, including the aorta, cause life-threatening complications due to vessel wall destruction but also by wall remodeling, such as the formation of wall-penetrating microvessels and lumen-stenosing neointima. The two most frequent large vessel vasculitides, giant cell arteritis (GCA) and Takayasu arteritis (TAK), are HLA-associated diseases, strongly suggestive for a critical role of T cells and antigen recognition in disease pathogenesis. Recent studies have revealed a growing spectrum of effector functions through which T cells participate in the immunopathology of GCA and TAK; causing the disease-specific patterning of pathology and clinical outcome. Core pathogenic features of disease-relevant T cells rely on the interaction with endothelial cells, dendritic cells and macrophages and lead to vessel wall invasion, formation of tissue-damaging granulomatous infiltrates and induction of the name-giving multinucleated giant cells. Besides antigen, pathogenic T cells encounter danger signals in their immediate microenvironment that they translate into disease-relevant effector functions. Decisive signaling pathways, such as the AKT pathway, the NOTCH pathway, and the JAK/STAT pathway modify antigen-induced T cell activation and emerge as promising therapeutic targets to halt disease progression and, eventually, reset the immune system to reestablish the immune privilege of the arterial wall.
Collapse
Affiliation(s)
- Ryu Watanabe
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - David H Liang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
102
|
Wang W, Wang H, Zhao Z, Huang X, Xiong H, Mei Z. Thymol activates TRPM8-mediated Ca 2+ influx for its antipruritic effects and alleviates inflammatory response in Imiquimod-induced mice. Toxicol Appl Pharmacol 2020; 407:115247. [PMID: 32971067 DOI: 10.1016/j.taap.2020.115247] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022]
Abstract
Psoriasis is a highly prevalent chronic dermatitis, characterized by widespread skin inflammation and spontaneous itch. Given the adverse reactions and drug dependence of current treatment, new drugs for psoriasis therapy are urgently needed. This study aims to explore the anti-psoriatic effects of thymol in imiquimod (IMQ) induced mice, and elucidate the potential mechanisms for its therapeutic activities. Thymol reduced the scratching behavior in IMQ mice, and activated Ca2+ response in cervical DRG neurons via TRPM8 channel. Also, thymol alleviated psoriasis-like skin lesions, and attenuated the enhanced infiltration of dermal neutrophils, dendritic cells (DCs) and Th17 cells. In addition, it reversed the upregulated expression of pro-inflammatory cytokines in the skin (TNF-α, IL-22, IL-23, IL-17A, IL-17F, IL-17C, IL-6, IL-1β and IFN-γ) and serum (TNF-α, IL-6, IL-1β, IL-17A and IFN-γ). Our results indicated that thymol can effectively ameliorate pruritus and the symptoms of psoriasis-like inflammation induced by IMQ, which makes it a promising drug for the treatment of psoriasis.
Collapse
Affiliation(s)
- Wen Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Hua Wang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Zhongqiu Zhao
- Washington University School of Medicine, St. Louis, MO 63110, United States; Barnes-Jewish Hospital, St. Louis, MO 63110, United States
| | - Xiaoqing Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Hairong Xiong
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
103
|
Keum H, Kim TW, Kim Y, Seo C, Son Y, Kim J, Kim D, Jung W, Whang CH, Jon S. Bilirubin nanomedicine alleviates psoriatic skin inflammation by reducing oxidative stress and suppressing pathogenic signaling. J Control Release 2020; 325:359-369. [DOI: 10.1016/j.jconrel.2020.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/05/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022]
|
104
|
Higaki A, Mahmoud AUM, Paradis P, Schiffrin EL. Role of interleukin-23/interleukin-17 axis in T-cell-mediated actions in hypertension. Cardiovasc Res 2020; 117:1274-1283. [PMID: 32870976 DOI: 10.1093/cvr/cvaa257] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/01/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022] Open
Abstract
Current knowledge suggests that hypertension is in part mediated by immune mechanisms. Both interleukin (IL)-23 and IL-17 are up-regulated in several experimental hypertensive rodent models, as well as in hypertensive humans in observational studies. Recent preclinical studies have shown that either IL-23 or IL-17A treatment induce blood pressure elevation. However, the IL-23/IL-17 axis has not been a major therapeutic target in hypertension, unlike in other autoimmune diseases. In this review, we summarize current knowledge on the role of these cytokines in immune mechanisms contributing to hypertension, and discuss the potential of IL-23/IL-17-targeted therapy for treatment of hypertension.
Collapse
Affiliation(s)
| | | | | | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research.,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
105
|
Paplinska-Goryca M, Misiukiewicz-Stepien P, Proboszcz M, Nejman-Gryz P, Gorska K, Krenke R. The Expressions of TSLP, IL-33, and IL-17A in Monocyte Derived Dendritic Cells from Asthma and COPD Patients are Related to Epithelial-Macrophage Interactions. Cells 2020; 9:cells9091944. [PMID: 32842623 PMCID: PMC7565129 DOI: 10.3390/cells9091944] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The cross-talk between the external and internal environment in the respiratory tract involves macrophage/dendritic cell (DC) transepithelial network. Epithelium triggers dendritic cell-mediated inflammation by producing thymic stromal lymphopoietin (TSLP), IL-33, and IL-17A. The study aimed to evaluate the expression of TSLP, IL-33, and IL-17A in human monocyte derived dendritic cells (moDCs) co-cultured with respiratory epithelium and monocyte derived macrophages (moMφs) in asthma, chronic obstructive pulmonary disease (COPD) and healthy controls. METHODS The study used a triple-cell co-culture model, utilizing nasal epithelial cells, along with moMφs and moDCs. Cells were cultured in mono-, di-, and triple-co-cultures for 24 h. RESULTS Co-culture with epithelium and moMφs significantly increased TSLP in asthma and did not change IL-33 and IL-17A mRNA expression in moDCs. moDCs from asthmatics were characterized by the highest TSLP mRNA expression and the richest population of TSLPR, ST2, and IL17RA expressed cells. A high number of positive correlations between the assessed cytokines and CHI3L1, IL-12p40, IL-1β, IL-6, IL-8, TNF in moDCs was observed in asthma and COPD. CONCLUSION TSLP, IL-33, and IL-17A expression in moDCs are differently regulated by epithelium in asthma, COPD, and healthy subjects. These complex cell-cell interactions may impact airway inflammation and be an important factor in the pathobiology of asthma and COPD.
Collapse
Affiliation(s)
- Magdalena Paplinska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.P.); (P.N.-G.); (K.G.); (R.K.)
- Correspondence: ; Tel.: +48-225991241; Fax +48-225991561
| | | | - Malgorzata Proboszcz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.P.); (P.N.-G.); (K.G.); (R.K.)
| | - Patrycja Nejman-Gryz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.P.); (P.N.-G.); (K.G.); (R.K.)
| | - Katarzyna Gorska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.P.); (P.N.-G.); (K.G.); (R.K.)
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.P.); (P.N.-G.); (K.G.); (R.K.)
| |
Collapse
|
106
|
Bonilla MC, Fingerhut L, Alfonso-Castro A, Mergani A, Schwennen C, von Köckritz-Blickwede M, de Buhr N. How Long Does a Neutrophil Live?-The Effect of 24 h Whole Blood Storage on Neutrophil Functions in Pigs. Biomedicines 2020; 8:biomedicines8080278. [PMID: 32784433 PMCID: PMC7459936 DOI: 10.3390/biomedicines8080278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are important effector cells of the innate immune system, traditionally regarded to have a short life span. The goal of this study was to evaluate the effect of the whole blood storage on neutrophil functions, e.g., viability, antimicrobial effect, neutrophil extracellular trap (NET) formation and phagocytosis. Therefore, fresh porcine whole blood was compared to whole blood stored for 24 h in the dark at room temperature. Different cell parameters in whole blood and in isolated neutrophils were analyzed. The following parameters were analyzed: cell count, band and segmented neutrophil count, viability, cholesterol content, release of free DNA as a marker for cell death, phagocytic activity in whole blood and in isolated neutrophils, the transmigration rate of neutrophils to IL8 stimulus, the production of reactive oxygen species (ROS), and the formation of NETs. It was observed that the number of isolated neutrophils decreased over time, indicating cell death occurs during 24 h of blood storage. However, the surviving neutrophils isolated from stored blood reacted comparably or even showed enhanced antimicrobial activity in the case of phagocytosis of Streptococcus (S.) suis, ROS production, and transmigration. The slightly altered cholesterol level of the harvested neutrophils in stored blood when compared to fresh blood partially explains some of the detected differences.
Collapse
Affiliation(s)
- Marta C. Bonilla
- Institute for Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.C.B.); (L.F.); (A.A.-C.); (A.M.); (M.v.K.-B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Leonie Fingerhut
- Institute for Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.C.B.); (L.F.); (A.A.-C.); (A.M.); (M.v.K.-B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Clinic for Horses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Adriana Alfonso-Castro
- Institute for Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.C.B.); (L.F.); (A.A.-C.); (A.M.); (M.v.K.-B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - AhmedElmontaser Mergani
- Institute for Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.C.B.); (L.F.); (A.A.-C.); (A.M.); (M.v.K.-B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Cornelia Schwennen
- Clinic for Swine, Small Ruminants and Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, 30173 Hannover, Germany;
| | - Maren von Köckritz-Blickwede
- Institute for Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.C.B.); (L.F.); (A.A.-C.); (A.M.); (M.v.K.-B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Nicole de Buhr
- Institute for Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (M.C.B.); (L.F.); (A.A.-C.); (A.M.); (M.v.K.-B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Correspondence: ; Tel.: +49-511-953-6119
| |
Collapse
|
107
|
Schön MP, Berking C, Biedermann T, Buhl T, Erpenbeck L, Eyerich K, Eyerich S, Ghoreschi K, Goebeler M, Ludwig RJ, Schäkel K, Schilling B, Schlapbach C, Stary G, von Stebut E, Steinbrink K. COVID-19 and immunological regulations - from basic and translational aspects to clinical implications. J Dtsch Dermatol Ges 2020; 18:795-807. [PMID: 32761894 PMCID: PMC7436872 DOI: 10.1111/ddg.14169] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The COVID‐19 pandemic caused by SARS‐CoV‐2 has far‐reaching direct and indirect medical consequences. These include both the course and treatment of diseases. It is becoming increasingly clear that infections with SARS‐CoV‐2 can cause considerable immunological alterations, which particularly also affect pathogenetically and/or therapeutically relevant factors. Against this background we summarize here the current state of knowledge on the interaction of SARS‐CoV‐2/COVID‐19 with mediators of the acute phase of inflammation (TNF, IL‐1, IL‐6), type 1 and type 17 immune responses (IL‐12, IL‐23, IL‐17, IL‐36), type 2 immune reactions (IL‐4, IL‐13, IL‐5, IL‐31, IgE), B‐cell immunity, checkpoint regulators (PD‐1, PD‐L1, CTLA4), and orally druggable signaling pathways (JAK, PDE4, calcineurin). In addition, we discuss in this context non‐specific immune modulation by glucocorticosteroids, methotrexate, antimalarial drugs, azathioprine, dapsone, mycophenolate mofetil and fumaric acid esters, as well as neutrophil granulocyte‐mediated innate immune mechanisms. From these recent findings we derive possible implications for the therapeutic modulation of said immunological mechanisms in connection with SARS‐CoV‐2/COVID‐19. Although, of course, the greatest care should be taken with patients with immunologically mediated diseases or immunomodulating therapies, it appears that many treatments can also be carried out during the COVID‐19 pandemic; some even appear to alleviate COVID‐19.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Germany.,Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Germany
| | - Carola Berking
- Department of Dermatology, University Medical Center Erlangen, Deutsches Zentrum Immuntherapie, Friedrich Alexander University Erlangen-Nürnberg, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, Technical University Munich, Germany
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Germany.,Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Germany
| | - Kilian Eyerich
- Department of Dermatology and Allergy Biederstein, Technical University Munich, Germany.,Department of Medicine Solna, Unit of Dermatology and Venereology, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie Eyerich
- ZAUM - Center of Allergy and Environment, Technical University and Helmholtz Center Munich, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - University Medical Center Berlin, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
| | - Knut Schäkel
- Department of Dermatology, University Medical Center Heidelberg, Germany
| | - Bastian Schilling
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Germany
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital University Medical Center, Bern, Switzerland
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Austria
| | | | - Kerstin Steinbrink
- Department of Dermatology, Westfälische Wilhelms University Münster, Germany
| |
Collapse
|
108
|
Blood microRNA expressions in patients with mild to moderate psoriasis and the relationship between microRNAs and psoriasis activity. An Bras Dermatol 2020; 95:702-707. [PMID: 32811699 PMCID: PMC7672403 DOI: 10.1016/j.abd.2020.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background In recent studies, microRNAs (mi-RNAs) have been shown to play an important role in psoriasis pathogenesis. However, studies evaluating mi-RNAs in the blood of psoriasis patients including a large number of mi-RNA panels are scarce. Objective The authors aimed to assess mi-RNA expressions in blood samples of psoriasis patients, as well as to evaluate the association between mi-RNA expression and psoriasis severity. Methods This was a case-control study on 52 patients with psoriasis vulgaris and 54 controls. Patients’ medical history, psoriasis area and severity index (PASI) scores, and dermatology life quality index (DLQI) scores were recorded. The 42 disease-related mi-RNA primers were assessed by real-time PCR. Results In the patient group, 13.4% presented nail involvement and 8.2% had psoriatic arthritis. The mean PASI and DLQI scores were 7.90 ± 8.83 and 8.13 ± 5.50, respectively. Among 42 mi-RNA primers; hsa-miR-155-5p, hsa-miR-369-3p, hsa-miR-193b-3p, hsa-miR-498, hsa-miR-1266-5p, hsa-let-7d-5p, hsa-miR-205-5p, hsa-let-7c-5p, hsa-miR-30b-3p, and hsa-miR-515-3p expressions were significantly up-regulated, whereas hsa-miR-21-5p, hsa-miR-142-3p, hsa-miR-424-5p, hsa-miR-223-3p, hsa-miR-26a-5p, hsa-miR-106b-5p, hsa-miR-126-5p, hsa-miR-181a-5p, hsa-miR-222-3p, hsa-miR-22-3p, hsa-miR-24-3p, hsa-miR-17-3p, hsa-miR-30b-5p, hsa-miR-130a-3p, hsa-miR-30e-5p, and hsa-miR-16-5p were significantly down-regulated in psoriasis patients when compared with the control group (p < 0.05). Study limitations As the study included patients with mild to moderate psoriasis who mostly only received topical treatments, changes in miRNA before and after systemic treatments were not assessed. Conclusion The detection of 24 mi-RNA expressions up- or down-regulated in psoriasis patients, even in those with milder disease, further supports the role of mi-RNAs in the psoriasis pathogenesis. Future studies should clarify whether mi-RNAs can be used as a marker for psoriasis prognosis or as a therapeutic agent in the treatment of psoriasis.
Collapse
|
109
|
Schön MP, Berking C, Biedermann T, Buhl T, Erpenbeck L, Eyerich K, Eyerich S, Ghoreschi K, Goebeler M, Ludwig RJ, Schäkel K, Schilling B, Schlapbach C, Stary G, von Stebut E, Steinbrink K. COVID‐19 und Immunregulation – von grundlegenden und translationalen Aspekten zu klinischen Implikationen. J Dtsch Dermatol Ges 2020; 18:795-809. [PMID: 32881300 PMCID: PMC7461193 DOI: 10.1111/ddg.14169_g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/20/2020] [Indexed: 01/08/2023]
Abstract
Die durch SARS‐CoV‐2 verursachte Pandemie COVID‐19 hat weitreichende direkte und indirekte medizinische Folgen. Dazu gehören sowohl der Verlauf als auch die Behandlung vieler Krankheiten. Es wird immer deutlicher, dass Infektionen mit SARS‐CoV‐2 erhebliche immunologische Veränderungen verursachen können, die insbesondere auch pathogenetisch und/oder therapeutisch relevante Faktoren betreffen. Vor diesem Hintergrund fassen wir hier den aktuellen Wissensstand zur Interaktion von SARS‐CoV‐2/COVID‐19 mit Mediatoren der akuten Phase der Entzündung (TNF, IL‐1, IL‐6), der Typ‐1‐ und Typ‐17‐Immunantwort (IL‐12, IL‐23, IL‐17, IL‐36), Typ‐2‐Immunreaktionen (IL‐4, IL‐13, IL‐5, IL‐31, IgE), B‐Zell‐Immunität, Checkpoint‐Regulatoren (PD‐1, PD‐L1, CTLA4) und Signalwegen, die durch oral applizierte Medikamente moduliert werden (JAK, PDE4, Calcineurin), zusammen. Darüber hinaus diskutieren wir in diesem Zusammenhang die unspezifische Immunmodulation durch Glukokortikosteroide, Methotrexat, Malariamittel, Azathioprin, Dapson, Mycophenolsäure‐Derivate und Fumarsäureester sowie angeborene Immunmechanismen neutrophiler Granulozyten. Aus diesen neueren Erkenntnissen leiten wir mögliche Implikationen für die therapeutische Modulation der genannten immunologischen Mechanismen im Zusammenhang mit SARS‐CoV‐2/COVID‐19 ab. Obwohl natürlich bei Patienten mit immunologisch vermittelten Krankheiten oder immunmodulierenden Therapien größte Vorsicht geboten ist, scheint es, dass viele Behandlungen auch während der COVID‐19‐Pandemie durchgeführt werden können; einige scheinen COVID‐19 sogar zu lindern.
Collapse
Affiliation(s)
- Michael P. Schön
- Klinik für DermatologieVenerologie und AllergologieUniversitätsmedizin GöttingenDeutschland
- Niedersächsisches Institut für BerufsdermatologieUniversitätsmedizin GöttingenDeutschland
| | - Carola Berking
- HautklinikUniversitätsklinikum ErlangenDeutsches Zentrum ImmuntherapieFriedrich‐Alexander‐Universität Erlangen‐NürnbergDeutschland
| | - Tilo Biedermann
- Klinik für Dermatologie und Allergie BiedersteinTechnische Universität MünchenDeutschland
| | - Timo Buhl
- Klinik für DermatologieVenerologie und AllergologieUniversitätsmedizin GöttingenDeutschland
- Niedersächsisches Institut für BerufsdermatologieUniversitätsmedizin GöttingenDeutschland
| | - Luise Erpenbeck
- Klinik für DermatologieVenerologie und AllergologieUniversitätsmedizin GöttingenDeutschland
| | - Kilian Eyerich
- Klinik für Dermatologie und Allergie BiedersteinTechnische Universität MünchenDeutschland
- Department of Medicine SolnaUnit of Dermatology and VenereologyKarolinska InstitutetStockholmSchweden
| | - Stefanie Eyerich
- ZAUM – Zentrum für Allergie und UmweltTechnische Universität MünchenDeutschland
| | - Kamran Ghoreschi
- Klinik für DermatologieVenerologie und AllergologieCharité – Universitätsmedizin BerlinDeutschland
| | - Matthias Goebeler
- Klinik für DermatologieVenerologie und AllergologieUniversitätsklinikum WürzburgDeutschland
| | - Ralf J. Ludwig
- Lübeck Institut für Experimentelle DermatologieUniversität LübeckDeutschland
| | - Knut Schäkel
- HautklinikUniversitätsklinikum HeidelbergDeutschland
| | - Bastian Schilling
- Klinik für DermatologieVenerologie und AllergologieUniversitätsklinikum WürzburgDeutschland
| | | | - Georg Stary
- Klinik für DermatologieMedizinische Universität WienÖsterreich
| | | | - Kerstin Steinbrink
- Klinik für DermatologieWestfälische Wilhelms‐Universität MünsterDeutschland
| |
Collapse
|
110
|
Lauffer F, Eyerich K, Boehncke WH, Asadullah K, Beissert S, Ghoreschi K, Schön MP. Zytokine der IL‐17‐Familie bei der Psoriasis. J Dtsch Dermatol Ges 2020; 18:675-681. [PMID: 32713148 DOI: 10.1111/ddg.14124_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/26/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Felix Lauffer
- Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein, Technische Universität München
| | - Kilian Eyerich
- Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein, Technische Universität München
| | - Wolf-Henning Boehncke
- Division of Dermatology and Venereology and Department of Pathology and Immunology, Hôpitaux Universitaires de Genève, University of Geneva, Schweiz
| | | | - Stefan Beissert
- Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Dermatologie, Dresden
| | - Kamran Ghoreschi
- Klinik für Dermatologie, Venerologie und Allergologie, Charité, Universitätsmedizin Berlin
| | - Michael P Schön
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen.,Niedersächsisches Institut für Berufsdermatologie, Universitätsmedizin Göttingen
| |
Collapse
|
111
|
Friese N, Gierschner MB, Schadzek P, Roger Y, Hoffmann A. Regeneration of Damaged Tendon-Bone Junctions (Entheses)-TAK1 as a Potential Node Factor. Int J Mol Sci 2020; 21:E5177. [PMID: 32707785 PMCID: PMC7432881 DOI: 10.3390/ijms21155177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Musculoskeletal dysfunctions are highly prevalent due to increasing life expectancy. Consequently, novel solutions to optimize treatment of patients are required. The current major research focus is to develop innovative concepts for single tissues. However, interest is also emerging to generate applications for tissue transitions where highly divergent properties need to work together, as in bone-cartilage or bone-tendon transitions. Finding medical solutions for dysfunctions of such tissue transitions presents an added challenge, both in research and in clinics. This review aims to provide an overview of the anatomical structure of healthy adult entheses and their development during embryogenesis. Subsequently, important scientific progress in restoration of damaged entheses is presented. With respect to enthesis dysfunction, the review further focuses on inflammation. Although molecular, cellular and tissue mechanisms during inflammation are well understood, tissue regeneration in context of inflammation still presents an unmet clinical need and goes along with unresolved biological questions. Furthermore, this review gives particular attention to the potential role of a signaling mediator protein, transforming growth factor beta-activated kinase-1 (TAK1), which is at the node of regenerative and inflammatory signaling and is one example for a less regarded aspect and potential important link between tissue regeneration and inflammation.
Collapse
Affiliation(s)
- Nina Friese
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Mattis Benno Gierschner
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Patrik Schadzek
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Yvonne Roger
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Andrea Hoffmann
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| |
Collapse
|
112
|
Gaire BP, Lee CH, Kim W, Sapkota A, Lee DY, Choi JW. Lysophosphatidic Acid Receptor 5 Contributes to Imiquimod-Induced Psoriasis-Like Lesions through NLRP3 Inflammasome Activation in Macrophages. Cells 2020; 9:cells9081753. [PMID: 32707926 PMCID: PMC7465035 DOI: 10.3390/cells9081753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
The pathogenesis of psoriasis, an immune-mediated chronic skin barrier disease, is not fully understood yet. Here, we identified lysophosphatidic acid (LPA) receptor 5 (LPA5)-mediated signaling as a novel pathogenic factor in psoriasis using an imiquimod-induced psoriasis mouse model. Amounts of most LPA species were markedly elevated in injured skin of psoriasis mice, along with LPA5 upregulation in injured skin. Suppressing the activity of LPA5 with TCLPA5, a selective LPA5 antagonist, improved psoriasis symptoms, including ear thickening, skin erythema, and skin scaling in imiquimod-challenged mice. TCLPA5 administration attenuated dermal infiltration of macrophages that were found as the major cell type for LPA5 upregulation in psoriasis lesions. Notably, TCLPA5 administration attenuated the upregulation of macrophage NLRP3 in injured skin of mice with imiquimod-induced psoriasis. This critical role of LPA5 in macrophage NLRP3 was further addressed using lipopolysaccharide-primed bone marrow-derived macrophages. LPA exposure activated NLRP3 inflammasome in lipopolysaccharide-primed cells, which was evidenced by NLRP3 upregulation, caspase-1 activation, and IL-1β maturation/secretion. This LPA-driven NLRP3 inflammasome activation in lipopolysaccharide-primed cells was significantly attenuated upon LPA5 knockdown. Overall, our findings establish a pathogenic role of LPA5 in psoriasis along with an underlying mechanism, further suggesting LPA5 antagonism as a potential strategy to treat psoriasis.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea; (B.P.G.); (C.-H.L.); (W.K.); (A.S.)
| | - Chi-Ho Lee
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea; (B.P.G.); (C.-H.L.); (W.K.); (A.S.)
| | - Wondong Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea; (B.P.G.); (C.-H.L.); (W.K.); (A.S.)
| | - Arjun Sapkota
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea; (B.P.G.); (C.-H.L.); (W.K.); (A.S.)
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea; (B.P.G.); (C.-H.L.); (W.K.); (A.S.)
- Correspondence: ; Tel.: +82-32-820-4955
| |
Collapse
|
113
|
Tsigalou C, Konstantinidis T, Paraschaki A, Stavropoulou E, Voidarou C, Bezirtzoglou E. Mediterranean Diet as a Tool to Combat Inflammation and Chronic Diseases. An Overview. Biomedicines 2020; 8:E201. [PMID: 32650619 PMCID: PMC7400632 DOI: 10.3390/biomedicines8070201] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Since ancient times, the quality of nourishment is a milestone for the maintenance of health and as it is stated 'prevention is better than cure', amongst the so-called 'healthy' diets Mediterranean diet (MD) claims the lion's share. It stands in good stead because of a variety of valuable macro- and micronutrients. So, adherence to a MD is associated with the reduction of inflammation and non-communicable (NCD) OR chronic diseases. Numerous studies try to scrutinize the role of MD components as regards reducing inflammation, lowering rate, and mortality for disorders and illnesses, and preventing NCD. MD regime of the inhabitants of the Mediterranean basin includes a variety of ethnic nutritional habits and regulates an array of effects and epigenetic changes that affect human wellbeing. The research is still ongoing and endeavors to elucidate every aspect of this issue. This review focuses on the impact of MD on inflammation highlights positive results regarding NCD and indicates the need for more high-quality experiments and trials in order to overcome any discrepancies.
Collapse
Affiliation(s)
- Christina Tsigalou
- Laboratory of Microbiology, Medical School, Democritus University of Thrace, 68100 Dragana, Alexandroupolis, Greece; (T.K.); (A.P.)
| | - Theocharis Konstantinidis
- Laboratory of Microbiology, Medical School, Democritus University of Thrace, 68100 Dragana, Alexandroupolis, Greece; (T.K.); (A.P.)
| | - Afroditi Paraschaki
- Laboratory of Microbiology, Medical School, Democritus University of Thrace, 68100 Dragana, Alexandroupolis, Greece; (T.K.); (A.P.)
| | - Elisavet Stavropoulou
- Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon, Vaud, CH-1011 Lausanne, Switzerland;
| | | | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Dragana, Alexandroupolis, Greece;
| |
Collapse
|
114
|
Schön MP, Manzke V, Erpenbeck L. Animal models of psoriasis-highlights and drawbacks. J Allergy Clin Immunol 2020; 147:439-455. [PMID: 32560971 DOI: 10.1016/j.jaci.2020.04.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022]
Abstract
Research into the pathophysiology of psoriasis remains challenging, because this disease does not occur naturally in laboratory animals. However, specific aspects of its complex immune-pathology can be illuminated through transgenic, knockout, xenotransplantation, immunological reconstitution, drug-induced, or spontaneous mutation models in rodents. Although some of these approaches have already been pursued for more than 5 decades and even more models have been described in recent times, they have surprisingly not yet been systematically validated. As a consequence, researchers regularly examine specific aspects that only partially reflect the complex overall picture of the human disease. Nonetheless, animal models are of great utility to investigate inflammatory mediators, the communication between cells of the innate and the adaptive immune systems, the role of resident cells as well as new therapies. Of note, various manipulations in experimental animals resulted in rather similar phenotypes. These were called "psoriasiform", "psoriasis-like" or even "psoriasis" usually on the basis of some similarities with the human disorder. Xenotransplantation of human skin onto immunocompromised animals can overcome this limitation only in part. In this review, we elucidate approaches for the generation of animal models of psoriasis and assess their strengths and limitations with a certain focus on more recently developed models.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany; Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Göttingen, Germany.
| | - Veit Manzke
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
115
|
Lauffer F, Eyerich K, Boehncke WH, Asadullah K, Beissert S, Ghoreschi K, Schön MP. Cytokines of the IL-17 family in psoriasis. J Dtsch Dermatol Ges 2020; 18:675-681. [PMID: 32447845 DOI: 10.1111/ddg.14124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
Various immune cells and their messenger substances influence the development of psoriasis. Cytokines of the IL-17 family are of particular importance. In addition to IL-17A, which plays a central role in the pathogenesis of psoriasis, other subtypes of the IL-17 family also have a proinflammatory effect. This review provides an up-to-date overview of the immunopathogenesis of psoriasis with regard to the six IL-17 subtypes, in particular their physiological and pathogenic properties, as well as their significance for psoriasis therapy.
Collapse
Affiliation(s)
- Felix Lauffer
- Department of Dermatology and Allergy Biederstein, University hospital of the Technical University Munich (TUM), Munich, Germany
| | - Kilian Eyerich
- Department of Dermatology and Allergy Biederstein, University hospital of the Technical University Munich (TUM), Munich, Germany
| | - Wolf-Henning Boehncke
- Division of Dermatology and Venereology and Department of Pathology and Immunology, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| | | | - Stefan Beissert
- Department of Dermatology, Carl Gustav Carus University Medical Center, Dresden Technical University, Dresden, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany.,Lower Saxony Institute of Occupational Dermatology, Göttingen, Germany
| |
Collapse
|
116
|
Arnaldez FI, O'Day SJ, Drake CG, Fox BA, Fu B, Urba WJ, Montesarchio V, Weber JS, Wei H, Wigginton JM, Ascierto PA. The Society for Immunotherapy of Cancer perspective on regulation of interleukin-6 signaling in COVID-19-related systemic inflammatory response. J Immunother Cancer 2020; 8:e000930. [PMID: 32385146 PMCID: PMC7211108 DOI: 10.1136/jitc-2020-000930] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
The pandemic caused by the novel coronavirus SARS-CoV-2 has placed an unprecedented burden on healthcare systems around the world. In patients who experience severe disease, acute respiratory distress is often accompanied by a pathological immune reaction, sometimes referred to as 'cytokine storm'. One hallmark feature of the profound inflammatory state seen in patients with COVID-19 who succumb to pneumonia and hypoxia is marked elevation of serum cytokines, especially interferon gamma, tumor necrosis factor alpha, interleukin 17 (IL-17), interleukin 8 (IL-8) and interleukin 6 (IL-6). Initial experience from the outbreaks in Italy, China and the USA has anecdotally demonstrated improved outcomes for critically ill patients with COVID-19 with the administration of cytokine-modulatory therapies, especially anti-IL-6 agents. Although ongoing trials are investigating anti-IL-6 therapies, access to these therapies is a concern, especially as the numbers of cases worldwide continue to climb. An immunology-informed approach may help identify alternative agents to modulate the pathological inflammation seen in patients with COVID-19. Drawing on extensive experience administering these and other immune-modulating therapies, the Society for Immunotherapy of Cancer offers this perspective on potential alternatives to anti-IL-6 that may also warrant consideration for management of the systemic inflammatory response and pulmonary compromise that can be seen in patients with severe COVID-19.
Collapse
MESH Headings
- Adoptive Transfer
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- COVID-19
- Coronavirus Infections/complications
- Coronavirus Infections/drug therapy
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- Cytokine Release Syndrome/complications
- Cytokine Release Syndrome/drug therapy
- Cytokine Release Syndrome/immunology
- Cytokine Release Syndrome/pathology
- Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Humans
- Immunotherapy
- Inflammation/complications
- Inflammation/drug therapy
- Inflammation/immunology
- Inflammation/pathology
- Interferon-gamma/antagonists & inhibitors
- Interleukin-1/antagonists & inhibitors
- Interleukin-17/antagonists & inhibitors
- Interleukin-23/antagonists & inhibitors
- Interleukin-6/antagonists & inhibitors
- Interleukin-6/genetics
- Interleukin-6/immunology
- Interleukin-6/metabolism
- Janus Kinases/antagonists & inhibitors
- Neoplasms/immunology
- Neoplasms/therapy
- Pandemics
- Pneumonia, Viral/complications
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/immunology
- Pneumonia, Viral/pathology
- Respiratory Distress Syndrome/complications
- Respiratory Distress Syndrome/drug therapy
- Respiratory Distress Syndrome/immunology
- Respiratory Distress Syndrome/pathology
- STAT Transcription Factors/antagonists & inhibitors
- Severe Acute Respiratory Syndrome/pathology
- Signal Transduction/drug effects
- Societies, Medical
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
Collapse
Affiliation(s)
| | - Steven J O'Day
- John Wayne Cancer Institute and Cancer Clinic, Providence Saint John's Health Center, Santa Monica, California, United States
- Providence Los Angeles Metro Hospitals, Santa Monica, California, United States
| | - Charles G Drake
- Herbert Irving Cancer Center, Columbia University Medical Center, New York, New York, USA
| | - Bernard A Fox
- Earle A Chiles Research Institute, Portland, Oregon, USA
| | - Bingqing Fu
- University of Science and Technology of China, Hefei, Anhui, China
| | - Walter J Urba
- Earle A Chiles Research Institute, Portland, Oregon, USA
| | | | - Jeffrey S Weber
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Haiming Wei
- University of Science and Technology of China, Hefei, Anhui, China
| | | | | |
Collapse
|
117
|
Enhanced Wound Healing- and Inflammasome-Associated Gene Expression in TNFAIP3-Interacting Protein 1- (TNIP1-) Deficient HaCaT Keratinocytes Parallels Reduced Reepithelialization. Mediators Inflamm 2020; 2020:5919150. [PMID: 32377162 PMCID: PMC7191359 DOI: 10.1155/2020/5919150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/04/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023] Open
Abstract
TNIP1 protein is a widely expressed, cytoplasmic inhibitor of inflammatory signaling initiated by membrane receptors such as TLRs which recognize pathogen-associated and damage-associated molecular patterns (PAMPs and DAMPs). Keratinocyte TNIP1 deficiency sensitizes cells to PAMPs and DAMPs promoting hyperresponsive expression and secretion of cytokine markers (e.g., IL-8 and IL-6) relevant to cases of chronic inflammation, like psoriasis, where TNIP1 deficiency has been reported. Here, we examined the impact of TNIP1 deficiency on gene expression and cellular responses (migration and viability) relevant to acute inflammation as typically occurs in wound healing. Using siRNA-mediated TNIP1 expression knockdown in cultured HaCaT keratinocytes, we investigated TNIP1 deficiency effects on signaling downstream of TLR3 agonism with low-concentration poly (I:C), a representative PAMP/DAMP. The combination of TNIP1 knockdown and PAMP/DAMP signaling disrupted expression of specific keratinocyte differentiation markers (e.g., transglutaminase 1 and involucrin). These same conditions promoted synergistically increased expression of wound-associated markers (e.g., S100A8, TGFβ, and CCN2) suggesting potential benefit of increased inflammatory response from reduced TNIP1 protein. Unexpectedly, poly (I:C) challenge of TNIP1-deficient cells restricted reepithelialization and reduced cell viability. In these cells, there was not only increased expression for genes associated with inflammasome assembly (e.g., ASC, procaspase 1) but also for A20, a TNIP1 partner protein that represses cell-death signaling. Despite this possibly compensatory increase in A20 mRNA, there was a decrease in phospho-A20 protein, the form necessary for quenching inflammation. Hyperresponsiveness to poly (I:C) in TNIP1-deficient keratinocytes was in part mediated through p38 and JNK pathways. Taken together, we conclude that TNIP1 deficiency promotes enhanced expression of factors associated with promoting wound healing. However, the coupled, increased potential priming of the inflammasome and reduced compensatory activity of A20 has a net negative effect on overall cell recovery potential manifested by poor reepithelialization and viability. These findings suggest a previously unrecognized role for TNIP1 protein in limiting inflammation during successful progression through early wound healing stages.
Collapse
|
118
|
Emerging medical treatments for hidradenitis suppurativa. J Am Acad Dermatol 2020; 83:554-562. [PMID: 32289386 DOI: 10.1016/j.jaad.2020.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory disease affecting intertriginous skin areas, and it is characterized by recurrent painful episodes of inflammatory drainage. Although the pathophysiology of HS is not fully understood, recent research points to an imbalance of cytokines as a contributing factor to the associated symptoms of purulent drainage and sinus tract formation. HS lesions are often characterized by a superimposed pathogenic/commensal bacterial infection that can improve with targeted antibiotic therapy. New medical treatments have emerged in recent years, many of which specifically work against a variety of proinflammatory mediators associated with HS. These newer, specified treatment options, in conjunction with surgery and lasers, are thought to provide positive outcomes and an overall improvement in quality of life in patients with HS.
Collapse
|
119
|
Martins AM, Ascenso A, Ribeiro HM, Marto J. The Brain-Skin Connection and the Pathogenesis of Psoriasis: A Review with a Focus on the Serotonergic System. Cells 2020; 9:E796. [PMID: 32224981 PMCID: PMC7226493 DOI: 10.3390/cells9040796] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a common non-communicable chronic immune-mediated skin disease, affecting approximately 125 million people in the world. Its pathogenesis results from a combination of genetic and environmental factors. The pathogenesis of psoriasis seems to be driven by the interaction between innate immune cells, adaptive immune cells and keratinocytes, in a process mediated by cytokines (including interleukins (IL)-6, IL-17 and IL-22, interferon and tumor necrosis factor) and other signaling molecules. This leads to an inflammatory process with increased proliferation of epidermal cells, neo-angiogenesis and infiltration of dendritic cells in the skin. Dysfunctional de novo glucocorticoid synthesis in psoriatic keratinocytes and the skin microbiome have also been suggested as mediators in the pathogenesis of this disease. To understand psoriasis, it is essential to comprehend the processes underlying the skin immunity and neuroendocrinology. This review paper focuses on the skin as a neuroendocrine organ and summarizes what is known about the skin immune system, the brain-skin connection and the role played by the serotonergic system in skin. Subsequently, the alterations of neuroimmune processes and of the serotonergic system in psoriatic skin are discussed, as well as, briefly, the genetic basis of psoriasis.
Collapse
Affiliation(s)
| | | | | | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (A.M.M.); (A.A.); (H.M.R.)
| |
Collapse
|
120
|
Xu P, Shen P, Yu B, Xu X, Ge R, Cheng X, Chen Q, Bian J, Li Z, Wang J. Janus kinases (JAKs): The efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders. Eur J Med Chem 2020; 192:112155. [PMID: 32120325 DOI: 10.1016/j.ejmech.2020.112155] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023]
Abstract
The Janus kinases or JAKs are a family of intracellular tyrosine kinases that play an essential role in the signaling of numerous cytokines that have been implicated in the pathogenesis of autoimmune diseases and myeloproliferative disorders. JAKs are activated upon ligand induced receptor homo- or heterodimerization, which results in the immediate phosphorylation of tyrosine residues and the phosphotyrosines then serve as docking sites for cytoplasmic signal transducer and activator of transcription (STAT) proteins which become phosphorylated by the JAKs upon recruitment to the receptor complex. The phosphorylated STAT proteins dimerize and travel to the cellular nucleus, where they act as transcription factors. Interfering in the JAK-STAT pathway has yielded the only approved small molecule kinase inhibitors for immunological indications. Numerous medicinal chemistry studies are currently aimed at the design of novel and potent inhibitors for JAKs. Additionally, whether the second-generation inhibitors which possessed selectivity for JAKs are more efficient are under research. This Perspective summarizes the progress in the discovery and development of JAKs inhibitors, including the potential binding site and approaches for identifying small-molecule inhibitors, as well as future therapeutic perspectives in autoimmune diseases and myeloproliferative disorders are also put forward in order to provide reference and rational for the drug discovery of novel and potent JAKs inhibitors.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Pei Shen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Bin Yu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Raoling Ge
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650000, China
| | - Xinying Cheng
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Qiuyu Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Jinlei Bian
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China.
| | - JuBo Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China.
| |
Collapse
|
121
|
Leite BF, Morimoto MA, Gomes C, Klemz BNDC, Genaro PDS, Damasceno NRT, Szejnfeld VL, Pinheiro MDM. Higher bodily adiposity, fat intake, and cholesterol serum levels are associated with higher disease activity in psoriatic arthritis patients: is there a link among fat and skin and joint involvement? Lipids Health Dis 2020; 19:21. [PMID: 32028959 PMCID: PMC7006378 DOI: 10.1186/s12944-020-1200-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/24/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction/ objectives Assuming that there is a link between lipid and glucose metabolism and inflammation in patients with psoriatic arthritis (PsA), our aim was to evaluate the relationships among body composition measurements, food intake, and disease activity in patients with PsA. Methods A total of 97 patients with PsA, according to the CASPAR criteria, were included in this cross-sectional study. Body composition measurements (whole-body DXA, GE-Lunar), food intake (3-day registry) and biochemical and inflammatory serum markers were evaluated. Skin and joint disease activity were assessed by using PASI, BSA, DAS28, and minimal disease activity (MDA). The level of significance was set as p < 0.05. Results A higher prevalence of obesity, according to the fat mass index (FMI) (92.7%), and metabolic syndrome (MetS) (54%) were found, but no significant changes regarding lean or bone mass were found. Joint disease activity was positively correlated with total body fat (r = 0.4; p < 0.001), FMI (r = 0.33; p < 0.001), body mass index (r = 0.20; p < 0.049) and waist circumference (r = 0.27; p = 0.009). In addition, joint disease activity was negatively associated with muscle mass (r = − 0.38; p < 0.001). Skin disease activity was positively correlated with total cholesterol (r = 0.3; p = 0.003) and LDL-cholesterol (r = 0.28; p = 0.006). After multiple adjustments, patients with severe joint disease activity had higher body adiposity than patients in remission or with low disease activity. Skin disease activity was associated with higher trans-fat intake and lower omega-6 consumption. Conclusions Our data suggest a possible harmful link among fat (body adiposity, saturated fat consumption, LDL-cholesterol serum levels) and joint and skin disease activity in patients with PsA.
Collapse
Affiliation(s)
- Beatriz Figueiredo Leite
- Federal University of Sao Paulo (UNIFESP/ EPM). Rheumatology Division, 204 Leandro Dupré St., Room 74, Vila Clementino, Sao Paulo, 04025-010, Brazil.
| | - Melissa Aparecida Morimoto
- Federal University of Sao Paulo (UNIFESP/ EPM). Rheumatology Division, 204 Leandro Dupré St., Room 74, Vila Clementino, Sao Paulo, 04025-010, Brazil
| | - Carina Gomes
- Federal University of Sao Paulo (UNIFESP/ EPM). Rheumatology Division, 204 Leandro Dupré St., Room 74, Vila Clementino, Sao Paulo, 04025-010, Brazil
| | - Barbara Nascimento de Carvalho Klemz
- Federal University of Sao Paulo (UNIFESP/ EPM). Rheumatology Division, 204 Leandro Dupré St., Room 74, Vila Clementino, Sao Paulo, 04025-010, Brazil
| | - Patrícia de Souza Genaro
- Vale do Paraiba University, 2911 Shidhima Hifumi, Avenue.Urbanova, Sao Jose dos Campos, 12244-000, Brazil
| | - Nágila Raquel Teixeira Damasceno
- Sao Paulo University. School of Public Health. Nutrition Department, 715, Dr Arnaldo Avenue, Cerqueira César, Sao Paulo, 01246-904, Brazil
| | - Vera Lúcia Szejnfeld
- Federal University of Sao Paulo (UNIFESP/ EPM). Rheumatology Division, 204 Leandro Dupré St., Room 74, Vila Clementino, Sao Paulo, 04025-010, Brazil
| | - Marcelo de Medeiros Pinheiro
- Federal University of Sao Paulo (UNIFESP/ EPM). Rheumatology Division, 204 Leandro Dupré St., Room 74, Vila Clementino, Sao Paulo, 04025-010, Brazil.
| |
Collapse
|
122
|
Sato E, Yano N, Fujita Y, Imafuku S. Interleukin-17A suppresses granular layer formation in a 3-D human epidermis model through regulation of terminal differentiation genes. J Dermatol 2020; 47:390-396. [PMID: 32020672 DOI: 10.1111/1346-8138.15250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/05/2020] [Indexed: 10/25/2022]
Abstract
Immunotherapies targeting interleukin (IL)-17 greatly improve plaque psoriasis. Most previous studies on IL-17 focused on the T-helper (Th)17 immune response, but investigation of the effects of IL-17A on psoriatic epidermal structure are limited. Using an in vitro 3-D human epidermis model, we investigated the effects of IL-17A and IL-17C on morphological changes and gene expression. IL-17A directly suppressed the formation of the granular layer, whereas IL-17C did not. IL-17A significantly downregulated the gene expression of profilaggrin (FLG), which is a major component of keratohyalin granules in the granular layer. Global gene expression analysis of this 3-D epidermis model showed that both IL-17A and IL-17C upregulated S100A7A and type 1 interferon-related genes including MX1, IFI44L, XAF1 and IFIT1. However, only IL-17A directly downregulated keratinocyte differentiation-related and cornified envelope-related genes including FLG, LOR, C1ORF68, LCE1E, LCE1B, KRT10, CST6 and RPTN. In conclusion, IL-17A, a systemic inflammatory cytokine, affected keratinization in our 3-D epidermis model. In contrast, IL-17C, a locally produced cytokine, did not have strong effects on keratinization. Targeting IL-17A does not only reduce inflammation but it may also directly affect epidermal differentiation in psoriasis.
Collapse
Affiliation(s)
- Emi Sato
- Department of Dermatology, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Narumi Yano
- Department of Pharmaceutics, Fukuoka University Faculty of Pharmaceutical Sciences, Fukuoka, Japan
| | - Yuka Fujita
- Department of Pharmaceutics, Fukuoka University Faculty of Pharmaceutical Sciences, Fukuoka, Japan
| | - Shinichi Imafuku
- Department of Dermatology, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| |
Collapse
|
123
|
Chikin VV. Guselkumab in the treatment of patients with plaque psoriasis of moderate and severe severity: Efficacy and safety of interleukin-23 blockade. VESTNIK DERMATOLOGII I VENEROLOGII 2020. [DOI: 10.25208/0042-4609-2019-95-6-68-77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- V. V. Chikin
- State Research Center of Dermatovenereology and Cosmetology, Ministry of Health of the Russian Federation
| |
Collapse
|
124
|
Allen SJ, Lumb KJ. Protein-protein interactions: a structural view of inhibition strategies and the IL-23/IL-17 axis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:253-303. [PMID: 32312425 DOI: 10.1016/bs.apcsb.2019.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-protein interactions are central to biology and provide opportunities to modulate disease with small-molecule or protein therapeutics. Recent developments in the understanding of the tractability of protein-protein interactions are discussed with a focus on the ligandable nature of protein-protein interaction surfaces. General principles of inhibiting protein-protein interactions are illustrated with structural biology examples from six members of the IL-23/IL-17 signaling family (IL-1, IL-6, IL-17, IL-23 RORγT and TNFα). These examples illustrate the different approaches to discover protein-protein interaction inhibitors on a target-specific basis that has proven fruitful in terms of discovering both small molecule and biologic based protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Samantha J Allen
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, PA, United States
| | - Kevin J Lumb
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, PA, United States
| |
Collapse
|
125
|
|
126
|
TYK2 in Tumor Immunosurveillance. Cancers (Basel) 2020; 12:cancers12010150. [PMID: 31936322 PMCID: PMC7017180 DOI: 10.3390/cancers12010150] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022] Open
Abstract
We review the history of the tyrosine kinase 2 (TYK2) as the founding member of the Janus kinase (JAK) family and outline its structure-function relation. Gene-targeted mice and hereditary defects of TYK2 in men have established the biological and pathological functions of TYK2 in innate and adaptive immune responses to infection and cancer and in (auto-)inflammation. We describe the architecture of the main cytokine receptor families associated with TYK2, which activate signal transducers and activators of transcription (STATs). We summarize the cytokine receptor activities with well characterized dependency on TYK2, the types of cells that respond to cytokines and TYK2 signaling-induced cytokine production. TYK2 may drive beneficial or detrimental activities, which we explain based on the concepts of tumor immunoediting and the cancer-immunity cycle in the tumor microenvironment. Finally, we summarize current knowledge of TYK2 functions in mouse models of tumor surveillance. The biology and biochemistry of JAKs, TYK2-dependent cytokines and cytokine signaling in tumor surveillance are well covered in recent reviews and the oncogenic properties of TYK2 are reviewed in the recent Special Issue ‘Targeting STAT3 and STAT5 in Cancer’ of Cancers.
Collapse
|
127
|
Ex vivo culture of lesional psoriasis skin for pharmacological testing. J Dermatol Sci 2019; 97:109-116. [PMID: 31948839 DOI: 10.1016/j.jdermsci.2019.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/18/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Psoriasis is a chronic, inflammatory skin disorder resulting from a complex interplay between immune and skin cells via release of soluble mediators. While a lot is known about the molecular mechanisms behind psoriasis pathogenesis, there is still a need for preclinical research models that accuratelyreplicate the disease. OBJECTIVE This study aimed to develop and characterize ex vivo culture of psoriasis skin as a model for pharmacological testing, where the immunological events of psoriasis can be followed. METHODS Full thickness punch biopsies of lesional psoriasis skin were cultured in submerged conditions up to 144 h followingin situ T cell stimulation with rhIL-23 and anti-CD3 and anti-CD28 antibodies. The T cell mediated skin inflammation was assessed by gene and protein l analysis for a panel of inflammatory mediators. Tissue integrity and morphology were evaluated by histological analysis. RESULTS T cell stimulation resulted in functional and psoriasis specificin situ activation of T cells. The expression levels of most of the proinflammatory mediators related to both immune and skin cells were comparable to these in freshly isolated tissue at 48 and 96 h of culture. Tissue integrity and morphology were sustained up to 96 h. Treatment with a corticosteroid reduced the expression of several pro-inflammatory cytokines and chemokines, whereas anti-IL-17A antibody treatment reduced the expression of the IL-17A downstream markers IL-8 and DEFB4. CONCLUSION By preserving keyimmunopathological mechanisms of psoriasis, ex vivo culture of psoriasis skin can be used for the investigation of inflammatory processes of psoriasis and for preclinical drug discovery research.
Collapse
|
128
|
Moldovan LI, Hansen TB, Venø MT, Okholm TLH, Andersen TL, Hager H, Iversen L, Kjems J, Johansen C, Kristensen LS. High-throughput RNA sequencing from paired lesional- and non-lesional skin reveals major alterations in the psoriasis circRNAome. BMC Med Genomics 2019; 12:174. [PMID: 31775754 PMCID: PMC6882360 DOI: 10.1186/s12920-019-0616-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/08/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease characterized by hyperproliferation and abnormal differentiation of keratinocytes. It is one of the most prevalent chronic inflammatory skin conditions in adults worldwide, with a considerable negative impact on quality of life. Circular RNAs (circRNAs) are a recently identified type of non-coding RNA with diverse cellular functions related to their exceptional stability. In particular, some circRNAs can bind and regulate microRNAs (miRNAs), a group of RNAs that play a role in the pathogenesis of psoriasis. The aim of this study was to characterize the circRNAome in psoriasis and to assess potential correlations to miRNA expression patterns. METHODS We used high-throughput RNA-sequencing (RNA-seq), NanoString nCounter technology and RNA chromogenic in situ hybridization (CISH) to profile the circRNA expression in paired lesional and non-lesional psoriatic skin from patients with psoriasis vulgaris. In addition, 799 miRNAs were profiled using NanoString nCounter technology and laser capture microdissection was used to study the dermis and epidermis separately. RESULTS We found a substantial down-regulation of circRNA expression in lesional skin compared to non-lesional skin. We observed that this mainly applies to the epidermis by analyzing laser capture microdissected tissues. We also found that the majority of the circRNAs were downregulated independently of their corresponding linear host genes. The observed downregulation of circRNAs in psoriasis was neither due to altered expression levels of factors known to affect circRNA biogenesis, nor because lesional skin contained an increased number of inflammatory cells such as lymphocytes. Finally, we observed that the overall differences in available miRNA binding sites on the circRNAs between lesional and non-lesional skin did not correlate with differences in miRNA expression patterns. CONCLUSIONS We have performed the first genome-wide circRNA profiling of paired lesional and non-lesional skin from patients with psoriasis and revealed that circRNAs are much less abundant in the lesional samples. Whether this is a cause or a consequence of the disease remains to be revealed, however, we found no evidence that the loss of miRNA binding sites on the circRNAs could explain differences in miRNA expression between lesional and non-lesional skin.
Collapse
Affiliation(s)
- Liviu-Ionut Moldovan
- Department of Molecular Biology and Genetics (MBG), Aarhus University, DK-8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark
| | - Thomas Birkballe Hansen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, DK-8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark
| | - Morten Trillingsgaard Venø
- Department of Molecular Biology and Genetics (MBG), Aarhus University, DK-8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark
| | - Trine Line Hauge Okholm
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, DK-8200 Aarhus, Denmark
| | - Thomas Levin Andersen
- Clinical Cell Biology, Research Unit of Pathology, Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
- Department of Clinical Pathology, Vejle Hospital, DK-7100 Vejle, Denmark
| | - Henrik Hager
- Department of Clinical Pathology, Vejle Hospital, DK-7100 Vejle, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, DK-8000 Aarhus, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, DK-8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, DK-8000 Aarhus, Denmark
| | - Lasse Sommer Kristensen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, DK-8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
129
|
Yan K, Yang J, Qian Q, Xu D, Liu H, Wei L, Li M, Xu W. Pathogenic Role of an IL-23/γδT17/Neutrophil Axis in Coxsackievirus B3-Induced Pancreatitis. THE JOURNAL OF IMMUNOLOGY 2019; 203:3301-3312. [PMID: 31748346 DOI: 10.4049/jimmunol.1900787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/12/2019] [Indexed: 12/16/2022]
Abstract
Coxsackievirus B is a common cause of viral myocarditis and pancreatitis. IL-17A is intensively involved in the pathogenesis of viral myocarditis. Whether IL-17A plays a role in Coxsackievirus B-induced pancreatitis, characterized by acinar cell destruction and immune infiltration, remains largely unknown. We found a significant, but transient, increase of IL-17A expression and γδT influx in the pancreas of C57BL/6J mice within 3 d following CVB3 infection. The pancreatic IL-17A was mainly produced by Vγ4 γδ T cells, to a lesser extent by CD4+ Th17 cells. IL-17A-/- and TCRδ-/- mice both reduced their susceptibility to CVB3 infection and pancreatitis severity when compared with the wild-type mice, without altering viral load. mAb depletion of Vγ4γδ T cells significantly improved mice survival and pancreatic pathology via decreasing Th17 expansion and neutrophil influx into the pancreas compared with isotype-treated mice. Transfer of Vγ4γδ T cells from wild-type, but not IL-17-/-, mice reconstituted TCRδ-/- mice to produce IL-17 and develop pancreatitis to the level of wild-type mice during CVB3 infection, indicating γδ T IL-17A is required for the onset of viral pancreatitis. IL-23 was robustly induced in the pancreas within the first day of infection. Administration of exogenous rIL-23 to mice increased CVB3 pancreatitis through in vivo expansion of IL-17+γδT17 cells at 12 h postinfection. Our findings reveal a key pathogenic role for early-activated γδT17 cells in viral pancreatitis via promoting neutrophil infiltration and Th17 induction. This IL-23/γδT17/neutrophil axis is critically involved in the onset of CVB3 pancreatitis and represents a potential treating target for the disease.
Collapse
Affiliation(s)
- Kepeng Yan
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Jie Yang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Qian Qian
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Dan Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Hui Liu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Lin Wei
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Min Li
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
130
|
Ju N, Shimamura M, Hayashi H, Ikeda Y, Yoshida S, Nakamura A, Morishita R, Rakugi H, Nakagami H. Preventative effects of the partial RANKL peptide MHP1-AcN in a mouse model of imiquimod-induced psoriasis. Sci Rep 2019; 9:15434. [PMID: 31659208 PMCID: PMC6817907 DOI: 10.1038/s41598-019-51681-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022] Open
Abstract
We recently developed a partial peptide of receptor activator of nuclear factor-кB ligand (RANKL) known as microglial healing peptide 1 (MHP1-AcN), that inhibits Toll-like receptor (TLR)-related inflammation through RANKL/RANK signaling in microglia and macrophages without promoting osteoclast activation. The abnormal activation of TLRs contributes to the initiation and maintenance of psoriasis, which is a chronic inflammatory skin disease that involves the aberrant expression of proinflammatory cytokines and the subsequent dermal γδ T cell and T helper 17 (Th17) cell responses. The inhibition of TLR-mediated inflammation provides an important strategy to treat psoriasis. Here, we examined the preventative effects of MHP1-AcN in a mouse model of imiquimod (a TLR 7/8 agonist)-induced psoriasis. Topical imiquimod application induced psoriasis-like skin lesions on the ear and dorsal skin. Systemic administration of MHP1-AcN by daily subcutaneous injection significantly prevented the development of skin lesions, including erythema, scaling and thickening. Mice treated with MHP1-AcN showed reduced levels of skin Il6 mRNA at 32 h and reduced levels of Il23 and Il17a mRNA at d9. Serum levels of IL-6 and IL-23 were reduced at 32 h, and IL-17A was reduced at d9. These results indicated that MHP1-AcN could decrease imiquimod-induced IL-6, IL-23 and IL-17A production. MHP1-AcN is potentially an alternative treatment for psoriasis.
Collapse
Affiliation(s)
- Nan Ju
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Munehisa Shimamura
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuka Ikeda
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shota Yoshida
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayumi Nakamura
- Department of Pharmacy and Department of Medical Innovation, Osaka University Hospital, Osaka, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
131
|
Prieux R, Eeman M, Rothen-Rutishauser B, Valacchi G. Mimicking cigarette smoke exposure to assess cutaneous toxicity. Toxicol In Vitro 2019; 62:104664. [PMID: 31669394 DOI: 10.1016/j.tiv.2019.104664] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/24/2022]
Abstract
Cigarette smoke stands among the most toxic environmental pollutants and is composed of thousands of chemicals including polycyclic aromatic hydrocarbons (PAHs). Despite restrict cigarette smoking ban in indoor or some outdoor locations, the risk of non-smokers to be exposed to environmental cigarette smoke is not yet eliminated. Beside the well-known effects of cigarette smoke to the respiratory and cardiovascular systems, a growing literature has shown during the last 3 decades its noxious effects also on cutaneous tissues. Being the largest organ as well as the interface between the outer environment and the body, human skin acts as a natural shield which is continuously exposed to harmful exogenous agents. Thus, a prolonged and/or repetitive exposure to significant levels of toxic smoke pollutants may have detrimental effects on the cutaneous tissue by disrupting the epidermal barrier function and by exacerbating inflammatory skin disorders (i.e. psoriasis, atopic dermatitis). With the development of very complex skin tissue models and sophisticated cigarette smoke exposure systems it has become important to better understand the toxicity pathways induced by smoke pollutants in more realistic laboratory conditions to find solutions for counteracting their effects. This review provides an update on the skin models currently available to study cigarette smoke exposure and the known pathways involved in cutaneous toxicity. In addition, the article will briefly cover the inflammatory skin pathologies potentially induced and/or exacerbated by cigarette smoke exposure.
Collapse
Affiliation(s)
- Roxane Prieux
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Marc Eeman
- Home & Personal Care, Dow Silicones Belgium, Seneffe, Belgium
| | | | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, North Carolina State University, Kannapolis, United States; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
132
|
Neubert E, Bach KM, Busse J, Bogeski I, Schön MP, Kruss S, Erpenbeck L. Blue and Long-Wave Ultraviolet Light Induce in vitro Neutrophil Extracellular Trap (NET) Formation. Front Immunol 2019; 10:2428. [PMID: 31708915 PMCID: PMC6823194 DOI: 10.3389/fimmu.2019.02428] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022] Open
Abstract
Neutrophil Extracellular Traps (NETs) are produced by neutrophilic granulocytes and consist of decondensed chromatin decorated with antimicrobial peptides. They defend the organism against intruders and are released upon various stimuli including pathogens, mediators of inflammation, or chemical triggers. NET formation is also involved in inflammatory, cardiovascular, malignant diseases, and autoimmune disorders like rheumatoid arthritis, psoriasis, or systemic lupus erythematosus (SLE). In many autoimmune diseases like SLE or dermatomyositis, light of the ultraviolet-visible (UV-VIS) spectrum is well-known to trigger and aggravate disease severity. However, the underlying connection between NET formation, light exposure, and disease exacerbation remains elusive. We studied the effect of UVA (375 nm), blue (470 nm) and green (565 nm) light on NETosis in human neutrophils ex vivo. Our results show a dose- and wavelength-dependent induction of NETosis. Light-induced NETosis depended on the generation of extracellular reactive oxygen species (ROS) induced by riboflavin excitation and its subsequent reaction with tryptophan. The light-induced NETosis required both neutrophil elastase (NE) as well as myeloperoxidase (MPO) activation and induced histone citrullination. These findings suggest that NET formation as a response to light could be the hitherto missing link between elevated susceptibility to NET formation in autoimmune patients and photosensitivity for example in SLE and dermatomyositis patients. This novel connection could provide a clue for a deeper understanding of light-sensitive diseases in general and for the development of new pharmacological strategies to avoid disease exacerbation upon light exposure.
Collapse
Affiliation(s)
- Elsa Neubert
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany.,Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
| | - Katharina Marie Bach
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Busse
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Ivan Bogeski
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany.,Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Kruss
- Institute of Physical Chemistry, Göttingen University, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
133
|
Egeberg A, Andersen Y, Halling‐Overgaard A, Alignahi F, Thyssen J, Burge R, Mallbris L. Systematic review on rapidity of onset of action for interleukin‐17 and interleukin‐23 inhibitors for psoriasis. J Eur Acad Dermatol Venereol 2019; 34:39-46. [DOI: 10.1111/jdv.15920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022]
Affiliation(s)
- A. Egeberg
- Department of Dermatology and Allergy Herlev and Gentofte Hospital University of Copenhagen Hellerup Denmark
| | - Y.M.F. Andersen
- Department of Dermatology and Allergy Herlev and Gentofte Hospital University of Copenhagen Hellerup Denmark
| | - A.‐S. Halling‐Overgaard
- Department of Dermatology and Allergy Herlev and Gentofte Hospital University of Copenhagen Hellerup Denmark
| | - F. Alignahi
- Department of Dermatology and Allergy Herlev and Gentofte Hospital University of Copenhagen Hellerup Denmark
| | - J.P. Thyssen
- Department of Dermatology and Allergy Herlev and Gentofte Hospital University of Copenhagen Hellerup Denmark
| | - R. Burge
- Eli Lilly and Company Indianapolis INUSA
- Division of Pharmaceutical Sciences University of Cincinnati Cincinnati OH USA
| | | |
Collapse
|
134
|
Chiang CC, Cheng WJ, Korinek M, Lin CY, Hwang TL. Neutrophils in Psoriasis. Front Immunol 2019; 10:2376. [PMID: 31649677 PMCID: PMC6794444 DOI: 10.3389/fimmu.2019.02376] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
Neutrophils are the most abundant innate immune cells. The pathogenic roles of neutrophils are related to chronic inflammation and autoimmune diseases. Psoriasis is a chronic systemic inflammatory disease affecting ~2–3% of the world population. The abundant presence of neutrophils in the psoriatic skin lesions serves as a typical histopathologic hallmark of psoriasis. Recent reports indicated that oxidative stress, granular components, and neutrophil extracellular traps from psoriatic neutrophils are related to the initial and maintenance phases of psoriasis. This review provides an overview on the recent (up to 2019) advances in understanding the role of neutrophils in the pathophysiology of psoriasis, including the effects of respiratory burst, degranulation, and neutrophil extracellular trap formation on psoriatic immunity and the clinical relationships.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Supervisor Board, Taoyuan Chinese Medicine Association, Taoyuan, Taiwan.,Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Wei-Jen Cheng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Yu Lin
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
135
|
Flores RA, Fernandez-Colorado CP, Afrin F, Cammayo PLT, Kim S, Kim WH, Min W. Riemerella anatipestifer infection in ducks induces IL-17A production, but not IL-23p19. Sci Rep 2019; 9:13269. [PMID: 31519917 PMCID: PMC6744436 DOI: 10.1038/s41598-019-49516-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
R. anatipestifer (RA) is one of the most harmful bacterial pathogens affecting the duck industry, and infection is associated with the production of proinflammatory cytokines, including IL-17A. Another proinflammatory cytokine, IL-23, is critical for the development of Th17 cells, which produce IL-17. However, IL-23 roles have not been studied in this infection. Here, we describe the identification and mRNA expression analysis of duck IL-23p19 (duIL-23p19) in splenic lymphocytes and macrophages stimulated with killed RA and in spleens of RA-infected ducks. Expression of duIL-23p19 transcript identified in this study was relatively high in livers of healthy ducks and was upregulated in mitogen-activated splenic lymphocytes as well as in splenic lymphocytes and macrophages stimulated with killed RA. In spleens of RA-infected ducks, expression levels of duIL-23p19 transcript were unchanged at all time points except on days 4 and 7 post-infection; however, duIL-17A and IL-17F expression levels were upregulated in both spleens of RA-infected ducks and splenic lymphocytes and macrophages stimulated with killed RA. In sera collected at 24 h after this infection, duIL-23p19 expression levels were unchanged, whereas IL-17A significantly upregulated. These results suggest that IL-23p19 does not play a critical role in the IL-17A response in early stages of RA-infected ducks.
Collapse
Affiliation(s)
- Rochelle A Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Cherry P Fernandez-Colorado
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea.,Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Banos, College, Laguna, 4031, Philippines
| | - Fahmida Afrin
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea.,Animal Genetic Resources Research Center, National Institute of Animal Science, Rural Development Administration, Hwang San-ro 1214-13, Unbong-up, Namwon, 55717, Korea
| | - Paula Leona T Cammayo
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Suk Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Woo H Kim
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
136
|
Keramat S, Sadeghian MH, Keramati MR, Fazeli B. Assessment of T helper 17-associated cytokines in thromboangiitis obliterans. J Inflamm Res 2019; 12:251-258. [PMID: 31564950 PMCID: PMC6734553 DOI: 10.2147/jir.s218105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/25/2019] [Indexed: 12/27/2022] Open
Abstract
Background The management of thromboangiitis obliterans (TAO) remains a medical challenge because of its unknown etiology. It is also not known whether it is a systemic or localized disease or a type of autoimmune vasculitis. Methods In this study, we evaluated the serum level of IL-17 and IL-23 which increase in both systemic inflammation and autoimmunity, in 60 TAO patients and 30 age- and smoking habit-matched controls. Also, IL-22, which has reported high level during infection but not in autoimmunity, was evaluated. Results The serum levels of IL-17, IL-22 and IL-23 were significantly higher in the TAO patients in comparison with the controls (P<0.001). Notably, the serum levels of IL-17, IL-22 and IL-23 were highest in the patients with the chief complaint of chronic ulcer and lowest in the patients with gangrene (P<0.05). Also, the serum level of IL-22 was significantly higher in the anemic patients in comparison with the non-anemic patients (P=0.03). Conclusion Owing to our findings, TAO appears more likely to be a systemic disorder rather than a localized vasculopathy. Therefore, treatment protocols based on systemic treatment of TAO patients may be more helpful than localized treatment, such as bypass surgery and endovascular procedures. Also, according to our findings regarding the high level of IL-22, the trigger of TAO development may be an infectious pathogen. However, additional research is highly recommended to investigate whether TAO is an infectious disease or an infectious-induced autoimmunity. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/KHamw3jfa1Q
Collapse
Affiliation(s)
- Shayan Keramat
- Hematology Department, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Hadi Sadeghian
- Hematology Department, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran.,Pathology Department, Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keramati
- Hematology Department, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran.,Pathology Department, Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahare Fazeli
- Immunology Department, Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Angiology, L.Sacco Hospital, Vascular Independent Research and Education, European Organization, Milan, Italy
| |
Collapse
|
137
|
Herster F, Bittner Z, Codrea MC, Archer NK, Heister M, Löffler MW, Heumos S, Wegner J, Businger R, Schindler M, Stegner D, Schäkel K, Grabbe S, Ghoreschi K, Miller LS, Weber ANR. Platelets Aggregate With Neutrophils and Promote Skin Pathology in Psoriasis. Front Immunol 2019; 10:1867. [PMID: 31474979 PMCID: PMC6706802 DOI: 10.3389/fimmu.2019.01867] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a frequent systemic inflammatory autoimmune disease characterized primarily by skin lesions with massive infiltration of leukocytes, but frequently also presents with cardiovascular comorbidities. Especially polymorphonuclear neutrophils (PMNs) abundantly infiltrate psoriatic skin but the cues that prompt PMNs to home to the skin are not well-defined. To identify PMN surface receptors that may explain PMN skin homing in psoriasis patients, we screened 332 surface antigens on primary human blood PMNs from healthy donors and psoriasis patients. We identified platelet surface antigens as a defining feature of psoriasis PMNs, due to a significantly increased aggregation of neutrophils and platelets in the blood of psoriasis patients. Similarly, in the imiquimod-induced experimental in vivo mouse model of psoriasis, disease induction promoted PMN-platelet aggregate formation. In psoriasis patients, disease incidence directly correlated with blood platelet counts and platelets were detected in direct contact with PMNs in psoriatic but not healthy skin. Importantly, depletion of circulating platelets in mice in vivo ameliorated disease severity significantly, indicating that both PMNs and platelets may be relevant for psoriasis pathology and disease severity.
Collapse
Affiliation(s)
| | - Zsofia Bittner
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | | | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Martin Heister
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Markus W Löffler
- Department of Immunology, University of Tübingen, Tübingen, Germany.,Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Simon Heumos
- Quantitative Biology Center, University of Tübingen, Tübingen, Germany
| | - Joanna Wegner
- Department of Dermatology, University Hospital Mainz, Mainz, Germany
| | - Ramona Businger
- Division of Molecular Virology, Institute of Virology, Tübingen, Germany
| | - Michael Schindler
- Division of Molecular Virology, Institute of Virology, Tübingen, Germany
| | - David Stegner
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Knut Schäkel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Hospital Mainz, Mainz, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany.,Department of Dermatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
138
|
Kunz M, Simon JC, Saalbach A. Psoriasis: Obesity and Fatty Acids. Front Immunol 2019; 10:1807. [PMID: 31417571 PMCID: PMC6684944 DOI: 10.3389/fimmu.2019.01807] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/17/2019] [Indexed: 01/10/2023] Open
Abstract
Psoriasis is chronic inflammatory skin disease affecting skin, joints, cardiovascular system, brain, and metabolism. The pathogenesis of psoriasis is mediated by a complex interplay between the immune system, inflammatory mediators of different pathways, e.g., TNF-alpha and the IL-23/IL-17 pathways, psoriasis-associated susceptibility loci, autoantigens, and multiple environmental factors. Psoriasis is triggered by the combination of genetic and environmental factors. A novel environmental risk factor with rising importance is obesity. Several studies proved that obesity is an independent risk factor for the onset and severity of psoriasis. Due to the dramatic increase of obesity worldwide this minireview focuses on obesity as a major environmental risk factor for psoriasis and the mechanisms of obesity-mediated exacerbation of psoriasis.
Collapse
Affiliation(s)
- Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Leipzig, Germany
| | - Jan C Simon
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Leipzig, Germany
| | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
139
|
Schön MP. Adaptive and Innate Immunity in Psoriasis and Other Inflammatory Disorders. Front Immunol 2019; 10:1764. [PMID: 31402919 PMCID: PMC6676248 DOI: 10.3389/fimmu.2019.01764] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Over the past three decades, a considerable body of evidence has highlighted T cells as pivotal culprits in the pathogenesis of psoriasis. This includes the association of psoriasis with certain MHC (HLA) alleles, oligoclonal expansion of T cells in some cases, therapeutic response to T cell-directed immunomodulation, the onset of psoriasis following bone marrow transplantation, or induction of psoriasis-like inflammation by T cells in experimental animals. There is accumulating clinical and experimental evidence suggesting that both autoimmune and autoinflammatory mechanisms lie at the core of the disease. Indeed, some studies suggested antigenic functions of structural proteins, and complexes of self-DNA with cathelicidin (LL37) or melanocytic ADAMTSL5 have been proposed more recently as actual auto-antigens in some cases of psoriasis. These findings are accompanied by various immunoregulatory mechanisms, which we increasingly understand and which connect innate and adaptive immunity. Specific adaptive autoimmune responses, together with our current view of psoriasis as a systemic inflammatory disorder, raise the question of whether psoriasis may have connections to autoimmune or autoinflammatory disorders elsewhere in the body. While such associations have been suspected for many years, compelling mechanistic evidence in support of this notion is still scant. This review sets into context the current knowledge about innate and adaptive immunological processes in psoriasis and other autoimmune or autoinflammatory diseases.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
140
|
Significance of IL-17A-producing CD8+CD103+ skin resident memory T cells in psoriasis lesion and their possible relationship to clinical course. J Dermatol Sci 2019; 95:21-27. [DOI: 10.1016/j.jdermsci.2019.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 11/18/2022]
|
141
|
The Psoriasis Therapeutic Potential of a Novel Short Laminin Peptide C16. Int J Mol Sci 2019; 20:ijms20133144. [PMID: 31252620 PMCID: PMC6651782 DOI: 10.3390/ijms20133144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 01/18/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by excessive growth of keratinocytes and hyperkeratosis in the epidermis. An abnormality of the non-lesional epidermis at an early stage of psoriasis is involved in triggering inflammatory cell infiltration into the dermis. Integrin α5β1 acts as a receptor for fibronectin and has been found to be overexpressed in non-lesional psoriatic epidermis. To investigate whether α5β1 integrin has a potential as a drug target for psoriasis treatment, the α5β1 integrin-binding peptide, C16, was used to obstruct the HaCat keratinocyte cellular responses induced by fibronectin (Fn) in culture and psoriasis-like skin inflammation induced in mice by imiquimod (IMQ). The C16 exhibited antagonistic activity against α5β1 integrin in HaCat cells, with evidence of suppression of the Fn-mediated proliferative, cytoskeletal, and inflammatory responses. Topical treatment with C16 greatly reduced the IMQ-induced epidermal hyperplasia, infiltration of neutrophils/macrophages, and expression of pro-inflammatory mediators in mouse skin. The C16SP (C16-derived short peptide; DITYVRLKF) also exhibited antagonistic activity, suppressing α5β1 integrin activity in culture, and reducing IMQ-induced skin inflammation. Taken together, this study provides the first evidence that α5β1 integrin may be a potential drug target for psoriasis. The synthetic C16 peptide may serve as an agent for psoriasis therapy.
Collapse
|
142
|
Todorović V, Su Z, Putman CB, Kakavas SJ, Salte KM, McDonald HA, Wetter JB, Paulsboe SE, Sun Q, Gerstein CE, Medina L, Sielaff B, Sadhukhan R, Stockmann H, Richardson PL, Qiu W, Argiriadi MA, Henry RF, Herold JM, Shotwell JB, McGaraughty SP, Honore P, Gopalakrishnan SM, Sun CC, Scott VE. Small Molecule IL-36γ Antagonist as a Novel Therapeutic Approach for Plaque Psoriasis. Sci Rep 2019; 9:9089. [PMID: 31235749 PMCID: PMC6591177 DOI: 10.1038/s41598-019-45626-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
IL-36 cytokines are pro-inflammatory members of the IL-1 family that are upregulated in inflammatory disorders. Specifically, IL-36γ is highly expressed in active psoriatic lesions and can drive pro-inflammatory processes in 3D human skin equivalents supporting a role for this target in skin inflammation. Small molecule antagonists of interleukins have been historically challenging to generate. Nevertheless, we performed a small molecule high-throughput screen to identify IL-36 antagonists using a novel TR-FRET binding assay. Several compounds, including 2-oxypyrimidine containing structural analogs of the marketed endothelin receptor A antagonist Ambrisentan, were identified as hits from the screen. A-552 was identified as a the most potent antagonist of human IL-36γ, but not the closely related family member IL-36α, was capable of attenuating IL-36γ induced responses in mouse and human disease models. Additionally, x-ray crystallography studies identified key amino acid residues in the binding pocket present in human IL-36γ that are absent in human IL-36α. A-552 represents a first-in-class small molecule antagonist of IL-36 signaling that could be used as a chemical tool to further investigate the role of this pathway in inflammatory skin diseases such as psoriasis.
Collapse
Affiliation(s)
- Viktor Todorović
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA.
| | - Zhi Su
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - C Brent Putman
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Stevan J Kakavas
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | | | - Heath A McDonald
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Joseph B Wetter
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | | | - Qi Sun
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Clare E Gerstein
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Limary Medina
- AbbVie Bioresearch Center, 381 Plantation St., Worcester, MA, 01605, USA
| | - Bernhard Sielaff
- AbbVie Bioresearch Center, 381 Plantation St., Worcester, MA, 01605, USA
| | | | | | | | - Wei Qiu
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Maria A Argiriadi
- AbbVie Bioresearch Center, 381 Plantation St., Worcester, MA, 01605, USA
| | - Rodger F Henry
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - J Martin Herold
- AbbVie Bioresearch Center, 381 Plantation St., Worcester, MA, 01605, USA
| | - J Brad Shotwell
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | | | - Prisca Honore
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | | | - Chaohong C Sun
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Victoria E Scott
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA.
| |
Collapse
|
143
|
Yu ZQ, Wang WF, Dai YC, Chen XC, Chen JY. Interleukin-22 receptor 1 is expressed in multinucleated giant cells: A study on intestinal tuberculosis and Crohn's disease. World J Gastroenterol 2019; 25:2473-2488. [PMID: 31171891 PMCID: PMC6543246 DOI: 10.3748/wjg.v25.i20.2473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/20/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It is challenging to distinguish intestinal tuberculosis from Crohn's disease due to dynamic changes in epidemiology and similar clinical characteristics. Recent studies have shown that polymorphisms in genes involved in the interleukin (IL)-23/IL-17 axis may affect intestinal mucosal immunity by affecting the differentiation of Th17 cells. AIM To investigate the specific single-nucleotide polymorphisms (SNPs) in genes involved in the IL-23/IL-17 axis and possible pathways that affect susceptibility to intestinal tuberculosis and Crohn's disease. METHODS We analysed 133 patients with intestinal tuberculosis, 128 with Crohn's disease, and 500 normal controls. DNA was extracted from paraffin-embedded specimens or whole blood. Four SNPs in the IL23/Th17 axis (IL22 rs2227473, IL1β rs1143627, TGFβ rs4803455, and IL17 rs8193036) were genotyped with TaqMan assays. The transcriptional activity levels of different genotypes of rs2227473 were detected by dual luciferase reporter gene assay. The expression of IL-22R1 in different intestinal diseases was detected by immunohistochemistry. RESULTS The A allele frequency of rs2227473 (P = 0.030, odds ratio = 0.60, 95% confidence interval: 0.37-0.95) showed an abnormal distribution between intestinal tuberculosis and healthy controls. The presence of the A allele was associated with a higher IL-22 transcriptional activity (P < 0.05). In addition, IL-22R1 was expressed in intestinal lymphoid tissues, especially under conditions of intestinal tuberculosis, and highly expressed in macrophage-derived Langhans giant cells. The results of immunohistochemistry showed that the expression of IL-22R1 in patients with Crohn's disease and intestinal tuberculosis was significantly higher than that in patients with intestinal polyps and colon cancer (P < 0.01). CONCLUSION High IL-22 expression seems to be a protective factor for intestinal tuberculosis. IL-22R1 is expressed in Langhans giant cells, suggesting that the IL-22/IL-22R1 system links adaptive and innate immunity.
Collapse
MESH Headings
- Adult
- Biopsy
- Case-Control Studies
- Crohn Disease/diagnosis
- Crohn Disease/genetics
- Crohn Disease/immunology
- Diagnosis, Differential
- Female
- Genetic Predisposition to Disease
- Giant Cells, Langhans/immunology
- Giant Cells, Langhans/pathology
- Humans
- Interleukins/genetics
- Interleukins/immunology
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Male
- Middle Aged
- Polymorphism, Single Nucleotide
- Promoter Regions, Genetic/genetics
- Receptors, Interleukin/immunology
- Receptors, Interleukin/metabolism
- Risk Factors
- Tuberculosis, Gastrointestinal/diagnosis
- Tuberculosis, Gastrointestinal/genetics
- Tuberculosis, Gastrointestinal/immunology
- Young Adult
- Interleukin-22
Collapse
Affiliation(s)
- Zi-Qi Yu
- Department of Gastroenterology and Hepatology, Jiangxi Provincial People’s Hospital, Nanchang 330006, Jiangxi Province, China
- Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wen-Fei Wang
- Department of Microbiology and Immunology, Shenzhen University Health Science Center, Shenzhen 518000, Guangdong Province, China
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena 07743, Germany
| | - You-Chao Dai
- Department of Microbiology and Immunology, Shenzhen University Health Science Center, Shenzhen 518000, Guangdong Province, China
| | - Xin-Chun Chen
- Department of Microbiology and Immunology, Shenzhen University Health Science Center, Shenzhen 518000, Guangdong Province, China
| | - Jian-Yong Chen
- Department of Gastroenterology and Hepatology, Jiangxi Provincial People’s Hospital, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
144
|
Macleod T, Ward J, Alase AA, Bridgewood C, Wittmann M, Stonehouse NJ. Antimicrobial Peptide LL-37 Facilitates Intracellular Uptake of RNA Aptamer Apt 21-2 Without Inducing an Inflammatory or Interferon Response. Front Immunol 2019; 10:857. [PMID: 31068939 PMCID: PMC6491520 DOI: 10.3389/fimmu.2019.00857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/02/2019] [Indexed: 11/23/2022] Open
Abstract
RNA aptamers are synthetic single stranded RNA oligonucleotides that function analogously to antibodies. Recently, they have shown promise for use in treating inflammatory skin disease as, unlike antibody-based biologics, they are able to enter the skin following topical administration. However, it is important to understand the inflammatory milieu into which aptamers are delivered, as numerous immune-modulating mediators will be present at abnormal levels. LL-37 is an important immune-modifying protein upregulated in several inflammatory skin conditions, including psoriasis, rosacea and eczema. This inflammatory antimicrobial peptide is known to complex nucleic acids and induce both inflammatory and interferon responses from keratinocytes. Given the attractive notion of using RNA aptamers in topical medication and the prevalence of LL-37 in these inflammatory skin conditions, we examined the effect of LL-37 on the efficacy and safety of the anti-IL-17A RNA aptamer, Apt 21-2. LL-37 was demonstrated to complex with the RNA aptamer by electrophoretic mobility shift and filter binding assays. In contrast to free Apt 21-2, LL-37-complexed Apt 21-2 was observed to efficiently enter both keratinocytes and fibroblasts by confocal microscopy. Despite internalization of LL-37-complexed aptamers, measurement of inflammatory mediators and interferon stimulated genes showed LL-37-complexed Apt 21-2 remained immunologically inert in keratinocytes, fibroblasts, and peripheral blood mononuclear cells including infiltrating dendritic cells and monocytes. The findings of this study suggest RNA aptamers delivered into an inflammatory milieu rich in LL-37 may become complexed and subsequently internalized by surrounding cells in the skin. Whilst the results of this study indicate delivery of RNA aptamers into tissue rich in LL-37 should not cause an unwarranted inflammatory of interferon response, these results have significant implications for the efficacy of aptamers with regards to extracellular vs. intracellular targets that should be taken into consideration when developing treatment strategies utilizing RNA aptamers in inflamed tissue.
Collapse
Affiliation(s)
- Tom Macleod
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joseph Ward
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Adewonuola A Alase
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Medicine and Health, University of Leeds, Leeds, United Kingdom.,National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Nicola J Stonehouse
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
145
|
Puig L. Guselkumab for the treatment of adults with moderate to severe plaque psoriasis. Expert Rev Clin Immunol 2019; 15:589-597. [PMID: 30920855 DOI: 10.1080/1744666x.2019.1601014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Guselkumab is a subcutaneously administered monoclonal antibody that targets the IL-23p19 cytokine subunit and has been approved by the US FDA and the EMA for the treatment of moderate-to-severe psoriasis in adult patients. Areas covered: This review outlines the pharmacologic properties, efficacy and safety of guselkumab for the treatment of moderate-to-severe plaque psoriasis in adults. Expert opinion: In clinical trials, guselkumab markedly improved disease, regardless of topographical locations and patient subpopulations, with corresponding improvements in quality of life measures, and was generally well tolerated. Guselkumab has been shown to be more effective than adalimumab in phase III pivotal trials (VOYAGE 1 and VOYAGE 2) at both week 16 and week 24 for PASI75, PASI90, PASI100 and IGA(0/1); the corresponding PASI 90 response rates at week 16 were 73.3% vs 49.7% in VOYAGE 1 and 70.0% vs 46.8% in VOYAGE 2 (P < 0.001 in both). Guselkumab has been shown to be superior to secukinumab in PASI90 response rate at week 48 in a head-to-head trial (ECLIPSE); it is also successful in treating patients with incomplete responses to adalimumab (VOYAGE 2) and ustekinumab (NAVIGATE). Guselkumab may be effective in treating psoriatic arthritis, with several phase III trials ongoing.
Collapse
Affiliation(s)
- Lluís Puig
- a Department of Dermatology, Hospital de la Santa Creu i Sant Pau , Universitat Autònoma de Barcelona , Barcelona , Spain
| |
Collapse
|
146
|
Nasonov EL, Lila AM. Janus kinase inhibitors in immuno-inflammatory rheumatic diseases: new opportunities and prospects. ACTA ACUST UNITED AC 2019. [DOI: 10.14412/1995-4484-2019-8-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the great success in the diagnosis and treatment of immuno-inflammatory rheumatic diseases (IIRD), which led to a significant improvement in the prognosis in many patients, the fundamental medical problems of this pathology – the restoration of quality of life and reduction of mortality to the population level – are far from solution. This served as a powerful impetus to the study of new approaches to pharmacotherapy of IIRD, one of which is associated with the use of low-molecular synthetic drugs that inhibit intracellular "signal" molecules-Janus kinase (JAK), the socalled Jakinibs. The current achievements and trends concerning the use of JAK inhibitors in the treatment of IIRD are considered.
Collapse
Affiliation(s)
- E. L. Nasonov
- Research Institute of Rheumatology;
Department of Rheumatology, Institute of Professional Education, I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| | | |
Collapse
|
147
|
Sun S, Zhang X, Xu M, Zhang F, Tian F, Cui J, Xia Y, Liang C, Zhou S, Wei H, Zhao H, Wu G, Xu B, Liu X, Yang G, Wang Q, Zhang L, Gong Y, Shao C, Zou Y. Berberine downregulates CDC6 and inhibits proliferation via targeting JAK-STAT3 signaling in keratinocytes. Cell Death Dis 2019; 10:274. [PMID: 30894513 PMCID: PMC6426889 DOI: 10.1038/s41419-019-1510-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/17/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
Psoriasis is a chronic skin disease characterized by hyperproliferation and impaired differentiation of epidermal keratinocytes accompanied by increased inflammation, suggesting that molecules with antiproliferation and anti-inflammatory abilities may be effective for its treatment. One of the key steps in regulating cell proliferation is DNA replication initiation, which relies on prereplication complex (pre-RC) assembly on chromatin. CDC6 is an essential regulator of pre-RC assembly and DNA replication in eukaryotic cells, but its role in proliferation of keratinocytes and psoriasis is unknown. Here we examined CDC6 expression in psoriatic skin and evaluated its function in the proliferation of human keratinocytes. CDC6 expression is upregulated in epidermal cells in psoriatic lesions and it could be induced by IL-22/STAT3 signaling, a key signaling pathway involved in the pathogenesis of psoriasis, in keratinocytes. Depletion of CDC6 leads to decreased proliferation of keratinocytes. We also revealed that berberine (BBR) could inhibit CDK4/6-RB-CDC6 signaling in keratinocytes, leading to reduced proliferation of keratinocytes. The mechanism of antiproliferation effects of BBR is through the repression of JAK1, JAK2, and TYK2, which in turn inhibits activation of STAT3. Finally, we demonstrated that BBR could inhibit imiquimod-induced psoriasis-like skin lesions and upregulation of CDC6 and p-STAT3 in mice. Collectively, our findings indicate that BBR inhibits CDC6 expression and proliferation in human keratinocytes by interfering the JAK–STAT3 signaling pathway. Thus, BBR may serve as a potential therapeutic option for patients with psoriasis.
Collapse
Affiliation(s)
- Shuna Sun
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Xiaojie Zhang
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Mengru Xu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Fang Zhang
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Fei Tian
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Jianfeng Cui
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China.,Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Yangyang Xia
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China.,Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Chenxi Liang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Shujie Zhou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Haifeng Wei
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Hui Zhao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Guojing Wu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Bohan Xu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Xiaochen Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Guanqun Yang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Qinzhou Wang
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Lei Zhang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China.
| |
Collapse
|
148
|
cis-Khellactone Inhibited the Proinflammatory Macrophages via Promoting Autophagy to Ameliorate Imiquimod-Induced Psoriasis. J Invest Dermatol 2019; 139:1946-1956.e3. [PMID: 30878677 DOI: 10.1016/j.jid.2019.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease with unresolved pathogenesis. Studies on the pathogenesis of psoriasis have been extensively carried out, but treatments are still not satisfactory. In this study, we found improvement after treatment with cis-khellactone, a small molecular natural product, in imiquimod-challenged C57BL/6 mice. cis-Khellactone clearly reduced the level of cytokines in psoriatic skin, including IL-23, TNF-α, IL-1β, and IL-6, while limiting the inhibition of IL-17A, which is produced by T helper type 17 cells. cis-Khellactone treatment specifically decreased dermal macrophage infiltration in psoriatic skin but not in neutrophils or T cells. Additionally, compared with the control group, cis-khellactone significantly decreased the activation of NF-κB p65 in these infiltrated macrophages. Further study showed that cis-khellactone suppressed proinflammatory phenotypic macrophages by promoting autophagy. Blocking autophagy by silencing Beclin1 or Atg7 abrogated the effect of cis-khellactone on macrophages. The autophagy-dependent improvement in psoriasis from cis-khellactone treatment was further manifested by its limited effects on skin lesions in chloroquine-treated mice. Moreover, cis-khellactone showed lower toxicity levels than methotrexate in macrophages and primary hepatocytes. Taken together, cis-khellactone selectively modulated macrophage function and phenotype by inducing autophagy to ameliorate imiquimod-induced psoriasis in mice. Our research provides an effective strategy for the treatment of psoriasis.
Collapse
|
149
|
Strohbuecker L, Koenen H, van Rijssen E, van Cranenbroek B, Fasse E, Joosten I, Körber A, Bergmann C. Increased dermal expression of chromatin-associated protein HMGB1 and concomitant T-cell expression of the DNA RAGE in patients with psoriasis vulgaris. PSORIASIS (AUCKLAND, N.Z.) 2019; 9:7-17. [PMID: 30859087 PMCID: PMC6385765 DOI: 10.2147/ptt.s190507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Psoriasis vulgaris (PV) is an autoimmune-related chronic inflammatory disease of the skin, with both vascular and metabolic effects. Aggravating factors have been identified that initiate and maintain inflammation, including expression of Th1-, Th17-, and Th22-cell derived cytokines. Recently, we showed that the evolutionarily ancient and highly conserved damage-associated molecular pattern molecule "high mobility group box 1 (HMGB1)" is significantly increased in the serum of PV patients with disease progression and is decreased under standard therapies. MATERIALS AND METHODS To better understand the role of HMGB1 in the pathogenesis of PV, we recruited 22 untreated psoriatic patients with either mild or severe disease, defined by the Psoriasis Area Severity Index. We assessed HMGB1 and receptor for advanced glycation end products (RAGE) expression in the skin by immunohistochemistry and analyzed the immune-phenotype of Treg and Th17 cells by flow cytometry. RESULTS We found increased staining for HMGB1 in the dermis of psoriatic plaques in comparison to uninvolved skin of patients with PV. In addition, the major histocompatibility complex class III-encoded DNA and HMGB1 RAGE, induced by HMGB1, were highly expressed on psoriatic CD8+ T cells and CD4+ Treg. High expression of HMGB1 in the lesional skin was associated with even higher expression of its receptor, RAGE, on the cell surface of keratino-cytes in patients with severe PV. CONCLUSION The presence of HMGB1 and RAGE signaling may impact orchestration of chronic inflammation in PV which might have implications for Treg and Th17 cells.
Collapse
Affiliation(s)
- Lisa Strohbuecker
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Hans Koenen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther van Rijssen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bram van Cranenbroek
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther Fasse
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Körber
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Christoph Bergmann
- Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany,
| |
Collapse
|
150
|
Neubert E, Senger-Sander SN, Manzke VS, Busse J, Polo E, Scheidmann SEF, Schön MP, Kruss S, Erpenbeck L. Serum and Serum Albumin Inhibit in vitro Formation of Neutrophil Extracellular Traps (NETs). Front Immunol 2019; 10:12. [PMID: 30733715 PMCID: PMC6354573 DOI: 10.3389/fimmu.2019.00012] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/04/2019] [Indexed: 01/06/2023] Open
Abstract
The formation of neutrophil extracellular traps (NETs) is an immune defense mechanism of neutrophilic granulocytes. Moreover, it is also involved in the pathogenesis of autoimmune, inflammatory, and neoplastic diseases. For that reason, the process of NET formation (NETosis) is subject of intense ongoing research. In vitro approaches to quantify NET formation are commonly used and involve neutrophil stimulation with various activators such as phorbol 12-myristate 13-acetate (PMA), lipopolysaccharides (LPS), or calcium ionophores (CaI). However, the experimental conditions of these experiments, particularly the media and media supplements employed by different research groups, vary considerably, rendering comparisons of results difficult. Here, we present the first standardized investigation of the influence of different media supplements on NET formation in vitro. The addition of heat-inactivated (hi) fetal calf serum (FCS), 0.5% human serum albumin (HSA), or 0.5% bovine serum albumin (BSA) efficiently prevented NET formation of human neutrophils following stimulation with LPS and CaI, but not after stimulation with PMA. Thus, serum components such as HSA, BSA and hiFCS (at concentrations typically found in the literature) inhibit NET formation to different degrees, depending on the NETosis inducer used. In contrast, in murine neutrophils, NETosis was inhibited by FCS and BSA, regardless of the inducer employed. This shows that mouse and human neutrophils have different susceptibilities toward the inhibition of NETosis by albumin or serum components. Furthermore, we provide experimental evidence that albumin inhibits NETosis by scavenging activators such as LPS. We also put our results into the context of media supplements most commonly used in NET research. In experiments with human neutrophils, either FCS (0.5–10%), heat-inactivated (hiFCS, 0.1–10%) or human serum albumin (HSA, 0.05–2%) was commonly added to the medium. For murine neutrophils, serum-free medium was used in most cases for stimulation with LPS and CaI, reflecting the different sensitivities of human and murine neutrophils to media supplements. Thus, the choice of media supplements greatly determines the outcome of experiments on NET-formation, which must be taken into account in NETosis research.
Collapse
Affiliation(s)
- Elsa Neubert
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany.,Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany
| | - Susanne N Senger-Sander
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Veit S Manzke
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Busse
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Elena Polo
- Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany
| | - Sophie E F Scheidmann
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany.,Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen and University of Osnabrück, Göttingen, Germany
| | - Sebastian Kruss
- Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|