101
|
Ghosh S, Nandi S, Basu T. Nano-Antibacterials Using Medicinal Plant Components: An Overview. Front Microbiol 2022; 12:768739. [PMID: 35273578 PMCID: PMC8902597 DOI: 10.3389/fmicb.2021.768739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Gradual emergence of new bacterial strains, resistant to one or more antibiotics, necessitates development of new antibacterials to prevent us from newly evolved disease-causing, drug-resistant, pathogenic bacteria. Different inorganic and organic compounds have been synthesized as antibacterials, but with the problem of toxicity. Other alternatives of using green products, i.e., the medicinal plant extracts with biocompatible and potent antibacterial characteristics, also had limitation because of their low aqueous solubility and therefore less bioavailability. Use of nanotechnological strategy appears to be a savior, where phytochemicals are nanonized through encapsulation or entrapment within inorganic or organic hydrophilic capping agents. Nanonization of such products not only makes them water soluble but also helps to attain high surface to volume ratio and therefore high reaction area of the nanonized products with better therapeutic potential, over that of the equivalent amount of raw bulk products. Medicinal plant extracts, whose prime components are flavonoids, alkaloids, terpenoids, polyphenolic compounds, and essential oils, are in one hand nanonized (capped and stabilized) by polymers, lipids, or clay materials for developing nanodrugs; on the other hand, high antioxidant activity of those plant extracts is also used to reduce various metal salts to produce metallic nanoparticles. In this review, five medicinal plants, viz., tulsi (Ocimum sanctum), turmeric (Curcuma longa), aloe vera (Aloe vera), oregano (Oregano vulgare), and eucalyptus (Eucalyptus globulus), with promising antibacterial potential and the nanoformulations associated with the plants' crude extracts and their respective major components (eugenol, curcumin, anthraquinone, carvacrol, eucalyptus oil) have been discussed with respect to their antibacterial potency.
Collapse
Affiliation(s)
| | | | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| |
Collapse
|
102
|
Singh A, Padmesh S, Dwivedi M, Kostova I. How Good are Bacteriophages as an Alternative Therapy to Mitigate Biofilms of Nosocomial Infections. Infect Drug Resist 2022; 15:503-532. [PMID: 35210792 PMCID: PMC8860455 DOI: 10.2147/idr.s348700] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bacteria survive on any surface through the generation of biofilms that provide a protective environment to grow as well as making them drug resistant. Extracellular polymeric matrix is a crucial component in biofilm formation. The presence of biofilms consisting of common opportunistic and nosocomial, drug-resistant pathogens has been reported on medical devices like catheters and prosthetics, leading to many complications. Several approaches are under investigation to combat drug-resistant bacteria. Deployment of bacteriophages is one of the promising approaches to invade biofilm that may expose bacteria to the conditions adverse for their growth. Penetration into these biofilms and their destruction by bacteriophages is brought about due to their small size and ability of their progeny to diffuse through the bacterial cell wall. The other mechanisms employed by phages to infect biofilms may include their relocation through water channels to embedded host cells, replication at local sites followed by infection to the neighboring cells and production of depolymerizing enzymes to decompose viscous biofilm matrix, etc. Various research groups are investigating intricacies involved in phage therapy to mitigate the bacterial infection and biofilm formation. Thus, bacteriophages represent a good control over different biofilms and further understanding of phage-biofilm interaction at molecular level may overcome the clinical challenges in phage therapy. The present review summarizes the comprehensive details on dynamic interaction of phages with bacterial biofilms and the role of phage-derived enzymes - endolysin and depolymerases in extenuating biofilms of clinical and medical concern. The methodology employed was an extensive literature search, using several keywords in important scientific databases, such as Scopus, Web of Science, PubMed, ScienceDirect, etc. The keywords were also used with Boolean operator "And". More than 250 relevant and recent articles were selected and reviewed to discuss the evidence-based data on the application of phage therapy with recent updates, and related potential challenges.
Collapse
Affiliation(s)
- Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, Sofia, 1000, Bulgaria
| |
Collapse
|
103
|
Maharajan AD, Hjerde E, Hansen H, Willassen NP. Quorum Sensing Controls the CRISPR and Type VI Secretion Systems in Aliivibrio wodanis 06/09/139. Front Vet Sci 2022; 9:799414. [PMID: 35211539 PMCID: PMC8861277 DOI: 10.3389/fvets.2022.799414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/12/2022] [Indexed: 12/26/2022] Open
Abstract
For bacteria to thrive in an environment with competitors, phages and environmental cues, they use different strategies, including Type VI Secretion Systems (T6SSs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to compete for space. Bacteria often use quorum sensing (QS), to coordinate their behavior as the cell density increases. Like other aliivibrios, Aliivibrio wodanis 06/09/139 harbors two QS systems, the main LuxS/LuxPQ system and an N-acyl homoserine lactone (AHL)-mediated AinS/AinR system and a master QS regulator, LitR. To explore the QS and survival strategies, we performed genome analysis and gene expression profiling on A. wodanis and two QS mutants (ΔainS and ΔlitR) at two cell densities (OD600 2.0 and 6.0) and temperatures (6 and 12°C). Genome analysis of A. wodanis revealed two CRISPR systems, one without a cas loci (CRISPR system 1) and a type I-F CRISPR system (CRISPR system 2). Our analysis also identified three main T6SS clusters (T6SS1, T6SS2, and T6SS3) and four auxiliary clusters, as well about 80 potential Type VI secretion effectors (T6SEs). When comparing the wildtype transcriptome data at different cell densities and temperatures, 13-18% of the genes were differentially expressed. The CRISPR system 2 was cell density and temperature-independent, whereas the CRISPR system 1 was temperature-dependent and cell density-independent. The primary and auxiliary clusters of T6SSs were both cell density and temperature-dependent. In the ΔlitR and ΔainS mutants, several CRISPR and T6SS related genes were differentially expressed. Deletion of litR resulted in decreased expression of CRISPR system 1 and increased expression of CRISPR system 2. The T6SS1 and T6SS2 gene clusters were less expressed while the T6SS3 cluster was highly expressed in ΔlitR. Moreover, in ΔlitR, the hcp1 gene was strongly activated at 6°C compared to 12°C. AinS positively affected the csy genes in the CRISPR system 2 but did not affect the CRISPR arrays. Although AinS did not significantly affect the expression of T6SSs, the hallmark genes of T6SS (hcp and vgrG) were AinS-dependent. The work demonstrates that T6SSs and CRISPR systems in A. wodanis are QS dependent and may play an essential role in survival in its natural environment.
Collapse
Affiliation(s)
- Amudha Deepalakshmi Maharajan
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Erik Hjerde
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
- Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hilde Hansen
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nils Peder Willassen
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
- Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
104
|
Talapko J, Frauenheim E, Juzbašić M, Tomas M, Matić S, Jukić M, Samardžić M, Škrlec I. Legionella pneumophila-Virulence Factors and the Possibility of Infection in Dental Practice. Microorganisms 2022; 10:microorganisms10020255. [PMID: 35208710 PMCID: PMC8879694 DOI: 10.3390/microorganisms10020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Legionella pneumophila is defined as a bacterium that can cause severe pneumonia. It is found in the natural environment and in water, and is often found in water tanks. It can be an integral part of biofilms in nature, and the protozoa in which it can live provide it with food and protect it from harmful influences; therefore, it has the ability to move into a sustainable but uncultured state (VBNC). L. pneumophila has been shown to cause infections in dental practices. The most common transmission route is aerosol generated in dental office water systems, which can negatively affect patients and healthcare professionals. The most common way of becoming infected with L. pneumophila in a dental office is through water from dental instruments, and the dental unit. In addition to these bacteria, patients and the dental team may be exposed to other harmful bacteria and viruses. Therefore, it is vital that the dental team regularly maintains and decontaminates the dental unit, and sterilizes all accessories that come with it. In addition, regular water control in dental offices is necessary.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Erwin Frauenheim
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Matej Tomas
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Suzana Matić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
| | - Melita Jukić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- General Hospital Vukovar, Županijska 35, HR-32000 Vukovar, Croatia
| | - Marija Samardžić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- Correspondence:
| |
Collapse
|
105
|
Castillo-Juárez I, Blancas-Luciano BE, García-Contreras R, Fernández-Presas AM. Antimicrobial peptides properties beyond growth inhibition and bacterial killing. PeerJ 2022; 10:e12667. [PMID: 35116194 PMCID: PMC8785659 DOI: 10.7717/peerj.12667] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial peptides (AMPs) are versatile molecules with broad antimicrobial activity produced by representatives of the three domains of life. Also, there are derivatives of AMPs and artificial short peptides that can inhibit microbial growth. Beyond killing microbes, AMPs at grow sub-inhibitory concentrations also exhibit anti-virulence activity against critical pathogenic bacteria, including ESKAPE pathogens. Anti-virulence therapies are an alternative to antibiotics since they do not directly affect viability and growth, and they are considered less likely to generate resistance. Bacterial biofilms significantly increase antibiotic resistance and are linked to establishing chronic infections. Various AMPs can kill biofilm cells and eradicate infections in animal models. However, some can inhibit biofilm formation and promote dispersal at sub-growth inhibitory concentrations. These examples are discussed here, along with those of peptides that inhibit the expression of traits controlled by quorum sensing, such as the production of exoproteases, phenazines, surfactants, toxins, among others. In addition, specific targets that are determinants of virulence include secretion systems (type II, III, and VI) responsible for releasing effector proteins toxic to eukaryotic cells. This review summarizes the current knowledge on the anti-virulence properties of AMPs and the future directions of their research.
Collapse
Affiliation(s)
- Israel Castillo-Juárez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco, Estado de México, Mexico
| | - Blanca Esther Blancas-Luciano
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico City, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico City, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico City, Mexico
| |
Collapse
|
106
|
Chai L, Wang Q, Si C, Gao W, Zhang L. Potential Association Between Changes in Microbiota Level and Lung Diseases: A Meta-Analysis. Front Med (Lausanne) 2022; 8:723635. [PMID: 35096850 PMCID: PMC8795898 DOI: 10.3389/fmed.2021.723635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/14/2021] [Indexed: 11/27/2022] Open
Abstract
Objective: Lung microbiota is increasingly implicated in multiple types of respiratory diseases. However, no study has drawn a consistent conclusion regarding the relationship between changes in the microbial community and lung diseases. This study verifies the association between microbiota level and lung diseases by performing a meta-analysis. Methods: Literature databases, including PubMed, ISI Web of Science, Embase, Google Scholar, PMC, and CNKI, were used to collect related articles published before March 20, 2021. The standard mean deviation (SMD) and related 95% confidence intervals (CIs) were calculated using a random-effects model. Subgroup, sensitivity, and publication bias analyses were also conducted. Results: Six studies, comprising 695 patients with lung diseases and 176 healthy individuals, were included in this meta-analysis. The results indicated that the microbiota level was higher in patients with lung diseases than in healthy individuals (SMD = 0.39, 95% CI = 0.22–0.55, I2 = 91.5%, P < 0.01). Subgroup analysis based on country demonstrated that the microbiota level was significantly higher in Chinese (SMD = 1.90, 95% CI = 0.87–2.93, I2 = 62.3%, P < 0.01) and Korean (SMD = 0.24, 95% CI = 0.13–0.35, I2 = 78.7%, P < 0.01) patients with lung diseases. The microbiota level of patients with idiopathic pulmonary fibrosis (IPF) (SMD = 1.40, 95% CI = 0.42–2.38, I2 = 97.3%, P = 0.005), chronic obstructive pulmonary disease (COPD) (SMD = 0.30, 95% CI = 0.09–0.50, I2 = 83.9%, P = 0.004), and asthma (SMD = 0.19, 95% CI = 0.06–0.32, I2 = 69.4%, P = 0.004) were significantly higher than those of the healthy group, whereas a lower microbiota level was found in patients with chronic hypersensitivity pneumonitis (CHP). The microbiota level significantly increased when the disease sample size was >50. Subgroup analysis based on different microbiota genera, indicated that Acinetobacter baumannii and Pseudomonas aeruginosa were significantly increased in COPD and asthma diseases. Conclusion: We observed that patients with IPF, COPD, and asthma had a higher microbiota level, whereas patients with CHP had a lower microbiota level compared to the healthy individuals. The level of A. baumannii and P. aeruginosa were significantly higher in patients with COPD and asthma, and thus represented as potential microbiota markers in the diagnosis and treatment of lung diseases.
Collapse
Affiliation(s)
- Lan Chai
- Department of Rheumatology and Immunology Department, Zhejiang Hospital, Hangzhou, China
| | - Qi Wang
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Caijuan Si
- Department of Nutrition, Zhejiang Hospital, Hangzhou, China
| | - Wenyan Gao
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences and Hangzhou Medical College, Hangzhou, China
- *Correspondence: Wenyan Gao
| | - Lun Zhang
- Department of Nutrition, Zhejiang Hospital, Hangzhou, China
- Lun Zhang
| |
Collapse
|
107
|
Singh P, Verma RK, Chatterjee S. The diffusible signal factor synthase, RpfF, in Xanthomonas oryzae pv. oryzae is required for the maintenance of membrane integrity and virulence. MOLECULAR PLANT PATHOLOGY 2022; 23:118-132. [PMID: 34704368 PMCID: PMC8659556 DOI: 10.1111/mpp.13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 05/12/2023]
Abstract
The Xanthomonas group of phytopathogens communicate with a fatty acid-like cell-cell signalling molecule, cis-11-2-methyl-dodecenoic acid, also known as diffusible signal factor (DSF). In the pathogen of rice, Xanthomonas oryzae pv. oryzae, DSF is involved in the regulation of several virulence-associated functions, including production and secretion of several cell wall hydrolysing type II secretion effectors. To understand the role of DSF in the secretion of type II effectors, we characterized DSF synthase-deficient (rpfF) and DSF-deficient, type II secretion (xpsE) double mutants. Mutant analysis by expression analysis, secretion assay, fatty acid analysis, and physiological studies indicated that rpfF mutants exhibit hypersecretion of several type II effectors due to a perturbed membrane and DSF is required for maintaining membrane integrity. The rpfF mutants exhibited significantly higher uptake of 1-N-phenylnapthylamine and ethidium bromide, and up-regulation of rpoE (σE ). Increasing the osmolarity of the medium could rescue the hypersecretion phenotype of the rpfF mutant. The rpfF mutant exhibited highly reduced virulence. We report for the first time that in X. oryzae pv. oryzae RpfF is involved in the maintenance of membrane integrity by playing a regulatory role in the fatty acid synthesis pathway.
Collapse
Affiliation(s)
- Prashantee Singh
- Laboratory of Plant Microbe InteractionsCentre for DNA Fingerprinting and DiagnosticsUppalIndia
- Graduate StudiesManipal Academy of Higher EducationMangaluruIndia
| | - Raj Kumar Verma
- Laboratory of Plant Microbe InteractionsCentre for DNA Fingerprinting and DiagnosticsUppalIndia
| | - Subhadeep Chatterjee
- Laboratory of Plant Microbe InteractionsCentre for DNA Fingerprinting and DiagnosticsUppalIndia
| |
Collapse
|
108
|
Anti-Pathogenic Properties of the Combination of a T3SS Inhibitory Halogenated Pyrrolidone with C-30 Furanone. Molecules 2021; 26:molecules26247635. [PMID: 34946717 PMCID: PMC8707098 DOI: 10.3390/molecules26247635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance is one of the current public health challenges to be solved. The World Health Organization (WHO) has urgently called for the development of strategies to expand the increasingly limited antimicrobial arsenal. The development of anti-virulence therapies is a viable option to counteract bacterial infections with the possibility of reducing the generation of resistance. Here we report on the chemical structures of pyrrolidones DEXT 1–4 (previously identified as furan derivatives) and their anti-virulence activity on Pseudomonas aeruginosa strains. DEXT 1–4 were shown to inhibit biofilm formation, swarming motility, and secretion of ExoU and ExoT effector proteins. Also, the anti-pathogenic property of DEXT-3 alone or in combination with furanone C-30 (quorum sensing inhibitor) or MBX-1641 (type III secretion system inhibitor) was analyzed in a model of necrosis induced by P. aeruginosa PA14. All treatments reduced necrosis; however, only the combination of C-30 50 µM with DEXT-3 100 µM showed significant inhibition of bacterial growth in the inoculation area and systemic dispersion. In conclusion, pyrrolidones DEXT 1–4 are chemical structures capable of reducing the pathogenicity of P. aeruginosa and with the potential for the development of anti-virulence combination therapies.
Collapse
|
109
|
Chadha J, Harjai K, Chhibber S. Repurposing phytochemicals as anti-virulent agents to attenuate quorum sensing-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Microb Biotechnol 2021; 15:1695-1718. [PMID: 34843159 PMCID: PMC9151347 DOI: 10.1111/1751-7915.13981] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 12/18/2022] Open
Abstract
Unregulated consumption and overexploitation of antibiotics have paved the way for emergence of antibiotic‐resistant strains and ‘superbugs’. Pseudomonas aeruginosa is among the opportunistic nosocomial pathogens causing devastating infections in clinical set‐ups globally. Its artillery equipped with diversified virulence elements, extensive antibiotic resistance and biofilms has made it a ‘hard‐to‐treat’ pathogen. The pathogenicity of P. aeruginosa is modulated by an intricate cell density‐dependent mechanism called quorum sensing (QS). The virulence artillery of P. aeruginosa is firmly controlled by QS genes, and their expression drives the aggressiveness of the infection. Attempts to identify and develop novel antimicrobials have seen a sharp rise in the past decade. Among different proposed mechanisms, a novel anti‐virulence approach to target pseudomonal infections by virtue of anti‐QS and anti‐biofilm drugs appears to occupy the centre stage. In this respect, bioactive phytochemicals have gained prominence among the scientific community owing to their significant quorum quenching (QQ) properties. Recent studies have shed light on the QQ activities of various phytochemicals and other drugs in perturbing the QS‐dependent virulence in P. aeruginosa. This review highlights the recent evidences that reinforce the application of plant bioactives for combating pseudomonal infections, their advantages and shortcomings in anti‐virulence therapy.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
110
|
Díaz-Núñez JL, Pérez-López M, Espinosa N, Campos-Hernández N, García-Contreras R, Díaz-Guerrero M, Cortes-López H, Vázquez-Sánchez M, Quezada H, Martínez-Vázquez M, Soto-Hernández RM, Burgos-Hernández M, González-Pedrajo B, Castillo-Juárez I. Anti-Virulence Properties of Plant Species: Correlation between In Vitro Activity and Efficacy in a Murine Model of Bacterial Infection. Microorganisms 2021; 9:2424. [PMID: 34946027 PMCID: PMC8706108 DOI: 10.3390/microorganisms9122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Several plant extracts exhibit anti-virulence properties due to the interruption of bacterial quorum sensing (QS). However, studies on their effects at the preclinical level are scarce. Here, we used a murine model of abscess/necrosis induced by Pseudomonas aeruginosa to evaluate the anti-pathogenic efficacy of 24 plant extracts at a sub-inhibitory concentration. We analyzed their ability to inhibit QS-regulated virulence factors such as swarming, pyocyanin production, and secretion of the ExoU toxin via the type III secretion system (T3SS). Five of the seven extracts with the best anti-pathogenic activity reduced ExoU secretion, and the extracts of Diphysa americana and Hibiscus sabdariffa were identified as the most active. Therefore, the abscess/necrosis model allows identification of plant extracts that have the capacity to reduce pathogenicity of P. aeruginosa. Furthermore, we evaluated the activity of the plant extracts on Chromobacterium violaceum. T3SS (ΔescU) and QS (ΔcviI) mutant strains were assessed in both the abscess/necrosis and sepsis models. Only the ΔescU strain had lower pathogenicity in the animal models, although no activity of plant extracts was observed. These results demonstrate differences between the anti-virulence activity recorded in vitro and pathogenicity in vivo and between the roles of QS and T3S systems as virulence determinants.
Collapse
Affiliation(s)
- José Luis Díaz-Núñez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Macrina Pérez-López
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Norma Espinosa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (N.E.); (M.D.-G.)
| | - Nayelli Campos-Hernández
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Miguel Díaz-Guerrero
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (N.E.); (M.D.-G.)
| | - Humberto Cortes-López
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Monserrat Vázquez-Sánchez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Héctor Quezada
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico;
| | - Mariano Martínez-Vázquez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autόnoma de México, Ciudad de México 04510, Mexico;
| | - Ramón Marcos Soto-Hernández
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Mireya Burgos-Hernández
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (N.E.); (M.D.-G.)
| | - Israel Castillo-Juárez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| |
Collapse
|
111
|
Wang S, Feng Y, Han X, Cai X, Yang L, Liu C, Shen L. Inhibition of Virulence Factors and Biofilm Formation by Wogonin Attenuates Pathogenicity of Pseudomonas aeruginosa PAO1 via Targeting pqs Quorum-Sensing System. Int J Mol Sci 2021; 22:ijms222312699. [PMID: 34884499 PMCID: PMC8657757 DOI: 10.3390/ijms222312699] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas aeruginosa, an important opportunistic pathogen, is capable of producing various virulence factors and forming biofilm that are regulated by quorum sensing (QS). It is known that targeting virulence factor production and biofilm formation instead of exerting selective pressure on growth such as conventional antibiotics can reduce multidrug resistance in bacteria. Therefore, many quorum-sensing inhibitors (QSIs) have been developed to prevent or treat this bacterial infection. In this study, wogonin, as an active ingredient from Agrimonia pilosa, was found to be able to inhibit QS system of P. aeruginosa PAO1. Wogonin downregulated the expression of QS-related genes and reduced the production of many virulence factors, such as elastase, pyocyanin, and proteolytic enzyme. In addition, wogonin decreased the extracellular polysaccharide synthesis and inhibited twitching, swimming, and swarming motilities and biofilm formation. The attenuation of pathogenicity in P. aeruginosa PAO1 by wogonin application was further validated in vivo by cabbage infection and fruit fly and nematode survival experiments. Further molecular docking analysis, pathogenicity examination of various QS-related mutants, and PQS signal molecule detection revealed that wogonin could interfere with PQS signal molecular synthesis by affecting pqsA and pqsR. Taken together, the results indicated that wogonin might be used as an anti-QS candidate drug to attenuate the infection caused by P. aeruginosa.
Collapse
Affiliation(s)
- Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (S.W.); (Y.F.); (X.H.); (X.C.); (L.Y.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, The College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yuqi Feng
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (S.W.); (Y.F.); (X.H.); (X.C.); (L.Y.)
| | - Xiaofeng Han
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (S.W.); (Y.F.); (X.H.); (X.C.); (L.Y.)
| | - Xinyu Cai
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (S.W.); (Y.F.); (X.H.); (X.C.); (L.Y.)
| | - Liu Yang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (S.W.); (Y.F.); (X.H.); (X.C.); (L.Y.)
| | - Chaolan Liu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 168, Huaguan Road, Chengdu 610052, China;
| | - Lixin Shen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (S.W.); (Y.F.); (X.H.); (X.C.); (L.Y.)
- Correspondence:
| |
Collapse
|
112
|
Ruiz-Roldán L, Rojo-Bezares B, Lozano C, López M, Chichón G, Torres C, Sáenz Y. Occurrence of Pseudomonas spp. in Raw Vegetables: Molecular and Phenotypical Analysis of Their Antimicrobial Resistance and Virulence-Related Traits. Int J Mol Sci 2021; 22:12626. [PMID: 34884433 PMCID: PMC8657893 DOI: 10.3390/ijms222312626] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas is characterized by its great capacity to colonize different ecological niches, but also by its antimicrobial resistance and pathogenicity, causing human, animal, or plant diseases. Raw and undercooked food is a potential carrier of foodborne disease. The aim of this study was to determine the occurrence of Pseudomonas spp. among raw vegetables, analysing their antimicrobial resistance, virulence, and molecular typing. A total of 163 Pseudomonas spp. isolates (12 different species) were recovered from 77 of the 145 analysed samples (53.1%) and were classified into 139 different pulsed-field gel electrophoresis patterns. Low antimicrobial resistance levels, but one multidrug-resistant isolate, were found. Among the 37 recovered P. aeruginosa strains, 28 sequence-types and nine serotypes were detected. Eleven OprD patterns and an insertion sequence (ISPa1635) truncating the oprD gene of one imipenem-resistant strain were found. Ten virulotypes were observed, including four exoU-positive and thirty-one exoS-positive strains. The lasR gene was absent in three ST155 strains and was truncated by different insertion sequences (ISPre2, IS1411, and ISPst7) in other three strains. High biofilm, motility, pigment, elastase, and rhamnolipid production were detected. Our study demonstrated a low occurrence of P. aeruginosa (18%) and low antimicrobial resistance, but a high number of virulence-related traits in these P. aeruginosa strains, highlighting their pathological importance.
Collapse
Affiliation(s)
- Lidia Ruiz-Roldán
- Centro de Investigación Biomédica de La Rioja (CIBIR), Área de Microbiología Molecular, C/Piqueras 98, 26006 Logroño, Spain; (L.R.-R.); (B.R.-B.); (C.L.); (M.L.); (G.C.)
| | - Beatriz Rojo-Bezares
- Centro de Investigación Biomédica de La Rioja (CIBIR), Área de Microbiología Molecular, C/Piqueras 98, 26006 Logroño, Spain; (L.R.-R.); (B.R.-B.); (C.L.); (M.L.); (G.C.)
| | - Carmen Lozano
- Centro de Investigación Biomédica de La Rioja (CIBIR), Área de Microbiología Molecular, C/Piqueras 98, 26006 Logroño, Spain; (L.R.-R.); (B.R.-B.); (C.L.); (M.L.); (G.C.)
| | - María López
- Centro de Investigación Biomédica de La Rioja (CIBIR), Área de Microbiología Molecular, C/Piqueras 98, 26006 Logroño, Spain; (L.R.-R.); (B.R.-B.); (C.L.); (M.L.); (G.C.)
| | - Gabriela Chichón
- Centro de Investigación Biomédica de La Rioja (CIBIR), Área de Microbiología Molecular, C/Piqueras 98, 26006 Logroño, Spain; (L.R.-R.); (B.R.-B.); (C.L.); (M.L.); (G.C.)
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, C/Madre de Dios 51, 26006 Logroño, Spain;
| | - Yolanda Sáenz
- Centro de Investigación Biomédica de La Rioja (CIBIR), Área de Microbiología Molecular, C/Piqueras 98, 26006 Logroño, Spain; (L.R.-R.); (B.R.-B.); (C.L.); (M.L.); (G.C.)
| |
Collapse
|
113
|
Tripathi AK, Thakur P, Saxena P, Rauniyar S, Gopalakrishnan V, Singh RN, Gadhamshetty V, Gnimpieba EZ, Jasthi BK, Sani RK. Gene Sets and Mechanisms of Sulfate-Reducing Bacteria Biofilm Formation and Quorum Sensing With Impact on Corrosion. Front Microbiol 2021; 12:754140. [PMID: 34777309 PMCID: PMC8586430 DOI: 10.3389/fmicb.2021.754140] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/24/2021] [Indexed: 01/02/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) have a unique ability to respire under anaerobic conditions using sulfate as a terminal electron acceptor, reducing it to hydrogen sulfide. SRB thrives in many natural environments (freshwater sediments and salty marshes), deep subsurface environments (oil wells and hydrothermal vents), and processing facilities in an industrial setting. Owing to their ability to alter the physicochemical properties of underlying metals, SRB can induce fouling, corrosion, and pipeline clogging challenges. Indigenous SRB causes oil souring and associated product loss and, subsequently, the abandonment of impacted oil wells. The sessile cells in biofilms are 1,000 times more resistant to biocides and induce 100-fold greater corrosion than their planktonic counterparts. To effectively combat the challenges posed by SRB, it is essential to understand their molecular mechanisms of biofilm formation and corrosion. Here, we examine the critical genes involved in biofilm formation and microbiologically influenced corrosion and categorize them into various functional categories. The current effort also discusses chemical and biological methods for controlling the SRB biofilms. Finally, we highlight the importance of surface engineering approaches for controlling biofilm formation on underlying metal surfaces.
Collapse
Affiliation(s)
- Abhilash Kumar Tripathi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Payal Thakur
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Shailabh Rauniyar
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Vinoj Gopalakrishnan
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Venkataramana Gadhamshetty
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States.,BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Etienne Z Gnimpieba
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Biomedical Engineering Program, University of South Dakota, Sioux Falls, SD, United States
| | - Bharat K Jasthi
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States.,BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Composite and Nanocomposite Advanced Manufacturing Centre-Biomaterials, Rapid City, SD, United States
| |
Collapse
|
114
|
Coquant G, Aguanno D, Pham S, Grellier N, Thenet S, Carrière V, Grill JP, Seksik P. Gossip in the gut: Quorum sensing, a new player in the host-microbiota interactions. World J Gastroenterol 2021; 27:7247-7270. [PMID: 34876787 PMCID: PMC8611211 DOI: 10.3748/wjg.v27.i42.7247] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/17/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Bacteria are known to communicate with each other and regulate their activities in social networks by secreting and sensing signaling molecules called autoinducers, a process known as quorum sensing (QS). This is a growing area of research in which we are expanding our understanding of how bacteria collectively modify their behavior but are also involved in the crosstalk between the host and gut microbiome. This is particularly relevant in the case of pathologies associated with dysbiosis or disorders of the intestinal ecosystem. This review will examine the different QS systems and the evidence for their presence in the intestinal ecosystem. We will also provide clues on the role of QS molecules that may exert, directly or indirectly through their bacterial gossip, an influence on intestinal epithelial barrier function, intestinal inflammation, and intestinal carcinogenesis. This review aims to provide evidence on the role of QS molecules in gut physiology and the potential shared by this new player. Better understanding the impact of intestinal bacterial social networks and ultimately developing new therapeutic strategies to control intestinal disorders remains a challenge that needs to be addressed in the future.
Collapse
Affiliation(s)
- Garance Coquant
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Doriane Aguanno
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Sandrine Pham
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Nathan Grellier
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Sophie Thenet
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Véronique Carrière
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Jean-Pierre Grill
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Philippe Seksik
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- Department of Gastroenterology and Nutrition, Saint-Antoine Hospital, APHP, Paris 75012, France
| |
Collapse
|
115
|
Nolan C, Behrends V. Sub-Inhibitory Antibiotic Exposure and Virulence in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111393. [PMID: 34827331 PMCID: PMC8615142 DOI: 10.3390/antibiotics10111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a prime opportunistic pathogen, one of the most important causes of hospital-acquired infections and the major cause of morbidity and mortality in cystic fibrosis lung infections. One reason for the bacterium's pathogenic success is the large array of virulence factors that it can employ. Another is its high degree of intrinsic and acquired resistance to antibiotics. In this review, we first summarise the current knowledge about the regulation of virulence factor expression and production. We then look at the impact of sub-MIC antibiotic exposure and find that the virulence-antibiotic interaction for P. aeruginosa is antibiotic-specific, multifaceted, and complex. Most studies undertaken to date have been in vitro assays in batch culture systems, involving short-term (<24 h) antibiotic exposure. Therefore, we discuss the importance of long-term, in vivo-mimicking models for future work, particularly highlighting the need to account for bacterial physiology, which by extension governs both virulence factor expression and antibiotic tolerance/resistance.
Collapse
|
116
|
Zhu X, Feng C, Zhou L, Li Z, Zhang Y, Pan J. Impacts of Ser/Thr Protein Kinase Stk1 on the Proteome, Twitching Motility, and Competitive Advantage in Pseudomonas aeruginosa. Front Microbiol 2021; 12:738690. [PMID: 34733256 PMCID: PMC8560001 DOI: 10.3389/fmicb.2021.738690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous gram-negative bacterium in the environment and a leading cause of nosocomial infections worldwide. Therefore, it is listed by the WHO as a human pathogen that urgently needs the development of new antibacterial drugs. Recent findings have demonstrated that eukaryote-type Ser/Thr protein kinases play a vital role in regulating various bacterial physiological processes by catalyzing protein phosphorylation. Stk1 has proven to be a Ser/Thr protein kinase in P. aeruginosa. However, the regulatory roles of Stk1 have not yet been revealed. Thus, we constructed a stk1 knockout mutant (∆stk1) from the P. aeruginosa PAO1 strain and employed a Tandem Mass Tag (TMT) labeling-based quantitative proteomic strategy to characterize proteome-wide changes in response to the stk1 knockout. In total, 620 differentially expressed proteins, among which 288 proteins were upregulated and 332 proteins were downregulated, were identified in ∆stk1 compared with P. aeruginosa PAO1. A detailed bioinformatics analysis of these differentially expressed proteins was performed, including GO annotation, protein domain profile, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, subcellular localization and enrichment analysis. Notably, the downregulation of type IV pilus-related proteins and upregulation of T6SS-H1-related proteins were found in the ∆stk1 strain, and the results were corroborated by quantitative PCR at the mRNA level. Further experiments confirmed that the loss of stk1 weakens bacterial twitching motility and promotes a growth competition advantage, which are, respectively, mediated by type IV pilus-related proteins and T6SS-H1-related proteins. These findings contribute to a better understanding of the physiological role of Stk1, and proteomic data will help further investigations of the roles and mechanisms of Stk1 in P. aeruginosa, although the detailed regulation and mechanism of Stk1 still need to be revealed.
Collapse
Affiliation(s)
- Xuan Zhu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chao Feng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lantian Zhou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhenzhen Li
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yue Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianyi Pan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
117
|
Mevo SIU, Ashrafudoulla M, Furkanur Rahaman Mizan M, Park SH, Ha SD. Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry-A review. Compr Rev Food Sci Food Saf 2021; 20:5938-5964. [PMID: 34626152 DOI: 10.1111/1541-4337.12852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 01/22/2023]
Abstract
Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.
Collapse
Affiliation(s)
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| | | | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
118
|
Design and in situ biosynthesis of precision therapies against gastrointestinal pathogens. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
119
|
Chadha J, Harjai K, Chhibber S. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environ Microbiol 2021; 24:2630-2656. [PMID: 34559444 DOI: 10.1111/1462-2920.15784] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and the leading cause of mortality among immunocompromised patients in clinical setups. The hallmarks of virulence in P. aeruginosa encompass six biologically competent attributes that cumulatively drive disease progression in a multistep manner. These multifaceted hallmarks lay the principal foundation for rationalizing the complexities of pseudomonal infections. They include factors for host colonization and bacterial motility, biofilm formation, production of destructive enzymes, toxic secondary metabolites, iron-chelating siderophores and toxins. This arsenal of virulence hallmarks is fostered and stringently regulated by the bacterial signalling system called quorum sensing (QS). The central regulatory functions of QS in controlling the timely expression of these virulence hallmarks for adaptation and survival drive the disease outcome. This review describes the intricate mechanisms of QS in P. aeruginosa and its role in shaping bacterial responses, boosting bacterial fitness. We summarize the virulence hallmarks of P. aeruginosa, relating them with the QS circuitry in clinical infections. We also examine the role of QS in the development of drug resistance and propose a novel antivirulence therapy to combat P. aeruginosa infections. This can prove to be a next-generation therapy that may eventually become refractory to the use of conventional antimicrobial treatments.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
120
|
Maeda T, Sabidi S, Sanchez-Torres V, Hoshiko Y, Toya S. Engineering anaerobic digestion via optimizing microbial community: effects of bactericidal agents, quorum sensing inhibitors, and inorganic materials. Appl Microbiol Biotechnol 2021; 105:7607-7618. [PMID: 34542684 DOI: 10.1007/s00253-021-11536-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Anaerobic digestion of sewage sludge (SS) is one of the effective ways to reduce the waste generated from human life activities. To date, there are many reports to improve or repress methane production during the anaerobic digestion of SS. In the anaerobic digestion process, many microorganisms work positively or negatively, and as a result of their microbe-to-microbe interaction and regulation, methane production increases or decreases. In other words, understanding the complex control mechanism among the microorganisms and identifying the strains that are key to increase or decrease methane production are important for promoting the advanced production of bioenergy and beneficial compounds. In this mini-review, the literature on methane production in anaerobic digestion has been summarized based on the results of antibiotic addition, quorum sensing control, and inorganic substance addition. By optimizing the activity of microbial groups in SS, methane or acetate can be highly produced. KEY POINTS: • Bactericidal agents such as an antibiotic alter microbial community for enhanced CH4 production. • Bacterial interaction via quorum sensing is one of the key points for biofilm and methane production. • Anaerobic digestion can be altered in the presence of several inorganic materials.
Collapse
Affiliation(s)
- Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan.
| | - Sarah Sabidi
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| | - Viviana Sanchez-Torres
- Escuela de Ingeniería Química, Universidad Industrial de Santander, A.A. 678, Bucaramanga, Santander, Colombia
| | - Yuki Hoshiko
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| | - Shotaro Toya
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| |
Collapse
|
121
|
Oxidative Stress Response in Pseudomonas aeruginosa. Pathogens 2021; 10:pathogens10091187. [PMID: 34578219 PMCID: PMC8466533 DOI: 10.3390/pathogens10091187] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative environmental and human opportunistic pathogen highly adapted to many different environmental conditions. It can cause a wide range of serious infections, including wounds, lungs, the urinary tract, and systemic infections. The high versatility and pathogenicity of this bacterium is attributed to its genomic complexity, the expression of several virulence factors, and its intrinsic resistance to various antimicrobials. However, to thrive and establish infection, P. aeruginosa must overcome several barriers. One of these barriers is the presence of oxidizing agents (e.g., hydrogen peroxide, superoxide, and hypochlorous acid) produced by the host immune system or that are commonly used as disinfectants in a variety of different environments including hospitals. These agents damage several cellular molecules and can cause cell death. Therefore, bacteria adapt to these harsh conditions by altering gene expression and eliciting several stress responses to survive under oxidative stress. Here, we used PubMed to evaluate the current knowledge on the oxidative stress responses adopted by P. aeruginosa. We will describe the genes that are often differently expressed under oxidative stress conditions, the pathways and proteins employed to sense and respond to oxidative stress, and how these changes in gene expression influence pathogenicity and the virulence of P. aeruginosa. Understanding these responses and changes in gene expression is critical to controlling bacterial pathogenicity and developing new therapeutic agents.
Collapse
|
122
|
Durães F, Szemerédi N, Kumla D, Pinto M, Kijjoa A, Spengler G, Sousa E. Metabolites from Marine-Derived Fungi as Potential Antimicrobial Adjuvants. Mar Drugs 2021; 19:475. [PMID: 34564137 PMCID: PMC8470461 DOI: 10.3390/md19090475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022] Open
Abstract
Marine-derived fungi constitute an interesting source of bioactive compounds, several of which exhibit antibacterial activity. These acquire special importance, considering that antimicrobial resistance is becoming more widespread. The overexpression of efflux pumps, capable of expelling antimicrobials out of bacterial cells, is one of the most worrisome mechanisms. There has been an ongoing effort to find not only new antimicrobials, but also compounds that can block resistance mechanisms which can be used in combination with approved antimicrobial drugs. In this work, a library of nineteen marine natural products, isolated from marine-derived fungi of the genera Neosartorya and Aspergillus, was evaluated for their potential as bacterial efflux pump inhibitors as well as the antimicrobial-related mechanisms, such as inhibition of biofilm formation and quorum-sensing. Docking studies were performed to predict their efflux pump action. These compounds were also tested for their cytotoxicity in mouse fibroblast cell line NIH/3T3. The results obtained suggest that the marine-derived fungal metabolites are a promising source of compounds with potential to revert antimicrobial resistance and serve as an inspiration for the synthesis of new antimicrobial drugs.
Collapse
Affiliation(s)
- Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (M.P.)
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.K.); (A.K.)
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary;
| | - Decha Kumla
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.K.); (A.K.)
- ICBAS–Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (M.P.)
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.K.); (A.K.)
| | - Anake Kijjoa
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.K.); (A.K.)
- ICBAS–Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (M.P.)
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.K.); (A.K.)
| |
Collapse
|
123
|
The Vibrio cholerae Type Six Secretion System Is Dispensable for Colonization but Affects Pathogenesis and the Structure of Zebrafish Intestinal Microbiome. Infect Immun 2021; 89:e0015121. [PMID: 34097462 DOI: 10.1128/iai.00151-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Zebrafish (Danio rerio) are an attractive model organism for a variety of scientific studies, including host-microbe interactions. The organism is particularly useful for the study of aquatic microbes that can colonize vertebrate hosts, including Vibrio cholerae, an intestinal pathogen. V. cholerae must colonize the intestine of an exposed host for pathogenicity to occur. While numerous studies have explored various aspects of the pathogenic effects of V. cholerae on zebrafish and other model organisms, few, if any, have examined how a V. cholerae infection alters the resident intestinal microbiome and the role of the type six secretion system (T6SS) in that process. In this study, 16S rRNA gene sequencing was utilized to investigate how strains of V. cholerae both with and without the T6SS alter the aforementioned microbial profiles following an infection. V. cholerae infection induced significant changes in the zebrafish intestinal microbiome, and while not necessary for colonization, the T6SS was important for inducing mucin secretion, a marker for diarrhea. Additional salient differences to the microbiome were observed based on the presence or absence of the T6SS in the V. cholerae utilized for challenging the zebrafish hosts. We conclude that V. cholerae significantly modulates the zebrafish intestinal microbiome to enable colonization and that the T6SS is important for pathogenesis induced by the examined V. cholerae strains. Furthermore, the presence or absence of T6SS differentially and significantly affected the composition and structure of the intestinal microbiome, with an increased abundance of other Vibrio bacteria observed in the absence of V. cholerae T6SS.
Collapse
|
124
|
Usmani Y, Ahmed A, Faizi S, Versiani MA, Shamshad S, Khan S, Simjee SU. Antimicrobial and biofilm inhibiting potential of an amide derivative [N-(2', 4'-dinitrophenyl)-3β-hydroxyurs-12-en-28-carbonamide] of ursolic acid by modulating membrane potential and quorum sensing against colistin resistant Acinetobacter baumannii. Microb Pathog 2021; 157:104997. [PMID: 34048890 DOI: 10.1016/j.micpath.2021.104997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii is Gram-negative, an opportunistic pathogen responsible for life-threatening ventilator-associated pneumonia. World Health Organization (WHO) enlisted it as a priority pathogen for which therapeutic options need speculations. Biofilm further benefits this pathogen and aids 100-1000 folds more resistant against antimicrobials and the host immune system. In this study, ursolic acid (1) and its amide derivatives (2-4) explored for their antimicrobial and antibiofilm potential against colistin-resistant A. baumannii (CRAB) reference and clinical strains. Viability, crystal violet, microscopic, and gene expression assays further detailed the active compounds' antimicrobial and biofilm inhibition potential. Compound 4 [N-(2',4'-dinitrophenyl)-3β-hydroxyurs-12-en-28-carbonamide)], a synthetic amide derivate of ursolic acid significantly inhibits bacterial growth with MIC in the range of 78-156 μg/mL against CRAB isolates. This compound failed to completely kill the CRAB isolates even at 500 μg/mL concentration, suggesting the compound's anti-virulence and bacteriostatic nature. Short and prolonged exposure of 4 inhibited or delayed the bacterial growth at sub MIC, MIC, and 2× MIC, as evident in time-kill and post-antibacterial assay. It significantly inhibited and eradicated >70% of biofilm formation at MIC and sub MIC levels compared to colistin required in high concentrations. Microscopic analysis showed disintegrated biofilm after treatment with the 4 further strengthened its antibiofilm potential. Atomic force microscopy (AFM) hinted the membrane disrupting effect of 4 at MIC's. Further it was confirmed by DiBAC4 using fluorescence-activating cells sorting (FACS), suggesting a depolarized membrane at MIC. Gene expression analysis also supported our data as it showed reduced expression of biofilm-forming (bap) and quorum sensing (abaR) genes after treatment with sub MIC of 4. The results suggest that 4 significantly inhibit bacterial growth and biofilm mode of colistin-resistant A. baumannii. Thus, further studies are required to decipher the complete mechanism of action to develop 4 as a new pharmacophore against A. baumannii.
Collapse
Affiliation(s)
- Yamina Usmani
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Shaheen Faizi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Ali Versiani
- Department of Chemistry, Federal Urdu University of Arts, Science, and Technology, Gulshan-e-Iqbal, Karachi, 75300, Pakistan
| | - Shumaila Shamshad
- Department of Chemistry, Federal Urdu University of Arts, Science, and Technology, Gulshan-e-Iqbal, Karachi, 75300, Pakistan
| | - Saeed Khan
- Department of Pathology, Dow International Medical College, Dow Diagnostic Research and Reference Laboratory, Dow University of Health Sciences, Karachi, Pakistan
| | - Shabana U Simjee
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
125
|
Fatoba AJ, Okpeku M, Adeleke MA. Subtractive Genomics Approach for Identification of Novel Therapeutic Drug Targets in Mycoplasma genitalium. Pathogens 2021; 10:pathogens10080921. [PMID: 34451385 PMCID: PMC8402164 DOI: 10.3390/pathogens10080921] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022] Open
Abstract
Mycoplasma genitalium infection is a sexually transmitted infection that causes urethritis, cervicitis, and pelvic inflammatory disease (PID) in men and women. The global rise in antimicrobial resistance against recommended antibiotics for the treatment of M. genitalium infection has triggered the need to explore novel drug targets against this pathogen. The application of a bioinformatics approach through subtractive genomics has proven highly instrumental in predicting novel therapeutic targets against a pathogen. This study aimed to identify essential and non-homologous proteins with unique metabolic pathways in the pathogen that could serve as novel drug targets. Based on this, a manual comparison of the metabolic pathways of M. genitalium and the human host was done, generating nine pathogen-specific metabolic pathways. Additionally, the analysis of the whole proteome of M. genitalium using different bioinformatics databases generated 21 essential, non-homologous, and cytoplasmic proteins involved in nine pathogen-specific metabolic pathways. The further screening of these 21 cytoplasmic proteins in the DrugBank database generated 13 druggable proteins, which showed similarity with FDA-approved and experimental small-molecule drugs. A total of seven proteins that are involved in seven different pathogen-specific metabolic pathways were finally selected as novel putative drug targets after further analysis. Therefore, these proposed drug targets could aid in the design of potent drugs that may inhibit the functionality of these pathogen-specific metabolic pathways and, as such, lead to the eradication of this pathogen.
Collapse
|
126
|
Kuang Z, Bennett RC, Lin J, Hao Y, Zhu L, Akinbi HT, Lau GW. Surfactant phospholipids act as molecular switches for premature induction of quorum sensing-dependent virulence in Pseudomonas aeruginosa. Virulence 2021; 11:1090-1107. [PMID: 32842850 PMCID: PMC7549932 DOI: 10.1080/21505594.2020.1809327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The virulence behaviors of many Gram-negative bacterial pathogens are governed by quorum-sensing (QS), a hierarchical system of gene regulation that relies on population density by producing and detecting extracellular signaling molecules. Although extensively studied under in vitro conditions, adaptation of QS system to physiologically relevant host environment is not fully understood. In this study, we investigated the influence of lung environment on the regulation of Pseudomonas aeruginosa virulence factors by QS in a mouse model of acute pneumonia. When cultured under laboratory conditions in lysogeny broth, wild-type P. aeruginosa strain PAO1 began to express QS-regulated virulence factors elastase B (LasB) and rhamnolipids (RhlA) during transition from late-exponential into stationary growth phase. In contrast, during acute pneumonia as well as when cultured in mouse bronchial alveolar lavage fluids (BALF), exponential phase PAO1 bacteria at low population density prematurely expressed QS regulatory genes lasI-lasR and rhlI-rhlR and their downstream virulence genes lasB and rhlA. Further analysis indicated that surfactant phospholipids were the primary components within BALF that induced the synthesis of N-(3-oxododecanoyl)-L-homoserine lactone (C12-HSL), which triggered premature expression of LasB and RhlA. Both phenol extraction and phospholipase A2 digestion abolished the ability of mouse BALF to promote LasB and RhlA expression. In contrast, provision of the major surfactant phospholipid dipalmitoylphosphatidylcholine (DPPC) restored the expression of both virulence factors. Collectively, our study demonstrates P. aeruginosa modulates its QS to coordinate the expression of virulence factors during acute pneumonia by recognizing pulmonary surfactant phospholipids.
Collapse
Affiliation(s)
- Zhizhou Kuang
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Richard C Bennett
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Jingjun Lin
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Yonghua Hao
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Luchang Zhu
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Henry T Akinbi
- Division of Pulmonary Medicine, Cincinnati Children Hospital , Cincinnati, OH, USA
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| |
Collapse
|
127
|
Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An Organ System-Based Synopsis of Pseudomonas aeruginosa Virulence. Virulence 2021; 12:1469-1507. [PMID: 34180343 PMCID: PMC8237970 DOI: 10.1080/21505594.2021.1926408] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.
Collapse
Affiliation(s)
- Charles D Morin
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Jeff Gauthier
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, US
| |
Collapse
|
128
|
Newman JD, Russell MM, Fan L, Wang YX, Gonzalez-Gutierrez G, van Kessel JC. The DNA binding domain of the Vibrio vulnificus SmcR transcription factor is flexible and binds diverse DNA sequences. Nucleic Acids Res 2021; 49:5967-5984. [PMID: 34023896 PMCID: PMC8191795 DOI: 10.1093/nar/gkab387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/22/2023] Open
Abstract
Quorum sensing gene expression in vibrios is regulated by the LuxR/HapR family of transcriptional factors, which includes Vibrio vulnificus SmcR. The consensus binding site of Vibrio LuxR/HapR/SmcR proteins is palindromic but highly degenerate with sequence variations at each promoter. To examine the mechanism by which SmcR recognizes diverse DNA sites, we generated SmcR separation-of-function mutants that either repress or activate transcription but not both. SmcR N55I is restricted in recognition of single base-pair variations in DNA binding site sequences and thus is defective at transcription activation but retains interaction with RNA polymerase (RNAP) alpha. SmcR S76A, L139R and N142D substitutions disrupt the interaction with RNAP alpha but retain functional DNA binding activity. X-ray crystallography and small angle X-ray scattering data show that the SmcR DNA binding domain exists in two conformations (wide and narrow), and the protein complex forms a mixture of dimers and tetramers in solution. The three RNAP interaction-deficient variants also have two DNA binding domain conformations, whereas SmcR N55I exhibits only the wide conformation. These data support a model in which two mechanisms drive SmcR transcriptional activation: interaction with RNAP and a multi-conformational DNA binding domain that permits recognition of variable DNA sites.
Collapse
Affiliation(s)
- Jane D Newman
- Department of Biology, Indiana University, 1001 E 3rd St, Bloomington, IN 47405, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, 212 S Hawthorne Dr, Bloomington, IN 47405, USA
| | - Meghan M Russell
- Department of Biology, Indiana University, 1001 E 3rd St, Bloomington, IN 47405, USA
| | - Lixin Fan
- Small Angle X-ray Scattering Facility, Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Small Angle X-ray Scattering Facility, Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Giovanni Gonzalez-Gutierrez
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S Hawthorne Dr, Bloomington, IN 47405, USA
| | - Julia C van Kessel
- Department of Biology, Indiana University, 1001 E 3rd St, Bloomington, IN 47405, USA
| |
Collapse
|
129
|
Baloyi IT, Adeosun IJ, Yusuf AA, Cosa S. In Silico and In Vitro Screening of Antipathogenic Properties of Melianthus comosus (Vahl) against Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10060679. [PMID: 34198845 PMCID: PMC8230066 DOI: 10.3390/antibiotics10060679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Bacterial quorum sensing (QS) system regulates pathogenesis, virulence, and biofilm formation, and together they contribute to nosocomial infections. Opportunistic pathogens, such as Pseudomonas aeruginosa, rely on QS for regulating virulence factors. Therefore, blocking the QS system may aid management of various infectious diseases caused by human pathogens. Plant secondary metabolites can thwart bacterial colonization and virulence. As such, this study was undertaken to evaluate three extracts from the medicinal plant, Melianthus comosus, from which phytochemical compounds were identified with potential to inhibit QS-dependent virulence factors in P. aeruginosa. Chemical profiling of the three extracts identified 1,2-benzene dicarboxylic acid, diethyl ester, neophytadiene and hexadecanoic acid as the common compounds. Validation of antibacterial activity confirmed the same MIC values of 0.78 mg/mL for aqueous, methanol and dichloromethane extracts while selected guanosine showed MIC 0.031 mg/mL. Molecular docking analysis showed anti-quorum sensing (AQS) potential of guanosine binding to CviR’ and 2UV0 proteins with varying docking scores of −5.969 and −8.376 kcal/mol, respectively. Guanosine inhibited biofilm cell attachment and biofilm development at 78.88% and 34.85%, respectively. Significant swimming and swarming motility restriction of P. aeruginosa were observed at the highest concentration of plant extracts and guanosine. Overall, guanosine revealed the best swarming motility restrictions. M. comosus extracts and guanosine have shown clear antibacterial effects and subsequent reduction of QS-dependent virulence activities against P.aeruginosa. Therefore, they could be ideal candidates in the search for antipathogenic drugs to combat P.aeruginosa infections.
Collapse
Affiliation(s)
- Itumeleng T. Baloyi
- Division of Microbiology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield Pretoria 0028, South Africa; (I.T.B.); (I.J.A.)
| | - Idowu J. Adeosun
- Division of Microbiology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield Pretoria 0028, South Africa; (I.T.B.); (I.J.A.)
| | - Abdullahi A. Yusuf
- Department of Zoology and Entomology, University of Pretoria, Hatfield Pretoria 0028, South Africa;
| | - Sekelwa Cosa
- Division of Microbiology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield Pretoria 0028, South Africa; (I.T.B.); (I.J.A.)
- Correspondence:
| |
Collapse
|
130
|
Ozma MA, Khodadadi E, Rezaee MA, Kamounah FS, Asgharzadeh M, Ganbarov K, Aghazadeh M, Yousefi M, Pirzadeh T, Kafil HS. Induction of proteome changes involved in biofilm formation of Enterococcus faecalis in response to gentamicin. Microb Pathog 2021; 157:105003. [PMID: 34087388 DOI: 10.1016/j.micpath.2021.105003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Enterococcus faecalis is a significant cause of nosocomial infections and other diseases, including endocarditis, bacteremia, and urinary tract infections. This microorganism forms biofilms to overcome difficult environmental conditions, such as lack of oxygen, lack of water, and the presence of antimicrobials. These biofilms make diseases difficult by changing their proteome contents, protecting the bacterium, and increasing their pathogenicity. This study aimed to evaluate gentamicin's effect on proteome changes and biofilm formation in E. faecalis. METHOD Twenty-five clinical isolates and one standard isolate were selected for the experiments. A label-free/gel-free proteomic and microtiter plate techniques were used to study proteome changes and biofilm formation, respectively. RESULTS Gentamicin significantly increased the biofilm formation in 62% of isolates and the rest of the isolates; no significant change was observed. The abundance of lactate utilization protein C, ribosomal RNA small subunit methyltransferase H, and protein translocase subunit SecA were increased. However, the abundances of proteins effective in cell division and metabolism, such as replication initiation protein and segregation and condensation protein A, were decreased. CONCLUSION The present study's findings exhibited that antibiotics might have adverse effects on treatment and increase microorganisms' pathogenicity. It was observed in gentamicin as induction of biofilm formation through different mechanisms, particularly changes in the expression of specific proteins in E. faecalis.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK- 2100, Copenhagen, Denmark
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Aghazadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Pirzadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
131
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
132
|
Garg D, Matai I, Sachdev A. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomater Sci Eng 2021; 7:1933-1961. [PMID: 33826312 DOI: 10.1021/acsbiomaterials.0c01408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications. On this account, this review provides an insight into the significance of anti-infective hydrogels for preventing orthopedic implant associated infections to improve the bone healing process. We briefly discuss the clinical course of implant failure, with a prime focus on orthopedic implants. We identify the different anti-infective coating strategies and hence several anti-infective agents which could be incorporated in the hydrogel matrix. The fundamental design criteria to be considered while fabricating anti-infective hydrogels for orthopedic implants will be discussed. We highlight the different hydrogel coatings based on the origin of the polymers involved in light of their antimicrobial efficacy. We summarize the relevant patents reported in the prevention of implant infections, including orthopedics. Finally, the challenges concerning the clinical translation of the aforesaid hydrogels are described, and considerable solutions for improved clinical practice and better future prospects are proposed.
Collapse
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Ishita Matai
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Abhay Sachdev
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| |
Collapse
|
133
|
Cortes-López H, Castro-Rosas J, García-Contreras R, Rodríguez-Zavala JS, González-Pedrajo B, Díaz-Guerrero M, Hernández-Morales J, Muñoz-Cazares N, Soto-Hernández M, Ruíz-Posadas LDM, Castillo-Juárez I. Antivirulence Activity of a Dietary Phytochemical: Hibiscus Acid Isolated from Hibiscus sabdariffa L. Reduces the Virulence of Pseudomonas aeruginosa in a Mouse Infection Model. J Med Food 2021; 24:934-943. [PMID: 33751918 DOI: 10.1089/jmf.2020.0135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hibiscus sabdariffa L. (Hs) calyxes, rich in organic acids, are included in diets in different countries. In recent years, some phytochemicals have been shown to reduce bacterial virulence at sublethal concentrations by interfering with quorum sensing (QS) systems. Therefore, in this study the antivirulence properties of Hs calyxes and two γ-lactones (hibiscus acid [HA] and its methyl ester) in Pseudomonas aeruginosa were analyzed. Acetone and methanol extracts of Hs showed anti-QS activity by inhibiting violacein production (60% to 80% with 250 μg/mL). In molecular docking analysis, the γ-lactones registered a good binding score, which suggests strong interaction with the active site of LasR protein. To verify their effect in vitro, they were isolated from Hs and evaluated in six QS-regulated phenotypes, as well as in ExoU toxin that is released by the type III secretion system (T3SS). At 500 μg/mL they reduced alkaline protease (29-52%) and elastase (15-37%) activity, biofilm formation (∼75%), and swarming (50%), but there was no effect on pyocyanin production, hemolytic activity, or type III secretion. In a mouse abscess/necrosis model, HA at sublethal concentrations (15 and 31.2 μg/mL) affected infection establishment and prevented damage and systemic spread. In conclusion, HA is the first molecule identified with antivirulence properties in Hs with the potential to prevent infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Humberto Cortes-López
- Posgrado de Botánica y, Colegio de Postgraduados, Campus Montecillo, Texcoco, Estado de México, México
| | - Javier Castro-Rosas
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | | | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX, México
| | - Miguel Díaz-Guerrero
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX, México
| | - Javier Hernández-Morales
- Posgrado en Fitosanidad-Fitopatología, Colegio de Postgraduados, Campus Montecillo, Texcoco, Estado de México, México
| | - Naybi Muñoz-Cazares
- Posgrado de Botánica y, Colegio de Postgraduados, Campus Montecillo, Texcoco, Estado de México, México
| | - Marcos Soto-Hernández
- Posgrado de Botánica y, Colegio de Postgraduados, Campus Montecillo, Texcoco, Estado de México, México
| | | | - Israel Castillo-Juárez
- Posgrado de Botánica y, Colegio de Postgraduados, Campus Montecillo, Texcoco, Estado de México, México
| |
Collapse
|
134
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 246] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
135
|
Yan X, Yang J, Wang Q, Lin S. Transcriptomic analysis reveals resistance mechanisms of Klebsiella michiganensis to copper toxicity under acidic conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111919. [PMID: 33476853 DOI: 10.1016/j.ecoenv.2021.111919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to elucidate the effect of pH on bacterial resistance mechanisms to copper (Cu) stress by genomic and transcriptomic analysis. Klebsiella michiganensis cells were exposed to 0.5 mM CuCl2 at pH 4 and 5. Lower pH (pH < 4) strongly inhibited K. michiganensis growth, while Cu stress and higher pH (pH > 5) induced Cu precipitation in the medium. Transcriptomic analyses indicated that two groups of genes related to quorum sensing (QS) systems (lsrABCDFGKR) and type II secretion systems (T2SS) (gspCDEFGHIJKLM) were significantly up-regulated at pH 4 only. These results suggest that T2SS may be induced and controlled by QS, thereby contributing to the formation of extracellular polymeric substances (EPS) and the secretion of proteins to prevent Cu ions from entering cells. Six Cu resistance genes (cusABF, copA, cueO, and gene05308) were more significantly up-regulated at pH 4 than at pH 5. In addition, the relative expression (log2|FC=) of the sulfur assimilation genes cysHJIK was relatively higher at pH 4 than at pH 5, while the gene encoding organic sulfur metabolism, tauB, was also significantly up-regulated at only pH 4. These results indicate that the Cu efflux system can remove intracellular Cu ions from cells, and that the sulfur assimilation system is related to the detoxification of Cu ions. Furthermore, increased free Cu ions at lower pH (4) could induce communication signals among cells, thereby stimulating the response of T2SS-related genes in K. michiganensis to tolerate Cu stress. Consequently, the resistance of K. michiganensis to Cu stress is a multisystem collaborative process composed of intracellular and extracellular components.
Collapse
Affiliation(s)
- Xiaoxue Yan
- Engineering Laboratory for Water Pollution Control and Resources of National Environmental Protection, School of Environment, Northeast Normal University, No. 2555, Jingyue Street, Changchun 130117, Jilin, PR China
| | - Junlin Yang
- Engineering Laboratory for Water Pollution Control and Resources of National Environmental Protection, School of Environment, Northeast Normal University, No. 2555, Jingyue Street, Changchun 130117, Jilin, PR China
| | - Qi Wang
- Engineering Laboratory for Water Pollution Control and Resources of National Environmental Protection, School of Environment, Northeast Normal University, No. 2555, Jingyue Street, Changchun 130117, Jilin, PR China
| | - Shanshan Lin
- Engineering Laboratory for Water Pollution Control and Resources of National Environmental Protection, School of Environment, Northeast Normal University, No. 2555, Jingyue Street, Changchun 130117, Jilin, PR China.
| |
Collapse
|
136
|
Oleńska E, Małek W, Kotowska U, Wydrych J, Polińska W, Swiecicka I, Thijs S, Vangronsveld J. Exopolysaccharide Carbohydrate Structure and Biofilm Formation by Rhizobium leguminosarum bv. trifolii Strains Inhabiting Nodules of Trifoliumrepens Growing on an Old Zn-Pb-Cd-Polluted Waste Heap Area. Int J Mol Sci 2021; 22:ijms22062808. [PMID: 33802057 PMCID: PMC7998805 DOI: 10.3390/ijms22062808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/03/2022] Open
Abstract
Heavy metals polluting the 100-year-old waste heap in Bolesław (Poland) are acting as a natural selection factor and may contribute to adaptations of organisms living in this area, including Trifolium repens and its root nodule microsymbionts—rhizobia. Exopolysaccharides (EPS), exuded extracellularly and associated with bacterial cell walls, possess variable structures depending on environmental conditions; they can bind metals and are involved in biofilm formation. In order to examine the effects of long-term exposure to metal pollution on EPS structure and biofilm formation of rhizobia, Rhizobium leguminosarum bv. trifolii strains originating from the waste heap area and a non-polluted reference site were investigated for the characteristics of the sugar fraction of their EPS using gas chromatography mass-spectrometry and also for biofilm formation and structural characteristics using confocal laser scanning microscopy under control conditions as well as when exposed to toxic concentrations of zinc, lead, and cadmium. Significant differences in EPS structure, biofilm thickness, and ratio of living/dead bacteria in the biofilm were found between strains originating from the waste heap and from the reference site, both without exposure to metals and under metal exposure. Received results indicate that studied rhizobia can be assumed as potentially useful in remediation processes.
Collapse
Affiliation(s)
- Ewa Oleńska
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, 1J Ciołkowski, 15-245 Białystok, Poland;
- Correspondence: ; Tel.: +48-8-5738-8366
| | - Wanda Małek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland;
| | - Urszula Kotowska
- Division of Environmental Chemistry, Department of Analytic and Inorganic Chemistry, Faculty of Chemistry, University of Białystok, 1K Ciołkowski, 15-245 Białystok, Poland;
| | - Jerzy Wydrych
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland;
| | - Weronika Polińska
- Doctoral School of Exact and Natural Sciences, University of Białystok, 1K Ciołkowski, 15-245 Białystok, Poland;
| | - Izabela Swiecicka
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, 1J Ciołkowski, 15-245 Białystok, Poland;
- Laboratory of Applied Microbiology, Faculty of Biology, University of Białystok, 1J Ciołkowski, 15-245 Białystok, Poland
| | - Sofie Thijs
- Centre for Environmental Sciences, Faculty of Sciences, Hasselt University, Agoralaan D, B-3590 Diepenbeek, Belgium; (S.T.); (J.V.)
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Faculty of Sciences, Hasselt University, Agoralaan D, B-3590 Diepenbeek, Belgium; (S.T.); (J.V.)
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland
| |
Collapse
|
137
|
Luo Y, Yang Q, Zhang D, Yan W. Mechanisms and Control Strategies of Antibiotic Resistance in Pathological Biofilms. J Microbiol Biotechnol 2021; 31:1-7. [PMID: 33323672 PMCID: PMC9706009 DOI: 10.4014/jmb.2010.10021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Bacterial biofilm is a community of bacteria that are embedded and structured in a self-secreted extracellular matrix. An important clinical-related characteristic of bacterial biofilms is that they are much more resistant to antimicrobial agents than the planktonic cells (up to 1,000 times), which is one of the main causes of antibiotic resistance in clinics. Therefore, infections caused by biofilms are notoriously difficult to eradicate, such as lung infection caused by Pseudomonas aeruginosa in cystic fibrosis patients. Understanding the resistance mechanisms of biofilms will provide direct insights into how we overcome such resistance. In this review, we summarize the characteristics of biofilms and chronic infections associated with bacterial biofilms. We examine the current understanding and research progress on the major mechanisms of antibiotic resistance in biofilms, including quorum sensing. We also discuss the potential strategies that may overcome biofilm-related antibiotic resistance, focusing on targeting biofilm EPSs, blocking quorum sensing signaling, and using recombinant phages.
Collapse
Affiliation(s)
- Ying Luo
- Department of Pharmacy, Hangzhou Geriatric Hospital, Hangzhou 30022, P.R. China
| | - Qianqian Yang
- Department of Pharmacy, Hangzhou Geriatric Hospital, Hangzhou 30022, P.R. China
| | - Dan Zhang
- Department of Pharmacy, Hangzhou Geriatric Hospital, Hangzhou 30022, P.R. China
| | - Wei Yan
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, P.R. China,Corresponding author Phone/Fax: +86-571-5600-7510 E-mail:
| |
Collapse
|
138
|
Juárez-Rodríguez MM, Cortes-López H, García-Contreras R, González-Pedrajo B, Díaz-Guerrero M, Martínez-Vázquez M, Rivera-Chávez JA, Soto-Hernández RM, Castillo-Juárez I. Tetradecanoic Acids With Anti-Virulence Properties Increase the Pathogenicity of Pseudomonas aeruginosa in a Murine Cutaneous Infection Model. Front Cell Infect Microbiol 2021; 10:597517. [PMID: 33585272 PMCID: PMC7876447 DOI: 10.3389/fcimb.2020.597517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/08/2020] [Indexed: 12/25/2022] Open
Abstract
Blocking virulence is a promising alternative to counteract Pseudomonas aeruginosa infections. In this regard, the phenomenon of cell-cell communication by quorum sensing (QS) is an important anti-virulence target. In this field, fatty acids (FA) have gained notoriety for their role as autoinducers, as well as anti-virulence molecules in vitro, like some saturated FA (SAFA). In this study, we analyzed the anti-virulence activity of SAFA with 12 to18 carbon atoms and compared their effect with the putative autoinducer cis-2-decenoic acid (CDA). The effect of SAFA on six QS-regulated virulence factors and on the secretion of the exoenzyme ExoU was evaluated. In addition, a murine cutaneous infection model was used to determine their influence on the establishment and damage caused by P. aeruginosa PA14. Dodecanoic (lauric, C12:0) and tetradecanoic (myristic, C14:0) acids (SAFA C12-14) reduced the production of pyocyanin by 35-58% at 40 and 1,000 µM, while CDA inhibited it 62% at a 3.1 µM concentration. Moreover, the SAFA C12-14 reduced swarming by 90% without affecting biofilm formation. In contrast, CDA reduced the biofilm by 57% at 3 µM but did not affect swarming. Furthermore, lauric and myristic acids abolished ExoU secretion at 100 and 50 µM respectively, while CDA reduced it by ≈ 92% at 100 µM. Remarkably, the coadministration of myristic acid (200 and 1,000 µM) with P. aeruginosa PA14 induced greater damage and reduced survival of the animals up to 50%, whereas CDA to 500 µM reduced the damage without affecting the viability of the PA14 strain. Hence, our results show that SAFA C12-14 and CDA have a role in regulation of P. aeruginosa virulence, although their inhibition/activation molecular mechanisms are different in complex environments such as in vivo systems.
Collapse
Affiliation(s)
| | - Humberto Cortes-López
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Miguel Díaz-Guerrero
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mariano Martínez-Vázquez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José Alberto Rivera-Chávez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Israel Castillo-Juárez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco, Mexico
| |
Collapse
|
139
|
Ruiz-Roldán L, de Toro M, Sáenz Y. Whole Genome Analysis of Environmental Pseudomonas mendocina Strains: Virulence Mechanisms and Phylogeny. Genes (Basel) 2021; 12:115. [PMID: 33477842 PMCID: PMC7832885 DOI: 10.3390/genes12010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas mendocina is an environmental bacterium, rarely isolated in clinical specimens, although it has been described as producing endocarditis and sepsis. Little is known about its genome. Whole genome sequencing can be used to learn about the phylogeny, evolution, or pathogenicity of these isolates. Thus, the aim of this study was to analyze the resistome, virulome, and phylogenetic relationship of two P. mendocina strains, Ps542 and Ps799, isolated from a healthy Anas platyrhynchos fecal sample and a lettuce, respectively. Among all of the small number of P.mendocina genomes available in the National Center for Biotechnology Information (NCBI) repository, both strains were placed within one of two well-defined phylogenetic clusters. Both P. mendocina strains lacked antimicrobial resistance genes, but the Ps799 genome showed a MOBP3 family relaxase. Nevertheless, this study revealed that P. mendocina possesses an important number of virulence factors, including a leukotoxin, flagella, pili, and the Type 2 and Type 6 Secretion Systems, that could be responsible for their pathogenesis. More phenotypical and in vivo studies are needed to deepen the association with human infections and the potential P. mendocina pathogenicity.
Collapse
Affiliation(s)
- Lidia Ruiz-Roldán
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain;
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain;
| |
Collapse
|
140
|
Haque M, Islam S, Sheikh MA, Dhingra S, Uwambaye P, Labricciosa FM, Iskandar K, Charan J, Abukabda AB, Jahan D. Quorum sensing: a new prospect for the management of antimicrobial-resistant infectious diseases. Expert Rev Anti Infect Ther 2020; 19:571-586. [PMID: 33131352 DOI: 10.1080/14787210.2021.1843427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Quorum-sensing (QS) is a microbial cell-to-cell communication system that utilizes small signaling molecules to mediates interactions between cross-kingdom microorganisms, including Gram-positive and -negative microbes. QS molecules include N-acyl-homoserine-lactones (AHLs), furanosyl borate, hydroxyl-palmitic acid methylester, and methyl-dodecanoic acid. These signaling molecules maintain the symbiotic relationship between a host and the healthy microbial flora and also control various microbial virulence factors. This manuscript has been developed based on published scientific papers. AREAS COVERED Furanones, glycosylated chemicals, heavy metals, and nanomaterials are considered QS inhibitors (QSIs) and are therefore capable of inhibiting the microbial QS system. QSIs are currently being considered as antimicrobial therapeutic options. Currently, the low speed at which new antimicrobial agents are being developed impairs the treatment of drug-resistant infections. Therefore, QSIs are currently being studied as potential interventions targeting QS-signaling molecules and quorum quenching (QQ) enzymes to reduce microbial virulence. EXPERT OPINION QSIs represent a novel opportunity to combat antimicrobial resistance (AMR). However, no clinical trials have been conducted thus far assessing their efficacy. With the recent advancements in technology and the development of well-designed clinical trials aimed at targeting various components of the, QS system, these agents will undoubtedly provide a useful alternative to treat infectious diseases.
Collapse
Affiliation(s)
- Mainul Haque
- Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | | | - Sameer Dhingra
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, Eric Williams Medical Sciences Complex, Trinidad & Tobago
| | - Peace Uwambaye
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine and Health Sciences, School of Dentistry, Kigali, Rwanda
| | | | - Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1027, F-31000 Toulouse, France.,INSPECT-LB: Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573-14, Lebanon.,Faculty of Pharmacy, Lebanese University, Beirut 1106, Lebanon
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, Dhaka, Bangladesh
| |
Collapse
|
141
|
Sainz-Mejías M, Jurado-Martín I, McClean S. Understanding Pseudomonas aeruginosa-Host Interactions: The Ongoing Quest for an Efficacious Vaccine. Cells 2020; 9:cells9122617. [PMID: 33291484 PMCID: PMC7762141 DOI: 10.3390/cells9122617] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of chronic respiratory infections in people with cystic fibrosis (CF), bronchiectasis or chronic obstructive pulmonary disease (COPD), and acute infections in immunocompromised individuals. The adaptability of this opportunistic pathogen has hampered the development of antimicrobial therapies, and consequently, it remains a major threat to public health. Due to its antimicrobial resistance, vaccines represent an alternative strategy to tackle the pathogen, yet despite over 50 years of research on anti-Pseudomonas vaccines, no vaccine has been licensed. Nevertheless, there have been many advances in this field, including a better understanding of the host immune response and the biology of P. aeruginosa. Multiple antigens and adjuvants have been investigated with varying results. Although the most effective protective response remains to be established, it is clear that a polarised Th2 response is sub-optimal, and a mixed Th1/Th2 or Th1/Th17 response appears beneficial. This comprehensive review collates the current understanding of the complexities of P. aeruginosa-host interactions and its implication in vaccine design, with a view to understanding the current state of Pseudomonal vaccine development and the direction of future efforts. It highlights the importance of the incorporation of appropriate adjuvants to the protective antigen to yield optimal protection.
Collapse
|
142
|
Britton SJ, Neven H, Maskell DL. Microbial Small-Talk: Does Quorum Sensing Play a Role in Beer Fermentation? JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1843928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Scott J. Britton
- Research & Development, Duvel Moortgat, Puurs-Sint-Amands, Belgium
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Hedwig Neven
- Research & Development, Duvel Moortgat, Puurs-Sint-Amands, Belgium
- Centre for Food and Microbial Technology (CLMT), Department M2S, KU Leuven, Leuven, Belgium
| | - Dawn L. Maskell
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
143
|
Grainha T, Jorge P, Alves D, Lopes SP, Pereira MO. Unraveling Pseudomonas aeruginosa and Candida albicans Communication in Coinfection Scenarios: Insights Through Network Analysis. Front Cell Infect Microbiol 2020; 10:550505. [PMID: 33262953 PMCID: PMC7686562 DOI: 10.3389/fcimb.2020.550505] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Modern medicine is currently facing huge setbacks concerning infection therapeutics as microorganisms are consistently knocking down every antimicrobial wall set before them. The situation becomes more worrying when taking into account that, in both environmental and disease scenarios, microorganisms present themselves as biofilm communities that are often polymicrobial. This comprises a competitive advantage, with interactions between different species altering host responses, antimicrobial effectiveness, microbial pathogenesis and virulence, usually augmenting the severity of the infection and contributing for the recalcitrance towards conventional therapy. Pseudomonas aeruginosa and Candida albicans are two opportunistic pathogens often co-isolated from infections, mainly from mucosal tissues like the lung. Despite the billions of years of co-existence, this pair of microorganisms is a great example on how little is known about cross-kingdom interactions, particularly within the context of coinfections. Given the described scenario, this study aimed to collect, curate, and analyze all published experimental information on the molecular basis of P. aeruginosa and C. albicans interactions in biofilms, in order to shed light into key mechanisms that may affect infection prognosis, increasing this area of knowledge. Publications were optimally retrieved from PubMed and Web of Science and classified as to their relevance. Data was then systematically and manually curated, analyzed, and further reconstructed as networks. A total of 641 interactions between the two pathogens were annotated, outputting knowledge on important molecular players affecting key virulence mechanisms, such as hyphal growth, and related genes and proteins, constituting potential therapeutic targets for infections related to these bacterial-fungal consortia. Contrasting interactions were also analyzed, and quorum-sensing inhibition approaches were highlighted. All annotated data was made publicly available at www.ceb.uminho.pt/ISCTD, a database already containing similar data for P. aeruginosa and Staphylococcus aureus communication. This will allow researchers to cut on time and effort when studying this particular subject, facilitating the understanding of the basis of the inter-species and inter-kingdom interactions and how it can be modulated to help design alternative and more effective tailored therapies. Finally, data deposition will serve as base for future dataset integration, whose analysis will hopefully give insights into communications in more complex and varied biofilm communities.
Collapse
Affiliation(s)
- Tânia Grainha
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Paula Jorge
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Diana Alves
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Susana Patrícia Lopes
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Maria Olívia Pereira
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
144
|
Matarèse BFE, Lad J, Seymour C, Schofield PN, Mothersill C. Bio-acoustic signaling; exploring the potential of sound as a mediator of low-dose radiation and stress responses in the environment. Int J Radiat Biol 2020; 98:1083-1097. [DOI: 10.1080/09553002.2020.1834162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bruno F. E. Matarèse
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Jigar Lad
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | - Paul N. Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
145
|
Venkatramanan M, Sankar Ganesh P, Senthil R, Akshay J, Veera Ravi A, Langeswaran K, Vadivelu J, Nagarajan S, Rajendran K, Shankar EM. Inhibition of Quorum Sensing and Biofilm Formation in Chromobacterium violaceum by Fruit Extracts of Passiflora edulis. ACS OMEGA 2020; 5:25605-25616. [PMID: 33073086 PMCID: PMC7557254 DOI: 10.1021/acsomega.0c02483] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/12/2020] [Indexed: 05/25/2023]
Abstract
Chromobacterium violaceum (C. violaceum) is a Gram-negative, rod-shaped facultatively anaerobic bacterium implicated with recalcitrant human infections. Here, we evaluated the anti-QS and antibiofilm activities of ethyl acetate extracts of Passiflora edulis (P. edulis) on the likely inactivation of acyl-homoserine lactone (AHL)-regulated molecules in C. violaceum both by in vitro and in silico analyses. Our investigations showed that the sub-MIC levels were 2, 1, and 0.5 mg/mL, and the concentrations showed a marked reduction in violacein pigment production by 75.8, 64.6, and 35.2%. AHL quantification showed 72.5, 52.2, and 35.9% inhibitions, inhibitions of EPS production (72.8, 36.5, and 25.9%), and reductions in biofilm formation (90.7, 69.4, and 51.8%) as compared to a control. Light microscopy and CLSM analysis revealed dramatic reduction in the treated biofilm group as compared to the control. GC-MS analysis showed 20 major peaks whose chemical structures were docked as the CviR ligand. The highest docking score was observed for hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester bonds in the active site of CviR with a binding energy of -8.825 kcal/mol. Together, we found that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester remarkably interacted with CviR to inhibit the QS system. Hence, we concluded that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester of P. edulis could likely be evaluated for treating C. violaceum infections.
Collapse
Affiliation(s)
- Mahendrarajan Venkatramanan
- Infection
Biology, Department of Life Sciences, Central
University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India
| | - Pitchaipillai Sankar Ganesh
- Infection
Biology, Department of Life Sciences, Central
University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India
| | - Renganathan Senthil
- Department
of Bioinformatics, Marudupandiyar College, Vallam, Thanjavur 613403, India
- Lysine
Biotech Private Limited, Periyar Maniammai
University, Periyar Nagar, Vallam, Thanjavur 613403, India
| | - Jeyachandran Akshay
- Infection
Biology, Department of Life Sciences, Central
University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India
| | | | | | - Jamuna Vadivelu
- Department
of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai,
Kuala Lumpur 50603, Malaysia
| | - Samuthira Nagarajan
- Department
of Chemistry, Central University of Tamil
Nadu, Neelakudi, Thiruvarur 610 005, India
| | | | - Esaki Muthu Shankar
- Infection
Biology, Department of Life Sciences, Central
University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India
| |
Collapse
|
146
|
Carradori S, Di Giacomo N, Lobefalo M, Luisi G, Campestre C, Sisto F. Biofilm and Quorum Sensing inhibitors: the road so far. Expert Opin Ther Pat 2020; 30:917-930. [PMID: 32985271 DOI: 10.1080/13543776.2020.1830059] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Biofilm is a complex aggregation of microorganisms characterized by the presence of a dynamic, adhesive and protective extracellular matrix composed of polysaccharides, proteins and nucleic acids. It is estimated that the vast majority of human infections are related to the biofilm in which the microorganisms reside and communicate with each other (Quorum Sensing), surviving in hostile environmental conditions. AREAS COVERED This review provides a comprehensive focus on the development state of promising strategies against biofilm production and eradication describing chemical structures, results, administration routes, pharmaceutical compositions, and SARs as well as their shortcomings within the 2019-2020 range. EXPERT OPINION New pharmacological targets have been explored in the past years, allowing a broader therapeutic arsenal against biofilm-related pathologies. The Quorum Sensing system was targeted as well in order to avoid the development of intrinsically antibiotic-resistant bacteria and to enhance a proper host defense.
Collapse
Affiliation(s)
- Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti, Italy
| | - Noemi Di Giacomo
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti, Italy
| | - Martina Lobefalo
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti, Italy
| | - Grazia Luisi
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti, Italy
| | - Francesca Sisto
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, University of Milan , Milan, Italy
| |
Collapse
|
147
|
Zhou M, Lan Y, Wang S, Liu Q, Jian Z, Li Y, Chen X, Yan Q, Liu W. Epidemiology and molecular characteristics of the type VI secretion system in Klebsiella pneumoniae isolated from bloodstream infections. J Clin Lab Anal 2020; 34:e23459. [PMID: 32656871 PMCID: PMC7676210 DOI: 10.1002/jcla.23459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/30/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Background The type VI secretion system (T6SS) has been identified as a novel virulence factor. This study aimed to investigate the prevalence of the T6SS genes in Klebsiella pneumoniae‐induced bloodstream infections (BSIs). We also evaluated clinical and molecular characteristics of T6SS‐positive K pneumoniae. Methods A total of 344 non‐repetitive K. pneumoniae bloodstream isolates and relevant clinical data were collected from January 2016 to January 2019. For all isolates, T6SS genes, capsular serotypes, and virulence genes were detected by polymerase chain reaction, and antimicrobial susceptibility was tested by VITEK® 2 Compact. MLST was being conducted for hypervirulent K. pneumoniae (HVKP). Results 69 (20.1%) were identified as T6SS‐positive K. pneumoniae among 344 isolates recovered from patients with BSIs. The rate of K1 capsular serotypes and ten virulence genes in T6SS‐positive strains was higher than T6SS‐negative strains (P = .000). The T6SS‐positive rate was significantly higher than T6SS‐negative rate among HVKP isolates. (P = .000). The T6SS‐positive K. pneumoniae isolates were significantly more susceptible to cefoperazone‐sulbactam, ampicillin‐sulbactam, cefazolin, ceftriaxone, cefotan, aztreonam, ertapenem, amikacin, gentamicin, levofloxacin, and ciprofloxacin (P < 0.05). More strains isolated from the community and liver abscess were T6SS‐positive K. pneumoniae (P < .05). Multivariate regression analysis indicated that community‐acquired BSIs (OR 2.986), the carriage of wcaG (OR 10.579), iucA (OR 2.441), and p‐rmpA (OR 7.438) virulence genes, and biliary diseases (OR 5.361) were independent risk factors for T6SS‐positive K. pneumoniae‐induced BSIs. Conclusion The T6SS‐positive K. pneumoniae was prevalent in individuals with BSIs. T6SS‐positive K. pneumoniae strains seemed to be hypervirulent which revealed the potential pathogenicity of this emerging gene cluster.
Collapse
Affiliation(s)
- Mao Zhou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - You Lan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Qingxia Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Zijuan Jian
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yanming Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Xia Chen
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
148
|
Zhang Y, Pan X, Liao S, Jiang C, Wang L, Tang Y, Wu G, Dai G, Chen L. Quantitative Proteomics Reveals the Mechanism of Silver Nanoparticles against Multidrug-Resistant Pseudomonas aeruginosa Biofilms. J Proteome Res 2020; 19:3109-3122. [PMID: 32567865 DOI: 10.1021/acs.jproteome.0c00114] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The decline of clinically effective antibiotics has made it necessary to develop more effective antimicrobial agents, especially for refractory biofilm-related infections. Silver nanoparticles (AgNPs) are a new type of antimicrobial agent that can eradicate biofilms and reduce bacterial resistance, but its anti-biofilm mechanism has not been elucidated. In this study, we investigated the molecular mechanism of AgNPs against multidrug-resistant Pseudomonas aeruginosa by means of anti-biofilm tests, scanning electron microscopy (SEM), and tandem mass tag (TMT)-labeled quantitative proteomics. The results of anti-biofilm tests demonstrated that AgNPs inhibited the formation of P. aeruginosa biofilm and disrupted its preformed biofilm. SEM showed that when exposed to AgNPs, the structure of the P. aeruginosa biofilm was destroyed, along with significant reduction of its biomass. TMT-labeled quantitative proteomic analysis revealed that AgNPs could defeat the P. aeruginosa biofilm in multiple ways by inhibiting its adhesion and motility, stimulating strong oxidative stress response, destroying iron homeostasis, blocking aerobic and anaerobic respiration, and affecting quorum sensing systems. Our findings offer a new insight into clarifying the mechanism of AgNPs against biofilms, thus providing a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Yapeng Zhang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xuanhe Pan
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Shijing Liao
- Department of Clinical Laboratory, The First People's Hospital of Yueyang, Yueyang 414000, China
| | - Congyuan Jiang
- Hunan Anson Biotechnology Company Ltd., Changsha 410008, China
| | - Linqian Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yurong Tang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Guojun Wu
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Gan Dai
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Liyu Chen
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
149
|
González Plaza JJ. Small RNAs as Fundamental Players in the Transference of Information During Bacterial Infectious Diseases. Front Mol Biosci 2020; 7:101. [PMID: 32613006 PMCID: PMC7308464 DOI: 10.3389/fmolb.2020.00101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Communication shapes life on Earth. Transference of information has played a paramount role on the evolution of all living or extinct organisms since the appearance of life. Success or failure in this process will determine the prevalence or disappearance of a certain set of genes, the basis of Darwinian paradigm. Among different molecules used for transmission or reception of information, RNA plays a key role. For instance, the early precursors of life were information molecules based in primitive RNA forms. A growing field of research has focused on the contribution of small non-coding RNA forms due to its role on infectious diseases. These are short RNA species that carry out regulatory tasks in cis or trans. Small RNAs have shown their relevance in fine tuning the expression and activity of important regulators of essential genes for bacteria. Regulation of targets occurs through a plethora of mechanisms, including mRNA stabilization/destabilization, driving target mRNAs to degradation, or direct binding to regulatory proteins. Different studies have been conducted during the interplay of pathogenic bacteria with several hosts, including humans, animals, or plants. The sRNAs help the invader to quickly adapt to the change in environmental conditions when it enters in the host, or passes to a free state. The adaptation is achieved by direct targeting of the pathogen genes, or subversion of the host immune system. Pathogens trigger also an immune response in the host, which has been shown as well to be regulated by a wide range of sRNAs. This review focuses on the most recent host-pathogen interaction studies during bacterial infectious diseases, providing the perspective of the pathogen.
Collapse
Affiliation(s)
- Juan José González Plaza
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
150
|
Al Marjania MF, Kouhsari E, Ali FS, Authman SH. Evaluation of type II Toxin-Antitoxin Systems, Antibiotic Resistance Profiles, and Biofilm Quorum Sensing Genes in Acinetobacter Baumannii Isolates in Iraq. Infect Disord Drug Targets 2020; 21:180-186. [PMID: 32484105 DOI: 10.2174/1871526520666200525170318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bacterial Toxin-Antitoxin (TAs) systems are extensive two-component elements in the bacterial genome, which are involved in many key biological functions, including growth arrest, survival, biofilm formation, plasmid maintenance, defense against phages, persistence, and virulence. AIM This study aimed to assess the molecular determinants involved in TAs, biofilm quorum sensing, and antibiotic resistance profiles in Acinetobacter baumannii isolated from Baghdad's hospitals in Iraq. METHODS A total of 127 A. baumannii isolates were collected from 2160 different clinical samples. The antimicrobial susceptibility test was performed using the disk diffusion test. All isolates were characterized for molecular determinants involved in TAs and biofilm formation using the wellknown PCR-based sequencing assay. RESULTS A high multi-drug resistant (MDR) (96.06%; 122/127) and imipenem resistance (84.25%; 107/127) rates were observed from A.baumannii isolates. Results showed the presence of rhlIR gene in three isolates (2.36%), and lasIR gene appeared in two isolates (1.57%) isolates, whilst, mazEF, ccdAB, and relBE genes have not been detected among any of the isolates. CONCLUSION A high MDR and imipenem resistance rates within a low prevalence of rhlIR, and lasIR genes could be found in clinical A. baumannii isolates from some of the Iraqi hospitals.
Collapse
Affiliation(s)
| | - Ebrahim Kouhsari
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatima S Ali
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Sawsan H Authman
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|