101
|
Zawistowska-Rojek A, Kociszewska A, Zaręba T, Tyski S. New Potentially Probiotic Strains Isolated from Humans – Comparison of Properties with Strains from Probiotic Products and ATCC Collection. Pol J Microbiol 2022; 71:395-409. [DOI: 10.33073/pjm-2022-035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Lactic acid bacteria are used in various types of probiotic products. Due to the constantly growing probiotics market, new strains with pro-health properties are sought. The present study compared 39 strains of Lactobacillus, Lacticaseibacillus, and Lactiplantibacillus, isolated from probiotic products and healthy people. The current research aimed to search for new, potentially probiotic strains. For this purpose the relationship between Lactobacillaceae strains was carried out; moreover, the basic properties of probiotic microorganisms, such as survival at low pH and bile salt environment, antibiotic susceptibility, aggregation and antagonism were estimated. The properties of these isolates were also compared with the properties of probiotic strains from the ATCC collection. In comparing the genetic relationship (PFGE method) between the tested isolates, it was observed that some of them show a high degree of similarity. All tested strains tolerated an environment with a pH value of 3.0, and the addition of 0.3% bile salt; showed auto-aggregation properties and displayed antagonism against pathogenic microorganisms. In the present study, the bacteria were susceptible to tetracycline, chloramphenicol and ampicillin; the resistance to vancomycin
depended on the bacteria type. All the properties were strain-depended. Most of the tested strains had properties comparable to the reference strains. Three L. acidophilus strains isolated from cervical swabs seem to be promising candidates for probiotic strains.
Collapse
Affiliation(s)
- Anna Zawistowska-Rojek
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland
- Department of Pharmaceutical Microbiology, Medical University of Warsaw , Warsaw , Poland
| | - Agnieszka Kociszewska
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland
| | - Tomasz Zaręba
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland
- Department of Pharmaceutical Microbiology, Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
102
|
Li L, Liu T, Gu Y, Wang X, Xie R, Sun Y, Wang B, Cao H. Regulation of gut microbiota-bile acids axis by probiotics in inflammatory bowel disease. Front Immunol 2022; 13:974305. [PMID: 36211363 PMCID: PMC9539765 DOI: 10.3389/fimmu.2022.974305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic and relapsing inflammation of gastrointestinal tract, with steadily increased incidence and prevalence worldwide. Although the precise pathogenesis remains unclear, gut microbiota, bile acids (BAs), and aberrant immune response play essential roles in the development of IBD. Lately, gut dysbiosis including certain decreased beneficial bacteria and increased pathogens and aberrant BAs metabolism have been reported in IBD. The bacteria inhabited in human gut have critical functions in BA biotransformation. Patients with active IBD have elevated primary and conjugated BAs and decreased secondary BAs, accompanied by the impaired transformation activities (mainly deconjugation and 7α-dehydroxylation) of gut microbiota. Probiotics have exhibited certain positive effects by different mechanisms in the therapy of IBD. This review discussed the effectiveness of probiotics in certain clinical and animal model studies that might involve in gut microbiota-BAs axis. More importantly, the possible mechanisms of probiotics on regulating gut microbiota-BAs axis in IBD were elucidated, which we focused on the elevated gut bacteria containing bile salt hydrolase or BA-inducible enzymes at genus/species level that might participate in the BA biotransformation. Furthermore, beneficial effects exerted by activation of BA-activated receptors on intestinal immunity were also summarized, which might partially explain the protect effects and mechanisms of probiotics on IBD. Therefore, this review will provide new insights into a better understanding of probiotics in the therapy targeting gut microbiota-BAs axis of IBD.
Collapse
|
103
|
Idrees M, Imran M, Atiq N, Zahra R, Abid R, Alreshidi M, Roberts T, Abdelgadir A, Tipu MK, Farid A, Olawale OA, Ghazanfar S. Probiotics, their action modality and the use of multi-omics in metamorphosis of commensal microbiota into target-based probiotics. Front Nutr 2022; 9:959941. [PMID: 36185680 PMCID: PMC9523698 DOI: 10.3389/fnut.2022.959941] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
This review article addresses the strategic formulation of human probiotics and allows the reader to walk along the journey that metamorphoses commensal microbiota into target-based probiotics. It recapitulates what are probiotics, their history, and the main mechanisms through which probiotics exert beneficial effects on the host. It articulates how a given probiotic preparation could not be all-encompassing and how each probiotic strain has its unique repertoire of functional genes. It answers what criteria should be met to formulate probiotics intended for human use, and why certain probiotics meet ill-fate in pre-clinical and clinical trials? It communicates the reasons that taint the reputation of probiotics and cause discord between the industry, medical and scientific communities. It revisits the notion of host-adapted strains carrying niche-specific genetic modifications. Lastly, this paper emphasizes the strategic development of target-based probiotics using host-adapted microbial isolates with known molecular effectors that would serve as better candidates for bioprophylactic and biotherapeutic interventions in disease-susceptible individuals.
Collapse
Affiliation(s)
- Maryam Idrees
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naima Atiq
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rabaab Zahra
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rameesha Abid
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
- Department of Biotechnology, University of Sialkot, Sialkot, Pakistan
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | - Tim Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia
| | - Abdelmuhsin Abdelgadir
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | | | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Shakira Ghazanfar
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| |
Collapse
|
104
|
Dahiya D, Nigam PS. Nutrition and Health through the Use of Probiotic Strains in Fermentation to Produce Non-Dairy Functional Beverage Products Supporting Gut Microbiota. Foods 2022; 11:2760. [PMID: 36140888 PMCID: PMC9497984 DOI: 10.3390/foods11182760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Pure viable strains of microorganisms identified and characterised as probiotic cultures are used in the fermentation process to prepare functional beverages. The fermented probiotic products can be consumed as a source of nutrition and also for the maintenance of healthy gut microbiota. The functional beverages contain the substrates used for the preparation of product with a specific culture or a mixture of known strains used to perform the fermentation, hence these drinks can be considered as a healthy formulation of synbiotic products. If a beverage is prepared using agriculturally sourced materials, the fermented substrates with their oligosaccharides and fiber content act as prebiotics. Both the components (probiotic strain/s and prebiotic substrate) exist in a synergistic relationship in the product and contribute to several benefits for nutrition and gut health. The preparation of such probiotic beverages has been studied using non-dairy-based materials, including fruits, vegetables, nuts, grains, and cassava, a staple diet source in many regions. The consumption of beverages prepared with the use of probiotics, which contain active microbial cells and their metabolites, contributes to the functional properties of beverages. In addition, the non-dairy probiotic products can be used by consumers of all groups and food cultures, including vegans and vegetarians, and particularly consumers with allergies to dairy-based products. The aim of this article is to present a review of published research highlighting specific probiotic strains, which have the potential to enhance sustainability of healthy GIT microbiota, used in the fermentation process for the preparation of non-dairy beverages.
Collapse
Affiliation(s)
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
105
|
Probiotics in the Management of Mental and Gastrointestinal Post-COVID Symptomes. J Clin Med 2022; 11:jcm11175155. [PMID: 36079082 PMCID: PMC9457065 DOI: 10.3390/jcm11175155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023] Open
Abstract
Patients with “post-COVID” syndrome manifest with a variety of signs and symptoms that continue/develop after acute COVID-19. Among the most common are gastrointestinal (GI) and mental symptoms. The reason for symptom occurrence lies in the SARS-CoV-2 capability of binding to exact receptors, among other angiotensin converting enzyme 2 (ACE2) receptors in gastrointestinal lining and neuropilin-1 (NRP-1) in the nervous system, which leads to loss of gastrointestinal and blood-brain barriers integrity and function. The data are mounting that SARS-CoV-2 can trigger systemic inflammation and lead to disruption of gut-brain axis (GBA) and the development of disorders of gut brain interaction (DGBIs). Functional dyspepsia (FD) and irritable bowel syndrome (IBS) are the most common DGBIs syndromes. On the other hand, emotional disorders have also been demonstrated as DGBIs. Currently, there are no official recommendations or recommended procedures for the use of probiotics in patients with COVID-19. However, it can be assumed that many doctors, pharmacists, and patients will want to use a probiotic in the treatment of this disease. In such cases, strains with documented activity should be used. There is a constant need to plan and conduct new trials on the role of probiotics and verify their clinical efficacy for counteracting the negative consequences of COVID-19 pandemic. Quality control is another important but often neglected aspect in trials utilizing probiotics in various clinical entities. It determines the safety and efficacy of probiotics, which is of utmost importance in patients with post-acute COVID-19 syndrome.
Collapse
|
106
|
Dahiya D, Nigam PS. Clinical Potential of Microbial Strains, Used in Fermentation for Probiotic Food, Beverages and in Synbiotic Supplements, as Psychobiotics for Cognitive Treatment through Gut-Brain Signaling. Microorganisms 2022; 10:1687. [PMID: 36144289 PMCID: PMC9505539 DOI: 10.3390/microorganisms10091687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022] Open
Abstract
Pure and viable strains of microorganisms identified and characterized as probiotic strains are used in the fermentation process to prepare probiotic food and beverages. These products are sources of nutrition and help in the maintenance of gut microflora. The intake of food products prepared with the use of probiotic microorganisms and containing their metabolites and whole microbial cells can be considered as a natural formulation of synbiotic products with prebiotic substrates and culture. Other than through the intake of fermented food and beverages, probiotic microorganisms can be taken through a supplement, which is a complementary form prepared by combining separate sources of prebiotic substrates and specific probiotic cultures. Whether a fermented solid food or beverage, both the components in the product are in a synergistic relationship and contribute to several health benefits at a lower cost. The aim of this article is to review the relevant literature and present the outcomes of recent studies which have been conducted to explore the clinical potential of probiotic strains and their effect on psychological conditions. Studies have shown the relationship between gut microbiota and the brain, and their interaction through signaling. The studies have concluded that the gut-brain axis can be manipulated with the intake of probiotic foods or synbiotic supplements containing specific probiotic strains accompanied with their complementary prebiotics for the enhanced sustainability of healthy GIT microflora.
Collapse
Affiliation(s)
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
107
|
Ramos LP, Almeida MEDE, Freire HPS, Pessoa WFB, Rezende RP, Romano CC. Antagonistic activity of Lactiplantibacillus plantarum 6.2 extracted from cocoa fermentation and its supernatant on Gardnerella vaginalis. AN ACAD BRAS CIENC 2022; 94:e20210731. [PMID: 35976365 DOI: 10.1590/0001-3765202220210731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/06/2021] [Indexed: 09/02/2023] Open
Abstract
Search for alternative methods for the treatment of bacterial vaginosis has been growing, and probiotics being among them. The most well-known probiotic microorganisms are lactobacilli, which are naturally present in the vaginal microenvironment. Cocoa fermentation is a source of lactic acid bacteria, with lactobacilli being the most prominent. The aim of this study was to evaluate the antagonistic activity of Lactiplantibacillus plantarum 6.2 a strain of lactobacilli isolated from cocoa fermentation, and its cell-free supernatant on Gardnerella vaginalis. It was shown that Lpb. plantarum 6.2 and its supernatant, used at three concentrations, i.e., 40, 20 and 10 mg/mL, have a strong antagonistic activity against G. vaginalis, with a probable action of proteinaceous bacteriocins; the activity was lost after heat treatment. The ability to exclude and displace G. vaginalis from the adhesion site to vaginal HMVII epithelial cells was also demonstrated by the lactobacilli and the supernatant, with the latter showing a bactericidal effect. Thus, the Lpb. plantarum 6.2 strain presents itself as a good probiotic with potential to be used not only as a therapeutic alternative for vaginosis but also as a complement to existing therapies.
Collapse
Affiliation(s)
- Louise P Ramos
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Laboratório de Imunologia, Campus Soane Nazaré de Andrade, Salobrinho, Rodovia Jorge Amado, Km 16, 45662-900 Ilhéus, BA, Brazil
| | - Milena E DE Almeida
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Laboratório de Imunologia, Campus Soane Nazaré de Andrade, Salobrinho, Rodovia Jorge Amado, Km 16, 45662-900 Ilhéus, BA, Brazil
| | - Herbert P S Freire
- Faculdade de Tecnologia e Ciências, UniFTC Itabuna, Praça José Bastos, 55, Osvaldo Cruz, 45600-080 Itabuna, BA, Brazil
| | - Wallace F B Pessoa
- Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde, Departamento de Fisiologia e Patologia, Campus I, Via Pau Brasil, s/n, Castelo Branco III, 58051-900 João Pessoa, PB, Brazil
| | - Rachel P Rezende
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Laboratório de Biotecnologia Microbiana, Campus Soane Nazaré de Andrade, Salobrinho, Rodovia Jorge Amado, Km 16, 45662-900 Ilhéus, BA, Brazil
| | - Carla C Romano
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Laboratório de Imunologia, Campus Soane Nazaré de Andrade, Salobrinho, Rodovia Jorge Amado, Km 16, 45662-900 Ilhéus, BA, Brazil
| |
Collapse
|
108
|
Ke A, Parreira VR, Farber JM, Goodridge L. Selection of a Potential Synbiotic against Cronobacter sakazakii. J Food Prot 2022; 85:1240-1248. [PMID: 35435968 DOI: 10.4315/jfp-22-048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/10/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Cronobacter sakazakii is an opportunistic foodborne pathogen that can be fatal to infants; it is commonly associated with powdered infant formula due to contamination during manufacturing processes or during preparation in hospitals or homes. This project aimed to select a potential synbiotic, a combination of probiotic strains with a prebiotic product, to inhibit the growth of C. sakazakii in an in vitro dynamic infant gut model (Simulator of the Human Intestinal Microbial Ecosystem). A total of 16 lactic acid bacteria (LAB) were tested for their inhibitory properties against four different C. sakazakii strains by a zone of inhibition test. Lactobacillus and Pediococcus species were able to inhibit the growth (>15-mm inhibition zones) of all C. sakazakii strains tested, and only one strain from the two genera exhibited atypical resistance to tetracycline. All C. sakazakii strains and the selected LAB strains, which inhibited C. sakazakii and did not exhibit atypical antibiotic resistance, were grown in Luria-Bertani or de Man Rogosa Sharpe broth, respectively, containing 1% dextrose or 1% commercial prebiotic (w/v) to compare their ability to metabolize the prebiotic product. Overall, based on the growth inhibition of C. sakazakii, antibiotic susceptibility, and prebiotic metabolism, 6 of the 16 LAB were chosen to be part of a potential synbiotic. This study has provided valuable information that will help with the development of a synbiotic that can be used in powdered infant formula to reduce the potential for C. sakazakii-related illnesses in infants. HIGHLIGHTS
Collapse
Affiliation(s)
- Alfred Ke
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Valeria R Parreira
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Jeffrey M Farber
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
109
|
Gomez Quintero DF, Kok CR, Hutkins R. The Future of Synbiotics: Rational Formulation and Design. Front Microbiol 2022; 13:919725. [PMID: 35935226 PMCID: PMC9354465 DOI: 10.3389/fmicb.2022.919725] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Synbiotics, mixtures of live microbes and substrates selectively utilized by host organisms, are of considerable interest due to their ability to improve gastrointestinal health. However, formulating synbiotics remains challenging, due in part, to the absence of rational strategies to assess these products for synbiotic activities prior to clinical trials. Currently, synbiotics are formulated as either complementary or synergistic. Complementary synbiotics are made by combining probiotics and prebiotics, with each component acting independently and with the combination shown to provide a clinical health benefit. Most commercial synbiotics as well as those used in clinical trials have been of the complementary type. In contrast, synergistic synbiotics require that the added microbe is specifically stimulated or it’s persistence or activity are enhanced by the cognate substrate. Although several innovative examples have been described in the past few years based on this principle, in practice, relatively few synbiotic studies have tested for synergism. In this review, selected recent examples of complementary and synergistic synbiotics and the rationale for their formulation will be described. In addition, pre-clinical experimental approaches for identifying combinations that provide a basis for satisfying the requirements for synergism will be discussed.
Collapse
Affiliation(s)
- David F. Gomez Quintero
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Car Reen Kok
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
- Complex Biosystems, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
- *Correspondence: Robert Hutkins,
| |
Collapse
|
110
|
Gou HZ, Zhang YL, Ren LF, Li ZJ, Zhang L. How do intestinal probiotics restore the intestinal barrier? Front Microbiol 2022; 13:929346. [PMID: 35910620 PMCID: PMC9330398 DOI: 10.3389/fmicb.2022.929346] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022] Open
Abstract
The intestinal barrier is a structure that prevents harmful substances, such as bacteria and endotoxins, from penetrating the intestinal wall and entering human tissues, organs, and microcirculation. It can separate colonizing microbes from systemic tissues and prevent the invasion of pathogenic bacteria. Pathological conditions such as shock, trauma, stress, and inflammation damage the intestinal barrier to varying degrees, aggravating the primary disease. Intestinal probiotics are a type of active microorganisms beneficial to the health of the host and an essential element of human health. Reportedly, intestinal probiotics can affect the renewal of intestinal epithelial cells, and also make cell connections closer, increase the production of tight junction proteins and mucins, promote the development of the immune system, regulate the release of intestinal antimicrobial peptides, compete with pathogenic bacteria for nutrients and living space, and interact with the host and intestinal commensal flora to restore the intestinal barrier. In this review, we provide a comprehensive overview of how intestinal probiotics restore the intestinal barrier to provide new ideas for treating intestinal injury-related diseases.
Collapse
Affiliation(s)
- Hong-Zhong Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yu-Lin Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Long-Fei Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhen-Jiao Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Lei Zhang,
| |
Collapse
|
111
|
Kostenko VV, Mouzykantov AA, Baranova NB, Boulygina EA, Markelova MI, Khusnutdinova DR, Trushin MV, Chernova OA, Chernov VM. Development of Resistance to Clarithromycin and Amoxicillin-Clavulanic Acid in Lactiplantibacillus plantarum In Vitro Is Followed by Genomic Rearrangements and Evolution of Virulence. Microbiol Spectr 2022; 10:e0236021. [PMID: 35579444 PMCID: PMC9241834 DOI: 10.1128/spectrum.02360-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/22/2022] [Indexed: 11/20/2022] Open
Abstract
Ensuring the safety of the use of probiotics is a top priority. Obviously, in addition to studying the beneficial properties of lactic acid bacteria, considerable attention should be directed to assessing the virulence of microorganisms as well as investigating the possibility of its evolution under conditions of selective pressure. To assess the virulence of probiotics, it is now recommended to analyze the genomes of bacteria in relation to the profiles of the virulome, resistome, and mobilome as well as the analysis of phenotypic resistance and virulence in vitro. However, the corresponding procedure has not yet been standardized, and virulence analysis of strains in vivo using model organisms has not been performed. Our study is devoted to testing the assumption that the development of antibiotic resistance in probiotic bacteria under conditions of selective pressure of antimicrobial drugs may be accompanied by the evolution of virulence. In this regard, special attention is required for the widespread in nature commensals and probiotic bacteria actively used in pharmacology and the food industry. As a result of step-by-step selection from the Lactiplantibacillus plantarum 8p-a3 strain isolated from the "Lactobacterin" probiotic (Biomed, Russia), the L. plantarum 8p-a3-Clr-Amx strain was obtained, showing increased resistance simultaneously to amoxicillin-clavulanic acid and clarithromycin (antibiotics, the combined use of which is widely used for Helicobacter pylori eradication) compared to the parent strain (MIC8p-a3-Clr-Amx of 20 μg/mL and 10 μg/mL, and MIC8p-a3 of 0.5 μg/mL and 0.05 μg/mL, respectively). The results of a comparative analysis of antibiotic-resistant and parental strains indicate that the development of resistance to the corresponding antimicrobial drugs in L. plantarum in vitro is accompanied by the following: (i) significant changes in the genomic profile (point mutations as well as deletions, insertions, duplications, and displacement of DNA sequences) associated in part with the resistome and mobilome; (ii) changes in phenotypic sensitivity to a number of antimicrobial drugs; and (iii) an increase in the level of virulence against Drosophila melanogaster, a model organism for which L. plantarum is considered to be a symbiont. The data obtained by us indicate that the mechanisms of adaptation to antimicrobial drugs in L. plantarum are not limited to those described earlier and determine the need for comprehensive studies of antibiotic resistance scenarios as well as the trajectories of virulence evolution in probiotic bacteria in vivo and in vitro to develop a standardized system for detecting virulent strains of the corresponding microorganisms. IMPORTANCE Ensuring the safety of the use of probiotics is a top priority. We found that increased resistance to popular antimicrobial drugs in Lactiplantibacillus plantarum is accompanied by significant changes in the genomic profile and phenotypic sensitivity to a number of antimicrobial drugs as well as in the level of virulence of this bacterium against Drosophila. The data obtained in our work indicate that the mechanisms of antibiotic resistance in this bacterium are not limited to those described earlier and determine the need for comprehensive studies of the potential for the evolution of virulence in lactic acid bacteria in vivo and in vitro and to develop a reliable control system to detect virulent strains among probiotics.
Collapse
Affiliation(s)
- V. V. Kostenko
- Laboratory of Molecular Bases of Pathogenesis, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - A. A. Mouzykantov
- Laboratory of Molecular Bases of Pathogenesis, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | - N. B. Baranova
- Laboratory of Molecular Bases of Pathogenesis, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | - E. A. Boulygina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - M. I. Markelova
- Laboratory of Molecular Bases of Pathogenesis, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | - D. R. Khusnutdinova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - M. V. Trushin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - O. A. Chernova
- Laboratory of Molecular Bases of Pathogenesis, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | - V. M. Chernov
- Laboratory of Molecular Bases of Pathogenesis, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| |
Collapse
|
112
|
Satwong N, Promsai S. Feasibility Study on Co‐culture
Bacillus coagulans
and
Lacticaseibacillus rhamnosus
Formulated in Probiotic‐supplemented Pigmented Rice Products. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natchaya Satwong
- Division of Microbiology, Department of Science, Faculty of Liberal Arts and Science Kasetsart University Kamphaeng Saen Campus Nakhon Pathom Thailand
| | - Saran Promsai
- Division of Microbiology, Department of Science, Faculty of Liberal Arts and Science Kasetsart University Kamphaeng Saen Campus Nakhon Pathom Thailand
| |
Collapse
|
113
|
Dewanjee S, Dua TK, Paul P, Dey A, Vallamkondu J, Samanta S, Kandimalla R, De Feo V. Probiotics: Evolving as a Potential Therapeutic Option against Acetaminophen-Induced Hepatotoxicity. Biomedicines 2022; 10:1498. [PMID: 35884803 PMCID: PMC9312935 DOI: 10.3390/biomedicines10071498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Acetaminophen (APAP) is the most common prescription medicine around the world for the treatment of pain and fever and is considered to be a safe drug at its therapeutic dose. However, a single overdose or frequent use of APAP can cause severe acute liver injury. APAP hepatotoxicity is a prevalent cause of acute liver disease around the world and the lack of suitable treatment makes it a serious problem. In recent years, there has been a surge in interest in using probiotics and probiotic-derived products, known as postbiotics, as health and disease negotiators. A growing body of evidence revealed that they can be equally effective against APAP hepatotoxicity. Different probiotic bacteria were found to be pre-clinically effective against APAP hepatotoxicity. Different postbiotics have also shown exciting results in preclinical models of APAP hepatotoxicity. This review summarized the protective roles and mechanisms of the different probiotic bacteria and postbiotics against APAP hepatotoxicity, with critical discussion. A brief discussion on potential novel probiotics and postbiotics for oxidative liver injury was also included. This review was written in an attempt to pique the interest of researchers in developing a safe therapeutic option against oxidative liver damage using probiotics and/or postbiotics as dietary supplements.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun K. Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur 734013, India; (T.K.D.); (P.P.)
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur 734013, India; (T.K.D.); (P.P.)
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | | | - Sonalinandini Samanta
- Department of Dermatology (Skin & Venereology), Employee’s State Insurance Corporation Medical College & Hospital, Patna 801103, India;
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India;
- Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology, Tarnaka 500007, India
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
114
|
Kumar D, Lal MK, Dutt S, Raigond P, Changan SS, Tiwari RK, Chourasia KN, Mangal V, Singh B. Functional Fermented Probiotics, Prebiotics, and Synbiotics from Non-Dairy Products: A Perspective from Nutraceutical. Mol Nutr Food Res 2022; 66:e2101059. [PMID: 35616160 DOI: 10.1002/mnfr.202101059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/11/2022] [Indexed: 12/24/2022]
Abstract
The current trend of health-conscious consumers and healthy food habits prompts researchers to explore developing food products with synbiotic benefits. Synbiotic foods have gained popularity in recent years due to their functional, nutritional, physiological, and therapeutic characteristics. Lactose intolerance, dyslipidemia, and allergic milk proteins become the barriers in the development of dairy probiotics. The present scenario of an increase in the demand for vegetarian products leads to a rise in the consumption of non-dairy probiotics. Prebiotics like, resistant starch, inulin, and polyphenols are selectively used by gut microbiota to enhance the selection and colonization of probiotics bacteria. Probiotic's action mechanisms include the production of bacteriocins, peptides, short-chain fatty acids, amino acids, vitamins, and other metabolites. Therefore, this review article explores the alternative sources of probiotics so it will help to an understanding of non-dairy based functional fermented foods for both pro and prebiotics. Dietary fibers in vegetables, fruits, and cereals are one of prospective prebiotics and highlighted the various methods for making non-dairy synbiotics based on dietary fibers, such as microencapsulation, freeze-drying, and spray drying is also addressed.
Collapse
Affiliation(s)
- Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Som Dutt
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Pinky Raigond
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | | | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Kumar Nishant Chourasia
- ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata, West Bengal, 700120, India
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
115
|
Trifkovič KČ, Mičetić-Turk D, Kmetec S, Strauss M, Dahlen HG, Foster JP, Fijan S. Efficacy of Direct or Indirect Use of Probiotics for the Improvement of Maternal Depression during Pregnancy and in the Postnatal Period: A Systematic Review and Meta-Analysis. Healthcare (Basel) 2022; 10:970. [PMID: 35742022 PMCID: PMC9223194 DOI: 10.3390/healthcare10060970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
The mother and infant form a unique bond, with maternal mental health affecting the interactions with the infant and infant behaviours impacting maternal mental health. One of the possible mechanisms influencing maternal mental health is the manipulation of the gut-brain axis by consuming probiotic supplements. Probiotics can also have an indirect influence on maternal mental health via the modulation of the infant microbiome and consequently improving the infant's health and thus, indirectly leading to an improvement in maternal mood. This systematic review evaluated the efficacy of probiotics on maternal mental health by searching for randomised controlled trials via international databases: Cochrane Library, PubMed, Scopus, ScienceDirect, and Web of Science until January 2022. A meta-analysis was performed using the Cochrane Collaboration methodology where possible. We found seven clinical trials that included the word probiotics and addressed maternal depression and/or anxiety. Of these, five trials investigated the influence of maternal probiotic supplementation on the gut-brain axis. Two trials investigated the indirect influence of probiotics on maternal depression via supplementation of probiotics by infants and subsequent influence on the crying of colicky infants. Meta-analysis of two studies of pregnant and postnatal women and two studies of infants consuming probiotics on the outcome of the Edinburgh Postnatal Depression Scale for mothers showed no statistical difference. The findings indicate that maternal depression is very complex and is influenced by various bidirectional factors. One of the factors that can improve maternal mental health is probiotics, however, careful consideration must be given to correct strain selection as strain-specific effectiveness was observed. Further well-designed, robust clinical studies are warranted.
Collapse
Affiliation(s)
- Klavdija Čuček Trifkovič
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia; (K.Č.T.); (S.K.); (M.S.)
| | - Dušanka Mičetić-Turk
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia;
| | - Sergej Kmetec
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia; (K.Č.T.); (S.K.); (M.S.)
| | - Maja Strauss
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia; (K.Č.T.); (S.K.); (M.S.)
| | - Hannah G. Dahlen
- School of Nursing and Midwifery, University of Western Sydney, Parramatta, NSW 2751, Australia; (H.G.D.); (J.P.F.)
| | - Jann P. Foster
- School of Nursing and Midwifery, University of Western Sydney, Parramatta, NSW 2751, Australia; (H.G.D.); (J.P.F.)
- Ingham Research Institute, Liverpool, NSW 2170, Australia
- NSW Centre for Evidence Based Health Care: A JBI Affiliated Group, Parramatta, NSW 2751, Australia
| | - Sabina Fijan
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia; (K.Č.T.); (S.K.); (M.S.)
| |
Collapse
|
116
|
Tiwari SK. Bacteriocin-Producing Probiotic Lactic Acid Bacteria in Controlling Dysbiosis of the Gut Microbiota. Front Cell Infect Microbiol 2022; 12:851140. [PMID: 35651753 PMCID: PMC9149203 DOI: 10.3389/fcimb.2022.851140] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
Several strains of lactic acid bacteria are potent probiotics and can cure a variety of diseases using different modes of actions. These bacteria produce antimicrobial peptides, bacteriocins, which inhibit or kill generally closely related bacterial strains and other pathogenic bacteria such as Listeria, Clostridium, and Salmonella. Bacteriocins are cationic peptides that kill the target cells by pore formation and the dissipation of cytosolic contents, leading to cell death. Bacteriocins are also known to modulate native microbiota and host immunity, affecting several health-promoting functions of the host. In this review, we have discussed the ability of bacteriocin-producing probiotic lactic acid bacteria in the modulation of gut microbiota correcting dysbiosis and treatment/maintenance of a few important human disorders such as chronic infections, inflammatory bowel diseases, obesity, and cancer.
Collapse
|
117
|
Dikeocha IJ, Al-Kabsi AM, Chiu HT, Alshawsh MA. Faecalibacterium prausnitzii Ameliorates Colorectal Tumorigenesis and Suppresses Proliferation of HCT116 Colorectal Cancer Cells. Biomedicines 2022; 10:biomedicines10051128. [PMID: 35625865 PMCID: PMC9138996 DOI: 10.3390/biomedicines10051128] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Faecalibacterium prausnitzii is one of the most abundant commensals of gut microbiota that is not commonly administered as a probiotic supplement. Being one of the gut’s major butyrate-producing bacteria, its clinical significance and uses are on the rise and it has been shown to have anti-inflammatory and gut microbiota-modulating properties in the treatment of inflammatory bowel illness, Crohn’s disease, and colorectal cancer. Colorectal cancer (CRC) is a silent killer disease that has become one of the leading causes of cancer-related death worldwide. This study aimed to evaluate the anti-tumorigenic and antiproliferative role of F. prausnitzii as well as to study its effects on the diversity of gut microbiota in rats. Findings showed that F. prausnitzii probiotic significantly reduced the colonic aberrant crypt foci frequency and formation in Azoxymethane (AOM)-induced CRC in rats. In addition, the administration of F. prausnitzii lowered the lipid peroxidation levels in the colon tissues. For in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, the cell-free supernatant of F. prausnitzii suppressed the growth of HCT116 colorectal cancer cells in a time/dose-dependent manner. 16S rRNA gene sequencing using rat stool samples showed that the administration of F. prausnitzii modulated the gut microbiota of the rats and enhanced its diversity. Hence, these findings suggest that F. prausnitzii as a probiotic supplement can be used in CRC prevention and management; however, more studies are warranted to understand its cellular and molecular mechanisms of action.
Collapse
Affiliation(s)
- Ifeoma Julieth Dikeocha
- Faculty of Medicine, University of Cyberjaya, Persiaran Bestari, Cyberjaya 63000, Malaysia; (I.J.D.); (A.M.A.-K.)
| | | | - Hsien-Tai Chiu
- Department of Chemistry, National Cheng Kung University, Tainan City 70101, Taiwan;
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| |
Collapse
|
118
|
Zawistowska-Rojek A, Zaręba T, Tyski S. Microbiological Testing of Probiotic Preparations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095701. [PMID: 35565098 PMCID: PMC9099753 DOI: 10.3390/ijerph19095701] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023]
Abstract
Probiotic microorganisms that are potentially beneficial to the health of the host are commercially available in a great variety of products. Not all microorganism strains present in products have proven beneficial to the health properties. These products include not only foodstuffs but also dietary supplements, food for special medical purposes, medicinal products, as well as cosmetics and medical devices. These products contain from one to a dozen bacterial strains of the same or different species and sometimes also fungal strains. Since the pro-health effects of probiotics depend on a specific strain, the number of its cells in a dose, and the lack of pathogenic microorganisms, it is extremely important to control the quality of probiotics. Depending on the classification of a given product, its form, and its content of microorganisms, the correct determination of the number of microorganisms and their identification is crucial. This article describes the culture-dependent and culture-independent methods for testing the contents of probiotic microorganisms, in addition to biochemical and genetic methods of identification. The microbiological purity requirements for various product categories are also presented. Due to numerous reports on the low quality of probiotic products available on the market, it is important to standardise research methods for this group of products and to increase the frequency of inspections of these products.
Collapse
Affiliation(s)
- Anna Zawistowska-Rojek
- Department of Antibiotics and Microbiology, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (T.Z.); (S.T.)
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
- Correspondence:
| | - Tomasz Zaręba
- Department of Antibiotics and Microbiology, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (T.Z.); (S.T.)
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (T.Z.); (S.T.)
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| |
Collapse
|
119
|
Wiegers C, van de Burgwal LHM, Larsen OFA. Probiotics for the Management of Infectious Diseases: Reviewing the State of the Art. Front Microbiol 2022; 13:877142. [PMID: 35572661 PMCID: PMC9096241 DOI: 10.3389/fmicb.2022.877142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
This review aims to provide insight into the potential of probiotics as a clinical modality targeted at infectious diseases by creating a comprehensive overview of the state of the art of research and development efforts as shown by patents and clinical trials of the past 20 years. Data were retrieved from patent and clinical trial databases to reflect the long- and short-term developments of probiotics research. The data were analyzed to extract information on the total number of patents and trials for each indication, application date and location, and applicant/sponsor type. A total of 80 infectious diseases were investigated, precipitating in 789 patents and 602 clinical trials for 67 indications studied as targets of probiotics. An increasing trend was seen for the number of patents and clinical trials that were applied for since 1999 with the highest number of patents and clinical trials targeted to digestive tract, respiratory, and urogenital indications. Overall, research demonstrated a substantial interest in probiotics targeting infectious diseases, which was in line with reported unmet needs and global probiotics sales estimates. However, the declining rate of translation from patents to clinical trials indicates that there are some barriers obstructing the research process.
Collapse
Affiliation(s)
- Cato Wiegers
- Athena Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | |
Collapse
|
120
|
Ma J, Lyu Y, Liu X, Jia X, Cui F, Wu X, Deng S, Yue C. Engineered probiotics. Microb Cell Fact 2022; 21:72. [PMID: 35477497 PMCID: PMC9044805 DOI: 10.1186/s12934-022-01799-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/15/2022] [Indexed: 12/26/2022] Open
Abstract
Engineered probiotics are a kind of new microorganisms produced by modifying original probiotics through gene editing. With the continuous development of tools and technology progresses, engineering renovation of probiotics are becoming more diverse and more feasible. In the past few years there have been some advances in the development of engineered probiotics that will benefit humankind. This review briefly introduces the theoretical basis of gene editing technology and focuses on some recent engineered probiotics researches, including inflammatory bowel disease, bacterial infection, tumor and metabolic diseases. It is hoped that it can provide help for the further development of genetically modified microorganisms, stimulate the potential of engineered probiotics to treat intractable diseases, and provide new ideas for the diagnosis of some diseases or some industrial production.
Collapse
Affiliation(s)
- Junheng Ma
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan'an University, Yan'an, 716000, Shaanxi, China.,Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Yuhong Lyu
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Xin Liu
- School of Public Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Xu Jia
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500, Sichuan, China.,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Fangyun Cui
- Ecological Environmental Monitoring Center, Luoyang, 471000, Henan, China
| | - Xiaoheng Wu
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan'an University, Yan'an, 716000, Shaanxi, China.,Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Shanshan Deng
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan'an University, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
121
|
Dempsey E, Corr SC. Lactobacillus spp. for Gastrointestinal Health: Current and Future Perspectives. Front Immunol 2022; 13:840245. [PMID: 35464397 PMCID: PMC9019120 DOI: 10.3389/fimmu.2022.840245] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
In recent decades, probiotic bacteria have become increasingly popular as a result of mounting scientific evidence to indicate their beneficial role in modulating human health. Although there is strong evidence associating various Lactobacillus probiotics to various health benefits, further research is needed, in particular to determine the various mechanisms by which probiotics may exert these effects and indeed to gauge inter-individual value one can expect from consuming these products. One must take into consideration the differences in individual and combination strains, and conditions which create difficulty in making direct comparisons. The aim of this paper is to review the current understanding of the means by which Lactobacillus species stand to benefit our gastrointestinal health.
Collapse
Affiliation(s)
- Elaine Dempsey
- Trinity Biomedical Science Institute, School of Biochemistry and Immunology, Trinity College, Dublin, Ireland.,Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | - Sinéad C Corr
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
122
|
How to Improve Health with Biological Agents-Narrative Review. Nutrients 2022; 14:nu14091700. [PMID: 35565671 PMCID: PMC9103441 DOI: 10.3390/nu14091700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
The proper functioning of the human organism is dependent on a number of factors. The health condition of the organism can be often enhanced through appropriate supplementation, as well as the application of certain biological agents. Probiotics, i.e., live microorganisms that exert a beneficial effect on the health of the host when administered in adequate amounts, are often used in commonly available dietary supplements or functional foods, such as yoghurts. Specific strains of microorganisms, administered in appropriate amounts, may find application in the treatment of conditions such as various types of diarrhoea (viral, antibiotic-related, caused by Clostridioides difficile), irritable bowel syndrome, ulcerative colitis, Crohn’s disease, or allergic disorders. In contrast, live microorganisms capable of exerting influence on the nervous system and mental health through interactions with the gut microbiome are referred to as psychobiotics. Live microbes are often used in combination with prebiotics to form synbiotics, which stimulate growth and/or activate the metabolism of the healthy gut microbiome. Prebiotics may serve as a substrate for the growth of probiotic strains or fermentation processes. Compared to prebiotic substances, probiotic microorganisms are more tolerant of environmental conditions, such as oxygenation, pH, or temperature in a given organism. It is also worth emphasizing that the health of the host may be influenced not only by live microorganisms, but also by their metabolites or cell components, which are referred to as postbiotics and paraprobiotics. This work presents the mechanisms of action employed by probiotics, prebiotics, synbiotics, postbiotics, paraprobiotics, and psychobiotics, together with the results of studies confirming their effectiveness and impact on consumer health.
Collapse
|
123
|
Mitrea L, Nemeş SA, Szabo K, Teleky BE, Vodnar DC. Guts Imbalance Imbalances the Brain: A Review of Gut Microbiota Association With Neurological and Psychiatric Disorders. Front Med (Lausanne) 2022; 9:813204. [PMID: 35433746 PMCID: PMC9009523 DOI: 10.3389/fmed.2022.813204] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 10 years, there has been a growing interest in the relationship between gut microbiota, the brain, and neurologic-associated affections. As multiple preclinical and clinical research studies highlight gut microbiota’s potential to modulate the general state of health state, it goes without saying that gut microbiota plays a significant role in neurogenesis, mental and cognitive development, emotions, and behaviors, and in the progression of neuropsychiatric illnesses. Gut microbiota produces important biologic products that, through the gut-brain axis, are directly connected with the appearance and evolution of neurological and psychiatric disorders such as depression, anxiety, bipolar disorder, autism, schizophrenia, Parkinson’s disease, Alzheimer’s disease, dementia, multiple sclerosis, and epilepsy. This study reviews recent research on the link between gut microbiota and the brain, and microbiome’s role in shaping the development of the most common neurological and psychiatric illnesses. Moreover, special attention is paid to the use of probiotic formulations as a potential non-invasive therapeutic opportunity for prevention and management of neuropsychiatric-associated affections.
Collapse
Affiliation(s)
- Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
124
|
Vinderola G, Sanders ME, Salminen S. The Concept of Postbiotics. Foods 2022; 11:foods11081077. [PMID: 35454664 PMCID: PMC9027423 DOI: 10.3390/foods11081077] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
The scientific community has proposed terms such as non-viable probiotics, paraprobiotics, ghostbiotics, heat-inactivated probiotics or, most commonly, postbiotics, to refer to inanimate microorganisms and/or their components that confer health benefits. This article addresses the various characteristics of different definitions of ‘postbiotics’ that have emerged over past years. In 2021, the International Scientific Association for Probiotics and Prebiotics (ISAPP) defined a postbiotic as “a preparation of inanimate microorganisms and/or their components that confers a health benefit on the host”. This definition of postbiotic requires that the whole or components of inactivated microbes be present, with or without metabolic end products. The definition proposed by ISAPP is comprehensive enough to allow the development of postbiotics from different microorganisms, to be applied in different body sites, encouraging innovation in a promising area for any regulatory category and for companion or production animals, and plant or human health. From a technological perspective, probiotic products may contain inanimate microorganisms, which have the potential to impart a health benefit. However, their contribution to health in most cases has not been established, even if at least one probiotic has been shown to confer the same health benefit by live or inanimate cells.
Collapse
Affiliation(s)
- Gabriel Vinderola
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
- Correspondence: ; Tel.: +54-9-3426-31-1943
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO 80122, USA;
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20014 Turku, Finland;
| |
Collapse
|
125
|
Domínguez Rubio AP, D’Antoni CL, Piuri M, Pérez OE. Probiotics, Their Extracellular Vesicles and Infectious Diseases. Front Microbiol 2022; 13:864720. [PMID: 35432276 PMCID: PMC9006447 DOI: 10.3389/fmicb.2022.864720] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics have been shown to be effective against infectious diseases in clinical trials, with either intestinal or extraintestinal health benefits. Even though probiotic effects are strain-specific, some "widespread effects" include: pathogen inhibition, enhancement of barrier integrity and regulation of immune responses. The mechanisms involved in the health benefits of probiotics are not completely understood, but these effects can be mediated, at least in part, by probiotic-derived extracellular vesicles (EVs). However, to date, there are no clinical trials examining probiotic-derived EVs health benefits against infectious diseases. There is still a long way to go to bridge the gap between basic research and clinical practice. This review attempts to summarize the current knowledge about EVs released by probiotic bacteria to understand their possible role in the prevention and/or treatment of infectious diseases. A better understanding of the mechanisms whereby EVs package their cargo and the process involved in communication with host cells (inter-kingdom communication), would allow further advances in this field. In addition, we comment on the potential use and missing knowledge of EVs as therapeutic agents (postbiotics) against infectious diseases. Future research on probiotic-derived EVs is needed to open new avenues for the encapsulation of bioactives inside EVs from GRAS (Generally Regarded as Safe) bacteria. This could be a scientific novelty with applications in functional foods and pharmaceutical industries.
Collapse
Affiliation(s)
- A. Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cecilia L. D’Antoni
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Oscar E. Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
126
|
Puntillo M, Segli F, Champagne CP, Raymond Y, Vinderola G. Functional Microbes and Their Incorporation into Foods and Food Supplements: Probiotics and Postbiotics. Annu Rev Food Sci Technol 2022; 13:385-407. [PMID: 35333590 DOI: 10.1146/annurev-food-052720-011545] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Life expectancy has dramatically increased over the past 200 years, but modern life factors such as environmental exposure, antibiotic overuse, C-section deliveries, limited breast-feeding, and diets poor in fibers and microbes could be associated with the rise of noncommunicable diseases such as overweight, obesity, diabetes, food allergies, and colorectal cancer as well as other conditions such as mental disorders. Microbial interventions that range from transplanting a whole undefined microbial community from a healthy gut to an ill one, e.g., so-called fecal microbiota transplantation or vaginal seeding, to the administration of selected well-characterized microbes, either live (probiotics) or not (postbiotics), with efficacy demonstrated in clinical trials, may be effective tools to treat or prevent acute and chronic diseases that humans still face, enhancing the quality of life.
Collapse
Affiliation(s)
- Melisa Puntillo
- Instituto de Lactología Industrial (CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina;
| | - Franco Segli
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Claude P Champagne
- Research and Development Centre of Saint-Hyacinthe, Agriculture and Agri-Food Canada, Saint-Hyacinthe, Québec, Canada.,Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, Canada
| | - Yves Raymond
- Research and Development Centre of Saint-Hyacinthe, Agriculture and Agri-Food Canada, Saint-Hyacinthe, Québec, Canada.,Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, Canada
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina;
| |
Collapse
|
127
|
Byrd PM, Fallico V, Tang P, Wong C. Novel microaerobic agar plate method delivers highly selective and accurate enumeration of probiotic lactobacilli in freeze-dried blends containing bifidobacteria. METHODS IN MICROBIOLOGY 2022; 195:106451. [PMID: 35339581 DOI: 10.1016/j.mimet.2022.106451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
Abstract
The enumeration of viable bacteria is an essential metric in the dietary supplement and food industry to ensure quality of probiotic products. However, selective enumeration of lactobacilli in probiotic freeze-dried blends containing bifidobacteria is difficult to achieve with current Lactobacillus-specific agars (i.e., Rogosa and LAMVAB). Using a panel of Bifidobacterium and Lactobacillus commercial probiotic species, we found that Rogosa agar failed to inhibit all bifidobacteria while LAMVAB agar suppressed several lactobacilli. This prompted us to develop an alternative method of selection, hereby referred to as Lactobacillus Micro-Aerobic (LMA) method, which promotes growth under controlled microaerobic conditions (6-12% O2, 5-8% CO2) to leverage the different oxygen sensitivities of lactobacilli and bifidobacteria. Validation using pure cultures and multi-strain blends of 4 Bifidobacterium and 10 Lactobacillus species showed that LMA effectively suppressed all bifidobacteria and accurately enumerated all lactobacilli when compared to control methods. These results demonstrate the superior efficacy of modulating the redox environment to select for Lactobacillus within a Bifidobacterium-rich background, as opposed to applying acid and antibiotic pressures.
Collapse
Affiliation(s)
- Phillip M Byrd
- IFF Health & Biosciences, Danisco USA, Inc., 3329 Agriculture Dr., Madison, WI 53716-4133, USA
| | - Vincenzo Fallico
- IFF Health & Biosciences, Danisco USA, Inc., 3329 Agriculture Dr., Madison, WI 53716-4133, USA.
| | - Peipei Tang
- IFF Health & Biosciences, Danisco USA, Inc., 3329 Agriculture Dr., Madison, WI 53716-4133, USA
| | - Connie Wong
- IFF Health & Biosciences, Danisco USA, Inc., 3329 Agriculture Dr., Madison, WI 53716-4133, USA
| |
Collapse
|
128
|
He BL, Xiong Y, Hu TG, Zong MH, Wu H. Bifidobacterium spp. as functional foods: A review of current status, challenges, and strategies. Crit Rev Food Sci Nutr 2022; 63:8048-8065. [PMID: 35319324 DOI: 10.1080/10408398.2022.2054934] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Members of Bifidobacterium are among the first microbes to colonize the human intestine naturally, their abundance and diversity in the colon are closely related to host health. Recently, the gut microbiota has been gradually proven to be crucial mediators of various metabolic processes between the external environment and the host. Therefore, the health-promoting benefits of Bifidobacterium spp. and their applications in food have gradually been widely concerned. The main purpose of this review is to comprehensively introduce general features, colonization methods, and safety of Bifidobacterium spp. in the human gut, highlighting its health benefits and industrial applications. On this basis, the existing limitations and scope for future research are also discussed. Bifidobacteria have beneficial effects on the host's digestive system, immune system, and nervous system. However, the first prerequisite for functioning is to have enough live bacteria before consumption and successfully colonize the colon after ingestion. At present, strain breeding, optimization (e.g., selecting acid and bile resistant strains, adaptive evolution, high cell density culture), and external protection technology (e.g., microencapsulation and protectants) are the main strategies to address these challenges in food application.
Collapse
Affiliation(s)
- Bao-Lin He
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Yong Xiong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Guangzhou, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
129
|
Mohr AE, Pugh J, O'Sullivan O, Black K, Townsend JR, Pyne DB, Wardenaar FC, West NP, Whisner CM, McFarland LV. Best Practices for Probiotic Research in Athletic and Physically Active Populations: Guidance for Future Randomized Controlled Trials. Front Nutr 2022; 9:809983. [PMID: 35350412 PMCID: PMC8957944 DOI: 10.3389/fnut.2022.809983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotic supplementation, traditionally used for the prevention or treatment of a variety of disease indications, is now recognized in a variety of population groups including athletes and those physically active for improving general health and performance. However, experimental and clinical trials with probiotics commonly suffer from design flaws and different outcome measures, making comparison and synthesis of conclusions difficult. Here we review current randomized controlled trials (RCTs) using probiotics for performance improvement, prevention of common illnesses, or general health, in a specific target population (athletes and those physically active). Future RCTs should address the key elements of (1) properly defining and characterizing a probiotic intervention, (2) study design factors, (3) study population characteristics, and (4) outcome measures, that will allow valid conclusions to be drawn. Careful evaluation and implementation of these elements should yield improved trials, which will better facilitate the generation of evidence-based probiotic supplementation recommendations for athletes and physically active individuals.
Collapse
Affiliation(s)
- Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
- *Correspondence: Alex E. Mohr
| | - Jamie Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Jeremy R. Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN, United States
| | - David B. Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | - Floris C. Wardenaar
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Nicholas P. West
- School of Medical Science and Menzies Health Institute of QLD, Griffith Health, Griffith University, Southport, QLD, Australia
| | - Corrie M. Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Lynne V. McFarland
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
| |
Collapse
|
130
|
Lacticaseibacillus rhamnosus: A Suitable Candidate for the Construction of Novel Bioengineered Probiotic Strains for Targeted Pathogen Control. Foods 2022; 11:foods11060785. [PMID: 35327208 PMCID: PMC8947445 DOI: 10.3390/foods11060785] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics, with their associated beneficial effects, have gained popularity for the control of foodborne pathogens. Various sources are explored with the intent to isolate novel robust probiotic strains with a broad range of health benefits due to, among other mechanisms, the production of an array of antimicrobial compounds. One of the shortcomings of these wild-type probiotics is their non-specificity. A pursuit to circumvent this limitation led to the advent of the field of pathobiotechnology. In this discipline, specific pathogen gene(s) are cloned and expressed into a given probiotic to yield a novel pathogen-specific strain. The resultant recombinant probiotic strain will exhibit enhanced species-specific inhibition of the pathogen and its associated infection. Such probiotics are also used as vehicles to deliver therapeutic agents. As fascinating as this approach is, coupled with the availability of numerous probiotics, it brings a challenge with regard to deciding which of the probiotics to use. Nonetheless, it is indisputable that an ideal candidate must fulfil the probiotic selection criteria. This review aims to show how Lacticaseibacillus rhamnosus, a clinically best-studied probiotic, presents as such a candidate. The objective is to spark researchers’ interest to conduct further probiotic-engineering studies using L. rhamnosus, with prospects for the successful development of novel probiotic strains with enhanced beneficial attributes.
Collapse
|
131
|
Kocot AM, Jarocka-Cyrta E, Drabińska N. Overview of the Importance of Biotics in Gut Barrier Integrity. Int J Mol Sci 2022; 23:ijms23052896. [PMID: 35270039 PMCID: PMC8911280 DOI: 10.3390/ijms23052896] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Increased gut permeability is suggested to be involved in the pathogenesis of a growing number of disorders. The altered intestinal barrier and the subsequent translocation of bacteria or bacterial products into the internal milieu of the human body induce the inflammatory state. Gut microbiota maintains intestinal epithelium integrity. Since dysbiosis contributes to increased gut permeability, the interventions that change the gut microbiota and correct dysbiosis are suggested to also restore intestinal barrier function. In this review, the current knowledge on the role of biotics (probiotics, prebiotics, synbiotics and postbiotics) in maintaining the intestinal barrier function is summarized. The potential outcome of the results from in vitro and animal studies is presented, and the need for further well-designed randomized clinical trials is highlighted. Moreover, we indicate the need to understand the mechanisms by which biotics regulate the function of the intestinal barrier. This review is concluded with the future direction and requirement of studies involving biotics and gut barrier.
Collapse
Affiliation(s)
- Aleksandra Maria Kocot
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Elżbieta Jarocka-Cyrta
- Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine, Collegium Medicum University of Warmia and Mazury, Regional Specialized Children’s Hospital, Żołnierska St. 18A, 10-561 Olsztyn, Poland;
| | - Natalia Drabińska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
- Correspondence:
| |
Collapse
|
132
|
Karbownik MS, Mokros Ł, Dobielska M, Kowalczyk M, Kowalczyk E. Association Between Consumption of Fermented Food and Food-Derived Prebiotics With Cognitive Performance, Depressive, and Anxiety Symptoms in Psychiatrically Healthy Medical Students Under Psychological Stress: A Prospective Cohort Study. Front Nutr 2022; 9:850249. [PMID: 35308282 PMCID: PMC8929173 DOI: 10.3389/fnut.2022.850249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Background Gut microbiota-based therapeutic strategies, such as probiotic and prebiotic preparations, may benefit mental health. However, commonly consumed fermented and prebiotic-containing foods have not been well-tested. The aim of the present study was to determine whether consumption of fermented food and food-derived prebiotics is associated with cognitive performance, depressive, and anxiety symptoms in psychiatrically healthy medical students under psychological stress. Methods The study protocol with data analysis plan was prospectively registered. Food consumption was evaluated with a 7-day dietary record. Cognitive performance was modeled with academic examination performance in relation to subject knowledge. Pre-exam depressive and anxiety symptoms were assessed with the Patient Health Questionnaire-9 and Generalized Anxiety Disorder-7, respectively. Results In total, 372 medical students (22.7 ± 1.1 years of age, 66% female) completed the study. No relationship was observed between cognitive performance under stress and either fermented food (adjusted β 0.02, 95% CI −0.07–0.11, p = 0.63) or food-derived prebiotics consumption (adjusted β −0.00, 95% CI −0.09–0.09, p = 0.99). High intake of fermented food was associated with more severe depressive (adjusted β 0.11, 95% CI 0.01–0.20, p = 0.032) and anxiety symptoms under stress (adjusted β 0.13, 95% CI 0.04–0.22, p = 0.0065); however, no such link was observed for food-derived prebiotics (adjusted β 0.03, 95% CI −0.07–0.13, p = 0.50 and −0.01, 95% CI −0.11–0.08, p = 0.83, for depression and anxiety, respectively). Conclusions Under psychological stress in medical students, consumption of fermented food and food-derived prebiotics appears to be not associated with cognitive performance. High intake of fermented food, but not food-derived prebiotics, may be associated with severity of depressive and anxiety symptoms. The safety of fermented food in this regard therefore requires further clarification.
Collapse
Affiliation(s)
- Michał Seweryn Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
- *Correspondence: Michał Seweryn Karbownik
| | - Łukasz Mokros
- Department of Clinical Pharmacology, Medical University of Lodz, Łódź, Poland
| | - Maria Dobielska
- Students' Research Club, Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| | | | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
133
|
Gao X, Wang Z, Li X, Zhang X, Du S, Jia M, Hu D, Jia X, Cong B, Zhang Y, Ma C, Zhou S, Zhang J. A new Lactobacillus gasseri strain HMV18 inhibits the growth of pathogenic bacteria. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
134
|
Functional probiotic yoghurt production with royal jelly fortification and determination of some properties. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
135
|
Aziz G, Zaidi A, Tariq M. Compositional Quality and Possible Gastrointestinal Performance of Marketed Probiotic Supplements. Probiotics Antimicrob Proteins 2022; 14:288-312. [PMID: 35199309 DOI: 10.1007/s12602-022-09931-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
Abstract
The local pharmacies and shops are brimming with various probiotic products that herald a range of health benefits. The poor quality of probiotic products in both dosage and species is symptomatic of this multi-billion-dollar market making it difficult for consumers to single out reliable ones. This study aims to fill the potential gap in the labeling accuracy of probiotic products intended for human consumption. We describe a combinatorial approach using classical culture-dependent technique to quantify and molecular techniques (16 s rRNA gene sequencing, multilocus sequence, and ribotyping) for strain recognition of the microbial contents. The full gamut of probiotic characteristics including acid, bile and lysozyme tolerances, adhesiveness, anti-pathogenicity, and degree of safeness were performed. Their capacity to endure gastro-intestinal (GIT) stresses and select drugs was assessed in vitro. Our results forced us to declare that the local probiotic market is essentially unregulated. Almost none of the probiotic products tested met the label claim. Some (11%) have no viable cells, and a quarter (27%) showing significant inter-batch variation. A lower microbial count was typical with undesirables constituting a quarter of the total (~ 27%). Half of the products contained antibiotic-resistant strains; the unregulated use of these probiotics carries the risk of spreading antibiotic resistance to gut pathobionts. Poor tolerance to gut conditions and mediocre functionalism make the case worse. The current regulatory systems do not take this discrepancy into account. We recommend an evidence-based regular market surveillance of marketed probiotics to ensure the authenticity of the claims and product effectiveness.
Collapse
Affiliation(s)
- Ghazal Aziz
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan.
| | - Muhammad Tariq
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan
| |
Collapse
|
136
|
Song Q, Zhang X. The Role of Gut–Liver Axis in Gut Microbiome Dysbiosis Associated NAFLD and NAFLD-HCC. Biomedicines 2022; 10:biomedicines10030524. [PMID: 35327326 PMCID: PMC8945287 DOI: 10.3390/biomedicines10030524] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered as one of the most prevalent chronic liver diseases worldwide due to the rapidly rising prevalence of obesity and metabolic syndrome. As a hepatic manifestation of metabolic disease, NAFLD begins with hepatic fat accumulation and progresses to hepatic inflammation, termed as non-alcoholic steatohepatitis (NASH), hepatic fibrosis/cirrhosis, and finally leading to NAFLD-related hepatocellular carcinoma (NAFLD-HCC). Accumulating evidence showed that the gut microbiome plays a vital role in the initiation and progression of NAFLD through the gut–liver axis. The gut–liver axis is the mutual communication between gut and liver comprising the portal circulation, bile duct, and systematic circulation. The gut microbiome dysbiosis contributes to NAFLD development by dysregulating the gut–liver axis, leading to increased intestinal permeability and unrestrained transfer of microbial metabolites into the liver. In this review, we systematically summarized the up-to-date information of gut microbiome dysbiosis and metabolomic changes along the stages of steatosis, NASH, fibrosis, and NAFLD-HCC. The components and functions of the gut–liver axis and its association with NAFLD were then discussed. In addition, we highlighted current knowledge of gut microbiome-based treatment strategies targeting the gut–liver axis for preventing NAFLD and its associated HCC.
Collapse
Affiliation(s)
- Qian Song
- Department of Medicine and Therapeutics, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Xiang Zhang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-3763-6102
| |
Collapse
|
137
|
Evangelista AG, Danielski GM, Corrêa JAF, Cavalari CMDA, Souza IR, Luciano FB, Macedo REFD. Carnobacterium as a bioprotective and potential probiotic culture to improve food quality, food safety, and human health - a scoping review. Crit Rev Food Sci Nutr 2022; 63:6946-6959. [PMID: 35156482 DOI: 10.1080/10408398.2022.2038079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well-known that some bacteria can promote human and animal health. Bacteria of the genus Carnobacterium, while underexplored, have demonstrated significant probiotic and bioprotective potential. In this review, the recent scientific advances in this area are discussed. There are several requirements for a strain to be considered a probiotic or bioprotective agent, including the absence of antimicrobial resistance and the ability to colonize the gastrointestinal tract. Several researchers have reported such features in Carnobacterium bacteria, especially with regard to the production of antimicrobial substances. Research into animal production has advanced, especially in the aquaculture field, wherein inhibitory activity has been demonstrated against several important pathogens (for example Vibrio), and improvement in zootechnical indexes is evident. With respect to human health-related applications, research is still in the early stages. However, excellent in vitro results against pathogens, such as Candida albicans and Pseudomonas aeruginosa, have been reported. Carnobacterium bacteria have been assessed for a variety of applications in food, including direct application to the matrix and application to smart packaging, with proven effectiveness against Listeria monocytogenes. However, there is a lack of in vivo studies on Carnobacterium applications, which hinders its applications in various industries despite its high potential.
Collapse
Affiliation(s)
| | - Gabriela Maia Danielski
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
- Undergraduate Program in Agronomy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | | | - Isabelle Ramos Souza
- Undergraduate Program in Veterinary Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | | | | |
Collapse
|
138
|
Ilyazova A, Blazheva D, Slavchev A, Krastanov A. In vitro simulation of the gastrointestinal tract environment and its interaction with probiotic lactobacilli. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224502003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The harshest conditions of the human gastrointestinal tract were simulated in order to study probiotic bacteria in their intended environment. Eight Lactobacillus strains were cultivated in MRS broth with added bile in different concentrations and their growth was monitored as optical density. The gathered data was used to determine the MIC of bile for each strain. The recovery of the strains in MRS broth after 3 h in simulated gastric juice solution (pH 1.8, 5000 U/cm3 pepsin) was investigated. Lactobacillus gasseri S20 exhibited the best survival rate and reached OD 600 0,490, while Lactobacillus acidophilus S11 could not survive the conditions of the stomach (OD 600 0,076).
Collapse
|
139
|
Tamang JP, Lama S. Probiotic Properties of Yeasts in Traditional Fermented Foods and Beverages. J Appl Microbiol 2022; 132:3533-3542. [DOI: 10.1111/jam.15467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Jyoti Prakash Tamang
- DAICENTER (DBT‐AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences Sikkim University Gangtok Sikkim India
| | - Sonam Lama
- DAICENTER (DBT‐AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences Sikkim University Gangtok Sikkim India
| |
Collapse
|
140
|
Fan X, Li X, Zhang T, Guo Y, Shi Z, Wu Z, Zeng X, Pan D. Novel Millet-Based Flavored Yogurt Enriched With Superoxide Dismutase. Front Nutr 2022; 8:791886. [PMID: 35059425 PMCID: PMC8764191 DOI: 10.3389/fnut.2021.791886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Superoxide dismutase (SOD) is an important antioxidant enzyme with different physiological functions, which can be used as a nutritional fortifier in food. Cereal-based fermented products are becoming popular worldwide. In this study, novel millet-based flavored yogurt enriched with SOD was developed. Lactiplantibacillus plantarum subsp. plantarum was screened, which manufactured SOD activity of 2476.21 ± 1.52 U g-1. The SOD content of millet yogurt was 19.827 ± 0.323 U mL-1, which was 63.01, 50.11, and 146.79% higher than that of Bright Dairy Yogurt 1911, Junlebao and Nanjing Weigang, respectively. Fifty-four volatile flavor substances and 22,571 non-volatile flavor substances were found in yogurt. Compared to traditional fermented yogurt, 37 non-volatile metabolites in yogurt with millet enzymatic fermentation broth were significantly upregulated, including 2-phenyl ethanol, hesperidin, N-acetylornithine and L-methionine, which were upregulated by 3169.6, 228.36, 271.22, and 55.67 times, respectively, thereby enriching the sensory and nutritional value of yogurt. Moreover, the manufacture of unpleasant volatile flavor substances was masked, making the product more compatible with consumers' tastes.
Collapse
Affiliation(s)
- Xiankang Fan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Xiefei Li
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Tao Zhang
- School of Food Science and Pharamaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yuxing Guo
- School of Food Science and Pharamaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zihang Shi
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Zhen Wu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| |
Collapse
|
141
|
Shehata HR, Kiefer A, Morovic W, Newmaster SG. Locked Nucleic Acid Hydrolysis Probes for the Specific Identification of Probiotic Strains Bifidobacterium animalis subsp. lactis DSM 15954 and Bi-07™. Front Microbiol 2022; 12:801795. [PMID: 35003031 PMCID: PMC8733699 DOI: 10.3389/fmicb.2021.801795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Probiotic health benefits are now well-recognized to be strain specific. Probiotic strain characterization and identification is thus important in clinical research and in the probiotic industry. This is becoming especially important with reports of probiotic products failing to meet the declared strain content, potentially compromising their efficacy. Availability of reliable identification methods is essential for strain authentication during discovery, evaluation and commercialization of a probiotic strain. This study aims to develop identification methods for strains Bifidobacterium animalis subsp. lactis DSM 15954 and Bi-07 (Bi-07™) based on real-time PCR, targeting single nucleotide polymorphisms (SNPs). The SNPs were targeted by PCR assays with locked nucleic acid (LNA) probes, which is a novel application in probiotic identification. The assays were then validated following the guidelines for validating qualitative real-time PCR assays. Each assay was evaluated for specificity against 22 non-target strains including closely related Bifidobacterium animalis subsp. lactis strains and were found to achieve 100% true positive and 0% false positive rates. To determine reaction sensitivity and efficiency, three standard curves were established for each strain. Reaction efficiency values were 86, 91, and 90% (R square values > 0.99), and 87, 84, and 86% (R square values > 0.98) for B. animalis subsp. lactis DSM 15954 and Bi-07 assays, respectively. The limit of detection (LOD) was 5.0 picograms and 0.5 picograms of DNA for DSM 15954 and Bi-07 assays, respectively. Each assay was evaluated for accuracy using five samples tested at three different DNA concentrations and both assays proved to be highly repeatable and reproducible. Standard deviation of Cq values between two replicates was always below 1.38 and below 1.68 for DSM 15954 and Bi-07 assays, respectively. The assays proved to be applicable to mono-strain and multi-strain samples as well as for samples in various matrices of foods or dietary supplement ingredients. Overall, the methods demonstrated high specificity, sensitivity, efficiency and precision and broad applicability to sample, matrix and machine types. These methods facilitate strain level identification of the highly monophyletic strains B. animalis subsp. lactis DSM 15954 and Bi-07 to ensure probiotic efficacy and provide a strategy to identify other closely related probiotics organisms.
Collapse
Affiliation(s)
- Hanan R Shehata
- Natural Health Product Research Alliance, College of Biological Science, University of Guelph, Guelph, ON, Canada.,Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Anthony Kiefer
- IFF Health & Biosciences, International Flavors and Fragrances, Inc., Madison, WI, United States
| | - Wesley Morovic
- IFF Health & Biosciences, International Flavors and Fragrances, Inc., Madison, WI, United States
| | - Steven G Newmaster
- Natural Health Product Research Alliance, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
142
|
Probiotics in Functional Foods: Survival Assessment and Approaches for Improved Viability. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010455] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nowadays, food is no longer just for nutrition. Consumers are more demanding and expect to get health benefits from their daily meals. Various areas of the food industry are in great demand of functional chemicals to enhance the taste and nutritional value of their products. Probiotic bacteria have already been part of the human’s routine for good gut microbiota maintenance in terms of pharmaceutical products. Their incorporation in food however is a challenging task that offers great opportunities but has limitations as well. Specifically, the purpose of this review is to emphasize the importance of probiotics in food, to assess their survival through gastrointestinal tract, and to highlight the recent advances in approaches for their improved viability.
Collapse
|
143
|
Kumar R, Sood U, Kaur J, Anand S, Gupta V, Patil KS, Lal R. The rising dominance of microbiology: what to expect in the next 15 years? Microb Biotechnol 2022; 15:110-128. [PMID: 34713975 PMCID: PMC8719816 DOI: 10.1111/1751-7915.13953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
What microbiology beholds after a decade and a half in the future requires a vision based on the facts and ongoing trends in research and technological advancements. While the latter, assisted by microbial dark matter, presents a greater potential of creating an upsurge in in-situ and ex-situ rapid microbial detection techniques, this anticipated change will also set forth a revolution in microbial cultivation and diversity analyses. The availability of a microbial genetic toolbox at the expanse will help complement the current understanding of the microbiome and assist in real-time monitoring of the dynamics for detecting the health status of the host with utmost precision. Alongside, in light of the emerging infectious diseases, antimicrobial resistance (AMR) and social demands for safer and better health care alternatives, microbiology laboratories are prospected to drift in terms of the volume and nature of research and outcomes. With today's microbiological lens, one can predict with certainty that in the years to come, microbes will play a significant role in therapeutic treatment and the designing of novel diagnostic techniques. Another area where the scope of microbial application seems to be promising is the use of novel probiotics as a method to offer health benefits whilst promoting metabolic outputs specific for microbiome replenishment. Nonetheless, the evolution of extraterrestrial microbes or the adaptation of earth microbes as extraterrestrial residents are also yet another prominent microbial event one may witness in the upcoming years. But like the two sides of the coin, there is also an urgent need to dampen the bloom of urbanization, overpopulation and global trade and adopting sustainable approaches to control the recurrence of epidemics and pandemics.
Collapse
Affiliation(s)
- Roshan Kumar
- Post‐Graduate Department of ZoologyMagadh UniversityBodh GayaBihar824234India
| | - Utkarsh Sood
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| | - Jasvinder Kaur
- Department of ZoologyGargi CollegeUniversity of DelhiSiri Fort RoadNew Delhi110049India
| | - Shailly Anand
- Department of ZoologyDeen Dayal Upadhyaya CollegeUniversity of DelhiDwarkaNew Delhi110078India
| | - Vipin Gupta
- Indira Paryavaran BhawanMinistry of Environment, Forest and Climate ChangeLodi ColonyNew Delhi110003India
| | - Kishor Sureshbhai Patil
- Department of Biological SciencesP. D. Patel Institute of Applied SciencesCharotar University of Science and Technology (CHARUSAT)ChangaGujarat388421India
| | - Rup Lal
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| |
Collapse
|
144
|
Drożdż K, Nabrdalik K, Hajzler W, Kwiendacz H, Gumprecht J, Lip GYH. Metabolic-Associated Fatty Liver Disease (MAFLD), Diabetes, and Cardiovascular Disease: Associations with Fructose Metabolism and Gut Microbiota. Nutrients 2021; 14:103. [PMID: 35010976 PMCID: PMC8746577 DOI: 10.3390/nu14010103] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasingly common condition associated with type 2 diabetes (T2DM) and cardiovascular disease (CVD). Since systemic metabolic dysfunction underlies NAFLD, the current nomenclature has been revised, and the term metabolic-associated fatty liver disease (MAFLD) has been proposed. The new definition emphasizes the bidirectional relationships and increases awareness in looking for fatty liver disease among patients with T2DM and CVD or its risk factors, as well as looking for these diseases among patients with NAFLD. The most recommended treatment method of NAFLD is lifestyle changes, including dietary fructose limitation, although other treatment methods of NAFLD have recently emerged and are being studied. Given the focus on the liver-gut axis targeting, bacteria may also be a future aim of NAFLD treatment given the microbiome signatures discriminating healthy individuals from those with NAFLD. In this review article, we will provide an overview of the associations of fructose consumption, gut microbiota, diabetes, and CVD in patients with NAFLD.
Collapse
Affiliation(s)
- Karolina Drożdż
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.); (G.Y.H.L.)
| | - Katarzyna Nabrdalik
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.); (G.Y.H.L.)
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK
| | - Weronika Hajzler
- Doctoral School, Department of Pediatric Hematology and Oncology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Hanna Kwiendacz
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.); (G.Y.H.L.)
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.); (G.Y.H.L.)
| | - Gregory Y. H. Lip
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.); (G.Y.H.L.)
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK
- Department of Clinical Medicine, Aalborg University, 9100 Aalborg, Denmark
| |
Collapse
|
145
|
Marlicz W, Skonieczna-Żydecka K, Krynicka P, Łoniewski I, Rydzewska G. Probiotics in irritable bowel syndrome - is the quest for the right strain over? Rapid review of existing guidelines and recommendations. PRZEGLAD GASTROENTEROLOGICZNY 2021; 16:369-382. [PMID: 34976247 PMCID: PMC8690954 DOI: 10.5114/pg.2021.111766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome (IBS) - functional gastrointestinal disorder (FGIDs) and disorder of gut-brain interaction (DGBIs) - has emerged as an important medical problem with an impact on health care systems, affecting patients' quality of life. The management of IBS consists of pharmacological and non-pharmacological treatments; however, the data of their long-term efficacy are scarce. Modulation of gastrointestinal microbiota, by means of probiotics and prebiotics, is often sought and advertised as a popular treatment modality in IBS. Faecal microbiota transplantation (FMT) awaits recommendations for IBS treatment and requires more methodological assessments. To date, numerous guidelines and recommendations have been published on the role of probiotics in IBS. Because no probiotic claim for probiotics in foods has yet been granted by the European Food and Safety Authority (EFSA), medical practitioners still recommend probiotics on the basis of available literature and recommendations released by independent health authorities. We aimed to summarize published formal recommendations and guidelines regarding the clinical effectiveness of available probiotic strains and conduct a random-effects meta-analysis of outcomes for which ≥ 2 studies contributed data on the same probiotic strain recommended to adults with IBS. Based on available and most recent guidelines, we report that probiotics, as a group, may be an effective treatment for global symptoms and abdominal pain in IBS, with the strongest effect for genus Lactobacillus. Our current and updated meta-analysis is in line with several reports documenting significant effects of Lactobacillus plantarum (Lp299v) in reducing the risk of global symptoms and their persistence, which could assist clinicians in making the choice for the right probiotic strain in IBS patients.
Collapse
Affiliation(s)
- Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| | | | - Patrycja Krynicka
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Grażyna Rydzewska
- Clinical Department of Internal Medicine and Gastroenterology with Inflammatory Bowel Disease Unit, Central Clinical Hospital of the Ministry of the Inferior and Administration, Warsaw, Poland
- Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
146
|
Probiotics as Therapeutic Tools against Pathogenic Biofilms: Have We Found the Perfect Weapon? MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12040068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacterial populations inhabiting a variety of natural and human-associated niches have the ability to grow in the form of biofilms. A large part of pathological chronic conditions, and essentially all the bacterial infections associated with implanted medical devices or prosthetics, are caused by microorganisms embedded in a matrix made of polysaccharides, proteins, and nucleic acids. Biofilm infections are generally characterized by a slow onset, mild symptoms, tendency to chronicity, and refractory response to antibiotic therapy. Even though the molecular mechanisms responsible for resistance to antimicrobial agents and host defenses have been deeply clarified, effective means to fight biofilms are still required. Lactic acid bacteria (LAB), used as probiotics, are emerging as powerful weapons to prevent adhesion, biofilm formation, and control overgrowth of pathogens. Hence, using probiotics or their metabolites to quench and interrupt bacterial communication and aggregation, and to interfere with biofilm formation and stability, might represent a new frontier in clinical microbiology and a valid alternative to antibiotic therapies. This review summarizes the current knowledge on the experimental and therapeutic applications of LAB to interfere with biofilm formation or disrupt the stability of pathogenic biofilms.
Collapse
|
147
|
Electro-hydrodynamic processing for encapsulation of probiotics: A review on recent trends, technological development, challenges and future prospect. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
148
|
Zoumpopoulou G, Ioannou M, Anastasiou R, Antoniou A, Alexandraki V, Papadimitriou K, Moschopoulou E, Tsakalidou E. Kaimaki ice cream as a vehicle for Limosilactobacillus fermentum ACA-DC 179 to exert potential probiotic effects: Overview of strain stability and final product quality. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
149
|
Valledor SJD, Dioso CM, Bucheli JEV, Park YJ, Suh DH, Jung ES, Kim B, Holzapfel WH, Todorov SD. Characterization and safety evaluation of two beneficial, enterocin-producing Enterococcus faecium strains isolated from kimchi, a Korean fermented cabbage. Food Microbiol 2021; 102:103886. [PMID: 34809929 DOI: 10.1016/j.fm.2021.103886] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
Enterococcus faecium ST20Kc and ST41Kc were isolated from kimchi, a traditional Korean fermented cabbage. Bacteriocins produced by both strains exhibited strong activity against Listeria monocytogenes and various Enterococcus spp., including 30 vancomycin-resistant enterococcal strains, but not against other lactic acid bacteria (LAB) on the evaluated test panel. The antimicrobials produced by the strains were found to be proteinaceous and stable even after exposure to varying pH, temperature, and chemicals used in the industry and laboratory processes. Antimicrobial activity of both strains was evaluated as bactericidal against exponentially growing cultures of L. monocytogenes ATCC® 15313™ and Enterococcus faecalis 200A. Based on tricine-SDS-PAGE, the molecular weights of the bacteriocins produced by the strains were between 4 and 6 kDa. Additionally, both strains were susceptible to antibiotics, including vancomycin, kanamycin, gentamycin, ampicillin, streptomycin, tylosin, chloramphenicol, clindamycin, and tetracycline. Adhesion genes, map, mub, and EF-Tu, were also detected in the genomes of both strains. With gastrointestinal stress induction, both strains showed high individual survival rates, and capability to reduce viable counts of L. monocytogenes ATCC® 15313™ and Enterococcus faecalis 200A in mixed cultures. Based on the metabolomics analysis, both strains were found to produce additional antimicrobial compounds, particularly, lactic acid, phenyllactic acid, and phenethylamine, which can be potentially involved in the antimicrobial interaction with pathogenic microorganisms.
Collapse
Affiliation(s)
- Samantha Joy D Valledor
- ProBacLab, Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | | | | | - Yu Jin Park
- HEM Pharma Inc., Suwon, Gyeonggi, 16229, Republic of Korea
| | - Dong Ho Suh
- HEM Pharma Inc., Suwon, Gyeonggi, 16229, Republic of Korea
| | - Eun Sung Jung
- HEM Pharma Inc., Suwon, Gyeonggi, 16229, Republic of Korea
| | - Bobae Kim
- HEM Pharma Inc., Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Wilhelm Heinrich Holzapfel
- Human Effective Microbes, Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
| |
Collapse
|
150
|
Chung The H, Nguyen Ngoc Minh C, Tran Thi Hong C, Nguyen Thi Nguyen T, Pike LJ, Zellmer C, Pham Duc T, Tran TA, Ha Thanh T, Van MP, Thwaites GE, Rabaa MA, Hall LJ, Baker S. Exploring the Genomic Diversity and Antimicrobial Susceptibility of Bifidobacterium pseudocatenulatum in a Vietnamese Population. Microbiol Spectr 2021; 9:e0052621. [PMID: 34523984 PMCID: PMC8557894 DOI: 10.1128/spectrum.00526-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 01/29/2023] Open
Abstract
Bifidobacterium pseudocatenulatum is a member of the human gut microbiota, and specific variants of B. pseudocatenulatum have been associated with health benefits such as improving gut integrity and reducing inflammatory responses. Here, we aimed to assess the genomic diversity and predicted metabolic profiles of B. pseudocatenulatum cells found colonizing the gut of healthy Vietnamese adults and children. We found that the population of B. pseudocatenulatum from each individual was distinct and highly diverse, with intraclonal variation attributed largely to a gain or loss of carbohydrate-utilizing enzymes. The B. pseudocatenulatum genomes were enriched with glycosyl hydrolases predicted to target plant-based nondigestible carbohydrates (GH13, GH43) but not host-derived glycans. Notably, the exopolysaccharide biosynthesis region from organisms isolated from healthy children showed extensive genetic diversity and was subject to a high degree of genetic modification. Antimicrobial susceptibility profiling revealed that the Vietnamese B. pseudocatenulatum cells were uniformly susceptible to beta-lactams but exhibited variable resistance to azithromycin, tetracycline, ciprofloxacin, and metronidazole. The genomic presence of ermX and tet variants conferred resistance against azithromycin and tetracycline, respectively; ciprofloxacin resistance was associated with a mutation(s) in the quinolone resistance-determining region (GyrA, S115, and/or D119). Our work provides the first detailed genomic and antimicrobial resistance characterization of B. pseudocatenulatum found in the Vietnamese population, which can be exploited for the rational design of probiotics. IMPORTANCE Bifidobacterium pseudocatenulatum is a beneficial member of the human gut microbiota. The organism can modulate inflammation and has probiotic potential, but its characteristics are largely strain dependent and associated with distinct genomic and biochemical features. Population-specific beneficial microbes represent a promising avenue for the development of potential probiotics, as they may exhibit a more suitable profile in the target population. This study investigates the underexplored diversity of B. pseudocatenulatum in Vietnam and provides more understanding of its genomic diversity, metabolic potential, and antimicrobial susceptibility. Such data from indigenous populations are essential for selecting probiotic candidates that can be accelerated into further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | | | - Lindsay J. Pike
- The Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Caroline Zellmer
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Trung Pham Duc
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuan-Anh Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuyen Ha Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Minh Pham Van
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Maia A. Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Lindsay J. Hall
- Quadram Institute Biosciences, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Stephen Baker
- The Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|