101
|
Coste Grahl MV, Perin APA, Lopes FC, Porto BN, Uberti AF, Canavoso LE, Stanisçuaski F, Fruttero LL. The role of extracellular nucleic acids in the immune system modulation of Rhodnius prolixus (Hemiptera: Reduviidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104591. [PMID: 32527424 DOI: 10.1016/j.pestbp.2020.104591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Extracellular traps (ETs) are extracellular nucleic acids associated with cytoplasmic proteins that may aid in the capture and killing of pathogens. To date, only a few insects were shown to display this kind of immune response. Jaburetox, a peptide derived from jack bean urease, showed toxic effects in Rhodnius prolixus, affecting its immune response. The present study aims to evaluate the role of extracellular nucleic acids in R. prolixus' immune response, using Jaburetox as a model entomotoxin. The insects were treated with extracellular nucleic acids and/or Jaburetox, and the cellular and humoral responses were assessed. We also evaluated the release of extracellular nucleic acids induced by toxins, and performed immunocompetence assays using pathogenic bacteria. Our results demonstrated that extracellular nucleic acids can modulate the insect immune responses, either alone or associated with the toxin. Although RNA and DNA induced a cellular immune response, only DNA was able to neutralize the Jaburetox-induced aggregation of hemocytes. Likewise, the activation of the humoral response was different for RNA and DNA. Nevertheless, it was observed that both, extracellular DNA and RNA, immunocompensated the Jaburetox effects on insect defenses upon the challenge of a pathogenic bacterium. The toxin was not able to alter cellular viability, in spite of inducing an increase in the reactive species of oxygen formation. In conclusion, we have demonstrated a protective role for extracellular nucleic acids in R. prolixus´ immune response to toxins and pathogenic bacteria.
Collapse
Affiliation(s)
- Matheus V Coste Grahl
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Ana Paula A Perin
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Fernanda C Lopes
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Bárbara N Porto
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, Building 60, CEP 90610-000 Porto Alegre, Brazil.
| | - Augusto F Uberti
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, CEP 90610-000 Porto Alegre, Brazil.
| | - Lilian E Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| | - Fernanda Stanisçuaski
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, CEP 91501-970 Porto Alegre, RS, Brazil; Department of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Leonardo L Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| |
Collapse
|
102
|
Bhopatkar AA, Uversky VN, Rangachari V. Disorder and cysteines in proteins: A design for orchestration of conformational see-saw and modulatory functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:331-373. [PMID: 32828470 DOI: 10.1016/bs.pmbts.2020.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Being responsible for more than 90% of cellular functions, protein molecules are workhorses in all the life forms. In order to cater for such a high demand, proteins have evolved to adopt diverse structures that allow them to perform myriad of functions. Beginning with the genetically directed amino acid sequence, the classical understanding of protein function involves adoption of hierarchically complex yet ordered structures. However, advances made over the last two decades have revealed that inasmuch as 50% of eukaryotic proteome exists as partially or fully disordered structures. Significance of such intrinsically disordered proteins (IDPs) is further realized from their ability to exhibit multifunctionality, a feature attributable to their conformational plasticity. Among the coded amino acids, cysteines are considered to be "order-promoting" due to their ability to form inter- or intramolecular disulfide bonds, which confer robust thermal stability to the protein structure in oxidizing conditions. The co-existence of order-promoting cysteines with disorder-promoting sequences seems counter-intuitive yet many proteins have evolved to contain such sequences. In this chapter, we review some of the known cysteine-containing protein domains categorized based on the number of cysteines they possess. We show that many protein domains contain disordered sequences interspersed with cysteines. We show that a positive correlation exists between the degree of cysteines and disorder within the sequences that flank them. Furthermore, based on the computational platform, IUPred2A, we show that cysteine-rich sequences display significant disorder in the reduced but not the oxidized form, increasing the potential for such sequences to function in a redox-sensitive manner. Overall, this chapter provides insights into an exquisite evolutionary design wherein disordered sequences with interspersed cysteines enable potential modulatory protein functions under stress and environmental conditions, which thus far remained largely inconspicuous.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, Russia
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, United States; Center of Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, United States.
| |
Collapse
|
103
|
Proteomic analysis reveals the damaging role of low redox laccase from Yersinia enterocolitica strain 8081 in the midgut of Helicoverpa armigera. Biotechnol Lett 2020; 42:2189-2210. [PMID: 32472187 DOI: 10.1007/s10529-020-02925-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/25/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Earlier, we have found that the enteropathogenic Yersinia enterocolitica have evolved the survival mechanisms that regulate the expression of laccase-encoding genes in the gut. The present study aims to characterize the purified recombinant laccase from Y. enterocolitica strain 8081 biovar 1B and understand its effect on the midgut of cotton bollworm, Helicoverpa armigera (Hübner) larvae. RESULTS The recombinant laccase protein showed high purity fold and low molecular mass (~ 43 kDa). H. armigera larvae fed with laccase protein showed a significant decrease in body weight and damage in the midgut. Further, transmission electron microscopy (TEM) studies revealed the negative effect of laccase protein on trachea, malpighian tubules, and villi of the insect. The proteome comparison between control and laccase-fed larvae of cotton bollworm showed significant expression of proteolytic enzymes, oxidoreductases, cytoskeletal proteins, ribosomal proteins; and proteins for citrate (TCA cycle) cycle, glycolysis, stress response, cell redox homeostasis, xenobiotic degradation, and insect defence. Moreover, it also resulted in the reduction of antioxidants, increased melanization (insect innate immune response), and enhanced free radical generation. CONCLUSIONS All these data collectively suggest that H. armigera (Hübner) larvae can be used to study the effect of microbes and their metabolites on the host physiology, anatomy, and survival.
Collapse
|
104
|
Wang Q, Yin M, Yuan C, Liu X, Hu Z, Zou Z, Wang M. Identification of a Conserved Prophenoloxidase Activation Pathway in Cotton Bollworm Helicoverpa armigera. Front Immunol 2020; 11:785. [PMID: 32431706 PMCID: PMC7215089 DOI: 10.3389/fimmu.2020.00785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/07/2020] [Indexed: 01/03/2023] Open
Abstract
Melanization is a prominent insect humoral response for encapsulation of and killing invading pathogens. It is mediated by a protease cascade composed of a modular serine protease (SP), and clip domain SPs (cSPs), which converts prophenoloxidase (PPO) into active phenoloxidase (PO). To date, melanization pathway in cotton bollworm Helicoverpa armigera, an important agricultural pest, remains largely unclear. To biochemically reconstitute the pathway in vitro, the putative proteases along with modified proteases containing the factor Xa cleavage site were expressed by Drosophila S2 cell expression system. Purified recombinant proteins were used to examine their role in activating PPO. It is revealed that cascade is initiated by a modular SP-SP41, followed by cSP1 and cSP6. The three-step SP41/cSP1/cSP6 cascade could further activate PPO, and the PO activity was significantly enhanced in the presence of two cSP homologs (cSPHs), cSPH11 and cSPH50, suggesting the latter are cofactors for PPO activation. Moreover, baculovirus infection was efficiently blocked by the reconstituted PPO activation cascade, and the effect was boosted by cSPH11 and cSPH50. Taken together, we unraveled a conserved PPO activation cascade in H. armigera, which is similar to that exists in lepidopteran biochemical model Manduca sexta and highlighted its role in antagonizing viral infection.
Collapse
Affiliation(s)
- Qianran Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Mengyi Yin
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chuanfei Yuan
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xijia Liu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Zou
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Tropical Translational Medicine, Laboratory of Medicine, School of Tropical Medicine, Ministry of Education, Hainan Medical University, Haikou, China
| | - Manli Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
105
|
Sheehan G, Konings M, Lim W, Fahal A, Kavanagh K, van de Sande WWJ. Proteomic analysis of the processes leading to Madurella mycetomatis grain formation in Galleria mellonella larvae. PLoS Negl Trop Dis 2020; 14:e0008190. [PMID: 32267851 PMCID: PMC7141616 DOI: 10.1371/journal.pntd.0008190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Mycetoma is a neglected chronic and granulomatous infection primarily associated with the fungal pathogen Madurella mycetomatis. Characteristic of this infection is the formation of grains. However, the processes leading to grain formation are not known. In this study, we employed a proteomic approach to characterise M. mycetomatis grain formation in Galleria mellonella larvae and map the processes leading to grain formation over time. For this, at 1 day, 3 days and 7 days post-inoculation, proteins from grains and hemolymph were extracted and analysed by label-free mass spectrometry. A total of 87, 51 and 48 M. mycetomatis proteins and 713, 997, 18 G. mellonella proteins were found in grains on day 1, 3 and 7 post-inoculation respectively. M. mycetomatis proteins were mainly involved in cellular metabolic processes and numerous enzymes were encountered. G. mellonella proteins were primarily involved in the nodulation process. The proteins identified were linked to nodulation and grain formation and four steps of grain formation were identified. The results of this proteomic approach could in the future be used to design novel strategies to interfere with mycetoma grain formation and to combat this difficult to treat infection. Although grain formation is the hallmark of mycetoma, so far the pathways leading to grain formation were not studied. Since our hypothesis is that both host and pathogen play a role in this process, we aimed to study this process in a model system. Grains can be formed in the invertebrate Galleria mellonella and different stages of grain formation can be noted within the larvae. We therefore infected G. mellonella with the mycetoma causative agent Madurella mycetomatis, and monitored grain formation over time. At day 1, day 3 and day 7 post-inoculation, grains and hemolymph were obtained from infected larvae. Proteins were isolated and identified by label-free mass spectrometry. By analyzing the proteins found in both host and pathogen on the different time points, we were able to develop a grain model over time. This grain model can in the future be used to identify novel treatments for this difficult to treat infection.
Collapse
Affiliation(s)
- Gerard Sheehan
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Mickey Konings
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Wilson Lim
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Kevin Kavanagh
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Wendy W. J. van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
106
|
Stoffel TJR, Segatto AL, Silva MM, Prestes A, Barbosa NBV, Rocha JBT, Loreto ELS. Cyclophosphamide in Drosophila promotes genes and transposable elements differential expression and mitochondrial dysfunction. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108718. [PMID: 31982542 DOI: 10.1016/j.cbpc.2020.108718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Cyclophosphamide (CPA) is an alkylating agent used for cancer chemotherapy, organ transplantation, and autoimmune disease treatment. Here, mRNA sequencing and high-resolution respirometry were performed to evaluate the alterations of Drosophila melanogaster gene expression fed with CPA under acute (0.1 mg/mL, for 24 h) and chronic (0.05 mg/mL, for 35 days) treatments. Differential expression analysis was performed using Cufflinks-Cuffdiff, DESeq2, and edgeR software. CPA affected genes are involved in several biological functions, including stress response and immune-related pathways, oxi-reduction and apoptotic processes, and cuticle and vitelline membrane formation. In particular, this is the first report of CPA-induced mitochondrial dysfunction caused by the downregulation of genes involved with mitochondria constituents. CPA treatment also changed the transcription pattern of transposable elements (TEs) from the gypsy and copia superfamilies. The results presented here provided evidence of CPA mitochondrial toxicity mechanisms and that CPA can modify TEs transcription in Drosophila flies.
Collapse
Affiliation(s)
- Tailini J R Stoffel
- PPG Genética e Biologia Molecular, Univ. Fed. do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana L Segatto
- Dep de Bioquímica e Biologia Molecular, Univ. Fed. de Santa Maria, Santa Maria, Brazil
| | - Monica M Silva
- Dep de Bioquímica e Biologia Molecular, Univ. Fed. de Santa Maria, Santa Maria, Brazil
| | - Alessandro Prestes
- Dep de Bioquímica e Biologia Molecular, Univ. Fed. de Santa Maria, Santa Maria, Brazil; Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Nilda B V Barbosa
- Dep de Bioquímica e Biologia Molecular, Univ. Fed. de Santa Maria, Santa Maria, Brazil
| | - João B T Rocha
- Dep de Bioquímica e Biologia Molecular, Univ. Fed. de Santa Maria, Santa Maria, Brazil
| | - Elgion L S Loreto
- PPG Genética e Biologia Molecular, Univ. Fed. do Rio Grande do Sul, Porto Alegre, Brazil; Dep de Bioquímica e Biologia Molecular, Univ. Fed. de Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
107
|
Liu C, Zhu J, Ma J, Zhang J, Wang X, Zhang R. A novel hexamerin with an unexpected contribution to the prophenoloxidase activation system of the Chinese oak silkworm, Antheraea pernyi. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21648. [PMID: 31808198 DOI: 10.1002/arch.21648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Hexamerin was originally identified as a storage protein but later confirmed to be involved in many physiological processes. In the present study, we cloned and characterized a novel hexamerin complementary DNA sequence from the Chinese oak silkworm, Antheraea pernyi (Ap-hexamerin), which shows high homology with reported insect methionine-rich hexamerins. The tissue distribution and time course of expression demonstrated that Ap-hexamerin was predominantly synthesized in the fat body and the expression level was significantly increased in response to the microbial challenge, suggesting the relevance of Ap-hexamerin to immune responses. In further immune functional studies, Ap-hexamerin was confirmed to take part in the upregulation of prophenoloxidase (PPO) activation in A. pernyi haemolymph triggered by pathogen-associated molecular patterns (PAMPs). Additional molecular interaction analysis revealed that Ap-hexamerin is capable of binding the PAMPs used in the phenoloxidase assay, suggesting hexamerin in A. pernyi may positively regulate haemolymph PPO activation, acting as a pattern recognition protein.
Collapse
Affiliation(s)
- Chengbao Liu
- Department of Biopharmaceutics, School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Jinye Zhu
- Department of Biopharmaceutics, School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Jingjing Ma
- Department of Biopharmaceutics, School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Jinghai Zhang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xialu Wang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Rong Zhang
- Department of Biopharmaceutics, School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
108
|
Abbod M, Safaie N, Gholivand K, Mehrabadi M, Bonsaii M. Mode of action of 3-butylidene phthalide as a competent natural pesticide. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:228-236. [PMID: 32284131 DOI: 10.1016/j.pestbp.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 06/11/2023]
Abstract
In this study, the biological activities and mode of action of 3-butylidene phthalide (3-BPH) were studied. 3-BPH had a superior efficiency against microsclerotia of Macrophomina phaseolina compared to the commercial fungicide tricyclazole. The microsclerotia formation and pigmentation were inhibited at 100 μg/mL. Moreover, the fungicide exhibited in silico affinity toward trihydroxy naphthalene reductase (3HNR). Both 3-BPH and tricyclazole showed congruence in the orientation and interaction within the 3HNR active site. 3-BPH displayed a strong interaction with SER-164, TYR-178, and TYR-223, with estimated binding energy and inhibition constant of -6.78 kcal mol-1, and Ki = 12.6 μM, respectively. Furthermore, it showed in vitro and in silico inhibitory activity against Drosophila melanogaster acetylcholinesterase in a concentration-dependent manner with IC50 = 730 μg/mL. It also impaired Galleria mellonella phenol oxidase enzyme, which corresponds with the insect's immune system. Phytotoxicity of 3-BPH was evident against Lemna minor at 1000 μg /mL; nevertheless, it was nontoxic at the concentrations inhibiting M. phaseolina microsclerotia and dark pigments suggest that it may be safe for use on other plants at low doses. Further assays are wanted to develop 3-BPH as a novel crop protection compound.
Collapse
Affiliation(s)
- Mohsen Abbod
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, P.O.B. 14115-336, Tehran, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, P.O.B. 14115-336, Tehran, Iran.
| | - Khodayar Gholivand
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran
| | - Mahyar Bonsaii
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
109
|
Tang YY, Liu QN, Wang C, Yang TT, Tang BP, Zhou CL, Dai LS. Proteomic analysis of differentially expressed proteins in the lipopolysaccharide-stimulated hepatopancreas of the freshwater crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2020; 98:318-323. [PMID: 31972292 DOI: 10.1016/j.fsi.2020.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/05/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Procambarus clarkii is one of the most important aquatic invertebrates in China and has high commercial value. However, aquaculture has suffered great economic loss due to outbreaks of infectious diseases in P. clarkii. To identify red swamp crayfish related proteins involved in the response to bacterial infection, we analysed immune-related proteins following lipopolysaccharide (LPS) stimulation by quantitative proteomics. The proteome of the hepatopancreas of P. clarkii challenged with LPS and phosphate-buffered saline was analysed to evaluate the immune response. Based on liquid chromatography coupled with tandem mass spectrometry, 16 upregulated and 29 downregulated proteins were identified. A Gene Ontology analysis demonstrated 5 biological process, 11 cellular component, and 6 molecular function subcategories. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the identified proteins were mainly involved in metabolism, phagosome, and ribosome. Real-time quantitative reverse transcription-PCR revealed that eight immune-related genes were upregulated after LPS stimulation compared to the control. Taken together, the data enhance our understanding of the immune response of crayfish to LPS.
Collapse
Affiliation(s)
- Ying-Yu Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Cheng Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Ting-Ting Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
110
|
Prado R, Macedo-Salles PA, Duprat RC, Baptista ARS, Feder D, Lima JBP, Butt T, Ratcliffe NA, Mello CB. Action of Metarhizium brunneum (Hypocreales: Clavicipitaceae) Against Organophosphate- and Pyrethroid-Resistant Aedes aegypti (Diptera: Culicidae) and the Synergistic Effects of Phenylthiourea. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:454-462. [PMID: 31559435 DOI: 10.1093/jme/tjz161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 06/10/2023]
Abstract
Dengue, yellow fever, Zika, and chikungunya arboviruses are endemic in tropical countries and are transmitted by Aedes aegypti. Resistant populations of this mosquito against chemical insecticides are spreading worldwide. This study aimed to evaluate the biological effects of exposure of pesticide-sensitive Ae. aegypti larvae (Rockefeller) to conidia of the entomopathogen, Metarhizium brunneum, laboratory strains ARSEF 4556 and V275, and any synergistic activity of phenylthiourea (PTU). In addition, to investigate the nature of any cross-resistance mechanisms, these M. brunneum strains were tested against the Rockefeller larvae and two temephos- and deltamethrin-resistant wild mosquito populations from Rio de Janeiro. Treatment of Rockefeller larvae with 106 conidia/ml of ARSEF 4556 and V275 fungal strains resulted in significant decreased survival rates to 40 and 53.33%, respectively (P < 0.0001), compared with untreated controls. In contrast, exposure to 104 or 105 conidia/ml showed no such significant survival differences. However, the addition of PTU to the conidia in the bioassays significantly increased mortalities in all groups and induced a molt block. Experiments also showed no differences in Ae. aegypti mortalities between the fungal treated, wild pesticide-resistant populations and the Rockefeller sensitive strain. The results show the efficacy of M. brunneum in controlling Ae. aegypti larvae and the synergistic role of PTU in this process. Importantly, there was no indication of any cross-resistance mechanisms between Ae. aegypti sensitive or resistant to pesticides following treatment with the fungi. These results further support using M. brunneum as an alternative biological control agent against mosquito populations resistant to chemical insecticides.
Collapse
Affiliation(s)
- Rodrigo Prado
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
- Laboratory of Insect Biochemistry and Physiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Pãmella A Macedo-Salles
- Laboratório de Micologia Médica e Molecular, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - Rodrigo C Duprat
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - Andrea R S Baptista
- Laboratório de Micologia Médica e Molecular, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - Denise Feder
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - José Bento Pereira Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro
- Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil
| | - Tariq Butt
- Department of Biosciences, Swansea University, Singleton Park, Swansea, SA28PP Wales, UK
| | - Norman A Ratcliffe
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, SA28PP Wales, UK
| | - Cicero Brasileiro Mello
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
111
|
Yang L, Wang J, Jin H, Fang Q, Yan Z, Lin Z, Zou Z, Song Q, Stanley D, Ye G. Immune signaling pathways in the endoparasitoid, Pteromalus puparum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21629. [PMID: 31599031 DOI: 10.1002/arch.21629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Parasitoids serve as effective biocontrol agents for agricultural pests. However, they face constant challenges from host immune defense and numerous pathogens and must develop potent immune defense against these threats. Despite the recent advances in innate immunity, little is known about the immunological mechanisms of parasitoids. Here, we identified and characterized potential immune-related genes of the endoparasitoid, Pteromalus puparum, which act in regulating populations of some members of the Pieridae. We identified 216 immune-related genes based on interrogating the P. puparum genome and transcriptome databases. We categorized the cognate gene products into recognition molecules, signal moieties and effector proteins operating in four pathways, Toll, IMD, JAK/STAT, and JNK. Comparative analyses of immune-related genes from seven insect species indicate that recognition molecules and effector proteins are more expanded and diversified than signaling genes in these signal pathways. There are common 1:1 orthologs between the endoparasitoid P. puparum and its relative, the ectoparasitoid Nasonia vitripennis. The developmental expression profiles of immune genes randomly selected from the transcriptome analysis were verified by a quantitative polymerase chain reaction. Our work provides comprehensive analyses of P. puparum immune genes, some of which may be exploited in advancing parasitoid-based biocontrol technologies.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongxia Jin
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, 1503 S. Providence Rd, Columbia, Missouri, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
112
|
Kwon H, Yang Y, Kumar S, Lee DW, Bajracharya P, Calkins TL, Kim Y, Pietrantonio PV. Characterization of the first insect prostaglandin (PGE 2) receptor: MansePGE 2R is expressed in oenocytoids and lipoteichoic acid (LTA) increases transcript expression. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103290. [PMID: 31790798 DOI: 10.1016/j.ibmb.2019.103290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
In arthropods, eicosanoids derived from the oxygenated metabolism of arachidonic acid are significant in mediating immune responses. However, the lack of information about insect eicosanoid receptors is an obstacle to completely decipher immune mechanisms underlying both eicosanoid downstream signal cascades and their relationship to immune pathogen-associated molecular patterns (PAMPs). Here, we cloned and sequenced a G protein-coupled receptor (MW 46.16 kDa) from the model lepidopteran, Manduca sexta (Sphingidae). The receptor shares similarity of amino acid motifs to human prostaglandin E2 (PGE2) receptors, and phylogenetic analysis supports its classification as a prostaglandin receptor. In agreement, the recombinant receptor was activated by PGE2 resulting in intracellular cAMP increase, and therefore designated MansePGE2R. Expression of MansePGE2R in Sf9 cells in which the endogenous orthologous receptor had been silenced showed similar cAMP increase upon PGE2 challenge. Receptor transcript expression was identified in various tissues in larvae and female adults, including Malpighian tubules, fat body, gut and hemocytes, and in female ovaries. In addition to the cDNA cloned that encodes the functional receptor, an mRNA was found featuring the poly-A tail but lacking the predicted transmembrane (TM) regions 2 and 3, suggesting the possibility that internally deleted receptor proteins exist in insects. Immunocytochemistry and in situ hybridization revealed that among hemocytes, the receptor was exclusively localized in the oenocytoids. Larval immune challenges injecting bacterial components showed that lipoteichoic acid (LTA) increased MansePGE2R expression in hemocytes. In contrast, injection of LPS or peptidoglycan did not increase MansePGE2R transcript levels in hemocytes, suggesting the LTA-associated increase in receptor transcript is regulated through a distinct pathway. This study provides the first characterization of an eicosanoid receptor in insects, and paves the way for establishing the hierarchy in signaling steps required for establishing insect immune responses to infections.
Collapse
Affiliation(s)
- Hyeogsun Kwon
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Sunil Kumar
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea.
| | - Dae-Weon Lee
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Prati Bajracharya
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Travis L Calkins
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea.
| | | |
Collapse
|
113
|
Yang WJ, Chen CX, Yan Y, Xu KK, Li C. Clip-Domain Serine Protease Gene ( LsCLIP3) Is Essential for Larval-Pupal Molting and Immunity in Lasioderma serricorne. Front Physiol 2020; 10:1631. [PMID: 32082184 PMCID: PMC7005593 DOI: 10.3389/fphys.2019.01631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/26/2019] [Indexed: 12/18/2022] Open
Abstract
Clip-domain serine proteases (CLIPs) play crucial roles in insect development and innate immunity. In this study, we identified a CLIP gene (designated LsCLIP3) from the cigarette beetle Lasioderma serricorne. LsCLIP3 contains a 1,773-bp open reading frame (ORF) encoding a 390-amino-acid protein and shows a conserved clip domain and a trypsin-like serine protease domain. Phylogenetic analysis indicated that LsCLIP3 was orthologous to the CLIP-B subfamily. LsCLIP3 was prominently expressed in larva, pupa, and early adult stages. In larval tissues, it was highly expressed in the integument and fat body. The expression of LsCLIP3 was induced by 20-hydroxyecdysone. A similar induction was also found by peptidoglycans from Escherichia coli and Staphylococcus aureus. RNA interference (RNAi)-mediated silencing of LsCLIP3 disrupted larval–pupal molting and specifically reduced the expression of genes in 20-hydroxyecdysone synthesis and signaling pathway. The chitin amounts of LsCLIP3 RNAi larvae were greatly decreased, and expressions of six chitin metabolic-related genes were significantly reduced. Knockdown of LsCLIP3 increased larval sensitivity to Gram-negative and Gram-positive bacteria. There was significantly decreased expression of four antimicrobial peptide (AMP) genes. The results suggest that LsCLIP3 is an important component of the larva to pupa molt and for the immunity of L. serricorne.
Collapse
Affiliation(s)
- Wen-Jia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Chun-Xu Chen
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Yi Yan
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Kang-Kang Xu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
114
|
Lu Y, Su F, Li Q, Zhang J, Li Y, Tang T, Hu Q, Yu XQ. Pattern recognition receptors in Drosophila immune responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103468. [PMID: 31430488 DOI: 10.1016/j.dci.2019.103468] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 05/08/2023]
Abstract
Insects, which lack the adaptive immune system, have developed sophisticated innate immune system consisting of humoral and cellular immune responses to defend against invading microorganisms. Non-self recognition of microbes is the front line of the innate immune system. Repertoires of pattern recognition receptors (PRRs) recognize the conserved pathogen-associated molecular patterns (PAMPs) present in microbes, such as lipopolysaccharide (LPS), peptidoglycan (PGN), lipoteichoic acid (LTA) and β-1, 3-glucans, and induce innate immune responses. In this review, we summarize current knowledge of the structure, classification and roles of PRRs in innate immunity of the model organism Drosophila melanogaster, focusing mainly on the peptidoglycan recognition proteins (PGRPs), Gram-negative bacteria-binding proteins (GNBPs), scavenger receptors (SRs), thioester-containing proteins (TEPs), and lectins.
Collapse
Affiliation(s)
- Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China; Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fanghua Su
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qilin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yanjun Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ting Tang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qihao Hu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China; Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
115
|
Continuous Agrochemical Treatments in Agroecosystems Can Modify the Effects of Pendimethalin-Based Herbicide Exposure on Immunocompetence of a Beneficial Ground Beetle. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11120241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herbicide application for pest control can negatively affect soil biodiversity, mainly acting on species that are involved in ecosystem service. In this study, field and laboratory trials were designed to assay herbicide exposure effects on the constitutive immunity of Harpalus (Pseudoophonus) rufipes (De Geer, 1774), a beneficial carabid species that inhabits croplands. The circulating hemocytes (THCs) and plasmatic levels of basal and total phenoloxidase (PO), as well as lysozyme-like enzyme activities, were measured as markers of exposure. In laboratory tests, the exposure to realistic field doses of pendimethalin-based herbicides for two, seven and 21 days caused a reduction in enzyme activities in beetles from organic crops. In beetles from conventional fields, the THCs and total PO activity decreased significantly at two and seven days after the initial exposure, though no effects were recorded on basal PO and lysozyme like-enzyme activities. These differences in enzyme activities and THCs indicate that the interference of pendimethalin with immune parameters clearly depends on both the different field conditions from which the population comes and the cumulative effects of repeated applications over the time.
Collapse
|
116
|
Vergis J, Malik SS, Pathak R, Kumar M, Ramanjaneya S, Kurkure NV, Barbuddhe SB, Rawool DB. Antimicrobial Efficacy of Indolicidin Against Multi-Drug Resistant Enteroaggregative Escherichia coli in a Galleria mellonella Model. Front Microbiol 2019; 10:2723. [PMID: 31849877 PMCID: PMC6895141 DOI: 10.3389/fmicb.2019.02723] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance against enteroaggregative Escherichia coli (EAEC), an emerging food-borne pathogen, has been observed in an increasing trend recently. In the recent wake of antimicrobial resistance, alternate strategies especially, cationic antimicrobial peptides (AMPs) have attracted considerable attention to source antimicrobial technology solutions. This study evaluated the in vitro antimicrobial efficacy of Indolicidin against multi-drug resistant enteroaggregative Escherichia coli (MDR-EAEC) strains and further to assess its in vivo antimicrobial efficacy in Galleria mellonella larval model. The minimum inhibitory concentration (MIC; 32 μM) and minimum bactericidal concentration (MBC; 64 μM) of Indolicidin against MDR-EAEC was determined by micro broth dilution method. Indolicidin was also tested for its stability (high-end temperatures, physiological concentration of salts and proteases); safety (sheep RBCs; HEp-2 and RAW 264.7 cell lines); effect on beneficial microflora (Lactobacillus rhamnosus and Lactobacillus acidophilus) and its mode of action (flow cytometry; nitrocefin and ONPG uptake). In vitro time-kill kinetic assay of MDR-EAEC treated with Indolicidin was performed. Further, survival rate, MDR-EAEC count, melanization rate, hemocyte enumeration, cytotoxicity assay and histopathological examination were carried out in G. mellonella model to assess in vivo antimicrobial efficacy of Indolicidin against MDR-EAEC strains. Indolicidin was tested stable at high temperatures (70°C; 90°C), physiological concentration of cationic salts (NaCl; MgCl2) and proteases, except for trypsin and tested safe with sheep RBCs and cell lines (RAW 264.7; HEp-2) at MIC (1X and 2X); the beneficial flora was not inhibited. Indolicidin exhibited outer membrane permeabilization in a concentration- and time-dependent manner. In vitro time-kill assay revealed concentration-cum-time dependent clearance of MDR-EAEC in Indolicidin-treated groups at 120 min, while, in G. mellonella, the infected group treated with Indolicidin revealed an increased survival rate, immunomodulatory effect, reduced MDR-EAEC counts and were tested safe to the larval cells which was concurred histopathologically. To conclude, the results suggests Indolicidin as an effective antimicrobial candidate against MDR-EAEC and we recommend its further investigation in appropriate animal models (mice/piglets) before its application in the target host.
Collapse
Affiliation(s)
- Jess Vergis
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Richa Pathak
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Manesh Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Sunitha Ramanjaneya
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | | | - Deepak Bhiwa Rawool
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
117
|
Toufeeq S, Wang J, Zhang SZ, Li B, Hu P, Zhu LB, You LL, Xu JP. Bmserpin2 Is Involved in BmNPV Infection by Suppressing Melanization in Bombyx mori. INSECTS 2019; 10:insects10110399. [PMID: 31717928 PMCID: PMC6921080 DOI: 10.3390/insects10110399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022]
Abstract
Melanization, an important defense response, plays a vital role in arthropod immunity. It is mediated by serine proteases (SPs) that convert the inactive prophenoloxidase (PPO) to active phenoloxidase (PO) and is tightly regulated by serine protease inhibitors (serpins) which belong to a well distributed superfamily in invertebrates, participating in immune mechanisms and other important physiological processes. Here, we investigated the Bmserpin2 gene which was identified from a transcriptome database in response to Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that Bmserpin2 was expressed in all tissues, with maximum expression in fat body. Upon BmNPV infection, the expression of Bmserpin2 was up-regulated in P50 (susceptible strain) and BC9 (resistant strain) in haemocytes, fat body and the midgut. However, up-regulation was delayed in BC9 (48 or 72 h), in contrast to P50 (24 h), after BmNPV infection. Meanwhile, Bmserpin2 could delay or inhibit melanization in silkworm haemolymph. Significant increased PO activity can be observed in Bmserpin2-depleted haemolymph under NPV infection. Furthermore, the viral genomic DNA copy number was decreased in Bmserpin2-depleted haemolymph. We conclude that Bmserpin2 is an inducible gene which might be involved in the regulation of PPO activation and suppressed melanization, and have a potential role in the innate immune system of B. mori.
Collapse
Affiliation(s)
- Shahzad Toufeeq
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.T.); (J.W.); (S.-Z.Z.); (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.T.); (J.W.); (S.-Z.Z.); (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.T.); (J.W.); (S.-Z.Z.); (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.T.); (J.W.); (S.-Z.Z.); (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Pei Hu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.T.); (J.W.); (S.-Z.Z.); (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.T.); (J.W.); (S.-Z.Z.); (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Ling-Ling You
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.T.); (J.W.); (S.-Z.Z.); (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.T.); (J.W.); (S.-Z.Z.); (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
- Correspondence:
| |
Collapse
|
118
|
Nosema bombycis suppresses host hemolymph melanization through secreted serpin 6 inhibiting the prophenoloxidase activation cascade. J Invertebr Pathol 2019; 168:107260. [DOI: 10.1016/j.jip.2019.107260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 01/09/2023]
|
119
|
Long Y, Zhang Y, Zhao T, Zhou X, Wang Y, Chen Y, Yang Y. Positive Effects of the Tea Catechin, (-)-Epigallocatechin-3-Gallate, on Gut Prophenoloxidase and the Survival of Ectropis obliqua (Lepidoptera: Geometridae). ENVIRONMENTAL ENTOMOLOGY 2019; 48:1173-1177. [PMID: 31305889 DOI: 10.1093/ee/nvz087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 06/10/2023]
Abstract
Ectropis obliqua Prout is the main pest of the tea plant Camellia sinensis (L.) O. Kuntze in China, affecting an annual area of more than one million acres. (-)-Epigallocatechin-3-gallate (EGCG) is the major catechin in tea leaves. Here, we show that EGCG is highly efficient in increasing the survival rate of E. obliqua larvae. We also compared the gut peroxidase (PO) activity between EGCG-fed and control larvae. EGCG-fed larvae had significantly greater PO activity levels than control larvae. Western blotting validated these results. Gut PO activity levels of larvae fed an artificial diet gradually decreased and disappeared completely by day 5. We hypothesize that the increased survival rate of EGCG-fed larvae was associated with increased PO activity. This research provides evidence that E. obliqua larvae have adapted to, and may even benefit from, secondary compounds found in tea leaves.
Collapse
Affiliation(s)
- Yanhua Long
- School of Life Science, Anhui Agriculture University, Hefei, China
| | - Yong Zhang
- School of Life Science, Anhui Agriculture University, Hefei, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tianyu Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaomin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yun Wang
- Luan Academy of Agricultural Sciences, Luan, China
| | - Yiran Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
120
|
Spodoptera frugiperda transcriptional response to infestation by Steinernema carpocapsae. Sci Rep 2019; 9:12879. [PMID: 31501491 PMCID: PMC6733877 DOI: 10.1038/s41598-019-49410-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/24/2019] [Indexed: 12/28/2022] Open
Abstract
Steinernema carpocapsae is an entomopathogenic nematode (EPN) used in biological control of agricultural pest insects. It enters the hemocoel of its host via the intestinal tract and releases its symbiotic bacterium Xenorhabdus nematophila. In order to improve our knowledge about the physiological responses of its different hosts, we examined the transcriptional responses to EPN infestation of the fat body, the hemocytes and the midgut in the lepidopteran pest Spodoptera frugiperda. The tissues poorly respond to the infestation at an early time post-infestation of 8 h with only 5 genes differentially expressed in the fat body of the caterpillars. Strong transcriptional responses are observed at a later time point of 15 h post-infestation in all three tissues. Few genes are differentially expressed in the midgut but tissue-specific panels of induced metalloprotease inhibitors, immune receptors and antimicrobial peptides together with several uncharacterized genes are up-regulated in the fat body and the hemocytes. Among the most up-regulated genes, we identified new potential immune effectors, unique to Lepidoptera, which show homology with bacterial genes of unknown function. Altogether, these results pave the way for further functional studies of the responsive genes' involvement in the interaction with the EPN.
Collapse
|
121
|
Bensaoud C, Hackenberg M, Kotsyfakis M. Noncoding RNAs in Parasite–Vector–Host Interactions. Trends Parasitol 2019; 35:715-724. [DOI: 10.1016/j.pt.2019.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022]
|
122
|
Salcedo-Porras N, Lowenberger C. The innate immune system of kissing bugs, vectors of chagas disease. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:119-128. [PMID: 31014953 DOI: 10.1016/j.dci.2019.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/18/2019] [Indexed: 05/08/2023]
Abstract
Kissing bugs have long served as models to study many aspects of insect physiology. They also serve as vectors for the parasite Trypanosoma cruzi that causes Chagas disease in humans. The overall success of insects is due, in part, to their ability to recognize parasites and pathogens as non-self and to eliminate them using their innate immune system. This immune system comprises physical barriers, cellular responses (phagocytosis, nodulation and encapsulation), and humoral factors (antimicrobial peptides and the prophenoloxidase cascade). Trypanosoma cruzi survives solely in the gastrointestinal (GI) tract of the vector; if it migrates to the hemocoel it is eliminated. Kissing bugs may not mount a vigorous immune response in the GI tract to avoid eliminating obligate symbiotic microbes on which they rely for survival. Here we describe the current knowledge of innate immunity in kissing bugs and new opportunities using genomic and transcriptomic approaches to study the complex triatomine-trypanosome-microbiome interactions.
Collapse
Affiliation(s)
- Nicolás Salcedo-Porras
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, V5A 1S6, BC, Canada.
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, V5A 1S6, BC, Canada.
| |
Collapse
|
123
|
New Shuttle Vectors for Real-Time Gene Expression Analysis in Multidrug-Resistant Acinetobacter Species: In Vitro and In Vivo Responses to Environmental Stressors. Appl Environ Microbiol 2019; 85:AEM.01334-19. [PMID: 31324623 DOI: 10.1128/aem.01334-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/06/2019] [Indexed: 11/20/2022] Open
Abstract
The Acinetobacter genus includes species of opportunistic pathogens and harmless saprophytes. The type species, Acinetobacter baumannii, is a nosocomial pathogen renowned for being multidrug resistant (MDR). Despite the clinical relevance of infections caused by MDR A. baumannii and a few other Acinetobacter spp., the regulation of their pathogenicity remains elusive due to the scarcity of adequate genetic tools, including vectors for gene expression analysis. Here, we report the generation and testing of a series of Escherichia coli-Acinetobacter promoter-probe vectors suitable for gene expression analysis in Acinetobacter spp. These vectors, named pLPV1Z, pLPV2Z, and pLPV3Z, carry both gentamicin and zeocin resistance markers and contain lux, lacZ, and green fluorescent protein (GFP) reporter systems downstream of an extended polylinker, respectively. The presence of a toxin-antitoxin gene system and the high copy number allow pLPV plasmids to be stably maintained even without antibiotic selection. The pLPV plasmids can easily be introduced by electroporation into MDR A. baumannii belonging to the major international lineages as well as into species of the Acinetobacter calcoaceticus-A. baumannii complex. The pLPV vectors have successfully been employed to study the regulation of stress-responsive A. baumannii promoters, including the DNA damage-inducible uvrABC promoter, the ethanol-inducible adhP and yahK promoters, and the iron-repressible promoter of the acinetobactin siderophore biosynthesis gene basA A lux-tagged A. baumannii ATCC 19606T strain, carrying the iron-responsive pLPV1Z::PbasA promoter fusion, allowed in vivo and ex vivo monitoring of the bacterial burden in the Galleria mellonella infection model.IMPORTANCE The short-term adaptive response to environmental cues greatly contributes to the ecological success of bacteria, and profound alterations in bacterial gene expression occur in response to physical, chemical, and nutritional stresses. Bacteria belonging to the Acinetobacter genus are ubiquitous inhabitants of soil and water though some species, such as Acinetobacter baumannii, are pathogenic and cause serious concern due to antibiotic resistance. Understanding A. baumannii pathobiology requires adequate genetic tools for gene expression analysis, and to this end we developed user-friendly shuttle vectors to probe the transcriptional responses to different environmental stresses. Vectors were constructed to overcome the problem of antibiotic selection in multidrug-resistant strains and were equipped with suitable reporter systems to facilitate signal detection. By means of these vectors, the transcriptional response of A. baumannii to DNA damage, ethanol exposure, and iron starvation was investigated both in vitro and in vivo, providing insights into A. baumannii adaptation during stress and infection.
Collapse
|
124
|
Lü D, Xu P, Hou C, Gao K, Guo X. Label-free LC-MS/MS proteomic analysis of the hemolymph of silkworm larvae infected with Beauveria bassiana. J Invertebr Pathol 2019; 166:107227. [PMID: 31386830 DOI: 10.1016/j.jip.2019.107227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022]
Abstract
Beauveria bassiana, a pathogen of the economically important silkworm (Bombyx mori), causes serious losses in the sericulture industry; however, the mechanisms underlying B. bassiana infection and the silkworm response are not fully understood. To obtain new insights into the interaction between B. bassiana and its host, hemolymph samples from fifth instar silkworm larvae infected with B. bassiana were analyzed at 36-h post-inoculation using a label-free LC-MS/MS proteomic technique. In total, 671 proteins were identified in the hemolymph, including 87 differentially expressed proteins, 42 up-regulated and 45 down-regulated in infected larvae. Six were detected only in infected larvae, and five were detected only in uninfected larvae. Based on GO annotations, 48 of the differentially expressed proteins were involved in molecular functions, 42 were involved in biological processes, and 39 were involved in cell components. A KEGG pathway analysis indicated that these differentially expressed proteins participate in 85 signal transduction pathways, including the amoebiasis, MAPK signaling, Hippo signaling, Toll and Imd signaling, and lysosome pathways. The silkworm hemolymph is the main site for B. bassiana replication. We identified differentially expressed proteins involved in the regulation of the host response to B. bassiana infection, providing important experimental data for the identification of key factors contributing to the interaction between the pathogenic fungus and its host.
Collapse
Affiliation(s)
| | - Ping Xu
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Chengxiang Hou
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Kun Gao
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Xijie Guo
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
| |
Collapse
|
125
|
Gu QJ, Zhou SM, Zhou YN, Huang JH, Shi M, Chen XX. A trypsin inhibitor-like protein secreted by Cotesia vestalis teratocytes inhibits hemolymph prophenoloxidase activation of Plutella xylostella. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:41-48. [PMID: 31026441 DOI: 10.1016/j.jinsphys.2019.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 05/26/2023]
Abstract
To establish successful infections, endoparasitoid wasps must develop strategies to evade immune responses of the host. Here, we identified and characterized a teratocytes-expressed gene encoding a trypsin inhibitor-like protein containing a cysteine-rich domain from Cotesia vestalis, CvT-TIL. CvT-TIL had a high expression level during the later developmental stage of teratocytes and was secreted into host hemolymph. Further experiments showed CvT-TIL strongly suppressed the prophenoloxidase activation of host hemolymph in a dose-dependent manner by interacting with PxPAP3 of PO cascade. Our results not only provide evidence for an inhibition between CvT-TIL gene and the host's melanization activity, but also expand our knowledge about the mechanisms by which parasitoids regulate humoral immunity of the host.
Collapse
Affiliation(s)
- Qi-Juan Gu
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China
| | - Shi-Min Zhou
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China
| | - Yue-Nan Zhou
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China
| | - Jian-Hua Huang
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China
| | - Min Shi
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China.
| | - Xue-Xin Chen
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China; State Key Lab of Rice Biology, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China
| |
Collapse
|
126
|
Kampatsikas I, Bijelic A, Pretzler M, Rompel A. A Peptide-Induced Self-Cleavage Reaction Initiates the Activation of Tyrosinase. Angew Chem Int Ed Engl 2019; 58:7475-7479. [PMID: 30825403 PMCID: PMC6563526 DOI: 10.1002/anie.201901332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Indexed: 01/11/2023]
Abstract
The conversion of inactive pro-polyphenol oxidases (pro-PPOs) into the active enzyme results from the proteolytic cleavage of its C-terminal domain. Herein, a peptide-mediated cleavage process that activates pro-MdPPO1 (Malus domestica) is reported. Mass spectrometry, mutagenesis studies, and X-ray crystal-structure analysis of pro-MdPPO1 (1.35 Å) and two separated C-terminal domains, one obtained upon self-cleavage of pro-MdPPO1 and the other one produced independently, were applied to study the observed self-cleavage. The sequence Lys 355-Val 370 located in the linker between the active and the C-terminal domain is indispensable for the self-cleavage. Partial introduction (Lys 352-Ala 360) of this peptide into the sequence of two other PPOs, MdPPO2 and aurone synthase (CgAUS1), triggered self-cleavage in the resulting mutants. This is the first experimental proof of a self-cleavage-inducing peptide in PPOs, unveiling a new mode of activation for this enzyme class that is independent of any external protease.
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Aleksandar Bijelic
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Matthias Pretzler
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| |
Collapse
|
127
|
Kampatsikas I, Bijelic A, Pretzler M, Rompel A. Eine peptidvermittelte Selbstspaltungsreaktion initiiert die Tyrosinaseaktivierung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ioannis Kampatsikas
- Universität WienFakultät für ChemieInstitut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| | - Aleksandar Bijelic
- Universität WienFakultät für ChemieInstitut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| | - Matthias Pretzler
- Universität WienFakultät für ChemieInstitut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| |
Collapse
|
128
|
Kim-Jo C, Gatti JL, Poirié M. Drosophila Cellular Immunity Against Parasitoid Wasps: A Complex and Time-Dependent Process. Front Physiol 2019; 10:603. [PMID: 31156469 PMCID: PMC6529592 DOI: 10.3389/fphys.2019.00603] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
Host-parasitoid interactions are among the most studied interactions between invertebrates because of their fundamental interest - the evolution of original traits in parasitoids - and applied, parasitoids being widely used in biological control. Immunity, and in particular cellular immunity, is central in these interactions, the host encapsulation response being specific for large foreign bodies such as parasitoid eggs. Although already well studied in this species, recent data on Drosophila melanogaster have unquestionably improved knowledge of invertebrate cellular immunity. At the same time, the venomics of parasitoids has expanded, notably those of Drosophila. Here, we summarize and discuss these advances, with a focus on an emerging "time-dependent" view of interactions outcome at the intra- and interspecific level. We also present issues still in debate and prospects for study. Data on the Drosophila-parasitoid model paves the way to new concepts in insect immunity as well as parasitoid wasp strategies to overcome it.
Collapse
Affiliation(s)
| | | | - Marylène Poirié
- INRA, CNRS, Institut Sophia Agrobiotech, Université Côte d’Azur, Sophia Antipolis, France
| |
Collapse
|
129
|
Miyashita A, Lee TYM, McMillan LE, Easy R, Adamo SA. Immunity for nothing and the eggs for free: Apparent lack of both physiological trade-offs and terminal reproductive investment in female crickets (Gryllus texensis). PLoS One 2019; 14:e0209957. [PMID: 31091239 PMCID: PMC6519836 DOI: 10.1371/journal.pone.0209957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/30/2019] [Indexed: 12/28/2022] Open
Abstract
Should females alter their reproductive strategy when attacked by pathogens? Two hypotheses provide opposite predictions. Terminal reproductive investment theory predicts that reproduction should increase when the risk of death increases. However, physiological trade-offs between reproduction and immune function might be expected to produce a decrease in reproduction during a robust immune response. There is evidence for both hypotheses. We examine whether age determines the effect of an immune challenge on reproductive strategy in long-winged females of the Texas field cricket, Gryllus texensis, when fed an ecologically valid (i.e. limited) diet. The limited diet reduced reproductive output. However, even under resource-limited conditions, immune challenge had no effect on the reproductive output of young or middle-aged females. Both reproductive output and immune function (lysozyme-like activity and phenoloxidase (PO) activity) increased with age, which is contrary to both hypotheses. We hypothesize that PO activity is pleiotropic and represents an investment in both reproduction and immune function. Three proPO genes (identified in a published RNA-seq dataset (transcriptome)) were expressed either in the fat body or the ovaries (supporting the hypothesis that PO is bifunctional). The possible bifunctionality of PO suggests that it may not be an appropriate immune measure for studies on immune/reproductive trade-offs. This study also suggests that the threshold for terminal reproductive investment may not decrease prior to senescence in some species.
Collapse
Affiliation(s)
- Atsushi Miyashita
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| | - Ting Yat Marco Lee
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Laura E. McMillan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Russell Easy
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Shelley A. Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
130
|
The prophenoloxidase system in Drosophila participates in the anti-nematode immune response. Mol Immunol 2019; 109:88-98. [DOI: 10.1016/j.molimm.2019.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022]
|
131
|
Wang XY, Li T, Johannes M, Xu JP, Sun X, Qin S, Xu PZ, Li MW, Wu YC. The regulation of crecropin-A and gloverin 2 by the silkworm Toll-like gene 18 wheeler in immune response. J Invertebr Pathol 2019; 164:49-58. [PMID: 31026465 DOI: 10.1016/j.jip.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/26/2019] [Accepted: 04/22/2019] [Indexed: 01/21/2023]
Abstract
The innate immune system is conserved among different insect species in its response to microorganism infection. The transmembrane receptors of the Toll superfamily play an important role in activating immune response, however, the function of silkworm Toll family member 18 Wheeler (18 W) remained unclear. Here, the 18w gene in silkworm was characterized. A relatively high transcription level of Bm18w mRNA was found in Malpighian tubules, and in eggs, larvae pre-molt to fourth instar, pupae and adults. When silkworm larvae were infected with E. coli or S. aureus, Bm18w showed a significant response, especially to E. coli, but did not have antibacterial activity. To further identify the downstream antimicrobial peptide genes of Bm18w, expression of Bm18w was knocked down with siRNA in vitro, resulting in significant decreases of cecropin-A, gloverin 2, and moricin B3. The overexpression of Bm18w was carried out using pIZT/V5-His-mCherry insect vector in BmN cells and significant upregulation of cecropin-A and gloverin 2 was detected, as well as upregulation of attacin and defensin. Based on the results, we concluded that Bm18w is involved in response to bacterial infection by selectively inducing the expression of antimicrobial peptide genes, especially cecropin-A and gloverin 2. This study provides valuable data to supplement understanding of the immune pathway of the silkworm.
Collapse
Affiliation(s)
- Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, People's Republic of China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu 212018, People's Republic of China.
| | - Tao Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, People's Republic of China
| | - Mapuranga Johannes
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, People's Republic of China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, People's Republic of China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu 212018, People's Republic of China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, People's Republic of China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu 212018, People's Republic of China.
| | - Ping-Zhen Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, People's Republic of China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu 212018, People's Republic of China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, People's Republic of China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu 212018, People's Republic of China.
| | - Yang-Chun Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, People's Republic of China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu 212018, People's Republic of China.
| |
Collapse
|
132
|
Sheehan G, Garvey A, Croke M, Kavanagh K. Innate humoral immune defences in mammals and insects: The same, with differences ? Virulence 2019; 9:1625-1639. [PMID: 30257608 PMCID: PMC7000196 DOI: 10.1080/21505594.2018.1526531] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The insect immune response demonstrates many similarities to the innate immune response of mammals and a wide range of insects is now employed to assess the virulence of pathogens and produce results comparable to those obtained using mammals. Many of the humoral responses in insects and mammals are similar (e.g. insect transglutaminases and human clotting factor XIIIa) however a number show distinct differences. For example in mammals, melanization plays a role in protection from solar radiation and in skin and hair pigmentation. In contrast, insect melanization acts as a defence mechanism in which the proPO system is activated upon pathogen invasion. Human and insect antimicrobial peptides share distinct structural and functional similarities, insects produce the majority of their AMPs from the fat body while mammals rely on production locally at the site of infection by epithelial/mucosal cells. Understanding the structure and function of the insect immune system and the similarities with the innate immune response of mammals will increase the attractiveness of using insects as in vivo models for studying host – pathogen interactions.
Collapse
Affiliation(s)
- Gerard Sheehan
- a Department of Biology , Maynooth University , Maynooth , Ireland
| | - Amy Garvey
- a Department of Biology , Maynooth University , Maynooth , Ireland
| | - Michael Croke
- a Department of Biology , Maynooth University , Maynooth , Ireland
| | - Kevin Kavanagh
- a Department of Biology , Maynooth University , Maynooth , Ireland
| |
Collapse
|
133
|
Park K, Kim WS, Kwak IS. Endocrine-disrupting chemicals impair the innate immune prophenoloxidase system in the intertidal mud crab, Macrophthalmus japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 87:322-332. [PMID: 30682408 DOI: 10.1016/j.fsi.2019.01.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Endocrine-disrupting chemicals (EDCs), xenobiotics that interfere with endogenous hormone function, have been studied for their impacts in aquatic environments. However, there is limited information about the potentially hazardous impact of bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) on the marine environment. The aim of this study was to investigate the effects of BPA and DEHP on the immune response of the intertidal mud crab, Macrophthalmus japonicus. In order to examine immunological responses involving the prophenoloxidase (proPO) system, mRNA transcript and activity levels of six immune-related genes, including lipopolysaccharide and β-1,3-glucan-binding protein (LGBP), proPO, phenoloxidase (PO), peroxinectin (PE), serine protease inhibitor (Serpin), and trypsin (Tryp), were assessed in M. japonicus hepatopancreas and gills exposed to BPA or DEHP. Expression of immune genes generally decreased in M. japonicus hepatopancreas and gills exposed to all concentrations of BPA by days 4 and 7. However, at day 1, expression of Serpin and Tryp genes was significantly increased in M. japonicus hepatopancreas and gills exposed to BPA. For DEHP exposure, all genes, with the exception of Serpin, were significantly downregulated in M. japonicus gills. In the hepatopancreas, gene expression of PO, proPO, and LGBP increased at day 1, and then decreased by day 7, while mRNA expression of Serpin and Tryp exhibited up-regulation over all exposure periods. In addition, PE gene expression was upregulated in hepatopancreas at day 7 in a dose-dependent manner. Taken together, these results indicated that the crab immune responses were perturbed by exposure to BPA, and, in particular, DEHP.
Collapse
Affiliation(s)
- Kiyun Park
- Faculty of Marine Technology, Chonnam National University, Yeosu, 550-749, South Korea
| | - Won-Seok Kim
- Faculty of Marine Technology, Chonnam National University, Yeosu, 550-749, South Korea
| | - Ihn-Sil Kwak
- Faculty of Marine Technology, Chonnam National University, Yeosu, 550-749, South Korea.
| |
Collapse
|
134
|
Kampatsikas I, Bijelic A, Rompel A. Biochemical and structural characterization of tomato polyphenol oxidases provide novel insights into their substrate specificity. Sci Rep 2019; 9:4022. [PMID: 30858490 PMCID: PMC6411738 DOI: 10.1038/s41598-019-39687-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/28/2019] [Indexed: 11/09/2022] Open
Abstract
Polyphenol oxidases (PPOs) contain the structurally similar enzymes tyrosinases (TYRs) and catechol oxidases (COs). Two cDNAs encoding pro-PPOs from tomato (Solanum lycopersicum) were cloned and heterologously expressed in Escherichia coli. The two pro-PPOs (SlPPO1-2) differ remarkably in their activity as SlPPO1 reacts with the monophenols tyramine (kcat = 7.94 s-1) and phloretin (kcat = 2.42 s-1) and was thus characterized as TYR, whereas SlPPO2 accepts only diphenolic substrates like dopamine (kcat = 1.99 s-1) and caffeic acid (kcat = 20.33 s-1) rendering this enzyme a CO. This study, for the first time, characterizes a plant TYR and CO originating from the same organism. Moreover, X-ray structure analysis of the latent holo- and apo-SlPPO1 (PDB: 6HQI and 6HQJ) reveals an unprecedented high flexibility of the gatekeeper residue phenylalanine (Phe270). Docking studies showed that depending on its orientation the gatekeeper residue could either stabilize and correctly position incoming substrates or hinder their entrance into the active site. Furthermore, phloretin, a substrate of SIPPO1 (Km = 0.11 mM), is able to approach the active centre of SlPPO1 with both phenolic rings. Kinetic and structural results indicate that phloretin could act as a natural substrate and connote the participation of PPOs in flavonoid-biosynthesis.
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria
| | - Aleksandar Bijelic
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Wien, Austria.
| |
Collapse
|
135
|
Singkum P, Suwanmanee S, Pumeesat P, Luplertlop N. A powerful in vivo alternative model in scientific research: Galleria mellonella. Acta Microbiol Immunol Hung 2019; 66:31-55. [PMID: 30816806 DOI: 10.1556/030.66.2019.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Murine models are suggested as the gold standard for scientific research, but they have many limitations of ethical and logistical concern. Then, the alternative host models have been developed to use in many aspects especially in invertebrate animals. These models are selected for many areas of research including genetics, physiology, biochemistry, evolution, disease, neurobiology, and behavior. During the past decade, Galleria mellonella has been used for several medical and scientific researches focusing on human pathogens. This model commonly used their larvae stage due to their easy to use, non-essential special tools or special technique, inexpensive, short life span, and no specific ethical requirement. Moreover, their innate immune response close similarly to mammals, which correlate with murine immunity. In this review, not only the current knowledge of characteristics and immune response of G. mellonella, and the practical use of these larvae in medical mycology research have been presented, but also the better understanding of their limitations has been provided.
Collapse
Affiliation(s)
- Pantira Singkum
- 1 Faculty of Tropical Medicine, Department of Microbiology and ImmunologyMahidol University, Bangkok, Thailand
| | - San Suwanmanee
- 1 Faculty of Tropical Medicine, Department of Microbiology and ImmunologyMahidol University, Bangkok, Thailand
| | - Potjaman Pumeesat
- 1 Faculty of Tropical Medicine, Department of Microbiology and ImmunologyMahidol University, Bangkok, Thailand
- 2 Faculty of Science and Technology, Department of Medical TechnologyBansomdejchaopraya Rajabhat University, Bangkok, Thailand
| | - Natthanej Luplertlop
- 1 Faculty of Tropical Medicine, Department of Microbiology and ImmunologyMahidol University, Bangkok, Thailand
| |
Collapse
|
136
|
Muñiz-González AB, Martínez-Guitarte JL. Effects of single exposure and binary mixtures of ultraviolet filters octocrylene and 2-ethylhexyl 4-(dimethylamino) benzoate on gene expression in the freshwater insect Chironomus riparius. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35501-35514. [PMID: 30350147 DOI: 10.1007/s11356-018-3516-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Ultraviolet filters are used extensively in the production of many personal care and industrial products. These products can inadvertently pollute the environment through recreational activities. They have been associated with endocrine disruption in vertebrates but their effects in invertebrates are poorly understood. Chironomus riparius is a species of the dipteran order, with aquatic larvae that are frequently used in toxicity tests. Previously, we showed that octocrylene (OC) and 2-ethylhexyl 4-(dimethylamino) benzoate (OD-PABA) differentially affected the mRNA levels of the ecdysone receptor and Hsp70 genes. For a better understanding of their mode of action, transcriptional activity by real-time PCR was analyzed in fourth instar larvae exposed to OC, OD-PABA, or a binary mixture of both. We studied 16 genes related to the endocrine system, stress, the immune system, and biotransformation mechanisms to elucidate the putative interactions between these compounds. No response was observed for the genes involved in biotransformation, suggesting that enzymes other than cytochromes P450 and glutathione-S-transferases (GSTs) could get involved in transformation of these compounds. Similarly, no response was observed for endocrine-related genes while the stress gene HYOU1 was inhibited by OD-PABA, suggesting an effect in response to hypoxia. In addition, no significant interactions were observed following exposure to a binary mixture of these compounds. Overall, the results suggest a weak, acute response in different metabolic pathways and a lack of interaction between the compounds. Finally, new genes are identified in this organism, opening the possibility to analyze new cellular pathways as targets of toxicants.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040, Madrid, Spain.
- Facultad de Ciencias, UNED, Paseo de la Senda del Rey 9, 28040, Madrid, Spain.
| |
Collapse
|
137
|
Zhang HZ, Li YY, An T, Huang FX, Wang MQ, Liu CX, Mao JJ, Zhang LS. Comparative Transcriptome and iTRAQ Proteome Analyses Reveal the Mechanisms of Diapause in Aphidius gifuensis Ashmead (Hymenoptera: Aphidiidae). Front Physiol 2018; 9:1697. [PMID: 30555341 PMCID: PMC6284037 DOI: 10.3389/fphys.2018.01697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/12/2018] [Indexed: 11/17/2022] Open
Abstract
Aphidius gifuensis Ashmead (Hymenoptera: Aphidiidae) is a solitary endoparasitoid used in the biological control of various aphids. Diapause plays an important role in the successful production and deployment of A. gifuensis. Diapause can effectively extend the shelf life of biological control agents and solve several practical production problems like long production cycles, short retention periods, and discontinuities between supply and demand. In recent years, studies have been conducted on the environmental regulation and physiological and biochemical mechanisms of diapause in A. gifuensis. Nevertheless, the molecular mechanism of diapause in this species remains unclear. In this study, we compared the transcriptomes and proteomes of diapause and non-diapause A. gifuensis to identify the genes and proteins associated with this process. A total of 557 transcripts and 568 proteins were differentially expressed between the two groups. Among them, (1) genes involved in trehalose synthesis such as glycogen synthase, glycogen phosphorylase, and trehalose 6-phosphate synthase were upregulated in diapause at mRNA or protein level while glycolysis and gluconeogenesis-related genes were downregulated, suggesting that A. gifuensis stores trehalose as an energy resource and cryoprotectant; (2) the expression of immune-related genes like C-type lectins, hemocyanin, and phenoloxidase was increased, which helps to maintain immunity during diapause; (3) a chitin synthase and several cuticular protein genes were upregulated to harden the cuticle of diapausing A. gifuensis larval. These findings improve our understanding of A. gifuensis. diapause and provide the foundation for further pertinent studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li-Sheng Zhang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Sino-American Biological Control Laboratory, USDA-ARS/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
138
|
Pereira TC, de Barros PP, Fugisaki LRDO, Rossoni RD, Ribeiro FDC, de Menezes RT, Junqueira JC, Scorzoni L. Recent Advances in the Use of Galleria mellonella Model to Study Immune Responses against Human Pathogens. J Fungi (Basel) 2018; 4:jof4040128. [PMID: 30486393 PMCID: PMC6308929 DOI: 10.3390/jof4040128] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
The use of invertebrates for in vivo studies in microbiology is well established in the scientific community. Larvae of Galleria mellonella are a widely used model for studying pathogenesis, the efficacy of new antimicrobial compounds, and immune responses. The immune system of G. mellonella larvae is structurally and functionally similar to the innate immune response of mammals, which makes this model suitable for such studies. In this review, cellular responses (hemocytes activity: phagocytosis, nodulation, and encapsulation) and humoral responses (reactions or soluble molecules released in the hemolymph as antimicrobial peptides, melanization, clotting, free radical production, and primary immunization) are discussed, highlighting the use of G. mellonella as a model of immune response to different human pathogenic microorganisms.
Collapse
Affiliation(s)
- Thais Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Luciana Ruano de Oliveira Fugisaki
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Felipe de Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Raquel Teles de Menezes
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| |
Collapse
|
139
|
Liu NY, Huang JM, Ren XM, Xu ZW, Yan NS, Zhu JY. Superoxide dismutase from venom of the ectoparasitoid Scleroderma guani inhibits melanization of hemolymph. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21503. [PMID: 30120804 DOI: 10.1002/arch.21503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Superoxide dismutase (SOD) known as an important antioxidative stress protein has been recently found in venoms of several parasitoid wasps. However, its functions and characteristics as a virulent factor remain scarcely described. Here, we report the characterization of two venomous SOD genes (SguaSOD1 and SguaSOD3) from the ectoparasitoid, Scleroderma guani. The metal binding sites, cysteine amino acid positions and signature sequences of the SOD family were conserved within SguaSOD1 and SguaSOD3. Relatively high levels of their transcripts were observed in pupae followed a decrease in early adults, after which they had the highest transcriptions, indicating that their productions would be regulated in venom apparatus. Although the two genes showed lower expression in venom apparatus compared to head and thorax, the enzymatic assay revealed that SOD indeed had activity in venom. Further, we showed that recombinant SguaSOD3 suppressed melanization of host hemolymph, implying that this protein used as a virulent factor uniquely impacts the prophenoloxidase cascade.
Collapse
Affiliation(s)
- Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jing-Mei Huang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Xue-Min Ren
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Zhi-Wen Xu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Nai-Sheng Yan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| |
Collapse
|
140
|
Feng C, Zhao Y, Chen K, Zhai H, Wang Z, Jiang H, Wang Y, Wang L, Zhang Y, Tang T. Clip domain prophenoloxidase activating protease is required for Ostrinia furnacalis Guenée to defend against bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:204-215. [PMID: 30017863 PMCID: PMC6093219 DOI: 10.1016/j.dci.2018.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/30/2018] [Accepted: 06/30/2018] [Indexed: 05/30/2023]
Abstract
The prophenoloxidase (PPO) activating system in insects plays an important role in defense against microbial invasion. In this paper, we identified a PPO activating protease (designated OfPAP) containing a 1203 bp open reading frame encoding a 400-residue protein composed of two clip domains and a C-terminal serine protease domain from Ostrinia furnacalis. SignalP analysis revealed a putative signal peptide of 18 residues. The mature OfPAP was predicted to be 382 residues long with a calculated Mr of 44.8 kDa and pI of 6.66. Multiple sequence alignment and phylogenetic analysis indicated that OfPAP was orthologous to the PAPs in the other lepidopterans. A large increase of the transcript levels was observed in hemocytes at 4 h post injection (hpi) of killed Bacillus subtilis, whereas its level in integument increased continuously from 4 to 12 hpi in the challenged larvae and began to decline at 24 hpi. After OfPAP expression had been silenced, the median lethal time (LT50) of Escherichia coli-infected larvae (1.0 day) became significantly lower than that of E. coli-infected wild-type (3.0 days, p < 0.01). A 3.5-fold increase in E. coli colony forming units occurred in larval hemolymph of the OfPAP knockdown larvae, as compared with that of the control larvae not injected with dsRNA. There were notable decreases in PO and IEARase activities in hemolymph of the OfPAP knockdown larvae. In summary, we have demonstrated that OfPAP is a component of the PPO activation system, likely by functioning as a PPO activating protease in O. furnacalis larvae.
Collapse
Affiliation(s)
- Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Ya Zhao
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Huifeng Zhai
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yingjuan Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yiqiang Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tai Tang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
141
|
Lee KS, Kim BY, Choo YM, Jin BR. Dual role of the serine protease homolog BmSPH-1 in the development and immunity of the silkworm Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:170-176. [PMID: 29684723 DOI: 10.1016/j.dci.2018.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Serine proteases and serine protease homologs are involved in the prophenoloxidase (proPO)-activating system leading to melanization. The Bombyx mori serine protease homolog BmSPH-1 regulates nodule melanization. Here, we show the dual role of BmSPH-1 in the development and immunity of B. mori. BmSPH-1 was expressed in hemocytes after molting and during the larval-pupal transformation in normal development. In contrast, following infection, BmSPH-1 was expressed in hemocytes and cleaved in the hemolymph, which resulted in the induction of PO activity. Moreover, BmSPH-1 was cleaved in the cuticle during the larval-pupal transformation and early pupal stages. In BmSPH-1 RNAi-treated silkworms, the reduced BmSPH-1 mRNA levels during the spinning stage or the prepupal stage resulted in the arrest of pupation or pupal cuticular melanization, respectively. The binding assays revealed that BmSPH-1 interacts with B. mori immulectin, proPO, and proPO-activating enzyme. Our findings demonstrate that BmSPH-1 paticipates larval-pupal transformation, pupal cuticular melanization and innate immunity of silkworms, illustrating the dual role of BmSPH-1 in development and immunity.
Collapse
Affiliation(s)
- Kwang Sik Lee
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea
| | - Bo Yeon Kim
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea
| | - Young Moo Choo
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea
| | - Byung Rae Jin
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea.
| |
Collapse
|
142
|
Fu P, Sun W, Lai J, Shen YH, Zhang Z. Identification of two isoforms of Pop in the domestic silkworm, Bombyx mori: Cloning, characterization and expression analysis. Gene 2018; 667:101-111. [DOI: 10.1016/j.gene.2018.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 11/25/2022]
|
143
|
Wu K, Han F, Yuan Y, Liu Y, Ling E, Wang Q, Huang W. Effect of the insect phenoloxidase on the metabolism of l-DOPA. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21457. [PMID: 29570828 DOI: 10.1002/arch.21457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Insect prophenoloxidase (PPO) induces melanization around pathogens. Before melanization, PPO is cleaved into phenoloxidase (PO) by serine proteases. Insect PPO can also be activated by exogenous proteases secreted by pathogens as well as by other compounds, such as ethanol and cetylpyridinium chloride (CPC). However, the effect of these activators on the activity of PO is unclear. In this study, the insect endogenous serine protease AMM1, α-chymotrypsin, and ethanol were used to activate recombinant Drosophila PPO1 (rPPO1), and the PO activity differed depending on the activator applied. The PO-induced intermediates during melanization also varied markedly in their numbers and abundances. Therefore, this study indicates that the mechanism of PPO activation influences PO activity. It also suggests that PO-induced different intermediates may affect the antibacterial activity during melanization due to their toxicity.
Collapse
Affiliation(s)
- Kai Wu
- College of Life Sciences, Shangrao Normal University, Shangrao, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fang Han
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yi Yuan
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yining Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qian Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
144
|
CapC, a Novel Autotransporter and Virulence Factor of Campylobacter jejuni. Appl Environ Microbiol 2018; 84:AEM.01032-18. [PMID: 29915112 DOI: 10.1128/aem.01032-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Campylobacter jejuni is recognized as an important causative agent of bacterial gastroenteritis in the developed world. Despite the identification of several factors contributing to infection, characterization of the virulence strategies employed by C. jejuni remains a significant challenge. Bacterial autotransporter proteins are a major class of secretory proteins in Gram-negative bacteria, and notably, many autotransporter proteins contribute to bacterial virulence. The aim of this study was to characterize the C. jejuni 81116 C8J_1278 gene (capC), predicted to encode an autotransporter protein, and examine the contribution of this factor to virulence of C. jejuni The predicted CapC protein has a number of features that are consistent with autotransporters, including the N-terminal signal sequence and the C-terminal β-barrel domain and was determined to localize to the outer membrane. Inactivation of the capC gene in C. jejuni 81116 and C. jejuni M1 resulted in reduced insecticidal activity in Galleria mellonella larvae. Furthermore, C. jejuni capC mutants displayed significantly reduced adherence to and invasion of nonpolarized, partially differentiated Caco-2 and T84 intestinal epithelial cells. Gentamicin treatment showed that the reduced invasion of the capC mutant is primarily caused by reduced adherence to intestinal epithelial cells, not by reduced invasion capability. C. jejuni capC mutants caused reduced interleukin 8 (IL-8) secretion from intestinal epithelial cells and elicited a significantly diminished immune reaction in Galleria larvae, indicating that CapC functions as an immunogen. In conclusion, CapC is a new virulence determinant of C. jejuni that contributes to the integral infection process of adhesion to human intestinal epithelial cells.IMPORTANCECampylobacter jejuni is a major causative agent of human gastroenteritis, making this zoonotic pathogen of significant importance to human and veterinary public health worldwide. The mechanisms by which C. jejuni interacts with intestinal epithelial cells and causes disease are still poorly understood due, in part, to the heterogeneity of C. jejuni infection biology. Given the importance of C. jejuni to public health, the need to characterize novel and existing virulence mechanisms is apparent. The significance of our research is in demonstrating the role of CapC, a novel virulence factor in C. jejuni that contributes to adhesion and invasion of the intestinal epithelium, thereby in part, addressing the dearth of knowledge concerning the factors involved in Campylobacter pathogenesis and the variation observed in the severity of human infection.
Collapse
|
145
|
Favila-Ruiz G, Jiménez-Cortés JG, Córdoba-Aguilar A, Salazar-Schettino PM, Gutiérrez-Cabrera AE, Pérez-Torres A, De Fuentes-Vicente JA, Vences-Blanco MO, Bucio-Torres MI, Flores-Villegas AL, Cabrera-Bravo M. Effects of Trypanosoma cruzi on the phenoloxidase and prophenoloxidase activity in the vector Meccus pallidipennis (Hemiptera: Reduviidae). Parasit Vectors 2018; 11:434. [PMID: 30053904 PMCID: PMC6062883 DOI: 10.1186/s13071-018-3016-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/16/2018] [Indexed: 12/03/2022] Open
Abstract
Background Triatomine insects are vectors of Trypanosoma cruzi, the causal agent of Chagas disease. The insect-parasite interaction has been studied in relation to the transmission and prevalence of this disease. For most triatomines, however, several crucial aspects of the insect immune response are still unknown. For example, only for Rhodnius prolixus and Triatoma infestans has the activity of phenoloxidase (PO) and its zymogen prophenoloxidase (proPO) been reported in relation to the hemolymph and anterior midgut (AM). The aim of this study was to gain insight into the immune response to T. cruzi infection of an important triatomine in Mexico, Meccus pallidipennis. Methods Parasites were quantified in the rectal contents of infected M. pallidipennis groups. We examined some key factors in disease transmission, including the systemic (hemolymph) and local (gut) immune response. Results Parasites were present in the rectal contents at 4 days post-infection (pi) and reached their maximum density on day 7 pi. At 7 and 9 days pi mainly metacyclic trypomastigotes occurred. Compared to the control, the infected insects exhibited diminished PO activity in the hemolymph on days 9, 16 and 20 pi, and in the AM only on day 9. Additionally, infected insects displayed lower proPO activity in the hemolymph on day 1, but greater activity in the AM on day 28. Conclusions The parasite strain originating from M. pallidipennis rapidly colonized the rectum of nymphs of this triatomine and developed high numbers of metacyclic trypomastigotes. Neither the changes of concentrations of PO and proPO in the hemolymph nor in the AM correlated with the changes in the population of T. cruzi. Electronic supplementary material The online version of this article (10.1186/s13071-018-3016-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guadalupe Favila-Ruiz
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - J Guillermo Jiménez-Cortés
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. P. 70-275, Circuito Exterior, 04510, Coyoacán, Ciudad de México, México
| | - Paz María Salazar-Schettino
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ana E Gutiérrez-Cabrera
- CONACYT-Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad 655, Col. Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, CP 62100, Cuernavaca, Morelos, México
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular; Facultad de Medicina, UNAM, 04510, Ciudad de México, México
| | | | - Mauro O Vences-Blanco
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. P. 70-275, Circuito Exterior, 04510, Coyoacán, Ciudad de México, México
| | - Martha I Bucio-Torres
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - A Laura Flores-Villegas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Margarita Cabrera-Bravo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
146
|
Ramirez JL, Muturi EJ, Dunlap C, Rooney AP. Strain-specific pathogenicity and subversion of phenoloxidase activity in the mosquito Aedes aegypti by members of the fungal entomopathogenic genus Isaria. Sci Rep 2018; 8:9896. [PMID: 29967469 PMCID: PMC6028645 DOI: 10.1038/s41598-018-28210-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 06/13/2018] [Indexed: 12/16/2022] Open
Abstract
Development of alternative vector control strategies are becoming more pressing given the rapid evolution of insecticide resistance and the rise of vector borne pathogens affecting public health such as dengue, chikungunya and Zika. Fungal-based biopesticides are promising alternatives to synthetic insecticides because they are ecofriendly and are highly effective at infecting insects through contact. This study evaluated the susceptibility of the yellow fever mosquito Ae. aegypti to a range of entomopathogenic fungal strains from the genus Isaria. We observed a diverse variation in the virulence of the Isaria strains tested, with two strains showing high pathogenicity towards adult mosquitoes. Mosquito susceptibility to fungal infection was further corroborated through the molecular quantification of fungal loads and the transcript evaluation of a fungal-specific pathogen recognition molecule in the mosquito body. Moreover, quantitative analysis of transcript abundance coupled with enzymatic assays revealed strain-specific subversion of the melanization cascade, an important immune response component. Our study contributes critical insights for a better understanding of fungal-mosquito interactions.
Collapse
Affiliation(s)
- José L Ramirez
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, USA.
| | - Ephantus J Muturi
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, USA
| | - Christopher Dunlap
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, USA
| | - Alejandro P Rooney
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, USA
| |
Collapse
|
147
|
Kong M, Zuo H, Zhu F, Hu Z, Chen L, Yang Y, Lv P, Yao Q, Chen K. The interaction between baculoviruses and their insect hosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:114-123. [PMID: 29408049 DOI: 10.1016/j.dci.2018.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 06/07/2023]
Abstract
Baculoviruses are double-stranded circular DNA viruses that infect arthropods via the midgut. Because of their superiority as eukaryotic expression systems and their importance as biopesticides, extensive research on the functions of baculovirus genes as well as on the host response to baculovirus infection has been carried out, including transcriptomic and proteomic analyses of the midgut. The morphological and cellular changes caused by baculovirus infection are also important to better understand the infection pathway. Thanks to these previous studies, we now have a clearer picture of the mechanisms of action of the virus and of host immunity. In this paper, we systematically reviewed studies on the interaction between baculoviruses and their insect hosts. By better understanding these interactions, baculoviruses can be developed for use as more efficient biopesticides to improve agricultural development in the future.
Collapse
Affiliation(s)
- Ming Kong
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Huan Zuo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Feifei Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhaoyang Hu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
148
|
Rao XJ, Zhan MY, Pan YM, Liu S, Yang PJ, Yang LL, Yu XQ. Immune functions of insect βGRPs and their potential application. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:80-88. [PMID: 29229443 DOI: 10.1016/j.dci.2017.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Insects rely completely on the innate immune system to sense the foreign bodies and to mount the immune responses. Germ-line encoded pattern recognition receptors play crucial roles in recognizing pathogen-associated molecular patterns. Among them, β-1,3-glucan recognition proteins (βGRPs) and gram-negative bacteria-binding proteins (GNBPs) belong to the same pattern recognition receptor family, which can recognize β-1,3-glucans. Typical insect βGRPs are comprised of a tandem carbohydrate-binding module in the N-terminal and a glucanase-like domain in the C-terminal. The former can recognize triple-helical β-1,3-glucans, whereas the latter, which normally lacks the enzymatic activity, can recruit adapter proteins to initiate the protease cascade. According to studies, insect βGRPs possess at least three types of functions. Firstly, some βGRPs cooperate with peptidoglycan recognition proteins to recognize the lysine-type peptidoglycans upstream of the Toll pathway. Secondly, some directly recognize fungal β-1,3-glucans to activate the Toll pathway and melanization. Thirdly, some form the 'attack complexes' with other immune effectors to promote the antifungal defenses. The current review will focus on the discovery of insect βGRPs, functions of some well-characterized members, structure-function studies and their potential application.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ming-Yue Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yue-Min Pan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Su Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pei-Jin Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li-Ling Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiao-Qiang Yu
- Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
149
|
Cusumano A, Duvic B, Jouan V, Ravallec M, Legeai F, Peri E, Colazza S, Volkoff AN. First extensive characterization of the venom gland from an egg parasitoid: structure, transcriptome and functional role. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:68-80. [PMID: 29477467 DOI: 10.1016/j.jinsphys.2018.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/23/2017] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been mainly studied in parasitoids developing in larval or pupal hosts while little is known for parasitoids developing in insect eggs. We conducted the first extensive characterization of the venom of the endoparasitoid Ooencyrtus telenomicida (Vassiliev), a species that develops in eggs of the stink bug Nezara viridula (L.). In particular we investigated the structure of the venom apparatus, its functional role and conducted a transcriptomic analysis of the venom gland. We found that injection of O. telenomicida venom induces: 1) a melanized-like process in N. viridula host eggs (host-parasitoid interaction), 2) impairment of the larval development of the competitor Trissolcus basalis (Wollaston) (parasitoid-parasitoid interaction). The O. telenomicida venom gland transcriptome reveals a majority of digestive enzymes (peptidases and glycosylases) and oxidoreductases (laccases) among the most expressed genes. The former enzymes are likely to be involved in degradation of the host resources for the specific benefit of the O. telenomicida offspring. In turn, alteration of host resources caused by these enzymes may negatively affect the larval development of the competitor T. basalis. We hypothesize that the melanization process induced by venom injection could be related to the presence of laccases, which are multicopper oxidases that belong to the phenoloxidases group. This work contributed to a better understanding of the venom in insect parasitoids and allowed to identify candidate genes whose functional role can be investigated in future studies.
Collapse
Affiliation(s)
- Antonino Cusumano
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy; Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Bernard Duvic
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Véronique Jouan
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Marc Ravallec
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Fabrice Legeai
- BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, 35042 Rennes Cedex, France
| | - Ezio Peri
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy
| | - Stefano Colazza
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy
| | - Anne-Nathalie Volkoff
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| |
Collapse
|
150
|
Won HI, Schulze TT, Clement EJ, Watson GF, Watson SM, Warner RC, Ramler EAM, Witte EJ, Schoenbeck MA, Rauter CM, Davis PH. De novo Assembly of the Burying Beetle Nicrophorus orbicollis (Coleoptera: Silphidae) Transcriptome Across Developmental Stages with Identification of Key Immune Transcripts. J Genomics 2018; 6:41-52. [PMID: 29707046 PMCID: PMC5916875 DOI: 10.7150/jgen.24228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/17/2018] [Indexed: 11/05/2022] Open
Abstract
Burying beetles (Nicrophorus spp.) are among the relatively few insects that provide parental care while not belonging to the eusocial insects such as ants or bees. This behavior incurs energy costs as evidenced by immune deficits and shorter life-spans in reproducing beetles. In the absence of an assembled transcriptome, relatively little is known concerning the molecular biology of these beetles. This work details the assembly and analysis of the Nicrophorus orbicollis transcriptome at multiple developmental stages. RNA-Seq reads were obtained by next-generation sequencing and the transcriptome was assembled using the Trinity assembler. Validation of the assembly was performed by functional characterization using Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Differential expression analysis highlights developmental stage-specific expression patterns, and immunity-related transcripts are discussed. The data presented provides a valuable molecular resource to aid further investigation into immunocompetence throughout this organism's sexual development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Paul H. Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska
| |
Collapse
|