101
|
Braz GRF, da Silva AI, Silva SCA, Pedroza AAS, de Lemos MDT, de Lima FAS, Silva TLA, Lagranha CJ. Chronic serotonin reuptake inhibition uncouples brown fat mitochondria and induces beiging/browning process of white fat in overfed rats. Life Sci 2020; 245:117307. [DOI: 10.1016/j.lfs.2020.117307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
|
102
|
A developed serum-free medium and an optimized chemical cocktail for direct conversion of human dermal fibroblasts into brown adipocytes. Sci Rep 2020; 10:3775. [PMID: 32111895 PMCID: PMC7048747 DOI: 10.1038/s41598-020-60769-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/17/2020] [Indexed: 01/12/2023] Open
Abstract
Brown adipocytes coordinate systemic energy metabolism associated with the pathogenesis of obesity and related metabolic diseases including type 2 diabetes. We have previously reported chemical compound-induced brown adipocytes (ciBAs) converted from human dermal fibroblasts without using transgenes. In this study, to reveal a precise molecular mechanism underlying the direct conversion and human adipocyte browning, we developed serum-free brown adipogenic medium (SFBAM) with an optimized chemical cocktail consisting of Rosiglitazone, Forskolin, and BMP7. During the direct conversion, treatment with BMP7 enhanced Ucp1 expression rather than the conversion efficiency in the absence of BMP signalling inhibitors. Moreover, treatment with a TGF-β signalling pathway inhibitor was no longer required in the serum-free medium, likely because the TGF-β pathway was already suppressed. SFBAM and the chemical cocktail efficiently converted human dermal fibroblasts into ciBAs within four weeks. The ciBAs exhibited increased mitochondrial levels, elevated oxygen consumption rate, and a response to β-adrenergic receptor agonists. Thus the ciBAs converted by the serum-free medium and the chemical cocktail provide a novel model of human brown (beige) adipocytes applicable for basic research, drug screening, and clinical applications.
Collapse
|
103
|
Childress ES, Salamoun JM, Hargett SR, Alexopoulos SJ, Chen SY, Shah DP, Santiago-Rivera J, Garcia CJ, Dai Y, Tucker SP, Hoehn KL, Santos WL. [1,2,5]Oxadiazolo[3,4- b]pyrazine-5,6-diamine Derivatives as Mitochondrial Uncouplers for the Potential Treatment of Nonalcoholic Steatohepatitis. J Med Chem 2020; 63:2511-2526. [PMID: 32017849 DOI: 10.1021/acs.jmedchem.9b01440] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small molecule mitochondrial uncouplers are emerging as a new class of molecules for the treatment of nonalcoholic steatohepatitis. We utilized BAM15, a potent protonophore that uncouples the mitochondria without depolarizing the plasma membrane, as a lead compound for structure-activity profiling. Using oxygen consumption rate as an assay for determining uncoupling activity, changes on the 5- and 6-position of the oxadiazolopyrazine core were introduced. Our studies suggest that unsymmetrical aniline derivatives bearing electron withdrawing groups are preferred compared to the symmetrical counterparts. In addition, alkyl substituents are not tolerated, and the N-H proton of the aniline ring is responsible for the protonophore activity. In particular, compound 10b had an EC50 value of 190 nM in L6 myoblast cells. In an in vivo model of NASH, 10b decreased liver triglyceride levels and showed improvement in fibrosis, inflammation, and plasma ALT. Taken together, our studies indicate that mitochondrial uncouplers have potential for the treatment of NASH.
Collapse
Affiliation(s)
- Elizabeth S Childress
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph M Salamoun
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stefan R Hargett
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Sing-Young Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Divya P Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - José Santiago-Rivera
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher J Garcia
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yumin Dai
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Simon P Tucker
- Continuum Biosciences, Pty Ltd., 2035 Sydney, Australia.,Continuum Biosciences Inc., Boston, Massachusetts 02116, United States
| | - Kyle L Hoehn
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
104
|
Duong QV, Hoffman A, Zhong K, Dessinger MJ, Zhang Y, Bazil JN. Calcium overload decreases net free radical emission in cardiac mitochondria. Mitochondrion 2020; 51:126-139. [PMID: 31982614 DOI: 10.1016/j.mito.2020.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/08/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
Elevated calcium and reactive oxygen species (ROS) are responsible for the bulk of cell death occurring in a variety of clinical settings that include acute coronary events, cerebrovascular accidents, and acute kidney injury. It is commonly believed that calcium and ROS participate in a viscous cycle during these events. However, the precise feedback mechanisms are unknown. We quantitatively demonstrate in this study that, on the contrary, calcium does not stimulate free radical production but suppresses it. Isolated mitochondria from guinea pig hearts were energized with a variety of substrates and exposed to calcium concentrations designed to induce moderate calcium overload conditions associated with ischemia/reperfusion injury but do not elicit the well-known mitochondrial permeability transition phenomenon. Metabolic function and free radical emission were simultaneously quantified using high-resolution respirometry and fluorimetry. Membrane potential, high amplitude swelling, and calcium dynamics were also quantified in parallel. Our results reveal that calcium overload does not lead to excessive ROS emission but does decrease ADP stimulated respiration rates for NADH-dependent pathways. Moreover, we developed an empirical model of mitochondrial free radical homeostasis to identify the processes that are different for each substrate and calcium condition. In summary, we show that in healthy guinea pig mitochondria, calcium uptake and free radical generation do not contribute to a viscous cycle and that the relationship between net free radical production and oxygen concentration is hyperbolic. Altogether, these results lay out an important foundation necessary to quantitatively determine the role of calcium in IR injury and ROS production.
Collapse
Affiliation(s)
- Quynh V Duong
- Department of Biochemistry and Molecular Biology, Michigan State University, United States
| | - Adrianna Hoffman
- Department of Physiology, Michigan State University, United States
| | - Katie Zhong
- Department of Physiology, Michigan State University, United States
| | | | - Yizhu Zhang
- Department of Physiology, Michigan State University, United States
| | - Jason N Bazil
- Department of Physiology, Michigan State University, United States.
| |
Collapse
|
105
|
Seifi K, Rezaei M, Yansari AT, Zamiri MJ, Riazi GH, Heidari R. Short chain fatty acids may improve hepatic mitochondrial energy efficiency in heat stressed-broilers. J Therm Biol 2020; 89:102520. [PMID: 32364974 DOI: 10.1016/j.jtherbio.2020.102520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/16/2019] [Accepted: 01/10/2020] [Indexed: 01/10/2023]
Abstract
The present study was conducted to investigate the effects of four dietary fat types and two environmental temperatures on the hepatic mitochondrial energetic in male broilers exposed to heat stress. The birds were kept in two separate rooms at 24 °C or 36 °C from 32 to 42 d of age with four experimental groups in each room. The birds fed on the diets supplemented containing rich sources of long-chain saturated fatty acids (beef tallow), middle-length-chain saturated FA (coconut oil), monounsaturated FA (olive oil), or polyunsaturated FA (soybean oil) for ten days. At 36 °C, the highest body weight and lowest feed conversion ratio were recorded in the birds fed on the diets supplemented with coconut oil or beef tallow. Temperature and fat type significantly affected the activities of the mitochondrial electron transport chain complexes (P < 0.01). There was a significant interaction between the temperature and fat type (P < 0.01). Generally, electron transport chain complexes I-V enzymatic activities were decreased at 36 °C. The coconut oil-fed birds showed the highest complex I activity at both temperatures. The beef tallow-fed broilers showed the lowest complex II activity at 24 °C. In birds exposed to 36 °C, complex II activity was higher for birds fed saturated coconut oil or beef tallow than those feeding the unsaturated olive oil or soybean oil-supplemented diets. At 24 °C, the highest and lowest complex III activities were recorded for the coconut oil- and beef tallow-supplemented diets, respectively. At 36 °C, the activity of complex III was coconut oil > beef tallow > olive oil > soybean oil. At 24 °C, complex IV activity was highest in coconut oil- or soybean oil-fed broilers; and at 36 °C, complex IV showed the lowest activity in soybean oil-fed birds. The highest complex IV activity was observed in coconut oil-fed chickens followed by olive oil-fed and beef tallow-fed birds, respectively. At 24 or 36 °C, the highest and lowest complex V activity was observed in coconut oil-fed and soybean oil-fed chickens, respectively. ATP concentration and mitochondrial membrane potential were in the order of coconut oil > beef tallow > olive oil > soybean oil at both temperatures. Temperature and fat type significantly affected the avANT mRNA concentration. Exposure of broilers to 36 °C generally decreased the mRNA expression of avANT, with beef tallow- or coconut oil-supplemented birds showing a lower avANT mRNA expression than those receiving olive oil- or soybean oil-supplemented diets. These findings provide further information on the use of fat sources in the diet of heat stressed-broilers.
Collapse
Affiliation(s)
- Kazem Seifi
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Sciences University, Sari, Iran.
| | - Mansour Rezaei
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Sciences University, Sari, Iran
| | - Asad Teimouri Yansari
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Sciences University, Sari, Iran
| | - Mohammad Javad Zamiri
- Department of Animal Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
106
|
Wang J, Zhang L, Dong L, Hu X, Feng F, Chen F. 6-Gingerol, a Functional Polyphenol of Ginger, Promotes Browning through an AMPK-Dependent Pathway in 3T3-L1 Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:14056-14065. [PMID: 31789021 DOI: 10.1021/acs.jafc.9b05072] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The main purpose of the present study was to investigate the browning effect of 6-gingerol (6G), one of the main functional compounds in the ethyl acetate extract of ginger (ginger ethyl acetate fraction, GEF), and its underlying mechanisms. In this study, we first discovered that GEF stimulated brown adipocyte differentiation by upregulating the expression levels of browning-specific transcription makers (UCP1, PRDM16, and PGC-1α), thereby reducing lipogenesis transcriptional regulator (C/EBPα) expression in 3T3-L1-differentiated adipocytes. Then, 6G (47.81 ± 0.62 mg/g) was identified as one of the main functional compounds in GEF using high-performance liquid chromatography. 6G promoted adipocyte browning, as evidenced by an increase in some brown/beige fat-specific genes (PGC-1α, Cidea, Prdm16, Cited1, SIRT1, Tmem26, and Ucp1) and proteins (UCP1, CEBP/β, PGC-1α, and PRDM16) expression levels. Moreover, 6G greatly improved mitochondrial respiration and energy metabolism by upregulating the expression levels of some mitochondrial biogenesis markers (Tfam, Nrf1, SIRT1, and p-AMPK/AMPK) and increasing the uncoupled oxygen consumption rate of protons leaked in 3T3-L1 cells. Comparison of the experimental results obtained with an inhibitor (dorsomorphin) and an activator (5-aminoimidazole-4-carboxamide ribonucleotide) suggested that the 6G-associated regulation of the energy metabolism effect was mediated partly through the AMPK signaling pathway. This study provides new insight into the promotion of fat browning and regulation of lipid metabolism by 6G and suggests that 6G likely has potential therapeutic effects on obesity.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
- Ningbo Research Institute , Zhejiang University , Ningbo 315100 , China
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310029 , China
| | - Lu Zhang
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Li Dong
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Fengqin Feng
- Ningbo Research Institute , Zhejiang University , Ningbo 315100 , China
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310029 , China
| | - Fang Chen
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| |
Collapse
|
107
|
Najafi M, Hooshangi Shayesteh MR, Mortezaee K, Farhood B, Haghi-Aminjan H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci 2019; 241:117173. [PMID: 31843530 DOI: 10.1016/j.lfs.2019.117173] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Doxorubicin, as an effective chemotherapeutic drug, is commonly used for combating various solid and hematological tumors. However, doxorubicin-induced cardiotoxicity is considered as a serious adverse effect, and it limits the clinical use of this chemotherapeutic drug. The use of melatonin can lead to a decrease in the cardiotoxic effect induced by doxorubicin. The aim of this review was to evaluate the potential role of melatonin in the prevention of doxorubicin-induced cardiotoxicity. METHODS This review was conducted by a full systematic search strategy based on PRISMA guidelines for the identification of relevant literature in the electronic databases of PubMed, Web of Science, Embase, and Scopus up to January 2019 using search terms in the titles and abstracts. 286 articles were screened in accordance with our inclusion and exclusion criteria. Finally, 28 articles were selected in this systematic review. RESULTS The findings demonstrated that doxorubicin-treated groups had increased mortality, decreased body weight and heart weight, and increased ascites compared to the control groups; the co-administration of melatonin revealed an opposite pattern compared to the doxorubicin-treated groups. Also, this chemotherapeutic agent can lead to biochemical and histopathological changes; as for most of the cases, these alterations were reversed near to normal levels (control groups) by melatonin co-administration. Melatonin exerts these protection effects through mechanisms of anti-oxidant, anti-apoptosis, anti-inflammatory, and mitochondrial function. CONCLUSION The results of this systematic review indicated that co-administration of melatonin ameliorates the doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
108
|
Moschinger M, Hilse KE, Rupprecht A, Zeitz U, Erben RG, Rülicke T, Pohl EE. Age-related sex differences in the expression of important disease-linked mitochondrial proteins in mice. Biol Sex Differ 2019; 10:56. [PMID: 31806023 PMCID: PMC6896328 DOI: 10.1186/s13293-019-0267-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
The prevalence and progression of many illnesses, such as neurodegenerative and cardiovascular diseases, obesity, and cancer, vary between women and men, often in an age-dependent manner. A joint hallmark of these diseases is some type of mitochondrial dysfunction. While several mitochondrial proteins are known to be regulated by sex hormones, the levels of those proteins have not been systematically analyzed with regard to sex and age, and studies that consider sex and/or age differences in the protein expression are very rare. In this study, we compared the expression patterns of physiologically important mitochondrial proteins in female and male C57BL/6N mice of age cohorts frequently used in experiments. We found that sex-related differences in the expression of uncoupling proteins 1 and 3 (UCP1 and UCP3) occur in an age-dependent manner. The sex-specific expression of UCP1 and UCP3 in brown adipose tissue (BAT) was inversely correlated with differences in body weight. Expression of UCP4 in the brain, Complex I in the spleen, and Complex II in the brain and BAT was least affected by the sex of the mouse. We further demonstrated that there are serious limitations in using VDAC1 and actin as markers in western blot analyses, due to their sex- and age-specific fluctuations. Our results confirm that sex and age are important parameters and should be taken into account by researchers who examine the mechanistic aspects of diseases. HIGHLIGHTS: I.The levels of UCP1 and UCP3 protein expression differ between females and males in an age-dependent manner.II.Pre-pubertal expression of almost all proteins tested in this study does not depend on the sex of the mouse.III.Expression of VDAC1 and actin, which are often used as loading control proteins in western blot analysis, is tissue-specifically influenced by sex and age.
Collapse
Affiliation(s)
- Michael Moschinger
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Karolina E Hilse
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Anne Rupprecht
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.,Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Ute Zeitz
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Reinhold G Erben
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
109
|
Hidalgo I, Nájera N, Meaney E, Pérez-Durán J, Valdespino-Vazquez Y, Villarreal F, Ceballos G. Effects of (-)-epicatechin on the time course of the expression of perilipins in a diet-induced model of nonalcoholic steatohepatitis. J Nutr Biochem 2019; 77:108296. [PMID: 32007822 DOI: 10.1016/j.jnutbio.2019.108296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
The existing treatments for nonalcoholic steatohepatitis (NASH) are not completely effective. The need for new alternatives without adverse effects and low cost, such as the flavonoid (-)-epicatechin (EC), which has beneficial effects on lipid metabolism and cardiovascular diseases, arises. The objective of this work was to analyze EC effects in the NASH induced by a Paigen-type diet (PD). Mice were administered with (1) normal chow and water, (2) PD + fructose 30% and (3) PD + fructose 30% + EC (1 mg/kg) per gavage during 9 weeks. At the end of each treatment, serum was collected for analysis of the biochemical profile and liver enzymes. The liver was collected for microscopic analysis and for the evaluation of the relative expression of Plin2, Plin3, CD36, adiponectin and UCP2. Results showed that EC reduced weight gain and decreased triglyceride (TG), low-density lipoprotein cholesterol, TG/high-density lipoprotein and the activity of liver enzymes (alanine aminotransferase and alkaline phosphatase), suggesting lower liver damage. The microscopic analysis showed less "balloonization" of the hepatocyte, small drops of lipids, less accumulation of collagen and infiltration of inflammatory cells as compared to nontreated group. Finally, a decrease in the expression of Plin 2 was observed. While CD36 decreased, adiponectin and UCP2 increased. In conclusion, EC improves the biochemical profile, the microscopic characteristics and protein expression. Therefore, it may be a possible therapeutic approach for NASH since it prevents the progression of the hepatic and metabolic damage induced by high-fat diets.
Collapse
Affiliation(s)
- Isabel Hidalgo
- Seccion de Posgrado, Escuela Superior de Medicina, Instituto Politecnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, 11340 Ciudad de Mexico, CDMX
| | - Nayelli Nájera
- Seccion de Posgrado, Escuela Superior de Medicina, Instituto Politecnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, 11340 Ciudad de Mexico, CDMX
| | - Eduardo Meaney
- Seccion de Posgrado, Escuela Superior de Medicina, Instituto Politecnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, 11340 Ciudad de Mexico, CDMX
| | - Javier Pérez-Durán
- Laboratorio de Genetica y Genomica humana, Instituto Nacional de Perinatologia, Montes Urales 800, Lomas Virreyes, Lomas de Chapultepec, 11000 Ciudad de Mexico, CDMX
| | - Yolotzin Valdespino-Vazquez
- Anatomia Patologica. Instituto Nacional de Perinatologia, Montes Urales 800, Lomas Virreyes, Lomas de Chapultepec, 11000 Ciudad de Mexico, CDMX
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Guillermo Ceballos
- Seccion de Posgrado, Escuela Superior de Medicina, Instituto Politecnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, 11340 Ciudad de Mexico, CDMX.
| |
Collapse
|
110
|
Sato Y, Roncal-Jimenez CA, Andres-Hernando A, Jensen T, Tolan DR, Sanchez-Lozada LG, Newman LS, Butler-Dawson J, Sorensen C, Glaser J, Miyazaki M, Diaz HF, Ishimoto T, Kosugi T, Maruyama S, Garcia GE, Lanaspa MA, Johnson RJ. Increase of core temperature affected the progression of kidney injury by repeated heat stress exposure. Am J Physiol Renal Physiol 2019; 317:F1111-F1121. [PMID: 31390229 PMCID: PMC6879947 DOI: 10.1152/ajprenal.00259.2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/08/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
An epidemic of chronic kidney disease of unknown etiology (Mesoamerican nephropathy) has emerged in hot regions of Central America. We have demonstrated that dehydration associated with recurrent heat exposure causes chronic kidney disease in animal models. However, the independent influence of core body temperature on kidney injury has not been explored. In the present study, we tested the hypothesis that kidney injury could be accelerated by increasing body temperature independent of external temperature. Wild-type mice were exposed to heat (39.5°C, 30 min, 2 times daily) with or without the mitochondrial uncoupling agent 2,4-dinitrophenol (DNP) for 10 days. Core temperature, renal function, proteinuria, and renal histological and biochemical analyses were performed. Isolated mitochondria markers of oxidative stress were evaluated from kidney tissue. DNP increased body core temperature in response to heat by 1°C (42 vs. 41°C), which was transient. The mild increase in temperature correlated with worsening albuminuria (R = 0.715, P < 001), renal tubular injury, and interstitial infiltration of monocytes/macrophages. Tubular injury was marked in the outer medulla. This was associated with a reduction in kidney tissue ATP levels (nonheated control: 16.71 ± 1.33 nmol/mg and DNP + heat: 13.08 ± 1.12 nmol/mg, P < 0.01), reduced mitochondria, and evidence for mitochondrial oxidative stress. The results of the present study suggest that kidney injury in heat stress is markedly worsened by increasing core temperature. This is consistent with the hypothesis that clinical and subclinical heat stroke may play a role in Mesoamerican nephropathy.
Collapse
Affiliation(s)
- Yuka Sato
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
- Japan Society for the Promotion of Science Overseas Research Fellow, Tokyo, Japan
| | | | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Thomas Jensen
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Dean R Tolan
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Laura G Sanchez-Lozada
- Laboratory of Renal Physiopathology, Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Lee S Newman
- Center for Work, Health and Environment, Colorado School of Public Health, University of Colorado, Aurora, Colorado
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado
| | - Jaime Butler-Dawson
- Center for Work, Health and Environment, Colorado School of Public Health, University of Colorado, Aurora, Colorado
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado
| | - Cecilia Sorensen
- Center for Work, Health and Environment, Colorado School of Public Health, University of Colorado, Aurora, Colorado
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Jason Glaser
- La Isla Network, Washington, District of Columbia
- Department of Epidemiology London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Henry F Diaz
- Department of Geography and Environment, University of Hawai'i at Mānoa, Honolulu, Hawai'i
| | - Takuji Ishimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Kosugi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gabriela E Garcia
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| |
Collapse
|
111
|
Depletion of HuR in murine skeletal muscle enhances exercise endurance and prevents cancer-induced muscle atrophy. Nat Commun 2019; 10:4171. [PMID: 31519904 PMCID: PMC6744452 DOI: 10.1038/s41467-019-12186-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
The master posttranscriptional regulator HuR promotes muscle fiber formation in cultured muscle cells. However, its impact on muscle physiology and function in vivo is still unclear. Here, we show that muscle-specific HuR knockout (muHuR-KO) mice have high exercise endurance that is associated with enhanced oxygen consumption and carbon dioxide production. muHuR-KO mice exhibit a significant increase in the proportion of oxidative type I fibers in several skeletal muscles. HuR mediates these effects by collaborating with the mRNA decay factor KSRP to destabilize the PGC-1α mRNA. The type I fiber-enriched phenotype of muHuR-KO mice protects against cancer cachexia-induced muscle loss. Therefore, our study uncovers that under normal conditions HuR modulates muscle fiber type specification by promoting the formation of glycolytic type II fibers. We also provide a proof-of-principle that HuR expression can be targeted therapeutically in skeletal muscles to combat cancer-induced muscle wasting. HuR is an RNA-binding protein that regulates myotube differentiation in vitro. Here, the authors show that the muscle-specific ablation of HuR in mice leads to enhanced endurance capacity and an increase in oxidative fibres by destabilising PGC1α-mRNA, and show that the mice are protected against cancer cachexia
Collapse
|
112
|
Chazarin B, Ziemianin A, Evans AL, Meugnier E, Loizon E, Chery I, Arnemo JM, Swenson JE, Gauquelin-Koch G, Simon C, Blanc S, Lefai E, Bertile F. Limited Oxidative Stress Favors Resistance to Skeletal Muscle Atrophy in Hibernating Brown Bears ( Ursus Arctos). Antioxidants (Basel) 2019; 8:antiox8090334. [PMID: 31443506 PMCID: PMC6770786 DOI: 10.3390/antiox8090334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress, which is believed to promote muscle atrophy, has been reported to occur in a few hibernators. However, hibernating bears exhibit efficient energy savings and muscle protein sparing, despite long-term physical inactivity and fasting. We hypothesized that the regulation of the oxidant/antioxidant balance and oxidative stress could favor skeletal muscle maintenance in hibernating brown bears. We showed that increased expressions of cold-inducible proteins CIRBP and RBM3 could favor muscle mass maintenance and alleviate oxidative stress during hibernation. Downregulation of the subunits of the mitochondrial electron transfer chain complexes I, II, and III, and antioxidant enzymes, possibly due to the reduced mitochondrial content, indicated a possible reduction of the production of reactive oxygen species in the hibernating muscle. Concomitantly, the upregulation of cytosolic antioxidant systems, under the control of the transcription factor NRF2, and the maintenance of the GSH/GSSG ratio suggested that bear skeletal muscle is not under a significant oxidative insult during hibernation. Accordingly, lower levels of oxidative damage were recorded in hibernating bear skeletal muscles. These results identify mechanisms by which limited oxidative stress may underlie the resistance to skeletal muscle atrophy in hibernating brown bears. They may constitute therapeutic targets for the treatment of human muscle atrophy.
Collapse
Affiliation(s)
- Blandine Chazarin
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
- Centre National d'Etudes Spatiales, CNES, F-75001 Paris, France
| | - Anna Ziemianin
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
- Centre National d'Etudes Spatiales, CNES, F-75001 Paris, France
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480 Koppang, Norway
| | - Emmanuelle Meugnier
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
| | - Emmanuelle Loizon
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
| | - Isabelle Chery
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480 Koppang, Norway
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Jon E Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway
- Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway
| | | | - Chantal Simon
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
| | - Stéphane Blanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| | - Etienne Lefai
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
- Université d'Auvergne, INRA, UNH UMR1019, F-63122 Saint-Genès Champanelle, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France.
| |
Collapse
|
113
|
Abstract
A huge number of proteins that occur in the body have to be folded into a specific shape in order to become functional. Proteins are made up of chains of amino acids and the folding process is exquisitely complex. When this folding process is inhibited, the respective protein is referred to as being misfolded and nonfunctional. So the hypothesis that follows is in regard to the diseases that are caused by the misfolding of vital proteins and their reported relationship with thiamin metabolism. These diseases are termed proteopathies and there are at least 50 different conditions in which the mechanism is importantly related to a misfolded protein. In the brain, thiamin deficiency causes a cascade of events involving mild impairment of oxidative metabolism, neuroinflammation and neurodegeneration, including the pathology of Alzheimer's disease, Parkinson's and Huntington's diseases, all of which are examples of proteopathies. Prion diseases are fatal neurodegenerative disorders related to the conformational alteration of the prion protein (PrP C) into a pathogenic and protease-resistant isoform (PrPSc). The physiological form (PrP C) is a cell surface glycoprotein expressed mainly in the central nervous system. Despite numerous efforts to elucidate its role, the exact biological function remains unknown. Prion-induced diseases, due to the conformational change in the protein, are a global health problem, with lack of effective therapy and 100% mortality. Thiamin and its derivatives bind the prion protein and intermolecular actions have been noted between thiamin and other thiamin-binding proteins, although the exact importance of this is conjectural.
Collapse
Affiliation(s)
- Derrick Lonsdale
- Cleveland Clinic, 28575 Westlake Village Dr., Westlake, OH 44145, United States.
| |
Collapse
|
114
|
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8:cells8080795. [PMID: 31366145 PMCID: PMC6721602 DOI: 10.3390/cells8080795] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.
Collapse
|
115
|
Cronshaw M, Parker S, Arany P. Feeling the Heat: Evolutionary and Microbial Basis for the Analgesic Mechanisms of Photobiomodulation Therapy. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:517-526. [PMID: 31329512 DOI: 10.1089/photob.2019.4684] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: The clinical therapeutic benefits of Photobiomodulation (PBM) therapy have been well established in many clinical scenarios. However, we are far from having developed a complete understanding of the underlying mechanisms of photon-biological tissue interactions. Concurrent to ongoing PBM studies, there are several parallel fields with evidences from cell and tissue physiology such as evolutionary biology, photobiology, and microbiology among others. Objective: This review is focused on extrapolating evidences from an expanded range of studies that may contribute to a better understanding of PBM mechanisms especially focusing on analgesia. Further, the choice of a PBM device source and relevant dosimetry with regards to specific mechanisms are discussed to enable broader clinical use of PBM therapies. Materials and methods: This discussion article is referenced from an expanded range of peer reviewed publications, including literature associated with evolutionary biology, microbiology, oncology, and photo-optical imaging technology, amongst others. Results and discussion: Materials drawn from many disparate disciplines is described. By inference from the current evidence base, a novel theory is offered to partially explain the cellular basis of PBM-induced analgesia. It is proposed that this may involve the activity of a class of transmembrane proteins known as uncoupling proteins. Furthermore, it is proposed that this may activate the heat stress protein response and that intracellur microthermal inclines may be of significance in PBM analgesia. It is suggested that the PBM dose response as a simple binary model of PBM effects as represented by the Arndt-Schulz law is clinically less useful than a multiphasic biological response. Finally, comments are made concerning the nature of photon to tissue interaction that can have significance in regard to the effective choice and delivery of dose to clinical target. Conclusions: It is suggested that a re-evaluation of phototransduction pathways may lead to an improvement in outcome in phototheraphy. An enhanced knowledge of safe parameters and a better knowledge of the mechanics of action at target level will permit more reliable and predictable clinical gain and assist the acceptance of PBM therapy within the wider medical community.
Collapse
Affiliation(s)
- Mark Cronshaw
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Steven Parker
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Praveen Arany
- Department of Oral Biology and Biomedical Engineering, School of Dental Medicine, Engineering and Applied Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
116
|
Braun J, Fischer S, Xu ZZ, Sun H, Ghoneim DH, Gimbel AT, Plessmann U, Urlaub H, Mathews DH, Weigand JE. Identification of new high affinity targets for Roquin based on structural conservation. Nucleic Acids Res 2019; 46:12109-12125. [PMID: 30295819 PMCID: PMC6294493 DOI: 10.1093/nar/gky908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional gene regulation controls the amount of protein produced from a specific mRNA by altering both its decay and translation rates. Such regulation is primarily achieved by the interaction of trans-acting factors with cis-regulatory elements in the untranslated regions (UTRs) of mRNAs. These interactions are guided either by sequence- or structure-based recognition. Similar to sequence conservation, the evolutionary conservation of a UTR’s structure thus reflects its functional importance. We used such structural conservation to identify previously unknown cis-regulatory elements. Using the RNA folding program Dynalign, we scanned all UTRs of humans and mice for conserved structures. Characterizing a subset of putative conserved structures revealed a binding site of the RNA-binding protein Roquin. Detailed functional characterization in vivo enabled us to redefine the binding preferences of Roquin and identify new target genes. Many of these new targets are unrelated to the established role of Roquin in inflammation and immune responses and thus highlight additional, unstudied cellular functions of this important repressor. Moreover, the expression of several Roquin targets is highly cell-type-specific. In consequence, these targets are difficult to detect using methods dependent on mRNA abundance, yet easily detectable with our unbiased strategy.
Collapse
Affiliation(s)
- Johannes Braun
- Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Sandra Fischer
- Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Zhenjiang Z Xu
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hongying Sun
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dalia H Ghoneim
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Anna T Gimbel
- Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Uwe Plessmann
- Biophysical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Henning Urlaub
- Biophysical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center, 37073 Göttingen, Germany
| | - David H Mathews
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Julia E Weigand
- Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| |
Collapse
|
117
|
Long-term effects of prior diets, dietary transition and pregnancy on adipose gene expression in dairy heifers. PLoS One 2019; 14:e0218723. [PMID: 31269511 PMCID: PMC6609222 DOI: 10.1371/journal.pone.0218723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/09/2019] [Indexed: 01/05/2023] Open
Abstract
Adipose tissue is highly involved in whole-body metabolism and is the main site for lipid synthesis, storage and mobilization in ruminants. Therefore, knowledge about adipose tissue responses to different diets is important, especially in growing heifers as the feeding regimes of replacement heifers affect their future success as dairy cows. However, at gene expression level such knowledge is limited. As part of a larger feed trial, adipose tissue biopsies from 24 Norwegian Red heifers were collected at 12 months of age (12MO) and at month seven of gestation (PREG) and analyzed by next-generation mRNA sequencing. Between these two sampling points, all heifers had gone through a successful conception and a feed change from four dietary treatments of high or low energy (HE/LE) and protein (HP/LP) content (treatments LPHE, HPHE, LPLE and HPLE) to a low-energy, low-protein pregnancy feed given to all animals. Gene expression differences between different feed treatments at 12MO are described in an earlier publication from our group. The main objectives of this study were to investigate the long-term effects of diets differing in protein and energy density level on gene expression in adipose tissue of growing replacement dairy heifers. To achieve this, we examined the post-treatment effects between the treatment groups at month seven of gestation; 6 months after the termination of experimental feeding, and the long-term gene expression changes occurring in the adipose tissue between 12MO and PREG. Post-treatment group comparisons showed evidence of long-term effects of dietary treatment on adipose gene expression. Differences between protein treatments were smaller than between energy treatments. Adipose gene expression changes from 12MO to PREG were much larger for the HE than the LE treatments and seemed to mostly be explained by the characteristics of the diet change. 97 genes displayed a unidirectional expression change for all groups from 12MO to PREG, and are considered to be treatment-independent, possibly caused by pregnancy or increased age. This study provides candidate genes and key regulators for further studies on pregnancy preservation (TGFB1, CFD) and metabolic regulation and efficiency (PI3K, RICTOR, MAP4K4,) in dairy cattle.
Collapse
|
118
|
Kwan KK, Huang Y, Leung KW, Dong TT, Tsim KW. Danggui Buxue Tang, a Chinese Herbal Decoction Containing Astragali Radix and Angelicae Sinensis Radix, Modulates Mitochondrial Bioenergetics in Cultured Cardiomyoblasts. Front Pharmacol 2019; 10:614. [PMID: 31316376 PMCID: PMC6611430 DOI: 10.3389/fphar.2019.00614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/15/2019] [Indexed: 12/30/2022] Open
Abstract
Danggui Buxue Tang (DBT) is an ancient herbal mixture containing Astragali Radix and Angelicae Sinensis Radix, and which are commonly consumed for "qi-invigorating" (i.e., stimulating vital energy/energy metabolism) as traditional Chinese medicine (TCM). The pharmacological activities of DBT in anti-oxidation, estrogenic, hematopoietic, and immunogenic have been reported; however, the role of DBT in cellular energy metabolism has not been determined. Here, we employed an extracellular flux analyzer to evaluate the mitochondrial respiration of cultured H9C2 cardiomyoblasts in present of DBT. The herbal extract of DBT was qualified chemically for the major ingredients, i.e. astragaloside, calycosin, formononetin, Z-ligustilide, and ferulic acid. The anti-oxidant activities of DBT, as well as its major ingredients, were determined by Folin-Ciocalteu assay, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, and protective effect in tert-butyl hydroperoxide (tBHP)-treated cultured cardiomyoblasts. In addition, a real-time oxygen consumption rate (OCR) in herbal extract-treated cultured cardiomyoblasts was revealed by using a Seahorse extracellular flux analyzer. In addition, the transcript expressions of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PCG-1α) and other genes relating to mitochondria biogenesis were determined in cardiomyoblasts under different herbal treatments. DBT possessed the strongest anti-oxidant activity and protective effects on the oxidatively stressed cardiomyoblasts. By revealing the OCR in mitochondria, the health state of cultured cardiomyoblasts under DBT was improved via increase of basal respiration, proton leak, non-mitochondria, and adenosine triphosphate (ATP) production. Furthermore, the transcriptional activities of genes responsible for mitochondrial biogenesis and DNA replication were stimulated by application of DBT in cultures.
Collapse
Affiliation(s)
- Kenneth K.L. Kwan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Yun Huang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Ka W. Leung
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Tina T.X. Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Karl W.K. Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| |
Collapse
|
119
|
Li Z, Li Y, Zhang HX, Guo JR, Lam CWK, Wang CY, Zhang W. Mitochondria-Mediated Pathogenesis and Therapeutics for Non-Alcoholic Fatty Liver Disease. Mol Nutr Food Res 2019; 63:e1900043. [PMID: 31199058 DOI: 10.1002/mnfr.201900043] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/03/2019] [Indexed: 12/28/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a worldwide epidemic over the last decade. Remarkable progress has been made in understanding the pathogenesis of NAFLD and, subsequently, in developing medications to treat this disease. Although the mechanisms of NAFLD are complex and multifactorial, accumulating and emerging evidence indicates that mitochondria play a critical role in the pathogenesis and progression of NAFLD. Pharmacologic therapies acting on mitochondria may therefore pave the way to novel strategies for the prevention and protection against NAFLD. This review focuses on new insights into the role of hepatic mitochondrial dysfunction in NAFLD, and summarizes recent studies on mitochondria-centric therapies for NAFLD utilizing new medications or repurposing of currently available drugs. Although some studies presented may feature controversial results or are still in lack of clinical verification, it is undoubted that medications that may spare the mitochondria from multiple levels of damage are highly promising, and have begun to be used with some degree of success.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Yan Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Hui-Xia Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Jian-Ru Guo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Cai-Yun Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
120
|
Watamoto Y, Futawaka K, Hayashi M, Matsushita M, Mitsutani M, Murakami K, Song Z, Koyama R, Fukuda Y, Nushida A, Nezu S, Kuwahara A, Kataoka K, Tagami T, Moriyama K. Insulin-like growth factor-1 directly mediates expression of mitochondrial uncoupling protein 3 via forkhead box O4. Growth Horm IGF Res 2019; 46-47:24-35. [PMID: 31158782 DOI: 10.1016/j.ghir.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/26/2019] [Accepted: 05/21/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The objective of our study was to examine the direct action of insulin-like growth factor-1(IGF-1) signaling on energy homeostasis in myocytes. DESIGN We studied the IGF-1 stimulation of mitochondrial uncoupling protein 3 (UCP3) expression in the HEK 293 derived cell line TSA201, murine C2C12 skeletal muscle myoblasts, and rat L6 skeletal myoblasts. We also investigated the direct effect of IGF-1 on the Insulin/IGF-1 receptor (IGF-1R)/phosphatidylinositol 3 (PI3)-Akt/forkhead box O4 (FOXO4) pathway using a combination of a reporter assay, semi-quantitative polymerase chain reaction, western blotting, and animal experiments. RESULTS We demonstrated that IGF-1 regulates UCP3 expression via phosphorylation of FOXO4, which is a downstream signal transducer of IGF-1. UCP3 expression increased with activated FOXO4 in a dose-dependent manner. We also examined the functional FOXO4 binding site consensus sequences and identified it as the -1922 bp site in the UCP3 promoter region. UCP3 was also found to be concomitantly expressed with IGF-1 during differentiation of C2C12 myoblasts. Our animal experiments showed that high fat diet induced IGF-1 levels which likely influenced UCP3 expression in the skeletal muscle. CONCLUSION Our findings demonstrate that that IGF-1 directly stimulates UCP3 expression via the IGF-1/IGF-1R/PI3-Akt/FOXO4 pathway.
Collapse
Affiliation(s)
- Yukiko Watamoto
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Kumi Futawaka
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Misa Hayashi
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Midori Matsushita
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Mana Mitsutani
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Kana Murakami
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Zilin Song
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Rie Koyama
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Yuki Fukuda
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Ayaka Nushida
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Syoko Nezu
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Akiko Kuwahara
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Kazusaburo Kataoka
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Tetsuya Tagami
- Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kenji Moriyama
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan; Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan.
| |
Collapse
|
121
|
Suppression of Obesity by an Intestinal Helminth through Interactions with Intestinal Microbiota. Infect Immun 2019; 87:IAI.00042-19. [PMID: 30962398 PMCID: PMC6529657 DOI: 10.1128/iai.00042-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/16/2019] [Indexed: 12/11/2022] Open
Abstract
Obesity is increasingly causing lifestyle diseases in developed countries where helminthic infections are rarely seen. Here, we investigated whether an intestinal nematode, Heligmosomoides polygyrus, has a suppressive role in diet-induced obesity in mice. Infection with H. polygyrus suppressed weight gain in obese mice, which was associated with increased uncoupling protein 1 (UCP1) expression in adipocytes and a higher serum norepinephrine (NE) concentration. Blocking interactions of NE with its receptor on adipocytes resulted in the failure to prevent weight gain and to enhance UCP1 expression in obese mice infected with H. polygyrus, indicating that NE is responsible for the protective effects of H. polygyrus on obesity. In addition to sympathetic nerve-derived NE, the intestinal microbiota was involved in the increase in NE. Infection with H. polygyrus altered the composition of intestinal bacteria, and antibiotic treatment to reduce intestinal bacteria reversed the higher NE concentration, UCP1 expression, and prevention of the weight gain observed after H. polygyrus infection. Our data indicate that H. polygyrus exerts suppressive roles on obesity through modulation of microbiota that produce NE.
Collapse
|
122
|
Mitochondrial F-ATP Synthase and Its Transition into an Energy-Dissipating Molecular Machine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8743257. [PMID: 31178976 PMCID: PMC6501240 DOI: 10.1155/2019/8743257] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/18/2019] [Indexed: 01/27/2023]
Abstract
The mitochondrial F-ATP synthase is the principal energy-conserving nanomotor of cells that harnesses the proton motive force generated by the respiratory chain to make ATP from ADP and phosphate in a process known as oxidative phosphorylation. In the energy-converting membranes, F-ATP synthase is a multisubunit complex organized into a membrane-extrinsic F1 sector and a membrane-intrinsic FO domain, linked by central and peripheral stalks. Due to its essential role in the cellular metabolism, malfunction of F-ATP synthase has been associated with a variety of pathological conditions, and the enzyme is now considered as a promising drug target for multiple disease conditions and for the regulation of energy metabolism. We discuss structural and functional features of mitochondrial F-ATP synthase as well as several conditions that partially or fully inhibit the coupling between the F1 catalytic activities and the FO proton translocation, thus decreasing the cellular metabolic efficiency and transforming the enzyme into an energy-dissipating structure through molecular mechanisms that still remain to be defined.
Collapse
|
123
|
Komiya Y, Nakamura T, Ishii M, Shimizu K, Hiraki E, Kawabata F, Nakamura M, Tatsumi R, Ikeuchi Y, Mizunoya W. Increase in muscle endurance in mice by dietary Yamabushitake mushroom (Hericium erinaceus) possibly via activation of PPARδ. Anim Sci J 2019; 90:781-789. [PMID: 30938015 PMCID: PMC6594082 DOI: 10.1111/asj.13199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Skeletal muscle fiber is largely classified into two types: type 1 (slow‐twitch) and type 2 (fast‐twitch) fibers. Meat quality and composition of fiber types are thought to be closely related. Previous research showed that overexpression of constitutively active peroxisome proliferator‐activated receptor (PPAR)δ, a nuclear receptor present in skeletal muscle, increased type 1 fibers in mice. In this study, we found that hexane extracts of Yamabushitake mushroom (Hericium erinaceus) showed PPARδ agonistic activity in vitro. Eight‐week‐old C57BL/6J mice were fed a diet supplemented with 5% (w/w) freeze‐dried Yamabushitake mushroom for 24 hr. After the treatment period, the extensor digitorum longus (EDL) muscles were excised. The Yamabushitake‐supplemented diet up‐regulated the PPARδ target genes Pdk4 and Ucp3 in mouse skeletal muscles in vivo. Furthermore, feeding the Yamabushitake‐supplemented diet to mice for 8 weeks resulted in a significant increase in muscle endurance. These results indicate that Yamabushitake mushroom contains PPARδ agonistic ligands and that dietary intake of Yamabushitake mushroom could activate PPARδ in skeletal muscle of mice. Unexpectedly, we observed no significant alterations in composition of muscle fiber types between the mice fed control and Yamabushitake‐supplemented diets.
Collapse
Affiliation(s)
- Yusuke Komiya
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan.,Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Toshiya Nakamura
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Momoko Ishii
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kuniyoshi Shimizu
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Eri Hiraki
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Fuminori Kawabata
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.,Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Mako Nakamura
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshihide Ikeuchi
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Wataru Mizunoya
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
124
|
Jarmuszkiewicz W, Szewczyk A. Energy-dissipating hub in muscle mitochondria: Potassium channels and uncoupling proteins. Arch Biochem Biophys 2019; 664:102-109. [DOI: 10.1016/j.abb.2019.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/15/2023]
|
125
|
Allicin induces beige-like adipocytes via KLF15 signal cascade. J Nutr Biochem 2019; 64:13-24. [DOI: 10.1016/j.jnutbio.2018.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 08/13/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
|
126
|
Di Gregorio I, Busiello RA, Burgos Aceves MA, Lepretti M, Paolella G, Lionetti L. Environmental Pollutants Effect on Brown Adipose Tissue. Front Physiol 2019; 9:1891. [PMID: 30687113 PMCID: PMC6333681 DOI: 10.3389/fphys.2018.01891] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Brown adipose tissue (BAT) with its thermogenic function due to the presence of the mitochondrial uncoupling protein 1 (UCP1), has been positively associated with improved resistance to obesity and metabolic diseases. During recent years, the potential influence of environmental pollutants on energetic homoeostasis and obesity development has drawn increased attention. The purpose of this review is to discuss how regulation of BAT function could be involved in the environmental pollutant effect on body energy metabolism. We mainly focused in reviewing studies on animal models, which provide a better insight into the cellular mechanisms involved in this effect on body energy metabolism. The current literature supports the hypothesis that some environmental pollutants, acting as endocrine disruptors (EDCs), such as dichlorodiphenyltrichoroethane (DDT) and its metabolite dichlorodiphenylethylene (DDE) as well as some, traffic pollutants, are associated with increased obesity risk, whereas some other chemicals, such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), had a reverse association with obesity. Noteworthy, the EDCs associated with obesity and metabolic disorders impaired BAT mass and function. Perinatal exposure to DDT impaired BAT thermogenesis and substrate utilization, increasing susceptibility to metabolic syndrome. Ambient particulate air pollutions induced insulin resistance associated with BAT mitochondrial dysfunction. On the other hand, the environmental pollutants (PFOS/PFOA) elicited a reduction in body weight and adipose mass associated with upregulation of UCP1 and increased oxidative capacity in brown-fat mitochondria. Further research is needed to better understand the physiological role of BAT in response to exposure to both obesogenic and anti-obesogenic pollutants and to confirm the same role in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Lillà Lionetti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, Italy
| |
Collapse
|
127
|
Breed D, Meyer LCR, Steyl JCA, Goddard A, Burroughs R, Kohn TA. Conserving wildlife in a changing world: Understanding capture myopathy-a malignant outcome of stress during capture and translocation. CONSERVATION PHYSIOLOGY 2019; 7:coz027. [PMID: 31304016 PMCID: PMC6612673 DOI: 10.1093/conphys/coz027] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/22/2019] [Accepted: 05/03/2019] [Indexed: 05/18/2023]
Abstract
The number of species that merit conservation interventions is increasing daily with ongoing habitat destruction, increased fragmentation and loss of population connectivity. Desertification and climate change reduce suitable conservation areas. Physiological stress is an inevitable part of the capture and translocation process of wild animals. Globally, capture myopathy-a malignant outcome of stress during capture operations-accounts for the highest number of deaths associated with wildlife translocation. These deaths may not only have considerable impacts on conservation efforts but also have direct and indirect financial implications. Such deaths usually are indicative of how well animal welfare was considered and addressed during a translocation exercise. Importantly, devastating consequences on the continued existence of threatened and endangered species succumbing to this known risk during capture and movement may result. Since first recorded in 1964 in Kenya, many cases of capture myopathy have been described, but the exact causes, pathophysiological mechanisms and treatment for this condition remain to be adequately studied and fully elucidated. Capture myopathy is a condition with marked morbidity and mortality that occur predominantly in wild animals around the globe. It arises from inflicted stress and physical exertion that would typically occur with prolonged or short intense pursuit, capture, restraint or transportation of wild animals. The condition carries a grave prognosis, and despite intensive extended and largely non-specific supportive treatment, the success rate is poor. Although not as common as in wildlife, domestic animals and humans are also affected by conditions with similar pathophysiology. This review aims to highlight the current state of knowledge related to the clinical and pathophysiological presentation, potential treatments, preventative measures and, importantly, the hypothetical causes and proposed pathomechanisms by comparing conditions found in domestic animals and humans. Future comparative strategies and research directions are proposed to help better understand the pathophysiology of capture myopathy.
Collapse
Affiliation(s)
- Dorothy Breed
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Biodiversity Management Branch, Environmental Management Department, City of Cape Town, Maitland, South Africa
| | - Leith C R Meyer
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
- Centre for Veterinary Wildlife Studies, University of Pretoria, Onderstepoort, South Africa
| | - Johan C A Steyl
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
- Centre for Veterinary Wildlife Studies, University of Pretoria, Onderstepoort, South Africa
| | - Amelia Goddard
- Department of Companion Animal Clinical Studies, University of Pretoria, Onderstepoort, South Africa
- Centre for Veterinary Wildlife Studies, University of Pretoria, Onderstepoort, South Africa
| | - Richard Burroughs
- Department of Production Animal Studies, University of Pretoria, Onderstepoort, South Africa
- Centre for Veterinary Wildlife Studies, University of Pretoria, Onderstepoort, South Africa
- Mammal Research Institute, University of Pretoria, Onderstepoort, South Africa
| | - Tertius A Kohn
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
- Corresponding author: Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Boundary Road, Cape Town 7725, South Africa. Tel.: +27 21 406 6235;
| |
Collapse
|
128
|
Chen Y, Yu T. Testosterone mediates hyperthermic response of mice to heat exposure. Life Sci 2018; 214:34-40. [DOI: 10.1016/j.lfs.2018.10.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022]
|
129
|
Xu M, Wu H, Li M, Wen Y, Yu C, Xia L, Xia Q, Kong X. DJ-1 Deficiency Protects Hepatic Steatosis by Enhancing Fatty Acid Oxidation in Mice. Int J Biol Sci 2018; 14:1892-1900. [PMID: 30443192 PMCID: PMC6231226 DOI: 10.7150/ijbs.28620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/07/2018] [Indexed: 01/16/2023] Open
Abstract
Our previous studies have shown that DJ-1 play important roles in progression of liver diseases through modulating hepatic ROS production and immune response, but its role in hepatic steatosis remains obscure. In the present study, by adopting a high-fat-diet (HFD) induced mice model, we found that DJ-1 knockout (DJ-1-/-) mice showing decreased HFD-induced obesity and visceral adipose accumulation. In line with these changes, there were also reduced liver weight and ameliorated hepatic triglyceride (TG) accumulation in DJ-1-/- mice compared to wild-type (WT) mice. And there were also decreased blood glucose levels and insulin resistance and reduced glucose metabolic disorder in DJ-1-/- mice, whereas there were no significant differences in total cholesterol (TC) and serum lipid in two groups of mice. Mechanistically, we found that there were no differences in food intake in these two genotypes of mice. Furthermore, there were no significant differences in fatty acid synthesis and glycolysis, but the expression of key enzymes in fatty acid oxidation and the tricarboxylic acid (TCA) cycle, such as Cpt1α, Pparα, Acox1, Cs, Idh1 and Idh2, was increased in DJ-1-/- mice liver, suggesting that there was enhanced fatty acids oxidation and TCA cycle in DJ-1-/- mice. Our data indicate that deletion of DJ-1 enhancing fatty acids oxidation resulting in lower hepatic TG accumulation in mice, which protecting mice hepatic steatosis.
Collapse
Affiliation(s)
- Min Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Meng Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yankai Wen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Yu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoni Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
130
|
Komakula SSB, Tumova J, Kumaraswamy D, Burchat N, Vartanian V, Ye H, Dobrzyn A, Lloyd RS, Sampath H. The DNA Repair Protein OGG1 Protects Against Obesity by Altering Mitochondrial Energetics in White Adipose Tissue. Sci Rep 2018; 8:14886. [PMID: 30291284 PMCID: PMC6173743 DOI: 10.1038/s41598-018-33151-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022] Open
Abstract
Obesity and related metabolic pathologies represent a significant public health concern. Obesity is associated with increased oxidative stress that damages genomic and mitochondrial DNA. Oxidatively-induced lesions in both DNA pools are repaired via the base-excision repair pathway, initiated by DNA glycosylases such as 8-oxoguanine DNA glycosylase (OGG1). Global deletion of OGG1 and common OGG1 polymorphisms render mice and humans susceptible to metabolic disease. However, the relative contribution of mitochondrial OGG1 to this metabolic phenotype is unknown. Here, we demonstrate that transgenic targeting of OGG1 to mitochondria confers significant protection from diet-induced obesity, insulin resistance, and adipose tissue inflammation. These favorable metabolic phenotypes are mediated by an increase in whole body energy expenditure driven by specific metabolic adaptations, including increased mitochondrial respiration in white adipose tissue of OGG1 transgenic (Ogg1Tg) animals. These data demonstrate a critical role for a DNA repair protein in modulating mitochondrial energetics and whole-body energy balance.
Collapse
Affiliation(s)
- Sai Santosh Babu Komakula
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA.,Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jana Tumova
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Deeptha Kumaraswamy
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Natalie Burchat
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Vladimir Vartanian
- Oregon Institute of Occupational Health Sciences, Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Hong Ye
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Harini Sampath
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
131
|
Mitochondrial uncoupler BAM15 inhibits artery constriction and potently activates AMPK in vascular smooth muscle cells. Acta Pharm Sin B 2018; 8:909-918. [PMID: 30505660 PMCID: PMC6251816 DOI: 10.1016/j.apsb.2018.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/08/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Our previous studies found that mitochondrial uncouplers CCCP and niclosamide inhibited artery constriction and the mechanism involved AMPK activation in vascular smooth muscle cells. BAM15 is a novel type of mitochondrial uncoupler. The aim of the present study is to identify the vasoactivity of BAM15 and characterize the BAM15-induced AMPK activation in vascular smooth muscle cells (A10 cells). BAM15 relaxed phenylephrine (PE)-induced constricted rat mesenteric arteries with intact and denuded endothelium. Pretreatment with BAM15 inhibited PE-induced constriction of rat mesenteric arteries with intact and denuded endothelium. BAM15, CCCP, and niclosamide had the comparable IC50 value of vasorelaxation in PE-induced constriction of rat mesenteric arteries. BAM15 was less cytotoxic in A10 cells compared with CCCP and niclosamide. BAM15 depolarized mitochondrial membrane potential, induced mitochondrial fission, increased mitochondrial ROS production, and increased mitochondrial oxygen consumption rate in A10 cells. BAM15 potently activated AMPK in A10 cells and the efficacy of BAM15 was stronger than that of CCCP, niclosamide, and AMPK positive activators metformin and AICAR. In conclusion, BAM15 activates AMPK in vascular smooth muscle cells with higher potency than that of CCCP, niclosamide and the known AMPK activators metformin and AICAR. The present work indicates that BAM15 is a potent AMPK activator.
Collapse
|
132
|
Alonso-Garrido M, Escrivá L, Manyes L, Font G. Enniatin B induces expression changes in the electron transport chain pathway related genes in lymphoblastic T-cell line. Food Chem Toxicol 2018; 121:437-443. [PMID: 30227181 DOI: 10.1016/j.fct.2018.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Enniatin B is a ionophoric and lipophilic mycotoxin which reaches the bloodstream and has the ability to penetrate into cellular membranes. The purpose of this study was to reveal changes in the gene expression profile caused by enniatin B in human Jurkat lymphoblastic T-cells after 24 h of exposure at 1.5, 3 and 5 μM by next generation sequencing. It was found that up to 27% of human genome expression levels were significantly altered (5750 genes for both down-regulation and up-regulation). In the three enniatin B concentrations studied 245 differentially expressed genes were found to be overlapped, 83 were down and 162 up-regulated. ConsensusPathDB analysis of over-representation of differentially expressed genes provided a list of gene ontology terms in which several biological processes related to nucleoside monophosphate metabolic process, respiratory chain complex, electron transport chain, oxidative phosphorylation and cellular respiration were the most altered. Also, an interesting correlation was found between enniatin B toxicity and the up-regulation of the UCP protein complex. In summary, the transcriptomic analysis revealed that mitochondria are the organelles showing more related differentially expressed genes. Consequently, differentially expressed genes involved in biological processes, molecular functions and pathways related to mitochondrial metabolism and respiration were significantly changed.
Collapse
Affiliation(s)
- M Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Burjassot, Spain
| | - L Escrivá
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Burjassot, Spain
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Burjassot, Spain.
| | - G Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Burjassot, Spain
| |
Collapse
|
133
|
Complex lipid globules in early-life nutrition improve long-term metabolic phenotype in intra-uterine growth-restricted rats. Br J Nutr 2018; 120:763-776. [PMID: 30109842 DOI: 10.1017/s0007114518001988] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intra-uterine growth restriction (IUGR) is associated with adverse metabolic outcome later in life. Healthy mice challenged with a Western-style diet (WSD) accumulated less body fat when previously fed a diet containing large lipid globules (complex lipid matrix (CLM)). This study was designed to clarify whether an early-life CLM diet mitigates 'programmed' visceral adiposity and associated metabolic sequelae after IUGR. In rats, IUGR was induced either by bilateral uterine vessel ligation (LIG) or sham operation (i.e. intra-uterine stress) of the dam on gestational day 19. Offspring from non-operated (NOP) dams served as controls. Male offspring of all groups were either fed CLM or 'normal matrix' control diet (CTRL) from postnatal days (PND) 15 to 42. Thereafter, animals were challenged with a mild WSD until dissection (PND 98). Fat mass (micro computer-tomograph scan; weight of fat compartments), circulating metabolic markers and expression of 'metabolic' genes (quantitative real-time PCR) were assessed. CLM diet significantly reduced visceral fat mass in LIG at PND 40. At dissection, visceral fat mass, fasted blood glucose, TAG and leptin concentrations were significantly increased in LIG-CTRL v. NOP-CTRL, and significantly decreased in LIG-CLM v. LIG-CTRL. Gene expression levels of leptin (mesenteric fat) and insulin-like growth factor 1 (liver) were significantly reduced in LIG-CLM v. LIG-CTRL. In conclusion, early-life CLM diet mitigated the adverse metabolic phenotype after utero-placental insufficiency. The supramolecular structure of dietary lipids may be a novel aspect of nutrient quality that has to be considered in the context of primary prevention of obesity and metabolic disease in at-risk populations.
Collapse
|
134
|
Pacheu-Grau D, Rucktäschel R, Deckers M. Mitochondrial dysfunction and its role in tissue-specific cellular stress. Cell Stress 2018; 2:184-199. [PMID: 31225486 PMCID: PMC6551628 DOI: 10.15698/cst2018.07.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial bioenergetics require the coordination of two different and independent genomes. Mutations in either genome will affect mitochondrial functionality and produce different sources of cellular stress. Depending on the kind of defect and stress, different tissues and organs will be affected, leading to diverse pathological conditions. There is no curative therapy for mitochondrial diseases, nevertheless, there are strategies described that fight the various stress forms caused by the malfunctioning organelles. Here, we will revise the main kinds of stress generated by mutations in mitochondrial genes and outline several ways of fighting this stress.
Collapse
Affiliation(s)
- David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Robert Rucktäschel
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| |
Collapse
|
135
|
Shirkhani S, Marandi SM, Kazeminasab F, Esmaeili M, Ghaedi K, Esfarjani F, Shiralian-Esfahani H, Nasr-Esfahani MH. Comparative studies on the effects of high-fat diet, endurance training and obesity on Ucp1 expression in male C57BL/6 mice. Gene 2018; 676:16-21. [PMID: 30201103 DOI: 10.1016/j.gene.2018.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Obesity triggers a variety of severe conditions, therefore deteriorates metabolism rate of adipose tissues and muscles. Uncoupling proteins which are highly stimulated by fatty acids are potential targets for anti-obesity agents through breaking the electron gradient in the mitochondrial matrix and creating imbalances in the electron transport chain, thereby increasing the amount of substrate used to produce energy. Therefore, the aim of present study is assessment of exercise and high fat diet on expression level of Ucp1 subcutaneous white and brown adipose tissues (scWAT & BAT) respectively. METHODS To perform experiments, 48 male C57BL/6 mice were divided to two major groups and fed with high fat diet (HFD) or low fat diet (LFD) during a period of 12 weeks. After the first intervention, each groups was divided into four groups randomly as (HF-EX), (HF-SED), (LF-EX), (LF-SED) [EX: exercise; SED: sedentary] in form of treadmill running for 45 min/day, 5 days/week during 8 weeks. One day after the last practice session, mice were sacrificed and Ucp1 expression was assessed on scWAT & BAT. RESULTS Data indicated a down-regulation in scWAT Ucp1 in obese mice similar to what observed for the expression of Pgc1α. Both, BAT Ucp1 and Pgc1α mRNA decreased significantly in response to obesity and physical activity. Moreover, exercise caused significant decrease in scWAT mitochondrial proteins contradictory to BAT. CONCLUSION Taken together, exercise exerted controversial effects compared with HFD and obesity on expression of Ucp1 and Pgc1α in scWAT dissimilar to BAT tissues, concluding that obesity may cause a resistance to exercise in terms of metabolic demands for scWAT tissue.
Collapse
Affiliation(s)
- Samaneh Shirkhani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Sayed Mohammad Marandi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran.
| | - Fatemeh Kazeminasab
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Maryam Esmaeili
- Department of Cellular Biotechnology, Cell Sciences Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran; Department of Cellular Biotechnology, Cell Sciences Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Fahimeh Esfarjani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Hanieh Shiralian-Esfahani
- Department of Cellular Biotechnology, Cell Sciences Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Sciences Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
136
|
Rossignoli CP, Dechandt CRP, Souza AO, Sampaio IH, Vicentini TM, Teodoro BG, Neto MPC, Ferrari GD, Couto-Lima CA, Alberici LC. Effects of intermittent dietary supplementation with conjugated linoleic acid and fish oil (EPA/DHA) on body metabolism and mitochondrial energetics in mice. J Nutr Biochem 2018; 60:16-23. [PMID: 30041048 DOI: 10.1016/j.jnutbio.2018.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
Abstract
Understanding the mitochondrial processes that contribute to body energy metabolism may provide an attractive therapeutic target for obesity and co-morbidities. Here we investigated whether intermittent dietary supplementation with conjugated linoleic (CLA, 18:2n-6), docosahexaenoic (22:6n-3, DHA) and eicosapentaenoic (20:5n-3, EPA) acids, either alone or in combination, changes body metabolism associated with mitochondrial functions in the brain, liver, skeletal muscle and brown adipose tissue (BAT). Male C57Bl/6 mice were divided into groups: CLA (50% cis-9, trans-11; 50% trans-10, cis-12), EPA/DHA (64% EPA; 28% DHA), CLA plus EPA/DHA or control (linoleic acid). Each mouse received 3 g/kg b.w. of the stated oil by gavage on alternating days for 60 days. Dietary supplementation with CLA or EPA/DHA increased body VO2 consumption, VCO2 production and energy expenditure, being fish oil (FO) the most potent even in combination with CLA. Individually, both oils reduced mitochondrial density in BAT. CLA supplementation alone also a) elevated the expression of uncoupling proteins in soleus, liver and hippocampus and the uncoupling activity in the last two, ad this effect was associated with reduced hydrogen peroxide production in hippocampus; b) increased proteins related to mitochondrial fission in liver. EPA/DHA supplementation alone also a) induced mitochondrial biogenesis in liver, soleus and hippocampus associated with increased expression of PGC1-α; b) induced proteins related to mitochondrial fusion in the liver, and fission and fusion in the hippocampus. Therefore, this study shows changes on mitochondrial mechanisms induced by CLA and/or EPA/DHA that can be associated with elevated body energy expenditure.
Collapse
Affiliation(s)
- Camila P Rossignoli
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Carlos R P Dechandt
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Anderson O Souza
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Igor H Sampaio
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Tatiane M Vicentini
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Bruno G Teodoro
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Marinaldo Pacífico Cavalcanti Neto
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Gustavo Duarte Ferrari
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Carlos A Couto-Lima
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Luciane C Alberici
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
137
|
Hayashi M, Futawaka K, Matsushita M, Koyama R, Fun Y, Fukuda Y, Nushida A, Nezu S, Tagami T, Moriyama K. GH directly stimulates UCP3 expression. Growth Horm IGF Res 2018; 40:44-54. [PMID: 29398371 DOI: 10.1016/j.ghir.2018.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 12/27/2017] [Accepted: 01/18/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVE We evaluated the direct action of GH signaling in energy homeostasis in myocytes. DESIGN We investigated the GH-induced expression of UCP3 in human embryonic kidney 293 cells, human H-EMC-SS chondrosarcoma cells, murine C2C12 skeletal muscle myoblasts, and rat L6 skeletal muscle cells, as well as its direct effect on the GHR/JAK/STAT5 pathway using a combination of a reporter assay, real-time quantitative polymerase chain reaction, and western blotting. RESULTS We demonstrated that the regulation of energy metabolism by GH involves UCP3 via activated STAT5, a signal transducer downstream of GH. UCP3 expression increased with STAT5 in a dose-dependent manner and was higher than that of UCP2. We confirmed the functional STAT5 binding site consensus sequences at -861 and -507 bp in the UCP3 promoter region. CONCLUSION The results suggest that GH stimulates UCP3 directly and that UCP2 and that UCP3 participate in the signal transduction pathway that functions downstream of the GHR/JAK/STAT.
Collapse
Affiliation(s)
- Misa Hayashi
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Kumi Futawaka
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Midori Matsushita
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Rie Koyama
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Yue Fun
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Yuki Fukuda
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Ayaka Nushida
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Syoko Nezu
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Tetsuya Tagami
- Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kenji Moriyama
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan; Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan.
| |
Collapse
|
138
|
Yu T, Ferdjallah I, Elenberg F, Chen SK, Deuster P, Chen Y. Mitochondrial fission contributes to heat-induced oxidative stress in skeletal muscle but not hyperthermia in mice. Life Sci 2018; 200:6-14. [DOI: 10.1016/j.lfs.2018.02.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 12/22/2022]
|
139
|
Zhou W, Liotta LA, Petricoin EF. The Warburg Effect and Mass Spectrometry-based Proteomic Analysis. Cancer Genomics Proteomics 2018. [PMID: 28647695 DOI: 10.21873/cgp.20032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Compared to normal cells, cancer cells have a unique metabolism by performing lactic acid fermentation in the presence of oxygen, also known as the Warburg effect. Researchers have proposed several hypotheses to elucidate the phenomenon, but the mechanism is still an enigma. In this review, we discuss three typical models, such as "damaged mitochondria", "adaptation to hypoxia", and "cell proliferation requirement", as well as contributions from mass spectrometry analysis toward our understanding of the Warburg effect. Mass spectrometry analysis supports the "adaptation to hypoxia" model that cancer cells are using quasi-anaerobic fermentation to reduce oxygen consumption in vivo. We further propose that hypoxia is an early event and it plays a crucial role in carcinoma initiation and development.
Collapse
Affiliation(s)
- Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, U.S.A.
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, U.S.A
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, U.S.A
| |
Collapse
|
140
|
Xiao XL, Hu N, Zhang XZ, Jiang M, Chen C, Ma R, Ma ZG, Gao JL, Xuan XC, Sun ZJ, Dong DL. Niclosamide inhibits vascular smooth muscle cell proliferation and migration and attenuates neointimal hyperplasia in injured rat carotid arteries. Br J Pharmacol 2018; 175:1707-1718. [PMID: 29486057 DOI: 10.1111/bph.14182] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The anti-helminthic drug niclosamide regulates multiple cellular signals including STAT3, AMP-activated protein kinase (AMPK), Akt, Wnt/β-catenin and mitochondrial uncoupling which are involved in neointimal hyperplasia. Here we have examined the effects of niclosamide on vascular smooth muscle cell proliferation, migration and neointimal hyperplasia and assessed the potential mechanisms. EXPERIMENTAL APPROACH Cell migration was measured by using wound-induced migration assay and Boyden chamber assay. Protein levels were measured by using Western blot technique. Neointimal hyperplasia in vivo was induced in rats by balloon injury to the carotid artery. KEY RESULTS Niclosamide treatment inhibited serum-induced (15% FBS) and PDGF-BB-induced proliferation and migration of vascular smooth muscle cells (A10 cells). Niclosamide showed no cytotoxicity at anti-proliferative concentrations, but induced cell apoptosis at higher concentrations. Niclosamide treatment inhibited serum-induced (15% FBS) and PDGF-BB-induced STAT3 activation (increased protein levels of p-STAT3 at Tyr705 ) but activated AMPK, in A10 cells. Niclosamide exerted no significant effects on β-catenin expression and the activities of ERK1/2 and Akt in A10 cells. Injection (i.p.) of soluble pegylated niclosamide (PEG5000-niclosamide) (equivalent to niclosamide 25 mg·kg-1 ) attenuated neointimal hyperplasia following balloon-injury in rat carotid arteries in vivo. CONCLUSIONS AND IMPLICATIONS Niclosamide inhibited vascular smooth muscle cell proliferation and migration and attenuated neointimal hyperplasia in balloon-injured rat carotid arteries through a mechanism involving inhibition of STAT3.
Collapse
Affiliation(s)
- Xiao-Lin Xiao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Nan Hu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Xin-Zi Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Man Jiang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Chang Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Rui Ma
- Institute of Materials Processing and Intelligent Manufacturing, Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin, China
| | - Zhen-Gang Ma
- Institute of Materials Processing and Intelligent Manufacturing, Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin, China
| | - Jin-Lai Gao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiu-Chen Xuan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Zhi-Jie Sun
- Institute of Materials Processing and Intelligent Manufacturing, Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin, China
| | - De-Li Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
141
|
Mortiboys H, Macdonald R, Payne T, Sassani M, Jenkins T, Bandmann O. Translational approaches to restoring mitochondrial function in Parkinson's disease. FEBS Lett 2017; 592:776-792. [PMID: 29178330 DOI: 10.1002/1873-3468.12920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/04/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022]
Abstract
There is strong evidence of a key role for mitochondrial dysfunction in both sporadic and all forms of familial Parkinson's disease (PD). However, none of the clinical trials carried out with putative mitochondrial rescue agents have been successful. Firm establishment of a wet biomarker or a reliable readout from imaging studies detecting mitochondrial dysfunction and reflecting disease progression is also awaited. We will provide an overview of our current knowledge about mitochondrial dysfunction in PD and related drug screens. We will also summarise previously undertaken mitochondrial wet biomarker studies and relevant imaging studies with particular focus on 31P-MRI spectroscopy. We will conclude with an overview of clinical trials which tested putative mitochondrial rescue agents in PD patients.
Collapse
Affiliation(s)
- Heather Mortiboys
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Ruby Macdonald
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Thomas Payne
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Matilde Sassani
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Thomas Jenkins
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Oliver Bandmann
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| |
Collapse
|
142
|
Childress ES, Alexopoulos SJ, Hoehn KL, Santos WL. Small Molecule Mitochondrial Uncouplers and Their Therapeutic Potential. J Med Chem 2017; 61:4641-4655. [DOI: 10.1021/acs.jmedchem.7b01182] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elizabeth S. Childress
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephanie J. Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Kyle L. Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
- Departments of Pharmacology and Medicine, Cardiovascular Research Center, and Emily Couric Clinical Cancer Center, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L. Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
143
|
Tang W, Tang S, Wang H, Ge Z, Zhu D, Bi Y. Insulin restores UCP3 activity and decreases energy surfeit to alleviate lipotoxicity in skeletal muscle. Int J Mol Med 2017; 40:2000-2010. [PMID: 29039450 DOI: 10.3892/ijmm.2017.3169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 09/19/2017] [Indexed: 11/06/2022] Open
Abstract
An early insulin regimen ameliorates glucotoxicity but also lipotoxicity in type 2 diabetes; however, the underlying mechanism remains elusive. In the present study, we investigated the role of mitochondria in lipid regulation following early insulin administration in insulin-resistant skeletal muscle cells. Male C57BL/6 mice, fed a high-fat diet (HFD) for 8 weeks, were treated with insulin for 3 weeks, and L6 myotubes cultured with palmitate (PA) for 24 h were incubated with insulin for another 12 h. The results showed that insulin facilitated systemic glucose disposal and attenuated muscular triglyceride accumulation in vivo. Recovery of AMP-activated protein kinase (AMPK) phosphorylation, inhibition of sterol-regulated element binding protein-1c (SREBP-1c) and increased carnitine palmitoyltransferase‑1B (CPT1B) expression were observed after insulin administration. Moreover, increased ATP concentration and cellular energy charge elicited by over-nutrition were suppressed by insulin. Despite maintaining respiratory complex activities, insulin restored muscular uncoupling protein 3 (UCP3) protein expression in vitro and in vivo. By contrast, knockdown of UCP3 abrogated insulin-induced restoration of AMPK phosphorylation in vitro. Importantly, the PA-induced decrease in UCP3 was blocked by the proteasome inhibitor MG132, and insulin reduced UCP3 ubiquitination, thereby prohibiting its degradation. Our findings, focusing on energy balance, provide a mechanistic understanding of the promising effect of early insulin initiation on lipotoxicity. Insulin, by recovering UCP3 activity, alleviated energy surfeit and potentiated AMPK-mediated lipid homeostasis in skeletal muscle cells following exposure to PA and in gastrocnemius of mice fed HFD.
Collapse
Affiliation(s)
- Wenjuan Tang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Sunyinyan Tang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Hongdong Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhijuan Ge
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
144
|
Pan HC, Lee CC, Chou KM, Lu SC, Sun CY. Serum levels of uncoupling proteins in patients with differential insulin resistance: A community-based cohort study. Medicine (Baltimore) 2017; 96:e8053. [PMID: 28984759 PMCID: PMC5737995 DOI: 10.1097/md.0000000000008053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The uncoupling protein (UCP) belongs to a family of energy-dissipating proteins in mitochondria. Increasing evidences have indicated that UCPs have immense impact on glucose homeostasis and are key proteins in metabolic syndrome. For applying the findings to clinical practice, we designed a study to explore the association between serum UCPs 1-3 and insulin resistance. This investigation prospectively recorded demographical parameter and collected blood samples of 1071 participants from 4 districts in Northeastern Taiwan during the period from August 2013 to July 2014. Propensity score matching by age and sex in patients with top and bottom third homeostasis model assessment of insulin resistance (HOMA-IR) levels was performed, and 326 subjects were enrolled for further studies. The mean age of the patients was 59.4 years and the majority of them (65.5%) were females. The prevalence of metabolic syndrome was 35.5%. Our results demonstrated that serum UCPs 1-3 were significantly associated with differences in HOMA-IR levels. Multiple logistic regression analysis indicated that low UCP 1 and features of metabolic syndrome, namely hypertension, diabetes, body mass index, and high-density lipoprotein, were independent determinants for high HOMA-IR levels. We thus determined that low serum UCP 1 is a predictor for high resistance to insulin.
Collapse
Affiliation(s)
- Heng-Chih Pan
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chin-Chan Lee
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- School of Medicine, Chang Gung University, Taoyuan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuei-Mei Chou
- Divisions of Endocrinology and Metabolism, Department of Internal Medicine
| | - Shang-Chieh Lu
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chiao-Yin Sun
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- School of Medicine, Chang Gung University, Taoyuan
| |
Collapse
|
145
|
Schielke CKM, Burda H, Henning Y, Okrouhlík J, Begall S. Higher resting metabolic rate in long-lived breeding Ansell's mole-rats ( Fukomys anselli). Front Zool 2017; 14:45. [PMID: 29018488 PMCID: PMC5610445 DOI: 10.1186/s12983-017-0229-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/14/2017] [Indexed: 01/27/2023] Open
Abstract
Background Reproduction is an energetically expensive process that supposedly impairs somatic integrity in the long term, because resources are limited and have to be allocated between reproduction and somatic maintenance, as predicted by the life history trade-off model. The consequence of reduced investment in somatic maintenance is a gradual deterioration of function, i.e. senescence. However, this classical trade-off model gets challenged by an increasing number of contradicting studies. Here we report about an animal model, which adds more complexity to the ongoing debate. Ansell’s mole-rats are long-lived social subterranean rodents with only the founder pair reproducing, while most of their offspring remain in the parental burrow system and do not breed. Despite of a clear reproductive trade-off, breeders live up to twice as long as non-breeders, a unique feature amongst mammals. Methods We investigated mass-specific resting metabolic rates (msRMR) of breeders and non-breeders to gain information about the physiological basis underlying the reproduction-associated longevity in Ansell’s mole-rats. We assessed the thermoneutral zone (TNZ) for breeders and non-breeders separately by means of indirect calorimetry. We applied generalized linear mixed-effects models for repeated measurements using the msRMR in the respective TNZs. Results TNZ differed between reproductive and non-reproductive Ansell’s mole-rats. Contrary to classical aging models, the shorter-lived non-breeders had significantly lower msRMR within the thermoneutral zone compared to breeders. Conclusion This is the first study reporting a positive correlation between msRMR and lifespan based on reproductive status. Our finding contradicts common aging theories, but supports recently introduced models which do not necessarily link reproductive trade-offs to lifespan reduction.
Collapse
Affiliation(s)
| | - Hynek Burda
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| | | | - Jan Okrouhlík
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Sabine Begall
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
146
|
Past, present and future of pharmacotherapy for obesity. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2017; 29:256-264. [PMID: 28935287 DOI: 10.1016/j.arteri.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 01/04/2023]
Abstract
Conventional treatment for obesity with diet, exercise and bariatric surgery has limitations; thus, it is necessary to have pharmacological tools. In the past, different drugs were marketed that were withdrawn due to safety problems. There are currently 3 drugs approved by the European Medicines Agency (EMA) and the Food and Drug Administration (FDA) for obesity therapy (orlistat, combination of bupropion and delayed-release naltrexone and liraglutide) and two more only authorized by FDA (lorcaserin and the combination of phentermine and extended release topiramate). It is recommended to use as a second therapeutic line and its choice should be individualized taking into account multiple aspects such as expected weight loss, route of administration, safety profile and cost. Currently there are several drugs under development that act on different therapeutic targets.
Collapse
|
147
|
Dunn CD. Some Liked It Hot: A Hypothesis Regarding Establishment of the Proto-Mitochondrial Endosymbiont During Eukaryogenesis. J Mol Evol 2017; 85:99-106. [PMID: 28916841 PMCID: PMC5682861 DOI: 10.1007/s00239-017-9809-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 01/17/2023]
Abstract
Eukaryotic cells are characterized by a considerable increase in subcellular compartmentalization when compared to prokaryotes. Most evidence suggests that the earliest eukaryotes consisted of mitochondria derived from an α-proteobacterial ancestor enclosed within an archaeal host cell. However, what benefits the archaeal host and the proto-mitochondrial endosymbiont might have obtained at the beginning of this endosymbiotic relationship remains unclear. In this work, I argue that heat generated by the proto-mitochondrion initially permitted an archaeon living at high temperatures to colonize a cooler environment, thereby removing apparent limitations on cellular complexity. Furthermore, heat generation by the endosymbiont would have provided phenotypic flexibility not available through fixed alleles selected for fitness at specific temperatures. Finally, a role for heat production by the proto-mitochondrion bridges a conceptual gap between initial endosymbiont entry to the archaeal host and a later role for mitochondrial ATP production in permitting increased cellular complexity.
Collapse
Affiliation(s)
- Cory D Dunn
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland. .,College of Sciences, Koç University, 34450, Sarıyer, İstanbul, Turkey.
| |
Collapse
|
148
|
Zheng XY, Yu BL, Xie YF, Zhao SP, Wu CL. Apolipoprotein A5 regulates intracellular triglyceride metabolism in adipocytes. Mol Med Rep 2017; 16:6771-6779. [PMID: 28901468 PMCID: PMC5865834 DOI: 10.3892/mmr.2017.7461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 06/22/2017] [Indexed: 12/11/2022] Open
Abstract
It has previously been demonstrated that apolipoprotein A5 (apoA5) can be internalized by human adipocytes and significantly decreases intracellular triglyceride content. In the present study, endocytosis of apoA5 by adipocytes under different conditions, and the underlying mechanism by which apoA5 regulates cellular triglyceride storage, was investigated. The results revealed that the apoA5 protein was detected in human subcutaneous abdominal adipose tissues. In addition, the uptake of apoA5 was attenuated in human obese adipose tissues and in cultured adipocytes with hypertrophy or insulin resistance. Low-density lipoprotein receptor protein 1 (LRP1) knockdown in adipocytes resulted in a decrease in internalized apoA5 content, suggesting that LRP1 serves a role in apoA5 uptake. Treatment of adipocytes with apoA5 decreased the expression of the lipid droplet-associated proteins such as cidec and perilipin. ApoA5-treated adipocytes demonstrated an increase in lipolysis activity and expression of uncoupling protein 1, which is the molecular effector of thermogenesis in brown adipocytes. These results suggested that decreased triglyceride accumulation in adipocytes induced by apoA5 may be associated with enhanced lipolysis and energy expenditure, which may result from reduced expression of cidec and perilipin. In conclusion, the present study demonstrated a novel role of apoA5 in regulating the intracellular triglyceride metabolism of adipocytes. The results of the present study suggested that apoA5 may serve as a potential therapeutic target for the treatment of obesity and its related disorders.
Collapse
Affiliation(s)
- Xiao-Yan Zheng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Bi-Lian Yu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yu-Fei Xie
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Shui-Ping Zhao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Chen-Lu Wu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
149
|
BUBAK MATTHEWP, HEESCH MATTHEWW, SHUTE ROBERTJ, DINAN NICHOLASE, LAURSEN TERENCEL, LA SALLE DTAYLOR, SLIVKA DUSTINR. Irisin and Fibronectin Type III Domain-Containing 5 Responses to Exercise in Different Environmental Conditions. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2017; 10:666-680. [PMID: 28966707 PMCID: PMC5609670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Fibronectin type III domain-containing 5 (FNDC5) is a skeletal muscle membrane-bound precursor to the myokine irisin. Irisin is involved in stimulating adipose tissue to become more metabolically active in order to produce heat. The purpose of this study was to determine the effects of exercise in a hot (33 °C), cold (7 °C), and room temperature (RT, 20 °C) environment on the skeletal muscle gene expression of FNDC5 and the plasma concentrations of irisin. Twelve recreationally trained males completed three separate, 1 h cycling bouts at 60% of Wmax in a hot, cold, and RT environment followed by three hours of recovery at room temperature. Blood samples were taken from the antecubital vein and muscle biopsies were taken from the vastus lateralis pre-, post-, and 3 h post-exercise. Plasma concentrations of irisin did not change from pre- (9.23 ± 2.68 pg·mL-1) to post-exercise (9.6 ± 0.2 pg·mL-1, p = 0.068), but did decrease from post-exercise to 3 h post-exercise (8.9 ± 0.5 pg·mL-1, p = 0.047) regardless of temperature. However, when plasma volume shifts were considered, no differences were found in irisin (p = 0.086). There were no significant differences between trials for irisin plasma concentrations (p > 0.05). No significant differences in FNDC5 were observed between the hot, cold, or RT or pre-, post-, or 3 h post-exercise time points (p > 0.05). These data indicate that the temperature in which exercise takes place does not influence FNDC5 transcription or circulating irisin in a human model.
Collapse
|
150
|
Zhang JQ, Long XY, Xie Y, Zhao ZH, Fang LZ, Liu L, Fu WP, Shu JK, Wu JH, Dai LM. Relationship between PPARα mRNA expression and mitochondrial respiratory function and ultrastructure of the skeletal muscle of patients with COPD. Bioengineered 2017; 8:723-731. [PMID: 28708015 DOI: 10.1080/21655979.2017.1346757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Peripheral muscle dysfunction is an important complication in patients with chronic obstructive pulmonary disease (COPD). The objective of this study was to explore the relationship between the levels of peroxisome proliferator-activated receptor α (PPARα) mRNA expression and the respiratory function and ultrastructure of mitochondria in the vastus lateralis of patients with COPD. Vastus lateralis biopsies were performed on 14 patients with COPD and 6 control subjects with normal lung function. PPARα mRNA levels in the muscle tissue were detected by real-time PCR. A Clark oxygen electrode was used to assess mitochondrial respiratory function. Mitochondrial number, fractional area in skeletal muscle cross-sections, and Z-line width were observed via transmission electron microscopy. The PPARα mRNA expression was significantly lower in COPD patients with low body mass index (BMIL) than in both COPD patients with normal body mass index (BMIN) and controls. Mitochondrial respiratory function (assessed by respiratory control ratio) was impaired in COPD patients, particularly in BMIL. Compared with that in the control group, mitochondrial number and fractional area were lower in the BMIL group, but were maintained in the BMIN group. Further, the Z-line became narrow in the BMIL group. PPARα mRNA expression was positively related to mitochondrial respiratory function and volume density. In COPD patients with BMIN, mitochondria volume density was maintained, while respiratory function decreased, whereas both volume density and respiratory function decreased in COPD patients with BMIL. PPARα mRNA expression levels are associated with decreased mitochondrial respiratory function and volume density, which may contribute to muscle dysfunction in COPD patients.
Collapse
Affiliation(s)
- Jian-Qing Zhang
- a Department of Respiratory Critical Care Medicine , the First Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Xiang-Yu Long
- a Department of Respiratory Critical Care Medicine , the First Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Yu Xie
- b Department of hematology , the First Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Zhi-Huan Zhao
- a Department of Respiratory Critical Care Medicine , the First Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Li-Zhou Fang
- a Department of Respiratory Critical Care Medicine , the First Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Ling Liu
- a Department of Respiratory Critical Care Medicine , the First Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Wei-Ping Fu
- a Department of Respiratory Critical Care Medicine , the First Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Jing-Kui Shu
- a Department of Respiratory Critical Care Medicine , the First Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Jiang-Hai Wu
- a Department of Respiratory Critical Care Medicine , the First Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Lu-Ming Dai
- a Department of Respiratory Critical Care Medicine , the First Affiliated Hospital of Kunming Medical University , Kunming , China
| |
Collapse
|