101
|
Tao Y, Liu C, Piao L, Yang F, Liu J, Jan MF, Li M. Effect of Mn Deficiency on Carbon and Nitrogen Metabolism of Different Genotypes Seedlings in Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1407. [PMID: 36987095 PMCID: PMC10051073 DOI: 10.3390/plants12061407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Manganese deficiency critically impairs the function and stability of photosystem II (PSII) and negatively impacts crop growth and yield. However, the response mechanisms of carbon and nitrogen metabolism to Mn deficiency in different genotypes of maize and the differences in Mn deficiency tolerance are unclear. Herein, three different genotypes of maize seedlings (sensitive genotype: Mo17, tolerant genotype: B73, and B73 × Mo17) were exposed to Mn deficiency treatment for 16 days using liquid culture with different concentrations of MnSO4 [0.00, 2.23, 11.65, and 22.30 mg/L (control)]. We found that complete Mn deficiency significantly reduced maize seedling biomass; negatively affected the photosynthetic and chlorophyll fluorescence parameters; and depressed nitrate reductase, glutamine synthetase, and glutamate synthase activity. This resulted in reduced leaf and root nitrogen uptake, with Mo17 being most severely inhibited. B73 and B73 × Mo17 maintained higher sucrose phosphate synthase and sucrose synthase activities and lower neutral convertase activity compared to Mo17, which resulted in higher accumulation of soluble sugars and sucrose and maintenance of the osmoregulation capacity of leaves, which helped mitigate damage caused by Mn deficiency. The findings revealed the physiological regulation mechanism of carbon and nitrogen metabolism in different genotypes of maize seedlings that resist Mn deficiency stress, providing a theoretical basis for developing high yield and quality.
Collapse
Affiliation(s)
- Yuzhao Tao
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (Y.T.)
| | - Changzhuang Liu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (Y.T.)
| | - Lin Piao
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Fuqiang Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (Y.T.)
| | - Jiaqi Liu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (Y.T.)
| | - Muhammad Faheem Jan
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (Y.T.)
| | - Ming Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (Y.T.)
| |
Collapse
|
102
|
Alotaibi M, El-Hendawy S, Mohammed N, Alsamin B, Refay Y. Appropriate Application Methods for Salicylic Acid and Plant Nutrients Combinations to Promote Morpho-Physiological Traits, Production, and Water Use Efficiency of Wheat under Normal and Deficit Irrigation in an Arid Climate. PLANTS (BASEL, SWITZERLAND) 2023; 12:1368. [PMID: 36987056 PMCID: PMC10051334 DOI: 10.3390/plants12061368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Freshwater shortage and inadequate nutrient management are the two major challenges for sustainable wheat production in arid agro-ecosystems. Relatively little is known about the positive roles of the application methods for the combination of salicylic acid (SA) and plant nutrients in sustaining wheat production under arid climatic conditions. A two-year field study was undertaken to assess the impact of seven treatments for the integrated application of SA, macronutrients, and micronutrients on the morpho-physiological traits, yield, and irrigation water use efficiency (IWUE) of wheat subjected to full (FL) and limited (LM) irrigation regimes. The results showed that the LM regime caused a significant reduction in different plant growth traits, relative water content, chlorophyll pigments, yield components, and yield, while a significant increase was observed in IWUE. The sole application of SA or co-application with micronutrients through soil did not significantly affect the studied traits under the FL regime, while they achieved some improvement over untreated plants under the LM regime. Based on the different multivariate analyses, the soil and foliar applications for the combinations of SA and micronutrients, as well as a foliar application for the combinations of SA, macronutrients, and micronutrients were identified as an efficient option for mitigating the negative impacts of water deficit stress and enhancing the growth and production of wheat under normal conditions. In conclusion, the results obtained herein indicated that the co-application of SA and macro- and micronutrients is an effective option to greatly enhance and improve the growth and production of wheat crops in water-scarce countries of arid regions, such as Saudi Arabia, while an appropriate application method for this combination was required for positive effects.
Collapse
|
103
|
Li J, Pan J, Najeeb U, El-Beltagi HS, Huang Q, Lu H, Xu L, Shi B, Zhou W. Promotive Role of 5-Aminolevulinic Acid or Salicylic Acid Combined with Citric Acid on Sunflower Growth by Regulating Manganese Absorption. Antioxidants (Basel) 2023; 12:antiox12030580. [PMID: 36978828 PMCID: PMC10045730 DOI: 10.3390/antiox12030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Manganese (Mn) is an essential nutrient in most organisms. Establishing an effective regulatory system of Mn absorption is important for sustainable crop development. In this study, we selected sunflower as the model plant to explore the effects of 5-aminolevulinic acid (ALA) or salicylic acid (SA) combined with citric acid (CA) on Mn absorption. Six-leaf-old sunflower plants were exposed to 0.8 g kg−1 Mn for one week and then treated with chelating agents, i.e., CA (10 mmol kg−1), and different concentrations of ALA and SA for one week. The results showed that Mn-treated plants had significantly increased H2O2, O2− and MDA contents in leaves compared with the control. Under the Mn + CA treatment, ALA or SA2 significantly activated the antioxidant defense system by increasing SOD, POD and CAT activities in leaves. Moreover, the application of CA significantly increased the Mn uptake in sunflower roots compared with Mn treatment alone; however, did not accelerate the translocation efficiency of Mn from sunflower roots to shoots. Moreover, ultrastructural and RT-qPCR results further demonstrated that ALA/SA could recover the adverse impact of excessive Mn accumulation in sunflowers. Like a pump, ALA/SA regulated the translocation efficiency and promoted the transportation of Mn from roots to shoots. This study provides insights into the promotive role of ALA/SA combined with CA on sunflower growth by regulating Mn absorption, which would be beneficial for regulating Mn absorption in soil with an Mn deficit.
Collapse
Affiliation(s)
- Juanjuan Li
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Jianmin Pan
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ullah Najeeb
- Queensland Alliance for Agriculture and Food Innovation, Centre for Plant Science, The University of Queensland, Toowoomba, QLD 4350, Australia
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Qian Huang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Huaijian Lu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ling Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: (L.X.); (B.S.); (W.Z.)
| | - Bixian Shi
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Correspondence: (L.X.); (B.S.); (W.Z.)
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
- Correspondence: (L.X.); (B.S.); (W.Z.)
| |
Collapse
|
104
|
Heghedűș-Mîndru G, Negrea P, Trașcă TI, Ștef DS, Cocan I, Heghedűș-Mîndru RC. Food Intake of Macro and Trace Elements from Different Fresh Vegetables Taken from Timisoara Market, Romania-Chemometric Analysis of the Results. Foods 2023; 12:foods12040749. [PMID: 36832823 PMCID: PMC9955908 DOI: 10.3390/foods12040749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Vegetable consumption is recommended and encouraged by all nutritionists and doctors across the planet. However, in addition to minerals which are beneficial to the body, certain minerals with a negative influence on human health can sneak in. It is very important that in the case of some minerals their content in vegetables is known, so that the recommended limits are not exceeded. The purpose of this study was to evaluate the macro elements (Na, K, Ca, Mg) and trace elements (Cu, Mn, Fe, Cd, Pb, Zn, Co) in 24 samples of vegetables from four botanical families (Solanaceae, Brassicaceae, Apiaceae and Amaryllidaceae), purchased from the market in Timișoara, Romania, both imported products as well as local products. The atomic-absorption-spectrometry technique (FAAS) was used to evaluate the macro elements and trace elements. The values obtained for the macro elements and trace elements were used as input data for the analysis of multivariate data, the principal component analysis (PCA) in which the vegetable samples were grouped according to their contribution of certain mineral elements, as well as according to some of the botanical families to which they belong. At the same time, based on the values obtained for trace elements, an assessment of the risk to human health in terms of consumption of the vegetables studied was carried out. The risk assessment for human health was determined on the basis of the estimated daily dose (EDI), the values of the target hazard coefficient (THQ), the values of the total target hazard coefficient (TTHQ) and the carcinogenic risk (CR). Following the determination of THQ, the values obtained followed the order THQWith > THQCd > THQPb > THQCo > THQMn > THQZn > THQFe. The results on the content of macro elements and trace elements, as well as the assessment of the risk to human health when consuming the assessed vegetables, were within the limits of European Union (EU) and World Health Organization and Food and Agriculture Organization (WHO/FAO)legislation.
Collapse
Affiliation(s)
- Gabriel Heghedűș-Mîndru
- Faculty of Food Engineering, University of Life Science “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timisoara, Piata Victoriei, RO, 300006 Timisoara, Romania
| | - Teodor Ioan Trașcă
- Faculty of Food Engineering, University of Life Science “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Ducu Sandu Ștef
- Faculty of Food Engineering, University of Life Science “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Ileana Cocan
- Faculty of Food Engineering, University of Life Science “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Ramona Cristina Heghedűș-Mîndru
- Faculty of Food Engineering, University of Life Science “King Mihai I” from Timisoara, 300645 Timisoara, Romania
- Correspondence:
| |
Collapse
|
105
|
Coimbra ECL, Borges AC. Removing Mn, Cu and Fe from Real Wastewaters with Macrophytes: Reviewing the Relationship between Environmental Factors and Plants' Uptake Capacity. TOXICS 2023; 11:158. [PMID: 36851032 PMCID: PMC9967775 DOI: 10.3390/toxics11020158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal pollution creates environmental health concerns. Among these, iron (Fe), copper (Cu) and manganese (Mn) are commonly found in aquatic environments due to the release of wastewaters. Phytoremediation in hydroponics uses macrophytes to treat contaminated environments, and this is influenced by environmental factors. However, the relationship between these factors and the removal of Fe, Cu and Mn by macrophytes is not known. Therefore, a meta-analysis serves to determine the correlations between environmental factors and the removal of these metals in real wastewater by macrophytes, as well as to identify the role of different aquatic forms of macrophytes in phytoremediation. Emergent macrophytes had higher concentrations of manganese in their tissues, and higher bioconcentrations factor of iron and manganese than floating plants. Regardless of the biotope, higher concentrations of Fe and Cu decreased the ability of plants to bioconcentrate them. The correlations among exposure time, pH, dissolved oxygen, nitrogen, phosphorus, photoperiod and metal phytoremediation by plants were also found. It can be concluded that the emergent macrophytes showed better performance in terms of the removal of Fe, Cu and Mn, and that the significant correlations between environmental factors and removal vary with the type of metal and the environmental factor analyzed.
Collapse
|
106
|
Yu G, Ullah H, Wang X, Liu J, Chen B, Jiang P, Lin H, Sunahara GI, You S, Zhang X, Shahab A. Integrated transcriptome and metabolome analysis reveals the mechanism of tolerance to manganese and cadmium toxicity in the Mn/Cd hyperaccumulator Celosia argentea Linn. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130206. [PMID: 36279652 DOI: 10.1016/j.jhazmat.2022.130206] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Understanding the molecular mechanism of tolerance to heavy metals in hyperaccumulators is important for improving the efficiency of phytoremediation and is interesting for evolutionary studies on plant adaption to abiotic stress. Celosia argentea Linn. was recently discovered to hyperaccumulate both manganese (Mn) and cadmium (Cd). However, the molecular mechanisms underlying Mn and Cd detoxification in C. argentea are poorly understood. Laboratory studies were conducted using C. argentea seedlings exposed to 360 μM Mn and 8.9 μM Cd hydroponic solutions. Plant leaves were analyzed using transcriptional and metabolomic techniques. A total of 3960 differentially expressed genes (DEGs) in plants were identified under Cd stress, among which 17 were associated with metal transport, and 10 belonged to the ATP transporter families. Exposures to Mn or Cd led to the differential expression of three metal transport genes (HMA3, ABCC15, and ATPase 4). In addition, 33 and 77 differentially expressed metabolites (DEMs) were identified under Mn and Cd stresses, respectively. Metabolic pathway analysis showed that the ABC transporter pathway was the most affected in Mn/Cd exposed seedlings. Conjoint transcriptome and metabolome analysis showed that the glutathione (GSH) metabolic pathway was over-represented in the KEGG pathway of both DEGs and DEMs. Our results confirm that the ABC transporter and GSH metabolic pathways play important roles in Mn and Cd detoxification. These findings provide new insight into the molecular mechanisms of tolerance to Mn and Cd toxicity in plants.
Collapse
Affiliation(s)
- Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinshuai Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Pingping Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Geoffrey I Sunahara
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada.
| | - Shaohong You
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| |
Collapse
|
107
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
108
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
109
|
Wang X, Ai S, Liao H. Deciphering Interactions between Phosphorus Status and Toxic Metal Exposure in Plants and Rhizospheres to Improve Crops Reared on Acid Soil. Cells 2023; 12:cells12030441. [PMID: 36766784 PMCID: PMC9913701 DOI: 10.3390/cells12030441] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Acid soils are characterized by deficiencies in essential nutrient elements, oftentimes phosphorus (P), along with toxicities of metal elements, such as aluminum (Al), manganese (Mn), and cadmium (Cd), each of which significantly limits crop production. In recent years, impressive progress has been made in revealing mechanisms underlying tolerance to high concentrations of Al, Mn, and Cd. Phosphorus is an essential nutrient element that can alleviate exposure to potentially toxic levels of Al, Mn, and Cd. In this review, recent advances in elucidating the genes responsible for the uptake, translocation, and redistribution of Al, Mn, and Cd in plants are first summarized, as are descriptions of the mechanisms conferring resistance to these toxicities. Then, literature highlights information on interactions of P nutrition with Al, Mn, and Cd toxicities, particularly possible mechanisms driving P alleviation of these toxicities, along with potential applications for crop improvement on acid soils. The roles of plant phosphate (Pi) signaling and associated gene regulatory networks relevant for coping with Al, Mn, and Cd toxicities, are also discussed. To develop varieties adapted to acid soils, future work needs to further decipher involved signaling pathways and key regulatory elements, including roles fulfilled by intracellular Pi signaling. The development of new strategies for remediation of acid soils should integrate the mechanisms of these interactions between limiting factors in acid soils.
Collapse
Affiliation(s)
- Xiurong Wang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Shaoying Ai
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel./Fax: +86-0591-88260230
| |
Collapse
|
110
|
Salehi H, Cheheregani Rad A, Raza A, Djalovic I, Prasad PVV. The comparative effects of manganese nanoparticles and their counterparts (bulk and ionic) in Artemisia annua plants via seed priming and foliar application. FRONTIERS IN PLANT SCIENCE 2023; 13:1098772. [PMID: 36743542 PMCID: PMC9893273 DOI: 10.3389/fpls.2022.1098772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
The world has experienced an unprecedented boom in nanotechnology. Nanoparticles (NPs) are likely to act as biostimulants in various plants due to having high surface/volume value. However, understanding the actual effect of NPs is essential to discriminate them from other counterparts in terms of being applicable, safe and cost-effective. This study aimed to assay the impact of manganese(III) oxide (Mn2O3)-NPs via seed-priming (SP) and a combination of SP and foliar application (SP+F) on Artemisia. annua performance at several times intervals and comparison with other available manganese (Mn) forms. Our findings indicate that SP with MnSO4 and Mn2O3-NPs stimulates the processes that occur prior to germination and thus reduces the time for radicle emergence. In both applications (i.e., SP and +F), none of the Mn treatments did show adverse phytotoxic on A. annua growth at morpho-physio and biochemical levels except for Mn2O3, which delayed germination and further plant growth, subsequently. Besides, from physio-biochemical data, it can be inferred that the general mechanism mode of action of Mn is mainly attributed to induce the photosynthetic processes, stimulate the superoxide dismutase (SOD) activity, and up-regulation of proline and phenolic compounds. Therefore, our results showed that both enzymatic and non-enzymatic antioxidants could be influenced by the application of Mn treatments in a type-dependent manner. In general, this study revealed that Mn2O3-NPs at the tested condition could be used as biostimulants to improve germination, seedling development and further plant growth. However, they are not as effective as MnSO4 treatments. Nonetheless, these findings can be used to consider and develop Mn2O3-NPs priming in future studies to improve seed germination and seedling quality in plants.
Collapse
Affiliation(s)
- Hajar Salehi
- Laboratory of Plant Cell Biology, Department of Biology, Bu-Ali Sina University, Hamedan, Iran
| | | | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
111
|
Bolan N, Sarmah AK, Bordoloi S, Bolan S, Padhye LP, Van Zwieten L, Sooriyakumar P, Khan BA, Ahmad M, Solaiman ZM, Rinklebe J, Wang H, Singh BP, Siddique KHM. Soil acidification and the liming potential of biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120632. [PMID: 36384210 DOI: 10.1016/j.envpol.2022.120632] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Soil acidification in managed ecosystems such as agricultural lands principally results from the increased releasing of protons (H+) from the transformation reactions of carbon (C), nitrogen (N) and sulphur (S) containing compounds. The incorporation of liming materials can neutralize the protons released, hence reducing soil acidity and its adverse impacts to the soil environment, food security, and human health. Biochar derived from organic residues is becoming a source of carbon input to soil and provides multifunctional values. Biochar can be alkaline in nature, with the level of alkalinity dependent upon the feedstock and processing conditions. This review covers the fundamental aspects of soil acidification and of the use of biochar to address constraints related to acidic soil. Biochar is increasingly considered as an effective soil amendment for reducing soil acidity owing to its liming potential, thereby enhancing soil fertility and productivity in acid soils. The ameliorant effect on acid soils is mainly because of the dissolution of carbonates, (hydro)-oxides of the ash fraction of biochar and potential use by microorganisms.
Collapse
Affiliation(s)
- Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| | - Ajit K Sarmah
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia; Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92010, Auckland, 1142, New Zealand
| | - Sanandam Bordoloi
- Prairie Research Institute-Illinois Sustainable Technology Centre, University of Illinois at Urbana Champaign, Illinois, USA
| | - Shankar Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92010, Auckland, 1142, New Zealand
| | | | - Prasanthi Sooriyakumar
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Basit Ahmed Khan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mahtab Ahmad
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zakaria M Solaiman
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Bhupinder Pal Singh
- Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| |
Collapse
|
112
|
Volkogon VV, Potapenko LV, Volkogon MV. Vertical migration of nutrients and water-soluble organic matter in the soil profile under pre-sowing seed treatment with plant growth promoting rhizobacteria. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1054113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Studies conducted in a stationary lysimeter experiment in the conditions of the washing water regime have shown that the use of PGPR for pre-sowing seed inoculation of agricultural crops reduces vertical migration of biogenic nutrients and water-soluble organic matter down the soil profile. The effect of seed inoculation with PGPR on the reduction of nutrient losses was not specific to the type of rhizobacteria and was similar for crops grown on different mineral fertilizers backgrounds (spring barley and winter rye seeds were inoculated with the nitrogen-fixing bacteria—Azospirillum brasilense 410 and A. brasilense 18-2, respectively, while maize seeds were inoculated with the phosphate-mobilizing Paenibacillus polymyxa KB). Seed inoculation has decreased nitrogen leaching down the soil profile by 4–9 kg/ha, phosphorus compounds—by 0.5–3.0 kg/ha, potassium—by 0.6–3.0 kg/ha, calcium—by 6–42 kg/ha, magnesium—by 3.0–6.0 kg/ha, water-soluble organic matter—by 0.8–8.0 kg/ha, subject to crop and norms of mineral fertilizers. Maize seeds inoculated with phosphorous-mobilizing P. polymyxa KB under crop cultivation on the cattle manure background did not affect the intensity of nutrient migration. On the other hand, the combination of green manure (narrow-leaved lupine as an intermediate crop) with pre-sowing seed inoculation had significantly reduced nutrient losses beyond the root zone soil layer. It is concluded that the use of PGPR in crop production on mineral and green manure backgrounds contributes to the preservation of soil fertility by limiting biogenic nutrients and water-soluble organic matter leaching with the water drainage down the soil profile. Pre-sowing seed inoculation had no significant effect on the vertical migration of nutrients in the soil on the background of cattle manure, due to the highly competitive environment created with the introduction of microorganisms from organic fertilizer, preventing the establishment of close interactions between PGPR and plants.
Collapse
|
113
|
Comparative Transcriptome Analysis Reveals Complex Physiological Response and Gene Regulation in Peanut Roots and Leaves under Manganese Toxicity Stress. Int J Mol Sci 2023; 24:ijms24021161. [PMID: 36674676 PMCID: PMC9867376 DOI: 10.3390/ijms24021161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Excess Manganese (Mn) is toxic to plants and reduces crop production. Although physiological and molecular pathways may drive plant responses to Mn toxicity, few studies have evaluated Mn tolerance capacity in roots and leaves. As a result, the processes behind Mn tolerance in various plant tissue or organ are unclear. The reactivity of peanut (Arachis hypogaea) to Mn toxicity stress was examined in this study. Mn oxidation spots developed on peanut leaves, and the root growth was inhibited under Mn toxicity stress. The physiological results revealed that under Mn toxicity stress, the activities of antioxidases and the content of proline in roots and leaves were greatly elevated, whereas the content of soluble protein decreased. In addition, manganese and iron ion content in roots and leaves increased significantly, but magnesium ion content decreased drastically. The differentially expressed genes (DEGs) in peanut roots and leaves in response to Mn toxicity were subsequently identified using genome-wide transcriptome analysis. Transcriptomic profiling results showed that 731 and 4589 DEGs were discovered individually in roots and leaves, respectively. Furthermore, only 310 DEGs were frequently adjusted and controlled in peanut roots and leaves, indicating peanut roots and leaves exhibited various toxicity responses to Mn. The results of qRT-PCR suggested that the gene expression of many DEGs in roots and leaves was inconsistent, indicating a more complex regulation of DEGs. Therefore, different regulatory mechanisms are present in peanut roots and leaves in response to Mn toxicity stress. The findings of this study can serve as a starting point for further research into the molecular mechanism of important functional genes in peanut roots and leaves that regulate peanut tolerance to Mn poisoning.
Collapse
|
114
|
Kishchenko O, Stepanenko A, Straub T, Zhou Y, Neuhäuser B, Borisjuk N. Ammonium Uptake, Mediated by Ammonium Transporters, Mitigates Manganese Toxicity in Duckweed, Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2023; 12:208. [PMID: 36616338 PMCID: PMC9824425 DOI: 10.3390/plants12010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 06/12/2023]
Abstract
Nitrogen is an essential nutrient that affects all aspects of the growth, development and metabolic responses of plants. Here we investigated the influence of the two major sources of inorganic nitrogen, nitrate and ammonium, on the toxicity caused by excess of Mn in great duckweed, Spirodela polyrhiza. The revealed alleviating effect of ammonium on Mn-mediated toxicity, was complemented by detailed molecular, biochemical and evolutionary characterization of the species ammonium transporters (AMTs). Four genes encoding AMTs in S. polyrhiza, were classified as SpAMT1;1, SpAMT1;2, SpAMT1;3 and SpAMT2. Functional testing of the expressed proteins in yeast and Xenopus oocytes clearly demonstrated activity of SpAMT1;1 and SpAMT1;3 in transporting ammonium. Transcripts of all SpAMT genes were detected in duckweed fronds grown in cultivation medium, containing a physiological or 50-fold elevated concentration of Mn at the background of nitrogen or a mixture of nitrate and ammonium. Each gene demonstrated an individual expression pattern, revealed by RT-qPCR. Revealing the mitigating effect of ammonium uptake on manganese toxicity in aquatic duckweed S. polyrhiza, the study presents a comprehensive analysis of the transporters involved in the uptake of ammonium, shedding a new light on the interactions between the mechanisms of heavy metal toxicity and the regulation of the plant nitrogen metabolism.
Collapse
Affiliation(s)
- Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Tatsiana Straub
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
| |
Collapse
|
115
|
Thiesen LA, Brunetto G, Trentin E, Kokkonen da Silva AA, Tabaldi LA, Schwalbert R, Birck TP, Machado LC, Teixeira Nicoloso F. Subcellular distribution and physiological responses of native and exotic grasses from the Pampa biome subjected to excess manganese. CHEMOSPHERE 2023; 310:136801. [PMID: 36241121 DOI: 10.1016/j.chemosphere.2022.136801] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Fungicides containing manganese (Mn) applied to control plant diseases increase the concentration of Mn in soils, which may potentiate Mn toxicity in acid soils. Some species of wild grasses, such as those from the Pampa biome located in South America, or even those introduced into this biome, may possess different mechanisms of tolerance to excess Mn. The present study aimed to evaluate the subcellular distribution and physiological and biochemical responses of exotic and native grasses from the Pampa biome, cultivated in Mn excess. The experiment was conducted in nutrient solution in a greenhouse, in an entirely randomized design, bifactorial 4 × 4, consisting of four Mn concentrations (2 [control], 300, 600 and 900 μM) and four species (two exotic: Avena strigosa and Lolium multiflorum; and two native: Paspalum notatum and Paspalum plicatulum). At 27 days of exposure to the treatments, biomass and growth rates, leaf gas exchange with the environment, photosynthetic pigment concentrations of malondialdehyde and H2O2, antioxidant enzyme activities (SOD and POD), and subcellular distribution of Mn were evaluated. Most of the grasses showed high concentration of Mn in tissues, mainly, in the shoot. In the presence of 900 μM Mn, more than 80% of the absorbed Mn was compartmentalized in the cell walls and vacuoles of the cells. Compartmentalization of Mn excess into metabolically less active organelles is the main tolerance factor in grasses. Physiological and biochemical responses were stimulated in the presence of 300 μM Mn, while 900 μM Mn negatively affected biochemical-physiological responses of grasses. The species L. multiflorum was most sensitive to excess Mn, while P. notatum was the most tolerant.
Collapse
Affiliation(s)
| | - Gustavo Brunetto
- Department of Soil Science, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Edicarla Trentin
- Department of Soil Science, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | | | - Luciane Almeri Tabaldi
- Department of Biology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Raíssa Schwalbert
- Department of Biology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Thalia Preussler Birck
- Department of Biology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Liliane Corrêa Machado
- Department of Phytotechnics, State University of North Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | | |
Collapse
|
116
|
Khan MN, Fu C, Li J, Tao Y, Li Y, Hu J, Chen L, Khan Z, Wu H, Li Z. Seed nanopriming: How do nanomaterials improve seed tolerance to salinity and drought? CHEMOSPHERE 2023; 310:136911. [PMID: 36270526 DOI: 10.1016/j.chemosphere.2022.136911] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Salt and drought stress are major environmental issues world-widely. These stresses can result in failures of seed germination, limiting agricultural production. New approaches are needed to increase crop production, ensuring food safety, quality, and agriculture sustainability. Nanopriming (priming seeds with nanomaterials) is an emerging seed technology improving crop production under the drastic climate change associated with stress factors. The present review not only provided an overview of nanopriming achieved salt and drought tolerance but also tried to discuss the behind mechanisms. We argued that the physico-chemical properties of the nanomaterials are key factors affecting their negative or positive effects on seed germination in terms of seed nanopriming. Furthermore, we highlighted the possible critical role of seed coat anatomy in effective nanopriming, in terms of saving costs and reducing biosafety issues. This review aims to help researchers to better understand and follow this fast-developing, cost-effective, and environmentally friendly research area.
Collapse
Affiliation(s)
- Mohammad Nauman Khan
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengcheng Fu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaqi Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunpeng Tao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanhui Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin Hu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingling Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zaid Khan
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hongshan Laboratory, Wuhan, Hubei, 430070, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China.
| | - Zhaohu Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hongshan Laboratory, Wuhan, Hubei, 430070, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
117
|
Gribkova I, Eliseev M, Khorosheva E, Remneva G, Borisenko O. The Study of Mineral Elements Participation in Brewing Products Foam Structure Formation. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235703002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The article is devoted to the study of the metal ion’s role in the formation of the foam colloidal structure. The nitrogenous compounds prominent role as structuring compounds of the colloidal film on the carbon dioxide bubbles surface is noted. Based on the calculation of the correlation strength between beer samples organic compounds obtained based on light and dark malts, as well as barley and corn as unmalted raw materials, the effect of Ca, Mg, Mn, Co and Na mineral ions on the foam structure was evaluated. It was shown that Ca, Mg, Mn, Na, Co ions take part in the foam structure formation in conjunction with the grain raw materials thiol nitrogen, and Ca, Mg, Mn ions in conjunction with catechins of both grain and hop raw materials. High correlation coefficients between foam resistance and all ions (r-0.991÷0.998), foam resistance, catechins and Co ions (r 0.991), as well as foam resistance and Ca and Mg ions (r -0.987) ensure the elasticity of the foam structure colloidal film.
Collapse
|
118
|
Khan ZI, Liu W, Mubeen I, Alrefaei AF, Alharbi SN, Muhammad FG, Ejaz A, Ahmad K, Nadeem M, Shoukat J, Ashfaq A, Mahpara S, Siddique K, Ashraf MA, Memona H, Batool AI, Munir M, Malik IS, Noorka IR, Ugulu I. Cobalt availability in the soil plant and animal food chain: a study under a peri-urban environment. BRAZ J BIOL 2023; 83:e270256. [PMID: 37018800 DOI: 10.1590/1519-6984.270256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/27/2023] [Indexed: 04/07/2023] Open
Abstract
Cobalt metal is considered as an essential trace element for the animals. Present investigation was undertaken in the peri-urban area to analyze the cobalt availability in animal food chain by using different indices. Cow, buffalo and sheep samples along with forage and soil samples were collected from the three different sites of District Jhang and analyzed through atomic absorption spectrophotometer. Cobalt values differed in soil samples as 0.315-0.535 mg/kg, forages as 0.127-0.333 mg/kg and animal samples as 0.364-0.504 mg/kg. Analyzed cobalt concentration in soil, forage and animal samples was found to be deficient in concentration with respect to standard limits. Soil showed the minimum cobalt level in Z. mays while maximum concentration was examined in the forage C. decidua samples. All indices examined in this study has values lesser than 1, representing the safer limits of the cobalt concentration in these samples. Enrichment factor (0.071-0.161 mg/kg) showed the highly deficient amount of cobalt enrichment in this area. Bio-concentration factor (0.392-0.883) and pollution load index (0.035-0.059 mg/kg) values were also lesser than 1 explains that plant and soil samples are not contaminated with cobalt metal. The daily intake and health risk index ranged from 0.00019-0.00064 mg/kg/day and 0.0044-0.0150 mg/kg/day respectively. Among the animals, cobalt availability was maximum (0.0150 mg/kg/day) in the buffaloes that grazed on the C. decidua fodder. Results of this study concluded that cobalt containing fertilizers must be applied on the soil and forages. Animal feed derived from the cobalt containing supplements are supplied to the animals, to fulfill the nutritional requirements of livestock.
Collapse
Affiliation(s)
- Z I Khan
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - W Liu
- Fuyang Normal University, Department of Biological Sciences, Fuyang, Anhui, China
| | - I Mubeen
- Zhejiang University, Institute of Biotechnology, State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Hangzhou, China
| | - A F Alrefaei
- King Saud University, College of Science, Department of Zoology, Riyadh, Saudi Arabia
| | - S N Alharbi
- Imperial College London, Department of Surgery and Cancer, London, United Kingdom
| | - F G Muhammad
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - A Ejaz
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - K Ahmad
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - M Nadeem
- University of Sargodha, Institute of Food Science and Nutrition, Sargodha, Pakistan
| | - J Shoukat
- University of Sargodha, Institute of Food Science and Nutrition, Sargodha, Pakistan
| | - A Ashfaq
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - S Mahpara
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - K Siddique
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - M A Ashraf
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - H Memona
- Queen Mary College, Lahore, Pakistan
| | - A I Batool
- University of Sargodha, Department of Zoology, Sargodha, Pakistan
| | - M Munir
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - I S Malik
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - I R Noorka
- University of Sargodha, College of Agriculture, Sargodha, Pakistan
| | - I Ugulu
- Usak University, Faculty of Education, Usak, Turkey
| |
Collapse
|
119
|
Claeijs N, Vissenberg K. Phenotypic effect of growth media on Arabidopsis thaliana root hair growth. PLANT SIGNALING & BEHAVIOR 2022; 17:2104002. [PMID: 36000477 PMCID: PMC9466613 DOI: 10.1080/15592324.2022.2104002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Over the years, many different growth media have been used to grow Arabidopsis thaliana in vitro in petri dishes. For these media the nutrient composition may vary, sugars may or may not be added, the medium may or may not be buffered and there is a choice between different gelling agents. The magnitude of possible combinations of these variables obstructs easy comparison of seedling phenotypes grown on the different media. This is especially obvious when it concerns the study of root hairs that are extremely sensitive to changes in their environment. To demonstrate this effect, we have grown Arabidopsis thaliana wild-type seeds on 18 different combinations of growth media and quantified root hair development. Comparison of root hair length and the respective root hair profiles identified the media that result in the formation of the longest root hairs. On these favored media they elongate through tip growth at a constant growth rate until they reach their final length (around 0.6 mm) at a distance of ±4 mm from the root tip.
Collapse
Affiliation(s)
- Naomi Claeijs
- Integrated Molecular Plant Physiology Research (IMPRES); Biology Department, University of Antwerp, Antwerp, Belgium
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research (IMPRES); Biology Department, University of Antwerp, Antwerp, Belgium
- Plant Biochemistry & Biotechnology Lab, Department of Agriculture, Hellenic Mediterranean University, Heraklion, Greece
| |
Collapse
|
120
|
Stefaniak J, Łata B. Growing Season, Cultivar, and Nitrogen Supply Affect Leaf and Fruit Micronutrient Status of Field-Grown Kiwiberry Vines. PLANTS (BASEL, SWITZERLAND) 2022; 12:138. [PMID: 36616267 PMCID: PMC9824130 DOI: 10.3390/plants12010138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The N uptake can affect kiwiberry yield and quality; however, the relationship between an increasing N dose and micronutrient accumulation in leaves and fruit is still to be elucidated. Interrelationships between essential nutrients are one of the most important issues in terms of effectiveness in plant mineral nutrition. A pattern in leaf nutrient accumulation throughout the growing period is required to indicate a suitable sampling time for the purpose of nutrient diagnostics and controlled plant feeding. The experiment was conducted on two commercially available cultivars of kiwiberry, 'Weiki' and 'Geneva', during the 2015-2016 growing seasons with an increasing soil N fertility (30-50-80 mg N kg-1 soil DW) to test the relationship between soil N level and leaf/fruit micronutrient concentration. The leaf Zn, Cu, Fe, and Mn concentrations significantly increased with a higher N supply in 'Geneva', while in 'Weiki' only Mn increased. Leaf B, Fe, and Mn gradually increased throughout the growing season, while Cu decreased. Between mid-July and the beginning of August, the lowest fluctuations in the micronutrient contents were recorded. The effect of the growing season on leaf micronutrient accumulation was highly significant; except for Fe, significantly higher micronutrient levels were revealed in 2016. Compared to the leaves, the growing season effect was smaller in the case of fruit micronutrient concentrations. Irrespective of cultivar, the increase in N fertilization resulted in a higher fruit Mn concentration and was insignificant in the case of other micronutrients. The results indicate that the N dose may affect the accumulation of micronutrients within a certain range depending on the tissue type and the genotype.
Collapse
|
121
|
Kwakye S, Kadyampakeni DM. Micronutrients Improve Growth and Development of HLB-Affected Citrus Trees in Florida. PLANTS (BASEL, SWITZERLAND) 2022; 12:73. [PMID: 36616206 PMCID: PMC9824839 DOI: 10.3390/plants12010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/03/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Enhanced nutritional programs (ENPs) have improved citrus trees' growth and development in the era of Huanglongbing (HLB). Studies conducted with variable rates of manganese (Mn) and Iron (Fe) on young HLB-affected citrus trees showed that applying double the standard recommendation increased growth and biomass accumulation. Since HLB is believed to cause deficiency symptoms of micronutrients in citrus trees, it is critical to ensure their optimal levels in the leaves. This could be achieved by soil application of either a Mn rate of 8.9 to 11.5 kg ha-1 as MnSO4 (31%) for young HLB-affected 'Valencia' (Citrus sinensis (L.) Osbeck) citrus trees or an Fe rate of 9.6 to 11.8 kg ha-1 as Ferrous sulfate heptahydrate (20%) for 'Bingo' (Citrus reticulata, Blanco) citrus trees. Maintaining optimal levels of these micronutrients may enable citrus trees to carry out photosynthetic activities to ensure growth and development. It may also help the tree in the regulation of various physiological processes as part of the antioxidant enzyme Mn-superoxidase dismutase (SOD). Micronutrient manipulation through variable rates of fertilizer application to influence nutrient availability is an important mitigating factor for HLB-affected citrus trees and an integral component of citrus production in Florida.
Collapse
|
122
|
Moukarzel R, Ridgway HJ, Waller L, Guerin-Laguette A, Cripps-Guazzone N, Jones EE. Soil Arbuscular Mycorrhizal Fungal Communities Differentially Affect Growth and Nutrient Uptake by Grapevine Rootstocks. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02160-z. [PMID: 36538089 DOI: 10.1007/s00248-022-02160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) deliver potentially significant services in sustainable agricultural ecosystems, yet we still lack evidence showing how AMF abundance and/or community composition can benefit crops. In this study, we manipulated AMF communities in grapevine rootstock and measured plant growth and physiological responses. Glasshouse experiments were set up to determine the interaction between rootstock variety and different AMF communities, using AMF communities originating under their own (i.e., "home") soil and other rootstocks' (i.e., "away") soil. The results revealed that specific AMF communities had differential effects on grapevine rootstock growth and nutrient uptake. It was demonstrated that a rootstock generally performed better in the presence of its own AMF community. This study also showed that AMF spore diversity and the relative abundance of certain species is an important factor as, when present in equal abundance, competition between species was indicated to occur, resulting in a reduction in the positive growth outcomes. Moreover, there was a significant difference between the communities with some AMF communities increasing plant growth and nutrient uptake compared with others. The outcomes also demonstrated that some AMF communities indirectly influenced the chlorophyll content in grapevine leaves through the increase of specific nutrients such as K, Mn, and Zn. The findings also indicated that some AMF species may deliver particular benefits to grapevine plants. This work has provided an improved understanding of community level AMF-grapevine interaction and delivered an increased knowledge of the ecosystem services they provide which will benefit the wine growers and the viticulture industry.
Collapse
Affiliation(s)
- Romy Moukarzel
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, Canterbury, New Zealand.
| | - Hayley J Ridgway
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, Canterbury, New Zealand
- Plant & Food Research, Canterbury Agriculture & Science Centre, Gerald St, Lincoln, 7608, New Zealand
| | - Lauren Waller
- Bio-Protection Research Centre, Lincoln University, Lincoln, 7647, Canterbury, New Zealand
| | | | - Natalia Cripps-Guazzone
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, Canterbury, New Zealand
| | - E Eirian Jones
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, Canterbury, New Zealand
| |
Collapse
|
123
|
A Golgi-Located Transmembrane Nine Protein Gene TMN11 Functions in Manganese/Cadmium Homeostasis and Regulates Growth and Seed Development in Rice. Int J Mol Sci 2022; 23:ijms232415883. [PMID: 36555524 PMCID: PMC9779671 DOI: 10.3390/ijms232415883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Metal transporters play crucial roles in plant nutrition, development, and metal homeostasis. To date, several multi-proteins have been identified for metal transport across the plasma membrane and tonoplast. Nevertheless, Golgi endomembrane metal carriers and their mechanisms are less documented. In this study, we identified a new transmembrane nine (TMN) family gene, TMN11, which encodes a Mn transport protein that was localized to the cis-Golgi endomembrane in rice. OsTMN11 contains a typically conserved long luminal N-terminal domain and nine transmembrane domains. OsTMN11 was ubiquitously expressed over the lifespan of rice and strongly upregulated in young rice under excess Mn(II)/Cd(II) stress. Ectopic expression of OsTMN11 in an Mn-sensitive pmr1 mutant (PMR1 is a Golgi-resident Mn exporter) yeast (Saccharomyces cerevisiae) restored the defective phenotype and transported excess Mn out of the cells. As ScPMR1 mediates cellular Mn efflux via a vesicle-secretory pathway, the results suggest that OsTMN11 functions in a similar manner. OsTMN11 knockdown (by RNAi) compromised the growth of young rice, manifested as shorter plant height, reduced biomass, and chlorosis under excessive Mn and Cd conditions. Two lifelong field trials with rice cropped in either normal Mn supply conditions or in Cd-contaminated farmland demonstrated that knockdown of OsTMN11 impaired the capacity of seed development (including panicle, spikelet fertility, seed length, grain weight, etc.). The mature RNAi plants contained less Mn but accumulated Cd in grains and rice straw, confirming that OsTMN11 plays a fundamental role in metal homeostasis associated with rice growth and development even under normal Mn supply conditions.
Collapse
|
124
|
Wu R, Yao F, Li X, Shi C, Zang X, Shu X, Liu H, Zhang W. Manganese Pollution and Its Remediation: A Review of Biological Removal and Promising Combination Strategies. Microorganisms 2022; 10:2411. [PMID: 36557664 PMCID: PMC9781601 DOI: 10.3390/microorganisms10122411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Manganese (Mn), as a cofactor of multiple enzymes, exhibits great significance to the human body, plants and animals. It is also a critical raw material and alloying element. However, extensive employment for industrial purposes leads to its excessive emission into the environment and turns into a significant threat to the ecosystem and public health. This review firstly introduces the essentiality, toxicity and regulation of Mn. Several traditional physicochemical methods and their problems are briefly discussed as well. Biological remediation, especially microorganism-mediated strategies, is a potential alternative for remediating Mn-polluted environments in a cost-efficient and eco-friendly manner. Among them, microbially induced carbonate precipitation (MICP), biosorption, bioaccumulation, bio-oxidation are discussed in detail, including their mechanisms, pivotal influencing factors along with strengths and limitations. In order to promote bioremediation efficiency, the combination of different techniques is preferable, and their research progress is also summarized. Finally, we propose the future directions of Mn bioremediation by microbes. Conclusively, this review provides a scientific basis for the microbial remediation performance for Mn pollution and guides the development of a comprehensive competent strategy towards practical Mn remediation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hengwei Liu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenchao Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
125
|
Hafeez A, Rasheed R, Ashraf MA, Rizwan M, Ali S. Effects of exogenous taurine on growth, photosynthesis, oxidative stress, antioxidant enzymes and nutrient accumulation by Trifolium alexandrinum plants under manganese stress. CHEMOSPHERE 2022; 308:136523. [PMID: 36165928 DOI: 10.1016/j.chemosphere.2022.136523] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Plants essentially require manganese (Mn) for their normal metabolic functioning. However, excess Mn in the cellular environment is detrimental to plant growth, development, and physio-biochemical functions. Taurine (TAU) is an amino acid with potent antioxidant and anti-inflammatory properties in animals and humans. However, no previous study has investigated the potential of TAU in plant metal stress tolerance. The current study provides some novel insights into the effect of TAU in modulating the defense system of Trifolium alexandrinum plants under Mn toxicity. Manganese toxicity resulted in higher oxidative stress and membrane damage through increased superoxide radical, hydrogen peroxide, malondialdehyde, and methylglyoxal generation alongside enhanced lipoxygenase (LOX) activity. Mn toxicity also resulted in limited uptake of potassium (K+), phosphorus (P), calcium (Ca2+), and increased the accumulation of Mn in both leaf and roots. However, TAU circumvented the Mn-induced oxidative stress by upregulating the activities of antioxidant enzymes (ascorbate peroxidase, peroxidase, catalase, glutathione reductase, glutathione-S-transferase, and superoxide dismutase) and levels of ascorbic acid, proline, anthocyanins, phenolics, flavonoids and glutathione (GSH). Taurine conspicuously improved the growth, photosynthetic pigments, hydrogen sulphide (H2S), and nitric oxide (NO) levels of Mn stressed plants. Taurine also improved the uptake of K+, Ca2+, P and reduced the Mn content in stressed plants. Overall, exogenous taurine might be a suitable strategy to combat Mn stress in T. alexandrinum plants but applications at field levels for various crops and metal toxicities and economic suitability need to be addressed before final recommendations.
Collapse
Affiliation(s)
- Arslan Hafeez
- Department of Botany, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, 38000, Faisalabad, Pakistan.
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
126
|
He J, Yang B, Hause G, Rössner N, Peiter-Volk T, Schattat MH, Voiniciuc C, Peiter E. The trans-Golgi-localized protein BICAT3 regulates manganese allocation and matrix polysaccharide biosynthesis. PLANT PHYSIOLOGY 2022; 190:2579-2600. [PMID: 35993897 PMCID: PMC9706472 DOI: 10.1093/plphys/kiac387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/18/2022] [Indexed: 05/11/2023]
Abstract
Manganese (Mn2+) is essential for a diversity of processes, including photosynthetic water splitting and the transfer of glycosyl moieties. Various Golgi-localized glycosyltransferases that mediate cell wall matrix polysaccharide biosynthesis are Mn2+ dependent, but the supply of these enzymes with Mn2+ is not well understood. Here, we show that the BIVALENT CATION TRANSPORTER 3 (BICAT3) localizes specifically to trans-cisternae of the Golgi. In agreement with a role in Mn2+ and Ca2+ homeostasis, BICAT3 rescued yeast (Saccharomyces cerevisiae) mutants defective in their translocation. Arabidopsis (Arabidopsis thaliana) knockout mutants of BICAT3 were sensitive to low Mn2+ and high Ca2+ availability and showed altered accumulation of these cations. Despite reduced cell expansion and leaf size in Mn2+-deficient bicat3 mutants, their photosynthesis was improved, accompanied by an increased Mn content of chloroplasts. Growth defects of bicat3 corresponded with an impaired glycosidic composition of matrix polysaccharides synthesized in the trans-Golgi. In addition to the vegetative growth defects, pollen tube growth of bicat3 was heterogeneously aberrant. This was associated with a severely reduced and similarly heterogeneous pectin deposition and caused diminished seed set and silique length. Double mutant analyses demonstrated that the physiological relevance of BICAT3 is distinct from that of ER-TYPE CA2+-ATPASE 3, a Golgi-localized Mn2+/Ca2+-ATPase. Collectively, BICAT3 is a principal Mn2+ transporter in the trans-Golgi whose activity is critical for specific glycosylation reactions in this organelle and for the allocation of Mn2+ between Golgi apparatus and chloroplasts.
Collapse
Affiliation(s)
- Jie He
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Bo Yang
- Independent Junior Research Group—Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Gerd Hause
- Biocentre, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Nico Rössner
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Tina Peiter-Volk
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Martin H Schattat
- Plant Physiology, Institute of Biology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group—Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
127
|
Ivanov YV, Pashkovskiy PP, Ivanova AI, Kartashov AV, Kuznetsov VV. Manganese Deficiency Suppresses Growth and Photosynthetic Processes but Causes an Increase in the Expression of Photosynthetic Genes in Scots Pine Seedlings. Cells 2022; 11:cells11233814. [PMID: 36497074 PMCID: PMC9739257 DOI: 10.3390/cells11233814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Manganese deficiency is a serious plant nutritional disorder, resulting in the loss of crop productivity in many parts of the world. Despite the progress made in the study of angiosperms, the demand for Mn in gymnosperms and the physiological responses to Mn deficiency remain unexplored. We studied the influence of Mn deficiency for 24 weeks on Pinus sylvestris L. seedling growth, ion homeostasis, pigment contents, lipid peroxidation, chlorophyll fluorescence indices and the transcript levels of photosynthetic genes and genes involved in chlorophyll biosynthesis. It was shown that Mn-deficient plants demonstrated suppressed growth when the Mn content in the needles decreased below 0.34 µmol/g DW. The contents of photosynthetic pigments decreased when the Mn content in the needles reached 0.10 µmol/g DW. Mn deficiency per se did not lead to a decrease in the nutrient content in the organs of seedlings. Photoinhibition of PSII was observed in Mn-deficient plants, although this was not accompanied by the development of oxidative stress. Mn-deficient plants had an increased transcript abundance of genes (psbO, psbP, psbQ, psbA and psbC), encoding proteins directly associated with the Mn cluster also as other proteins involved in photosynthesis, whose activities do not depend on Mn directly. Furthermore, the transcript levels of the genes encoding the large subunit of Rubisco, light-dependent NADPH-protochlorophyllide oxidoreductase and subunits of light-independent protochlorophyllide reductase were also increased in Mn-deficient plants.
Collapse
|
128
|
Wege S. Manganese management in plants: Golgi transporter determines manganese allocation and cell wall composition. PLANT PHYSIOLOGY 2022; 190:2077-2079. [PMID: 36124988 PMCID: PMC9706420 DOI: 10.1093/plphys/kiac429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
|
129
|
Guo J, Long L, Chen A, Dong X, Liu Z, Chen L, Wang J, Yuan L. Tonoplast-localized transporter ZmNRAMP2 confers root-to-shoot translocation of manganese in maize. PLANT PHYSIOLOGY 2022; 190:2601-2616. [PMID: 36111860 PMCID: PMC9706481 DOI: 10.1093/plphys/kiac434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/23/2022] [Indexed: 05/16/2023]
Abstract
Almost all living organisms require manganese (Mn) as an essential trace element for survival. To maintain an irreplaceable role in the oxygen-evolving complex of photosynthesis, plants require efficient Mn uptake in roots and delivery to above-ground tissues. However, the underlying mechanisms of root-to-shoot Mn translocation remain unclear. Here, we identified an Natural Resistance Associated Macrophage Protein (NRAMP) family member in maize (Zea mays), ZmNRAMP2, which localized to the tonoplast in maize protoplasts and mediated transport of Mn in yeast (Saccharomyces cerevisiae). Under Mn deficiency, two maize mutants defective in ZmNRAMP2 exhibited remarkable reduction of root-to-shoot Mn translocation along with lower shoot Mn contents, resulting in substantial decreases in Fv/Fm and plant growth inhibition compared to their corresponding wild-type (WT) plants. ZmNRAMP2 transcripts were highly expressed in xylem parenchyma cells of the root stele. Compared to the WT, the zmnramp2-1 mutant displayed lower Mn concentration in xylem sap accompanied with retention of Mn in root stele. Furthermore, the overexpression of ZmNRAMP2 in transgenic maize showed enhanced root-to-shoot translocation of Mn and improved tolerance to Mn deficiency. Taken together, our study reveals a crucial role of ZmNRAMP2 in root-to-shoot translocation of Mn via accelerating vacuolar Mn release in xylem parenchyma cells for adaption of maize plants to low Mn stress and provides a promising transgenic approach to develop low Mn-tolerant crop cultivars.
Collapse
Affiliation(s)
- Jingxuan Guo
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing 100193, China
| | - Lizhi Long
- Tea Research Institute of Chinese Academy of Agricultural Sciences and Key Laboratory of Tea Biology and Resources Utilization, MOA, Hangzhou 310008, China
| | - Anle Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaonan Dong
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing 100193, China
| | - Zhipeng Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Junying Wang
- Biotechnology Research Institute of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
130
|
Olt P, Alejandro-Martinez S, Fermum J, Ramos E, Peiter E, Ludewig U. The vacuolar transporter LaMTP8.1 detoxifies manganese in leaves of Lupinus albus. PHYSIOLOGIA PLANTARUM 2022; 174:e13807. [PMID: 36270730 DOI: 10.1111/ppl.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Manganese (Mn) is an essential microelement, but overaccumulation is harmful to many plant species. Most plants have similar minimal Mn requirements, but the tolerance to elevated Mn varies considerably. Mobilization of phosphate (P) by plant roots leads to increased Mn uptake, and shoot Mn levels have been reported to serve as an indicator for P mobilization efficiency in the presence of P deficiency. White lupin (Lupinus albus L.) mobilizes P and Mn with outstanding efficiency due to the formation of determinate cluster roots that release carboxylates. The high Mn tolerance of L. albus goes along with shoot Mn accumulation, but the molecular basis of this detoxification mechanism has been unknown. In this study, we identify LaMTP8.1 as the transporter mediating vacuolar sequestration of Mn in the shoot of white lupin. The function of Mn transport was demonstrated by yeast complementation analysis, in which LaMTP8.1 detoxified Mn in pmr1∆ mutant cells upon elevated Mn supply. In addition, LaMTP8.1 also functioned as an iron (Fe) transporter in yeast assays. The expression of LaMTP8.1 was particularly high in old leaves under high Mn stress. However, low P availability per se did not result in transcriptional upregulation of LaMTP8.1. Moreover, LaMTP8.1 expression was strongly upregulated under Fe deficiency, where it was accompanied by Mn accumulation, indicating a role in the interaction of these micronutrients in L. albus. In conclusion, the tonoplast-localized Mn transporter LaMTP8.1 mediates Mn detoxification in leaf vacuoles, providing a mechanistic explanation for the high Mn accumulation and Mn tolerance in this species.
Collapse
Affiliation(s)
- Philipp Olt
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Santiago Alejandro-Martinez
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Johann Fermum
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Edith Ramos
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
131
|
González-Velázquez J, Salas-Vázquez E, Flores-Tavizón E, López-Moreno ML. Effect of Cadmium on Macro and Micronutrient Uptake and Translocation by Leucaena leucocephala. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:817-822. [PMID: 35925380 DOI: 10.1007/s00128-022-03592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Environmental contamination with Cadmium (Cd) is of great concern due to its hazardous effects on living organisms.Query In the present research, Leucaena leucocephala plants were exposed to Cd concentrations of 5, 10, and 15 mg/L to determine their potential use in Cd remediation. Different parameters including Cd uptake, macro/micronutrient content, chlorophyl, and catalase production were determined. Results indicated that Cd uptake by L. leucocephala roots did not show a significant difference between treatments. However, a significant increase in Cd content (Tukey´s HSD) was observed in stems as Cd levels in the media augmented. The highest Cd content (830 ± 20 mg/kg) was determined in stems of plants exposed to 15 mg/L Cd, and no Cd was detected in leaves. Data showed that as Cd concentration increased in the media, Ca, Mg, K, Zn, and Mn decreased. Moreover, while the presence of Cd reduced catalase activity in roots, chlorophyll production was not affected.
Collapse
Affiliation(s)
| | - Efraín Salas-Vázquez
- Department of Chemistry, University of Puerto Rico at Mayagüez, Mayagüez, PR, 00681-90002, USA
| | - Edith Flores-Tavizón
- Engineering and Technology Institute, University Autonomous of Ciudad Juárez (UACJ), 32330, Ciudad Juárez, Chihuahua, Mexico
| | - Martha L López-Moreno
- Department of Chemistry, University of Puerto Rico at Mayagüez, Mayagüez, PR, 00681-90002, USA.
| |
Collapse
|
132
|
Zhang X, Chang J, Ren H, Wu Y, Huang M, Wu S, Yang S, Yao X, Wang K. Mineral nutrient dynamics in pecans ( Carya illinoensis) 'Mahan' grown in southern China. FRONTIERS IN PLANT SCIENCE 2022; 13:1003728. [PMID: 36388522 PMCID: PMC9650510 DOI: 10.3389/fpls.2022.1003728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
It is of great significance to study the nutritional characteristics of plants. Further understanding of plant mineral nutrient dynamics can provide theoretical basis for scientific fertilization to improve fruit quality and yield. In this study, eight mineral elements (N, P, K, Ca, Mg, Mn, Zn, B) were measured at regular intervals in leaves and kernels of the pecan "Mahan" planted in southern China. The study discussed the characteristics of mineral nutrient dynamics of pecan through the indicators of concentration, accumulation and cumulative relative rate, a new first proposed indicator, and focused on critical time, intensity, amount of mineral nutrients required in pecan during the fruit developing period, as well as the transfer information of the elements in leaves and kernels. The results show that the mineral nutrient requirements of the leaves and kernels are not identical, with an upward trend in nutrient accumulation within the kernel. The most abundant mineral nutrients in the leaves and kernels were N, K and Ca with Ca being greater than N in leaves. In particular, the concentration of Mn in pecan 'Mahan' is higher than that of other plants, and its Mg content is also higher than that of P in kernels. The dynamic changes of mineral nutrients in walnut showed obvious stages, with a trend of "slow (before mid-July) - fast (mid-July to late August) - slow (late August to late September) - fast (late September to harvest)". The "critical period" of kernels was before mid-July, during which the cumulative relative rates increased rapidly, indicating that the kernels had a great potential to absorb mineral nutrients. Significant accumulation of mineral nutrients occurred from mid-July to late August and late September to the end.
Collapse
Affiliation(s)
- Xiaodan Zhang
- College of Resources and Environment, Southwest University, Chongqing, Beibei, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Fuyang, China
| | - Jun Chang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Fuyang, China
| | - Huadong Ren
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Fuyang, China
| | - Yaopeng Wu
- College of Resources and Environment, Southwest University, Chongqing, Beibei, China
| | - Mei Huang
- College of Resources and Environment, Southwest University, Chongqing, Beibei, China
| | - Shuang Wu
- College of Resources and Environment, Southwest University, Chongqing, Beibei, China
| | - Shuiping Yang
- College of Resources and Environment, Southwest University, Chongqing, Beibei, China
| | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Fuyang, China
| | - Kailiang Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Fuyang, China
| |
Collapse
|
133
|
Diessl J, Berndtsson J, Broeskamp F, Habernig L, Kohler V, Vazquez-Calvo C, Nandy A, Peselj C, Drobysheva S, Pelosi L, Vögtle FN, Pierrel F, Ott M, Büttner S. Manganese-driven CoQ deficiency. Nat Commun 2022; 13:6061. [PMID: 36229432 PMCID: PMC9563070 DOI: 10.1038/s41467-022-33641-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Overexposure to manganese disrupts cellular energy metabolism across species, but the molecular mechanism underlying manganese toxicity remains enigmatic. Here, we report that excess cellular manganese selectively disrupts coenzyme Q (CoQ) biosynthesis, resulting in failure of mitochondrial bioenergetics. While respiratory chain complexes remain intact, the lack of CoQ as lipophilic electron carrier precludes oxidative phosphorylation and leads to premature cell and organismal death. At a molecular level, manganese overload causes mismetallation and proteolytic degradation of Coq7, a diiron hydroxylase that catalyzes the penultimate step in CoQ biosynthesis. Coq7 overexpression or supplementation with a CoQ headgroup analog that bypasses Coq7 function fully corrects electron transport, thus restoring respiration and viability. We uncover a unique sensitivity of a diiron enzyme to mismetallation and define the molecular mechanism for manganese-induced bioenergetic failure that is conserved across species.
Collapse
Affiliation(s)
- Jutta Diessl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Jens Berndtsson
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Filomena Broeskamp
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Carmela Vazquez-Calvo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Arpita Nandy
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Carlotta Peselj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Sofia Drobysheva
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Network Aging Research, Heidelberg University, 69120, Heidelberg, Germany
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
134
|
Ca 2+-dependent phosphorylation of NRAMP1 by CPK21 and CPK23 facilitates manganese uptake and homeostasis in Arabidopsis. Proc Natl Acad Sci U S A 2022; 119:e2204574119. [PMID: 36161952 DOI: 10.1073/pnas.2204574119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homeostasis of the essential micronutrient manganese (Mn) is crucially determined through availability and uptake efficiency in all organisms. Mn deficiency of plants especially occurs in alkaline and calcareous soils, seriously restricting crop yield. However, the mechanisms underlying the sensing and signaling of Mn availability and conferring regulation of Mn uptake await elucidation. Here, we uncover that Mn depletion triggers spatiotemporally defined long-lasting Ca2+ oscillations in Arabidopsis roots. These Ca2+ signals initiate in individual cells, expand, and intensify intercellularly to transform into higher-order multicellular oscillations. Furthermore, through an interaction screen we identified the Ca2+-dependent protein kinases CPK21 and CPK23 as Ca2+ signal-decoding components that bring about translation of these signals into regulation of uptake activity of the high-affinity Mn transporter natural resistance associated macrophage proteins 1 (NRAMP1). Accordingly, a cpk21/23 double mutant displays impaired growth and root development under Mn-limiting conditions, while kinase overexpression confers enhanced tolerance to low Mn supply to plants. In addition, we define Thr498 phosphorylation within NRAMP1 as a pivot mechanistically determining NRAMP1 activity, as revealed by biochemical assays and complementation of yeast Mn uptake and Arabidopsis nramp1 mutants. Collectively, these findings delineate the Ca2+-CPK21/23-NRAMP1 axis as key for mounting plant Mn homeostasis.
Collapse
|
135
|
Conceição TA, Andrade G, Brito I. Influence of Intact Mycelium of Arbuscular Mycorrhizal Fungi on Soil Microbiome Functional Profile in Wheat under Mn Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192598. [PMID: 36235464 PMCID: PMC9571271 DOI: 10.3390/plants11192598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 05/14/2023]
Abstract
In the current agronomic context, the adoption of alternative forms of soil management is essential to increase crop yield. Agricultural sustainability requires practices that generate positive impacts and promote an increase in microbiome diversity as a tool to overcome adverse environmental conditions. An important ally is the indigenous arbuscular mycorrhizal fungi (AMF) that can improve plant growth and provide protection against abiotic stress such as metal toxicity. In a greenhouse experiment, this work studied the effect of wheat growth on several parameters of biological activity and functional microbiome in relation to wheat antecedent plant mycotrophy and soil disturbance under Mn stress. When the wheat was planted after highly mycotrophic plants and the soil was not previously disturbed, the results showed a 60% increase in wheat arbuscular colonization and a 2.5-fold increase in dry weight along with higher values of photosynthetic parameters and dehydrogenase activity. Conversely, soil disturbance before wheat planting increased the β-glucosidase activity and the count of manganese oxidizers, irrespectively of antecedent plant, and decreased drastically the wheat dry weight, the AMF colonization and the chlorophyll content compared to the undisturbed treatment. These findings suggest that not only the wheat growth but also the soil functional microbiome associated is affected by the antecedent type of plant and previous soil disturbance imposed. In addition, the improvement in wheat dry weight despite Mn toxicity may rely on shifts in biological activity associated to a well-established and intact ERM early developed in the soil.
Collapse
Affiliation(s)
- Taiana A. Conceição
- Federal University of Recôncavo of Bahia, Bahia 44574-490, Brazil
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, 7006-554 Évora, Portugal
- Correspondence: (T.A.C.); (I.B.)
| | - Galdino Andrade
- Department of Microbiology, State University of Londrina, Paraná 86051-990, Brazil
| | - Isabel Brito
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, 7006-554 Évora, Portugal
- Correspondence: (T.A.C.); (I.B.)
| |
Collapse
|
136
|
Kawaguchi K, Nakaune M, Ma JF, Kojima M, Takebayashi Y, Sakakibara H, Otagaki S, Matsumoto S, Shiratake K. Plant Hormone and Inorganic Ion Concentrations in the Xylem Exudate of Grafted Plants Depend on the Scion-Rootstock Combination. PLANTS (BASEL, SWITZERLAND) 2022; 11:2594. [PMID: 36235460 PMCID: PMC9571263 DOI: 10.3390/plants11192594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In grafted plants, inorganic ions and plant hormones in the xylem exudate transported from the rootstock to the scion directly or indirectly affect the scion, thereby improving the traits. Therefore, the concentration of these components in the xylem exudate of grafted plants may be an indicator for rootstock selection. On the other hand, few reports have presented a comprehensive analysis of substances transferred from the rootstock to the scion in plants grafted onto different rootstocks, primarily commercial cultivars. In this study, we measured inorganic ions and plant hormones in the xylem exudate from the rootstock to the scion in various grafted plants of tomato and eggplant. The results revealed that the concentrations of inorganic ions and plant hormones in the xylem exudate significantly differed depending on the type of rootstock. In addition, we confirmed the concentration of the inorganic ions and plant hormones in the xylem exudate of plants grafted onto the same tomato rootstock cultivars as rootstock with tomato or eggplant as the scions. As a result, the concentrations of inorganic ions and plant hormones in the xylem exudate were significantly different in the grafted plants with eggplant compared with tomato as the scion. These results suggest that signals from the scion (shoot) control the inorganic ions and plant hormones transported from the rootstock (root).
Collapse
Affiliation(s)
- Kohei Kawaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Makoto Nakaune
- Saitama Agricultural Technology Research Center, Sugahiro, Kumagaya 360-0102, Japan
| | - Jian Feng Ma
- Research Institute for Bioresources, Okayama University, Chuo, Kurashiki 710-0046, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
137
|
Zhang Q, Liang M, Song R, Song Z, Song H, Qiao X. Brassinosteroids enhance resistance to manganese toxicity in Malus robusta Rehd. via modulating polyamines profile. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153808. [PMID: 36088781 DOI: 10.1016/j.jplph.2022.153808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Manganese (Mn) toxicity in soil is a widely observed phenomenon, which seriously restricts growth, quality, and yield of various crops and fruits including apples. However, mechanisms underlying the regulation of polyamines (PAs) by brassinosteroids (BRs) to improve tolerance to Mn stress are still unclear. In this study, we investigated the effects of 2,4-epibrassinolide (EBL; a BR) on the expression of genes involved in BR signaling pathway, Mn accumulation, PAs-mediated responses (PA precursor levels, metabolic enzymes, and genes), and growth parameters in Mn-stressed Malus robusta Rehd. EBL application significantly modulated the expressions of genes related to BR signaling (MdBRI, MdBSK, etc.) and reduced Mn accumulation, along with improving the rate of increase in root length and plant height, relative water content, chlorophyll content, maximum photochemical efficiency of PSII (Fv/Fm), and actual photochemical efficiency (ΦPSII) and decreasing electrical conductivity. Furthermore, EBL application significantly reduced putrescine (Put) accumulation and increased spermine (Spm) content and (Spd + Spm)/Put ratio. EBL weakened ornithine (Orn) pathway, decreased ornithine decarboxylase (ODC) activity, and increased biosynthesis of Spm from Put via elevating the PA oxidase (PAO) activity and expression of MdSPDS, MdSPMS, and MdPAO. The trends for free, PS-conjugated, and PIS-bound PAs were similar to that of total PAs, except that no significant change was observed in free Spm, PS-conjugated Spd, and Spm, as well as PIS-bound Spd. This study revealed that BR-regulated PAs help in mitigating Mn toxicity and clarified the mechanisms of regulation of PAs by BRs in apple trees.
Collapse
Affiliation(s)
- Qing Zhang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Meixia Liang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Ruoxuan Song
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Hao Song
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China
| | - Xuqiang Qiao
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China.
| |
Collapse
|
138
|
Islam W, Naveed H, Idress A, Ishaq DU, Kurfi BG, Zeng F. Plant responses to metals stress: microRNAs in focus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69197-69212. [PMID: 35951237 DOI: 10.1007/s11356-022-22451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Metal toxicity can largely affect the growth and yield of numerous plant species. Plants have developed specific mechanisms to withstand the varying amounts of metals. One approach involves utilization of microRNAs (miRNAs) that are known for cleaving transcripts or inhibiting translation to mediate post-transcriptional control. Use of transcription factors (TFs) or gene regulation in metal detoxification largely depends on metal-responsive miRNAs. Moreover, systemic signals and physiological processes for plants response to metal toxicities are likewise controlled by miRNAs. Therefore, it is necessary to understand miRNAs and their regulatory networks in relation to metal stress. The miRNA-based approach can be important to produce metal-tolerant plant species. Here, we have reviewed the importance of plant miRNAs and their role in mitigating metal toxicities. The current review also discusses the specific advances that have occurred as a result of the identification and validation of several metal stress-responsive miRNAs.
Collapse
Affiliation(s)
- Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
| | - Hassan Naveed
- College of Life Sciences, Leshan Normal University, Sichuan, 614004, China
| | - Atif Idress
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Daha Umar Ishaq
- Centre of Mitochondrial Biology & Medicine, Xian Joiotong University, Xi'An, 710049, China
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, 700241, Nigeria
| | - Binta G Kurfi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, 700241, Nigeria
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China.
| |
Collapse
|
139
|
Sagagi BS, Bello AM, Danyaya HA. Assessment of accumulation of heavy metals in soil, irrigation water, and vegetative parts of lettuce and cabbage grown along Wawan Rafi, Jigawa State, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:699. [PMID: 35987929 PMCID: PMC9392708 DOI: 10.1007/s10661-022-10360-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/11/2022] [Indexed: 05/19/2023]
Abstract
Human exposure to heavy metal toxicity has been linked to the consumption of vegetables grown on polluted soils. The goal of this study was to see how much heavy metals accumulated in the soil, irrigation water, and vegetative sections of lettuce and cabbage planted in Wawan Rafi, Jigawa State, Nigeria. The concentrations of potentially harmful metals in soil, water, and crops are in the order Mn > Pb > Zn > Ni > Cd > Cu, except for lettuce, where Pb was found to be greater than Mn. Furthermore, the majority of the hazardous elements analyzed were below the allowed limit. Nevertheless, the presence of high levels of metals revealed evidence of contamination, which was attributed to human activities. The potential ecological risk index values for lettuce and cabbage are 86.488 and 225.463, respectively, and both are considered safe because the RI values for both lettuce and cabbage are below or within the range of 200 ≤ RI ˂ 400. This implies consumption of these vegetables may not pose a high health risk to the local public when individual heavy metal is considered, but the risk could multiply when all of the heavy metals are considered together.
Collapse
Affiliation(s)
- Balarabe Sarki Sagagi
- Department of Chemistry, Kano University of Science and Technology, Wudil, Kano State, Nigeria
| | - Abdu Muhammad Bello
- Department of Chemistry, Kano University of Science and Technology, Wudil, Kano State, Nigeria
| | - Haruna Abubakar Danyaya
- Department of Science Laboratory Technology, College of Science and Technology Hussaini Adamu Federal Polytechnic Kazaure, Kazaure, Jigawa State, Nigeria.
| |
Collapse
|
140
|
Bose H, Saha A, Sahu RP, Dey AS, Sar P. Characterization of the rare microbiome of rice paddy soil from arsenic contaminated hotspot of West Bengal and their interrelation with arsenic and other geochemical parameters. World J Microbiol Biotechnol 2022; 38:171. [PMID: 35907093 DOI: 10.1007/s11274-022-03355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 07/05/2022] [Indexed: 11/27/2022]
Abstract
Rare microbial taxa [bacterial and archaeal operational taxonomic units (OTUs) with mean relative abundance ≤ 0.001%] were critical for ecosystem function, yet, their identity and function remained incompletely understood, particularly in arsenic (As) contaminated rice soils. In the present study we have characterized the rare populations of the As-contaminated rice soil microbiomes from West Bengal (India) in terms of their identity, interaction and potential function. Major proportion of the OTUs (73% of total 38,289 OTUs) was represented by rare microbial taxa (henceforth mentioned as rare taxa), which covered 4.5-15.7% of the different communities. Taxonomic assignment of the rare taxa showed their affiliation to members of Gamma-, Alpha-, Delta- Proteobacteria, Actinobacteria, and Acidobacteria. SO42-, NO3-, NH4+and pH significantly impacted the distribution of rare taxa. Rare taxa positively correlated with As were found to be more frequent in relatively high As soil while the rare taxa negatively correlated with As were found to be more frequent in relatively low As soil. Co-occurrence-network analysis indicated that rare taxa whose abundance were correlated strongly (R > 0.8) with As also had strong association (R > 0.8) with PO42-, NO3-, and NH4+. Correlation analysis indicated that the rare taxa were likely to involved in two major guilds one, involved in N-metabolism and the second involved in As/Fe as well as other metabolisms. Role of the rare taxa in denitrification and dissimilatory NO3- reduction (DNRA), As biotransformation, S-, H-, C- and Fe-, metabolism was highlighted from 16S rRNA gene-based predictive analysis. Phylogenetic analysis of rare taxa indicated signatures of inhabitant rice soil microorganisms having significant roles in nitrogen (N) cycle and As-Fe metabolism. This study provided critical insights into the taxonomic identity, metabolic potentials and importance of the rare taxa in As biotransformation and biogeochemical cycling of essential nutrients in As-impacted rice soils.
Collapse
Affiliation(s)
- Himadri Bose
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Anumeha Saha
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Rajendra Prasad Sahu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Anindya Sundar Dey
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
141
|
Chorianopoulou SN, Bouranis DL. The Role of Sulfur in Agronomic Biofortification with Essential Micronutrients. PLANTS 2022; 11:plants11151979. [PMID: 35956455 PMCID: PMC9370111 DOI: 10.3390/plants11151979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022]
Abstract
Sulfur (S) is an essential macronutrient for plants, being necessary for their growth and metabolism and exhibiting diverse roles throughout their life cycles. Inside the plant body, S is present either in one of its inorganic forms or incorporated in an organic compound. Moreover, organic S compounds may contain S in its reduced or oxidized form. Among others, S plays roles in maintaining the homeostasis of essential micronutrients, e.g., iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn). One of the most well-known connections is homeostasis between S and Fe, mainly in terms of the role of S in uptake, transportation, and distribution of Fe, as well as the functional interactions of S with Fe in the Fe-S clusters. This review reports the available information describing the connections between the homeostasis of S and Fe, Cu, Zn, and Mn in plants. The roles of S- or sulfur-derived organic ligands in metal uptake and translocation within the plant are highlighted. Moreover, the roles of these micronutrients in S homeostasis are also discussed.
Collapse
|
142
|
Oliveira KS, de Mello Prado R, Checchio MV, Gratão PL. Interaction of silicon and manganese in nutritional and physiological aspects of energy cane with high fiber content. BMC PLANT BIOLOGY 2022; 22:374. [PMID: 35902800 PMCID: PMC9335997 DOI: 10.1186/s12870-022-03766-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/20/2022] [Indexed: 05/17/2023]
Abstract
BACKGROUND Silicon (Si) is a multiple stress attenuator element in plants, however more research is needed to elucidate the actions in the plants defense system with low nutrition of manganese (Mn) for a prolonged period, and the attenuation mechanisms involved in the effects of Mn deficiency on energy cane with high fiber content. Thus, the objective of this study was to evaluate whether Si reduces the oxidative stress of the energy cane grown in low Mn in nutrient solution, to mitigate the effects of Mn deficiency, improving enzymatic and non-enzymatic defense, uptake of Mn the plant growth. METHODS An experiment was carried out with pre-sprouted seedlings of Saccharum spontaneum L. in a 2 × 2 factorial scheme in five replications in which the plants were grown under sufficiency (20.5 μmol L-1) and deficiency (0.1 μmol L-1) of Mn combined with the absence and presence of Si (2.0 mmol L-1) for 160 days from the application of the treatments. The following parameters were evaluated: accumulation of Mn and Si, H2O2, MDA, activity of SOD and GPOX, total phenol content, pigments, and quantum efficiency of PSII. RESULTS Mn deficiency induced the oxidative stress for increase the H2O2 and MDA content in leaves of plants and reduce the activity of antioxidant enzymes and total phenols causing damage to quantum efficiency of photosystem II and pigment content. Si attenuated the effects of Mn deficiency even for a longer period of stress by reducing H2O2 (18%) and MDA (32%) content, and increased the Mn uptake efficiency (53%), SOD activity (23%), GPOX (76%), phenol contents, thus improving growth. CONCLUSIONS The supply of Si promoted great nutritional and physiological improvements in energy cane with high fiber content in Mn deficiency. The results of this study propose the supply of Si via fertirrigation as a new sustainable strategy for energy cane cultivation in low Mn environments.
Collapse
Affiliation(s)
- Kamilla Silva Oliveira
- Department of Agricultural Production Sciences, Sector of Soils and Fertilizers, Laboratory of Plant Nutrition, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884-900, Brazil.
| | - Renato de Mello Prado
- Department of Agricultural Production Sciences, Sector of Soils and Fertilizers, Laboratory of Plant Nutrition, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Mirela Vantini Checchio
- Department of Biology Applied to Agriculture, Laboratory of Plant Physiology, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884900, Brazil
| | - Priscila Lupino Gratão
- Department of Biology Applied to Agriculture, Laboratory of Plant Physiology, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884900, Brazil
| |
Collapse
|
143
|
Adamczyk-Szabela D, Wolf WM. The Impact of Soil pH on Heavy Metals Uptake and Photosynthesis Efficiency in Melissa officinalis, Taraxacum officinalis, Ocimum basilicum. Molecules 2022; 27:molecules27154671. [PMID: 35897849 PMCID: PMC9331646 DOI: 10.3390/molecules27154671] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Herbs used in medicine should be grown under controlled and standardized conditions. Agricultural practices often induce changes to soil pH, which may affect migration of heavy metals in the environment, their accumulation in plant tissues and the concentration of medicinal ingredients. The aim of this work was to assess the influence of various soil pH on the biological parameters and uptake of manganese, copper and zinc by basil, dandelion and lemon balm. The soil analysis covered pH, organic matter content, bioavailable and total forms of investigated metals in soil. In plants cultivated in soil at pH covering the range 4.7–8.5 the concentrations of Mn, Cu and Zn were analyzed. Their mobility and availability were assessed by bioaccumulation factors, translocation factors and transfer coefficients. The seed germination and subsequent herbs growth were strongly dependent on soil pH for all investigated plant species. Photosynthetic efficiency at different pHs was positively correlated with uptake of Cu and Mn while Zn behaved in a more random way.
Collapse
|
144
|
Azospirillum brasilense Bacteria Promotes Mn2+ Uptake in Maize with Benefits to Leaf Photosynthesis. Microorganisms 2022; 10:microorganisms10071290. [PMID: 35889009 PMCID: PMC9319945 DOI: 10.3390/microorganisms10071290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Azospirillum brasilense is a prolific grass-root colonizing bacteria well-known for its ability to promote plant growth in several cereal crops. Here we show that one of the mechanisms of action in boosting plant performance is through increased assimilation of the micronutrient manganese by the host. Using radioactive 52Mn2+ (t½ 5.59 d), we examined the uptake kinetics of this micronutrient in young maize plants, comparing the performance of three functional mutants of A. brasilense, including HM053, a high auxin-producing and high N2-fixing strain; ipdC, a strain with a reduced auxin biosynthesis capacity; and FP10, a strain deficient in N2-fixation that still produces auxin. HM053 had the greatest effect on host 52Mn2+ uptake, with a significant increase seen in shoot radioactivity relative to non-inoculated controls. LA-ICP-MS analysis of root sections revealed higher manganese distributions in the endodermis of HM053-inoculated plants and overall higher manganese concentrations in leaves. Finally, increased leaf manganese concentration stimulated photosynthesis as determined by measuring leaf fixation of radioactive 11CO2 with commensurate increases in chlorophyll concentration.
Collapse
|
145
|
Pottier M, Le Thi VA, Primard-Brisset C, Marion J, Wolf Bianchi M, Victor C, Déjardin A, Pilate G, Thomine S. Duplication of NRAMP3 gene in poplars generated two homologous transporters with distinct functions. Mol Biol Evol 2022; 39:msac129. [PMID: 35700212 PMCID: PMC9234761 DOI: 10.1093/molbev/msac129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Transition metals are essential for a wealth of metabolic reactions, but their concentrations need to be tightly controlled across cells and cell compartments, as metal excess or imbalance has deleterious effects. Metal homeostasis is achieved by a combination of metal transport across membranes and metal binding to a variety of molecules. Gene duplication is a key process in evolution, as emergence of advantageous mutations on one of the copies can confer a new function. Here, we report that the poplar genome contains two paralogues encoding NRAMP3 metal transporters localized in tandem. All Populus species analyzed had two copies of NRAMP3, whereas only one could be identified in Salix species indicating that duplication occurred when the two genera separated. Both copies are under purifying selection and encode functional transporters, as shown by expression in the yeast heterologous expression system. However, genetic complementation revealed that only one of the paralogues has retained the original function in release of metals stored in the vacuole previously characterized in A. thaliana. Confocal imaging showed that the other copy has acquired a distinct localization to the Trans Golgi Network (TGN). Expression in poplar suggested that the copy of NRAMP3 localized on the TGN has a novel function in the control of cell-to-cell transport of manganese. This work provides a clear case of neo-functionalization through change in the subcellular localization of a metal transporter as well as evidence for the involvement of the secretory pathway in cell-to-cell transport of manganese.
Collapse
Affiliation(s)
- Mathieu Pottier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Van Anh Le Thi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Catherine Primard-Brisset
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jessica Marion
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Michele Wolf Bianchi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Cindy Victor
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | | | | | - Sébastien Thomine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
146
|
Nile SH, Thiruvengadam M, Wang Y, Samynathan R, Shariati MA, Rebezov M, Nile A, Sun M, Venkidasamy B, Xiao J, Kai G. Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives. J Nanobiotechnology 2022; 20:254. [PMID: 35659295 PMCID: PMC9164476 DOI: 10.1186/s12951-022-01423-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/17/2022] [Indexed: 12/04/2022] Open
Abstract
Nano-priming is an innovative seed priming technology that helps to improve seed germination, seed growth, and yield by providing resistance to various stresses in plants. Nano-priming is a considerably more effective method compared to all other seed priming methods. The salient features of nanoparticles (NPs) in seed priming are to develop electron exchange and enhanced surface reaction capabilities associated with various components of plant cells and tissues. Nano-priming induces the formation of nanopores in shoot and helps in the uptake of water absorption, activates reactive oxygen species (ROS)/antioxidant mechanisms in seeds, and forms hydroxyl radicals to loosen the walls of the cells and acts as an inducer for rapid hydrolysis of starch. It also induces the expression of aquaporin genes that are involved in the intake of water and also mediates H2O2, or ROS, dispersed over biological membranes. Nano-priming induces starch degradation via the stimulation of amylase, which results in the stimulation of seed germination. Nano-priming induces a mild ROS that acts as a primary signaling cue for various signaling cascade events that participate in secondary metabolite production and stress tolerance. This review provides details on the possible mechanisms by which nano-priming induces breaking seed dormancy, promotion of seed germination, and their impact on primary and secondary metabolite production. In addition, the use of nano-based fertilizer and pesticides as effective materials in nano-priming and plant growth development were also discussed, considering their recent status and future perspectives.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yao Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Ramkumar Samynathan
- R&D Division, Alchem Diagnostics, No. 1/1, Gokhale Street, Ram Nagar, Coimbatore, 641009, Tamil Nadu, India
| | - Mohammad Ali Shariati
- Scientific Department, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow, 109004, Russian Federation
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhina St., Moscow, 109316, Russian Federation
| | - Arti Nile
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Meihong Sun
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, 641062, Tamil Nadu, India.
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| |
Collapse
|
147
|
Pankau C, Cooper RL. Molecular physiology of manganese in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100886. [PMID: 35278758 DOI: 10.1016/j.cois.2022.100886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Manganese is an essential element for maintaining life. Overexposure to the metal, however, can be toxic to organisms. Given the significant function of manganese in insects, agriculture, and human disease, as well as in the healthy ecology of the planet, the biological activities of manganese in insects needs consideration. Because of the role of manganese as a cofactor for essential enzymes present in different organelles, both over and underexposure to manganese has a multifaceted effect on organisms. At the physiological level, the effects of insect exposure to the metal on enzymatic activities and consequent alteration of insect behaviors are best explained through the metal's role in modulating the dopaminergic system. Despite numerous examples that alterations in manganese homeostasis have profound effects on insects, the cellular mechanisms that ensure homeostasis of this essential metal remain presently unknown, calling for further research in this area.
Collapse
Affiliation(s)
- Cecilia Pankau
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
148
|
Gu T, Tong Z, Zhang X, Wang Z, Zhang Z, Hwang TS, Li L. Carbon Metabolism of a Soilborne Mn(II)-Oxidizing Escherichia coli Isolate Implicated as a Pronounced Modulator of Bacterial Mn Oxidation. Int J Mol Sci 2022; 23:ijms23115951. [PMID: 35682628 PMCID: PMC9180420 DOI: 10.3390/ijms23115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Mn(II)-oxidizing microorganisms are generally considered the primary driving forces in the biological formation of Mn oxides. However, the mechanistic elucidation of the actuation and regulation of Mn oxidation in soilborne bacteria remains elusive. Here, we performed joint multiple gene-knockout analyses and comparative morphological and physiological determinations to characterize the influence of carbon metabolism on the Mn oxide deposit amount (MnODA) and the Mn oxide formation of a soilborne bacterium, Escherichia coli MB266. Different carbon source substances exhibited significantly varied effects on the MnODA of MB266. A total of 16 carbon metabolism-related genes with significant variant expression levels under Mn supplementation conditions were knocked out in the MB266 genome accordingly, but only little effect on the MnODA of each mutant strain was accounted for. However, a simultaneous four-gene-knockout mutant (namely, MB801) showed an overall remarkable MnODA reduction and an initially delayed Mn oxide formation compared with the wild-type MB266. The assays using scanning/transmission electron microscopy verified that MB801 exhibited not only a delayed Mn-oxide aggregate processing, but also relatively smaller microspherical agglomerations, and presented flocculent deposit Mn oxides compared with normal fibrous and crystalline Mn oxides formed by MB266. Moreover, the Mn oxide aggregate formation was highly related to the intracellular ROS level. Thus, this study demonstrates that carbon metabolism acts as a pronounced modulator of MnODA in MB266, which will provide new insights into the occurrence of Mn oxidation and Mn oxide formation by soilborne bacteria in habitats where Mn(II) naturally occurs.
Collapse
Affiliation(s)
- Tong Gu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
| | - Zhenghu Tong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
| | - Xue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
| | - Zhiyong Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi 445000, China
| | - Zhen Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
- College of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Tzann-Shun Hwang
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
- Correspondence: (T.-S.H.); (L.L.)
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
- Correspondence: (T.-S.H.); (L.L.)
| |
Collapse
|
149
|
Boatwright JL, Sapkota S, Myers M, Kumar N, Cox A, Jordan KE, Kresovich S. Dissecting the Genetic Architecture of Carbon Partitioning in Sorghum Using Multiscale Phenotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:790005. [PMID: 35665170 PMCID: PMC9159972 DOI: 10.3389/fpls.2022.790005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Carbon partitioning in plants may be viewed as a dynamic process composed of the many interactions between sources and sinks. The accumulation and distribution of fixed carbon is not dictated simply by the sink strength and number but is dependent upon the source, pathways, and interactions of the system. As such, the study of carbon partitioning through perturbations to the system or through focus on individual traits may fail to produce actionable developments or a comprehensive understanding of the mechanisms underlying this complex process. Using the recently published sorghum carbon-partitioning panel, we collected both macroscale phenotypic characteristics such as plant height, above-ground biomass, and dry weight along with microscale compositional traits to deconvolute the carbon-partitioning pathways in this multipurpose crop. Multivariate analyses of traits resulted in the identification of numerous loci associated with several distinct carbon-partitioning traits, which putatively regulate sugar content, manganese homeostasis, and nitrate transportation. Using a multivariate adaptive shrinkage approach, we identified several loci associated with multiple traits suggesting that pleiotropic and/or interactive effects may positively influence multiple carbon-partitioning traits, or these overlaps may represent molecular switches mediating basal carbon allocating or partitioning networks. Conversely, we also identify a carbon tradeoff where reduced lignin content is associated with increased sugar content. The results presented here support previous studies demonstrating the convoluted nature of carbon partitioning in sorghum and emphasize the importance of taking a holistic approach to the study of carbon partitioning by utilizing multiscale phenotypes.
Collapse
Affiliation(s)
- J. Lucas Boatwright
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Sirjan Sapkota
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Matthew Myers
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Neeraj Kumar
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Alex Cox
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Kathleen E. Jordan
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Stephen Kresovich
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Feed the Future Innovation Lab for Crop Improvement, Cornell University, Ithaca, NY, United States
| |
Collapse
|
150
|
Seeds as Potential Sources of Phenolic Compounds and Minerals for the Indian Population. Molecules 2022; 27:molecules27103184. [PMID: 35630662 PMCID: PMC9144825 DOI: 10.3390/molecules27103184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
Seeds are major sources of nutrients and bioactive compounds for human beings. In this work, the chemical composition and physicochemical properties of 155 Indian seeds (belonging to 49 families) are reported. Moisture and ash were measured with reference protocols from AOAC; total polyphenols and flavonoids were measured with spectrophotometric methods after extraction with organic solvents, and mineral elements were determined by X-ray fluorescence spectrophotometry. Total phenolic compounds, flavonoids and mineral contents (Al, Ba, Ca, Cl, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, P, Rb, S, Sr, Ti, V and Zn) were found to vary in the ranges 182−5000, 110−4465 and 687−7904 mg/100 g (DW), respectively. Noticeably, polyphenol contents higher than 2750 mg/100 g were observed in 18 seeds. In addition, mineral contents >5000 mg/100 g were detected in the seeds from Cuminum cyminum, Foeniculum vulgare, Commiphora wightii, Parkia javanica, Putranjiva roxburghii, Santalum album and Strychnos potatorum. Botanical and taxonomical variations in the proximate characteristics of the examined seeds are also discussed.
Collapse
|