101
|
Race, Socioeconomic Status, and Cerebellum Cortex Fractional Anisotropy in Pre-Adolescents. ADOLESCENTS 2021; 1:70-94. [PMID: 34095893 DOI: 10.3390/adolescents1020007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction Cerebellum cortex fractional anisotropy is a proxy of the integrity of the cerebellum cortex. However, less is known about how it is shaped by race and socioeconomic status (SES) indicators such as parental education and household income. Purpose In a national sample of American pre-adolescents, this study had two aims: to test the effects of two SES indicators, namely parental education and household income, on cerebellum cortex fractional anisotropy, and to explore racial differences in these effects. Methods Using data from the Adolescent Brain Cognitive Development (ABCD) study, we analyzed the diffusion Magnetic Resonance Imaging (dMRI) data of 9565, 9-10-year-old pre-adolescents. The main outcomes were cerebellum cortex fractional anisotropy separately calculated for right and left hemispheres using dMRI. The independent variables were parental education and household income; both treated as categorical variables. Age, sex, ethnicity, and family marital status were the covariates. Race was the moderator. To analyze the data, we used mixed-effects regression models without and with interaction terms. We controlled for propensity score and MRI device. Results High parental education and household income were associated with lower right and left cerebellum cortex fractional anisotropy. In the pooled sample, we found significant interactions between race and parental education and household income, suggesting that the effects of parental education and household income on the right and left cerebellum cortex fractional anisotropy are all significantly larger for White than for Black pre-adolescents. Conclusions The effects of SES indicators, namely parental education and household income, on pre-adolescents' cerebellum cortex microstructure and integrity are weaker in Black than in White families. This finding is in line with the Marginalization-related Diminished Returns (MDRs), defined as weaker effects of SES indicators for Blacks and other racial and minority groups than for Whites.
Collapse
|
102
|
al'Absi M, Ginty AT, Lovallo WR. Neurobiological mechanisms of early life adversity, blunted stress reactivity and risk for addiction. Neuropharmacology 2021; 188:108519. [PMID: 33711348 DOI: 10.1016/j.neuropharm.2021.108519] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/13/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022]
Abstract
Blunted stress reactivity resulting from early exposure to stress during childhood and adolescence may increase vulnerability to addiction. Early life adversity (ELA) affects brain structure and function and results in blunted stress axis reactivity. In this review, we focus on the underlying neurobiological mechanisms associated with a blunted response to stress, ELA, and risk for addictive disorders. ELA and blunted reactivity are accompanied by unstable mood regulation, impulsive behaviors, and reduced cognitive function. Neuroimaging studies reveal cortical and subcortical changes in persons exposed to ELA and those who have a genetic disposition for addiction. We propose a model in which blunted stress reactivity may be a marker of risk for addiction through an altered motivational and behavioral reactivity to stress that contribute to disinhibited behavioral reactivity and impulsivity leading in turn to increased vulnerability for substance use. Evidence supporting this hypothesis in the context of substance use initiation, maintenance, and risk for relapse is presented. The effects of ELA on persons at risk for addiction may lead to early experimentation with drugs of abuse. Early adoption of drug intake may alter neuroregulation in such vulnerable persons leading to a permanent dysregulation of motivational responses consistent with dependence. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- Mustafa al'Absi
- Family Medicine and Biobehavioral Health, University of Minnesota Medical School, Duluth, MN, USA.
| | - Annie T Ginty
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - William R Lovallo
- University of Oklahoma Health Sciences Center and VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
103
|
Does cortical brain morphology act as a mediator between childhood trauma and transition to psychosis in young individuals at ultra-high risk? Schizophr Res 2020; 224:116-125. [PMID: 33071072 DOI: 10.1016/j.schres.2020.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/30/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Childhood trauma, particularly sexual abuse, has been associated with transition to psychosis in individuals at "ultra-high risk" (UHR). This study investigated whether the effects of various forms of childhood trauma on transition to psychosis are mediated by cortical thickness and surface area abnormalities. METHODS This prospective study used data from 62 UHR individuals from a previous (PACE 400) cohort study. At follow-up, 24 individuals had transitioned to psychosis (UHR-T) and 38 individuals had not transitioned (UHR-NT). Student-t/Mann-Whitney-U tests were performed to assess morphological differences in childhood trauma (low/high) and transition. Mediation analyses were conducted using regression and bootstrapping techniques. RESULTS UHR individuals with high sexual trauma histories presented with decreased cortical thickness in bilateral middle temporal gyri and the left superior frontal gyrus compared to those with low sexual trauma. Participants with high physical abuse had increased cortical thickness in the right middle frontal gyrus compared to those with low physical abuse. No differences were found for emotional abuse or physical/emotional neglect. Reduced cortical thickness in the right middle temporal gyrus and increased surface area in the right cingulate were found in UHR-T compared to UHR-NT individuals. Sexual abuse had an indirect effect on transition to psychosis, where decreased cortical thickness in the right middle temporal gyrus was a mediator. CONCLUSIONS Results suggest that childhood sexual abuse negatively impacted on cortical development of the right temporal gyrus, and this heightened the risk of transition to psychosis in our sample. Further longitudinal studies are needed to precisely understand this link.
Collapse
|
104
|
The vulnerability of the immature brain. HANDBOOK OF CLINICAL NEUROLOGY 2020. [PMID: 32958197 DOI: 10.1016/b978-0-444-64150-2.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The concept of vulnerability of the immature brain is multifactorial by definition. Newer scientific work in this area has shifted and enlarged the concept from theoretical frameworks to the multiple levels (molecular, cellular, anatomic, network, behavioral) of the organization of the growing brain. The concept of vulnerability was first introduced by Donald O. Hebb in the 1950s and referred to the inability of the immature brain to completely recover normal development after a brain insult. The concept of vulnerability was further extended to the limitations of the brain in the development of specific skills in neuronal substrates originally used for other functions. We present an overview of some neurodevelopmental processes that characterize the immature brain and that can predict vulnerability in the case of disturbances: Hebb's principle, synaptic homeostasis, selective vulnerability of immature cells in mammals, and inherited constraint networks. A better understanding of the vulnerability mechanisms may help in early detection and prevention and further proposed individualized therapeutic approaches to enhance children's developmental outcomes.
Collapse
|
105
|
Sullivan DR, Salat DH, Wolf EJ, Logue MW, Fortier CB, Fonda JR, DeGutis J, Esterman M, Milberg WP, McGlinchey RE, Miller MW. Interpersonal early life trauma is associated with increased cerebral perfusion and poorer memory performance in post-9/11 veterans. NEUROIMAGE-CLINICAL 2020; 28:102365. [PMID: 32777702 PMCID: PMC7417939 DOI: 10.1016/j.nicl.2020.102365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 11/28/2022]
Abstract
IP-ELT is associated with greater cerebral perfusion in the right inferior/middle temporal gyrus. Cerebral perfusion mediates the relationship between IP-ELT and memory, not attention or executive function. PTSD diagnosis and severity were not significantly associated with cerebral perfusion. Other factors relevant to perfusion did not influence the relationship between IP-ELT and cerebral perfusion.
Cerebral blood flow (CBF) is critically important in the overall maintenance of brain health, and disruptions in normal flow have been linked to the degradation of the brain’s structural integrity and function. Recent studies have highlighted the potential role of CBF as a link between psychiatric disorders and brain integrity. Although interpersonal early life trauma (IP-ELT) is a risk factor for the development of psychiatric disorders and has been linked to disruptions in brain structure and function, the mechanisms through which IP-ELT alters brain integrity and development remain unclear. The goal of this study was to understand whether IP-ELT was associated with alterations in CBF assessed during adulthood. Further, because the cognitive implications of perfusion disruptions in IP-ELT are also unclear, this study sought to investigate the relationship between IP-ELT, perfusion, and cognition. Methods: 179 Operations Enduring Freedom/Iraqi Freedom/New Dawn (OEF/OIF/OND) Veterans and military personnel completed pseudo-continuous arterial spin labeling (pCASL) imaging, clinical interviews, the Traumatic Life Events Questionnaire (TLEQ), and a battery of neuropsychological tests that were used to derive attention, memory, and executive function cognitive composite scores. To determine whether individuals were exposed to an IP-ELT, events on the TLEQ that specifically queried interpersonal trauma before the age of 18 were tallied for each individual. Analyses compared individuals who reported an interpersonal IP-ELT (IP-ELT+, n = 48) with those who did not (IP-ELT-, n = 131). Results: Whole brain analyses revealed that IP-ELT+ individuals had significantly greater CBF in the right inferior/middle temporal gyrus compared to those in the IP-ELT- group, even after controlling for age, sex, and posttraumatic stress disorder (PTSD). Further, perfusion in the right inferior/middle temporal gyrus significantly mediated the relationship between IP-ELT and memory, not attention or executive function, such that those with an IP-ELT had greater perfusion, which, in turn, was associated with poorer memory. Examination of other clinical variables such as current PTSD diagnosis and severity as well as the interaction between IP-ELT and PTSD yielded no significant effects. Conclusions: These results extend prior work demonstrating an association between ELT and cerebral perfusion by suggesting that increased CBF may be an important neural marker with cognitive implications in populations at risk for psychiatric disorders.
Collapse
Affiliation(s)
- Danielle R Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| | - David H Salat
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Erika J Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Mark W Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA; Biomedical Genetics, Boston University School of Medicine, Boston, MA USA; Department of Biostatistics, Boston University School of Medicine, Boston, MA, USA
| | - Catherine B Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Fonda
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA; Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Joseph DeGutis
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, MA, USA
| | - Michael Esterman
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA; Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, MA, USA
| | - William P Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Regina E McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Mark W Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
106
|
Lewis MW, Jones RT, Davis MT. Exploring the impact of trauma type and extent of exposure on posttraumatic alterations in 5-HT1A expression. Transl Psychiatry 2020; 10:237. [PMID: 32678079 PMCID: PMC7366706 DOI: 10.1038/s41398-020-00915-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The long-term behavioral, psychological, and neurobiological effects of exposure to potentially traumatic events vary within the human population. Studies conducted on trauma-exposed human subjects suggest that differences in trauma type and extent of exposure combine to affect development, maintenance, and treatment of a variety of psychiatric syndromes. The serotonin 1-A receptor (5-HT1A) is an inhibitory G protein-coupled serotonin receptor encoded by the HTR1A gene that plays a role in regulating serotonin release, physiological stress responding, and emotional behavior. Studies from the preclinical and human literature suggest that dysfunctional expression of 5-HT1A is associated with a multitude of psychiatric symptoms commonly seen in trauma-exposed individuals. Here, we synthesize the literature, including numerous preclinical studies, examining differences in alterations in 5-HT1A expression following trauma exposure. Collectively, these findings suggest that the impact of trauma exposure on 5-HT1A expression is dependent, in part, on trauma type and extent of exposure. Furthermore, preclinical and human studies suggest that this observation likely applies to additional molecular targets and may help explain variation in trauma-induced changes in behavior and treatment responsivity. In order to understand the neurobiological impact of trauma, including the impact on 5-HT1A expression, it is crucial to consider both trauma type and extent of exposure.
Collapse
|
107
|
Impact of early life adversities on human brain functioning: A coordinate-based meta-analysis. Neurosci Biobehav Rev 2020; 113:62-76. [DOI: 10.1016/j.neubiorev.2020.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 01/15/2023]
|
108
|
Silveira S, Shah R, Nooner KB, Nagel BJ, Tapert SF, de Bellis MD, Mishra J. Impact of Childhood Trauma on Executive Function in Adolescence-Mediating Functional Brain Networks and Prediction of High-Risk Drinking. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:499-509. [PMID: 32299789 DOI: 10.1016/j.bpsc.2020.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/07/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Childhood trauma is known to impart risk for several adverse life outcomes. Yet, its impact during adolescent development is not well understood. We aimed to investigate the relationships among childhood trauma, functional brain connectivity, executive dysfunction (ED), and the development of high-risk drinking in adolescence. METHODS Data from the National Consortium on Alcohol and Neurodevelopment in Adolescence (sample size = 392, 55% female) cohort were used. This included resting-state functional magnetic resonance imaging at baseline, childhood trauma and ED self-reports, and detailed interviews on alcohol and substance use collected at baseline and at 4 annual follow-ups. We used longitudinal regression analyses to confirm the relationship between childhood trauma and ED, identified the mediating functional brain network hubs, and used these linkages to predict future high-risk drinking in adolescence. RESULTS Childhood trauma severity was significantly related to ED in all years. At baseline, distributed functional connectivity from hub regions in the bilateral dorsal anterior cingulate cortex, right anterior insula, right intraparietal sulcus, and bilateral pre- and postcentral gyri mediated the relationship between childhood trauma and ED. Furthermore, high-risk drinking in follow-up years 1-4 could be predicted with high accuracy from the trauma-affected functional brain networks that mediated ED at baseline, together with age, childhood trauma severity, and extent of ED. DISCUSSION Functional brain networks, particularly from hub regions important for cognitive and sensorimotor control, explain the relationship between childhood trauma and ED and are important for predicting future high-risk drinking. These findings are relevant for the prognosis of alcohol use disorders.
Collapse
Affiliation(s)
- Sarita Silveira
- Department of Psychiatry, University of California San Diego, La Jolla, California; Neural Engineering and Translation Labs, University of California San Diego, La Jolla, California
| | - Rutvik Shah
- Department of Psychiatry, University of California San Diego, La Jolla, California; Neural Engineering and Translation Labs, University of California San Diego, La Jolla, California
| | - Kate B Nooner
- Department of Psychology, University of North Carolina, Wilmington, North Carolina
| | - Bonnie J Nagel
- Departments of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Susan F Tapert
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Michael D de Bellis
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Jyoti Mishra
- Department of Psychiatry, University of California San Diego, La Jolla, California; Neural Engineering and Translation Labs, University of California San Diego, La Jolla, California
| |
Collapse
|
109
|
Yoon S, Dillard R, Kobulsky J, Nemeth J, Shi Y, Schoppe-Sullivan S. The Type and Timing of Child Maltreatment as Predictors of Adolescent Cigarette Smoking Trajectories. Subst Use Misuse 2020; 55:937-946. [PMID: 31996065 PMCID: PMC7374497 DOI: 10.1080/10826084.2020.1713819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background: There is limited research examining the association between child maltreatment and cigarette smoking as a specific type of adolescent substance use, and research examining high-risk samples and variations based on maltreatment type and timing remain sparse. Objectives: The primary aim of the study was to examine the relationship between child maltreatment and cigarette smoking trajectories. Methods: Latent class growth analysis and multinomial logistic regression were performed on 903 youth drawn from the Longitudinal Studies of Child Abuse and Neglect (LONGSCAN). Results: Three distinct classes of cigarette smoking trajectories were identified: (1) Stable no/low cigarette use (61%); (2) Gradually increasing cigarette use (30%); and (3) Sharply increasing cigarette use (9%). Physical abuse during early childhood and adolescence predicted membership in the sharply increasing cigarette use class. Neglect during early childhood predicted membership in the gradually increasing cigarette use class. Conclusions: Findings suggest that interventions for adolescent cigarette smoking should integrate trauma-informed approaches. Further, the results highlight early childhood and adolescence as particularly vulnerable periods with respect to the influence of physical abuse and neglect on cigarette smoking, pointing to the need for additional maltreatment prevention efforts during these developmental stages.
Collapse
Affiliation(s)
- Susan Yoon
- College of Social Work, The Ohio State University, Columbus, Ohio, USA
| | - Rebecca Dillard
- College of Social Work, The Ohio State University, Columbus, Ohio, USA
| | - Julia Kobulsky
- School of Social Work, Temple University, Philadelphia, Pennsylvania, USA
| | - Julianna Nemeth
- College of Public Health, The Ohio State University, Columbus, Ohio, USA
| | - Yang Shi
- University of California, Berkeley, Berkeley, California, USA
| | | |
Collapse
|
110
|
Blair KS, Bashford-Largo J, Shah N, Lukoff J, Elowsky J, Vogel S, Emmert A, Zhang R, Dobbertin M, Pollak S, Blair JR. Sexual Abuse in Adolescents Is Associated With Atypically Increased Responsiveness Within Regions Implicated in Self-Referential and Emotional Processing to Approaching Animate Threats. Front Psychiatry 2020; 11:345. [PMID: 32612545 PMCID: PMC7308525 DOI: 10.3389/fpsyt.2020.00345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
Childhood sexual abuse is associated with significant subsequent pathology and neurodevelopmental disruption. In particular, childhood sexual abuse has been associated with heightened threat sensitivity. However, little work has directly investigated this issue. In this study, we examine the association of childhood sexual abuse to neural and behavioral responses to looming, threatening face stimuli. The study involved 23 adolescents with significant past sexual abuse and 24 comparison individuals matched on IQ, age, and sex. Participants were scanned during a looming threat task that involved negative and neutral, human faces and animals that appeared to either loom toward or recede from the participant. We found that adolescents who had been previously subjected to sexual abuse, relative to comparison adolescents, showed increased neural responses to threatening looming stimuli in regions including rostral and superior frontal gyrus as well as posterior cingulate gyrus. In addition, they were significantly more slowed by looming stimuli, particularly if these were human faces, than adolescents who had not been exposed. These data demonstrate that prior sexual abuse was associated with heightened neural responsiveness to looming threats in a series of regions beyond the amygdala. These data are interpreted within models of rostromedial frontal and posterior cingulate cortices that stress their role in self-referential emotional processing and emotional maintenance.
Collapse
Affiliation(s)
- Karina S Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Johannah Bashford-Largo
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Niraj Shah
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Jennie Lukoff
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Jaimie Elowsky
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Steven Vogel
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Amanda Emmert
- Department of Psychiatry, Creighton University School of Medicine, Omaha, NE, United States
| | - Ru Zhang
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Matthew Dobbertin
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Seth Pollak
- Department of Psychology, University of Wisconsin, Madison, WI, United States
| | - James R Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| |
Collapse
|
111
|
McCrory E, Ogle JR, Gerin MI, Viding E. Neurocognitive Adaptation and Mental Health Vulnerability Following Maltreatment: The Role of Social Functioning. CHILD MALTREATMENT 2019; 24:435-451. [PMID: 30897955 DOI: 10.1177/1077559519830524] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Childhood maltreatment is associated with a lifetime increase in risk of mental health disorder. We propose that such vulnerability may stem in large part from altered patterns of social functioning. Here, we highlight key findings from the psychological and epidemiological literature indicating that early maltreatment experience compromises social functioning and attenuates social support in ways that increase mental health vulnerability. We then review the extant neuroimaging studies of children and adolescents, focusing on three domains implicated in social functioning: threat processing, reward processing, and emotion regulation. We discuss how adaptations in these domains may increase latent vulnerability to mental health problems by impacting on social functioning via increased stress susceptibility as well as increased stress generation. Finally, we explore how computational psychiatry approaches, alongside systematically reported measures of social functioning, can complement studies of neural function in the creation of a mechanistic framework aimed at informing approaches to prevention and intervention.
Collapse
Affiliation(s)
- Eamon McCrory
- University College London, London, United Kingdom
- * Eamon McCrory and Mattia Indi Gerin are also affiliated with Anna Freud National Centre for Children and Families, London, UK
| | | | - Mattia Indi Gerin
- University College London, London, United Kingdom
- * Eamon McCrory and Mattia Indi Gerin are also affiliated with Anna Freud National Centre for Children and Families, London, UK
| | - Essi Viding
- University College London, London, United Kingdom
| |
Collapse
|
112
|
Van der Auwera S, Ameling S, Wittfeld K, d'Harcourt Rowold E, Nauck M, Völzke H, Suhre K, Najafi-Shoushtari H, Methew J, Ramachandran V, Bülow R, Völker U, Grabe HJ. Association of childhood traumatization and neuropsychiatric outcomes with altered plasma micro RNA-levels. Neuropsychopharmacology 2019; 44:2030-2037. [PMID: 31284290 PMCID: PMC6898678 DOI: 10.1038/s41386-019-0460-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022]
Abstract
Childhood traumatization (CT) is associated with the development of several neuropsychiatric disorders in later life. Experimental data in animals and observational data in humans revealed evidence for biological alterations in response to CT that may contribute to its long-term consequences. This includes epigenetic changes in miRNA levels that contribute to complex alterations of gene expression. We investigated the association between CT and 121 miRNAs in a target sample of N = 150 subjects from the general population and patients from the Department of Psychiatry. We hypothesized that CT exhibits a long-term effect on miRNA plasma levels. We supported our findings using bioinformatics tools and databases. Among the 121 miRNAs 22 were nominally significantly associated with CT and four of them (let-7g-5p, miR-103a-3p, miR-107, and miR-142-3p) also after correction for multiple testing; most of them were previously associated with Alzheimer's disease (AD) or depression. Pathway analyses of target genes identified significant pathways involved in neurodevelopment, inflammation and intracellular transduction signaling. In an independent general population sample (N = 587) three of the four miRNAs were replicated. Extended analyses in the general population sample only (N = 687) showed associations of the four miRNAs with gender, memory, and brain volumes. We gained increasing evidence for a link between CT, depression and AD through miRNA alterations. We hypothesize that depression and AD not only share environmental factors like CT but also biological factors like altered miRNA levels. This miRNA pattern could serve as mediating factor on the biological path from CT to adult neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany.
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | | | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar
| | - Hani Najafi-Shoushtari
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, 10021, NY, USA
- Division of Research, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Jaicy Methew
- Division of Research, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Vimal Ramachandran
- Division of Research, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| |
Collapse
|
113
|
Malhi GS, Das P, Outhred T, Dobson-Stone C, Irwin L, Gessler D, Bryant R, Mannie Z. Effect of stress gene-by-environment interactions on hippocampal volumes and cortisol secretion in adolescent girls. Aust N Z J Psychiatry 2019; 53:316-325. [PMID: 30754992 DOI: 10.1177/0004867419827649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Adolescence is a time of increased susceptibility to environmental stress and mood disorders, and girls are particularly at risk. Genes interacting with the environment (G × E) are implicated in hypothalamic-pituitary-adrenal axis dysregulation, hippocampal volume changes and risk or resilience to mood disorders. In this study, we assessed the effects of stress system G × E interactions on hippocampal volumes and cortisol secretion in adolescent girls. METHODS We recruited 229 girls aged 12-18 years, and scans were obtained from 202 girls. Of these, 76 had been exposed to higher emotional trauma (abuse or neglect). Hippocampal volumes were measured using Freesurfer and high-resolution structural magnetic resonance imaging scans. Saliva samples were collected for measurement of cortisol levels and genotyping of stress system genes: FKBP5, NR3C1 (both N = 194) and NR3C2 ( N = 193). RESULTS Among girls with the 'G' allelic variant of the NR3C1 gene, those who had been exposed to higher emotional trauma had significantly smaller left hippocampal volumes ( N = 44; mean = 4069.58 mm3, standard deviation = 376.99) than girls who had been exposed to minimal emotional trauma with the same allelic variant ( N = 69; mean = 4222.34 mm3, standard deviation = 366.74). CONCLUSION In healthy adolescents, interactions between emotional trauma and the 'protective' NR3C1 'GG' variant seem to induce reductions in left hippocampal volumes. These G × E interactions suggest that vulnerability to mood disorders is perhaps driven by reduced 'protection' that may be specific to emotional trauma. This novel but preliminary evidence has implications for targeted prevention of mood disorders and prospective multimodal neuroimaging and longitudinal studies are now needed to investigate this possibility.
Collapse
Affiliation(s)
- Gin S Malhi
- 1 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,4 Department of Academic Psychiatry, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Pritha Das
- 1 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,4 Department of Academic Psychiatry, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Tim Outhred
- 1 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,4 Department of Academic Psychiatry, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Carol Dobson-Stone
- 5 Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,6 Faculty of Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Lauren Irwin
- 1 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Danielle Gessler
- 1 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,4 Department of Academic Psychiatry, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia.,5 Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,7 Department of Music and Performing Arts Professions, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Richard Bryant
- 8 Faculty of Science, School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Zola Mannie
- 1 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,4 Department of Academic Psychiatry, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia.,9 NSW Health and Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|