101
|
Hamdy MM, Abdel-Rahman MS, Badary DM, Sabra MS. Effects of furosemide and tadalafil in both conventional and nanoforms against adenine-induced chronic renal failure in rats. Eur J Med Res 2022; 27:117. [PMID: 35820963 PMCID: PMC9275182 DOI: 10.1186/s40001-022-00747-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic renal failure (CRF) is a progressive loss of renal function that lead to reduced sodium filtration and inappropriate suppression of tubular reabsorption that ultimately leads to volume expansion. The aim of this study was to study the efficacy of furosemide and tadalafil nanoforms compared to conventional forms against adenine-induced CRF rat-model. METHODS Addition of 0.75% adenine to the diet of rats for 4 weeks gained general acceptance as a model to study kidney damage as this intervention mimicked most of the structural and functional changes seen in human chronic kidney disease Urine analysis, histopathological changes and immunohistochemical expression of caspase-3 and interleukin-1 beta (IL-1β) in renal tissues were performed. RESULTS Our results showed that the combination of tadalafil and furosemide using conventional and nanoparticle formulations had better renoprotective effect than individual drugs. This was demonstrated by improvement of urinary, serum and renal tissue markers as indicative of organ damage. This was also reflected on the reduction of tubular expression of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Immunohistochemical studies showed that the deteriorated renal cellular changes indicated by increased expression of caspase-3 and IL-1β were greatly improved by the combined treatment particularly with the nanoforms. CONCLUSIONS The nanoforms of both furosemide and tadalafil had greater renopreventive effects compared with conventional forms against adenine-induced CRF in rats.
Collapse
Affiliation(s)
| | - Mahran S Abdel-Rahman
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sphinx University, New Assuit, 71526, Egypt
| | - Dalia M Badary
- Pathology Department, Faculty of Medicine, Assiut University, Egypt, Assuit, 71526, Egypt
| | - Mahmoud S Sabra
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Assuit, 71526, Egypt.
| |
Collapse
|
102
|
Bisdemethoxycurcumin Attenuated Renal Injury via Activation of Keap1/Nrf2 Pathway in High-Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms23137395. [PMID: 35806399 PMCID: PMC9266686 DOI: 10.3390/ijms23137395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Bisdemethoxycurcumin (BDMC), a principal and active component of edible turmeric, was previously found to have beneficial effects on metabolic diseases. Chronic kidney disease (CKD) may benefit from its potential therapeutic use. Using a high-fat diet (HFD)-fed mouse model, we examined the effects of BDMC on renal injury and tried to determine how its associated mechanism works. A number of metabolic disorders are significantly improved by BDMC, including obesity, hyperglycemia, hyperinsulinemia, hyperlipidemia and inflammation. Further research on renal histopathology and function showed that BDMC could repair renal pathological changes and enhance renal function. Moreover, decreased serum malondialdehyde (MDA), elevated superoxide dismutase (SOD) activity, and the inhibition of renal reactive oxygen species (ROS) overproduction revealed the alleviation of oxidative stress after BDMC administration. In addition, renal Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) pathway was activated in BDMC-treated mice. In conclusion, these findings demonstrated BDMC as a potential therapy for HFD-induced CKD via the activation of the Keap1/Nrf2 pathway.
Collapse
|
103
|
Kadry ARM, Lin YS, Caffrey JL, Sonawane B. Vitamin D status in relation to inflammatory risk and albuminuria associated with polycyclic aromatic hydrocarbon exposure in the US population. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2022; 78:88-97. [PMID: 35766980 DOI: 10.1080/19338244.2022.2090890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with both systematic inflammation and renal dysfunction. Reports have suggested that anti-inflammatory properties of vitamin D may provide protection against renal injury. This cross-sectional study tested the hypothesis that serum 25-hydroxyvitamin D [25(OH)D] moderates the inflammation and albuminuria associated with PAH exposure. Data were obtained from 5,982 subjects aged 20-79 years in the National Health and Nutrition Examination Survey (2001-2010). PAH exposure was estimated by urinary PAH metabolites. Inflammation was defined as serum C-reactive protein (CRP) > 3 mg/L and albuminuria as urinary albumin-to-creatinine ratio > 30 mg/g. The results found that greater PAH exposure was linked with inflammation and albuminuria. Individuals with PAH exposure also tended to have lower 25(OH)D and lower vitamin D was associated with both elevated CRP (Odds ratio [OR] = 1.28, 95% confidence interval [CI] = 1.07-1.54) and urinary albumin (1.35, 95%CI = 1.03-1.77) for any given PAH exposure. Those with lower serum 25(OH)D-to-urinary PAH ratios were likewise at a greater risk of elevated CRP and albuminuria. The findings support prior suggestions that exposure to PAHs is associated with inflammation and albuminuria but suggests further that the risk is higher when vitamin D is lower. Thus, nutritional status becomes an important variable in PAH risk assessment.
Collapse
Affiliation(s)
- Abdel-Razak M Kadry
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Yu-Sheng Lin
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - James L Caffrey
- School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Babasaheb Sonawane
- Toxicology and Risk Assessment Consulting Services, North Potomac, Maryland, USA
| |
Collapse
|
104
|
Immune System Dysfunction and Inflammation in Hemodialysis Patients: Two Sides of the Same Coin. J Clin Med 2022; 11:jcm11133759. [PMID: 35807042 PMCID: PMC9267256 DOI: 10.3390/jcm11133759] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Biocompatibility in hemodialysis (HD) has considerably improved in recent decades, but remains an open issue to be solved, appearing essential to reduce systemic inflammation and enhance patients’ clinical outcomes. Clotting prevention, reduction in complement and leukocyte activation, and improvement of antioxidant effect represent the main goals. This review aims to analyze the different pathways involved in HD patients, leading to immune system dysfunction and inflammation. In particular, we mostly review the evidence about thrombogenicity, which probably represents the most important characteristic of bio-incompatibility. Platelet activation is one of the first steps occurring in HD patients, determining several events causing chronic sub-clinical inflammation and immune dysfunction involvement. Moreover, oxidative stress processes, resulting from a loss of balance between pro-oxidant factors and antioxidant mechanisms, have been described, highlighting the link with inflammation. We updated both innate and acquired immune system dysfunctions and their close link with uremic toxins occurring in HD patients, with several consequences leading to increased mortality. The elucidation of the role of immune dysfunction and inflammation in HD patients would enhance not only the understanding of disease physiopathology, but also has the potential to provide new insights into the development of therapeutic strategies.
Collapse
|
105
|
Shen Y, Zhu Z, Wang R, Yan L, Sun S, Lu L, Ren Z, Zhang Q. Chemokine (C-C motif) receptor 2 is associated with the pathological grade and inflammatory response in IgAN children. BMC Nephrol 2022; 23:215. [PMID: 35725391 PMCID: PMC9210650 DOI: 10.1186/s12882-022-02839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background Chemokine (C–C motif) receptor 2 (CCR2) is involved in important physiological and pathological processes, such as inflammation and autoimmune diseases. Abnormal immune and inflammatory responses play a critical role in the development and progression of IgA nephritis (IgAN). However, the role of CCR2 in IgAN is unknown. Methods Fifteen IgAN children who were diagnosed by kidney biopsy provided kidney biopsy tissue, blood and urine samples, and age-matched healthy control subjects (blood donators n = 12; tissue donators n = 8) were included. Immunohistochemical analysis was used to detect the expression of CCR2, MCP-1, IL-6, IL-17, and TNF-α in the kidney tissues. Relative optical density (OD) was calculated by Image J software, and the correlation between CCR2 expression and pathological grade in IgAN children was analyzed. Results The expression of CCR2 significantly increased in mesangial cells of children with IgAN compared to that in control group (P < 0.001), especially in IgAN patients with Lee’s grade III to IV (P < 0.001). Interestingly, CCR2 expression was positively correlated with Lee’s grade (r = 0.9152, P = 0.0001) in IgAN children. The expression levels of inflammatory factors were markedly increased in IgAN children, and importantly CCR2 expression was positively correlated with it’s expression level. Conclusions The results suggest that CCR2 signaling might be involved in pathological process and inflammatory responses of children IgAN, and could potentially be an intervention target in children IgAN. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02839-y.
Collapse
Affiliation(s)
- Yanjie Shen
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiqing Zhu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, 19Th Floor of Medicine and Medical Tech Building, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Rui Wang
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lili Yan
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shuaichen Sun
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ling Lu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, 19Th Floor of Medicine and Medical Tech Building, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Zhenhua Ren
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Qin Zhang
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, 19Th Floor of Medicine and Medical Tech Building, 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
106
|
Hofherr A, Williams J, Gan LM, Söderberg M, Hansen PBL, Woollard KJ. Targeting inflammation for the treatment of Diabetic Kidney Disease: a five-compartment mechanistic model. BMC Nephrol 2022; 23:208. [PMID: 35698028 PMCID: PMC9190142 DOI: 10.1186/s12882-022-02794-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/20/2022] [Indexed: 12/25/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of kidney failure worldwide. Mortality and morbidity associated with DKD are increasing with the global prevalence of type 2 diabetes. Chronic, sub-clinical, non-resolving inflammation contributes to the pathophysiology of renal and cardiovascular disease associated with diabetes. Inflammatory biomarkers correlate with poor renal outcomes and mortality in patients with DKD. Targeting chronic inflammation may therefore offer a route to novel therapeutics for DKD. However, the DKD patient population is highly heterogeneous, with varying etiology, presentation and disease progression. This heterogeneity is a challenge for clinical trials of novel anti-inflammatory therapies. Here, we present a conceptual model of how chronic inflammation affects kidney function in five compartments: immune cell recruitment and activation; filtration; resorption and secretion; extracellular matrix regulation; and perfusion. We believe that the rigorous alignment of pathophysiological insights, appropriate animal models and pathology-specific biomarkers may facilitate a mechanism-based shift from recruiting ‘all comers’ with DKD to stratification of patients based on the principal compartments of inflammatory disease activity.
Collapse
Affiliation(s)
- Alexis Hofherr
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden. .,Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Julie Williams
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, UK
| | - Li-Ming Gan
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden.,Department of Molecular and Clinical Medicine, Department of Cardiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Söderberg
- Cardiovascular, Renal and Metabolic Safety, Clinical Pharmacology and Safety Sciences, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Pernille B L Hansen
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, UK.,Wallenberg Center for Molecular and Translational Medicine, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kevin J Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, UK. .,Centre for Inflammatory Disease, Imperial College London, London, UK.
| |
Collapse
|
107
|
Tang L, Li C, Chen W, Zeng Y, Yang H, Hu Y, Song H, Zeng X, Li Q, Fu P. Causal Association between Chronic Kidney Disease and Risk of 19 Site-Specific Cancers: A Mendelian Randomization Study. Cancer Epidemiol Biomarkers Prev 2022; 31:1233-1242. [PMID: 35333923 DOI: 10.1158/1055-9965.epi-21-1318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/16/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Results of previous observational studies examining the risk of cancer among patients with chronic kidney disease (CKD) are conflicting. We here explore the causal relationship between estimated glomerular filtration rate (eGFR) and albuminuria, two principal measurements of CKD, and 19 site-specific cancers using Mendelian randomization (MR) analysis. METHODS Single-nucleotide polymorphisms reported to be strongly correlated with eGFR and albuminuria in recent large genome-wide association studies were used as instrumental variables to investigate the causal relationship with cancer using summary-level statistics from several cancer-specific consortia, as well as data of 347,408 participants in the UK Biobank and 260,405 participants in the FinnGen. RESULTS Our data showed that impaired kidney function was associated with higher odds of leukemia [OR = 1.23; 95% confidence interval (CI), 1.06-1.43; P = 0.007], cervical cancer (OR = 1.22; 95% CI, 1.04-1.43; P = 0.017), and female renal cell carcinoma (OR = 1.4; 95% CI, 1.12-1.77; P = 0.004), per 10% decrease in eGFR. The ORs were 1.21 (95% CI, 1.07-1.36; P = 0.002) for colorectal cancer and 0.76 (95% CI, 0.62-0.92; P = 0.006) for non-Hodgkin lymphoma, per doubling odds of albuminuria. In multivariable MR, effect sizes of eGFR-cervical cancer remained strong after adjusting for confounders. CONCLUSIONS The current study indicates that progression of CKD contributes to carcinogenesis of renal cell carcinoma, leukemia, cervical, and colorectal cancer. IMPACT The potential association of kidney function and albuminuria with certain cancers warrants further investigation in order to provide appropriate recommendations regarding cancer screening among patients with CKD.
Collapse
Affiliation(s)
- Lei Tang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichiuan, China
| | - Chunyang Li
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Chen
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yu Zeng
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Huazhen Yang
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yao Hu
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Huan Song
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Xiaoxi Zeng
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichiuan, China.,West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospitalof Sichuan University, Chengdu, Sichuan, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichiuan, China.,West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
108
|
Zhang Y, Gao W, Li X. Vitamin E‑coated dialyzer alleviates erythrocyte deformability dysfunction in patients with end‑stage renal disease undergoing hemodialysis. Exp Ther Med 2022; 24:480. [PMID: 35761813 PMCID: PMC9214592 DOI: 10.3892/etm.2022.11407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Patients with end-stage renal disease (ESRD) are characterized by augmented oxidative stress (OS) due to the imbalance between the generation of increased concentrations of oxidative molecules and decreased antioxidant capacity. Vitamin E-coated dialyzer membranes (VEMs) have previously been reported to alleviate the imbalance of redox metabolism in patients with ESRD undergoing hemodialysis (HD); however, their effect on the deformability of red blood cells (RBCs) remains unknown. In the present study, 48 patients with ESRD undergoing HD were enrolled and randomly assigned into two groups: HD with VEMs (VEM group; n=24) and HD with polysulfone dialyzer membranes (PM group; n=24), and another 24 healthy volunteers served as the control group. The present study investigated the morphological changes and deformability of RBCs in patients with ESRD and healthy volunteers. The concentration of serum vitamin E, the parameters of antioxidant stress and OS, and the degree of oxidative phosphorylation and clustering of anion exchanger 1 (Band 3) in RBCs were measured. The results obtained suggested that VEM treatment markedly ameliorated the abnormalities of RBC morphology and deformability in patients with ESRD undergoing HD. Mechanistic studies showed that VEM treatment led to a marked improvement in the concentration of serum vitamin E, which was positively associated with the restored antioxidant capacity, and decreased oxidative phosphorylation and clustering of Band 3 in RBCs of patients with ESRD undergoing HD. Taken together, the results of the present study have demonstrated that VEM treatment effectively restored the imbalance of redox metabolism, and improved the oxidative phosphorylation and clustering of Band 3 in RBCs of patients with ESRD undergoing HD via delivering vitamin E, which may alleviate the abnormal morphological and mechanical properties of RBCs. These findings are anticipated to be useful with respect to improving the nursing care and cure rate of patients with ESRD.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Blood Dialysis Room, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264001, P.R. China
| | - Wei Gao
- Department of Blood Dialysis Room, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264001, P.R. China
| | - Xia Li
- Department of Blood Dialysis Room, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
109
|
Begum R, Thota S, Abdulkadir A, Kaur G, Bagam P, Batra S. NADPH oxidase family proteins: signaling dynamics to disease management. Cell Mol Immunol 2022; 19:660-686. [PMID: 35585127 DOI: 10.1038/s41423-022-00858-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/12/2022] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) are pervasive signaling molecules in biological systems. In humans, a lack of ROS causes chronic and extreme bacterial infections, while uncontrolled release of these factors causes pathologies due to excessive inflammation. Professional phagocytes such as neutrophils (PMNs), eosinophils, monocytes, and macrophages use superoxide-generating NADPH oxidase (NOX) as part of their arsenal of antimicrobial mechanisms to produce high levels of ROS. NOX is a multisubunit enzyme complex composed of five essential subunits, two of which are localized in the membrane, while three are localized in the cytosol. In resting phagocytes, the oxidase complex is unassembled and inactive; however, it becomes activated after cytosolic components translocate to the membrane and are assembled into a functional oxidase. The NOX isoforms play a variety of roles in cellular differentiation, development, proliferation, apoptosis, cytoskeletal control, migration, and contraction. Recent studies have identified NOX as a major contributor to disease pathologies, resulting in a shift in focus on inhibiting the formation of potentially harmful free radicals. Therefore, a better understanding of the molecular mechanisms and the transduction pathways involved in NOX-mediated signaling is essential for the development of new therapeutic agents that minimize the hyperproduction of ROS. The current review provides a thorough overview of the various NOX enzymes and their roles in disease pathophysiology, highlights pharmacological strategies, and discusses the importance of computational modeling for future NOX-related studies.
Collapse
Affiliation(s)
- Rizwana Begum
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Shilpa Thota
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Abubakar Abdulkadir
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
110
|
Zhong O, Hu J, Wang J, Tan Y, Hu L, Lei X. Antioxidant for treatment of diabetic complications: A meta-analysis and systematic review. J Biochem Mol Toxicol 2022; 36:e23038. [PMID: 35307907 DOI: 10.1002/jbt.23038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/07/2022] [Accepted: 03/02/2022] [Indexed: 01/01/2023]
Abstract
Antioxidants may provide a complementary treatment for patients with chronic diseases. Nevertheless, studies that have measured the effects of antioxidant on diabetes complications have provided conflicting results. This study aimed to elucidate the association between antioxidant and diabetic complications and to develop robust evidence for clinical decisions by systematic reviews and meta-analysis. PubMed, Embase, The Cochrane Library, Web of Science, Scopus databases were searched to collect clinical studies related to the efficacy of antioxidants in the treatment of diabetes complications from inception to May 5, 2021. Statistical meta-analyses were performed using the RevMan 5.4 software. Stata16 software was used to detect publication bias. The data of diabetic nephropathy (DN), diabetic nonalcoholic fatty liver disease (NAFLD), and diabetic periodontitis were collected to analyze the effect of antioxidant on diabetes and the above three complications. The meta-analysis results showed that antioxidant treatment was associated with significantly changes in the fasting plasma glucose (FPG) (standardized mean difference [SMD]: - 0.21 [95% confidence interval [CI]: - 0.33, -0.10], p < 0.001), hemoglobin A1c (HbA1c) (MD: - 0.41 [95% CI: - 0.63, -0.18], p < 0.001), total antioxidant capacity (TAC) (SMD: 0.44 [95% CI: 0.24, 0.63], p < 0.001) and malondialdehyde (MDA) (SMD: - 0.82 [95% CI: - 1.24, -0.41], p < 0.001) than the control group. Antioxidant supplements have the potential to treat three complications of diabetes. In conclusion, the meta-analysis results indicate that antioxidant treatment is effective clinically for diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Ou Zhong
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jialin Hu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinyuan Wang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongpeng Tan
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linlin Hu
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiaocan Lei
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
111
|
Yang J, Liu Z. Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Front Endocrinol (Lausanne) 2022; 13:816400. [PMID: 35692405 PMCID: PMC9174994 DOI: 10.3389/fendo.2022.816400] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are microvascular complications of diabetes. Microvascular endothelial cells are thought to be the major targets of hyperglycemic injury. In diabetic microvasculature, the intracellular hyperglycemia causes damages to the vascular endothelium, via multiple pathophysiological process consist of inflammation, endothelial cell crosstalk with podocytes/pericytes and exosomes. In addition, DN and DR diseases development are involved in several critical regulators including the cell adhesion molecules (CAMs), the vascular endothelial growth factor (VEGF) family and the Notch signal. The present review attempts to gain a deeper understanding of the pathogenesis complexities underlying the endothelial dysfunction in diabetes diabetic and retinopathy, contributing to the development of new mechanistic therapeutic strategies against diabetes-induced microvascular endothelial dysfunction.
Collapse
Affiliation(s)
- Jing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
112
|
Zhang Y, Mou Y, Zhang J, Suo C, Zhou H, Gu M, Wang Z, Tan R. Therapeutic Implications of Ferroptosis in Renal Fibrosis. Front Mol Biosci 2022; 9:890766. [PMID: 35655759 PMCID: PMC9152458 DOI: 10.3389/fmolb.2022.890766] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is a common feature of chronic kidney disease (CKD), and can lead to the destruction of normal renal structure and loss of kidney function. Little progress has been made in reversing fibrosis in recent years. Ferroptosis is more immunogenic than apoptosis due to the release and activation of damage-related molecular patterns (DAMPs) signals. In this paper, the relationship between renal fibrosis and ferroptosis was reviewed from the perspective of iron metabolism and lipid peroxidation, and some pharmaceuticals or chemicals associated with both ferroptosis and renal fibrosis were summarized. Other programmed cell death and ferroptosis in renal fibrosis were also firstly reviewed for comparison and further investigation.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhua Mou
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jianjian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanjian Suo
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ruoyun Tan,
| |
Collapse
|
113
|
Wang A, Lin Y, Liang B, Zhao X, Qiu M, Huang H, Li C, Wang W, Kong Y. Statins attenuate cholesterol-induced ROS via inhibiting NOX2/NOX4 and mitochondrial pathway in collecting ducts of the kidney. BMC Nephrol 2022; 23:184. [PMID: 35562673 PMCID: PMC9102638 DOI: 10.1186/s12882-022-02815-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/03/2022] [Indexed: 12/31/2022] Open
Abstract
Background Statins therapy has been primarily recommended for the prevention of cardiovascular risk in patients with chronic kidney diseases. Statins has also been proved some benefits in lipid-induced kidney diseases. The current study aims to investigate the protection and underlying mechanisms of statins on renal tubular injuries induced by cholesterol overloaded. Methods We used tubular suspensions of inner medullary collecting duct (IMCD) cells from rat kidneys and mouse collecting duct cell line mpkCCD cells to investigate the effect of statins on reactive oxygen species (ROS) production induced by cholesterol. Protein and mRNA expression of NADPH oxidase 2 (NOX2) /NOX4 was examined by Western blot and RT-PCR in vitro studies and in rats with 5/6 nephrectomy and high-fat diet. Mitochondrial morphology and membrane potential was observed by Mito-tracker and JC-1. Results Statins treatment was associated with decreased NOX2 and NOX4 protein expression and mRNA levels in 5/6Nx rats with high-fat diet. Statins treatment markedly reduced the ROS production in IMCD suspensions and mpkCCD cells. Also, statins reduced NOX2 and NOX4 protein expression and mRNA levels in cholesterol overload mpkCCD cells and improved mitochondrial morphology and function. Conclusion Statins prevented ROS production induced by cholesterol in the kidney, likely through inhibiting NOXs protein expression and improving mitochondrial function. Statins may be a therapeutic option in treating obesity-associated kidney diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02815-6.
Collapse
Affiliation(s)
- Ani Wang
- Cardiovascular Center, The 5thAffiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Yu Lin
- Department of Pathology, Zhujiang Hospitial, Southern Medical University, Guangzhou, 510282, China
| | - Baien Liang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China.,Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaoduo Zhao
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China.,Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Miaojuan Qiu
- Research Center, The 7th Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hui Huang
- Department of Cardiology, The 8th Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China. .,Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Yonglun Kong
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China. .,Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
114
|
Matjuda EN, Engwa GA, Mungamba MM, Sewani-Rusike CR, Nkeh-Chungag BN. Oxidative stress is associated with markers of renal dysfunction in children aged 6-9 years old in a South African population. Pan Afr Med J 2022; 42:35. [PMID: 35910048 PMCID: PMC9288113 DOI: 10.11604/pamj.2022.42.35.26443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/22/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION although studies have shown a relationship between albuminuria and oxidative stress in adults, limited information on the subject is available in children. The aim of this study was to assess the relationship between oxidative stress and albuminuria in South African children of African ancestry. METHODS a cross-sectional study involving 6-9 years old children in randomly selected rural and urban schools of the Eastern Cape Province of South Africa was conducted. Anthropometric measurements were done and urine samples were collected for the determination of titres of albumin, creatinine, 8-hydroxy-2-deoxy-guanosine (8-OHdG) and thiobarbituric acid reactive substances (TBARS). The urinary albumin to creatinine ratio (ACR) was calculated and used to determine albuminuria. RESULTS creatinine and 8-OHdG were significantly higher (p<0.05) in urban children than in rural children while albumin, ACR and TBARS were significantly higher (p<0.05) in rural compared to urban children. The prevalence of albuminuria was 14.05% of which microalbuminuria was 8.83% while macroalbuminuria was 5.22%. Albuminuria was higher in rural children than their urban counterparts and was more prevalent in females. TBARS was positively (p<0.05) associated with creatinine and albumin in the cohort as well as in females and urban children while 8-OHdG was positively associated with albumin in the cohort. CONCLUSION findings of this study showed that oxidative stress was associated with markers of renal dysfunction with a 14% prevalence of albuminuria observed in South African children of African ancestry.
Collapse
Affiliation(s)
- Edna Ngoakoana Matjuda
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, 5117, Mthatha, South Africa
| | - Godwill Azeh Engwa
- Department of Biological and Environmental Sciences, Faculty of Health Sciences, Walter Sisulu University PBX1, 5117, Mthatha, South Africa
| | - Muhau Muhulo Mungamba
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, 5117, Mthatha, South Africa
| | | | - Benedicta Ngwechi Nkeh-Chungag
- Department of Biological and Environmental Sciences, Faculty of Health Sciences, Walter Sisulu University PBX1, 5117, Mthatha, South Africa,Corresponding author: Benedicta Ngwechi Nkeh-Chungag, Department of Biological and Environmental Sciences, Faculty of Health Sciences, Walter Sisulu University PBX1, 5117, Mthatha, South Africa.
| |
Collapse
|
115
|
Short-Chain Fatty Acids in Chronic Kidney Disease: Focus on Inflammation and Oxidative Stress Regulation. Int J Mol Sci 2022; 23:ijms23105354. [PMID: 35628164 PMCID: PMC9140893 DOI: 10.3390/ijms23105354] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a debilitating disease associated with several secondary complications that increase comorbidity and mortality. In patients with CKD, there is a significant qualitative and quantitative alteration in the gut microbiota, which, consequently, also leads to reduced production of beneficial bacterial metabolites, such as short-chain fatty acids. Evidence supports the beneficial effects of short-chain fatty acids in modulating inflammation and oxidative stress, which are implicated in CKD pathogenesis and progression. Therefore, this review will provide an overview of the current knowledge, based on pre-clinical and clinical evidence, on the effect of SCFAs on CKD-associated inflammation and oxidative stress.
Collapse
|
116
|
Zhang Y, Le X, Zheng S, Zhang K, He J, Liu M, Tu C, Rao W, Du H, Ouyang Y, Li C, Wu D. MicroRNA-146a-5p-modified human umbilical cord mesenchymal stem cells enhance protection against diabetic nephropathy in rats through facilitating M2 macrophage polarization. Stem Cell Res Ther 2022; 13:171. [PMID: 35477552 PMCID: PMC9044847 DOI: 10.1186/s13287-022-02855-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and a common cause of end-stage renal disease (ESRD). Mesenchymal stem cells (MSCs) possess potent anti-inflammatory and immunomodulatory properties, which render them an attractive therapeutic tool for tissue damage and inflammation. Methods This study was designed to determine the protective effects and underlying mechanisms of human umbilical cord-derived MSCs (UC-MSCs) on streptozotocin-induced DN. Renal function and histological staining were used to evaluate kidney damage. RNA high-throughput sequencing on rat kidney and UCMSC-derived exosomes was used to identify the critical miRNAs. Co-cultivation of macrophage cell lines and UC-MSCs-derived conditional medium were used to assess the involvement of macrophage polarization signaling. Results UC-MSC administration significantly improved renal function, reduced the local and systemic inflammatory cytokine levels, and attenuated inflammatory cell infiltration into the kidney tissue in DN rats. Moreover, UC-MSCs shifted macrophage polarization from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype. Mechanistically, miR-146a-5p was significantly downregulated and negatively correlated with renal injury in DN rats as determined through high-throughput RNA sequencing. Importantly, UC-MSCs-derived miR-146a-5p promoted M2 macrophage polarization by inhibiting tumor necrosis factor receptor-associated factor-6 (TRAF6)/signal transducer and activator of transcription (STAT1) signaling pathway. Furthermore, miR-146a-5p modification in UC-MSCs enhanced the efficacy of anti-inflammation and renal function improvement. Conclusions Collectively, our findings demonstrate that UC-MSCs-derived miR-146a-5p have the potential to restore renal function in DN rats through facilitating M2 macrophage polarization by targeting TRAF6. This would pave the way for the use of miRNA-modified cell therapy for kidney diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02855-7.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Xi Le
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Shuo Zheng
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Ke Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Mengting Liu
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Chengshu Tu
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Wei Rao
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Hongyuan Du
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Yu Ouyang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China. .,Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China. .,Guangzhou Hamilton Biotechnology Co., Ltd, Wuhan, China.
| |
Collapse
|
117
|
Panov A, Mayorov VI, Dikalov S. Metabolic Syndrome and β-Oxidation of Long-Chain Fatty Acids in the Brain, Heart, and Kidney Mitochondria. Int J Mol Sci 2022; 23:4047. [PMID: 35409406 PMCID: PMC9000033 DOI: 10.3390/ijms23074047] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
We present evidence that metabolic syndrome (MetS) represents the postreproductive stage of the human postembryonic ontogenesis. Accordingly, the genes governing this stage experience relatively weak evolutionary selection pressure, thus representing the metabolic phenotype of distant ancestors with β-oxidation of long-chain fatty acids (FAs) as the primary energy source. Mitochondria oxidize at high-rate FAs only when succinate, glutamate, or pyruvate are present. The heart and brain mitochondria work at a wide range of functional loads and possess an intrinsic inhibition of complex II to prevent oxidative stress at periods of low functional activity. Kidney mitochondria constantly work at a high rate and lack inhibition of complex II. We suggest that in people with MetS, oxidative stress is the central mechanism of the heart and brain pathologies. Oxidative stress is a secondary pathogenetic mechanism in the kidney, while the primary mechanisms are kidney hypoxia caused by persistent hyperglycemia and hypertension. Current evidence suggests that most of the nongenetic pathologies associated with MetS originate from the inconsistencies between the metabolic phenotype acquired after the transition to the postreproductive stage and excessive consumption of food rich in carbohydrates and a sedentary lifestyle.
Collapse
Affiliation(s)
- Alexander Panov
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31201, USA;
| | - Vladimir I. Mayorov
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31201, USA;
| | - Sergey Dikalov
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
118
|
Talari HR, Tabatabaei SMH, Soleimani A, Sayyah M, Bozorgi M. The effects of melatonin administration on carotid intima-media thickness and pulse wave velocity in diabetic nephropathy: A randomized, double-blind, placebo-controlled trial. Clin Nutr ESPEN 2022; 48:82-86. [PMID: 35331538 DOI: 10.1016/j.clnesp.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Previous studies have reported that melatonin intake is inversely associated with reduced markers of atherosclerosis development such as carotid intima-media thickness (CIMT). OBJECTIVE This study was designed to assess the effects of melatonin administration on CIMT and pulse wave velocity (PWV) in patients with diabetic nephropathy (DN). MATERIALS AND METHODS This randomized, double-blind, placebo-controlled trial was conducted on 32 DN patients. Subjects were assigned to receive melatonin or placebo (starch) for 24 weeks. Individuals in the melatonin group (n = 19) received 10 mg/day. CIMT and PWV levels were taken at the study baseline and after 24 weeks of intervention. RESULTS After 24 weeks of intervention, melatonin intake did not affect mean levels of left (P = 0.51) and right (P = 0.16) CIMT and maximum levels of left (P = 0.76) and right (P = 0.15) CIMT, and PWV (P = 0.55) compared with the placebo. In addition, within-group difference demonstrated a significant reduction in mean levels of right CIMT (P = 0.01) in the melatonin group. We did not observe any significant change in C-reactive protein (CRP) concentrations after melatonin intake (P = 0.81). CONCLUSIONS Melatonin intake did not affect mean levels of left and right CIMT and maximum levels of left and right CIMT, PWV, CRP levels compared with the placebo. In addition, within-group difference demonstrated a significant reduction in mean levels of right CIMT in the melatonin group. This trial was registered at www.irct.ir as http://www.irct.ir: IRCT20200527047584N2.
Collapse
Affiliation(s)
- Hamid Reza Talari
- Department of Radiology, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | | | - Alireza Soleimani
- Department of Internal, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mansour Sayyah
- Clinical Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Bozorgi
- Department of Radiology, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| |
Collapse
|
119
|
Ram C, Gairola S, Syed AM, Kulhari U, Kundu S, Mugale MN, Murty US, Sahu BD. Biochanin A alleviates unilateral ureteral obstruction-induced renal interstitial fibrosis and inflammation by inhibiting the TGF-β1/Smad2/3 and NF-kB/NLRP3 signaling axis in mice. Life Sci 2022; 298:120527. [PMID: 35378138 DOI: 10.1016/j.lfs.2022.120527] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
AIMS Tubulointerstitial fibrosis, a frequent complication of chronic kidney disease (CKD) is a major public health issue. Biochanin A (BCA), an isoflavone, has numerous pharmacological activities. However, its effect on renal fibrosis and underlying molecular mechanism has not yet been clarified. This study explored the effect of BCA on renal tubulointerstitial fibrosis and inflammation in mice. MAIN METHODS The mouse model of unilateral ureteral obstruction (UUO) in vivo and transforming growth factor (TGF)-β1 activated renal fibroblast (NRK 49F) cells in vitro model were used to assess the antifibrotic effect of BCA. Biochemical analysis, histopathology, western blotting, and immunofluorescent staining methods were performed to elucidate the mechanism of BCA. KEY FINDINGS In vitro, BCA suppressed the expression of fibrogenic proteins in TGF-β1-activated renal fibroblasts. The treatment with BCA displayed less tubular injury, prevented the aberrant accumulation of extracellular matrix (ECM) components, and inhibited the TGF-β1/Smad2/3 signaling axis in the kidneys. Furthermore, BCA impeded the phosphorylation of NF-kB(p65) and blunted the expression of inflammatory genes in the obstructed kidneys. The UUO induced expressions of nod-like receptor protein 3 (NLRP3), active caspase 1, interleukin(IL)-18, and IL-1β proteins were decreased in the BCA treated groups. We also found the increased expression of redox-sensitive nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) proteins in BCA treated groups compared to the UUO control. SIGNIFICANCE These findings indicate that BCA has a therapeutic benefit against renal fibrosis, and the ameliorative effect is mediated via inhibiting the TGF-β1/Smad2/3 and NF-kB/NLRP3 signaling axis.
Collapse
Affiliation(s)
- Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Shobhit Gairola
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Sourav Kundu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Madhav Nilakanth Mugale
- Toxicology & Experimental Medicine, CSIR- Central Drug Research Institute (CDRI), Lucknow 226 031, India
| | | | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India.
| |
Collapse
|
120
|
Tong X, Qiao Y, Yang Y, Liu H, Cao Z, Yang B, Wei L, Yang H. Applications and Mechanisms of Tripterygium Wilfordii Hook. F. and its Preparations in Kidney Diseases. Front Pharmacol 2022; 13:846746. [PMID: 35387327 PMCID: PMC8977547 DOI: 10.3389/fphar.2022.846746] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Tripterygium wilfordii Hook. f. (TwHF) is a Chinese botanical drug containing a large number of metabolites. The discovered and recognized anti-inflammatory and immune-regulating effects have made it attract more and more attentions in trials and clinical researches. The extraction and processing of TwHF for pharmaceuticals is a manifestation of the role of traditional Chinese medicine. However, TwHF is toxic. Optimization of TwHF preparations has become a requirement for the development of TwHF pharmaceuticals. Our article introduces the main preparations of TwHF on the Chinese market and their characteristics. In particular, we summarize the clinical applications and influential mechanisms of TwHF and its preparations in kidney diseases. Considering that nephropathy is closely related to immune inflammation and TwHF is a botanical drug with a high number of metabolites, the application of TwHF in kidney diseases may be much more complicated. By revealing the role and mechanisms of TwHF in kidney diseases, this study aims to provide more insights to basic and clinical studies about nephropathy.
Collapse
Affiliation(s)
- Xue Tong
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanheng Qiao
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanjian Yang
- Tianjin Jinnan Traditional Chinese Medicine Hospital, Tianjin, China
| | - Haizhao Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiyong Cao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lijuan Wei
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
121
|
Gonzalez P, Lozano P, Solano F. Unraveling the Metabolic Hallmarks for the Optimization of Protein Intake in Pre-Dialysis Chronic Kidney Disease Patients. Nutrients 2022; 14:nu14061182. [PMID: 35334840 PMCID: PMC8954715 DOI: 10.3390/nu14061182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The daily amount and quality of protein that should be administered by enteral nutrition in pre-dialysis chronic kidney disease (CKD) patients is a widely studied but still controversial issue. This is due to a compromise between the protein necessary to maintain muscular proteostasis avoiding sarcopenia, and the minimal amount required to prevent uremia and the accumulation of nitrogenous toxic substances in blood because of the renal function limitations. This review underlines some intracellular and extracellular features that should be considered to reconcile those two opposite factors. On one hand, the physiological conditions and usual side effects associated with CKD, mTOR and other proteins and nutrients involved in the regulation of protein synthesis in the muscular tissue are discussed. On the other hand, the main digestive features of the most common proteins used for enteral nutrition formulation (i.e., whey, casein and soy protein) are highlighted, due to the importance of supplying key amino acids to serum and tissues to maintain their concentration above the anabolic threshold needed for active protein synthesis, thereby minimizing the catabolic pathways leading to urea formation.
Collapse
Affiliation(s)
- Patricia Gonzalez
- Project Manager, Fresenius Kabi España, Sociedad Anonima Unipersonal, Marina 16-18, 08005 Barcelona, Spain
- Correspondence: (P.G.); (F.S.)
| | - Pedro Lozano
- Department of Biochemistry and Molecular Biology “B” and Immunology, Faculty of Chemistry, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain;
| | - Francisco Solano
- Department of Biochemistry and Molecular Biology “B” and Immunology, IMIB (Murcian Institute of Health Research), Faculty of Medicine, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain
- Correspondence: (P.G.); (F.S.)
| |
Collapse
|
122
|
Garavaglia ML, Giustarini D, Colombo G, Reggiani F, Finazzi S, Calatroni M, Landoni L, Portinaro NM, Milzani A, Badalamenti S, Rossi R, Dalle-Donne I. Blood Thiol Redox State in Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23052853. [PMID: 35269995 PMCID: PMC8911004 DOI: 10.3390/ijms23052853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Thiols (sulfhydryl groups) are effective antioxidants that can preserve the correct structure of proteins, and can protect cells and tissues from damage induced by oxidative stress. Abnormal levels of thiols have been measured in the blood of patients with moderate-to-severe chronic kidney disease (CKD) compared to healthy subjects, as well as in end-stage renal disease (ESRD) patients on haemodialysis or peritoneal dialysis. The levels of protein thiols (a measure of the endogenous antioxidant capacity inversely related to protein oxidation) and S-thiolated proteins (mixed disulphides of protein thiols and low molecular mass thiols), and the protein thiolation index (the molar ratio of the S-thiolated proteins to free protein thiols in plasma) have been investigated in the plasma or red blood cells of CKD and ESRD patients as possible biomarkers of oxidative stress. This type of minimally invasive analysis provides valuable information on the redox status of the less-easily accessible tissues and organs, and of the whole organism. This review provides an overview of reversible modifications in protein thiols in the setting of CKD and renal replacement therapy. The evidence suggests that protein thiols, S-thiolated proteins, and the protein thiolation index are promising biomarkers of reversible oxidative stress that could be included in the routine monitoring of CKD and ESRD patients.
Collapse
Affiliation(s)
- Maria Lisa Garavaglia
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (M.L.G.); (G.C.); (L.L.); (A.M.)
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018–2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy;
| | - Graziano Colombo
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (M.L.G.); (G.C.); (L.L.); (A.M.)
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy or (F.R.); (S.F.); or (M.C.); (S.B.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Silvia Finazzi
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy or (F.R.); (S.F.); or (M.C.); (S.B.)
| | - Marta Calatroni
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy or (F.R.); (S.F.); or (M.C.); (S.B.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Lucia Landoni
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (M.L.G.); (G.C.); (L.L.); (A.M.)
| | - Nicola Marcello Portinaro
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Aldo Milzani
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (M.L.G.); (G.C.); (L.L.); (A.M.)
| | - Salvatore Badalamenti
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy or (F.R.); (S.F.); or (M.C.); (S.B.)
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018–2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy;
- Correspondence: (R.R.); (I.D.-D.)
| | - Isabella Dalle-Donne
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (M.L.G.); (G.C.); (L.L.); (A.M.)
- Correspondence: (R.R.); (I.D.-D.)
| |
Collapse
|
123
|
The Interplay between Uremic Toxins and Albumin, Membrane Transporters and Drug Interaction. Toxins (Basel) 2022; 14:toxins14030177. [PMID: 35324674 PMCID: PMC8949274 DOI: 10.3390/toxins14030177] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/10/2023] Open
Abstract
Uremic toxins are a heterogeneous group of molecules that accumulate in the body due to the progression of chronic kidney disease (CKD). These toxins are associated with kidney dysfunction and the development of comorbidities in patients with CKD, being only partially eliminated by dialysis therapies. Importantly, drugs used in clinical treatments may affect the levels of uremic toxins, their tissue disposition, and even their elimination through the interaction of both with proteins such as albumin and cell membrane transporters. In this context, protein-bound uremic toxins (PBUTs) are highlighted for their high affinity for albumin, the most abundant serum protein with multiple binding sites and an ability to interact with drugs. Membrane transporters mediate the cellular influx and efflux of various uremic toxins, which may also compete with drugs as substrates, and both may alter transporter activity or expression. Therefore, this review explores the interaction mechanisms between uremic toxins and albumin, as well as membrane transporters, considering their potential relationship with drugs used in clinical practice.
Collapse
|
124
|
Tserga A, Pouloudi D, Saulnier-Blache JS, Stroggilos R, Theochari I, Gakiopoulou H, Mischak H, Zoidakis J, Schanstra JP, Vlahou A, Makridakis M. Proteomic Analysis of Mouse Kidney Tissue Associates Peroxisomal Dysfunction with Early Diabetic Kidney Disease. Biomedicines 2022; 10:biomedicines10020216. [PMID: 35203426 PMCID: PMC8869654 DOI: 10.3390/biomedicines10020216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Background: The absence of efficient inhibitors for diabetic kidney disease (DKD) progression reflects the gaps in our understanding of DKD molecular pathogenesis. Methods: A comprehensive proteomic analysis was performed on the glomeruli and kidney cortex of diabetic mice with the subsequent validation of findings in human biopsies and omics datasets, aiming to better understand the underlying molecular biology of early DKD development and progression. Results: LC–MS/MS was employed to analyze the kidney proteome of 2 DKD models: Ins2Akita (early and late DKD) and db/db mice (late DKD). The abundance of detected proteins was defined. Pathway analysis of differentially expressed proteins in the early and late DKD versus the respective controls predicted dysregulation in DKD hallmarks (peroxisomal lipid metabolism and β-oxidation), supporting the functional relevance of the findings. Comparing the observed protein changes in early and late DKD, the consistent upregulation of 21 and downregulation of 18 proteins was detected. Among these were downregulated peroxisomal and upregulated mitochondrial proteins. Tissue sections from 16 DKD patients were analyzed by IHC confirming our results. Conclusion: Our study shows an extensive differential expression of peroxisomal proteins in the early stages of DKD that persists regardless of the disease severity, providing new perspectives and potential markers of diabetic kidney dysfunction.
Collapse
Affiliation(s)
- Aggeliki Tserga
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Despoina Pouloudi
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | - Jean Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France;
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Rafael Stroggilos
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Irene Theochari
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | - Harikleia Gakiopoulou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | | | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Joost Peter Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France;
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| | - Antonia Vlahou
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| | - Manousos Makridakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| |
Collapse
|
125
|
Nayak S, Rathore V, Bharati J, Sahu KK. Extending the ambit of SGLT2 inhibitors beyond diabetes: a review of clinical and preclinical studies on non-diabetic kidney disease. Expert Rev Clin Pharmacol 2022; 14:1513-1526. [PMID: 35020563 DOI: 10.1080/17512433.2021.2028620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are novel antidiabetic agents with overwhelming cardiorenal protection. Recent trials focusing on the nephroprotective role of SGLT2i have underscored its success as a phenomenal agent in halting the progression of kidney disease in patients with and without Type 2 diabetes mellitus. Multitudes of pleiotropic effects on tubules have raised hopes for reasonable nephroprotection beyond the purview of the hyperglycemic milieu. AREA COVERED This review summarizes various animal and human data as evidence for the utility of SGLT2i in non-diabetic chronic kidney disease (CKD). Web-based medical database entries were searched. On the premise of existing evidence, we have discussed mechanisms likely contributing to nephroprotection by SGLT2i in patients with non-diabetic CKD. EXPERT OPINION Further elucidation of mechanisms of nephroprotection offered by SGLT2i is required to extend its use as a nephroprotective agent. The use of non-traditional markers of kidney damage in future studies would improve the evaluation of their role in attenuating CKD progression. Emerging animal data support the early use of SGLT2i in states of modest proteinuria for superior outcomes. Future long-term trials in patients should aim to address the time of intervention with SGLT2i during the natural disease course of CKD for best outcomes.
Collapse
Affiliation(s)
- Saurabh Nayak
- Department of Nephrology, All India Institute of Medical Science, Raipur, India
| | - Vinay Rathore
- Department of Nephrology, All India Institute of Medical Science, Raipur, India
| | - Joyita Bharati
- Department of Nephrology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Kamal Kant Sahu
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Salt Lake City, Zip 84112, Utah, USA
| |
Collapse
|
126
|
Liu M, He P, Zhou C, Zhang Z, Zhang Y, Li H, Liu C, Nie J, Liang M, Qin X. Association of urinary albumin-to-creatinine ratio with incident frailty in older populations. Clin Kidney J 2022; 15:1093-1099. [PMID: 35664283 PMCID: PMC9155239 DOI: 10.1093/ckj/sfac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background The longitudinal relationship of albuminuria with incident frailty remains unknown. Therefore we aimed to evaluate the relation of albuminuria with the risk of incident frailty in older adults. Methods A total of 1115 participants ≥65 years of age (average age 80.3 years) who were free of frailty in the Chinese Longitudinal Healthy Longevity Survey were included. The outcome was incident frailty, defined as a frailty index ≥0.25 during follow-up. Cox proportional hazards models were used to assess the association of the urinary albumin:creatinine ratio (UACR) with frailty. Results During a median follow-up duration of 5.3 years, 295 (26.5%) participants developed incident frailty. Overall, the UACR was significantly positively associated with the risk of incident frailty (P for trend = 0.005), with a significantly higher risk of incident frailty in participants in the quartile 4 of UACR {≥13.43 mg/g; hazard ratio [HR] 1.64 [95% confidence interval (CI) 1.13–2.37]} compared with those in quartile 1 (<0.73 mg/g). Consistently, when UACRs were assessed as clinical categories, compared with participants with UACR <10 mg/g, those with UACR ≥30 mg/g had a higher HR of incident frailty [HR 1.61 (95% CI 1.17–2.20)]. Accounting for the competing risk of death also did not substantially change the results. In addition, a stronger positive association between UACR and incident frailty was found in those with a higher high-sensitivity C-reactive protein level (hs-CRP) (P for interaction = 0.045). Conclusion Albuminuria was positively associated with the risk of incident frailty, particularly in those with higher hs-CRP, emphasizing the importance of managing both albuminuria and inflammation for primary prevention of frailty.
Collapse
Affiliation(s)
- Mengyi Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Panpan He
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Chun Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Zhuxian Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Huan Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Chengzhang Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jing Nie
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Min Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
127
|
Khan MA, Kassianos AJ, Hoy WE, Alam AK, Healy HG, Gobe GC. Promoting Plant-Based Therapies for Chronic Kidney Disease. J Evid Based Integr Med 2022; 27:2515690X221079688. [PMID: 35243916 PMCID: PMC8902019 DOI: 10.1177/2515690x221079688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is debilitating, increasing in incidence worldwide, and a financial and social burden on health systems. Kidney failure, the final stage of CKD, is life-threatening if untreated with kidney replacement therapies. Current therapies using commercially-available drugs, such as angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and calcium channel blockers, generally only delay the progression of CKD. This review article focuses on effective alternative therapies to improve the prevention and treatment of CKD, using plants or plant extracts. Three mechanistic processes that are well-documented in CKD pathogenesis are inflammation, fibrosis, and oxidative stress. Many plants and their extracts are already known to ameliorate kidney dysfunction through antioxidant action, with subsequent benefits on inflammation and fibrosis. In vitro and in vivo experiments using plant-based therapies for pre-clinical research demonstrate some robust therapeutic benefits. In the CKD clinic, combination treatments of plant extracts with conventional therapies that are seen as relatively successful currently may confer additive or synergistic renoprotective effects. Therefore, the aim of recent research is to identify, rigorously test pre-clinically and clinically, and avoid any toxic outcomes to obtain optimal therapeutic benefit from medicinal plants. This review may prove to be a filtering tool to researchers into complementary and alternative medicines to find out the current trends of using plant-based therapies for the treatment of kidney diseases, including CKD.
Collapse
Affiliation(s)
- Muhammad Ali Khan
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Medicine, Univ of Queensland, Australia.,Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Kidney Disease Research Collaborative, Princess Alexandra Hospital and Univ of Queensland, Translational Research Institute, Brisbane, Australia.,Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh
| | - Andrew J Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.,IHBI, Queensland Univ of Technology, Brisbane, Australia
| | - Wendy E Hoy
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia
| | | | - Helen G Healy
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Glenda C Gobe
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Medicine, Univ of Queensland, Australia.,Kidney Disease Research Collaborative, Princess Alexandra Hospital and Univ of Queensland, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
128
|
Chang R. Research advances in the protective effect of sulforaphane against kidney injury and related mechanisms. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225501006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Kidney injury and related diseases have become quite common in recent years, and have attracted more attention. Sulforaphane, a kind of isothiocyanate, is widely distributed in cruciferous plants and it is a common antioxidant. Specifically, sulforaphane can reduce oxidative damage by preventing cells from freeradical damage, preventing cells from degeneration, and acting as an anti-inflammation, etc. This study summarized the investigations of the effects of sulforaphane on kidney injury. This study discussed the mechanisms of sulforaphane on immune, renal ischemia-reperfusion, diabetic nephropathy, age-related, and other factors-induced kidney injury models and discussed the potential and relative mechanisms of sulforaphane for kidney injury protection.
Collapse
|
129
|
Liu J, Zhang J, Hou MH, Du WX. Clinical efficacy of linagliptin combined with irbesartan in patients with diabetic nephropathy. Pak J Med Sci 2022; 38:52-56. [PMID: 35035400 PMCID: PMC8713209 DOI: 10.12669/pjms.38.1.4417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 11/15/2022] Open
Abstract
Objective To determine the clinical efficacy of linagliptin combined with irbesartan in patients with diabetic nephropathy (DN). Methods Seventy-two patients who were admitted to our department of endocrinology in our hospital during January 2018 and June 2019 were randomly divided into a control group (administered with irbesartan only, n=36) and a treatment group (treated with irbesartan and linagliptin, n=36). The course of treatment lasted for three months. FBG (fasting blood glucose), 2hPBG (2h postprandial blood sugar), HbA1C (hemoglobin A1c), Cys-C (cystatin C), SCr (serum creatinine), BUN (blood urea nitrogen), UACR (urine albumin-to-creatinine ratio), CRP (C-reactive protein), IL-6 (interleukin-6), and SOD (superoxide dismutase) were tested pre- and post-treatment to evaluate the clinical efficacy and adverse effects of the two treatment plans after three months of treatment. Results Compared with the pre-treatment levels, FBG, 2hPBG, HbA1c, Cys-C, SCr, BUN, UACR, CRP, IL-6, and SOD in both groups were significantly improved following the three-month treatment (P<0.05, respectively). Post-treatment levels of FBG, 2hPBG, HbA1c, Cys-C, SCr, BUN, UACR, CRP, and IL-6 in the treatment group were significantly lower than in the control group (P<0.05, respectively), while the treatment group exhibited a higher level of SOD compared with the control group (P<0.05). No serious adverse reaction occurred in either group (P>0.05). Conclusion Combined-modality treatment with linagliptin and irbesartan shows favorable clinical efficacy in treating diabetic nephropathy as it effectively protects the kidneys and improves kidney function by inhibiting inflammatory and oxidative stress responses.
Collapse
Affiliation(s)
- Jie Liu
- Jie Liu, Department of Endocrinology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Jing Zhang
- Jing Zhang, Department of Cardiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Ming-Hui Hou
- Ming-hui Hou, Department of Endocrinology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Wei-Xuan Du
- Wei-xuan Du Department of Education, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| |
Collapse
|
130
|
Ao L, Xie Y. Research advance in the mechanism for oxidative stress-induced podocyte injury in diabetic kidney disease. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1403-1408. [PMID: 35232911 PMCID: PMC10930572 DOI: 10.11817/j.issn.1672-7347.2021.210199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 06/14/2023]
Abstract
Diabetic kidney disease (DKD) is one of the serious microvascular complications of diabetes mellitus (DM), and it is also the leading cause for the end-stage kidney disease (ESKD), but the clinical treatment for it is limited at present. The pathogenesis of DKD is complex. Many studies have shown that podocyte injury is the core event of DKD, and oxidative stress is closely related to podocyte injury in DKD. Oxidative stress mediates podocyte apoptosis and slit diaphragm damage in DKD through various pathways. The antioxidant drugs can slow down the progression of DKD through reducing podocyte injury and are expected to enter clinical trials. The research status of antioxidant drugs is very important, which will provide new strategies for the clinical treatment of DKD.
Collapse
Affiliation(s)
- Liyun Ao
- Department of Nephrology, Xiangya Hospital, Central South University; Orgean Fabrosis Key Laboratory of Hunan Province, Changsha 410008, China.
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University; Orgean Fabrosis Key Laboratory of Hunan Province, Changsha 410008, China.
| |
Collapse
|
131
|
Geraniol protects against cyclosporine A-induced renal injury in rats: Role of Wnt/β-catenin and PPARγ signaling pathways. Life Sci 2021; 291:120259. [PMID: 34968469 DOI: 10.1016/j.lfs.2021.120259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022]
Abstract
AIMS The nephrotoxicity of cyclosporine A (CsA) limits its use as an immunosuppressant. Wnt/β-catenin signaling is involved in the pathogenesis of both acute and chronic kidney disease, and it is inhibited by peroxisome proliferator-activated receptor gamma (PPARγ). We aimed to evaluate if geraniol, which can modulate both PPARγ and Wnt signaling, could protect against CsA-induced nephrotoxicity. MATERIALS AND METHODS Rats (6 groups) received the vehicle or a combination of CsA (30 mg/kg) with the vehicle, geraniol (50, 100, or 200 mg/kg), or the PPARγ agonist pioglitazone for 4 weeks. Blood pressure (BP), markers of renal injury (serum urea, serum creatinine, blood urea nitrogen, and urinary NAG), oxidative stress (glutathione peroxidase), inflammation (ICAM-1, IL-18, and NF-κB), apoptosis (caspase-3), extracellular matrix remodeling [matrix metalloproteinase-9 (MMP-9)], and fibrosis (TGF-β1, Smad3, and Smad7) were assessed. Renal histological analysis, Wnt signaling components (Wnt-4/β-catenin and E-cadherin), and PPARγ expression were evaluated. KEY FINDINGS CsA group had renal injury, as well as increased BP, renal oxidative stress, inflammation, and fibrosis. The latter changes were associated with altered renal architecture, active Wnt signaling (higher Wnt-4 and β-catenin expression and E-cadherin down-regulation), and lower PPARγ levels. Geraniol protected against kidney damage and the associated biochemical and histomorphological changes in a dose-dependent manner. The latter effects were comparable or superior to those of pioglitazone. SIGNIFICANCE The down-regulation of Wnt/β-catenin and the increase in PPARγ by geraniol suggest that both pathways are involved in its renoprotective potential. The study highlights geraniol as a valuable protective asset against chemically induced nephrotoxicity.
Collapse
|
132
|
Bourgonje AR, Abdulle AE, Bourgonje MF, Binnenmars SH, Gordijn SJ, Bulthuis MLC, la Bastide-van Gemert S, Kieneker LM, Gansevoort RT, Bakker SJL, Mulder DJ, Pasch A, de Borst MH, van Goor H. Serum free sulfhydryl status associates with new-onset chronic kidney disease in the general population. Redox Biol 2021; 48:102211. [PMID: 34896941 PMCID: PMC8671125 DOI: 10.1016/j.redox.2021.102211] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 11/20/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Serum sulfhydryl groups (R-SH, free thiols) reliably reflect the systemic redox status in health and disease. As oxidation of R-SH occurs rapidly by reactive oxygen species (ROS), oxidative stress is accompanied by reduced levels of free thiols. Oxidative stress has been implicated in the pathophysiology of chronic kidney disease (CKD), in which redox imbalance may precede the onset of CKD. Therefore, we aimed to investigate associations between serum free thiols and the risk of incident CKD as defined by renal function decline and albuminuria in a population-based cohort study. METHODS Subjects without CKD (n = 4,745) who participated in the Prevention of REnal and Vascular ENd-stage Disease (PREVEND) study, a prospective, population-based cohort study in the Netherlands, were included. Baseline protein-adjusted serum free thiols were studied for their associations with the development of CKD, defined as a composite outcome of an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73m2, urinary 24-h albumin excretion (UAE) > 30 mg/24-h, or both. RESULTS Median level of protein-adjusted serum free thiols at baseline was 5.14 μmol/g of protein (interquartile range [IQR]: 4.50-5.75 μmol/g) and median eGFR was 96 mL/min/1.73 m2 [IQR: 85-106]. Protein-adjusted serum free thiols were significantly associated with incident CKD (hazard ratio [HR] per doubling 0.42 [95% confidence interval [CI]: 0.36-0.52, P < 0.001), even after adjustment for traditional risk factors (HR 0.67 [95% CI: 0.47-0.94], P=0.022). In secondary analyses, the highest tertile of protein-adjusted serum free thiols was inversely associated with incident UAE >30 mg/24-h after full adjustment for confounding factors (HR per doubling 0.70 [95% CI: 0.51-0.96], P=0.028). CONCLUSION Higher levels of serum R-SH, reflecting less oxidative stress, are associated with a decreased risk of developing CKD in subjects from the general population. This association is primarily driven by incident CKD as defined by UAE.
Collapse
Affiliation(s)
- Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Amaal E Abdulle
- Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin F Bourgonje
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - S Heleen Binnenmars
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sanne J Gordijn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marian L C Bulthuis
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sacha la Bastide-van Gemert
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lyanne M Kieneker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ron T Gansevoort
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Douwe J Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
133
|
Advanced Oxidation Protein Product Promotes Oxidative Accentuation in Renal Epithelial Cells via the Soluble (Pro)renin Receptor-Mediated Intrarenal Renin-Angiotensin System and Nox4-H 2O 2 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5710440. [PMID: 34873430 PMCID: PMC8642821 DOI: 10.1155/2021/5710440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/20/2021] [Accepted: 11/09/2021] [Indexed: 12/22/2022]
Abstract
Full-length (pro)renin receptor (fPRR), a research hotspot of the renin-angiotensin system (RAS), plays a serious role in kidney injury. However, the relationship between fPRR and advanced oxidation protein product (AOPP) remains largely unexplored. This study was aimed at exploring the effect of fPRR, especially its 28 kDa soluble form called soluble PRR (sPRR), in AOPP-induced oxidative stress in HK-2 cells, a renal proximal tubular epithelial cell line. Incubation of HK-2 cells with 100 μg/ml AOPP resulted in significant upregulation of fPRR expression and caused an approximately fourfold increase in medium sPRR secretion. However, unmodified albumin did not demonstrate the same effects under the same concentration. Treatment of HK-2 cells with the site-1 protease (S1P) inhibitor PF429242 (40 μM) or S1P siRNA significantly inhibited AOPP-induced sPRR generation. fPRR decoy inhibitor PRO20 and PF429242 treatment for 24 h remarkably attenuated the AOPP-induced upregulation of RAS components. Furthermore, PF429242 significantly reduced the AOPP-stimulated expression of NADPH oxidase 4 (Nox4) and H2O2 expression. The use of a small recombinant protein, named sPRR-His, reversed these alterations. In conclusion, these results provided the first demonstration of AOPP-promoted activation of sPRR. Increased renal proximal tubule Nox4-derived H2O2 contributed to the aggravation of oxidative stress. Targeting S1P-derived sPRR is a promising intervention strategy for chronic kidney disease.
Collapse
|
134
|
Lai Y, Tang H, Zhang X, Zhou Z, Zhou M, Hu Z, Zhu F, Zhang L, Nie J. Trimethylamine-N-Oxide Aggravates Kidney Injury via Activation of p38/MAPK Signaling and Upregulation of HuR. Kidney Blood Press Res 2021; 47:61-71. [PMID: 34788763 DOI: 10.1159/000519603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Trimethylamine-N-oxide (TMAO) is an intestinal metabolic toxin, which is produced by gut flora via metabolizing high-choline foods. TMAO is known to increase the risk of atherosclerosis and cardiovascular events in chronic kidney disease (CKD) patients. OBJECTIVES The objective of this study was to explore the role and mechanism of TMAO aggravating kidney injury. METHOD We used the five-sixths nephrectomy (5/6 Nx)-induced CKD rats to investigate whether TMAO could aggravate kidney damage and its possible mechanisms. Six weeks after the operation, the two groups of 5/6 Nx rats were subjected to intraperitoneal injection with 2.5% glucose peritoneal dialysis fluid (2.5% PDF) and 2.5% PDF plus TMAO 20 mg/kg/day. RESULTS In this study, we provided evidence showing TMAO significantly aggravated renal failure as well as inflammatory cell infiltration and in five-sixths nephrectomy-induced CKD rats. We found that TMAO could upregulate inflammatory factors including MCP-1, TNF-α, IL-6, IL-1β, and IL-18 by activating p38 phosphorylation and upregulation of human antigen R. TMAO could aggravate oxidative stress by upregulating NOX4 and downregulating SOD. The result also confirmed that TMAO promoted NLRP3 inflammasome formation as well as cleaved caspase-1 and IL-1β activation in the kidney tissue. CONCLUSIONS Taken together, the present study validates TMAO as a pro-inflammatory factor that causes renal inflammatory injury and renal function impairment. Inhibition of TMAO synthesis or promoting its clearance may be a potential therapeutic approach of CKD in the future.
Collapse
Affiliation(s)
- Yunshi Lai
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haie Tang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinrong Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhanmei Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miaomiao Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheng Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fengxin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
135
|
Przezak A, Bielka W, Pawlik A. Incretins in the Therapy of Diabetic Kidney Disease. Int J Mol Sci 2021; 22:ijms222212312. [PMID: 34830194 PMCID: PMC8617946 DOI: 10.3390/ijms222212312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic kidney disease is a microvascular complication that occurs in patients with diabetes. It is strongly associated with increased risk of kidney replacement therapy and all-cause mortality. Incretins are peptide hormones derived from the gastrointestinal tract, that besides causing enhancement of insulin secretion after oral glucose intake, participate in many other metabolic processes. Antidiabetic drug classes, such as dipeptidyl peptidase 4 inhibitors and glucagon-like peptide receptor agonists, which way of action is based on incretins facility, not only show glucose-lowering properties but also have nephroprotective functions. The aim of this article is to present the latest information about incretin-based therapy and its influence on diabetic kidney disease appearance and progression, point its potential mechanisms of kidney protection and focus on future therapeutic possibilities bound with these two antidiabetic drug classes.
Collapse
|
136
|
Gautam G, Parveen B, Umar Khan M, Sharma I, Kumar Sharma A, Parveen R, Ahmad S. A systematic review on nephron protective AYUSH drugs as constituents of NEERI-KFT (A traditional Indian polyherbal formulation) for the management of chronic kidney disease. Saudi J Biol Sci 2021; 28:6441-6453. [PMID: 34764761 PMCID: PMC8568826 DOI: 10.1016/j.sjbs.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a major health problem characterized by kidney dysfunction with progressive segmental glomerulosclerosis to end-stage renal disease (ESRD). Due to lack of scientific data and comprehensive reports, the current systematic review provides an inclusive understanding and prospective associated with phytopharmacology of NEERI-KFT in CKD. The data was collected from more than five databases such as Science Direct, Google Scholar, Elsevier, PubMed, Springer, ACS publication etc using keywords like CKD/Kidney disease, epidemiology/prevalence, modern therapies for CKD management, NEERI-KFT and its role in kidney disease. The study was performed based on scientific reports screened by experts according to inclusion and exclusion criteria. The pre-clinical and clinical findings suggested that NEERI-KFT has promising effects as nephroprotective and considered safe and well effective in primary care of kidney against disease. Phytopharmacological evaluation of NEERI-KFT suggest that it exhibit substantial potential against oxidative and inflammatory stress induced apoptosis by exerting antioxidants, nephroprotective and immunomodulatory effects. Hence, it can be enlighten that NEERI-KFT have potential herbs which exerts significant antioxidants, nephroprotective and immunomodulatory effects in the patients associated with renal dysfunction or CKD thus improving altered renal architecture and renal physiology. Clinically, it is concluded that NEERI-KFT works kidney malfunction and cease ESRD progression or even reduce the number of dialysis.
Collapse
Affiliation(s)
- Gaurav Gautam
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Bushra Parveen
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Umar Khan
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ikshit Sharma
- AIMIL Pharmaceuticals (India) Ltd, Saini Majra, Ropar Nalagarh Rd, Tehsil Nalagarh, Solan District, H.P 174101, India
| | - Anil Kumar Sharma
- AIMIL Pharmaceuticals (India) Ltd, Saini Majra, Ropar Nalagarh Rd, Tehsil Nalagarh, Solan District, H.P 174101, India
| | - Rabea Parveen
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
137
|
Association between Biomarkers of Oxidative Stress and Inflammation with Cardiac Necrosis and Heart Failure in Non-ST Segment Elevation Myocardial Infarction Patients and Various Degrees of Kidney Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3090120. [PMID: 34760045 PMCID: PMC8575633 DOI: 10.1155/2021/3090120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 01/29/2023]
Abstract
The aim of this study was to explore the possible association between markers of inflammation and oxidative stress (OS) and markers of cardiac function and necrosis in 100 NSTEMI (non-ST-elevation myocardial infarction) patients with various degrees of kidney dysfunction. At admission, ejection fraction (EF), brain natriuretic peptide (BNP), troponin (TnI), creatinine phosphokinase (CPK), alanine transaminase (ALT), aspartate transaminase (AST), high-sensitive C-reactive protein (hs-CRP), interleukins 6 and 10 (IL-6, IL10), myeloperoxidase (MPO), transforming growth factor beta (TGF-β1), glomerular filtration rate (GFR), and albuminuria were assessed. Study participants were divided into 2 subgroups based on the median level of EF. Compared to the high, patients in the low EF group had higher GFR, BNP, CPK, hs-CRP, IL-10, IL-6, and MPO values and lower albuminuria levels. The levels of EF decreased in parallel with the progression of CKD, whereas the levels of BNP, IL-6, and TGF-β were significantly higher in late stages of CKD. Spearman's rho correlation analysis showed that EF was inversely correlated with MPO (r = -0.20, p = 0.05) BNP (r = -0.30, p = 0.002), hs-CRP (r = -0.38, p < 0.0001), IL-10 (r = -0.30, p = 0.003), and IL-6 (r = -0.24, p = 0.02) and positively with GFR (r = 0.27, p = 0.008). TnI was correlated with CPK (r = 0.44, p < 0.0001), CPK-MB (r = 0.31, p = 0.002), ALT (r = 0.50, p < 0.0001), AST (r = 0.29, p = 0.004), IL-10 (r = 0.22, p = 0.03), and MPO (r = -0.28, p = 0.006). In multivariate regression analysis, only BNP (β = -0.011, p = 0.004), hs-CRP (β = -0.11, p = 0.001), and GFR (β = 0.12, p = 0.0029) were independent determinants of EF. Similarly, MPO (β = -1.69, p = 0.02), IL-10 (β = 0.15, p = 0.006), and AST (β = 0.04, p = 0.001) were the 3 major determinants of TnI. Based on these associations, we built a predictive model including markers of inflammation and OS (MPO, IL-10, and hs-CRP) to identify patients with the most severe cardiac injury (combined EF below median and troponin above median values). Receiver-operator characteristic (ROC) analysis showed that the area under the ROC curve of this model to detect patients with low EF and high TnI was 0.67 (p = 0.015, 95%confidence interval = 0.53-0.81).
Collapse
|
138
|
Siregar RS, Lelo A, Harris D, Ramayani OR, Ichwan M. The Effect of Uncaria gambir Roxb. Extract on Superoxide Dismutase Activity in Proteinuric Wistar Rats Model. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Nephrotic syndrome (NS) is a glomerular disease that is most often found in children with proteinuric as clinical manifestation. Gambier extract is a traditional medicine that has antioxidant effect. Its use to treat proteinuric has never been done. Therefore, we conducted an analytical study on the effect of gambier on proteinuric and superoxide dismutase (SOD) activity in proteinuric Wistar rat’s model. This research is an experimental study with a posttest control group design. The aim is analyzing the effect of giving gambier extract in decreasing urinary protein creatinine ratio and increasing SOD activity. Male Wistar rats were given an injection of puromycin aminonucleoside 1.5mg/100g body weight (BW), subcutaneously for 5 consecutive days for being nephrosis. The experimental animals in this study were divided into four groups: K1, the control group, consist of group of rats that were injected with 0.15ml/100 g BW of aquabidest and not given gambier extract. While K2 group consist of rats induced by Puromycin and given 1 ml of aquabidest. K3 consist of groups of rats induced by Puromycin and then given gambier extract 26mg/200g BW. Group K4 consist of rats induced by Puromycin and then given 80mg/200g BW of gambier extract. The four groups were given treatment for 14 days, after which the rats were placed in a metabolic cage for 24 hours to collect urine samples and then knocked down with ketamine for intra-cardiac blood collection. The results of this study showed differences between the four groups of rats in terms of the mean urine protein/creatinine ratio (p=0.015) and SOD activity (p=0.036). Groups of rats that were given gambier extracts 80mg/200g BW had lower urine protein / creatinine ratio and higher SOD activity. Therapy of gambier 80 mg/200g BW is better in managing proteinuric compared to 26mg/200g.
Collapse
|
139
|
Queiroz Junior NF, Steffani JA, Machado L, Longhi PJH, Montano MAE, Martins M, Machado SA, Machado AK, Cadoná FC. Antioxidant and cytoprotective effects of avocado oil and extract ( Persea americana Mill) against rotenone using monkey kidney epithelial cells (Vero). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:875-890. [PMID: 34256683 DOI: 10.1080/15287394.2021.1945515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxidative stress is known to be involved in development of numerous diseases including cardiovascular, respiratory, renal, kidney and cancer. Thus, investigations that mimic oxidative stress in vitro may play an important role to find new strategies to control oxidative stress and subsequent consequences are important. Rotenone, widely used as a pesticide has been used as a model to simulate oxidative stress. However, this chemical was found to produce several diseases. Therefore, the aim of this study was to investigate the antioxidant and cytoprotective effect of avocado (Persea americana Mill) extract and oil in monkey kidney epithelial cells (VERO) exposed to rotenone. VERO cells were exposed to IC50 of rotenone in conjunction with different concentrations of avocado extract and oil (ranging from 1 to 1000 µg/ml), for 24 hr. Subsequently, cell viability and oxidative metabolism were assessed. Data demonstrated that avocado extract and oil in the presence of rotenone increased cellular viability at all tested concentrations compared to cells exposed only to rotenone. In addition, extract and avocado oil exhibited antioxidant action as evidenced by decreased levels of reactive oxygen species (ROS), superoxide ion, and lipid peroxidation, generated by rotenone. Further, avocado extract and oil appeared to be safe, since these compounds did not affect cell viability and or generate oxidative stress. Therefore, avocado appears to display a promising antioxidant potential by decreasing oxidative stress.
Collapse
Affiliation(s)
| | - Jovani Antônio Steffani
- Postgraduate Program of Biosciences and Health, West University of Santa Catarina, Joaçaba, SC, Brazil
| | - Larissa Machado
- Biological Sciences Course, West University of Santa Catarina, Joaçaba, SC, Brazil
| | | | | | - Mathias Martins
- Postgraduate Program in Health and Animal Production, West University of Santa Catarina, Joaçaba, SC, Brazil
| | - Sérgio Abreu Machado
- Postgraduate Program in Health and Animal Production, West University of Santa Catarina, Joaçaba, SC, Brazil
| | | | - Francine Carla Cadoná
- Postgraduate Program in Sciences of Health and Life, Franciscan University, Santa Maria, RS, Brazil
| |
Collapse
|
140
|
Uremic serum damages endothelium by provoking excessive neutrophil extracellular trap formation. Sci Rep 2021; 11:21439. [PMID: 34728714 PMCID: PMC8563801 DOI: 10.1038/s41598-021-00863-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease (CKD). Endothelial cell (EC) dysfunction is a key CKD-specific risk factor; however, the mechanisms by which uremia harms the endothelium are still unclear. We report a role for excessive neutrophil extracellular trap (NET) formation induced by uremic serum on EC injury. Level of plasma nucleosome and myeloperoxidase-DNA, established in vivo markers of NETs, as well as intracellular adhesion molecule (ICAM)-1 were measured in hemodialysis (HD) patients and healthy volunteers (HV) and their prognostic role evaluated. For in vitro studies, HV-derived neutrophils and differentiated HL-60 cells by retinoic acid were used to determine the effect of uremic serum-induced NETs on human umbilical vein EC (HUVEC). The level of in vivo NETs was significantly higher in incident HD patients compared to HV, and these markers were strongly associated with ICAM-1. Specifically, nucleosome and ICAM-1 levels were independent predictors of a composite endpoint, all-cause mortality, or vascular access failure. In vitro, HD-derived uremic serum significantly increased NET formation both in dHL-60 and isolated neutrophils compared to control serum, and these NETs decreased EC viability and induced their apoptosis. In addition, the level of ICAM-1, E-selectin and von Willebrand factor in HUVEC supernatant was significantly increased by uremic serum-induced NETs compared to control serum-induced NETs. Dysregulated neutrophil activities in the uremic milieu may play a key role in vascular inflammatory responses. The high mortality and CVD rates in ESRD may be explained in part by excessive NET formation leading to EC damage and dysfunction.
Collapse
|
141
|
Oxidized LDL Is Associated with eGFR Decline in Proteinuric Diabetic Kidney Disease: A Cohort Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2968869. [PMID: 34712380 PMCID: PMC8548137 DOI: 10.1155/2021/2968869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/28/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
Diabetic kidney disease (DKD) is a highly heterogenous disease, including the proteinuric and the nonproteinuric pattern. Oxidized low-density lipoprotein (ox-LDL) is progressively increased in DKD and causes direct damage to kidney tubular epithelial cells through a mechanism similar to that underlying the deleterious effect of lipid peroxides in the vascular endothelium. We aimed to examine the association between plasma ox-LDL cholesterol and clinical endpoints in DKD patients. Ninety-one patients with established proteinuric DKD and diabetic retinopathy were enrolled and prospectively followed for 10 years or the occurrence of death, or at least 30% decline in eGFR, or progression to end-stage kidney disease (ESKD) requiring renal replacement therapy (primary outcome). At the end of the study, both eGFR and proteinuria were reassessed. Secondary outcomes of the study were the percentage change in eGFR and proteinuria over time for each patient. At baseline, patients were divided into 2 groups according to the median ox-LDL value (i.e., below or equal and above 66.22 U/L). Both Kaplan-Meier curves (p = 0.001, log-rank test) and univariate Cox regression analysis showed that high ox-LDL was associated with the primary outcome (HR = 3.42, 95%CI = 1.55 − 7.56, p = 0.002). After adjustment for various well-known cofounders, multivariate Cox analysis showed that the association between increased circulating ox-LDL levels and the composite kidney endpoint remained significant (HR = 2.87, 95%CI = 1.14–7.20, p = 0.025). Regarding the secondary outcome of eGFR decline, the assessment of areas under the curves (AUC) showed that ox-LDL outperformed several cofounding factors (AUC 71%, 95%CI = 0.59 − 0.83, p = 0.001) and had better accuracy to predict deterioration of eGFR over time than baseline proteinuria (AUC 67%, 95%CI = 0.54 − 0.79, p = 0.014). Increased ox-LDL might be associated with disease progression in proteinuric DKD.
Collapse
|
142
|
Zhang X, Zheng C, Gao Z, Wang L, Chen C, Zheng Y, Meng Y. PKM2 promotes angiotensin-II-induced cardiac remodelling by activating TGF-β/Smad2/3 and Jak2/Stat3 pathways through oxidative stress. J Cell Mol Med 2021; 25:10711-10723. [PMID: 34687136 PMCID: PMC8581335 DOI: 10.1111/jcmm.17007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
Hypertensive cardiac remodelling is a common cause of heart failure. However, the molecular mechanisms regulating cardiac remodelling remain unclear. Pyruvate kinase isozyme type M2 (PKM2) is a key regulator of the processes of glycolysis and oxidative phosphorylation, but the roles in cardiac remodelling remain unknown. In the present study, we found that PKM2 was enhanced in angiotensin II (Ang II)-treated cardiac fibroblasts and hypertensive mouse hearts. Suppression of PKM2 by shikonin alleviated cardiomyocyte hypertrophy and fibrosis in Ang-II-induced cardiac remodelling in vivo. Furthermore, inhibition of PKM2 markedly attenuated the function of cardiac fibroblasts including proliferation, migration and collagen synthesis in vitro. Mechanistically, suppression of PKM2 inhibited cardiac remodelling by suppressing TGF-β/Smad2/3, Jak2/Stat3 signalling pathways and oxidative stress. Together, this study suggests that PKM2 is an aggravator in Ang-II-mediated cardiac remodelling. The negative modulation of PKM2 may provide a promising therapeutic approach for hypertensive cardiac remodelling.
Collapse
Affiliation(s)
- Xiyu Zhang
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing Lab for Cardiovascular Precision Medicine, Department of Pathology, Capital Medical University, Beijing, China
| | - Cuiting Zheng
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing Lab for Cardiovascular Precision Medicine, Department of Pathology, Capital Medical University, Beijing, China
| | - Zhenqiang Gao
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing Lab for Cardiovascular Precision Medicine, Department of Pathology, Capital Medical University, Beijing, China
| | - Lingling Wang
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chen Chen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Zheng
- Department of Pharmacology, Capital Medical University, Beijing, China
| | - Yan Meng
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing Lab for Cardiovascular Precision Medicine, Department of Pathology, Capital Medical University, Beijing, China
| |
Collapse
|
143
|
Gusev E, Solomatina L, Zhuravleva Y, Sarapultsev A. The Pathogenesis of End-Stage Renal Disease from the Standpoint of the Theory of General Pathological Processes of Inflammation. Int J Mol Sci 2021; 22:ijms222111453. [PMID: 34768884 PMCID: PMC8584056 DOI: 10.3390/ijms222111453] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease can progress to end-stage chronic renal disease (ESRD), which requires the use of replacement therapy (dialysis or kidney transplant) in life-threatening conditions. In ESRD, irreversible changes in the kidneys are associated with systemic changes of proinflammatory nature and dysfunctions of internal organs, skeletal muscles, and integumentary tissues. The common components of ESRD pathogenesis, regardless of the initial nosology, are (1) local (in the kidneys) and systemic chronic low-grade inflammation (ChLGI) as a risk factor for diabetic kidney disease and its progression to ESRD, (2) inflammation of the classical type characteristic of primary and secondary autoimmune glomerulonephritis and infectious recurrent pyelonephritis, as well as immune reactions in kidney allograft rejection, and (3) chronic systemic inflammation (ChSI), pathogenetically characterized by latent microcirculatory disorders and manifestations of paracoagulation. The development of ChSI is closely associated with programmed hemodialysis in ESRD, as well as with the systemic autoimmune process. Consideration of ESRD pathogenesis from the standpoint of the theory of general pathological processes opens up the scope not only for particular but also for universal approaches to conducting pathogenetic therapies and diagnosing and predicting systemic complications in severe nephropathies.
Collapse
|
144
|
Guo J, Li J, Wei H, Liang Z. Maackiain Protects the Kidneys of Type 2 Diabetic Rats via Modulating the Nrf2/HO-1 and TLR4/NF-κB/Caspase-3 Pathways. Drug Des Devel Ther 2021; 15:4339-4358. [PMID: 34703210 PMCID: PMC8525417 DOI: 10.2147/dddt.s326975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is aglobal health burden that accounts for about 90% of all cases of diabetes. Injury to the kidneys is aserious complication of type 2 diabetes. Maackiain, apterocarpan extracted from roots of Sophora flavescens, has been traditionally used for various disease conditions. However, nothing is known about its possible potential effect on HFD/STZ-T2D-induced nephrotoxicity. METHODS In this study, T2D rat model is created by high-fat diet (HFD) for 2 weeks with injection of asingle dose of streptozotocin (35mg/kg body weight). T2D rats were orally administered with maackiain (10 and 20mg/kg body weight) for 7 weeks. RESULTS Maackiain suppressed T2D-induced alterations in metabolic parameters, lipid profile and kidney functionality markers. By administering 10 and 20mg/kg maackiain to T2D rats, it was able to reduce lipid peroxidation while improving antioxidant levels (SOD, CAT, and GSH). Furthermore, the present study demonstrated the molecular mechanisms through which maackiain attenuated T2D-induced oxidative stress (mRNA: Nrf2, Nqo-1, Ho-1, Gclc and Gpx-1; protein: NRF2, NQO-1, HO-1 and NOX-4), inflammation (mRNA: Tlr, Myd88, IκBα, Mcp-1, Tgf-β, col4, Icam1, Vcam1 and E-selectin; Protein: TLR4, MYD88, NF-κB, IκBα, MCP-1; levels: TNF-α and MCP-1) and apoptosis (mRNA: Bcl-2, Bax, Bad, Apaf-1, Caspase-9 and Caspase-3; protein: Bcl-2, Bax, Caspase-3 and Caspase-9) mediated renal injury. Additionally, significant improvement in kidney architecture was observed after treatment of diabetic rats with 10 or 20mg/kg maackiain. CONCLUSION Maackiain protects the kidney by decreasing oxidative stress, inflammation, and apoptosis to preserve normal renal function in type 2 diabetes.
Collapse
Affiliation(s)
- Jiahong Guo
- Department of Nephrology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, 453000, People’s Republic of China
| | - Junying Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University Pingdu district, Pingdu City, Qingdao, Shandong, 266000, People’s Republic of China
| | - Hua Wei
- Department of Nephrology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, 453000, People’s Republic of China
| | - Zhaozhi Liang
- Department of Nephrology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, 453000, People’s Republic of China
| |
Collapse
|
145
|
Oxidative Stress Genes in Diabetes Mellitus Type 2: Association with Diabetic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2531062. [PMID: 34545296 PMCID: PMC8448992 DOI: 10.1155/2021/2531062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/21/2021] [Indexed: 12/25/2022]
Abstract
Diabetic type 2 patients compared to nondiabetic patients exhibit an increased risk of developing diabetic kidney disease (DKD), the leading cause of end-stage renal disease. Hyperglycemia, hypertension, oxidative stress (OS), and genetic background are some of the mechanisms and pathways implicated in DKD pathogenesis. However, data on OS pathway susceptibility genes show limited success and conflicting or inconclusive results. Our study is aimed at exploring OS pathway genes and variants which could be associated with DKD. We recruited 121 diabetes mellitus type 2 (DM2) patients with DKD (cases) and 220 DM2, non-DKD patients (control) of Greek origin and performed a case-control association study using genome-wide association data. PLINK and EIGENSOFT were used to analyze the data. Our results indicate 43 single nucleotide polymorphisms with their 21 corresponding genes on the OS pathway possibly contributing or protecting from DKD: SPP1, TPO, TTN, SGO2, NOS3, PDLIM1, CLU, CCS, GPX4, TXNRD2, EPHX2, MTL5, EPX, GPX3, ALOX12, IPCEF1, GSTA, OXR1, GPX6, AOX1, and PRNP. Therefore, a genetic OS background might underlie the complex pathogenesis of DKD in DM2 patients.
Collapse
|
146
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|
147
|
Wu XQ, Zhang DD, Wang YN, Tan YQ, Yu XY, Zhao YY. AGE/RAGE in diabetic kidney disease and ageing kidney. Free Radic Biol Med 2021; 171:260-271. [PMID: 34019934 DOI: 10.1016/j.freeradbiomed.2021.05.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) is the primary cause of chronic kidney disease that inevitably progress to end-stage kidney disease. Intervention strategies such as blood glucose control is effective for preventing DKD, but many patients with DKD still reach end-stage kidney disease. Although comprehensive mechanisms shed light on the progression of DKD, the most compelling evidence has highlighted that hyperglycemia-related advanced glycation end products (AGEs) formation plays a central role in the pathogenesis of DKD. Pathologically, accumulation of AGEs-mediated receptor for AGEs (RAGE) triggers oxidative stress and inflammation, which is the major deleterious effect of AGEs in host and intestinal microenvironment of diabetic and ageing conditions. The activation of AGEs-mediated RAGE could evoke nicotinamide adenine dinucleotide phosphate oxidase-induced reactive oxygen and nitrogen species production and subsequently give rise to oxidative stress in DKD and ageing kidney. Therefore, targeting RAGE with its ligands mediated oxidative stress and chronic inflammation is considered as an additional intervention strategy for DKD and ageing kidney. In this review, we summarize AGEs/RAGE-mediated oxidative stress and inflammation signaling pathways in DKD and ageing kidney, discussing opportunities and challenges of targeting at AGEs/RAGE-induced oxidative stress that could hold the promising potential approach for improving DKD and ageing kidney.
Collapse
Affiliation(s)
- Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Dan Zhang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yue-Qi Tan
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, No. 2 Xihuamen, Xi'an, Shaanxi, 710003, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
148
|
Tejchman K, Kotfis K, Sieńko J. Biomarkers and Mechanisms of Oxidative Stress-Last 20 Years of Research with an Emphasis on Kidney Damage and Renal Transplantation. Int J Mol Sci 2021; 22:ijms22158010. [PMID: 34360776 PMCID: PMC8347360 DOI: 10.3390/ijms22158010] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is an imbalance between pro- and antioxidants that adversely influences the organism in various mechanisms and on many levels. Oxidative damage occurring concomitantly in many cellular structures may cause a deterioration of function, including apoptosis and necrosis. The damage leaves a molecular “footprint”, which can be detected by specific methodology, using certain oxidative stress biomarkers. There is an intimate relationship between oxidative stress, inflammation, and functional impairment, resulting in various diseases affecting the entire human body. In the current narrative review, we strengthen the connection between oxidative stress mechanisms and their active compounds, emphasizing kidney damage and renal transplantation. An analysis of reactive oxygen species (ROS), antioxidants, products of peroxidation, and finally signaling pathways gives a lot of promising data that potentially will modify cell responses on many levels, including gene expression. Oxidative damage, stress, and ROS are still intensively exploited research subjects. We discuss compounds mentioned earlier as biomarkers of oxidative stress and present their role documented during the last 20 years of research. The following keywords and MeSH terms were used in the search: oxidative stress, kidney, transplantation, ischemia-reperfusion injury, IRI, biomarkers, peroxidation, and treatment.
Collapse
Affiliation(s)
- Karol Tejchman
- Department of General and Transplantation Surgery, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.T.); (J.S.)
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48914661144
| | - Jerzy Sieńko
- Department of General and Transplantation Surgery, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.T.); (J.S.)
| |
Collapse
|
149
|
Tomás-Simó P, D’Marco L, Romero-Parra M, Tormos-Muñoz MC, Sáez G, Torregrosa I, Estañ-Capell N, Miguel A, Gorriz JL, Puchades MJ. Oxidative Stress in Non-Dialysis-Dependent Chronic Kidney Disease Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157806. [PMID: 34360098 PMCID: PMC8345537 DOI: 10.3390/ijerph18157806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022]
Abstract
Background: Cardiovascular complications are the leading cause of morbidity and mortality at any stage of chronic kidney disease (CKD). Moreover, the high rate of cardiovascular mortality observed in these patients is associated with an accelerated atherosclerosis process that likely starts at the early stages of CKD. Thus, traditional and non-traditional or uremic-related factors represent a link between CKD and cardiovascular risk. Among non-conventional risk factors, particular focus has been placed on anaemia, mineral and bone disorders, inflammation, malnutrition and oxidative stress and, in this regard, connections have been reported between oxidative stress and cardiovascular disease in dialysis patients. Methods: We evaluated the oxidation process in different molecular lines (proteins, lipids and genetic material) in 155 non-dialysis patients at different stages of CKD and 45 healthy controls. To assess oxidative stress status, we analyzed oxidized glutathione (GSSG), reduced glutathione (GSH) and the oxidized/reduced glutathione ratio (GSSG/GSH) and other oxidation indicators, including malondialdehyde (MDA) and 8-oxo-2’-deoxyguanosine (8-oxo-dG). Results: An active grade of oxidative stress was found from the early stages of CKD onwards, which affected all of the molecular lines studied. We observed a heightened oxidative state (indicated by a higher level of oxidized molecules together with decreased levels of antioxidant molecules) as kidney function declined. Furthermore, oxidative stress-related alterations were significantly greater in CKD patients than in the control group. Conclusions: CKD patients exhibit significantly higher oxidative stress than healthy individuals, and these alterations intensify as eGFR declines, showing significant differences between CKD stages. Thus, future research is warranted to provide clearer results in this area.
Collapse
Affiliation(s)
- Patricia Tomás-Simó
- Nephrology Department, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, 46010 Valencia, Spain; (P.T.-S.); (M.R.-P.); (I.T.); (A.M.); (J.L.G.)
| | - Luis D’Marco
- Nephrology Department, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, 46010 Valencia, Spain; (P.T.-S.); (M.R.-P.); (I.T.); (A.M.); (J.L.G.)
- Correspondence: (L.D.); (M.J.P.); Tel.: +34-961973500 (ext. 436443) (M.J.P.)
| | - María Romero-Parra
- Nephrology Department, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, 46010 Valencia, Spain; (P.T.-S.); (M.R.-P.); (I.T.); (A.M.); (J.L.G.)
| | - Mari Carmen Tormos-Muñoz
- Service of Clinical Analysis, Department of Biochemistry and Molecular Biology, Facultad de Medicina y Odontología-INCLIVA, Hospital Universitario Dr. Peset, FISABIO, Universidad de Valencia, 46010 Valencia, Spain; (M.C.T.-M.); (G.S.); (N.E.-C.)
| | - Guillermo Sáez
- Service of Clinical Analysis, Department of Biochemistry and Molecular Biology, Facultad de Medicina y Odontología-INCLIVA, Hospital Universitario Dr. Peset, FISABIO, Universidad de Valencia, 46010 Valencia, Spain; (M.C.T.-M.); (G.S.); (N.E.-C.)
| | - Isidro Torregrosa
- Nephrology Department, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, 46010 Valencia, Spain; (P.T.-S.); (M.R.-P.); (I.T.); (A.M.); (J.L.G.)
| | - Nuria Estañ-Capell
- Service of Clinical Analysis, Department of Biochemistry and Molecular Biology, Facultad de Medicina y Odontología-INCLIVA, Hospital Universitario Dr. Peset, FISABIO, Universidad de Valencia, 46010 Valencia, Spain; (M.C.T.-M.); (G.S.); (N.E.-C.)
| | - Alfonso Miguel
- Nephrology Department, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, 46010 Valencia, Spain; (P.T.-S.); (M.R.-P.); (I.T.); (A.M.); (J.L.G.)
| | - José Luis Gorriz
- Nephrology Department, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, 46010 Valencia, Spain; (P.T.-S.); (M.R.-P.); (I.T.); (A.M.); (J.L.G.)
| | - María Jesús Puchades
- Nephrology Department, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, 46010 Valencia, Spain; (P.T.-S.); (M.R.-P.); (I.T.); (A.M.); (J.L.G.)
- Correspondence: (L.D.); (M.J.P.); Tel.: +34-961973500 (ext. 436443) (M.J.P.)
| |
Collapse
|
150
|
Vida C, Oliva C, Yuste C, Ceprián N, Caro PJ, Valera G, de Pablos IG, Morales E, Carracedo J. Oxidative Stress in Patients with Advanced CKD and Renal Replacement Therapy: The Key Role of Peripheral Blood Leukocytes. Antioxidants (Basel) 2021; 10:1155. [PMID: 34356387 PMCID: PMC8301096 DOI: 10.3390/antiox10071155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress plays a key role in the pathophysiology of chronic kidney disease (CKD). Most studies have investigated peripheral redox state focus on plasma, but not in different immune cells. Our study analyzed several redox state markers in plasma and isolated peripheral polymorphonuclear (PMNs) and mononuclear (MNs) leukocytes from advanced-CKD patients, also evaluating differences of hemodialysis (HD) and peritoneal dialysis (PD) procedures. Antioxidant (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH)) and oxidant parameters (xanthine oxidase (XO), oxidized glutathione (GSSG), malondialdehyde (MDA)) were assessed in plasma, PMNs and MNs from non-dialysis-dependent-CKD (NDD-CKD), HD and PD patients and healthy controls. Increased oxidative stress and damage were observed in plasma, PMNs and MNs from NDD-CKD, HD and PD patients (increased XO, GSSG and MDA; decreased SOD, CAT, GPX and GSH; altered GSSG/GSH balance). Several oxidative alterations were more exacerbated in PMNs, whereas others were only observed in MNs. Dialysis procedures had a positive effect on preserving the GSSG/GSH balance in PMNs. Interestingly, PD patients showed greater oxidative stress than HD patients, especially in MNs. The assessment of redox state parameters in PMNs and MNs could have potential use as biomarkers of the CKD progression.
Collapse
Affiliation(s)
- Carmen Vida
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain; (C.O.); (N.C.); (G.V.)
- Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (C.Y.); (P.J.C.); (I.G.d.P.); (E.M.)
| | - Carlos Oliva
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain; (C.O.); (N.C.); (G.V.)
| | - Claudia Yuste
- Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (C.Y.); (P.J.C.); (I.G.d.P.); (E.M.)
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Noemí Ceprián
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain; (C.O.); (N.C.); (G.V.)
- Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (C.Y.); (P.J.C.); (I.G.d.P.); (E.M.)
| | - Paula Jara Caro
- Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (C.Y.); (P.J.C.); (I.G.d.P.); (E.M.)
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Gemma Valera
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain; (C.O.); (N.C.); (G.V.)
| | - Ignacio González de Pablos
- Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (C.Y.); (P.J.C.); (I.G.d.P.); (E.M.)
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Enrique Morales
- Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (C.Y.); (P.J.C.); (I.G.d.P.); (E.M.)
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Julia Carracedo
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain; (C.O.); (N.C.); (G.V.)
- Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (C.Y.); (P.J.C.); (I.G.d.P.); (E.M.)
| |
Collapse
|