101
|
Butler MW, Stierhoff EN, Carpenetti JM, Bertone MA, Addesso AM, Knutie SA. Oxidative damage increases with degree of simulated bacterial infection, but not ectoparasitism, in tree swallow nestlings. J Exp Biol 2021; 224:272162. [PMID: 34427672 DOI: 10.1242/jeb.243116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022]
Abstract
The purpose of mounting an immune response is to destroy pathogens, but this response comes at a physiological cost, including the generation of oxidative damage. However, many studies on the effects of immune challenges employ a single high dose of a simulated infection, meaning that the consequences of more mild immune challenges are poorly understood. We tested whether the degree of immunological challenge in tree swallows (Tachycineta bicolor) affects oxidative physiology and body mass, and whether these metrics correlate with parasitic nest mite load. We injected 14 day old nestlings with 0, 0.01, 0.1 or 1 mg lipopolysaccharide (LPS) per kg body mass, then collected a blood sample 24 h later to quantify multiple physiological metrics, including oxidative damage (i.e. d-ROMs), circulating amounts of triglyceride and glycerol, and levels of the acute phase protein haptoglobin. After birds had fledged, we identified and counted parasitic nest mites (Dermanyssus spp. and Ornithonyssus spp.). We found that only nestlings injected with 1 mg LPS kg-1 body mass, which is a common dosage in ecoimmunological studies, lost more body mass than individuals from other treatment groups. However, every dose of LPS resulted in a commensurate increase in oxidative damage. Parasitic mite abundance had no effect on oxidative damage across treatments. The amount of oxidative damage correlated with haptoglobin levels, suggesting compensatory mechanisms to limit self-damage during an immune response. We conclude that while only the highest-intensity immune challenges resulted in costs related to body mass, even low-intensity immune challenges result in detectable increases in oxidative damage.
Collapse
Affiliation(s)
| | | | | | - Matthew A Bertone
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Alyssa M Addesso
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
102
|
DNA-Aptamer Raised against Receptor for Advanced Glycation End Products Improves Survival Rate in Septic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9932311. [PMID: 34413930 PMCID: PMC8369179 DOI: 10.1155/2021/9932311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/29/2022]
Abstract
Despite remarkable scientific advances in the understanding of molecular mechanisms for sepsis, therapeutic options are far from satisfactory. High mobility group box 1 (HMGB1), one of the ligands of receptor for advanced glycation end products (RAGE), is a late mediator of lethality in septic mice. We have recently found that the DNA-aptamer raised against RAGE (RAGE-aptamer) significantly blocks experimental diabetic nephropathy and melanoma growth and metastasis. We examined the effects of RAGE-aptamer on sepsis score, survival rate, and inflammatory and oxidative stress responses in serum, peripheral monocytes, kidneys and livers of lipopolysaccharide- (LPS-) injected mice, and on LPS-exposed THP-1 cells. RAGE-aptamer inhibited the binding of HMGB1 to RAGE in vitro. RAGE-aptamer significantly (P = 0.002) improved sepsis score at 8 hours after LPS injection and survival rate at 24 hours (P < 0.01, 70%) in septic mice compared with LPS+vehicle- or LPS+control-aptamer-treated mice. RAGE-aptamer treatment significantly decreased expression of p-NF-κB p65, an active form of redox-sensitive transcriptional factor, NF-κB and gene or protein expression of TNF-α, IL-1β, IL-6, and HMGB1 in serum, peripheral monocytes, and kidneys of septic mice in association with the reduction of oxidative stress and improvement of metabolic acidosis, renal and liver damage. LPS-induced oxidative stress, inflammatory reactions, and growth suppression in THP-1 cells were significantly blocked by RAGE-aptamer. Our present study suggests that RAGE-aptamer could attenuate multiple organ damage in LPS-injected septic mice partly by inhibiting the inflammatory reactions via suppression of HMGB1-RAGE interaction.
Collapse
|
103
|
Prophylactic effect of myricetin and apigenin against lipopolysaccharide-induced acute liver injury. Mol Biol Rep 2021; 48:6363-6373. [PMID: 34401985 DOI: 10.1007/s11033-021-06637-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Liver has an important role in the initiation and progression of multiple organ failure that occurs in sepsis. Many natural active substances can be used to reduce the liver injury caused by sepsis. For this aim, the effects of myricetin and apigenin on mice model of acute liver injury was evaluated in this study. METHODS AND RESULTS Thirty-six mice were randomly divided into six groups as; control, lipopolysaccharide (LPS) (5 mg/kg), LPS + myricetin (100 mg/kg), LPS + myricetin (200 mg/kg), LPS + apigenin (100 mg/kg), and LPS + apigenin (200 mg/kg) groups. Myricetin and apigenin were administered orally for 7 days, and LPS was administered intraperitoneally only on the 7th day of the study. 24 h after LPS application, all animals were sacrificed and serum biochemical parameters, histopathology and oxidative stress and inflammation markers of liver tissue were examined. Myricetin and apigenin pre-treatments increased serum albumin and total protein levels, liver GSH level and catalase and SOD activities and decreased serum ALT, AST, ALP, γ-GT, CRP, total and direct bilirubin levels, liver MPO activity, MDA, NOx, PGE2, TNF-α, IL-1β, and IL-6 levels, iNOS and COX-2 mRNA levels, phosphorylation of NF-κB p65, IκB, and IKK proteins but not p38, ERK, and JNK proteins in LPS-treated mice. Myricetin and apigenin administration also regained the hepatic architecture disrupted during LPS application. CONCLUSION Myricetin and apigenin pre-treatments led to reduction of liver injury indices and oxidative stress and inflammatory events and these flavonoids has probably hepatoprotective effects in acute liver injury.
Collapse
|
104
|
Zhang H, Li X, Wang J, Cheng Q, Shang Y, Wang G. Baicalin relieves Mycoplasma pneumoniae infection‑induced lung injury through regulating microRNA‑221 to inhibit the TLR4/NF‑κB signaling pathway. Mol Med Rep 2021; 24:571. [PMID: 34109422 PMCID: PMC8201456 DOI: 10.3892/mmr.2021.12210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Mycoplasma pneumoniae (MP) is a common pathogen that can cause respiratory infections. MP pneumonia (MPP) leads to numerous complications, including lung injury and even death. The present study aimed to investigate the protective effects of Baicalin treatment on MP infection‑induced lung injury and the molecular mechanism underlying these effects. Briefly, after mice were infected intranasally by MP and treated with Baicalin (80 mg/kg), serum levels of MP‑immunoglobulin M (IgM) were detected by ELISA. The expression levels of C‑reactive protein (CRP) in lung tissue were detected by immunohistochemistry and the bronchoalveolar lavage fluid (BALF) was examined by ELISA. Inflammatory factors and inflammatory cells in the BALF were assessed. The expression levels of microRNA (miR)‑221 in lung tissue were examined by reverse transcription‑quantitative PCR and pathological changes in lung tissue were detected by H&E staining. Cell apoptosis was evaluated by TUNEL assay and the protein expression levels of TLR4, MyD88 and NF‑κB were detected by western blotting. Baicalin treatment significantly reduced serum levels of MP‑IgM and CRP expression in lung tissue during MP infection. In addition, Baicalin decreased the levels of IL‑1β, IL‑6, IL‑18 and TNF‑α in the BALF, and the number of inflammatory cells. Baicalin also reduced the inflammatory infiltration in lung tissue induced by MP infection, improved the pathological changes detected in lung tissue, reduced apoptosis, and downregulated the protein expression levels of TLR4, MyD88 and NF‑κB. Furthermore, Baicalin treatment downregulated the expression of miR‑221 and the protective effects of Baicalin were attenuated by miR‑221 overexpression. In conclusion, Baicalin has a therapeutic effect on mice with MP infection‑induced lung injury, which may be related to inhibition of miR‑221 expression and regulation of the TLR4/NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Han Zhang
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiang Li
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Juan Wang
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qi Cheng
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yunxiao Shang
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Guizhen Wang
- Department of Microbiology and Parasitology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
105
|
Two Sides to Every Question: Attempts to Activate Chicken Innate Immunity in 2D and 3D Hepatic Cell Cultures. Cells 2021; 10:cells10081910. [PMID: 34440679 PMCID: PMC8394239 DOI: 10.3390/cells10081910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022] Open
Abstract
The liver with resident tissue macrophages is the site of vivid innate immunity, activated also by pathogen-associated molecular patterns (PAMPs) leaking through the intestinal barrier. As gut-derived inflammatory diseases are of outstanding importance in broiler chickens, the present study aimed to establish a proper hepatic inflammatory model by comparing the action of different PAMPs from poultry pathogens on chicken 2D and 3D primary hepatocyte—non-parenchymal cell co-cultures, the latter newly developed with a magnetic bioprinting method. The cultures were challenged by the bacterial endotoxins lipopolysaccharide (LPS) from Escherichia coli, lipoteichoic acid (LTA) from Staphylococcus aureus and by enterotoxin (ETxB) from Escherichia coli, Salmonella Typhimurium derived flagellin, phorbol myristate acetate (PMA) as a model proinflammatory agent and polyinosinic polycytidylic acid (poly I:C) for mimicking viral RNA exposure. Cellular metabolic activity was assessed with the CCK-8 test, membrane damage was monitored with the lactate dehydrogenase (LDH) leakage assay and interleukin-6 and -8 (Il-6 and -8) concentrations were measured in cell culture medium with a chicken specific ELISA. Both LPS and LTA increased the metabolic activity of the 3D cultures, concomitantly decreasing the LDH leakage, while in 2D cultures ETxB stimulated, PMA and poly I:C depressed the metabolic activity. Based on the moderately increased extracellular LDH activity, LTA seemed to diminish cell membrane integrity in 2D and poly I:C in both cell culture models. The applied endotoxins remarkably reduced the IL-8 release of 3D cultured cells, suggesting the effective metabolic adaptation and the presumably initiated anti-inflammatory mechanisms of the 3D spheroids. Notwithstanding that the IL-6 and IL-8 production of 2D cells was mostly not influenced by the endotoxins used, only the higher LTA dose was capable to evoke an IL-8 surge. Flagellin, PMA and poly I:C exerted proinflammatory action in certain concentrations in both 2D and 3D cultures, reflected by the increased cellular IL-6 release. Based on these data, LTA, flagellin, PMA and poly I:C can be considered as potent candidates to induce inflammation in chicken primary hepatic cell cultures, while LPS failed to trigger proinflammatory cytokine production, suggesting the relatively high tolerance of avian liver cells to certain bacterial endotoxins. These results substantiate that the established 3D co-cultures seemed to be proper tools for testing potential proinflammatory molecules; however, the remarkable differences between 2D and 3D models should be addressed and further studied.
Collapse
|
106
|
Kondori N, Kurtovic A, Piñeiro-Iglesias B, Salvà-Serra F, Jaén-Luchoro D, Andersson B, Alves G, Ogurtsov A, Thorsell A, Fuchs J, Tunovic T, Kamenska N, Karlsson A, Yu YK, Moore ERB, Karlsson R. Mass Spectrometry Proteotyping-Based Detection and Identification of Staphylococcus aureus, Escherichia coli, and Candida albicans in Blood. Front Cell Infect Microbiol 2021; 11:634215. [PMID: 34381737 PMCID: PMC8350517 DOI: 10.3389/fcimb.2021.634215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Bloodstream infections (BSIs), the presence of microorganisms in blood, are potentially serious conditions that can quickly develop into sepsis and life-threatening situations. When assessing proper treatment, rapid diagnosis is the key; besides clinical judgement performed by attending physicians, supporting microbiological tests typically are performed, often requiring microbial isolation and culturing steps, which increases the time required for confirming positive cases of BSI. The additional waiting time forces physicians to prescribe broad-spectrum antibiotics and empirically based treatments, before determining the precise cause of the disease. Thus, alternative and more rapid cultivation-independent methods are needed to improve clinical diagnostics, supporting prompt and accurate treatment and reducing the development of antibiotic resistance. In this study, a culture-independent workflow for pathogen detection and identification in blood samples was developed, using peptide biomarkers and applying bottom-up proteomics analyses, i.e., so-called "proteotyping". To demonstrate the feasibility of detection of blood infectious pathogens, using proteotyping, Escherichia coli and Staphylococcus aureus were included in the study, as the most prominent bacterial causes of bacteremia and sepsis, as well as Candida albicans, one of the most prominent causes of fungemia. Model systems including spiked negative blood samples, as well as positive blood cultures, without further culturing steps, were investigated. Furthermore, an experiment designed to determine the incubation time needed for correct identification of the infectious pathogens in blood cultures was performed. The results for the spiked negative blood samples showed that proteotyping was 100- to 1,000-fold more sensitive, in comparison with the MALDI-TOF MS-based approach. Furthermore, in the analyses of ten positive blood cultures each of E. coli and S. aureus, both the MALDI-TOF MS-based and proteotyping approaches were successful in the identification of E. coli, although only proteotyping could identify S. aureus correctly in all samples. Compared with the MALDI-TOF MS-based approaches, shotgun proteotyping demonstrated higher sensitivity and accuracy, and required significantly shorter incubation time before detection and identification of the correct pathogen could be accomplished.
Collapse
Affiliation(s)
- Nahid Kondori
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Amra Kurtovic
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Francisco Salvà-Serra
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Björn Andersson
- Bioinformatics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gelio Alves
- National Center for Biotechnology Information (NCBI), Bethesda, MD, United States
| | - Aleksey Ogurtsov
- National Center for Biotechnology Information (NCBI), Bethesda, MD, United States
| | - Annika Thorsell
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johannes Fuchs
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Timur Tunovic
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nina Kamenska
- Norra-Älvsborgs-Länssjukhus (NÄL), Trollhättan, Sweden
| | | | - Yi-Kuo Yu
- National Center for Biotechnology Information (NCBI), Bethesda, MD, United States
| | - Edward R. B. Moore
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Nanoxis Consulting AB, Gothenburg, Sweden
| |
Collapse
|
107
|
Aminophylline modulates the permeability of endothelial cells via the Slit2-Robo4 pathway in lipopolysaccharide-induced inflammation. Exp Ther Med 2021; 22:1042. [PMID: 34373728 PMCID: PMC8343459 DOI: 10.3892/etm.2021.10474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis and septic shock are the main cause of mortality in intensive care units. The prevention and treatment of sepsis remains a significant challenge worldwide. The endothelial cell barrier plays a critical role in the development of sepsis. Aminophylline, a non-selective phosphodiesterase inhibitor, has been demonstrated to reduce endothelial cell permeability. However, little is known regarding the role of aminophylline in regulating vascular permeability during sepsis, as well as the potential underlying mechanisms. In the present study, the Slit2/Robo4 signaling pathway, the downstream protein, vascular endothelial (VE)-cadherin and endothelial cell permeability were investigated in a lipopolysaccharide (LPS)-induced inflammation model. It was indicated that, in human umbilical vein endothelial cells (HUVECs), LPS downregulated Slit2, Robo4 and VE-cadherin protein expression levels and, as expected, increased endothelial cell permeability in vitro during inflammation. After administration of aminophylline, the protein expression levels of Slit2, Robo4 and VE-cadherin were upregulated and endothelial cell permeability was significantly improved. These results suggested that the permeability of endothelial cells could be mediated by VE-cadherin via the Slit2/Robo4 signaling pathway. Aminophylline reduced endothelial permeability in a LPS-induced inflammation model. Therefore, aminophylline may represent a promising candidate for modulating vascular permeability induced by inflammation or sepsis.
Collapse
|
108
|
Lauer A, Burkard M, Niessner H, Leischner C, Renner O, Vollbracht C, Michels H, Busch C, Sinnberg T, Venturelli S. Ex Vivo Evaluation of the Sepsis Triple Therapy High-Dose Vitamin C in Combination with Vitamin B1 and Hydrocortisone in a Human Peripheral Blood Mononuclear Cells (PBMCs) Model. Nutrients 2021; 13:nu13072366. [PMID: 34371879 PMCID: PMC8308809 DOI: 10.3390/nu13072366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis is an extremely complex clinical syndrome, usually involving an excessive inflammatory response including an overshooting cytokine release that damages tissue and organs of the patient. Due to the severity of this condition, it is estimated that over 11 million people die from sepsis each year. Despite intensive research in the field, there is still no specific therapy for sepsis. Many sepsis patients show a marked deficiency of vitamin C. 9 out of 10 sepsis patients have a hypovitaminosis C, and every third patient even shows a clinical deficiency in the scurvy range. In addition, low vitamin C levels of intensive care sepsis patients correlate with a higher need for vasopressors, higher Sequential Organ Failure Assessment (SOFA) scores, and increased mortality. Based on this observation and the conducted clinical trials using vitamin C as sepsis therapy in intensive care patients, the aim of the present ex vivo study was to evaluate the effects of high-dose vitamin C alone and in a triple combination supplemented with vitamin B1 (thiamine) and hydrocortisone on the lipopolysaccharide (LPS)-induced cytokine response in peripheral blood mononuclear cells (PBMCs) from healthy human donors. We found that all corticosteroid combinations strongly reduced the cytokine response on RNA- and protein levels, while high-dose vitamin C alone significantly diminished the PBMC mediated secretion of the cytokines interleukin (IL)-10, IL-23, and monocyte chemo-attractant protein (MCP-1), which mediate the inflammatory response. However, vitamin C showed no enhancing effect on the secretion of further cytokines studied. This data provides important insights into the possible immunomodulatory function of vitamin C in an ex vivo setting of human PBMCs and the modulation of their cytokine profile in the context of sepsis. Since vitamin C is a vital micronutrient, the restoration of physiologically adequate concentrations should be integrated into routine sepsis therapy, and the therapeutic effects of supraphysiological concentrations of vitamin C in sepsis patients should be further investigated in clinical trials.
Collapse
Affiliation(s)
- Annie Lauer
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany; (A.L.); (H.N.)
| | - Markus Burkard
- Institute of Nutritional Sciences, Nutritional Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany; (M.B.); (C.L.); (O.R.)
| | - Heike Niessner
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany; (A.L.); (H.N.)
- Institute of Nutritional Sciences, Nutritional Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany; (M.B.); (C.L.); (O.R.)
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, 72076 Tübingen, Germany
| | - Christian Leischner
- Institute of Nutritional Sciences, Nutritional Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany; (M.B.); (C.L.); (O.R.)
| | - Olga Renner
- Institute of Nutritional Sciences, Nutritional Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany; (M.B.); (C.L.); (O.R.)
| | - Claudia Vollbracht
- Pascoe Pharmazeutische Praeparate GmbH, 35394 Giessen, Germany; (C.V.); (H.M.)
| | - Holger Michels
- Pascoe Pharmazeutische Praeparate GmbH, 35394 Giessen, Germany; (C.V.); (H.M.)
| | | | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany; (A.L.); (H.N.)
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, 72076 Tübingen, Germany
- Correspondence: (T.S.); (S.V.)
| | - Sascha Venturelli
- Institute of Nutritional Sciences, Nutritional Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany; (M.B.); (C.L.); (O.R.)
- Institute of Physiology, Department of Vegetative and Clinical Physiology, University of Tübingen, 72024 Tübingen, Germany
- Correspondence: (T.S.); (S.V.)
| |
Collapse
|
109
|
Yang X, Haque A, Matsuzaki S, Matsumoto T, Nakamura S. The Efficacy of Phage Therapy in a Murine Model of Pseudomonas aeruginosa Pneumonia and Sepsis. Front Microbiol 2021; 12:682255. [PMID: 34290683 PMCID: PMC8287650 DOI: 10.3389/fmicb.2021.682255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/31/2021] [Indexed: 01/21/2023] Open
Abstract
The emergence of multi-drug resistant Pseudomonas aeruginosa necessitates the search for treatment options other than antibiotic use. The use of bacteriophages is currently being considered as an alternative to antibiotics for the treatment of bacterial infections. A number of bacteriophages were introduced to treat pneumonia in past reports. However, there are still lack of knowledge regarding the dosages, application time, mechanism and safety of phage therapy against P. aeruginosa pneumonia. We used the bacteriophage KPP10 against P. aeruginosa strain D4-induced pneumonia mouse models and observed their outcomes in comparison to control models. We found that the nasal inhalation of highly concentrated KPP10 (MOI = 80) significantly improved survival rate in pneumonia models (P < 0.01). The number of viable bacteria in both lungs and in serum were significantly decreased (P < 0.01) in phage-treated mice in comparison to the control mice. Pathological examination showed that phage-treated group had significantly reduced bleeding, inflammatory cell infiltration, and mucus secretion in lung interstitium. We also measured inflammatory cytokine levels in the serum and lung homogenates of mice. In phage-treated models, serum TNFα, IL-1β, and IFN-γ levels were significantly lower (P < 0.05, P < 0.01, and P < 0.05, respectively) than those in the control models. In the lung homogenate, the mean IL-1β level in phage-treated models was significantly lower (P < 0.05) than that of the control group. We confirmed the presence of phage in blood and lungs, and evaluated the safety of bacteriophage use in living models since bacteriophage mediated bacterial lysis arise concern of endotoxic shock. The study results suggest that phage therapy can potentially be used in treating lung infections caused by Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Xu Yang
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Anwarul Haque
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
- Department of Infectious Diseases, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Shigenobu Matsuzaki
- Department of Medical Laboratory Science, Kochi Gakuen University, Kochi, Japan
| | - Tetsuya Matsumoto
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
- Department of Infectious Diseases, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Shigeki Nakamura
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
110
|
Zhao Y, Pu M, Zhang J, Wang Y, Yan X, Yu L, He Z. Recent advancements of nanomaterial-based therapeutic strategies toward sepsis: bacterial eradication, anti-inflammation, and immunomodulation. NANOSCALE 2021; 13:10726-10747. [PMID: 34165483 DOI: 10.1039/d1nr02706a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sepsis is a life threatening disease that is caused by a dysregulated host immune response to infection, resulting in tissue damage and organ dysfunction, which account for a high in-hospital mortality (approximately 20%). However, there are still no effective and specific therapeutics for clinical sepsis management. Nanomaterial-based strategies have emerged as promising tools for improving the therapeutic efficacy of sepsis by combating lethal bacterial infection, modulating systemic inflammatory response, preventing multiple organ failure, etc. This review has comprehensively summarized the recent advancements in nanomaterial-based strategies for the management of sepsis and severe complications, in which those nanosystems act either as inherent therapeutics or as nanocarriers for the precise delivery of agents. These formulations mechanically possess antibacterial, anti-inflammatory, immunomodulatory, and anti-oxidative effects, achieving multifunctional synergistic treatment efficacy against sepsis. Furthermore, several cell membrane-derived biomimetic nanoplatforms have been used as decoys to trap and neutralize the pathogenic toxins. The critical role of other adjuvant therapies in sepsis management, including the combination of nanotechnology and stem cell therapy, is also highlighted. Overall, this review provides insights into innovative nanotechnology-based strategies applied in sepsis treatment.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Minju Pu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Jingwen Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| |
Collapse
|
111
|
Candelli M, Franza L, Pignataro G, Ojetti V, Covino M, Piccioni A, Gasbarrini A, Franceschi F. Interaction between Lipopolysaccharide and Gut Microbiota in Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22126242. [PMID: 34200555 PMCID: PMC8226948 DOI: 10.3390/ijms22126242] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Lipopolysaccharides (LPSs) are bacterial surface glycolipids, produced by Gram-negative bacteria. LPS is known to determine acute inflammatory reactions, particularly in the context of sepsis. However, LPS can also trigger chronic inflammation. In this case, the source of LPS is not an external infection, but rather an increase in endogenous production, which is usually sustained by gut microbiota (GM), and LPS contained in food. The first site in which LPS can exert its inflammatory action is the gut: both GM and gut-associated lymphoid tissue (GALT) are influenced by LPS and shift towards an inflammatory pattern. The changes in GM and GALT induced by LPS are quite similar to the ones seen in IBD: GM loses diversity, while GALT T regulatory (Tregs) lymphocytes are reduced in number, with an increase in Th17 and Th1 lymphocytes. Additionally, the innate immune system is triggered, through the activation of toll-like receptor (TLR)-4, while the epithelium is directly damaged, further triggering inflammation. In this review, we will discuss the importance of the crosstalk between LPS, GM, and GALT, and discuss the possible implications.
Collapse
Affiliation(s)
- Marcello Candelli
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, Largo A. Gemelli 8, 00168 Rome, Italy; (L.F.); (G.P.); (V.O.); (M.C.); (A.P.); (F.F.)
- Correspondence: ; Tel.: +39-0630153161
| | - Laura Franza
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, Largo A. Gemelli 8, 00168 Rome, Italy; (L.F.); (G.P.); (V.O.); (M.C.); (A.P.); (F.F.)
| | - Giulia Pignataro
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, Largo A. Gemelli 8, 00168 Rome, Italy; (L.F.); (G.P.); (V.O.); (M.C.); (A.P.); (F.F.)
| | - Veronica Ojetti
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, Largo A. Gemelli 8, 00168 Rome, Italy; (L.F.); (G.P.); (V.O.); (M.C.); (A.P.); (F.F.)
| | - Marcello Covino
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, Largo A. Gemelli 8, 00168 Rome, Italy; (L.F.); (G.P.); (V.O.); (M.C.); (A.P.); (F.F.)
| | - Andrea Piccioni
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, Largo A. Gemelli 8, 00168 Rome, Italy; (L.F.); (G.P.); (V.O.); (M.C.); (A.P.); (F.F.)
| | - Antonio Gasbarrini
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, Largo A. Gemelli 8, 00168 Rome, Italy;
| | - Francesco Franceschi
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, Largo A. Gemelli 8, 00168 Rome, Italy; (L.F.); (G.P.); (V.O.); (M.C.); (A.P.); (F.F.)
| |
Collapse
|
112
|
Karimi A, Naeini F, Asghari Azar V, Hasanzadeh M, Ostadrahimi A, Niazkar HR, Mobasseri M, Tutunchi H. A comprehensive systematic review of the therapeutic effects and mechanisms of action of quercetin in sepsis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153567. [PMID: 33940332 DOI: 10.1016/j.phymed.2021.153567] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Several studies have indicated that flavonoids exhibit a wide variety of biological actions including free radical scavenging and antioxidant activities. Quercetin, one of the most extensively distributed flavonoids in the vegetables and fruits, presents various biological activities including modulation of oxidative stress, anti-infectious, anti-inflammatory, and neuroprotective activities. METHODS The present systematic review was conducted according to the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements. We searched Web of Sciences, Google Scholar, PubMed, Scopus, and Embase databases up to February 2021 by using the relevant keywords. RESULTS Out of 672 records screened, 35 articles met the study criteria. The evidence reviewed here indicates that quercetin supplementation may exert beneficial effects on sepsis by attenuating inflammation and oxidative stress, downregulating the mRNA expression of toll-like receptors (TLRs), modulating the immune response, and alleviating sepsis-related organ dysfunctions. CONCLUSION Due to the promising therapeutic effects of quercetin on sepsis complications and the lack of clinical trials in this regard, future human randomized clinical trials are warranted.
Collapse
Affiliation(s)
- Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Vahid Asghari Azar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Malihe Hasanzadeh
- Department of Biology, Ardabil Branch Islamic Azad University, Ardabil, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Niazkar
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Majid Mobasseri
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
113
|
Aubeux D, Renard E, Pérez F, Tessier S, Geoffroy V, Gaudin A. Review of Animal Models to Study Pulp Inflammation. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.673552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human dental pulp is a highly dynamic tissue equipped with a network of resident immunocompetent cells that play a major role in the defense against pathogens and during tissue injury. Animal studies are mandatory and complementary to in vitro experiments when studying the physiopathology of dental pulp, new diagnostic tools, or innovative therapeutic strategies. This animal approach makes it possible to define a benefit-risk ratio necessary to be subsequently tested in humans. Among the animal kingdom, rodents, rabbits, ferrets, swine, dogs, and non-human primates have been used to model human pulpitis. The diversity of animals found in studies indicate the difficulty of choosing the correct and most efficient model. Each animal model has its own characteristics that may be advantageous or limiting, according to the studied parameters. These elements have to be considered in preclinical studies. This article aims to provide a thorough understanding of the different animal models used to study pulp inflammation. This may help to find the most pertinent or appropriate animal model depending on the hypothesis investigated and the expected results.
Collapse
|
114
|
He J, Zhang Q, Ma C, Giancaspro GI, Bi K, Li Q. An Effective Workflow for Differentiating the Same Genus Herbs of Chrysanthemum morifolium Flower and Chrysanthemum Indicum Flower. Front Pharmacol 2021; 12:575726. [PMID: 33967745 PMCID: PMC8102030 DOI: 10.3389/fphar.2021.575726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
C. morifolium flower and C. indicum flower are two closely related herbal species with similar morphological and microscopic characteristics but are discriminated in edible and medicinal purpose. However, there is no effective approach to distinguish the two herbs. A novel workflow for quickly differentiating C. morifolium flower and C. indicum flower was developed. Firstly, the difference in anti-inflammatory effects for C. morifolium flower and C. indicum flower was characterized using lipopolysaccharide-treated rats. Then HPLC fingerprint analysis for 53 batches of C. morifolium flowers and 33 batches of C. indicum flower was carried out to deep profile the chemical components. The preliminary markers were screened out by OPLS-DA, identified by HPLC-ESI-QTOF-MS, and quantified by the improved SSDMC (single reference standard to determine multiple compounds) approach. Finally, multiple statistical data mining was performed to confirm the markers and a binary logistic regression equation was built to differentiate C. morifolium flower and C. indicum flower successfully. In general, the established workflow was rapid, effective and highly feasible, which would provide a powerful tool for herb identification.
Collapse
Affiliation(s)
- Jiao He
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Cuiying Ma
- Department of Dietary Supplements and Herbal Medicines, Science Division, United States Pharmacopeial Convention, Rockville, MD, United States
| | - Gabriel I Giancaspro
- Department of Dietary Supplements and Herbal Medicines, Science Division, United States Pharmacopeial Convention, Rockville, MD, United States
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
115
|
Li D, Wang M, Ye J, Zhang J, Xu Y, Wang Z, Zhao M, Ye D, Wan J. Maresin 1 alleviates the inflammatory response, reduces oxidative stress and protects against cardiac injury in LPS-induced mice. Life Sci 2021; 277:119467. [PMID: 33811894 DOI: 10.1016/j.lfs.2021.119467] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Maresin 1 (MaR1) is a pro-resolving lipid mediator that has been reported to have strong regulatory effects on oxidative stress and inflammation. This study aimed to determine the effect of MaR1 on lipopolysaccharide (LPS)-induced sepsis-related cardiac injury and explore its possible mechanisms. METHODS Mice were administered MaR1 or PBS and then treated with LPS or saline for 6 h. Then, cardiac function, cardiac injury markers, cardiac macrophage differentiation, oxidative stress and myocardial cell apoptosis in each group were measured. RESULTS MaR1 treatment significantly decreased the serum levels of lactate dehydrogenase (LDH) and kinase isoenzyme (CK-MB) and improved cardiac function in LPS-induced mice. Treatment with MaR1 also inhibited LPS-induced M1 macrophage differentiation and reduced M1 macrophage-related cytokine secretion while promoting M2 macrophage differentiation and increasing M2 macrophage-related inflammatory mediator expression. In addition, MaR1 decreased serum malondialdehyde (MDA) levels and increased serum levels of superoxide dismutase (SOD) and glutathione (GSH), as well as cardiac expression of nuclear factor erythroid-2 related factor 2 (Nrf-2) and heme oxygenase 1 (HO-1), in LPS-induced mice. Furthermore, fewer TUNEL-positive cells were observed in the LPS + MaR1 group than in the LPS group. CONCLUSIONS Our experimental results show that MaR1 alleviates cardiac injury and protects against cardiac dysfunction and may be beneficial in reducing sepsis-induced cardiac injury.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatric, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
116
|
MicroRNA-23a reduces lipopolysaccharide-induced cellular apoptosis and inflammatory cytokine production through Rho-associated kinase 1/sirtuin-1/nuclear factor-kappa B crosstalk. Chin Med J (Engl) 2021; 134:829-839. [PMID: 33538509 PMCID: PMC8104237 DOI: 10.1097/cm9.0000000000001369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: MicroRNAs are closely associated with the progression and outcomes of multiple human diseases, including sepsis. In this study, we examined the role of miR-23a in septic injury. Methods: Lipopolysaccharide (LPS) was used to induce sepsis in a rat model and H9C2 and HK-2 cells. miR-23a expression was evaluated in rat myocardial and kidney tissues, as well as H9C2 and HK-2 cells. A miR-23a mimic was introduced into cells to identify the role of miR-23a in cell viability, apoptosis, and the secretion of inflammatory cytokines. Furthermore, the effect of Rho-associated kinase 1 (ROCK1), a miR-23a target, on cell damage was evaluated, and molecules involved in the underlying mechanism were identified. Results: In the rat model, miR-23a was poorly expressed in myocardial (sham vs. sepsis 1.00 ± 0.06 vs. 0.27 ± 0.03, P < 0.01) and kidney tissues (sham vs. sepsis 0.27 ± 0.03 vs. 1.00 ± 0.06, P < 0.01). Artificial overexpression of miR-23a resulted in increased proliferative activity (DNA replication rate: Control vs. LPS vs. LPS + Mock vs. LPS + miR-23a: H9C2 cells: 34.13 ± 3.12 vs. 12.94 ± 1.21 vs. 13.31 ± 1.43 vs. 22.94 ± 2.26, P < 0.05; HK-2 cells: 15.17 ± 1.43 vs. 34.52 ± 3.46 vs. 35.19 ± 3.12 vs. 19.87 ± 1.52, P < 0.05), decreased cell apoptosis (Control vs. LPS vs. LPS + Mock vs. LPS + miR-23a: H9C2 cells: 11.39 ± 1.04 vs. 32.57 ± 2.29 vs. 33.08 ± 3.12 vs. 21.63 ± 2.35, P < 0.05; HK-2 cells: 15.17 ± 1.43 vs. 34.52 ± 3.46 vs. 35.19 ± 3.12 vs. 19.87 ± 1.52, P < 0.05), and decreased production of inflammatory cytokines, including interleukin-6 (Control vs. LPS vs. LPS + Mock vs. LPS + miR-23a: H9C2 cells: 59.61 ± 5.14 vs. 113.54 ± 12.30 vs. 116.51 ± 10.69 vs. 87.69 ± 2.97 ng/mL; P < 0.05, F = 12.67, HK-2 cells: 68.12 ± 6.44 vs. 139.65 ± 16.62 vs. 143.51 ± 13.64 vs. 100.82 ± 9.74 ng/mL, P < 0.05, F = 9.83) and tumor necrosis factor-α (Control vs. LPS vs. LPS + Mock vs. LPS + miR-23a: H9C2 cells: 103.20 ± 10.31 vs. 169.67 ± 18.84 vs. 173.61 ± 15.91 vs. 133.36 ± 12.32 ng/mL, P < 0.05, F = 12.67, HK-2 cells: 132.51 ± 13.37 vs. 187.47 ± 16.74 vs. 143.51 ± 13.64 vs. 155.79 ± 15.31 ng/mL, P < 0.05, F = 9.83) in cells. However, ROCK1 was identified as a miR-23a target, and further up-regulation of ROCK1 mitigated the protective function of miR-23a in LPS-treated H9C2 and HK-2 cells. Moreover, ROCK1 suppressed sirtuin-1 (SIRT1) expression to promote the phosphorylation of nuclear factor-kappa B (NF-κB) p65, indicating the possible involvement of this signaling pathway in miR-23a-mediated events. Conclusion: Our results indicate that miR-23a could suppress LPS-induced cell damage and inflammatory cytokine secretion by binding to ROCK1, mediated through the potential participation of the SIRT1/NF-κB signaling pathway.
Collapse
|
117
|
Research progress in nanozyme-based composite materials for fighting against bacteria and biofilms. Colloids Surf B Biointerfaces 2021; 198:111465. [DOI: 10.1016/j.colsurfb.2020.111465] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
|
118
|
Lehmann C, Aali M, Zhou J, Holbein B. Comparison of Treatment Effects of Different Iron Chelators in Experimental Models of Sepsis. Life (Basel) 2021; 11:life11010057. [PMID: 33466819 PMCID: PMC7830599 DOI: 10.3390/life11010057] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Growing evidence indicates that dysregulated iron metabolism with altered and excess iron availability in some body compartments plays a significant role in the course of infection and sepsis in humans. Given that all bacterial pathogens require iron for growth, that iron withdrawal is a normal component of innate host defenses and that bacterial pathogens have acquired increasing levels of antibiotic resistance, targeting infection and sepsis through use of appropriate iron chelators has potential to provide new therapeutics. We have directly compared the effects of three Food and Drug Administration (FDA)-approved chelators (deferoxamine—DFO; deferiprone—DFP; and deferasirox—DFX), as were developed for treating hematological iron overload conditions, to DIBI, a novel purpose-designed, anti-infective and anti-inflammatory water-soluble hydroxypyridinone containing iron-selective copolymers. Two murine sepsis models, endotoxemia and polymicrobial abdominal sepsis, were utilized to help differentiate anti-inflammatory versus anti-infective activities of the chelators. Leukocyte adhesion, as measured by intravital microscopy, was observed in both models, with DIBI providing the most effective reduction and DFX the poorest. Inflammation in the abdominal sepsis model, assessed by cytokine measurements, indicated exacerbation by DFX and DFO for plasma Interleukin (IL)-6 and reductions to near-control levels for DIBI and DFP. Peritoneal infection burden was reduced 10-fold by DIBI while DFX and DFP provided no reductions. Overall, the results, together with those from other studies, revealed serious limitations for each of the three hematological chelators, i.e., as potentially repurposed for treating infection/sepsis. In contrast, DIBI provided therapeutic benefits, consistent with various in vitro and in vivo results from other studies, supporting the potential for its use in treating sepsis.
Collapse
Affiliation(s)
- Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Correspondence:
| | - Maral Aali
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Bruce Holbein
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
119
|
Hofmann E, Fink J, Eberl A, Prugger EM, Kolb D, Luze H, Schwingenschuh S, Birngruber T, Magnes C, Mautner SI, Kamolz LP, Kotzbeck P. A novel human ex vivo skin model to study early local responses to burn injuries. Sci Rep 2021; 11:364. [PMID: 33432026 PMCID: PMC7801530 DOI: 10.1038/s41598-020-79683-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 01/29/2023] Open
Abstract
Burn injuries initiate numerous processes such as heat shock response, inflammation and tissue regeneration. Reliable burn models are needed to elucidate the exact sequence of local events to be able to better predict when local inflammation triggers systemic inflammatory processes. In contrast to other ex vivo skin culture approaches, we used fresh abdominal skin explants to introduce contact burn injuries. Histological and ultrastructural analyses confirmed a partial-thickness burn pathology. Gene expression patterns and cytokine production profiles of key mediators of the local inflammation, heat shock response, and tissue regeneration were analyzed for 24 h after burn injury. We found significantly increased expression of factors involved in tissue regeneration and inflammation soon after burn injury. To investigate purely inflammation-mediated reactions we injected lipopolysaccharide into the dermis. In comparison to burn injury, lipopolysaccharide injection initiated an inflammatory response while expression patterns of heat shock and tissue regeneration genes were unaffected for the duration of the experiment. This novel ex vivo human skin model is suitable to study the local, early responses to skin injuries such as burns while maintaining an intact overall tissue structure and it gives valuable insights into local mechanisms at the very beginning of the wound healing process after burn injuries.
Collapse
Affiliation(s)
- Elisabeth Hofmann
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Julia Fink
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
| | - Anita Eberl
- HEALTH-Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
| | - Eva-Maria Prugger
- HEALTH-Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Graz, Austria
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Hanna Luze
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Simon Schwingenschuh
- HEALTH-Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
| | - Thomas Birngruber
- HEALTH-Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
| | - Christoph Magnes
- HEALTH-Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
| | - Selma I Mautner
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- HEALTH-Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Lars-Peter Kamolz
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Petra Kotzbeck
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria.
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
120
|
Lipopolysaccharide exposure induces oxidative damage in Caenorhabditis elegans: protective effects of carnosine. BMC Pharmacol Toxicol 2020; 21:85. [PMID: 33272314 PMCID: PMC7713333 DOI: 10.1186/s40360-020-00455-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023] Open
Abstract
Background The present study was designed to investigate the protective effects and mechanisms of carnosine on lipopolysaccharide (LPS)-induced injury in Caenorhabditis elegans. Methods C. elegans individuals were stimulated for 24 h with LPS (100 μg/mL), with or without carnosine (0.1, 1, 10 mM). The survival rates and behaviors were determined. The activities of superoxide dismutase (SOD), glutathione reductase (GR), and catalase (CAT) and levels of malondialdehyde (MDA) and glutathione (GSH) were determined using the respective kits. Reverse transcription polymerase chain reaction (RT-PCR) was performed to validate the differential expression of sod-1, sod-2, sod-3, daf-16, ced-3, ced-9, sek-1, and pmk-1. Western blotting was used to determine the levels of SEK1, p38 mitogen-activated protein kinase (MAPK), cleaved caspase3, and Bcl-2. C. elegans sek-1 (km2) mutants and pmk-1 (km25) mutants were used to elucidate the role of the p38 MAPK signaling pathway. Results Carnosine improved the survival of LPS-treated C. elegans and rescued behavioral phenotypes. It also restrained oxidative stress by decreasing MDA levels and increasing SOD, GR, CAT, and GSH levels. RT-PCR results showed that carnosine treatment of wild-type C. elegans up-regulated the mRNA expression of the antioxidant-related genes sod-1, sod-2, sod-3, and daf-16. The expression of the anti-apoptosis-related gene ced-9 and apoptosis-related gene ced-3 was reversed by carnosine. In addition, carnosine treatment significantly decreased cleaved caspase3 levels and increased Bcl-2 levels in LPS-treated C. elegans. Apoptosis in the loss-of-function strains of the p38 MAPK signaling pathway was suppressed under LPS stress; however, the apoptotic effects of LPS were blocked in the sek-1 and pmk-1 mutants. The expression levels of sek-1 and pmk-1 mRNAs were up-regulated by LPS and reversed by carnosine. Finally, the expression of p-p38MAPK and SEK1 was significantly increased by LPS, which was reversed by carnosine. Conclusion Carnosine treatment protected against LPS injury by decreasing oxidative stress and inhibiting apoptosis through the p38 MAPK pathway.
Collapse
|
121
|
Gimenez BT, Cezarette GN, Bomfim ADS, Monteiro WM, Russo EMDS, Frantz FG, Sampaio SV, Sartim MA. Role of crotoxin in coagulation: novel insights into anticoagulant mechanisms and impairment of inflammation-induced coagulation. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200076. [PMID: 33293940 PMCID: PMC7702976 DOI: 10.1590/1678-9199-jvatitd-2020-0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Snake venom phospholipases A2 (svPLA2) are
biologically active toxins, capable of triggering and modulating a wide
range of biological functions. Among the svPLA2s, crotoxin (CTX)
has been in the spotlight of bioprospecting research due to its role in
modulating immune response and hemostasis. In the present study, novel
anticoagulant mechanisms of CTX, and the modulation of inflammation-induced
coagulation were investigated. Methods: CTX anticoagulant activity was evaluated using platelet poor plasma (PPP)
and whole blood (WB), and also using isolated coagulation factors and
complexes. The toxin modulation of procoagulant and pro-inflammatory effects
was evaluated using the expression of tissue factor (TF) and cytokines in
lipopolysaccharide (LPS)-treated peripheral blood mononuclear cells (PBMC)
and in WB. Results: The results showed that CTX impaired clot formation in both PPP and WB, and
was responsible for the inhibition of both intrinsic (TF/factor VIIa) and
extrinsic (factor IXa/factor VIIIa) tenase complexes, but not for factor Xa
and thrombin alone. In addition, the PLA2 mitigated the
prothrombinase complex by modulating the coagulation phospholipid role in
the complex. In regards to the inflammation-coagulation cross talk, the
toxin was capable of reducing the production of the pro-inflammatory
cytokines IL-1β, IL-6 and TNF-α, and was followed by decreased levels of TF
and procoagulant activity from LPS-treated PBMC either isolated or in
WB. Conclusion: The results obtained in the present study recognize the toxin as a novel
medicinal candidate to be applied in inflammatory diseases with coagulation
disorders.
Collapse
Affiliation(s)
- Bruna Terada Gimenez
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Gabriel Neves Cezarette
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Aline de Sousa Bomfim
- Center for Cell-Based Therapy and Regional Blood Center of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Wuelton Marcelo Monteiro
- Tropical Medicine Graduate Program, Amazonas State University, Manaus, AM, Brazil.,Carlos Borborema Clinical Research Institute, Doutor Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, AM, Brazil
| | - Elisa Maria de Sousa Russo
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy and Regional Blood Center of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Fabiani Gai Frantz
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Marco Aurelio Sartim
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.,Basic and Applied Immunology Graduate Program, Institute of Biological Sciences, Federal University of Amazonas, Manaus, AM, Brazil
| |
Collapse
|
122
|
Wu C, Li H, Zhang P, Tian C, Luo J, Zhang W, Bhandari S, Jin S, Hao Y. Lymphatic Flow: A Potential Target in Sepsis-Associated Acute Lung Injury. J Inflamm Res 2020; 13:961-968. [PMID: 33262632 PMCID: PMC7695606 DOI: 10.2147/jir.s284090] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Sepsis is life-threatening organ dysfunction caused by an imbalance in the body’s response to infection and acute lung injury (ALI) related to sepsis is a common complication. The rapid morbidity and high mortality associated with sepsis is a significant clinical problem facing critical care medicine. Inflammation plays a vital role in the occurrence of sepsis. Notably, the body produces different immune cells and pro-inflammatory factors to clear pathogens. However, excessive inflammation can damage multiple tissues and organs when it fails to resolve in time. Additionally, lymphatic vessels could effectively transfer inflammatory cells and factors away from tissues and into blood circulation, thereby reducing damage, and promoting the resolution of inflammation. Therefore, any dysfunction and/or destruction of the lymphatic system may result in lymphedema followed by inflammatory storms and eventual sepsis. Consequently, the present study aimed to review and highlight the role of lymphatic vessels in related body tissues and organs during sepsis and other associated diseases.
Collapse
Affiliation(s)
- Chenghua Wu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Hui Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,Key Laboratory of Anaesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Puhong Zhang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chao Tian
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jun Luo
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wenyan Zhang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Suwas Bhandari
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Shengwei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yu Hao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
123
|
Dual Effect of Soloxolone Methyl on LPS-Induced Inflammation In Vitro and In Vivo. Int J Mol Sci 2020; 21:ijms21217876. [PMID: 33114200 PMCID: PMC7660695 DOI: 10.3390/ijms21217876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022] Open
Abstract
Plant-extracted triterpenoids belong to a class of bioactive compounds with pleotropic functions, including antioxidant, anti-cancer, and anti-inflammatory effects. In this work, we investigated the anti-inflammatory and anti-oxidative activities of a semisynthetic derivative of 18βH-glycyrrhetinic acid (18βH-GA), soloxolone methyl (methyl 2-cyano-3,12-dioxo-18βH-olean-9(11),1(2)-dien-30-oate, or SM) in vitro on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and in vivo in models of acute inflammation: LPS-induced endotoxemia and carrageenan-induced peritonitis. SM used at non-cytotoxic concentrations was found to attenuate the production of reactive oxygen species and nitric oxide (II) and increase the level of reduced glutathione production by LPS-stimulated RAW264.7 cells. Moreover, SM strongly suppressed the phagocytic and migration activity of activated macrophages. These effects were found to be associated with the stimulation of heme oxigenase-1 (HO-1) expression, as well as with the inhibition of nuclear factor-κB (NF-κB) and Akt phosphorylation. Surprisingly, it was found that SM significantly enhanced LPS-induced expression of the pro-inflammatory cytokines interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in RAW264.7 cells via activation of the c-Jun/Toll-like receptor 4 (TLR4) signaling axis. In vivo pre-exposure treatment with SM effectively inhibited the development of carrageenan-induced acute inflammation in the peritoneal cavity, but it did not improve LPS-induced inflammation in the endotoxemia model.
Collapse
|
124
|
Chénard T, Prévost K, Dubé J, Massé E. Immune System Modulations by Products of the Gut Microbiota. Vaccines (Basel) 2020; 8:vaccines8030461. [PMID: 32825559 PMCID: PMC7565937 DOI: 10.3390/vaccines8030461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota, which consists of all bacteria, viruses, fungus, and protozoa living in the intestine, and the immune system have co-evolved in a symbiotic relationship since the origin of the immune system. The bacterial community forming the microbiota plays an important role in the regulation of multiple aspects of the immune system. This regulation depends, among other things, on the production of a variety of metabolites by the microbiota. These metabolites range from small molecules to large macro-molecules. All types of immune cells from the host interact with these metabolites resulting in the activation of different pathways, which result in either positive or negative responses. The understanding of these pathways and their modulations will help establish the microbiota as a therapeutic target in the prevention and treatment of a variety of immune-related diseases.
Collapse
|
125
|
Lipoteichoic Acid Accelerates Bone Healing by Enhancing Osteoblast Differentiation and Inhibiting Osteoclast Activation in a Mouse Model of Femoral Defects. Int J Mol Sci 2020; 21:ijms21155550. [PMID: 32756396 PMCID: PMC7432397 DOI: 10.3390/ijms21155550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022] Open
Abstract
Lipoteichoic acid (LTA) is a cell wall component of Gram-positive bacteria. Limited data suggest that LTA is beneficial for bone regeneration in vitro. Thus, we used a mouse model of femoral defects to explore the effects of LTA on bone healing in vivo. Micro-computed tomography analysis and double-fluorochrome labeling were utilized to examine whether LTA can accelerate dynamic bone formation in vivo. The effects of LTA on osteoblastogenesis and osteoclastogenesis were also studied in vitro. LTA treatment induced prompt bone bridge formation, rapid endochondral ossification, and accelerated healing of fractures in mice with femoral bone defects. In vitro, LTA directly enhanced indicators of osteogenic factor-induced MC3T3-E1 cell differentiation, including alkaline phosphatase activity, calcium deposition and osteopontin expression. LTA also inhibited osteoclast activation induced by receptor activator of nuclear factor-kappa B ligand. We identified six molecules that may be associated with LTA-accelerated bone healing: monocyte chemoattractant protein 1, chemokine (C-X-C motif) ligand 1, cystatin C, growth/differentiation factor 15, endostatin and neutrophil gelatinase-associated lipocalin. Finally, double-fluorochrome, dynamic-labeling data indicated that LTA significantly enhanced bone-formation rates in vivo. In conclusion, our findings suggest that LTA has promising bone-regeneration properties.
Collapse
|
126
|
Dong Y, Fan G, Li Y, Zhou Q. TUG1 Represses Apoptosis, Autophagy, and Inflammatory Response by Regulating miR-27a-3p/SLIT2 in Lipopolysaccharide-Treated Vascular Endothelial Cells. J Surg Res 2020; 256:345-354. [PMID: 32738556 DOI: 10.1016/j.jss.2020.05.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The dysfunction of vascular endothelial cells is associated with sepsis development. Long noncoding RNAs take part in the regulation of vascular endothelial cell function. This study aimed to explore the role and mechanism of long noncoding RNA taurine-upregulated gene 1 (TUG1) in lipopolysaccharide (LPS)-induced endothelial cell injury. METHODS LPS-treated human umbilical vein endothelial cells (HUVECs) were used as a model of sepsis in vitro. Quantitative real-time polymerase chain reaction was performed to detect the expression of TUG1, microRNA-27a-3p (miR-27a-3p) and slit guidance ligand 2 (SLIT2) messenger RNA. Western blot was conducted to measure the protein levels of SLIT2 as well as those involved in apoptosis, autophagy, and inflammatory response. Flow cytometry was used to detect cell apoptotic rate. The targets of TUG1 and miR-27a-3p were predicted via starBase (http://starbase.sysu.edu.cn/index.php). Dual-luciferase reporter, RNA immunoprecipitation, and pull-down assays were carried out to validate the target correlation between miR-27a-3p and TUG1/SLIT2. RESULTS TUG1 expression was decreased after the treatment of LPS in HUVECs. Overexpression of TUG1 decreased LPS-induced apoptosis, autophagy, and inflammatory response. TUG1 was a sponge of miR-27a-3p. Upregulation of miR-27a-3p reversed the suppressive effect of TUG1 overexpression on LPS-induced apoptosis, autophagy, and inflammatory response. SLIT2 was a target of miR-27a-3p. Knockdown of miR-27a-3p could inhibit LPS-induced injury by increasing SLIT2 in HUVECs. TUG1 could enhance SLIT2 expression by competitively sponging miR-27a-3p. CONCLUSIONS TUG1 could repress cell apoptosis, autophagy, and inflammatory response in LPS-treated HUVECs by sponging miR-27a-3p to target SLIT2, providing a potential target for the treatment of sepsis.
Collapse
Affiliation(s)
- Yuanyuan Dong
- Department of Respiratory Medicine, The People's Hospital of Shiyan, (Affiliated People's Hospital of Hubei University of Medicine), Shiyan, Hubei, China
| | - Gongchun Fan
- Department of Respiratory Medicine, The People's Hospital of Shiyan, (Affiliated People's Hospital of Hubei University of Medicine), Shiyan, Hubei, China
| | - Yanhong Li
- Department of Respiratory Medicine, The People's Hospital of Shiyan, (Affiliated People's Hospital of Hubei University of Medicine), Shiyan, Hubei, China
| | - Qin Zhou
- Department of Respiratory Medicine, The People's Hospital of Shiyan, (Affiliated People's Hospital of Hubei University of Medicine), Shiyan, Hubei, China.
| |
Collapse
|
127
|
Li J, Sparkenbaugh EM, Su G, Zhang F, Xu Y, Xia K, He P, Baytas S, Pechauer S, Padmanabhan A, Linhardt RJ, Pawlinski R, Liu J. Enzymatic Synthesis of Chondroitin Sulfate E to Attenuate Bacteria Lipopolysaccharide-Induced Organ Damage. ACS CENTRAL SCIENCE 2020; 6:1199-1207. [PMID: 32724854 PMCID: PMC7379384 DOI: 10.1021/acscentsci.0c00712] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 05/09/2023]
Abstract
Chondroitin sulfate E (CS-E) is a sulfated polysaccharide that contains repeating disaccharides of 4,6-disulfated N-acetylgalactosamine and glucuronic acid residues. Here, we report the enzymatic synthesis of three homogeneous CS-E oligosaccharides, including CS-E heptasaccharide (CS-E 7-mer), CS-E tridecasaccharide (CS-E13-mer), and CS-E nonadecasaccharide (CS-E 19-mer). The anti-inflammatory effect of CS-E 19-mer was investigated in this study. CS-E 19-mer neutralizes the cytotoxic effect of histones in a cell-based assay and in mice. We also demonstrate that CS-E 19-mer treatment improves survival and protects against organ damage in a mouse model of endotoxemia induced by bacterial lipopolysaccharide (LPS). CS-E19-mer directly interacts with circulating histones in the plasma from LPS-challenged mice. CS-E 19-mer does not display anticoagulant activity nor react with heparin-induced thrombocytopenia antibodies isolated from patients. The successful synthesis of CS-E oligosaccharides provides structurally defined carbohydrates for advancing CS-E research and offers a potential therapeutic agent to treat life-threatening systemic inflammation.
Collapse
Affiliation(s)
- Jine Li
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Erica M. Sparkenbaugh
- UNC
Blood Research Center and Division of Hematology/Oncology, Department
of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Guowei Su
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Fuming Zhang
- Department
of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Yongmei Xu
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Ke Xia
- Department
of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Pen He
- Department
of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Sultan Baytas
- Department
of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Shannon Pechauer
- Versiti
Blood Research Institute & Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Anand Padmanabhan
- Department
of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota, United States
| | - Robert J. Linhardt
- Department
of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Rafal Pawlinski
- UNC
Blood Research Center and Division of Hematology/Oncology, Department
of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
- (R.P.)
| | - Jian Liu
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States
- (J.L.)
| |
Collapse
|
128
|
Liposomal delivery of antibiotic loaded nucleic acid nanogels with enhanced drug loading and synergistic anti-inflammatory activity against S. aureus intracellular infections. J Control Release 2020; 324:620-632. [PMID: 32525012 DOI: 10.1016/j.jconrel.2020.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/10/2020] [Accepted: 06/03/2020] [Indexed: 12/28/2022]
Abstract
The persistence of Staphylococcus aureus has been accredited to its ability to escape immune response via host cell invasion. Despite the efficacy of many antibiotics against S. aureus, the high extracellular concentrations of conventional antibiotics required for bactericidal activity is limited by their low cellular accumulation and poor intracellular retention. While nanocarriers have received tremendous attention for antibiotic delivery against persistent pathogens, they suffer daunting challenges such as low drug loading, poor retention and untimely release of hydrophilic cargos. Here, a hybrid system (Van_DNL) is fabricated wherein nucleic acid nanogels are caged within a liposomal vesicle for antibiotic delivery. The central principle of this approach relies on exploiting non-covalent electrostatic interactions between cationic cargos and polyanionic DNA to immobilize antibiotics and enable precise temporal release against intracellular S. aureus. In vitro characterization of Van_DNL revealed a stable homogenous formulation with circular morphology and enhanced vancomycin loading efficiency. The hybrid system significantly sustained the release of vancomycin over 24 h compared to liposomal or nanogel controls. Under enzymatic conditions relevant to S. aureus infections, lipase triggered release of vancomycin was observed from the hybrid. While using Van_DNL to treat S. aureus infected macrophages, a dose dependent reduction in intracellular bacterial load was observed over 24 h and exposure to Van_DNL for 48 h caused negligible cellular toxicity. Pre-treatment of macrophages with the antimicrobial hybrid resulted in a strong anti-inflammatory activity in synergy with vancomycin following endotoxin stimulation. Conceptually, these findings highlight these hybrids as a unique and universal platform for synergistic antimicrobial and anti-inflammatory therapy against persistent infections.
Collapse
|
129
|
Fokam D, Dickson K, Kamali K, Holbein B, Colp P, Stueck A, Zhou J, Lehmann C. Iron Chelation in Murine Models of Systemic Inflammation Induced by Gram-Positive and Gram-Negative Toxins. Antibiotics (Basel) 2020; 9:antibiotics9060283. [PMID: 32466384 PMCID: PMC7345558 DOI: 10.3390/antibiotics9060283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 12/28/2022] Open
Abstract
Iron is an essential element for various physiological processes, but its levels must remain tightly regulated to avoid cellular damage. Similarly, iron plays a dual role in systemic inflammation, such as with sepsis. Leukocytes utilize iron to produce reactive oxygen species (ROS) to kill bacteria, but pathologically increased iron-catalyzed ROS production in sepsis can lead to damage of host cells, multi-organ failure and death. Temporary reduction in bioavailable iron represents a potential therapeutic target in sepsis. This study investigates the effect of the novel iron chelator, DIBI, in murine models of systemic (hyper-)inflammation: C57BL/6 mice were challenged with toxins from Gram-positive (Staphylococcus aureus: lipoteichoic acid, peptidoglycan) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae: lipopolysaccharide). Intravital microscopy (IVM) was performed to assess immune cell activation and its impact on microvascular blood flow in vivo in the microcirculation of the gut. Plasma inflammatory mediators were measured via multiplex assay, and morphologic change in intestinal tissue was evaluated. DIBI treatment decreased leukocyte (hyper-)activation induced by Gram-positive and Gram-negative toxins. In some cases, it preserved capillary perfusion, reduced plasma inflammatory markers and attenuated tissue damage. These findings support the utility of DIBI as a novel treatment for systemic inflammation, e.g., sepsis.
Collapse
Affiliation(s)
- Danielle Fokam
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| | - Kayle Dickson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (K.D.); (B.H.)
| | - Kiyana Kamali
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| | - Bruce Holbein
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (K.D.); (B.H.)
| | - Patricia Colp
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (P.C.); (A.S.)
| | - Ashley Stueck
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (P.C.); (A.S.)
| | - Juan Zhou
- Department of Anesthesia, Pain and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| | - Christian Lehmann
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada;
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (K.D.); (B.H.)
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 1X5, Canada;
- Department of Anesthesia, Pain and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada;
- Correspondence: ; Tel.: +1-902-494-1287
| |
Collapse
|
130
|
Senavirathna I, Rathish D, Agampodi S. Cytokine response in human leptospirosis with different clinical outcomes: a systematic review. BMC Infect Dis 2020; 20:268. [PMID: 32264832 PMCID: PMC7137275 DOI: 10.1186/s12879-020-04986-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
Background Leptospirosis is a neglected zoonotic disease which is a major challenge for clinicians and public health professionals in tropical countries. The cytokine storm during the second (immune) phase is thought to be a major contributory factor for the leptospirosis disease severity. We aim to summarize evidence for cytokine response in leptospirosis at different clinical outcomes. Methods A systematic review was carried out to examine the cytokine response in leptospirosis patients using relevant scientific databases. Reference lists of the selected articles were also screened. Quality of the selected studies was assessed by using the National Institutes of Health Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Results Of the 239 articles retrieved in the initial search, 18 studies fulfilled the selection criteria. India and Thailand have produced the highest number of studies (17% each, n = 3). The majority were comparative cross-sectional studies (72%, n = 13). Overall the quality of the selected studies was fair regardless of few drawbacks such as reporting of sample size and the lack of adjustment for confounders. Microscopic agglutination test (67% - 12/18) and enzyme-linked immunosorbent assay (50% - 9/18) were commonly used for the confirmation of leptospirosis and the measurement of cytokines respectively. IL-1b, IL-2, IL-4, IL-6, IL-8, IL-10 and TNF-α levels were found to be significantly higher in severe than in mild leptospirosis. There were equivocal findings on the association between IL-1β, TNF-α and IL-10/TNF-α ratio and disease severity. Conclusions Leptospirosis had a wide-range of elevated cytokines. However, prospective studies in-relation to the onset of the symptom are required to better understand the pathophysiology of cytokine response in leptospirosis.
Collapse
Affiliation(s)
- Indika Senavirathna
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - Devarajan Rathish
- Department of Pharmacology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka.
| | - Suneth Agampodi
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| |
Collapse
|
131
|
Nadeem A, Al-Harbi NO, Ahmad SF, Al-Harbi MM, Alhamed AS, Alfardan AS, Assiri MA, Ibrahim KE, Albassam H. Blockade of interleukin-2-inducible T-cell kinase signaling attenuates acute lung injury in mice through adjustment of pulmonary Th17/Treg immune responses and reduction of oxidative stress. Int Immunopharmacol 2020; 83:106369. [PMID: 32163900 DOI: 10.1016/j.intimp.2020.106369] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/23/2020] [Accepted: 03/01/2020] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is linked with considerable morbidity and mortality. ALI can be caused by various agents, one of them being sepsis. ALI is characterized by injury to vascular endothelium and alveolar epithelium that results in edema, pulmonary immune cells infiltration and hypoxemia. Neutrophils and T cells particularly play a huge role in amplification of pulmonary inflammation through release of multiple inflammatory mediators. Recent reports suggest a strong involvement of Th17 cells and oxidative stress in initiation/amplification of pulmonary inflammation during ALI. Interleukin-2-inducible T-cell kinase (ITK) plays a key role in Th17 cell development through control of several transcription factors. Therefore, our study explored the role of ITK on airway inflammation (total/neutrophilic cell counts, myeloperoxidase activity, E-cadherin expression, histopathological analyses) and effect of its inhibition on various inflammatory/anti-inflammatory pathways during ALI [phosphorylated-ITK (p-ITK), NFATc1, IL-17A, STAT3, Foxp3, IL-10, iNOS, nitrotyrosine, lipid peroxides). ALI was associated with increased total/neutrophilic cell counts and myeloperoxidase activity, and decreased E-cadherin expression in airway epithelial cells (AECs) which was concurrent with upregulation of p-ITK, NFATc1, IL-17A, STAT3 in CD4+ T cells and iNOS/nitrotyrosine in AECs. Treatment with ITK inhibitor reversed ALI-induced changes in airway inflammation and Th17 cells/oxidative stress. Treatment with ITK inhibitor further expanded Treg cells in mice with ALI. In short, our study proposes that ITK signaling plays a significant role in sepsis-induced ALI through upregulation of Th17 cells and oxidative stress. Further, findings provide evidence that ITK blockade could be a potential treatment strategy to attenuate airway inflammation associated with ALI.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Assiri
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hussam Albassam
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
132
|
RIPK3 collaborates with GSDMD to drive tissue injury in lethal polymicrobial sepsis. Cell Death Differ 2020; 27:2568-2585. [PMID: 32152555 DOI: 10.1038/s41418-020-0524-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Sepsis is a systemic inflammatory disease causing life-threatening multi-organ dysfunction. Accumulating evidences suggest that two forms of programmed necrosis, necroptosis and pyroptosis triggered by the pathogen component lipopolysaccharide (LPS) and inflammatory cytokines, play important roles in the development of bacterial sepsis-induced shock and tissue injury. Sepsis-induced shock and tissue injury required receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL) phosphorylation, caspase11 activation and gasdermin D (GSDMD) cleavage. However, the synergistic effect of necroptosis and pyroptosis in the pathological progress of sepsis remains elusive. In this study, we found that blockage of both necroptosis and pyroptosis (double deletion of Ripk3/Gsdmd or Mlkl/Gsdmd) resulted in accumulative protection against septic shock, systemic blood clotting and multi-organ injury in mice. Bone marrow transplantation confirmed that necroptosis and pyroptosis in both myeloid and nonmyeloid cells are indispensable in the progression of sepsis-induced multi-organ injury. Both RIPK3 and GSDMD signaling collaborated to amplify necroinflammation and tissue factor release in macrophages and endothelial cells, which led to tissue injury. Furthermore, cell death induced by inflammatory cytokines and high-mobility group box 1 could be prevented by double ablation of Ripk3/Gsdmd or Mlkl/Gsdmd, suggesting that a positive feedback loop interconnecting RIPK3/MLKL and GSDMD machinery and inflammation facilitated sepsis progression. Collectively, our findings demonstrated that RIPK3-mediated necroptosis and GSDMD-mediated pyroptosis collaborated to amply inflammatory signaling and enhance tissue injury in the process of sepsis, which may shed new light on two potential targets of combined therapeutic interventions for this highly lethal disorder.
Collapse
|
133
|
Coskun D, Corum O, Yazar E. Effect of supportive therapy on the pharmacokinetics of intravenous marbofloxacin in endotoxemic sheep. J Vet Pharmacol Ther 2020; 43:288-296. [PMID: 32133667 DOI: 10.1111/jvp.12849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/28/2020] [Accepted: 02/13/2020] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to determine the influences of supportive therapy (ST) on the pharmacokinetics (PK) of marbofloxacin in lipopolysaccharide (LPS)-induced endotoxemic sheep. Furthermore, minimum inhibitory concentration (MIC) of marbofloxacin against Escherichia coli, Mannheimia haemolytica, Pasteurella multocida, Klebsiella pneumoniae, Salmonella spp., and Staphylococcus aureus was determined. The study was performed using a three-period cross PK design following a 15-day washout period. In the first period, marbofloxacin (10 mg/kg) was administered by an intravenous (IV) injection. In the second and third periods, marbofloxacin was co-administered with ST (lactated ringer + 5% dextrose + 0.45% sodium chloride, IV, 20 ml/kg, dexamethasone 0.5 mg/kg, SC) and ST + LPS (E. coli O55:B5, 10 µg/kg), respectively. Plasma marbofloxacin concentration was measured using HPLC-UV. Following IV administration of marbofloxacin alone, the t 1 / 2 λ z , AUC0-∞ , ClT , and Vdss were 2.87 hr, 34.73 hr × µg/ml, 0.29 L hr-1 kg-1 , and 0.87 L/kg, respectively. While no change was found in the MBX + ST group in terms of the PK parameters of marbofloxacin, it was determined that the ClT of marbofloxacin decreased, AUC0-∞ increased, and t 1 / 2 λ z and MRT prolonged in the MBX + ST + LPS group. MIC values of marbofloxacin were 0.031 to >16 µg/ml for E. coli, 0.016 to >16 µg/ml for M. haemolytica, 0.016-1 µg/ml for P. multocida, 0.016-0.25 µg/ml for K. pneumoniae, 0.031-0.063 µg/ml for Salmonella spp., and 0.031-1 µg/ml for S. aureus. The study results show the necessity to make a dose adjustment of marbofloxacin following concomitant administration of ST in endotoxemic sheep. Also, the PK and pharmacodynamic effect of marbofloxacin needs to be determined in naturally infected septicemic sheep following concomitant administration of single and ST.
Collapse
Affiliation(s)
- Devran Coskun
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Siirt, Siirt, Turkey
| | - Orhan Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Kastamonu, Kastamonu, Turkey
| | - Enver Yazar
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| |
Collapse
|
134
|
Źródłowski T, Sobońska J, Salamon D, McFarlane IM, Ziętkiewicz M, Gosiewski T. Classical Microbiological Diagnostics of Bacteremia: Are the Negative Results Really Negative? What is the Laboratory Result Telling Us About the "Gold Standard"? Microorganisms 2020; 8:microorganisms8030346. [PMID: 32121353 PMCID: PMC7143506 DOI: 10.3390/microorganisms8030346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/29/2022] Open
Abstract
Standard blood cultures require at least 24–120 h to be reported as preliminary positive. The objective of this study was to compare the reliability of Gram staining and fluorescent in-situ hybridization (FISH) for detecting bacteria in otherwise negative blood culture bottles. Ninety-six sets were taken from patients with a diagnosis of sepsis. Six incomplete blood culture sets and eight blood cultures sets demonstrating positive growth were excluded. We performed Gram stain and FISH on 82 sets taken from post-operative septic patients: 82 negative aerobic blood cultures, 82 anaerobic blood cultures, and 82 blood samples, as well as 57 blood samples taken from healthy volunteers. From the eighty-two blood sets analyzed from the septic patients, Gram stain visualized bacteria in 62.2% of blood samples, 35.4% of the negative aerobic bottles, and in 31.7% of the negative anaerobic bottles. Utilizing FISH, we detected bacteria in 75.6%, 56.1%, and 64.6% respectively. Among the blood samples from healthy volunteers, FISH detected bacteria in 64.9%, while Gram stain detected bacteria in only 38.6%. The time needed to obtain the study results using Gram stain was 1 h, for FISH 4 h, and for the culture method, considering the duration of growth, 5 days. Gram stain and FISH allow quick detection of bacteria in the blood taken directly from a patient. Finding phagocytosed bacteria, which were also detected among healthy individuals, confirms the hypothesis that blood microbiome exists.
Collapse
Affiliation(s)
- Tomasz Źródłowski
- Thoracic Anesthesia and Respiratory Intensive Care Unit, John Paul II Hospital, 31- 202 Kraków, Poland;
- Department of Internal Medicine, St. John’s Episcopal Hospital, Far Rockaway, NY 11691, USA
| | - Joanna Sobońska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland
| | - Dominika Salamon
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland
| | - Isabel M. McFarlane
- Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Mirosław Ziętkiewicz
- Thoracic Anesthesia and Respiratory Intensive Care Unit, John Paul II Hospital, 31- 202 Kraków, Poland;
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland
- Correspondence: (M.Z.); (T.G.)
| | - Tomasz Gosiewski
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland
- Correspondence: (M.Z.); (T.G.)
| |
Collapse
|
135
|
Abuiessa SA, Wedn AM, El-Gowilly SM, Helmy MM, El-Mas MM. Pre-eclamptic Fetal Programming Alters Neuroinflammatory and Cardiovascular Consequences of Endotoxemia in Sex-Specific Manners. J Pharmacol Exp Ther 2020; 373:325-336. [PMID: 32094295 DOI: 10.1124/jpet.119.264192] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Pre-eclampsia (PE)-induced fetal programming predisposes offspring to health hazards in adult life. Here, we tested the hypothesis that pre-eclamptic fetal programming elicits sexually dimorphic inflammatory and cardiovascular complications to endotoxemia in adult rat offspring. PE was induced by oral administration of L-NAME (50 mg/kg per day for seven consecutive days) starting from day 14 of conception. Cardiovascular studies were performed in conscious adult male and female offspring preinstrumented with femoral indwelling catheters. Compared with non-PE male counterparts, intravenous administration of lipopolysaccharide (LPS, 5 mg/kg) to PE male offspring caused significantly greater 1) falls in blood pressure, 2) increases in heart rate, 3) rises in arterial dP/dtmax, a correlate of left ventricular contractility, and 4) decreases in time- and frequency-domain indices of heart rate variability (HRV). By contrast, the hypotensive and tachycardic actions of LPS in female offspring were independent of the pre-eclamptic state and no clear changes in HRV or dP/dtmax were noted. Measurement of arterial baroreflex activity by vasoactive method revealed no sex specificity in baroreflex dysfunction induced by LPS. Immunohistochemical studies showed increased protein expression of toll-like receptor 4 in heart as well as in brainstem neuronal pools of the nucleus of solitary tract and rostral ventrolateral medulla in endotoxic PE male, but not female, offspring. Enhanced myocardial, but not neuronal, expression of monocyte chemoattractant protein-1 was also demonstrated in LPS-treated male offspring. Together, pre-eclamptic fetal programming aggravates endotoxic manifestations of hypotension and autonomic dysfunction in male offspring via exacerbating myocardial and neuromedullary inflammatory pathways. SIGNIFICANCE STATEMENT: Current molecular and neuroanatomical evidence highlights a key role for pre-eclamptic fetal programming in offspring predisposition to health hazards induced by endotoxemia in adult life. Pre-eclampsia accentuates endotoxic manifestations of hypotension, tachycardia, and cardiac autonomic dysfunction in male offspring via exacerbating myocardial and central inflammatory pathways. The absence of such detrimental effects in female littermates suggests sexual dimorphism in the interaction of pre-eclamptic fetal programming with endotoxemia.
Collapse
Affiliation(s)
- Salwa A Abuiessa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Abdalla M Wedn
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mai M Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
136
|
Barabás K, Szabó-Meleg E, Ábrahám IM. Effect of Inflammation on Female Gonadotropin-Releasing Hormone (GnRH) Neurons: Mechanisms and Consequences. Int J Mol Sci 2020; 21:ijms21020529. [PMID: 31947687 PMCID: PMC7014424 DOI: 10.3390/ijms21020529] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
: Inflammation has a well-known suppressive effect on fertility. The function of gonadotropin-releasing hormone (GnRH) neurons, the central regulator of fertility is substantially altered during inflammation in females. In our review we discuss the latest results on how the function of GnRH neurons is modified by inflammation in females. We first address the various effects of inflammation on GnRH neurons and their functional consequences. Second, we survey the possible mechanisms underlying the inflammation-induced actions on GnRH neurons. The role of several factors will be discerned in transmitting inflammatory signals to the GnRH neurons: cytokines, kisspeptin, RFamide-related peptides, estradiol and the anti-inflammatory cholinergic pathway. Since aging and obesity are both characterized by reproductive decline our review also focuses on the mechanisms and pathophysiological consequences of the impact of inflammation on GnRH neurons in aging and obesity.
Collapse
Affiliation(s)
- Klaudia Barabás
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, H-7624 Pécs, Hungary;
| | - Edina Szabó-Meleg
- Departement of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary;
| | - István M. Ábrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, H-7624 Pécs, Hungary;
- Correspondence:
| |
Collapse
|