101
|
Stoll ML. Gut microbes, immunity, and spondyloarthritis. Clin Immunol 2015; 159:134-42. [PMID: 25967460 DOI: 10.1016/j.clim.2015.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 05/01/2015] [Accepted: 05/03/2015] [Indexed: 12/16/2022]
Abstract
The last decade has witnessed an explosion of studies evaluating the impact of the human microbiota on a variety of disease states. The microbiota can impact diseases in multiple ways, including through abnormalities in the diversity and contents of the microbiota, as well as by acting as targets of immunologic dysregulation. Herein, evidence that the microbiota in spondyloarthritis is both altered and abnormally targeted by the immune system will be presented.
Collapse
Affiliation(s)
- Matthew L Stoll
- University of Alabama at Birmingham, CPP N 210 M, 1600 7th Avenue South, Birmingham, AL 35233-1711, USA.
| |
Collapse
|
102
|
Tumor progression locus 2 differentially regulates IFNγ and IL-17 production by effector CD4+ T cells in a T cell transfer model of colitis. PLoS One 2015; 10:e0119885. [PMID: 25781948 PMCID: PMC4363566 DOI: 10.1371/journal.pone.0119885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/02/2015] [Indexed: 12/31/2022] Open
Abstract
Autoimmune diseases are approaching epidemic levels, estimated to affect 5–8% of the population. A number of autoimmune diseases are believed to be driven by autoreactive T cells, specifically by T helper 1 (Th1) cells and T helper 17 (Th17) cells. One molecule gaining interest as a therapeutic target is the serine-threonine kinase, Tpl2, which promotes expression of proinflammatory mediators. We previously demonstrated that Tpl2 regulates Th1 differentiation, secretion of the inflammatory cytokine IFNγ, and host defense against the intracellular parasite Toxoplasma gondii. The goal of this study was to determine whether Tpl2 also regulates Th1 or Th17 differentiation in vivo in a model of colitis associated with mixed Th1/Th17 pathology. In vitro, Tpl2−/− naïve CD4 T cells were significantly impaired in IL-17A secretion under traditional Th17 inducing conditions. Reduced IL-17A secretion correlated with increased expression of FoxP3, a transcription factor known to antagonize RORγt function. In a murine T cell transfer model of colitis, transfer of Tpl2−/− T cells resulted in reduced proportions of CD4 T cells expressing IFNγ, but not IL-17A, compared to that induced by wild type T cells. Further studies revealed that IL-17A differentiation induced by IL-6 and IL-23, cytokines implicated in driving Th17 differentiation in vivo, was unaffected by Tpl2 deficiency. Collectively, these results implicate Tpl2 in TGF-β-induced FoxP3 expression. Additionally, they underscore the contribution of Tpl2 to Th1 immunopathology specifically, which suggests that Tpl2 inhibitors may selectively target Th1-based inflammation.
Collapse
|
103
|
Wang X, Wu T, Zhou F, Liu S, Zhou R, Zhu S, Song L, Zhu F, Wang G, Xia B. IL12p40 regulates functional development of human CD4+ T cells: enlightenment by the elevated expressions of IL12p40 in patients with inflammatory bowel diseases. Medicine (Baltimore) 2015; 94:e613. [PMID: 25761185 PMCID: PMC4602478 DOI: 10.1097/md.0000000000000613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The proinflammatory effects of IL12p40 had been documented in the literature, and anti-IL12p40 treatment had been proved to be effective in therapy of Crohn disease (CD) in a phase 2b clinical trial. However, the precise role of IL12p40 in the pathogenesis of inflammatory bowel disease (IBD) was still poorly understood. In this study, we investigated the expressions of IL12p40 and its receptor interleukin-12 receptor β 1 both locally and systemically in IBD cases and healthy controls, and the contribution of IL12p40 in IBD pathogenesis. We found that the expression of IL12p40 was elevated both at messenger RNA and protein levels systematically and locally in IBD patients but more significantly in CD patients. Our genetic association study revealed that the polymorphisms of IL12B rs6887695 were associated with both CD and ulcerative colitis (UC) susceptibility in Chinese population, but did not affect the serum IL12p40 level in either CD patients or UC patients. In addition, CD4⁺ T cells isolated from peripheral blood of CD patients secreted the most abundant IL12p40 production, compared with the UC patients and healthy controls. We also found for the first time that neutralizing IL12p40 secretion could inhibit proliferation, enhance apoptosis, induce a G0/G1 arrest, restrain T helper 1 type immune responses, and promote chemokine C-C motif ligand 20-mediated migration of human CD4⁺ T cells, which might be the mechanisms why anti-IL12p40 treatment presented efficacy in CD.
Collapse
Affiliation(s)
- Xiaobing Wang
- From the Department of Gastroenterology/Hepatology (XW, TW, F Zhou, SL, RZ, SZ, LS, F Zhu, GW, BX), Zhongnan Hospital of Wuhan University; and The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases (XW, TW, SL, RZ, SZ, LS, F Zhu, GW, BX), Wuhan, Hubei, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Han L, Yang J, Wang X, Li D, Lv L, Li B. Th17 cells in autoimmune diseases. Front Med 2015; 9:10-9. [PMID: 25652649 DOI: 10.1007/s11684-015-0388-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023]
Abstract
Th17 cells are a new subset of CD4(+) T cells involved in the clearance of extracellular pathogens and fungi. Accumulating evidence suggests that Th17 cells and their signature cytokines have a pivotal role in the pathogenesis of multiple autoimmune-mediated inflammatory diseases. Here, we summarize recent research progress on Th17 function in the development and pathogenesis of autoimmune diseases. We also propose to identify new small molecule compounds to manipulate Th17 function for potential therapeutic application to treat human autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, Sjögren's syndrome, inflammatory bowel disease, and multiple sclerosis.
Collapse
Affiliation(s)
- Lei Han
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | | | | | | | | | | |
Collapse
|
105
|
Liu HP, Cao AT, Feng T, Li Q, Zhang W, Yao S, Dann SM, Elson CO, Cong Y. TGF-β converts Th1 cells into Th17 cells through stimulation of Runx1 expression. Eur J Immunol 2015; 45:1010-8. [PMID: 25605286 DOI: 10.1002/eji.201444726] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 12/10/2014] [Accepted: 01/20/2015] [Indexed: 01/29/2023]
Abstract
Differentiated CD4(+) T cells preserve plasticity under various conditions. However, the stability of Th1 cells is unclear, as is whether Th1 cells can convert into Th17 cells and thereby contribute to the generation of IFN-γ(+) IL-17(+) CD4(+) T cells, the number of which correlates with severity of colitis. We investigated whether IFN-γ(+) Th1 cells can convert into Th17 cells under intestinal inflammation and the mechanisms involved. IFN-γ(Thy1.1+) Th1 cells were generated by culturing naïve CD4(+) T cells from IFN-γ(Thy1.1) CBir1 TCR-Tg reporter mice, whose TCR is specific for an immunodominant microbiota antigen, CBir1 flagellin, under Th1 polarizing conditions. IFN-γ(Thy1.1+) Th1 cells induced colitis in Rag(-/-) mice after adoptive transfer and converted into IL-17(+) Th17, but not Foxp3(+) Treg cells in the inflamed intestines. TGF-β and IL-6, but not IL-1β and IL-23, regulated Th1 conversion into Th17 cells. TGF-β induction of transcriptional factor Runx1 is crucial for the conversion, since silencing Runx1 by siRNA inhibited Th1 conversion into Th17 cells. Furthermore, TGF-β enhanced histone H3K9 acetylation but inhibited H3K9 trimethylation of Runx1- and ROR-γt-binding sites on il-17 or rorc gene in Th1 cells. We conclude that Th1 cells convert into Th17 cells under inflammatory conditions in intestines, which is possibly mediated by TGF-β induction of Runx1.
Collapse
Affiliation(s)
- Hou-Pu Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Tang W, Wang H, Claudio E, Tassi I, Ha HL, Saret S, Siebenlist U. The oncoprotein and transcriptional regulator Bcl-3 governs plasticity and pathogenicity of autoimmune T cells. Immunity 2015; 41:555-66. [PMID: 25367572 DOI: 10.1016/j.immuni.2014.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
Abstract
Bcl-3 is an atypical member of the IκB family that modulates transcription in the nucleus via association with p50 (NF-κB1) or p52 (NF-κB2) homodimers. Despite evidence attesting to the overall physiologic importance of Bcl-3, little is known about its cell-specific functions or mechanisms. Here we demonstrate a T-cell-intrinsic function of Bcl-3 in autoimmunity. Bcl-3-deficient T cells failed to induce disease in T cell transfer-induced colitis and experimental autoimmune encephalomyelitis. The protection against disease correlated with a decrease in Th1 cells that produced the cytokines IFN-γ and GM-CSF and an increase in Th17 cells. Although differentiation into Th1 cells was not impaired in the absence of Bcl-3, differentiated Th1 cells converted to less-pathogenic Th17-like cells, in part via mechanisms involving expression of the RORγt transcription factor. Thus, Bcl-3 constrained Th1 cell plasticity and promoted pathogenicity by blocking conversion to Th17-like cells, revealing a unique type of regulation that shapes adaptive immunity.
Collapse
Affiliation(s)
- Wanhu Tang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ilaria Tassi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hye-lin Ha
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
107
|
|
108
|
Zuo L, Yuan KT, Yu L, Meng QH, Chung PCK, Yang DH. Bifidobacterium infantis attenuates colitis by regulating T cell subset responses. World J Gastroenterol 2014; 20:18316-18329. [PMID: 25561798 PMCID: PMC4277968 DOI: 10.3748/wjg.v20.i48.18316] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/17/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: to investigate the effect of Bifidobacterium infantis (B. infantis) on the T cell subsets and in attenuating the severity of experimental colitis in mice.
METHODS: Normal BALB/c mice were fed different doses of B. infantis for 3 wk, and T cell subsets and related cytokine profiles in mesenteric lymph nodes (MLNs) were detected by flow cytometry and real-time RT-PCR. Colitis was induced by administration of trinitrobenzene sulfonic acid (TNBS) in mice. Before colitis induction, mice were fed high dose B. infantis for 3 wk. Cytokine profiles in MLNs and histological changes of colonic tissue were examined 6 d after colitis induction.
RESULTS: No significant change in cytokine profiles was observed in normal mice fed low dose B. infantis. However, Th1-related cytokines (IL-2, IFN-γ, IL-12p40), Th17-related transcription factor and cytokines (RORγt, IL-21, IL-23), regulatory T cell (Treg)-related transcription factor and cytokines (Foxp3, IL-10) were increased in normal mice fed high dose B. infantis. Furthermore, flow cytometry assay showed B. infantis increased the numbers of CD4+Foxp3+ Tregs and Th17 cells in MLNs. Colitis was successfully induced by TNBS in mice, characterized by colonic inflammation and aberrant Th1 and Th17 responses. Feeding high dose B. infantis for 3 wk before colitis induction decreased the inflammatory cell infiltration and goblet cell depletion and restored the intestinal epithelium. In addition, B. infantis feeding reduced Th1-related cytokines (T-bet, IL-2 and IFN-γ) and Th17-related cytokines (IL-12p40, RORγt, IL-17A, IL-21 and IL-23), and increased Treg-related molecules (Foxp3, IL-10 and TGF-β) in colitis mice.
CONCLUSION: B. infantis effectively attenuates TNBS-induced colitis by decreasing Th1 and Th17 responses and increasing Foxp3+ Treg response in the colonic mucosa.
Collapse
|
109
|
Gonçalves FDC, Schneider N, Pinto FO, Meyer FS, Visioli F, Pfaffenseller B, Lopez PLDC, Passos EP, Cirne-Lima EO, Meurer L, Paz AH. Intravenous vs intraperitoneal mesenchymal stem cells administration: What is the best route for treating experimental colitis? World J Gastroenterol 2014; 20:18228-18239. [PMID: 25561790 PMCID: PMC4277960 DOI: 10.3748/wjg.v20.i48.18228] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/28/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the therapeutic effects of mesenchymal stem cells (MSCs) transplanted intraperitoneally and intravenously in a murine model of colitis.
METHODS: MSCs were isolated from C57BL/6 mouse adipose tissue. MSC cultures were analyzed according to morphology, cellular differentiation potential, and surface molecular markers. Experimental acute colitis was induced in C57BL/6 mice by oral administration of 2% dextran sulfate sodium (DSS) in drinking water ad libitum from days 0 to 7. Colitis mice were treated with 1 × 106 MSCs via intraperitoneal or intravenous injection on days 2 and 5. The disease activity index was determined daily based on the following parameters: weight loss, stool consistency and presence of blood in the feces and anus. To compare morphological and functional differences in tissue regeneration between different MSC injection modalities, mice were euthanized on day 8, and their colons were examined for length, weight, and histopathological changes. Inflammatory responses were determined by measuring the levels of different serum cytokines using a CBA Th1/Th2/Th17 kit. Apoptotic rates were evaluated by terminal deoxynucleotidyl transferase-mediated dUDP-biotin nick end labeling assay.
RESULTS: Intravenous infusion of MSCs was more effective than intraperitoneal treatment (P < 0.001) in reducing the clinical and histopathologic severity of colitis, which includes weight loss, diarrhea and inflammation. An histological evaluation demonstrated decreased colonic inflammation based on reduced crypt loss and reduced infiltration of inflammatory cells. This therapeutic effect was most likely mediated by the down-regulation of pro-inflammatory cytokines [interleukin (IL)-6 and tumor necrosis factor (TNF)]; and by the up-regulation of anti-inflammatory cytokines (IL-10 and IL-4). Intravenous transplantation also induced high levels of IFN that lead to activation of the immunosuppressive activity of the MSCs, which did not occur with intraperitoneal transplantation (P = 0.006). An increase in apoptotic T cells was observed after intravenous, but not intraperitoneal, MSC infusion, suggesting that MSCs can induce apoptosis in resistant T cells in colonic inflammation (P = 0.027).
CONCLUSION: Our results demonstrate that intravenous treatment is a superior method for reducing colon inflammation compared with intraperitoneal therapy.
Collapse
|
110
|
Chewning JH, Weaver CT. Development and survival of Th17 cells within the intestines: the influence of microbiome- and diet-derived signals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:4769-77. [PMID: 25381358 PMCID: PMC6007010 DOI: 10.4049/jimmunol.1401835] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Th17 cells have emerged as important mediators of host defense and homeostasis at barrier sites, particularly the intestines, where the greatest number and diversity of the microbiota reside. A critical balance exists between protection of the host from its own microbiota and pathogens and the development of immune-mediated disease. Breaches of local innate immune defenses provide critical stimuli for the induction of Th17 cell development, and additional cues within these tissues promote Th17 cell survival and/or plasticity. Normally, this results in eradication of the microbial threat and restitution of homeostasis. When dysregulated, however, Th17 cells can cause a range of immune-mediated diseases, whether directed against Ags derived from the microbiota, such as in inflammatory bowel disease, or against self-Ags in a range of autoimmune diseases. This review highlights recent discoveries that provide new insights into ways in which environmental signals impact Th17 cell development and function in the intestines.
Collapse
Affiliation(s)
- Joseph H Chewning
- Department of Pediatrics, Pediatric Blood and Marrow Transplantation Program, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
111
|
Sato K, Takaishi M, Tokuoka S, Sano S. Involvement of TNF-α converting enzyme in the development of psoriasis-like lesions in a mouse model. PLoS One 2014; 9:e112408. [PMID: 25384035 PMCID: PMC4226544 DOI: 10.1371/journal.pone.0112408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/07/2014] [Indexed: 01/10/2023] Open
Abstract
TNF-α plays a crucial role in psoriasis; therefore, TNF inhibition has become a gold standard for the treatment of psoriasis. TNF-α is processed from a membrane-bound form by TNF-α converting enzyme (TACE) to soluble form, which exerts a number of biological activities. EGF receptor (EGFR) ligands, including heparin-binding EGF-like growth factor (HB-EGF), amphiregulin and transforming growth factor (TGF)-α are also TACE substrates and are psoriasis-associated growth factors. Vascular endothelial growth factor (VEGF), one of the downstream molecules of EGFR and TNF signaling, plays a key role in angiogenesis for developing psoriasis. In the present study, to assess the possible role of TACE in the pathogenesis of psoriasis, we investigated the involvement of TACE in TPA-induced psoriasis-like lesions in K5.Stat3C mice, which represent a mouse model of psoriasis. In this mouse model, TNF-α, amphiregulin, HB-EGF and TGF-α were significantly up-regulated in the skin lesions, similar to human psoriasis. Treatment of K5.Stat3C mice with TNF-α or EGFR inhibitors attenuated the skin lesions, suggesting the roles of TACE substrates in psoriasis. Furthermore, the skin lesions of K5.Stat3C mice showed down-regulation of tissue inhibitor of metalloproteinase-3, an endogenous inhibitor of TACE, and an increase in soluble TNF-α. A TACE inhibitor abrogated EGFR ligand-dependent keratinocyte proliferation and VEGF production in vitro, suggesting that TACE was involved in both epidermal hyperplasia and angiogenesis during psoriasis development. These results strongly suggest that TACE contributes to the development of psoriatic lesions through releasing two kinds of psoriasis mediators, TNF-α and EGFR ligands. Therefore, TACE could be a potential therapeutic target for the treatment of psoriasis.
Collapse
Affiliation(s)
- Kenji Sato
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
- Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., Kyoto, Japan
| | - Mikiro Takaishi
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Shota Tokuoka
- Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., Kyoto, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
- * E-mail:
| |
Collapse
|
112
|
Abstract
Painful sensation is a hallmark of microbe-induced inflammation. This inflammatory pain is downregulated a few days after infection by opioids locally released by effector T lymphocytes generated in response to microbe-derived antigens. This review focuses on the endogenous regulation of inflammatory pain associated with adaptive T-cell response and puts in perspective the clinical consequences of the opioid-mediated analgesic activity of colitogenic T lymphocytes in inflammatory bowel disease.
Collapse
|
113
|
Afzali A, Wheat CL, Hu JK, Olerud JE, Lee SD. The association of psoriasiform rash with anti-tumor necrosis factor (anti-TNF) therapy in inflammatory bowel disease: a single academic center case series. J Crohns Colitis 2014; 8:480-8. [PMID: 24268978 DOI: 10.1016/j.crohns.2013.10.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 10/14/2013] [Accepted: 10/29/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Anti-tumor necrosis factors (anti-TNF) including infliximab, adalimumab and certolizumab pegol are used to treat Crohn's disease (CD) and ulcerative colitis (UC). Paradoxically, while also indicated for the treatment of psoriasis, anti-TNF therapy has been associated with development of psoriasiform lesions in IBD patients and can compel discontinuation of therapy. We aim to investigate IBD patient, clinical characteristics, and frequency for the development of and outcomes associated with anti-TNF induced psoriasiform rash. METHODS We identify IBD patients on anti-TNFs with an onset of a psoriasiform rash. Patient characteristics, duration of anti-TNF, concomitant immunosuppressants, lesion distribution, and outcomes of rash are described. RESULTS Of 1004 IBD patients with exposure to anti-TNF therapy, 27 patients (2.7%) developed psoriasiform lesions. Psoriasiform rash cases stratified by biologic use were 1.3% for infliximab, 4.1% for adalimumab, and 6.4% for certolizumab. Average time on treatment (206.3weeks) and time on treatment until onset of psoriasiform lesions (126.9weeks) was significantly higher in the infliximab group. The adalimumab group had the highest need for treatment discontinuation (60%). The majority (59.3%) of patients were able to maintain on anti-TNFs despite rash onset. Among patients that required discontinuation (40.7%), the majority experienced improvement with a subsequent anti-TNF (66.7%). CONCLUSION 27 cases of anti-TNF associated psoriasiform lesions are reported. Discontinuation of anti-TNF treatment is unnecessary in the majority. Dermatologic improvement was achieved in the majority with a subsequent anti-TNF, suggesting anti-TNF induced psoriasiform rash is not necessarily a class effect.
Collapse
Affiliation(s)
- Anita Afzali
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, United States; Inflammatory Bowel Disease Program, University of Washington Medical Center, Seattle, WA, United States.
| | - Chelle L Wheat
- Inflammatory Bowel Disease Program, University of Washington Medical Center, Seattle, WA, United States
| | - Jie Kate Hu
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - John E Olerud
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Scott D Lee
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, United States; Inflammatory Bowel Disease Program, University of Washington Medical Center, Seattle, WA, United States
| |
Collapse
|
114
|
Ma S, Yin J. Imbalance of serum IL-10 and TGF-β in patients with pollen food syndrome. Allergol Immunopathol (Madr) 2014; 42:198-205. [PMID: 23660507 DOI: 10.1016/j.aller.2013.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/26/2012] [Accepted: 01/02/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Pollen food syndrome is one of the main causes of food allergies in adults. However, the intrinsic immunological mechanisms remain unclear. METHODS Forty pollinosis sufferers [23 with a food allergy (PSFA) and 17 without a food allergy (PS)] and 17 non-atopic healthy controls were included in this study. The PSFA group was subdivided into an oral allergy syndrome group, a systemic reaction group, and an anaphylactic reaction group according to their symptoms after eating the suspected foods. Serum IL-10 and TGF-β levels of all participants were determined by ELISA. Clinical characteristics of the patients were also evaluated. RESULTS There were no significant differences in age, sex, pollen-associated symptoms, duration of respiratory disease, and positive parental history of atopy between the PSFA and PS groups. Compared to healthy controls, serum IL-10 levels of both the PSFA group and PS group were significantly lower (p≤0.01), but TGF β levels were significantly higher in the PSFA group (35.3±5.6ng/ml vs. 31.2±6.6ng/ml, respectively; p=0.037). Within the PSFA group, IL-10 levels in the anaphylactic reaction subgroup were significantly lower compared to oral allergy syndrome subgroup (1.87±0.47pg/ml vs. 1.40±0.30pg/ml, respectively; p=0.027). More severe food allergy symptoms were associated with lower serum IL-10 levels. In contrast, the highest serum levels of TGF-β were found in patients from the anaphylactic reaction subgroup. CONCLUSIONS With the exception of a defect in regulatory cells represented by the reduction of IL-10, other potential immunological mechanisms (e.g., Th17 or IL-23 together with TGF-β) may be involved in the development of pollen food syndrome.
Collapse
|
115
|
Antignano F, Burrows K, Hughes MR, Han JM, Kron KJ, Penrod NM, Oudhoff MJ, Wang SKH, Min PH, Gold MJ, Chenery AL, Braam MJS, Fung TC, Rossi FMV, McNagny KM, Arrowsmith CH, Lupien M, Levings MK, Zaph C. Methyltransferase G9A regulates T cell differentiation during murine intestinal inflammation. J Clin Invest 2014; 124:1945-55. [PMID: 24667637 DOI: 10.1172/jci69592] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 01/23/2014] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) pathogenesis is associated with dysregulated CD4⁺ Th cell responses, with intestinal homeostasis depending on the balance between IL-17-producing Th17 and Foxp3⁺ Tregs. Differentiation of naive T cells into Th17 and Treg subsets is associated with specific gene expression profiles; however, the contribution of epigenetic mechanisms to controlling Th17 and Treg differentiation remains unclear. Using a murine T cell transfer model of colitis, we found that T cell-intrinsic expression of the histone lysine methyltransferase G9A was required for development of pathogenic T cells and intestinal inflammation. G9A-mediated dimethylation of histone H3 lysine 9 (H3K9me2) restricted Th17 and Treg differentiation in vitro and in vivo. H3K9me2 was found at high levels in naive Th cells and was lost following Th cell activation. Loss of G9A in naive T cells was associated with increased chromatin accessibility and heightened sensitivity to TGF-β1. Pharmacological inhibition of G9A methyltransferase activity in WT T cells promoted Th17 and Treg differentiation. Our data indicate that G9A-dependent H3K9me2 is a homeostatic epigenetic checkpoint that regulates Th17 and Treg responses by limiting chromatin accessibility and TGF-β1 responsiveness, suggesting G9A as a therapeutic target for treating intestinal inflammation.
Collapse
|
116
|
Jie Z, Liang Y, Hou L, Dong C, Iwakura Y, Soong L, Cong Y, Sun J. Intrahepatic innate lymphoid cells secrete IL-17A and IL-17F that are crucial for T cell priming in viral infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:3289-300. [PMID: 24600029 DOI: 10.4049/jimmunol.1303281] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intrahepatic cell-derived, early IL-17 is important for activating APCs in viral infection; however, the source and regulation of this IL-17 surge in the liver microenvironment are not well defined. In this article, we present evidence for a significant expansion of IL-17A/F-producing cells in mouse liver within 24 h of adenovirus infection. In addition to γδ T cells, a subset of IL-17A/F(+) cells expressed no myeloid or lymphoid lineage markers. Instead, they expressed high levels of stem cell markers, IL-7R and RORγt, consistent with the newly described innate lymphoid cells (ILCs). Based on their unique surface markers and cytokine profiles, these cells were confirmed as group 3 ILCs. In addition to adenovirus infection, group 3 ILCs were also found in mouse liver within 24 h of lymphocytic choriomeningitis virus infection. They contributed significantly to the establishment of the early cytokine milieu in virus-infected liver. Functional studies with mice deficient of IL-17R, IL-17A, and IL-17F further revealed that IL-17 signaling was critical for priming T cell responses in viral hepatitis. IL-17A repressed IL-17F secretion in vitro and in vivo; IL-17F(+) intrahepatic cells expanded more vigorously in IL-17A knockout animals, permitting efficient Ag presentation and T cell function. However, IL-17F neither inhibited IL-17A in vitro nor regulated its secretion in vivo. Together, this study has demonstrated the importance of a unique intrahepatic subpopulation and subsequent IL-17A/F regulation at initial stages of viral infection in the liver. These results have important implications for anticytokine biologic therapy and vaccine development.
Collapse
Affiliation(s)
- Zuliang Jie
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Lin X, Rui K, Deng J, Tian J, Wang X, Wang S, Ko KH, Jiao Z, Chan VSF, Lau CS, Cao X, Lu L. Th17 cells play a critical role in the development of experimental Sjögren's syndrome. Ann Rheum Dis 2014; 74:1302-10. [PMID: 24573745 DOI: 10.1136/annrheumdis-2013-204584] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/16/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Although Th17 cells have been increasingly recognised as an important effector in various autoimmune diseases, their function in the pathogenesis of Sjögren's syndrome (SS) remains largely uncharacterised. This study aims to determine the role of Th17 cells in the development of experimental SS (ESS). METHODS The ESS was induced in wildtype and IL-17A knockout (IL-17 KO) C57BL/6 mice immunised with salivary glands (SG) proteins. Phenotypic analysis of immune cells in the draining cervical lymph nodes (CLN) and SG was performed by flow cytometry and immunofluorescence microscopy. To determine the role of Th17 cells in ESS, immunised IL-17 KO mice were adoptively transferred with in vitro-generated Th17 cells and monitored for SS development. The salivary flow rate was measured, whereas inflammatory infiltration and tissue destruction in SG were assessed by histopathology. RESULTS SG protein-immunised mice developed overt SS symptoms with increased Th17 cells detected in CLN and within lymphocytic foci in inflamed SG. Notably, immunised IL-17 KO mice were completely resistant for SS induction, showing no evidence of disease symptoms and histopathological changes in SG. Adoptive transfer of Th17 cells rapidly induced the onset of ESS in immunised IL-17 KO mice with markedly reduced saliva secretion, elevated autoantibody production and pronounced inflammation and tissue damage in SG. CONCLUSIONS Our findings have defined a critical role of Th17 cells in the pathogenesis of ESS. Further studies may validate Th17 cell as a potential target for treating SS.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Pathology and Center of Infection and Immunology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong
| | - Ke Rui
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Deng
- Department of Pathology and Center of Infection and Immunology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong
| | - Jie Tian
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaohui Wang
- Department of Pathology and Center of Infection and Immunology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong
| | - Shengjun Wang
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - King-Hung Ko
- Department of Pathology and Center of Infection and Immunology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong
| | - Zhijun Jiao
- Zhenjiang Key Laboratory of Medical Immunology, Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | | | - Chak Sing Lau
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Liwei Lu
- Department of Pathology and Center of Infection and Immunology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
118
|
Shen X, Du J, Guan W, Zhao Y. The balance of intestinal Foxp3+regulatory T cells and Th17 cells and its biological significance. Expert Rev Clin Immunol 2014; 10:353-62. [DOI: 10.1586/1744666x.2014.882232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
119
|
Th17-cell plasticity in Helicobacter hepaticus-induced intestinal inflammation. Mucosal Immunol 2013; 6:1143-56. [PMID: 23462910 DOI: 10.1038/mi.2013.11] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/30/2013] [Indexed: 02/04/2023]
Abstract
Bacterial-induced intestinal inflammation is crucially dependent on interleukin (IL)-23 and is associated with CD4(+) T helper type 1 (Th1) and Th17 responses. However, the relative contributions of these subsets during the induction and resolution of colitis in T-cell-sufficient hosts remain unknown. We report that Helicobacter hepaticus-induced typhlocolitis in specific pathogen-free IL-10(-/-) mice is associated with elevated frequencies and numbers of large intestinal interferon (IFN)-γ(+) and IFN-γ(+)IL-17A(+) CD4(+) T cells. By assessing histone modifications and transcript levels in IFN-γ(+), IFN-γ(+)IL-17A(+), and IL-17A(+) CD4(+) T cells isolated from the inflamed intestine, we show that Th17 cells are predisposed to upregulate the Th1 program and that they express IL-23R but not IL-12R. Using IL-17A fate-reporter mice, we further demonstrate that H. hepaticus infection gives rise to Th17 cells that extinguish IL-17A secretion and turn on IFN-γ within 10 days post bacterial inoculation. Together, our results suggest that bacterial-induced Th17 cells arising in disease-susceptible hosts contribute to intestinal pathology by switching phenotype, transitioning via an IFN-γ(+)IL-17A(+) stage, to become IFN-γ(+) ex-Th17 cells.
Collapse
|
120
|
Verdier J, Ruemmele FM. Molecular mechanisms and cell targets of Th17 cells in the gastrointestinal tract: an innate sense of adaptivity. Int Rev Immunol 2013; 32:475-92. [PMID: 24069950 DOI: 10.3109/08830185.2013.829471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
T-helper (TH) 17 activation is crucial for protective immune responses against bacteria and fungi at mucosal surfaces, but it can also be implicated in the pathogenesis of several autoimmune and chronic inflammatory diseases, such as inflammatory bowel diseases (IBD). Although rapid progress was made elucidating induction and functional heterogeneity of Th17 responses, the underlying molecular effects of Th17 response including the most relevant different cell targets of Th17 cytokines remain poorly understood. Cytokines produced by Th17 cells have broad effects on both hematopoietic and nonhematopoietic cells and can act in synergy with various inflammatory factors. In this review, we will focus on the effects of Th17-derived cytokines in the gastrointestinal tract and discuss how Th17 responses can affect both innate and adaptive immunity and may contribute to the pathogenesis of inflammatory GI processes.
Collapse
Affiliation(s)
- Julien Verdier
- Institut National de la Santé et de la Recherche Médicale (INSERM) , UMR989, Paris , France
| | | |
Collapse
|
121
|
Liu Z, Cao AT, Cong Y. Microbiota regulation of inflammatory bowel disease and colorectal cancer. Semin Cancer Biol 2013; 23:543-52. [PMID: 24071482 DOI: 10.1016/j.semcancer.2013.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/30/2013] [Accepted: 09/14/2013] [Indexed: 02/07/2023]
Abstract
The host and microbiota have evolved mechanisms for coexistence over millions of years. Accumulating evidence indicates that a dynamic mutualism between the host and the commensal microbiota has important implications for health, and microbial colonization contributes to the maintenance of intestinal immune homeostasis. However, alterations in communication between the mucosal immune system and gut microbial communities have been implicated as the core defect that leads to chronic intestinal inflammation and cancer development. We will discuss the recent progress on how gut microbiota regulates intestinal homeostasis and the pathogenesis of inflammatory bowel disease and colorectal cancer.
Collapse
Affiliation(s)
- Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China.
| | | | | |
Collapse
|
122
|
Andrew DW, Cochrane M, Schripsema JH, Ramsey KH, Dando SJ, O’Meara CP, Timms P, Beagley KW. The duration of Chlamydia muridarum genital tract infection and associated chronic pathological changes are reduced in IL-17 knockout mice but protection is not increased further by immunization. PLoS One 2013; 8:e76664. [PMID: 24073293 PMCID: PMC3779189 DOI: 10.1371/journal.pone.0076664] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/25/2013] [Indexed: 12/12/2022] Open
Abstract
IL-17 is believed to be important for protection against extracellular pathogens, where clearance is dependent on neutrophil recruitment and local activation of epithelial cell defences. However, the role of IL-17 in protection against intracellular pathogens such as Chlamydia is less clear. We have compared (i) the course of natural genital tract C. muridarum infection, (ii) the development of oviduct pathology and (iii) the development of vaccine-induced immunity against infection in wild type (WT) BALB/c and IL-17 knockout mice (IL-17-/-) to determine if IL-17-mediated immunity is implicated in the development of infection-induced pathology and/or protection. Both the magnitude and duration of genital infection was significantly reduced in IL-17-/- mice compared to BALB/c. Similarly, hydrosalpinx was also greatly reduced in IL-17-/- mice and this correlated with reduced neutrophil and macrophage infiltration of oviduct tissues. Matrix metalloproteinase (MMP) 9 and MMP2 were increased in WT oviducts compared to IL-17-/- animals at day 7 post-infection. In contrast, oviducts from IL-17-/- mice contained higher MMP9 and MMP2 at day 21. Infection also elicited higher levels of Chlamydia-neutralizing antibody in serum of IL-17-/- mice than WT mice. Following intranasal immunization with C. muridarumMajor Outer Membrane Protein (MOMP) and cholera toxin plus CpG adjuvants, significantly higher levels of chlamydial MOMP-specific IgG and IgA were found in serum and vaginal washes of IL-17-/- mice. T cell proliferation and IFNγ production by splenocytes was greater in WT animals following in vitro re-stimulation, however vaccination was only effective at reducing infection in WT, not IL-17-/- mice. Intranasal or transcutaneous immunization protected WT but not IL-17-/- mice against hydrosalpinx development. Our data show that in the absence of IL-17, the severity of C. muridarum genital infection and associated oviduct pathology are significantly attenuated, however neither infection or pathology can be reduced further by vaccination protocols that effectively protect WT mice.
Collapse
Affiliation(s)
- Dean W. Andrew
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Melanie Cochrane
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Justin H. Schripsema
- Microbiology and Immunology Department, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, United States of America
| | - Kyle H. Ramsey
- Microbiology and Immunology Department, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, United States of America
| | - Samantha J. Dando
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Connor P. O’Meara
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Peter Timms
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Kenneth W. Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
- * E-mail:
| |
Collapse
|
123
|
Liu C, Xia X, Wu W, Wu R, Tang M, Chen T, Xu F, Cong Y, Xu X, Liu Z. Anti-tumour necrosis factor therapy enhances mucosal healing through down-regulation of interleukin-21 expression and T helper type 17 cell infiltration in Crohn's disease. Clin Exp Immunol 2013; 173:102-11. [PMID: 23607532 DOI: 10.1111/cei.12084] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2013] [Indexed: 12/13/2022] Open
Abstract
Anti-tumour necrosis factor (TNF) monoclonal antibody (mAb) (infliximab, IFX) has been shown to be highly effective in the management of Crohn's disease (CD). Herein we investigated the potential role of IFX in inducing clinical remission and regulating interleukin (IL)-21 expression and T helper type 17 (Th17) cell infiltration in the intestinal mucosa of CD patients. Twenty-six CD patients were treated with IFX at weeks 0, 2 and 6. Clinical response, mucosal healing, serum C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) were evaluated at week 10 after IFX administration. Expression of IL-21, IL-17A and retinoic acid-related orphan receptor C (RORC) in intestinal mucosa were analysed by quantitative real-time polymerase chain reaction (PCR) and immunohistochemistry. Peripheral blood and lamina propria CD4(+) T cells were stimulated with anti-CD3 and anti-CD28 mAbs in the presence of IFX. Cytokine profiles and RORC were determined with enzyme-linked immunosorbent assay (ELISA) and real-time PCR. IL-21 and Th17 cells were found to be expressed highly in inflamed mucosa of active CD patients compared with healthy controls. Ten weeks after IFX infusion, CD activity index, ESR, CRP and intestinal mucosal healing were improved markedly in CD patients, and IL-21 expression and Th17 cell infiltration were decreased significantly compared with those before IFX therapy. In-vitro study demonstrated that IFX treatment could suppress IL-21, IL-17A and RORC expression in cultured CD biopsies. Moreover, IFX was also observed to down-regulate markedly IL-17A, IL-21 and RORC expression by CD CD4(+) T cells. IFX is highly effective in inducing clinical remission and promoting intestinal mucosal healing in CD patients through down-regulation of IL-21 expression and Th17 cell infiltration in intestinal mucosa.
Collapse
Affiliation(s)
- C Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
Intestinal CD4+ T cells are essential mediators of immune homeostasis and inflammation. Multiple subsets of CD4+ T cells have been described in the intestine, which represents an important site for the generation and regulation of cells involved in immune responses both within and outside of the gastrointestinal tract. Recent advances have furthered our understanding of the biology of such cells in the intestine. Appreciation of the functional roles for effector and regulatory populations in health and disease has revealed potential translational targets for the treatment of intestinal diseases, including inflammatory bowel disease. Furthermore, the role of dietary and microbiota-derived factors in shaping the intestinal CD4+ T-cell compartment is becoming increasingly understood. Here, we review recent advances in understanding the multifaceted roles of CD4+ T cells in intestinal immunity.
Collapse
Affiliation(s)
- Matthew Shale
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
125
|
Davidson MG, Alonso MN, Yuan R, Axtell RC, Kenkel JA, Suhoski MM, González JC, Steinman L, Engleman EG. Th17 cells induce Th1-polarizing monocyte-derived dendritic cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:1175-87. [PMID: 23794631 DOI: 10.4049/jimmunol.1203201] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In chronically inflamed tissues, such as those affected by autoimmune disease, activated Th cells often colocalize with monocytes. We investigate in this study how murine Th cells influence the phenotype and function of monocytes. The data demonstrate that Th1, Th2, and Th17 subsets promote the differentiation of autologous monocytes into MHC class II(+), CD11b(+), CD11c(+) DC that we call DCTh. Although all Th subsets induce the formation of DCTh, activated Th17 cells uniquely promote the formation of IL-12/IL-23-producing DCTh (DCTh17) that can polarize both naive and Th17 cells to a Th1 phenotype. In the inflamed CNS of mice with Th17-mediated experimental autoimmune encephalomyelitis, Th cells colocalize with DC, as well as monocytes, and the Th cells obtained from these lesions drive the formation of DCTh that are phenotypically indistinguishable from DCTh17 and polarize naive T cells toward a Th1 phenotype. These results suggest that DCTh17 are critical in the interplay of Th17- and Th1-mediated responses and may explain the previous finding that IL-17-secreting Th cells become IFN-γ-secreting Th1 cells in experimental autoimmune encephalomyelitis and other autoimmune disorders.
Collapse
Affiliation(s)
- Matthew G Davidson
- Department of Pathology, Blood Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Kamada N, Núñez G. Role of the gut microbiota in the development and function of lymphoid cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:1389-95. [PMID: 23378581 PMCID: PMC3564600 DOI: 10.4049/jimmunol.1203100] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mammals are colonized by large numbers of microorganisms, including trillions of bacteria, most of which live in the intestinal tract. These indigenous microorganisms that inhabit the body of humans and animals are referred collectively to as the microbiota. Accumulating evidence indicates that the microbiota regulates the development and/or function of different types of immune cells in the intestine. For example, the microbiota drives homeostatic, pathogenic, and regulatory T cell immune responses that contribute to tissue homeostasis, but also can promote disease. The gut microbes also facilitate IgA responses, which in turn regulate the composition and function of the gut microbiota. Thus, the reciprocal regulation of the gut microbiota and the host immune system may influence the balance between homeostasis and disease in the intestine.
Collapse
Affiliation(s)
- Nobuhiko Kamada
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
127
|
Weaver CT, Elson CO, Fouser LA, Kolls JK. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. ANNUAL REVIEW OF PATHOLOGY 2013; 8:477-512. [PMID: 23157335 PMCID: PMC3965671 DOI: 10.1146/annurev-pathol-011110-130318] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recent discovery of a new CD4+ T cell subset, Th17, has transformed our understanding of the pathogenetic basis of an increasing number of chronic immune-mediated diseases. Particularly in tissues that interface with the microbial environment-such as the intestinal and respiratory tracts and the skin-where most of the Th17 cells in the body reside, dysregulated immunity to self (or the extended self, the diverse microbiota that normally colonize these tissues) can result in chronic inflammatory disease. In this review, we focus on recent advances in the biology of the Th17 pathway and on genome-wide association studies that implicate this immune pathway in human disease involving these tissues.
Collapse
Affiliation(s)
- Casey T. Weaver
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Charles O. Elson
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lynette A. Fouser
- Inflammation & Immunology Research Unit, Pfizer Worldwide R&D, Cambridge, MA 02140
| | - Jay K. Kolls
- Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
128
|
Coomes SM, Pelly VS, Wilson MS. Plasticity within the αβ⁺CD4⁺ T-cell lineage: when, how and what for? Open Biol 2013; 3:120157. [PMID: 23345540 PMCID: PMC3603458 DOI: 10.1098/rsob.120157] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Following thymic output, αβ⁺CD4⁺ T cells become activated in the periphery when they encounter peptide-major histocompatibility complex. A combination of cytokine and co-stimulatory signals instructs the differentiation of T cells into various lineages and subsequent expansion and contraction during an appropriate and protective immune response. Our understanding of the events leading to T-cell lineage commitment has been dominated by a single fate model describing the commitment of T cells to one of several helper (T(H)), follicular helper (T(FH)) or regulatory (T(REG)) phenotypes. Although a single lineage-committed and dedicated T cell may best execute a single function, the view of a single fate for T cells has recently been challenged. A relatively new paradigm in αβ⁺CD4⁺ T-cell biology indicates that T cells are much more flexible than previously appreciated, with the ability to change between helper phenotypes, between helper and follicular helper, or, most extremely, between helper and regulatory functions. In this review, we comprehensively summarize the recent literature identifying when T(H) or T(REG) cell plasticity occurs, provide potential mechanisms of plasticity and ask if T-cell plasticity is beneficial or detrimental to immunity.
Collapse
Affiliation(s)
- Stephanie M Coomes
- Division of Molecular Immunology, National Institute for Medical Research, MRC, London NW7 1AA, UK
| | | | | |
Collapse
|
129
|
Pineda MA, McGrath MA, Smith PC, Al-Riyami L, Rzepecka J, Gracie JA, Harnett W, Harnett MM. The parasitic helminth product ES-62 suppresses pathogenesis in collagen-induced arthritis by targeting the interleukin-17-producing cellular network at multiple sites. ACTA ACUST UNITED AC 2013; 64:3168-78. [PMID: 22729944 DOI: 10.1002/art.34581] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Among many survival strategies, parasitic worms secrete molecules that modulate host immune responses. One such product, ES-62, is protective against collagen-induced arthritis (CIA), a model of rheumatoid arthritis (RA). Since interleukin-17 (IL-17) has been reported to play a pathogenic role in the development of RA, this study was undertaken to investigate whether targeting of IL-17 may explain the protection against CIA afforded by ES-62. METHODS DBA/1 mice progressively display arthritis following immunization with type II collagen. The protective effects of ES-62 were assessed by determination of cytokine levels, flow cytometric analysis of relevant cell populations, and in situ analysis of joint inflammation in mice with CIA. RESULTS ES-62 was found to down-regulate IL-17 responses in mice with CIA. First, it acted to inhibit priming and polarization of IL-17 responses by targeting a complex IL-17-producing network, involving signaling between dendritic cells and γ/δ or CD4+ T cells. In addition, ES-62 directly targeted Th17 cells by down-regulating myeloid differentiation factor 88 expression to suppress responses mediated by IL-1 and Toll-like receptor ligands. Moreover, ES-62 modulated the migration of γ/δ T cells and this was reflected by direct suppression of CD44 up-regulation and, as evidenced by in situ analysis, dramatically reduced levels of IL-17-producing cells, including lymphocytes, infiltrating the joint. Finally, there was strong suppression of IL-17 production by cells resident in the joint, such as osteoclasts within the bone areas. CONCLUSION Our findings indicate that ES-62 treatment of mice with CIA leads to unique multisite manipulation of the initiation and effector phases of the IL-17 inflammatory network. ES-62 could be exploited in the development of novel therapeutics for RA.
Collapse
|
130
|
Hou L, Jie Z, Desai M, Liang Y, Soong L, Wang T, Sun J. Early IL-17 production by intrahepatic T cells is important for adaptive immune responses in viral hepatitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:621-9. [PMID: 23233727 PMCID: PMC3538895 DOI: 10.4049/jimmunol.1201970] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study was conducted to examine the interactions among the innate and adaptive immune components of the liver parenchyma during acute viral hepatitis. Mice were i.v. infected with a recombinant adenovirus, and within the first 24 h of infection, we found a transient but significant accumulation of IL-17 and IL-23 in the liver. In vivo neutralization of these interleukins alleviated the liver injury. Further investigations showed that IL-17 neutralization halted the intrahepatic accumulation of CTLs and Th1 cells. A majority of the IL-17-producing cells in the liver were γδ T cells. Additionally, intrahepatic IL-17(+) γδ T cells, but not the IFN-γ(+) ones, preferentially expressed IL-7Rα (CD127) on their surface, which coincided with an elevation of hepatocyte-derived IL-7 at 12 h postinfection. IL-7Rα blockade in vivo severely impeded the expansion of IL-17-producing cells after viral infection. In vitro, IL-7 synergized with IL-23 and directly stimulated IL-17 production from γδ T cells in response to TCRγδ stimulation. Finally, type I IFN (IFN-I) signaling was found to be critical for hepatic IL-7 induction. Collectively, these results showed that the IFN-I/IL-7/IL-17 cascade was important in priming T cell responses in the liver. Moreover, the highly coordinated cross talk among hepatocytes and innate and adaptive immune cells played a critical role in anti-viral immunity in hepatitis.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Female
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/metabolism
- Hepatitis, Viral, Animal/pathology
- Hepatocytes/immunology
- Hepatocytes/metabolism
- Interferon Type I/metabolism
- Interleukin-17/biosynthesis
- Interleukin-17/immunology
- Interleukin-23/biosynthesis
- Interleukin-23/immunology
- Interleukin-7/metabolism
- Liver/immunology
- Liver/pathology
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Signal Transduction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Lifei Hou
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | - Zuliang Jie
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | - Mayura Desai
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| |
Collapse
|
131
|
Samson M, Audia S, Fraszczak J, Trad M, Ornetti P, Lakomy D, Ciudad M, Leguy V, Berthier S, Vinit J, Manckoundia P, Maillefert JF, Besancenot JF, Aho-Glele S, Olsson NO, Lorcerie B, Guillevin L, Mouthon L, Saas P, Bateman A, Martin L, Janikashvili N, Larmonier N, Bonnotte B. Th1 and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. ACTA ACUST UNITED AC 2013; 64:3788-98. [PMID: 22833233 DOI: 10.1002/art.34647] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Giant cell arteritis (GCA) is the most frequently occurring vasculitis in elderly individuals, and its pathogenesis is not fully understood. The objective of this study was to decipher the role of the major CD4+ T cell subsets in GCA and its rheumatologic form, polymyalgia rheumatica (PMR). METHODS A prospective study of the phenotype and the function of major CD4+ T cell subsets (Th1, Th17, and Treg cells) was performed in 34 untreated patients with GCA or PMR, in comparison with 31 healthy control subjects and with the 27 treated patients who remained after the 7 others withdrew. RESULTS Compared with control subjects, patients with GCA and patients with PMR had a decreased frequency of Treg cells and Th1 cells, whereas the percentage of Th17 cells was significantly increased. Furthermore, an analysis of temporal artery biopsy specimens obtained from patients affected by GCA for whom biopsy results were positive demonstrated massive infiltration by Th17 and Th1 lymphocytes without any Treg cells. After glucocorticoid treatment, the percentages of circulating Th1 and Th17 cells decreased, whereas no change in the Treg cell frequency was observed. The frequency of CD161+CD4+ T cells, which are considered to be Th17 cell precursors, was similar in patients and control subjects. However, these cells highly infiltrated GCA temporal artery biopsy specimens, and their ability to produce interleukin-17 in vitro was significantly enhanced in patients with GCA and patients with PMR and was correlated with a decrease in the phosphorylated form of STAT-1. CONCLUSION This study is the first to demonstrate that the frequency of Treg cells is decreased in patients with GCA and patients with PMR, and that CD161+CD4+ T lymphocytes, differentiated into Th1 cells and Th17 cells, are involved in the pathogenesis of GCA and PMR.
Collapse
Affiliation(s)
- Maxime Samson
- Université de Bourgogne and CHU Dijon le Bocage, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Pathogénie de l’artérite à cellules géantes. Presse Med 2012; 41:937-47. [DOI: 10.1016/j.lpm.2012.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 12/12/2022] Open
|
133
|
Cao AT, Yao S, Gong B, Elson CO, Cong Y. Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis. THE JOURNAL OF IMMUNOLOGY 2012; 189:4666-73. [PMID: 22993206 DOI: 10.4049/jimmunol.1200955] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although CD4(+) Th17 cells are enriched in normal intestines, their role in regulation of the host response to microbiota, and whether and how they contribute to intestinal homeostasis, is still largely unknown. It is also unclear whether Th17 cells regulate intestinal IgA production, which is also abundant in the intestinal lumen and has a crucial role as the first defense line in host response to microbiota. In this study, we found that intestinal polymeric Ig receptor (pIgR) and IgA production was impaired in T cell-deficient TCR-βxδ(-/-) mice. Repletion of TCR-βxδ(-/-) mice with Th17 cells from CBir1 flagellin TCR transgenic mice, which are specific for a commensal Ag, increased intestinal pIgR and IgA. The levels of intestinal pIgR and IgA in B6.IL-17R (IL-17R(-/-)) mice were lower than wild type mice. Treatment of colonic epithelial HT-29 cells with IL-17 increased pIgR expression. IL-17R(-/-) mice demonstrated systemic antimicroflora Ab response. Consistently, administering dextran sulfate sodium (DSS) to C57BL/6 mice after treatment with IL-17-neutralizing Ab resulted in more severe intestinal inflammation compared with control Ab. Administering DSS to IL-17R(-/-) mice resulted in increased weight loss and more severe intestinal inflammation compared with wild type mice, indicating a protective role of Th17 cells in intestinal inflammation. Individual mice with lower levels of pIgR and intestinal-secreted IgA correlated with increased weight loss at the end of DSS administration. Collectively, our data reveal that microbiota-specific Th17 cells contribute to intestinal homeostasis by regulating intestinal pIgR expression and IgA secretion.
Collapse
Affiliation(s)
- Anthony T Cao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
134
|
Feehley T, Stefka AT, Cao S, Nagler CR. Microbial regulation of allergic responses to food. Semin Immunopathol 2012; 34:671-88. [PMID: 22941410 PMCID: PMC3874145 DOI: 10.1007/s00281-012-0337-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/17/2012] [Indexed: 02/07/2023]
Abstract
The incidence of food allergy in developed countries is rising at a rate that cannot be attributed to genetic variation alone. In this review, we discuss the environmental factors that may contribute to the increasing prevalence of potentially fatal anaphylactic responses to food. Decreased exposure to enteric infections due to advances in vaccination and sanitation, along with the adoption of high-fat (Western) diets, antibiotic use, Cesarean birth, and formula feeding of infants, have all been implicated in altering the enteric microbiome away from its ancestral state. This collection of resident commensal microbes performs many important physiological functions and plays a central role in the development of the immune system. We hypothesize that alterations in the microbiome interfere with immune system maturation, resulting in impairment of IgA production, reduced abundance of regulatory T cells, and Th2-skewing of baseline immune responses which drive aberrant responses to innocuous (food) antigens.
Collapse
Affiliation(s)
- Taylor Feehley
- Committee on Immunology and Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
135
|
Imbalanced shift of cytokine expression between T helper 1 and T helper 2 (Th1/Th2) in intestinal mucosa of patients with post-infectious irritable bowel syndrome. BMC Gastroenterol 2012; 12:91. [PMID: 22816602 PMCID: PMC3439383 DOI: 10.1186/1471-230x-12-91] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/29/2012] [Indexed: 12/15/2022] Open
Abstract
Background Irritable bowel syndrome (IBS) is a common functional bowel disorder. The post-infectious IBS (PI-IBS) occurs in IBS patients with a history of intestinal infection preceding the onset of symptoms. However, the underlying cause of PI-IBS is not fully understood, and the purpose of this study was to investigate the immune regulatory mechanism of PI-IBS. Methods Participants enrolled in this study were divided into three groups including PI-IBS patients (n = 20), IBS patients without a history of infection (non-PI-IBS, n = 18), and healthy controls (n = 20). The expression levels of the Th1-derived cytokines IFN-γ and IL-12, and the Th2-derived cytokines IL-4 and IL-10 in the mucosal specimens, and in the ascending colon, the descending colon, and the rectal segments were measured by RT-PCR and western blot. Results The IFN-γ mRNA levels in the intestinal mucosa were significantly higher in the PI-IBS group than in the non-PI-IBS or control group (both P < 0.05), but there was no difference between the non-PI-IBS and control groups. A trend toward IFN-γ protein upregulation was found in the PI-IBS group, while the IL-12 and IL-4 mRNA and protein levels were not different between any groups. The IL-10 mRNA and protein levels in the PI-IBS group were both significantly lower than in the non-PI-IBS or control groups (P < 0.05, respectively), but there was no difference between the non-PI-IBS and control groups. There were no differences in the cytokine mRNA and protein levels among the ascending colon, the descending colon, and the rectum of all groups. Conclusions An increase in IFN-γ levels and a decrease in IL-10 levels were found in the intestinal mucosa of PI-IBS patients, suggesting that the infection may affect the Th1/Th2 balance. Thus, the dysregulation of the immune response is likely an important cause of IBS.
Collapse
|
136
|
Abstract
The interaction of the host with its abundant intestinal microbiota is complex and engages most of the cells in the intestinal mucosa. The inflammatory bowel diseases appear to be disorders of the host immune response to the microbiota. This is supported by data from induced gene mutations in mice and more recently by the identification of gene variants in humans that result in IBD or IBD susceptibility. These genetic studies have provided insights into the cells and molecular pathways involved in the host-microbiota dialog. This review discusses the innate, adaptive, and regulatory immune response to the microbiota in the context of the mouse and human genes that are involved in maintaining intestinal homeostasis and preventing inflammation. These data continue to support the hypothesis that inflammatory bowel disease results from a dysregulated adaptive immune response, particularly a CD4 T-cell response, to the microbiota. The microbiota itself is an active participant in these homeostatic processes. The microbiota composition is perturbed during inflammation, resulting in a dysbiosis that may induce or perpetuate inflammation. However, host genotype and the environment have a major impact on the shape of such dysbiosis, as well as upon which members of the microbiota stimulate pathogenic immune responses.
Collapse
Affiliation(s)
- Charles O. Elson
- Departments of Medicine and Microbiology; University of Alabama at Birmingham; Birmingham, AL USA,Correspondence to: Charles O. Elson,
| | - Yingzi Cong
- Departments of Microbiology/Immunology and Pathology; University of Texas Medical Branch; Galveston, TX USA
| |
Collapse
|
137
|
Verdier J, Begue B, Cerf-Bensussan N, Ruemmele FM. Compartmentalized expression of Th1 and Th17 cytokines in pediatric inflammatory bowel diseases. Inflamm Bowel Dis 2012; 18:1260-6. [PMID: 21994045 DOI: 10.1002/ibd.21905] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 08/29/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND Interleukin (IL)-23, IL-17A, IL-17F, and interferon-gamma (IFN-γ) are important mediators of inflammatory colitis and are potential therapeutic targets in inflammatory bowel disease (IBD). Their expression profile in the different parts of normal noninflammatory intestine is unclear and their changes during pathology have not yet been addressed in pediatric IBD patients. METHODS We quantified the transcriptional expression of IL-23, IL-12, IL-17A, IL-17F, IL-6, and IL-10 in healthy, noninflammatory duodenum, ileum, and colon and in inflamed and noninflamed biopsies of pediatric patients with Crohn's disease (CD) and ulcerative colitis (UC). RESULTS In healthy tissue, expression of IL-17A is highest in the ileum, with IFN-γ expression lowest in the colon. Compared to healthy sections, CD patients displayed increased IL-12p35 and IFN-γ levels in noninflamed ileum and colon, respectively. Modifications of cytokine expression between noninflamed and inflamed tissues was characterized by increased IL-17A in UC colon, IFN-γ in CD colon, and IL-17A, IFN-γ and IL-6 in CD ileum. Elevated IL-17A levels were positively correlated with IFN-γ in both inflammatory CD and UC but IL-17A and IFN-γ were correlated with IL-23p19 in CD ileum only. CONCLUSIONS The expression of Th1 and Th17 cytokines varies along the intestine, indicating local specific regulation mechanisms. However, the cytokine expression patterns in the same tissue depends on the pathology, with a Th1 or a Th17 profile in the colon of CD and UC patients, respectively, and a Th1/Th17 profile in the ileum of CD patients. This indicates overlapping but distinct immune mechanisms driving intestinal inflammation in these two pathologies.
Collapse
Affiliation(s)
- J Verdier
- INSERM, UMR989, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, Assistance-Publique-Hopitaux de Paris, Paediatric Gastroenterology Unit, Paris, France
| | | | | | | |
Collapse
|
138
|
Ancelet L, Rich FJ, Delahunt B, Kirman JR. Dissecting memory T cell responses to TB: concerns using adoptive transfer into immunodeficient mice. Tuberculosis (Edinb) 2012; 92:422-33. [PMID: 22738879 DOI: 10.1016/j.tube.2012.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 02/02/2023]
Abstract
Several studies have used adoptive transfer of purified T cell subsets into immunodeficient mice to determine the subset of T cells responsible for mediating protection against Mycobacterium tuberculosis. These studies suggested that CD62L(hi) memory CD4(+) T cells from BCG-vaccinated mice are key for protection against tuberculosis. Importantly, we observed that transfer of naïve CD4(+) T cells into Rag1-/- recipients protected against a mycobacterial challenge as well as transfer of BCG-experienced CD4(+) T cells. We found that transfer of total CD4(+) T cells from naïve mice or enriched CD62L(hi)CD4(+) T cells from BCG-vaccinated mice into Rag1-/- recipients induced severe colitis by 3 weeks post cell transfer, whereas transfer of CD62L(lo)CD4(+) T cells from BCG-vaccinated mice did not. Naïve and CD62L(hi)CD4(+) T cells proliferated extensively upon transfer and developed an activated effector phenotype in the lung, even in the absence of infectious challenge. The induction of colitis and systemic cytokine response induced by the transfer and subsequent activation of CD4(+) T cells from naïve mice or CD62L(hi)CD4(+) T cells from BCG-vaccinated mice, into immunodeficient recipients, may heighten their ability to protect against mycobacterial challenge. This raises doubts about the validity of this model to study CD4(+) T cell-mediated protection against tuberculosis.
Collapse
Affiliation(s)
- Lindsay Ancelet
- Infectious Diseases Group, Malaghan Institute of Medical Research, PO Box 7060, Newtown, Wellington 6242, New Zealand.
| | | | | | | |
Collapse
|
139
|
Nagalingam NA, Lynch SV. Role of the microbiota in inflammatory bowel diseases. Inflamm Bowel Dis 2012; 18:968-84. [PMID: 21936031 DOI: 10.1002/ibd.21866] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 07/26/2011] [Indexed: 12/16/2022]
Abstract
Studying the role of the human microbiome as it relates to human health status has revolutionized our view of microbial community contributions to a large number of diseases, particularly chronic inflammatory disorders. The lower gastrointestinal (GI) tract houses trillions of microbial cells representing a large diversity of species in relatively well-defined phylogenetic ratios that are associated with maintenance of key aspects of host physiology and immune homeostasis. It is not surprising, therefore, that many GI inflammatory diseases, including inflammatory bowel disease (IBD), are associated with substantial changes in the composition of these microbial assemblages, either as a cause or consequence of host inflammatory response. Here we review current knowledge in the emerging field of human microbiome research as it relates to IBD, specifically focusing on Crohn's disease (CD) and ulcerative colitis (UC). We discuss bacteriotherapeutic efforts to restore GI microbial assemblage integrity via probiotic supplementation of IBD patients, and speculate on future directions for the field.
Collapse
Affiliation(s)
- Nabeetha A Nagalingam
- Colitis and Crohn's Disease Microbiome Research Core, Division of Gastroenterology, University of California, San Francisco, Calfornia 94143-0538, USA
| | | |
Collapse
|
140
|
Hou LF, He SJ, Li X, Wan CP, Yang Y, Zhang XH, He PL, Zhou Y, Zhu FH, Yang YF, Li Y, Tang W, Zuo JP. SM934 treated lupus-prone NZB × NZW F1 mice by enhancing macrophage interleukin-10 production and suppressing pathogenic T cell development. PLoS One 2012; 7:e32424. [PMID: 22389703 PMCID: PMC3289663 DOI: 10.1371/journal.pone.0032424] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 01/26/2012] [Indexed: 12/17/2022] Open
Abstract
Background Artemisinin and its derivatives were reported to possess strong regulatory effects on inflammation and autoimmune diseases. This study was designed to examine the therapeutic effects and underlying mechanisms of SM934, a water-soluble artemisinin analogue, on lupus-prone female NZB×NZW F1 mice. Methodology/Principal Findings NZB/W F1 mice were treated orally with SM934 for 3 or 6 months respectively to investigate the effect on clinical manifestations and immunological correlates. To further explore the mechanisms of SM934, ovalbumin (OVA)-immunized or interferon (IFN)-γ-elicited C57BL/6 mice were used. In vivo, treatment with SM934 for 3 or 6 months significantly delayed the progression of glomerulonephritis and increased the survival rate of NZB/W F1 mice. Clinical improvement was accompanied with decreased Th1-related anti-double-strand DNA (dsDNA) IgG2a and IgG3 Abs, serum interleukin (IL)-17, and increased Th2-related anti-dsDNA IgG1 Ab, serum IL-10 and IL-4. SM934 treatment also suppressed the accumulation of effector/memory T cells, induced the apoptosis of CD4+ T cells, while enhancing the development of regulatory T cells in NZB/W F1 mice. In addition, SM934 treatment promoted the IL-10 production of macrophages from NZB/W F1 mice, OVA-immunized C57BL/6 mice and IFN-γ-elicited C57BL/6 mice. In vitro, SM934 enhanced IL-10 production from primary macrophages stimulated with IFN-γ. Conclusions/Significance The results of this study demonstrated that artemisinin analogue SM934 had therapeutic effects on lupus-prone female NZB/W F1 mice by inhibiting the pathogenic helper T cell development and enhancing anti-inflammatory cytokine IL-10 production.
Collapse
Affiliation(s)
- Li-Fei Hou
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Shi-Jun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xin Li
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Chun-Ping Wan
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yang Yang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiao-Hui Zhang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Pei-Lan He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yu Zhou
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Feng-Hua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yi-Fu Yang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ying Li
- Department of Synthetic Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Wei Tang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jian-Ping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
141
|
New insights into the immunological changes in IL-10-deficient mice during the course of spontaneous inflammation in the gut mucosa. Clin Dev Immunol 2012; 2012:560817. [PMID: 22400037 PMCID: PMC3287045 DOI: 10.1155/2012/560817] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 10/15/2011] [Indexed: 12/18/2022]
Abstract
IL-10 is a regulatory cytokine that plays a major role in the homeostasis of the gut and this is illustrated by the fact that IL-10−/− mice develop spontaneous colitis. In this study, IL-10−/− mice were analyzed for immunological changes during colitis development. We found a reduced frequency of regulatory T cells CD4+CD25+Foxp3+ and higher frequency of activated T cells in the colon that precedes the macroscopic signs of the disease. Production of IL-17 and IFN-γ was higher in the colon. Colitis progression culminates with the reduction of CD4+LAP+ regulatory T cells in the intestine. Frequency of B1 cells and the secretory IgA production were both elevated. Despite these alterations, 16-week-old IL-10−/− mice could be rendered tolerant by a continuous feeding protocol. Our study provides detailed analysis of changes that precede colitis and it also suggests that oral tolerance could be used to design novel alternative therapies for the disease.
Collapse
|
142
|
Abstract
Recent studies have highlighted the fundamental role of commensal microbes in the maintenance of host homeostasis. For instance, commensals can play a major role in the control of host defense, metabolism and tissue development. Over the past few years, abundant experimental data also support their central role in the induction and control of both innate and adaptive responses. It is now clearly established that commensals are not equal in their capacity to trigger control regulatory or effector responses, however, the molecular basis of these differences has only recently begun to be explored. This review will discuss recent findings evaluating how commensals shape both effector and regulatory responses at steady state and during infections and the consequence of this effect on local and systemic protective and inflammatory responses.
Collapse
Affiliation(s)
- Michael J Molloy
- Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Room 4/243, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
143
|
Yurchenko E, Levings MK, Piccirillo CA. CD4+Foxp3+ regulatory T cells suppress γδ T-cell effector functions in a model of T-cell-induced mucosal inflammation. Eur J Immunol 2011; 41:3455-66. [DOI: 10.1002/eji.201141814] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/09/2011] [Accepted: 09/20/2011] [Indexed: 01/05/2023]
|
144
|
Wilke CM, Wei S, Wang L, Kryczek I, Kao J, Zou W. Dual biological effects of the cytokines interleukin-10 and interferon-γ. Cancer Immunol Immunother 2011; 60:1529-41. [PMID: 21918895 PMCID: PMC11029274 DOI: 10.1007/s00262-011-1104-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/23/2011] [Indexed: 12/21/2022]
Abstract
It is generally thought that each cytokine exerts either immune stimulatory (inflammatory) or immune inhibitory (antiinflammatory or regulatory) biological activities. However, multiple cytokines can enact both inhibitory and stimulatory effects on the immune system. Two of these cytokines are interleukin (IL)-10 and interferon-gamma (IFNγ). IL-10 has demonstrated antitumor immunity even though it has been known for years as an immunoregulatory protein. Generally perceived as an immune stimulatory cytokine, IFNγ can also induce inhibitory molecule expression including B7-H1 (PD-L1), indoleamine 2,3-dioxygenase (IDO), and arginase on multiple cell populations (dendritic cells, tumor cells, and vascular endothelial cells). In this review, we will summarize current knowledge of the dual roles of both of these cytokines and stress the previously underappreciated stimulatory role of IL-10 and inhibitory role of IFNγ in the context of malignancy. Our progressive understanding of the dual effects of these cytokines is important for dissecting cytokine-associated pathology and provides new avenues for developing effective immune therapy against human diseases, including cancer.
Collapse
Affiliation(s)
- Cailin Moira Wilke
- Department of Surgery, University of Michigan School of Medicine, C560B MSRB II/Box 0669, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0669 USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI USA
| | - Shuang Wei
- Department of Surgery, University of Michigan School of Medicine, C560B MSRB II/Box 0669, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0669 USA
| | - Lin Wang
- Department of Surgery, University of Michigan School of Medicine, C560B MSRB II/Box 0669, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0669 USA
- Central Laboratory, Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Ilona Kryczek
- Department of Surgery, University of Michigan School of Medicine, C560B MSRB II/Box 0669, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0669 USA
| | - John Kao
- Department of Medicine, University of Michigan, Ann Arbor, MI USA
- University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI USA
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, C560B MSRB II/Box 0669, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0669 USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI USA
- University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
145
|
Chen D, Hu Q, Mao C, Jiao Z, Wang S, Yu L, Xu Y, Dai D, Yin L, Xu H. Increased IL-17-producing CD4(+) T cells in patients with esophageal cancer. Cell Immunol 2011; 272:166-74. [PMID: 22082565 DOI: 10.1016/j.cellimm.2011.10.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/29/2011] [Accepted: 10/17/2011] [Indexed: 12/17/2022]
Abstract
Increased interleukin-17 (IL-17)-producing Th (Th17) cells have been described in a variety of human carcinoma cases, however, the mechanism of Th17 cells' accumulation in a tumor microenvironment remains elusive. This study was designed to investigate whether Th17 cells were involved in the development of esophageal cancer. We found that the proportion of Th17 cells increased within the peripheral blood and tumor tissues of esophageal cancer patients. Furthermore, the proportion of circulating Th17 cells was higher in advanced esophageal cancer patients than that in early esophageal cancer patients. In addition, the Th17 cells differentiation-related cytokines (IL-23, IL-1β, and IL-6) and accumulation-related chemokines (CCL22 and CCL20) were present in a tumor microenvironment. Therefore, the findings may partly explain the cause for the increased proportion of Th17 cells and indicate a potential prognostic marker of Th17 cells in esophageal cancer.
Collapse
Affiliation(s)
- Deyu Chen
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Butcher M, Galkina E. Current views on the functions of interleukin-17A-producing cells in atherosclerosis. Thromb Haemost 2011; 106:787-95. [PMID: 21946932 DOI: 10.1160/th11-05-0342] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022]
Abstract
Multiple components of the immune response are involved in the initiation, progression and persistence of atherosclerosis. Interleukin (IL)-17A is produced by a broad variety of leukocytes and plays an important role in host defense. IL-17A is also involved in the pathology of several autoimmune diseases mainly via the regulation of chemokine expression and leukocyte migration to the site of inflammation. There is an increasing body of evidence indicating an association between elevated levels of IL-17A and cardiovascular diseases. Interestingly, this IL-17A-dependent response occurs in parallel with the Th1-dominant immune response during atherogenesis. To date, the precise role of IL-17A+ cells in atherosclerosis is controversial. Several studies have suggested a pro-atherogenic role of IL-17A via the regulation of aortic macrophage numbers, Th1-related cytokines and aortic chemokine expression. However, two studies recently described anti-inflammatory effects of IL-17A on mouse plaque burden via possible regulation of aortic VCAM-1 expression and T cell content. Furthermore, an initial study using IL-17A-deficient mice demonstrated that IL-17A affects the immune composition and inflammatory phenotype of the aortic wall; however, no effects were observed on atherosclerosis. Further studies are necessary to fully address the role of IL-17A and other IL-17 family members in atherosclerosis.
Collapse
Affiliation(s)
- M Butcher
- Dept. Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507-1696, USA
| | | |
Collapse
|