101
|
Zhu X, Bührer C, Wellmann S. Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. Cell Mol Life Sci 2016; 73:3839-59. [PMID: 27147467 PMCID: PMC5021741 DOI: 10.1007/s00018-016-2253-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
Abstract
Cold-inducible RNA-binding protein (CIRP) and RNA-binding motif protein 3 (RBM3) are two evolutionarily conserved RNA-binding proteins that are transcriptionally upregulated in response to low temperature. Featuring an RNA-recognition motif (RRM) and an arginine-glycine-rich (RGG) domain, these proteins display many similarities and specific disparities in the regulation of numerous molecular and cellular events. The resistance to serum withdrawal, endoplasmic reticulum stress, or other harsh conditions conferred by RBM3 has led to its reputation as a survival gene. Once CIRP protein is released from cells, it appears to bolster inflammation, contributing to poor prognosis in septic patients. A variety of human tumor specimens have been analyzed for CIRP and RBM3 expression. Surprisingly, RBM3 expression was primarily found to be positively associated with the survival of chemotherapy-treated patients, while CIRP expression was inversely linked to patient survival. In this comprehensive review, we summarize the evolutionary conservation of CIRP and RBM3 across species as well as their molecular interactions, cellular functions, and roles in diverse physiological and pathological processes, including circadian rhythm, inflammation, neural plasticity, stem cell properties, and cancer development.
Collapse
Affiliation(s)
- Xinzhou Zhu
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056, Basel, Switzerland
| | - Christoph Bührer
- Department of Neonatology, Charité University Medical Center, Berlin, Germany
| | - Sven Wellmann
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
102
|
Karakostis K, Costa C, Zito F, Brümmer F, Matranga V. Characterization of an Alpha Type Carbonic Anhydrase from Paracentrotus lividus Sea Urchin Embryos. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:384-395. [PMID: 27230618 DOI: 10.1007/s10126-016-9701-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
Carbonic anhydrases (CA) are zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the sea urchin, CA has a role in the formation of the calcitic skeleton during embryo development. Here, we report a newly identified mRNA sequence from embryos of the sea urchin Paracentrotus lividus, referred to as Pl-can. The complete coding sequence was identified with the aid of both EST databases and experimental procedures. Pl-CAN is a 447 aa-long protein, with an estimated molecular mass of 48.5 kDa and an isoelectric point of 6.83. The in silico study of functional domains showed, in addition to the alpha type CA-specific domain, the presence of an unexpected glycine-rich region at the N-terminal of the molecule. This is not found in any other species described so far, but probably it is restricted to the sea urchins. The phylogenetic analysis indicated that Pl-CAN is evolutionarily closer to human among chordates than to other species. The putative role(s) of the identified domains is discussed. The Pl-can temporal and spatial expression profiles, analyzed throughout embryo development by comparative qPCR and whole-mount in situ hybridization (WMISH), showed that Pl-can mRNA is specifically expressed in the primary mesenchyme cells (PMC) of the embryo and levels increase along with the growth of the embryonic skeleton, reaching a peak at the pluteus stage. A recombinant fusion protein was produced in E. coli and used to raise specific antibodies in mice recognized the endogenous Pl-CAN by Western blot in embryo extracts from gastrula and pluteus.
Collapse
Affiliation(s)
- Konstantinos Karakostis
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
- Institute for Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
- INSERM - UMR 1162, Institute de Génétique Moléculaire, Hôpital St. Louis, 27 rue Juliette Dodu, 75010, Paris, France
| | - Caterina Costa
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy.
| | - Francesca Zito
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
| | - Franz Brümmer
- Institute for Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Valeria Matranga
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
| |
Collapse
|
103
|
Carella P, Wilson DC, Kempthorne CJ, Cameron RK. Vascular Sap Proteomics: Providing Insight into Long-Distance Signaling during Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:651. [PMID: 27242852 PMCID: PMC4863880 DOI: 10.3389/fpls.2016.00651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/28/2016] [Indexed: 05/17/2023]
Abstract
The plant vascular system, composed of the xylem and phloem, is important for the transport of water, mineral nutrients, and photosynthate throughout the plant body. The vasculature is also the primary means by which developmental and stress signals move from one organ to another. Due to practical and technological limitations, proteomics analysis of xylem and phloem sap has been understudied in comparison to accessible sample types such as leaves and roots. However, recent advances in sample collection techniques and mass spectrometry technology are making it possible to comprehensively analyze vascular sap proteomes. In this mini-review, we discuss the emerging field of vascular sap proteomics, with a focus on recent comparative studies to identify vascular proteins that may play roles in long-distance signaling and other processes during stress responses in plants.
Collapse
|
104
|
Giarola V, Krey S, von den Driesch B, Bartels D. The Craterostigma plantagineum glycine-rich protein CpGRP1 interacts with a cell wall-associated protein kinase 1 (CpWAK1) and accumulates in leaf cell walls during dehydration. THE NEW PHYTOLOGIST 2016; 210:535-50. [PMID: 26607676 DOI: 10.1111/nph.13766] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/18/2015] [Indexed: 05/20/2023]
Abstract
Craterostigma plantagineum tolerates extreme desiccation. Leaves of this plant shrink and extensively fold during dehydration and expand again during rehydration, preserving their structural integrity. Genes were analysed that may participate in the reversible folding mechanism. Analysis of transcripts abundantly expressed in desiccated leaves identified a gene putatively coding for an apoplastic glycine-rich protein (CpGRP1). We studied the expression, regulation and subcellular localization of CpGRP1 and its ability to interact with a cell wall-associated protein kinase (CpWAK1) to understand the role of CpGRP1 in the cell wall during dehydration. The CpGRP1 protein accumulates in the apoplast of desiccated leaves. Analysis of the promoter revealed that the gene expression is mainly regulated at the transcriptional level, is independent of abscisic acid (ABA) and involves a drought-responsive cis-element (DRE). CpGRP1 interacts with CpWAK1 which is down-regulated in response to dehydration. Our data suggest a role of the CpGRP1-CpWAK1 complex in dehydration-induced morphological changes in the cell wall during dehydration in C. plantagineum. Cell wall pectins and dehydration-induced pectin modifications are predicted to be involved in the activity of the CpGRP1-CpWAK1 complex.
Collapse
Affiliation(s)
- Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Stephanie Krey
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Barbara von den Driesch
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| |
Collapse
|
105
|
Rodríguez-Celma J, Ceballos-Laita L, Grusak MA, Abadía J, López-Millán AF. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:991-1002. [PMID: 27033031 DOI: 10.1016/j.bbapap.2016.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/15/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
Abstract
The phloem sap, xylem sap and apoplastic fluid play key roles in long and short distance transport of signals and nutrients, and act as a barrier against local and systemic pathogen infection. Among other components, these plant fluids contain proteins which are likely to be important players in their functionalities. However, detailed information about their proteomes is only starting to arise due to the difficulties inherent to the collection methods. This review compiles the proteomic information available to date in these three plant fluids, and compares the proteomes obtained in different plant species in order to shed light into conserved functions in each plant fluid. Inter-species comparisons indicate that all these fluids contain the protein machinery for self-maintenance and defense, including proteins related to cell wall metabolism, pathogen defense, proteolysis, and redox response. These analyses also revealed that proteins may play more relevant roles in signaling in the phloem sap and apoplastic fluid than in the xylem sap. A comparison of the proteomes of the three fluids indicates that although functional categories are somewhat similar, proteins involved are likely to be fluid-specific, except for a small group of proteins present in the three fluids, which may have a universal role, especially in cell wall maintenance and defense. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Jorge Rodríguez-Celma
- University of East Anglia/John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Laura Ceballos-Laita
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 13034, E-50080 Zaragoza, Spain
| | - Michael A Grusak
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Javier Abadía
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 13034, E-50080 Zaragoza, Spain
| | - Ana-Flor López-Millán
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 13034, E-50080 Zaragoza, Spain; USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA.
| |
Collapse
|
106
|
Mangeon A, Pardal R, Menezes-Salgueiro AD, Duarte GL, de Seixas R, Cruz FP, Cardeal V, Magioli C, Ricachenevsky FK, Margis R, Sachetto-Martins G. AtGRP3 Is Implicated in Root Size and Aluminum Response Pathways in Arabidopsis. PLoS One 2016; 11:e0150583. [PMID: 26939065 PMCID: PMC4777284 DOI: 10.1371/journal.pone.0150583] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
AtGRP3 is a glycine-rich protein (GRP) from Arabidopsis thaliana shown to interact with the receptor-like kinase AtWAK1 in yeast, in vitro and in planta. In this work, phenotypic analyses using transgenic plants were performed in order to better characterize this GRP. Plants of two independent knockout alleles of AtGRP3 develop longer roots suggesting its involvement in root size determination. Confocal microscopy analysis showed an abnormal cell division and elongation in grp3-1 knockout mutants. Moreover, we also show that grp3-1 exhibits an enhanced Aluminum (Al) tolerance, a feature also described in AtWAK1 overexpressing plants. Together, these results implicate AtGRP3 function root size determination during development and in Al stress.
Collapse
Affiliation(s)
- Amanda Mangeon
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Renan Pardal
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Adriana Dias Menezes-Salgueiro
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Guilherme Leitão Duarte
- Programa de Pós-Graduação em Botânica (PPGBot), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501–970, Brazil
| | - Ricardo de Seixas
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Fernanda P. Cruz
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Vanessa Cardeal
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Claudia Magioli
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | | | - Rogério Margis
- Centro de Biotecnologia e Departamento de Biofísica da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501–970, Brazil
| | - Gilberto Sachetto-Martins
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| |
Collapse
|
107
|
Lee K, Kang H. Emerging Roles of RNA-Binding Proteins in Plant Growth, Development, and Stress Responses. Mol Cells 2016; 39:179-85. [PMID: 26831454 PMCID: PMC4794599 DOI: 10.14348/molcells.2016.2359] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 11/27/2022] Open
Abstract
Posttranscriptional regulation of RNA metabolism, including RNA processing, intron splicing, editing, RNA export, and decay, is increasingly regarded as an essential step for fine-tuning the regulation of gene expression in eukaryotes. RNA-binding proteins (RBPs) are central regulatory factors controlling posttranscriptional RNA metabolism during plant growth, development, and stress responses. Although functional roles of diverse RBPs in living organisms have been determined during the last decades, our understanding of the functional roles of RBPs in plants is lagging far behind our understanding of those in other organisms, including animals, bacteria, and viruses. However, recent functional analysis of multiple RBP family members involved in plant RNA metabolism and elucidation of the mechanistic roles of RBPs shed light on the cellular roles of diverse RBPs in growth, development, and stress responses of plants. In this review, we will discuss recent studies demonstrating the emerging roles of multiple RBP family members that play essential roles in RNA metabolism during plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757,
Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757,
Korea
| |
Collapse
|
108
|
Kazama T, Itabashi E, Fujii S, Nakamura T, Toriyama K. Mitochondrial ORF79 levels determine pollen abortion in cytoplasmic male sterile rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:707-16. [PMID: 26850149 DOI: 10.1111/tpj.13135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 05/03/2023]
Abstract
Cytoplasmic male sterility (CMS) is an important agricultural trait characterized by lack of functional pollen, and caused by ectopic and defective mitochondrial gene expression. The pollen function in CMS plants is restored by the presence of nuclear-encoded restorer of fertility (Rf) genes. Previously, we cloned Rf2, which restores the fertility of Lead Rice (LD)-type CMS rice. However, neither the function of Rf2 nor the identity of the mitochondrial gene causing CMS has been determined in LD-CMS rice. Here, we show that the mitochondrial gene orf79 acts as a CMS-associated gene in LD-CMS rice, similar to its role in BT-CMS rice originating from Chinsurah Boro II, and Rf2 weakly restores fertility in BT-CMS rice. We also show that RF2 promotes degradation of atp6-orf79 RNA in a different manner from that of RF1, which is the Rf gene product in BT-CMS rice. The amount of ORF79 protein in LD-CMS rice was one-twentieth of the amount in BT-CMS rice. The difference in ORF79 protein levels probably accounts for the mild and severe pollen defects in LD-CMS and BT-CMS rice, respectively. In the presence of Rf2, accumulation of ORF79 was reduced to almost zero and 25% in LD-CMS and BT-CMS rice, respectively, which probably accounts for the complete and weak fertility restoration abilities of Rf2 in LD-CMS and BT-CMS rice, respectively. These observations indicate that the amount of ORF79 influences the pollen fertility in two strains of rice in which CMS is induced by orf79.
Collapse
Affiliation(s)
- Tomohiko Kazama
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555, Japan
| | - Etsuko Itabashi
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555, Japan
| | - Shinya Fujii
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555, Japan
| | - Takahiro Nakamura
- Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Kinya Toriyama
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555, Japan
| |
Collapse
|
109
|
Bullard RL, Williams J, Karim S. Temporal Gene Expression Analysis and RNA Silencing of Single and Multiple Members of Gene Family in the Lone Star Tick Amblyomma americanum. PLoS One 2016; 11:e0147966. [PMID: 26872360 PMCID: PMC4752215 DOI: 10.1371/journal.pone.0147966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
Saliva is an integral factor in the feeding success of veterinary and medically important ticks. Therefore, the characterization of the proteins present in tick saliva is an important area of tick research. Here, we confirmed previously generated sialotranscriptome data using quantitative real-time PCR. The information obtained in this in-depth study of gene expression was used to measure the effects of metalloprotease gene silencing on tick feeding. We analyzed the temporal expression of seven housekeeping genes and 44 differentially expressed salivary molecules selected from a previously published Amblyomma americanum sialotranscriptome. Separate reference genes were selected for the salivary glands and midgut from among the seven housekeeping genes, to normalize the transcriptional expression of differentially expressed genes. The salivary gland reference gene, ubiquitin, was used to normalize the expression of 44 salivary genes. Unsurprisingly, each gene family was expressed throughout the blood meal, but the expression of specific genes differed at each time point. To further clarify the complex nature of the many proteins found in the saliva, we disrupted the translation of several members of the metalloprotease family. Intriguingly, the nucleotide sequence similarity of the reprolysin metalloprotease gene family is so homologous that a single synthesized dsRNA sequence knocked down multiple members of the family. The use of multigene knockdown yielded a more significant picture of the role of metalloproteases in tick feeding success, and changes were observed in the female engorgement weight and larval hatching success. Interestingly, the depletion of metalloprotease transcripts also reduced the total number of bacteria present in the salivary glands. These data provide insight into the expression and functions of tick salivary proteins expressed while feeding on its host.
Collapse
Affiliation(s)
- Rebekah L. Bullard
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, United States of America
| | - Jaclyn Williams
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, United States of America
| | - Shahid Karim
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, United States of America
| |
Collapse
|
110
|
Xue GP, Rae AL, White RG, Drenth J, Richardson T, McIntyre CL. A strong root-specific expression system for stable transgene expression in bread wheat. PLANT CELL REPORTS 2016; 35:469-81. [PMID: 26563345 DOI: 10.1007/s00299-015-1897-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 05/24/2023]
Abstract
A strong, stable and root-specific expression system was developed from a rice root-specific GLYCINE - RICH PROTEIN 7 promoter for use as an enabling technology for genetic manipulation of wheat root traits. Root systems play an important role in wheat productivity. Genetic manipulation of wheat root traits often requires a root-specific or root-predominant expression system as an essential enabling technology. In this study, we investigated promoters from rice root-specific or root-predominant expressed genes for development of a root expression system in bread wheat. Transient expression analysis using a GREEN FLUORESCENT PROTEIN (GFP) reporter gene driven by rice promoters identified six promoters that were strongly expressed in wheat roots. Extensive organ specificity analysis of three rice promoters in transgenic wheat revealed that the promoter of rice GLYCINE-RICH PROTEIN 7 (OsGRP7) gene conferred a root-specific expression pattern in wheat. Strong GFP fluorescence in the seminal and branch roots of wheat expressing GFP reporter driven by the OsGRP7 promoter was detected in epidermal, cortical and endodermal cells in mature parts of the root. The GFP reporter driven by the promoter of rice METALLOTHIONEIN-LIKE PROTEIN 1 (OsMTL1) gene was mainly expressed in the roots with essentially no expression in the leaf, stem or seed. However, it was also expressed in floral organs including glume, lemma, palea and awn. In contrast, strong expression of rice RCg2 promoter-driven GFP was found in many tissues. The GFP expression driven by these three rice promoters was stable in transgenic wheat plants through three generations (T1-T3) examined. These data suggest that the OsGRP7 promoter can provide a strong, stable and root-specific expression system for use as an enabling technology for genetic manipulation of wheat root traits.
Collapse
Affiliation(s)
- Gang-Ping Xue
- CSIRO Agriculture, 306 Carmody Rd., St Lucia, QLD, 4067, Australia.
| | - Anne L Rae
- CSIRO Agriculture, 306 Carmody Rd., St Lucia, QLD, 4067, Australia
| | - Rosemary G White
- CSIRO Agriculture, Clunies Ross Street, Canberra, ACT, 2601, Australia
| | - Janneke Drenth
- CSIRO Agriculture, 306 Carmody Rd., St Lucia, QLD, 4067, Australia
| | - Terese Richardson
- CSIRO Agriculture, Clunies Ross Street, Canberra, ACT, 2601, Australia
| | - C Lynne McIntyre
- CSIRO Agriculture, 306 Carmody Rd., St Lucia, QLD, 4067, Australia
| |
Collapse
|
111
|
Gaborieau L, Brown GG, Mireau H. The Propensity of Pentatricopeptide Repeat Genes to Evolve into Restorers of Cytoplasmic Male Sterility. FRONTIERS IN PLANT SCIENCE 2016; 7:1816. [PMID: 27999582 PMCID: PMC5138203 DOI: 10.3389/fpls.2016.01816] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/17/2016] [Indexed: 05/18/2023]
Abstract
Cytoplasmic male sterility (CMS) is a widespread phenotype in plants, which present a defect in the production of functional pollen. The male sterilizing factors usually consist of unusual genes or open reading frames encoded by the mitochondrial genome. CMS can be suppressed by specific nuclear genes called restorers of fertility (Rfs). In the majority of cases, Rf genes produce proteins that act directly on the CMS conferring mitochondrial transcripts by binding them specifically and promoting processing events. In this review, we explore the wide array of mechanisms guiding fertility restoration. PPR proteins represent the most frequent protein class among identified Rfs and they exhibit ideal characteristics to evolve into restorer of fertility when the mechanism of restoration implies a post-transcriptional action. Here, we review the literature that highlights those characteristics and help explain why PPR proteins are ideal for the roles they play as restorers of fertility.
Collapse
Affiliation(s)
| | | | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-SaclayVersailles, France
- *Correspondence: Hakim Mireau,
| |
Collapse
|
112
|
Abstract
The pectin matrix of the angiosperm cell wall is regulated in both synthesis and modification and greatly influences the direction and extent of cell growth. Pathogens, herbivory and mechanical stresses all influence this pectin matrix and consequently plant form and function. The cell wall-associated kinases (WAKs) bind to pectin and regulate cell expansion or stress responses depending upon the state of the pectin. This review explores the WAKs in the context of cell wall biology and signal transduction pathways.
Collapse
Affiliation(s)
- Bruce D Kohorn
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
113
|
Shi X, Germain A, Hanson MR, Bentolila S. RNA Recognition Motif-Containing Protein ORRM4 Broadly Affects Mitochondrial RNA Editing and Impacts Plant Development and Flowering. PLANT PHYSIOLOGY 2016; 170:294-309. [PMID: 26578708 PMCID: PMC4704580 DOI: 10.1104/pp.15.01280] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/13/2015] [Indexed: 05/02/2023]
Abstract
Plant RNA editosomes modify cytidines (C) to uridines (U) at specific sites in plastid and mitochondrial transcripts. Members of the RNA-editing factor interacting protein (RIP) family and Organelle RNA Recognition Motif-containing (ORRM) family are essential components of the Arabidopsis (Arabidopsis thaliana) editosome. ORRM2 and ORRM3 have been recently identified as minor mitochondrial editing factors whose silencing reduces editing efficiency at ∼6% of the mitochondrial C targets. Here we report the identification of ORRM4 (for organelle RRM protein 4) as a novel, major mitochondrial editing factor that controls ∼44% of the mitochondrial editing sites. C-to-U conversion is reduced, but not eliminated completely, at the affected sites. The orrm4 mutant exhibits slower growth and delayed flowering time. ORRM4 affects editing in a site-specific way, though orrm4 mutation affects editing of the entire transcript of certain genes. ORRM4 contains an RRM domain at the N terminus and a Gly-rich domain at the C terminus. The RRM domain provides the editing activity of ORRM4, whereas the Gly-rich domain is required for its interaction with ORRM3 and with itself. The presence of ORRM4 in the editosome is further supported by its interaction with RIP1 in a bimolecular fluorescence complementation assay. The identification of ORRM4 as a major mitochondrial editing factor further expands our knowledge of the composition of the RNA editosome and reveals that adequate mitochondrial editing is necessary for normal plant development.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 (X.S., A.G., M.R.H., S.B.)
| | - Arnaud Germain
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 (X.S., A.G., M.R.H., S.B.)
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 (X.S., A.G., M.R.H., S.B.)
| | - Stéphane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 (X.S., A.G., M.R.H., S.B.)
| |
Collapse
|
114
|
Uebler S, Márton ML, Dresselhaus T. Classification of EA1-box proteins and new insights into their role during reproduction in grasses. PLANT REPRODUCTION 2015; 28:183-197. [PMID: 26498589 DOI: 10.1007/s00497-015-0269-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
EA1-box protein classification. Success in reproduction and vegetative development in flowering plants strongly depends on precise cell-to-cell signaling events mediated by secreted peptides.A small peptide family named as EA1-like (EAL) has been first described 10 years ago and includes EA1 involved in pollen tubes attraction by the female gametophyte and EAL1-regulating germ cell identity in maize. EALs consist of an N-terminal endoplasmic reticulum-targeting motif, the highly conserved EA1-box and a short C-terminal alanine-rich domain. Whereas EAL peptides are exclusively found in the Gramineae, the EA1-box is widely distributed throughout the plant kingdom. Based on in silico analysis and subcellular localization studies, we report here a new classification of EA1-box proteins in flowering plants. They can be distinguished into three protein classes: the already defined EAL proteins, the EAG (EA1-box glycine-rich) proteins and the EAC (EA1-box containing)proteins. While fusion proteins of EAL and EAC classes locate to the secretory pathway, EAGs are cytoplasmic and locate also to the nucleus. Moreover, we further show that the third EAL protein of Zea mays, EAL2, appears to be also involved in processes related to late embryogenic development as its peptide level increases after formation of leaf primordia. Immunohistochemical studies indicate its presence in the scutellar parenchyma and around the vasculature, where it is secreted to the extracellular space. In conclusion, the members of the maize EAL family possess very diverse functions during reproduction and it will now be exciting to elucidate the functions of EAGs and EACs in plants.
Collapse
|
115
|
Lewinski M, Hallmann A, Staiger D. Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues. Mol Genet Genomics 2015; 291:763-73. [DOI: 10.1007/s00438-015-1144-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/06/2015] [Indexed: 11/28/2022]
|
116
|
Das S, Dawson NL, Orengo CA. Diversity in protein domain superfamilies. Curr Opin Genet Dev 2015; 35:40-9. [PMID: 26451979 PMCID: PMC4686048 DOI: 10.1016/j.gde.2015.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 01/25/2023]
Abstract
Whilst ∼93% of domain superfamilies appear to be relatively structurally and functionally conserved based on the available data from the CATH-Gene3D domain classification resource, the remainder are much more diverse. In this review, we consider how domains in some of the most ubiquitous and promiscuous superfamilies have evolved, in particular the plasticity in their functional sites and surfaces which expands the repertoire of molecules they interact with and actions performed on them. To what extent can we identify a core function for these superfamilies which would allow us to develop a ‘domain grammar of function’ whereby a protein's biological role can be proposed from its constituent domains? Clearly the first step is to understand the extent to which these components vary and how changes in their molecular make-up modifies function.
Collapse
Affiliation(s)
- Sayoni Das
- Institute of Structural and Molecular Biology, UCL, 627 Darwin Building, Gower Street, WC1E 6BT, UK
| | - Natalie L Dawson
- Institute of Structural and Molecular Biology, UCL, 627 Darwin Building, Gower Street, WC1E 6BT, UK
| | - Christine A Orengo
- Institute of Structural and Molecular Biology, UCL, 627 Darwin Building, Gower Street, WC1E 6BT, UK.
| |
Collapse
|
117
|
Tan YC, Wong MY, Ho CL. Expression profiles of defence related cDNAs in oil palm (Elaeis guineensis Jacq.) inoculated with mycorrhizae and Trichoderma harzianum Rifai T32. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:296-300. [PMID: 26322853 DOI: 10.1016/j.plaphy.2015.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/11/2015] [Accepted: 08/20/2015] [Indexed: 06/04/2023]
Abstract
Basal stem rot is one of the major diseases of oil palm (Elaies guineensis Jacq.) caused by pathogenic Ganoderma species. Trichoderma and mycorrhizae were proposed to be able to reduce the disease severity. However, their roles in improving oil palm defence system by possibly inducing defence-related genes in the host are not well characterized. To better understand that, transcript profiles of eleven putative defence-related cDNAs in the roots of oil palm inoculated with Trichoderma harzianum T32 and mycorrhizae at different time points were studied. Transcripts encoding putative Bowman-Birk protease inhibitor (EgBBI2) and defensin (EgDFS) increased more than 2 fold in mycorrhizae-treated roots at 6 weeks post inoculation (wpi) compared to those in controls. Transcripts encoding putative dehydrin (EgDHN), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), type 2 ribosome inactivating protein (EgT2RIP), and EgDFS increased in the oil palm roots treated with T. harzianum at 6 and/or 12 wpi compared to those in the controls. Some of these genes were also expressed in oil palm roots treated with Ganoderma boninense. This study provides an insight of some defence-related genes induced by Trichoderma and mycorrhizae, and their roles as potential agents to boost the plant defence system.
Collapse
Affiliation(s)
- Yung-Chie Tan
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Mui-Yun Wong
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Chai-Ling Ho
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
118
|
Xiao J, Li C, Xu S, Xing L, Xu Y, Chong K. JACALIN-LECTIN LIKE1 Regulates the Nuclear Accumulation of GLYCINE-RICH RNA-BINDING PROTEIN7, Influencing the RNA Processing of FLOWERING LOCUS C Antisense Transcripts and Flowering Time in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:2102-17. [PMID: 26392261 PMCID: PMC4634062 DOI: 10.1104/pp.15.00801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/17/2015] [Indexed: 05/03/2023]
Abstract
Lectins selectively recognize sugars or glycans for defense in living cells, but less is known about their roles in the development process and the functional network with other factors. Here, we show that Arabidopsis (Arabidopsis thaliana) JACALIN-LECTIN LIKE1 (AtJAC1) functions in flowering time control. Loss of function of AtJAC1 leads to precocious flowering, whereas overexpression of AtJAC1 causes delayed flowering. AtJAC1 influences flowering through regulation of the key flowering repressor gene FLOWERING LOCUS C (FLC). Genetic analysis revealed that AtJAC1's function is mostly dependent on GLYCINE-RICH RNA-BINDING PROTEIN7 (GRP7), an upstream regulator of FLC. Biochemical and cell biological data indicated that AtJAC1 interacted physically with GRP7 specifically in the cytoplasm. AtJAC1 influences the nucleocytoplasmic distribution of GRP7, with predominant nuclear localization of GRP7 when AtJAC1 function is lost but retention of GRP7 in the cytoplasm when AtJAC1 is overexpressed. A temporal inducible assay suggested that AtJAC1's regulation of flowering could be compromised by the nuclear accumulation of GRP7. In addition, GRP7 binds to the antisense precursor messenger RNA of FLC through a conserved RNA motif. Loss of GRP7 function leads to the elevation of total FLC antisense transcripts and reduced proximal-distal polyadenylation ratio, as well as histone methylation changes in the FLC gene body region and increased total functional sense FLC transcript. Attenuating the direct binding of GRP7 with competing artificial RNAs leads to changes of FLC antisense precursor messenger RNA processing and flowering transition. Taken together, our study indicates that AtJAC1 coordinates with GRP7 in shaping plant development through the regulation of RNA processing in Arabidopsis.
Collapse
Affiliation(s)
- Jun Xiao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (J.X., C.L., S.X., L.X., Y.X., K.C.);National Center for Plant Gene Research, Beijing 100093, China (K.C.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (J.X., C.L., S.X.)
| | - Chunhua Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (J.X., C.L., S.X., L.X., Y.X., K.C.);National Center for Plant Gene Research, Beijing 100093, China (K.C.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (J.X., C.L., S.X.)
| | - Shujuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (J.X., C.L., S.X., L.X., Y.X., K.C.);National Center for Plant Gene Research, Beijing 100093, China (K.C.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (J.X., C.L., S.X.)
| | - Lijing Xing
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (J.X., C.L., S.X., L.X., Y.X., K.C.);National Center for Plant Gene Research, Beijing 100093, China (K.C.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (J.X., C.L., S.X.)
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (J.X., C.L., S.X., L.X., Y.X., K.C.);National Center for Plant Gene Research, Beijing 100093, China (K.C.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (J.X., C.L., S.X.)
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (J.X., C.L., S.X., L.X., Y.X., K.C.);National Center for Plant Gene Research, Beijing 100093, China (K.C.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (J.X., C.L., S.X.)
| |
Collapse
|
119
|
Fan J, Zhai Z, Yan C, Xu C. Arabidopsis TRIGALACTOSYLDIACYLGLYCEROL5 Interacts with TGD1, TGD2, and TGD4 to Facilitate Lipid Transfer from the Endoplasmic Reticulum to Plastids. THE PLANT CELL 2015; 27:2941-55. [PMID: 26410300 PMCID: PMC4682317 DOI: 10.1105/tpc.15.00394] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/24/2015] [Accepted: 09/04/2015] [Indexed: 05/20/2023]
Abstract
The biogenesis of photosynthetic membranes in the plastids of higher plants requires an extensive supply of lipid precursors from the endoplasmic reticulum (ER). Four TRIGALACTOSYLDIACYLGLYCEROL (TGD) proteins (TGD1,2,3,4) have thus far been implicated in this lipid transfer process. While TGD1, TGD2, and TGD3 constitute an ATP binding cassette transporter complex residing in the plastid inner envelope, TGD4 is a transmembrane lipid transfer protein present in the outer envelope. These observations raise questions regarding how lipids transit across the aqueous intermembrane space. Here, we describe the isolation and characterization of a novel Arabidopsis thaliana gene, TGD5. Disruption of TGD5 results in similar phenotypic effects as previously described in tgd1,2,3,4 mutants, including deficiency of ER-derived thylakoid lipids, accumulation of oligogalactolipids, and triacylglycerol. Genetic analysis indicates that TGD4 is epistatic to TGD5 in ER-to-plastid lipid trafficking, whereas double mutants of a null tgd5 allele with tgd1-1 or tgd2-1 show a synergistic embryo-lethal phenotype. TGD5 encodes a small glycine-rich protein that is localized in the envelope membranes of chloroplasts. Coimmunoprecipitation assays show that TGD5 physically interacts with TGD1, TGD2, TGD3, and TGD4. Collectively, these results suggest that TGD5 facilitates lipid transfer from the outer to the inner plastid envelope by bridging TGD4 with the TGD1,2,3 transporter complex.
Collapse
Affiliation(s)
- Jilian Fan
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Zhiyang Zhai
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Chengshi Yan
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Changcheng Xu
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
120
|
Abstract
Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.
Collapse
|
121
|
Reinprecht Y, Arif M, Simon LC, Pauls KP. Genome Regions Associated with Functional Performance of Soybean Stem Fibers in Polypropylene Thermoplastic Composites. PLoS One 2015; 10:e0130371. [PMID: 26167917 PMCID: PMC4500502 DOI: 10.1371/journal.pone.0130371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023] Open
Abstract
Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP) matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs) grown in different environments were incorporated into PP at 20% (wt/wt) by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL) for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue.
Collapse
Affiliation(s)
| | - Muhammad Arif
- University of Guelph, Department of Plant Agriculture, Guelph, ON, Canada
- University of Waterloo, Department of Chemical Engineering, Waterloo, ON, Canada
| | - Leonardo C. Simon
- University of Waterloo, Department of Chemical Engineering, Waterloo, ON, Canada
| | - K. Peter Pauls
- University of Guelph, Department of Plant Agriculture, Guelph, ON, Canada
| |
Collapse
|
122
|
Curto M, Krajinski F, Schlereth A, Rubiales D. Transcriptional profiling of Medicago truncatula during Erysiphe pisi infection. FRONTIERS IN PLANT SCIENCE 2015; 6:517. [PMID: 26217367 PMCID: PMC4496563 DOI: 10.3389/fpls.2015.00517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/26/2015] [Indexed: 05/21/2023]
Abstract
Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown. Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense. Using high-throughput quantitative real-time PCR (qPCR) technology more than 1000 Medicago truncatula TFs were screened in a pair of susceptible and resistant genotypes of M. truncatula after 4 h of Erysiphe pisi infection. Seventy nine TF genes, belonging to 33 families showed a significant transcriptional change in response to E. pisi infection. Forty eight TF genes were differentially expressed in the resistant genotypes compared to the susceptible one in response to E. pisi infection, including pathogenesis-related transcriptional factors, AP2/EREBP (APETALA2/ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS), WRKY (highly conserved WRKYGQK amino-acid sequence), MYB (Myeloblastoma), homeodomain (HD) and zinc finger C2C2 (CYS2-CYS2), C2H2, (CYS2-HIS2), LIM (Lin-11, Isl-1, Mec-3) gene families, which are involved in known defense responses. Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.
Collapse
Affiliation(s)
- Miguel Curto
- Department of Plant Breeding, Institute for Sustainable Agriculture, Spanish National Research CouncilCórdoba, Spain
| | - Franziska Krajinski
- Department of Plant-Microbe Interactions, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Armin Schlereth
- Department of Plant-Microbe Interactions, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Diego Rubiales
- Department of Plant Breeding, Institute for Sustainable Agriculture, Spanish National Research CouncilCórdoba, Spain
| |
Collapse
|
123
|
Du B, Wei Z, Wang Z, Wang X, Peng X, Du B, Chen R, Zhu L, He G. Phloem-exudate proteome analysis of response to insect brown plant-hopper in rice. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:13-22. [PMID: 26072143 DOI: 10.1016/j.jplph.2015.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/12/2015] [Accepted: 03/16/2015] [Indexed: 05/23/2023]
Abstract
Brown plant-hopper (Nilaparvata lugens Stål, BPH), one of the most devastating agricultural insect pests of rice throughout Asia, ingests nutrients from rice sieve tubes and causes a dramatic yield loss. Planting resistant variety is an efficient and economical way to control this pest. Understanding the mechanisms of host resistance is extremely valuable for molecular design of resistant rice variety. Here, we used an iTRAQ-based quantitative proteomics approach to perform analysis of protein expression profiles in the phloem exudates of BPH-resistant and susceptible rice plants following BPH infestation. A total of 238 proteins were identified, most of which were previously described to be present in the phloem of rice and other plants. The expression of genes for selected proteins was confirmed using a laser capture micro-dissection method and RT-PCR. The mRNAs for three proteins, RGAP, TCTP, and TRXH, were further analyzed by using in situ mRNA hybridization and localized in the phloem cells. Our results showed that BPH feeding induced significant changes in the abundance of proteins in phloem sap of rice involved in multiple pathways, including defense signal transduction, redox regulation, and carbohydrate and protein metabolism, as well as cell structural proteins. The results presented provide new insights into rice resistance mechanisms and should facilitate the breeding of novel elite BPH-resistant rice varieties.
Collapse
Affiliation(s)
- Ba Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhe Wei
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhanqi Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoxiao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinxin Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
124
|
Krishnamurthy P, Kim JA, Jeong MJ, Kang CH, Lee SI. Defining the RNA-binding glycine-rich (RBG) gene superfamily: new insights into nomenclature, phylogeny, and evolutionary trends obtained by genome-wide comparative analysis of Arabidopsis, Chinese cabbage, rice and maize genomes. Mol Genet Genomics 2015; 290:2279-95. [PMID: 26123085 DOI: 10.1007/s00438-015-1080-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
RNA-binding glycine-rich (RBG) proteins play diverse roles in plant growth, development, protection and genome organization. An overly broad definition for class IV glycine-rich proteins (GRPs), namely RNA-binding activity and a glycine-rich C-terminus, has resulted in many distantly related and/or non-related proteins being grouped into this class of RBGs. This definition has hampered the study of RBG evolution. In this study, we used a comparative genomic approach consisting of ortholog, homolog, synteny and phylogenetic analyses to legitimately exclude all distantly/non-related proteins from class IV GRPs and to identify 15, 22, 12 and 18 RBG proteins in Arabidopsis, Chinese cabbage, rice and maize genomes, respectively. All identified RBGs could be divided into three subclasses, namely RBGA, RBGB and RBGD, which may be derived from a common ancestor. We assigned RBGs excluded from class IV GRPs to a separate RBG superfamily. RBGs have evolved and diversified in different species via different mechanisms; segmental duplication and recombination have had major effects, with tandem duplication, intron addition/deletion and domain recombination/deletion playing minor roles. Loss and retention of duplicated RBGs after polyploidization has been species and subclass specific. For example, following recent whole-genome duplication and triplication in maize and Chinese cabbage, respectively, most duplicated copies of RBGA have been lost in maize while RBGD duplicates have been retained; in Chinese cabbage, in contrast, RBGA duplicates have been retained while RBGD duplicates have been lost. Our findings reveal fundamental information and shed new light on the structural characteristics and evolutionary dynamics of RBGs.
Collapse
Affiliation(s)
- Panneerselvam Krishnamurthy
- Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), Jeonju, 560-500, Korea
| | - Jin A Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), Jeonju, 560-500, Korea
| | - Mi-Jeong Jeong
- Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), Jeonju, 560-500, Korea
| | - Chang Ho Kang
- Division of Applied Life Science and PMBBRC, Gyeongsang National University, Jinju, 660-701, Korea
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), Jeonju, 560-500, Korea.
| |
Collapse
|
125
|
Dufoo-Hurtado MD, Huerta-Ocampo JÁ, Barrera-Pacheco A, Barba de la Rosa AP, Mercado-Silva EM. Low temperature conditioning of garlic (Allium sativum L.) "seed" cloves induces alterations in sprouts proteome. FRONTIERS IN PLANT SCIENCE 2015; 6:332. [PMID: 26029231 PMCID: PMC4429546 DOI: 10.3389/fpls.2015.00332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Low-temperature conditioning of garlic "seed" cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that "seed" bulbs from "Coreano" variety conditioned at 5°C for 5 weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic "seed" cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23°C), and the other was conditioned at low temperature (5°C) for 5 weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic "seed" cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous studies.
Collapse
Affiliation(s)
- Miguel D. Dufoo-Hurtado
- Laboratorio de Fisiología y Bioquímica Poscosecha de Frutas y Hortalizas, Departamento de Investigación y Posgrado, Facultad de Química, Universidad Autónoma de QuerétaroQuerétaro, Mexico
| | - José Á. Huerta-Ocampo
- Laboratorio de Proteómica y Biomedicina Molecular, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C.San Luis Potosí, Mexico
| | - Alberto Barrera-Pacheco
- Laboratorio de Proteómica y Biomedicina Molecular, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C.San Luis Potosí, Mexico
| | - Ana P. Barba de la Rosa
- Laboratorio de Proteómica y Biomedicina Molecular, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C.San Luis Potosí, Mexico
| | - Edmundo M. Mercado-Silva
- Laboratorio de Fisiología y Bioquímica Poscosecha de Frutas y Hortalizas, Departamento de Investigación y Posgrado, Facultad de Química, Universidad Autónoma de QuerétaroQuerétaro, Mexico
| |
Collapse
|
126
|
Dobón A, Canet JV, García-Andrade J, Angulo C, Neumetzler L, Persson S, Vera P. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis. PLoS Pathog 2015; 11:e1004800. [PMID: 25830627 PMCID: PMC4382300 DOI: 10.1371/journal.ppat.1004800] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.
Collapse
Affiliation(s)
- Albor Dobón
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| | - Juan Vicente Canet
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| | - Javier García-Andrade
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| | - Carlos Angulo
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| | - Lutz Neumetzler
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
| | - Staffan Persson
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Victoria, Australia
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| |
Collapse
|
127
|
Shi X, Hanson MR, Bentolila S. Two RNA recognition motif-containing proteins are plant mitochondrial editing factors. Nucleic Acids Res 2015; 43:3814-25. [PMID: 25800738 PMCID: PMC4402546 DOI: 10.1093/nar/gkv245] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/10/2015] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional C-to-U RNA editing occurs in plant plastid and mitochondrial transcripts. Members of the Arabidopsis RNA-editing factor interacting protein (RIP) family and ORRM1 (Organelle RNA Recognition Motif-containing protein 1) have been recently characterized as essential components of the chloroplast RNA editing apparatus. ORRM1 belongs to a distinct clade of RNA Recognition Motif (RRM)-containing proteins, most of which are predicted to be organelle-targeted. Here we report the identification of two proteins, ORRM2 (organelle RRM protein 2) and ORRM3 (organelle RRM protein 3), as the first members of the ORRM clade to be identified as mitochondrial editing factors. Transient silencing of ORRM2 and ORRM3 resulted in reduced editing efficiency at ∼6% of the mitochondrial C targets. In addition to an RRM domain at the N terminus, ORRM3 carries a glycine-rich domain at the C terminus. The N-terminal RRM domain by itself provides the editing activity of ORRM3. In yeast-two hybrid assays, ORRM3 interacts with RIP1, ORRM2 and with itself. Transient silencing of ORRM2 in the orrm3 mutant further impairs the editing activity at sites controlled by both ORRM2 and ORRM3. Identification of the effect of ORRM2 and ORRM3 on RNA editing reveals a previously undescribed role of RRM-containing proteins as mitochondrial RNA editing factors.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Stéphane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
128
|
Samayoa LF, Malvar RA, Olukolu BA, Holland JB, Butrón A. Genome-wide association study reveals a set of genes associated with resistance to the Mediterranean corn borer (Sesamia nonagrioides L.) in a maize diversity panel. BMC PLANT BIOLOGY 2015; 15:35. [PMID: 25652257 PMCID: PMC4340109 DOI: 10.1186/s12870-014-0403-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/22/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Corn borers are the primary maize pest; their feeding on the pith results in stem damage and yield losses. In this study, we performed a genome-wide association study (GWAS) to identify SNPs associated with resistance to Mediterranean corn borer in a maize diversity panel using a set of more than 240,000 SNPs. RESULTS Twenty five SNPs were significantly associated with three resistance traits: 10 were significantly associated with tunnel length, 4 with stem damage, and 11 with kernel resistance. Allelic variation at each significant SNP was associated with from 6 to 9% of the phenotypic variance. A set of genes containing or physically close to these SNPs are proposed as candidate genes for borer resistance, supported by their involvement in plant defense-related mechanisms in previously published evidence. The linkage disequilibrium decayed (r(2) < 0.10) rapidly within short distance, suggesting high resolution of GWAS associations. CONCLUSIONS Most of the candidate genes found in this study are part of signaling pathways, others act as regulator of expression under biotic stress condition, and a few genes are encoding enzymes with antibiotic effect against insects such as the cystatin1 gene and the defensin proteins. These findings contribute to the understanding the complex relationship between plant-insect interactions.
Collapse
Affiliation(s)
- Luis Fernando Samayoa
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| | - Rosa Ana Malvar
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| | - Bode A Olukolu
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, 27695, USA.
| | - James B Holland
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, 27695, USA.
- U.S. Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, 27695, USA.
| | - Ana Butrón
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| |
Collapse
|
129
|
Sharma M, Bhatt D. The circadian clock and defence signalling in plants. MOLECULAR PLANT PATHOLOGY 2015; 16:210-8. [PMID: 25081907 PMCID: PMC6638510 DOI: 10.1111/mpp.12178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The circadian clock is the internal time-keeping machinery in higher organisms. Cross-talk between the circadian clock and a diverse range of physiological processes in plants, including stress acclimatization, hormone signalling, photomorphogenesis and defence signalling, is currently being explored. Recent studies on circadian clock genes and genes involved in defence signalling have indicated a possible reciprocal interaction between the two. It has been proposed that the circadian clock shapes the outcome of plant-pathogen interactions. In this review, we highlight the studies carried out so far on two model plant pathogens, namely Pseudomonas syringae and Hyaloperonospora arabidopsidis, and the involvement of the circadian clock in gating effector-triggered immunity and pathogen-associated molecular pattern-triggered immunity. We focus on how the circadian clock gates the expression of various stress-related transcripts in a prolific manner to enhance plant fitness. An understanding of this dynamic relationship between clock and stress will open up new avenues in the understanding of endogenous mechanisms of defence signalling in plants.
Collapse
Affiliation(s)
- Mayank Sharma
- Mahyco Life Science Research Center, PO Box 76, Jalna (MS), 431203, India
| | | |
Collapse
|
130
|
Samanta P, Sadhukhan S, Basu A. Identification of differentially expressed transcripts associated with bast fibre development in Corchorus capsularis by suppression subtractive hybridization. PLANTA 2015; 241:371-385. [PMID: 25319611 DOI: 10.1007/s00425-014-2187-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/30/2014] [Indexed: 06/04/2023]
Abstract
The present study documented the predominant role of WRKY transcription factor in controlling genes of different pathways related to fibre formation in jute and could be a candidate gene for the improvement of jute fiber. Understanding of molecular mechanism associated with bast fibre development is of immense significance to achieve desired improvement in jute (Corchorus sp.). Therefore, suppression subtractive hybridization was successfully applied to identify genes involved in fibre developmental process in jute. The subtracted library of normal Corchorus capsularis as tester with respect to its fibre-deficient mutant as driver resulted in 2,685 expressed sequence tags which were assumed to represent the differentially expressed genes between two genotypes. The identified expressed sequence tags were assembled and clustered into 225 contigs and 231 singletons. Among these 456 unigenes, 377 were classified into 15 different functional categories while others were of unknown functional category. Reverse Northern analysis of the unigenes showed distinct variation in hybridization intensity of 11 transcripts between two genotypes tested. The findings were also documented by Northern and real-time PCR analysis. Varied expression level of these transcripts suggested their crucial involvement in fibre development in this species. Among these transcripts, WRKY transcription factor was documented to be a most important transcript which was in agreement with its known role in other plant species in possible regulation related to cell wall biosynthesis, expansion and lignification. This report constitutes first systematic analysis of genes involved in fibre development process in jute. It may be suggested that the information generated in this study would be useful for genetic improvement of fibre traits in this plant species.
Collapse
Affiliation(s)
- Pradipta Samanta
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | | | | |
Collapse
|
131
|
Ortega-Amaro MA, Rodríguez-Hernández AA, Rodríguez-Kessler M, Hernández-Lucero E, Rosales-Mendoza S, Ibáñez-Salazar A, Delgado-Sánchez P, Jiménez-Bremont JF. Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance. FRONTIERS IN PLANT SCIENCE 2015; 5:782. [PMID: 25653657 PMCID: PMC4299439 DOI: 10.3389/fpls.2014.00782] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/17/2014] [Indexed: 05/08/2023]
Abstract
Proteins with glycine-rich signatures have been reported in a wide variety of organisms including plants, mammalians, fungi, and bacteria. Plant glycine-rich protein genes exhibit developmental and tissue-specific expression patterns. Herein, we present the characterization of the AtGRDP2 gene using Arabidopsis null and knockdown mutants and, Arabidopsis and lettuce over-expression lines. AtGRDP2 encodes a short glycine-rich domain protein, containing a DUF1399 domain and a putative RNA recognition motif (RRM). AtGRDP2 transcript is mainly expressed in Arabidopsis floral organs, and its deregulation in Arabidopsis Atgrdp2 mutants and 35S::AtGRDP2 over-expression lines produces alterations in development. The 35S::AtGRDP2 over-expression lines grow faster than the WT, while the Atgrdp2 mutants have a delay in growth and development. The over-expression lines accumulate higher levels of indole-3-acetic acid and, have alterations in the expression pattern of ARF6, ARF8, and miR167 regulators of floral development and auxin signaling. Under salt stress conditions, 35S::AtGRDP2 over-expression lines displayed higher tolerance and increased expression of stress marker genes. Likewise, transgenic lettuce plants over-expressing the AtGRDP2 gene manifest increased growth rate and early flowering time. Our data reveal an important role for AtGRDP2 in Arabidopsis development and stress response, and suggest a connection between AtGRDP2 and auxin signaling.
Collapse
Affiliation(s)
- María A. Ortega-Amaro
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, México
| | - Aída A. Rodríguez-Hernández
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, México
| | | | - Eloísa Hernández-Lucero
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, México
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis PotosíSan Luis Potosi, Mexico
| | | | - Pablo Delgado-Sánchez
- Facultad de Agronomía, Universidad Autónoma de San Luis PotosíSan Luis Potosi, México
| | - Juan F. Jiménez-Bremont
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, México
| |
Collapse
|
132
|
Kim DS, Kim NH, Hwang BK. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum). THE NEW PHYTOLOGIST 2015; 205:786-800. [PMID: 25323422 DOI: 10.1111/nph.13105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/01/2014] [Indexed: 05/10/2023]
Abstract
Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation.
Collapse
Affiliation(s)
- Dae Sung Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Korea
| | | | | |
Collapse
|
133
|
Thakur A, Bhatla SC. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development. PLANT SIGNALING & BEHAVIOR 2015; 10:e1030100. [PMID: 26786011 PMCID: PMC4854339 DOI: 10.1080/15592324.2015.1030100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 05/20/2023]
Abstract
A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20-30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20-30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development.
Collapse
Affiliation(s)
- Anita Thakur
- Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi; Delhi, India
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi; Delhi, India
| |
Collapse
|
134
|
Ciuzan O, Hancock J, Pamfil D, Wilson I, Ladomery M. The evolutionarily conserved multifunctional glycine-rich RNA-binding proteins play key roles in development and stress adaptation. PHYSIOLOGIA PLANTARUM 2015; 153:1-11. [PMID: 25243592 DOI: 10.1111/ppl.12286] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/11/2014] [Accepted: 08/20/2014] [Indexed: 05/24/2023]
Abstract
The class IV glycine-rich RNA-binding proteins are a distinct subgroup within the heterogenous superfamily of glycine-rich proteins (GRPs). They are distinguished by the presence of an RNA-binding domain in the N-terminus; generally in the form of an RNA-recognition motif (RRM) or a cold-shock domain (CSD). These are followed by a C-terminal glycine-rich domain. Growing evidence suggests that these proteins play key roles in the adaptation of organisms to biotic and abiotic stresses including those resulting from pathogenesis, alterations in the osmotic, saline and oxidative environment and changes in temperature. Similar vertebrate proteins are also cold-induced and involved in, e.g. hibernation, suggesting evolutionarily conserved functions. The class IV RNA-binding GRPs are likely to operate as key molecular components of hormonally regulated development and to work by regulating gene expression at multiple levels by modifying alternative splicing, mRNA export, mRNA translation and mRNA degradation.
Collapse
Affiliation(s)
- Oana Ciuzan
- University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, 400372, Romania; Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Bielefeld, D-33615, Germany
| | | | | | | | | |
Collapse
|
135
|
Tripet B, Mason KE, Eilers BJ, Burns J, Powell P, Fischer AM, Copié V. Structural and biochemical analysis of the Hordeum vulgare L. HvGR-RBP1 protein, a glycine-rich RNA-binding protein involved in the regulation of barley plant development and stress response. Biochemistry 2014; 53:7945-60. [PMID: 25495582 PMCID: PMC4278681 DOI: 10.1021/bi5007223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/25/2014] [Indexed: 12/26/2022]
Abstract
The timing of whole-plant senescence influences important agricultural traits such as yield and grain protein content. Post-transcriptional regulation by plant RNA-binding proteins is essential for proper control of gene expression, development, and stress responses. Here, we report the three-dimensional solution NMR structure and nucleic acid-binding properties of the barley glycine-rich RNA-binding protein HvGR-RBP1, whose transcript has been identified as being >45-fold up-regulated in early-as compared to late-senescing near-isogenic barley germplasm. NMR analysis reveals that HvGR-RBP1 is a multidomain protein comprising a well-folded N-terminal RNA Recognition Motif (RRM) and a structurally disordered C-terminal glycine-rich domain. Chemical shift differences observed in 2D (1)H-(15)N correlation (HSQC) NMR spectra of full-length HvGR-RBP1 and N-HvGR-RBP1 (RRM domain only) suggest that the two domains can interact both in-trans and intramolecularly, similar to what is observed in the tobacco NtGR-RBP1 protein. Further, we show that the RRM domain of HvGR-RBP1 binds single-stranded DNA nucleotide fragments containing the consensus nucleotide sequence 5'-TTCTGX-3' with low micromolar affinity in vitro. We also demonstrate that the C-terminal glycine-rich (HvGR) domain of Hv-GR-RBP1 can interact nonspecifically with ssRNA in vitro. Structural similarities with other plant glycine-rich RNA-binding proteins suggest that HvGR-RBP1 may be multifunctional. Based on gene expression analysis following cold stress in barley and E. coli growth studies following cold shock treatment, we conclude that HvGR-RBP1 functions in a manner similar to cold-shock proteins and harbors RNA chaperone activity. HvGR-RBP1 is therefore not only involved in the regulation of barley development including senescence, but also functions in plant responses to environmental stress.
Collapse
MESH Headings
- Cold-Shock Response/physiology
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Hordeum/genetics
- Hordeum/metabolism
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Protein Binding
- Protein Structure, Tertiary
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Brian
P. Tripet
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Katelyn E. Mason
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Brian J. Eilers
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Jennifer Burns
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Paul Powell
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Andreas M. Fischer
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Valérie Copié
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
136
|
Timbó RV, Hermes-Lima M, Silva LP, Mehta A, Moraes MCB, Paula DP. Biochemical aspects of the soybean response to herbivory injury by the brown stink bug Euschistus heros (Hemiptera: Pentatomidae). PLoS One 2014; 9:e109735. [PMID: 25333272 PMCID: PMC4204818 DOI: 10.1371/journal.pone.0109735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/08/2014] [Indexed: 11/20/2022] Open
Abstract
Plant defense response is an elaborate biochemical process shown to depend on the plant genetic background and on the biological stressor. This work evaluated the soybean biochemical foliar response to brown stink bug herbivory injury through an analysis of redox metabolism and proteomic 2DE profiles of susceptible (BRS Silvania RR) and resistant (IAC-100) varieties. The activity of lipoxygenase-3, guaiacol peroxidase, catalase and ascorbate peroxidase was monitored every 24 h up to 96 h. In the susceptible variety, injury caused an increase in the activities of lipoxygenase 3 and guaiacol peroxidase, no change in ascorbate peroxidase, and a decrease in catalase. In the resistant variety, injury did not cause an alteration of any of these enzymes. The proteomic profiles were evaluated after 24 h of injury and revealed to have a similar proportion (4-5%) of differential protein expression in both varieties. The differential proteins, identified by mass spectrometry, in the susceptible variety were related to general stress responses, to plant defense, and to fungal infections. However, in the resistant variety, the identified change in protein profile was related to Calvin cycle enzymes. While the susceptible variety showed adaptive changes in redox metabolism and expression of stress-responsive proteins, the resistant showed a defense response to circumvent the biological stressor.
Collapse
Affiliation(s)
- Renata Velozo Timbó
- Department of Cell Biology, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
- Department of Biological Control, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Marcelo Hermes-Lima
- Department of Cell Biology, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Luciano Paulino Silva
- Department of Biological Control, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Angela Mehta
- Department of Biological Control, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | | | - Débora Pires Paula
- Department of Biological Control, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| |
Collapse
|
137
|
Lin CH, Chen CY. Characterization of the Dual Subcellular Localization of Lilium LsGRP1, a Plant Class II Glycine-Rich Protein. PHYTOPATHOLOGY 2014; 104:1012-1020. [PMID: 25207480 DOI: 10.1094/phyto-01-14-0020-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The defense-related gene LsGRP1 exhibits an increased level of expression in Lilium spp. after being infected by Botrytis elliptica, the fungal pathogen of lily leaf blight. In this study, the expression profile of the LsGRP1 protein (a plant class II glycine-rich protein) was characterized biochemically and its subcellular localization in lily leaves was evaluated using immunohistochemistry, enhanced green fluorescent protein (EGFP) imaging, and protein extraction analysis. Using an LsGRP1-specific antibody, LsGRP1 was found to be most abundant in epidermal cells and phloem tissues. Leaves from lily plants at different growth stages demonstrated similar levels of 14- and 16-kDa LsGRP1 and a decreased amount of 23-kDa LsGRP1 at the senescence stage. LsGRP1-EGFP imaging and protein extraction assays revealed that 14-kDa LsGRP1 was located in the plasma membrane whereas 16- and 23-kDa LsGRP1 was weakly bound to the cell wall. The time course analyses of LsGRP1 expression in response to salicylic acid treatment or B. elliptica infection showed an increased accumulation of 14- and 23-kDa LsGRP1 over time. Because 23-kDa LsGRP1 could be detected by an ubiquitin antibody, conversion of 14-kDa to 23-kDa LsGRP1 via mono-ubiquitination was presumed, which is a phenomenon that has not been reported for a plant class II glycine-rich protein.
Collapse
|
138
|
Zhang J, Zhao Y, Xiao H, Zheng Y, Yue B. Genome-wide identification, evolution, and expression analysis of RNA-binding glycine-rich protein family in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1020-1031. [PMID: 24783971 DOI: 10.1111/jipb.12210] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 04/25/2014] [Indexed: 06/03/2023]
Abstract
The RNA-binding glycine-rich protein (RB-GRP) family is characterized by the presence of a glycine-rich domain arranged in (Gly)n-X repeats and an RNA-recognition motif (RRM). RB-GRPs participate in varied physiological and biochemical processes especially in the stress response of plants. In this study, a total of 23 RB-GRPs distributed on 10 chromosomes were identified in maize (Zea mays L.), and they were divided into four subgroups according to their conserved domain architecture. Five pairs of paralogs were identified, while none of them was located on the same chromosomal region, suggesting that segmental duplication is predominant in the duplication events of the RB-GRPs in maize. Comparative analysis of RB-GRPs in maize, Arabidopsis (Arabidopsis thaliana L.), rice (Oryza sativa L.), and wheat (Triticum aestivum) revealed that two exclusive subgroups were only identified in maize. Expression of eight ZmRB-GRPs was significantly regulated by at least two kinds of stresses. In addition, cis-elements predicted in the promoter regions of the ZmRB-GRPs also indicated that these ZmRB-GRPs would be involved in stress response of maize. The preliminary genome-wide analysis of the RB-GRPs in maize would provide useful information for further study on the function of the ZmRB-GRPs.
Collapse
Affiliation(s)
- Jianhua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | |
Collapse
|
139
|
Balasubramaniam M, Kim BS, Hutchens-Williams HM, Loesch-Fries LS. The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of Alfalfa mosaic virus and inhibits virus replication. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1107-18. [PMID: 24940990 DOI: 10.1094/mpmi-02-14-0035-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alfalfa mosaic virus (AMV) coat protein (CP) is essential for many steps in virus replication from early infection to encapsidation. However, the identity and functional relevance of cellular factors that interact with CP remain unknown. In an unbiased yeast two-hybrid screen for CP-interacting Arabidopsis proteins, we identified several novel protein interactions that could potentially modulate AMV replication. In this report, we focus on one of the novel CP-binding partners, the Arabidopsis PsbP protein, which is a nuclear-encoded component of the oxygen-evolving complex of photosystem II. We validated the protein interaction in vitro with pull-down assays, in planta with bimolecular fluorescence complementation assays, and during virus infection by co-immunoprecipitations. CP interacted with the chloroplast-targeted PsbP in the cytosol and mutations that prevented the dimerization of CP abolished this interaction. Importantly, PsbP overexpression markedly reduced virus accumulation in infected leaves. Taken together, our findings demonstrate that AMV CP dimers interact with the chloroplast protein PsbP, suggesting a potential sequestration strategy that may preempt the generation of any PsbP-mediated antiviral state.
Collapse
|
140
|
Starvation-responsive glycine-rich protein gene in the silkworm Bombyx mori. J Comp Physiol B 2014; 184:827-34. [PMID: 25095972 PMCID: PMC4171585 DOI: 10.1007/s00360-014-0846-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/18/2014] [Accepted: 07/09/2014] [Indexed: 11/21/2022]
Abstract
Four glycine-rich protein (GRP) genes were identified from expressed sequence tags of the maxillary galea of the silkworm. All four genes were expressed in the maxillary pulp, antenna, labrum, and labium, but none of the genes were expressed in most internal organs. Expression of one of the genes, termed bmSIGRP, was further increased approximately fivefold in the mouth region (including the maxilla, antenna, labrum, labium, and mandible) after 24 h of starvation. bmSIGRP expression peaked at 24 h and gradually declined during the subsequent 2 days. When a synthetic diet not containing proteins was fed, bmSIGRP expression increased significantly in the mouth region to levels similar to that observed in starved larvae. Synthetic diets that lacked vitamins or salts but contained amino acids did not significantly affect bmSIGRP expression. These results suggest that amino acid depletion increases bmSIGRP expression.
Collapse
|
141
|
Xiao J, Xu S, Li C, Xu Y, Xing L, Niu Y, Huan Q, Tang Y, Zhao C, Wagner D, Gao C, Chong K. O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat. Nat Commun 2014; 5:4572. [PMID: 25091017 PMCID: PMC4143922 DOI: 10.1038/ncomms5572] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/01/2014] [Indexed: 11/15/2022] Open
Abstract
Vernalization, sensing of prolonged cold, is important for seasonal flowering in eudicots and monocots. While vernalization silences a repressor (FLC, MADS-box transcription factor) in eudicots, it induces an activator (TaVRN1, an AP1 clade MADS-box transcription factor) in monocots. The mechanism for TaVRN1 induction during vernalization is not well understood. Here we reveal a novel mechanism for controlling TaVRN1 mRNA accumulation in response to prolonged cold sensing in wheat. The carbohydrate-binding protein VER2, a jacalin lectin, promotes TaVRN1 upregulation by physically interacting with the RNA-binding protein TaGRP2. TaGRP2 binds to TaVRN1 pre-mRNA and inhibits TaVRN1 mRNA accumulation. The physical interaction between VER2 and TaGRP2 is controlled by TaGRP2 O-GlcNAc modification, which gradually increases during vernalization. The interaction between VER2 and O-GlcNAc-TaGRP2 reduces TaGRP2 protein accumulation in the nucleus and/or promotes TaGRP2 dissociation from TaVRN1, leading to TaVRN1 mRNA accumulation. Our data reveal a new mechanism for sensing prolonged cold in temperate cereals.
Collapse
Affiliation(s)
- Jun Xiao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Present address: Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Shujuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- These authors contributed equally to this work
| | - Chunhua Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- These authors contributed equally to this work
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lijing Xing
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuda Niu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qing Huan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yimiao Tang
- Hybrid Wheat Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China
| | - Changping Zhao
- Hybrid Wheat Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Caixia Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
| |
Collapse
|
142
|
Kiirika LM, Schmitz U, Colditz F. The alternative Medicago truncatula defense proteome of ROS-defective transgenic roots during early microbial infection. FRONTIERS IN PLANT SCIENCE 2014; 5:341. [PMID: 25101099 PMCID: PMC4101433 DOI: 10.3389/fpls.2014.00341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/26/2014] [Indexed: 05/29/2023]
Abstract
ROP-type GTPases of plants function as molecular switches within elementary signal transduction pathways such as the regulation of ROS synthesis via activation of NADPH oxidases (RBOH-respiratory burst oxidase homolog in plants). Previously, we reported that silencing of the Medicago truncatula GTPase MtROP9 led to reduced ROS production and suppressed induction of ROS-related enzymes in transgenic roots (MtROP9i) infected with pathogenic (Aphanomyces euteiches) and symbiotic microorganisms (Glomus intraradices, Sinorhizobium meliloti). While fungal infections were enhanced, S. meliloti infection was drastically impaired. In this study, we investigate the temporal proteome response of M. truncatula MtROP9i transgenic roots during the same microbial interactions under conditions of deprived potential to synthesize ROS. In comparison with control roots (Mtvector), we present a comprehensive proteomic analysis using sensitive MS protein identification. For four early infection time-points (1, 3, 5, 24 hpi), 733 spots were found to be different in abundance: 213 spots comprising 984 proteins (607 unique) were identified after S. meliloti infection, 230 spots comprising 796 proteins (580 unique) after G. intraradices infection, and 290 spots comprising 1240 proteins (828 unique) after A. euteiches infection. Data evaluation by GelMap in combination with a heatmap tool allowed recognition of key proteome changes during microbial interactions under conditions of hampered ROS synthesis. Overall, the number of induced proteins in MtROP9i was low as compared with controls, indicating a dual function of ROS in defense signaling as well as alternative response patterns activated during microbial infection. Qualitative analysis of induced proteins showed that enzymes linked to ROS production and scavenging were highly induced in control roots, while in MtROP9i the majority of proteins were involved in alternative defense pathways such as cell wall and protein degradation.
Collapse
Affiliation(s)
| | | | - Frank Colditz
- Department of Plant Molecular Biology, Institute of Plant Genetics, Leibniz University HannoverHannover, Germany
| |
Collapse
|
143
|
Luo C, He XH, Hu Y, Yu HX, Ou SJ, Fang ZB. Oligo-dT anchored cDNA-SCoT: a novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (Mangifera indica L.). Gene 2014; 548:182-9. [PMID: 25017057 DOI: 10.1016/j.gene.2014.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
Differential display is a powerful technique for analyzing differences in gene expression. Oligo-dT cDNAstart codon targeted marker (cDNA-SCoT) technique is a novel, simple, cheap, rapid, and efficient method for differential gene expression research. In the present study, the oligo-dT anchored cDNA-SCoT technique was exploited to identify differentially expressed genes during several stress treatments in mango. A total of 37 primers combined with oligo-dT anchor primers 3side amplified approximately 150 fragments of 150 bp to 1500 bp in length. Up to 100 fragments were differentially expressed among the stress treatments and control samples, among which 92 were obtained and sequenced. Out of the 92 transcript derived fragments (TDFs), 70% were highly homologous to known genes, and 30% encoded unclassified proteins with unknown functions. The expression pattern of nine genes with known functions involved in several abiotic stresses in other species was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) under cold (4 °C), salinity (NaCl), polyethylene glycol (PEG, MW 6000), and heavy metal treatments in leaves and stems at different time points (0, 24, 48, and 72 h). The expression patterns of the genes (TDF4, TDF7, TDF23, TDF45, TDF49, TDF50, TDF57, TDF91 and TDF92) that had direct or indirect relationships with cold, salinity, drought and heavy metal stress response were analyzed through qRT-PCR. The possible roles of these genes are discussed. This study suggests that the oligo-dT anchored cDNA-SCoT differential display method is a useful tool to serve as an initial step for characterizing transcriptional changes induced by abiotic stresses and provide gene information for further study and application in genetic improvement and breeding in mango.
Collapse
Affiliation(s)
- Cong Luo
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xin-Hua He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, Guangxi 530007, China.
| | - Ying Hu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Hai-xia Yu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Shi-Jin Ou
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhong-Bin Fang
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
144
|
Khan F, Daniëls MA, Folkers GE, Boelens R, Saqlan Naqvi SM, van Ingen H. Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: implications for its RNA chaperone function. Nucleic Acids Res 2014; 42:8705-18. [PMID: 24957607 PMCID: PMC4117745 DOI: 10.1093/nar/gku468] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 04/30/2014] [Accepted: 05/12/2014] [Indexed: 12/30/2022] Open
Abstract
Glycine-rich RNA-binding proteins (GR-RBPs) are involved in cold shock response of plants as RNA chaperones facilitating mRNA transport, splicing and translation. GR-RBPs are bipartite proteins containing a RNA recognition motif (RRM) followed by a glycine-rich region. Here, we studied the structural basis of nucleic acid binding of full-length Nicotiana tabacum GR-RBP1. NMR studies of NtGR-RBP1 show that the glycine-rich domain, while intrinsically disordered, is responsible for mediating self-association by transient interactions with its RRM domain (NtRRM). Both NtGR-RBP1 and NtRRM bind specifically and with low micromolar affinity to RNA and single-stranded DNA. The solution structure of NtRRM shows that it is a canonical RRM domain. A HADDOCK model of the NtRRM-RNA complex, based on NMR chemical shift and NOE data, shows that nucleic acid binding results from a combination of stacking and electrostatic interactions with conserved RRM residues. Finally, DNA melting experiments demonstrate that NtGR-RBP1 is more efficient in melting CTG containing nucleic acids than isolated NtRRM. Together, our study supports the model that self-association of GR-RBPs by the glycine-rich region results in cooperative unfolding of non-native substrate structures, thereby enhancing its chaperone function.
Collapse
Affiliation(s)
- Fariha Khan
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands Department of Biochemistry, PMAS Agriculture University Rawalpindi, 46300 Rawalpindi, Pakistan
| | - Mark A Daniëls
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Gert E Folkers
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Rolf Boelens
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - S M Saqlan Naqvi
- Department of Biochemistry, PMAS Agriculture University Rawalpindi, 46300 Rawalpindi, Pakistan
| | - Hugo van Ingen
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
145
|
Kour A, Boone AM, Vodkin LO. RNA-Seq profiling of a defective seed coat mutation in Glycine max reveals differential expression of proline-rich and other cell wall protein transcripts. PLoS One 2014; 9:e96342. [PMID: 24828743 PMCID: PMC4020777 DOI: 10.1371/journal.pone.0096342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/04/2014] [Indexed: 01/19/2023] Open
Abstract
The plant cell wall performs a number of essential functions including providing shape to many different cell types and serving as a defense against potential pathogens. The net pattern mutation creates breaks in the seed coat of soybean (Glycine max) because of ruptured cell walls. Using RNA-Seq, we examined the seed coat transcriptome from three stages of immature seed development in two pairs of isolines with normal or defective seed coat phenotypes due to the net pattern. The genome-wide comparative study of the transcript profiles of these isolines revealed 364 differentially expressed genes in common between the two varieties that were further divided into different broad functional categories. Genes related to cell wall processes accounted for 19% of the differentially expressed genes in the middle developmental stage of 100-200 mg seed weight. Within this class, the cell wall proline-rich and glycine-rich protein genes were highly differentially expressed in both genetic backgrounds. Other genes that showed significant expression changes in each of the isoline pairs at the 100-200 mg seed weight stage were xylem serine proteinase, fasciclin-related genes, auxin and stress response related genes, TRANSPARENT TESTA 1 (TT1) and other transcription factors. The mutant appears to shift the timing of either the increase or decrease in the levels of some of the transcripts. The analysis of these data sets reveals the physiological changes that the seed coat undergoes during the formation of the breaks in the cell wall.
Collapse
Affiliation(s)
- Anupreet Kour
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Anne M. Boone
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Lila O. Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
146
|
Jiang Q, Ma X, Gong X, Zhang J, Teng S, Xu J, Lin D, Dong Y. The rice OsDG2 encoding a glycine-rich protein is involved in the regulation of chloroplast development during early seedling stage. PLANT CELL REPORTS 2014; 33:733-44. [PMID: 24430865 DOI: 10.1007/s00299-013-1549-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 05/05/2023]
Abstract
OsDG2 gene encoded a novel chloroplast-targeted GRP in rice. Disruption of the OsDG2 would lead to delayed greening phenotype and affected expression levels of genes associated with chloroplast development at early leaf stage of rice. Glycine-rich proteins (GRPs) participate in various biological processes in plants. However, the evidence of GRPs involved in chloroplast development in plants is quite limited. In this study, we identified a rice GRP gene mutant named osdg2 (O ryza s ativa d elayed g reening 2), which exhibits delayed greening phenotype characterized as bright yellow leaves before the three-leaf stage and thereafter turns to normal green. Further study showed that the mutant phenotype was consistent with changes in chlorophyll content and chloroplast development. The rice OsDG2 gene, encoding a novel GRP protein, was located on chromosome 2 through map-based cloning method and confirmed by molecular complementation tests. Subcellular localization results showed that OsDG2 was targeted in chloroplasts. In addition, the OsDG2 transcripts were highly expressed in leaves and undetectable in other tissues, showing the tissue-specific expression. In osdg2 mutant, the expression levels of most genes associated with chloroplast development were severely decreased in the 3rd leaves, but almost recovered to wild-type level in the 4th leaves. Our findings indicated that the nuclear-encoded OsDG2 plays important roles in chloroplast development at early leaf stage of rice.
Collapse
Affiliation(s)
- Quan Jiang
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Enhanced Photosynthesis and Carbon Metabolism Favor Arsenic Tolerance in Artemisia annua, a Medicinal Plant as Revealed by Homology-Based Proteomics. INTERNATIONAL JOURNAL OF PROTEOMICS 2014; 2014:163962. [PMID: 24868464 PMCID: PMC4020366 DOI: 10.1155/2014/163962] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 02/03/2014] [Indexed: 12/24/2022]
Abstract
This paper provides the first proteomic evidence of arsenic (As) tolerance and interactive regulatory network between primary and secondary metabolism in the medicinal plant, Artemisia annua. While chlorophyll fluorescence and photosynthetic rate depicted mild inhibition, there was a significant enhancement in PSI activity, whole chain, ATP, and NADPH contents in 100 μM As treatments compared to the control plants. However, a decrease in the above variables was recorded under 150 μM treatments. Proteomic decoding of the survival strategy of A. annua under As stress using 2-DE followed by MALDI-MS/MS revealed a total of 46 differentially expressed protein spots. In contrast to other plants where As inhibits photosynthesis, A. annua showed appreciable photosynthetic CO2 assimilation and allocation of carbon resources at 100 μM As concentration. While an increased accumulation of ATP synthase, ferredoxin-NADP(H) oxidoreductase, and FeS-rieske proteins supported the operation of cyclic electron transport, mdr ABC transporter protein and pcs gene might be involved in As detoxification. The most interesting observation was an increased accumulation of LEAFY like novel protein conceivably responsible for an early onset of flowering in A. annua under As stress. This study not only affirmed the role of energy metabolism proteins but also identified potential candidates responsible for As tolerance in plants.
Collapse
|
148
|
Albenne C, Canut H, Hoffmann L, Jamet E. Plant Cell Wall Proteins: A Large Body of Data, but What about Runaways? Proteomes 2014; 2:224-242. [PMID: 28250379 PMCID: PMC5302738 DOI: 10.3390/proteomes2020224] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 11/16/2022] Open
Abstract
Plant cell wall proteomics has been a very dynamic field of research for about fifteen years. A full range of strategies has been proposed to increase the number of identified proteins and to characterize their post-translational modifications. The protocols are still improving to enlarge the coverage of cell wall proteomes. Comparisons between these proteomes have been done based on various working strategies or different physiological stages. In this review, two points are highlighted. The first point is related to data analysis with an overview of the cell wall proteomes already described. A large body of data is now available with the description of cell wall proteomes of seventeen plant species. CWP contents exhibit particularities in relation to the major differences in cell wall composition and structure between these plants and between plant organs. The second point is related to methodology and concerns the present limitations of the coverage of cell wall proteomes. Because of the variety of cell wall structures and of the diversity of protein/polysaccharide and protein/protein interactions in cell walls, some CWPs can be missing either because they are washed out during the purification of cell walls or because they are covalently linked to cell wall components.
Collapse
Affiliation(s)
- Cécile Albenne
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France.
- CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France.
| | - Hervé Canut
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France.
- CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France.
| | - Laurent Hoffmann
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France.
- CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France.
| | - Elisabeth Jamet
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France.
- CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
149
|
Hichri I, Muhovski Y, Žižková E, Dobrev PI, Franco-Zorrilla JM, Solano R, Lopez-Vidriero I, Motyka V, Lutts S. The Solanum lycopersicum Zinc Finger2 cysteine-2/histidine-2 repressor-like transcription factor regulates development and tolerance to salinity in tomato and Arabidopsis. PLANT PHYSIOLOGY 2014; 164:1967-90. [PMID: 24567191 PMCID: PMC3982756 DOI: 10.1104/pp.113.225920] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 02/19/2014] [Indexed: 05/07/2023]
Abstract
The zinc finger superfamily includes transcription factors that regulate multiple aspects of plant development and were recently shown to regulate abiotic stress tolerance. Cultivated tomato (Solanum lycopersicum Zinc Finger2 [SIZF2]) is a cysteine-2/histidine-2-type zinc finger transcription factor bearing an ERF-associated amphiphilic repression domain and binding to the ACGTCAGTG sequence containing two AGT core motifs. SlZF2 is ubiquitously expressed during plant development, and is rapidly induced by sodium chloride, drought, and potassium chloride treatments. Its ectopic expression in Arabidopsis (Arabidopsis thaliana) and tomato impaired development and influenced leaf and flower shape, while causing a general stress visible by anthocyanin and malonyldialdehyde accumulation. SlZF2 enhanced salt sensitivity in Arabidopsis, whereas SlZF2 delayed senescence and improved tomato salt tolerance, particularly by maintaining photosynthesis and increasing polyamine biosynthesis, in salt-treated hydroponic cultures (125 mm sodium chloride, 20 d). SlZF2 may be involved in abscisic acid (ABA) biosynthesis/signaling, because SlZF2 is rapidly induced by ABA treatment and 35S::SlZF2 tomatoes accumulate more ABA than wild-type plants. Transcriptome analysis of 35S::SlZF2 revealed that SlZF2 both increased and reduced expression of a comparable number of genes involved in various physiological processes such as photosynthesis, polyamine biosynthesis, and hormone (notably ABA) biosynthesis/signaling. Involvement of these different metabolic pathways in salt stress tolerance is discussed.
Collapse
Affiliation(s)
- Imène Hichri
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (I.H., S.L.)
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, B–5030 Gembloux, Belgium (Y.M.)
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic (E.Z., P.I.D., V.M.)
- and Genomics Unit (J.M.F-Z., I.L.-V.) and Departamento de Genética Molecular de Plantas (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Yordan Muhovski
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (I.H., S.L.)
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, B–5030 Gembloux, Belgium (Y.M.)
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic (E.Z., P.I.D., V.M.)
- and Genomics Unit (J.M.F-Z., I.L.-V.) and Departamento de Genética Molecular de Plantas (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Eva Žižková
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (I.H., S.L.)
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, B–5030 Gembloux, Belgium (Y.M.)
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic (E.Z., P.I.D., V.M.)
- and Genomics Unit (J.M.F-Z., I.L.-V.) and Departamento de Genética Molecular de Plantas (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Petre I. Dobrev
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (I.H., S.L.)
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, B–5030 Gembloux, Belgium (Y.M.)
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic (E.Z., P.I.D., V.M.)
- and Genomics Unit (J.M.F-Z., I.L.-V.) and Departamento de Genética Molecular de Plantas (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Jose Manuel Franco-Zorrilla
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (I.H., S.L.)
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, B–5030 Gembloux, Belgium (Y.M.)
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic (E.Z., P.I.D., V.M.)
- and Genomics Unit (J.M.F-Z., I.L.-V.) and Departamento de Genética Molecular de Plantas (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Roberto Solano
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (I.H., S.L.)
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, B–5030 Gembloux, Belgium (Y.M.)
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic (E.Z., P.I.D., V.M.)
- and Genomics Unit (J.M.F-Z., I.L.-V.) and Departamento de Genética Molecular de Plantas (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Irene Lopez-Vidriero
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (I.H., S.L.)
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, B–5030 Gembloux, Belgium (Y.M.)
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic (E.Z., P.I.D., V.M.)
- and Genomics Unit (J.M.F-Z., I.L.-V.) and Departamento de Genética Molecular de Plantas (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Vaclav Motyka
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (I.H., S.L.)
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, B–5030 Gembloux, Belgium (Y.M.)
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic (E.Z., P.I.D., V.M.)
- and Genomics Unit (J.M.F-Z., I.L.-V.) and Departamento de Genética Molecular de Plantas (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | |
Collapse
|
150
|
Yang DH, Kwak KJ, Kim MK, Park SJ, Yang KY, Kang H. Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 214:106-12. [PMID: 24268168 DOI: 10.1016/j.plantsci.2013.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 05/21/2023]
Abstract
Although posttranscriptional regulation of RNA metabolism is increasingly recognized as a key regulatory process in plant response to environmental stresses, reports demonstrating the importance of RNA metabolism control in crop improvement under adverse environmental stresses are severely limited. To investigate the potential use of RNA-binding proteins (RBPs) in developing stress-tolerant transgenic crops, we generated transgenic rice plants (Oryza sativa) that express Arabidopsis thaliana glycine-rich RBP (AtGRP) 2 or 7, which have been determined to harbor RNA chaperone activity and confer stress tolerance in Arabidopsis, and analyzed the response of the transgenic rice plants to abiotic stresses. AtGRP2- or AtGRP7-expressing transgenic rice plants displayed similar phenotypes comparable with the wild-type plants under high salt or cold stress conditions. By contrast, AtGRP2- or AtGRP7-expressing transgenic rice plants showed much higher recovery rates and grain yields compared with the wild-type plants under drought stress conditions. The higher grain yield of the transgenic rice plants was due to the increases in filled grain numbers per panicle. Collectively, the present results show the importance of posttranscriptional regulation of RNA metabolism in plant response to environmental stress and suggest that GRPs can be utilized to improve the yield potential of crops under stress conditions.
Collapse
Affiliation(s)
- Deok Hee Yang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| | | | | | | | | | | |
Collapse
|