101
|
Chen J, Ho CY, Tu YK, Lin YC, Hsia Y, Lin YC, Shantakumar S. A systematic review and meta-analysis of herpes zoster risk in adults with immunocompromised conditions and autoimmune diseases in Asia-Pacific. Hum Vaccin Immunother 2025; 21:2496048. [PMID: 40299930 PMCID: PMC12045574 DOI: 10.1080/21645515.2025.2496048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
Asia-Pacific (APAC) faces an increasing burden of herpes zoster (HZ) over time. The risk of HZ and its complications are increased in immunocompromised (IC) patients and those with autoimmune diseases (AID). Our study aimed to synthesize evidence on the epidemiological burden of HZ and its complications among the general adult population and patients with IC/AID conditions in APAC. Following a systematic literature review, we performed meta-analyses for outcomes where ≥3 studies met the inclusion criteria. Of the 271 articles identified, 75 were included for meta-analysis. We found a high burden of HZ and its complications (i.e., postherpetic neuralgia, HZ ophthalmicus), particularly among individuals with IC/AID conditions in APAC. Patients with IC/AID conditions had significantly increased HZ risk and a higher proportion of HZ recurrence than the general adult population. These findings may inform clinical practice and public health decisions regarding HZ prevention, including HZ vaccination strategies, among the IC/AID population in APAC.
Collapse
Affiliation(s)
| | - Chin-Yen Ho
- Health Data Research Center, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Kang Tu
- Health Data Research Center, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Chih Lin
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Nephrology, National Taiwan University Hospital Jinshan Branch, New Taipei City, Taiwan
| | - Yun Hsia
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Chun Lin
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei, Taiwan
| | | |
Collapse
|
102
|
Genazzani AD, Battipaglia C, Foschi M, Semprini E, Aio C, Spelta E, Kostrzak A, Rusce ML, Szeliga A, Meczekalski B. Improved insulin sensitivity and reproductive profile in overweight/obese PCOS patients undergoing integrative treatment with carnitines, L-arginine, L-cysteine and myo-inositol. Gynecol Endocrinol 2025; 41:2458710. [PMID: 39874141 DOI: 10.1080/09513590.2025.2458710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVE To evaluate the effects of a combination of carnitines, L-arginine, L-cysteine and myo-inositol on metabolic and reproductive parameters in PCOS overweight/obese patients. METHODS This was a retrospective study analyzing information of a group of PCOS (n = 25) overweight/obesity patients, not requiring hormonal treatment, selected from the database of the ambulatory clinic of the Gynecological Endocrinology Center at the University of Modena and Reggio Emilia, Modena, Italy. The hormonal profile, routine exams and insulin and C-peptide response to oral glucose tolerance test (OGTT) were evaluated before and after 12 weeks of a daily oral complementary treatment with L-carnitine (500 mg), acetyl-L-carnitine (250 mg), L-arginine (500 mg), L-cysteine (100 mg) and myo-inositol (1 gr). The hepatic insulin extraction index was also calculated. RESULTS The mix of complementary substances significantly improved metabolic parameters, homeostatic model assessment for insulin resistance index values and gonadotropin plasma levels. Glucose, C-peptide and insulin response to OGTT was significantly reduced as well as the hepatic insulin extraction index. CONCLUSION The administration of a combination of carnitines, L-arginine, L-cysteine and myoinositol improved gonadotropin plasma levels and insulin sensitivity in overweight/obese PCOS patients and restored hepatic clearance of insulin as demonstrated by the decreased hepatic insulin extraction index.
Collapse
Affiliation(s)
- Alessandro D Genazzani
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Christian Battipaglia
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Foschi
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Semprini
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudia Aio
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Spelta
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Kostrzak
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Laura Rusce
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Szeliga
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
103
|
Wang H, Han J, Zhang XA. Interplay of m6A RNA methylation and gut microbiota in modulating gut injury. Gut Microbes 2025; 17:2467213. [PMID: 39960310 PMCID: PMC11834532 DOI: 10.1080/19490976.2025.2467213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
The gut microbiota undergoes continuous variations among individuals and across their lifespan, shaped by diverse factors encompassing diet, age, lifestyle choices, medication intake, and disease states. These microbial inhabitants play a pivotal role in orchestrating physiological metabolic pathways through the production of metabolites like bile acids, choline, short-chain fatty acids, and neurotransmitters, thereby establishing a dynamic "gut-organ axis" with the host. The intricate interplay between the gut microbiota and the host is indispensable for gut health, and RNA N6-methyladenosine modification, a pivotal epigenetic mark on RNA, emerges as a key player in this process. M6A modification, the most prevalent internal modification of eukaryotic RNA, has garnered significant attention in the realm of RNA epigenetics. Recent findings underscore its potential to influence gut microbiota diversity and intestinal barrier function by modulating host gene expression patterns. Conversely, the gut microbiota, through its impact on the epigenetic landscape of host cells, may indirectly regulate the recruitment and activity of RNA m6A-modifying enzymes. This review endeavors to delve into the biological functions of m6A modification and its consequences on intestinal injury and disease pathogenesis, elucidating the partial possible mechanisms by which the gut microbiota and its metabolites maintain host intestinal health and homeostasis. Furthermore, it also explores the intricate crosstalk between them in intestinal injury, offering a novel perspective that deepens our understanding of the mechanisms underlying intestinal diseases.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
104
|
Claeys W, Geerts A, Van Hoecke L, Van Steenkiste C, Vandenbroucke RE. Role of astrocytes and microglia in hepatic encephalopathy associated with advanced chronic liver disease: lessons from animal studies. Neural Regen Res 2025; 20:3461-3475. [PMID: 39688562 PMCID: PMC11974659 DOI: 10.4103/nrr.nrr-d-24-00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/05/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatic encephalopathy, defined as neuropsychiatric dysfunction secondary to liver disease, is a frequent decompensating event in cirrhosis. Its clinical impact is highlighted by a notable increase in patient mortality rates and a concomitant reduction in overall quality of life. Systemically, liver disease, liver function failure, portosystemic shunting, and associated multi-organ dysfunction result in the increase of disease-causing neurotoxins in the circulation, which impairs cerebral homeostasis. Key circulating neurotoxins are ammonia and inflammatory mediators. In the brain, pathophysiology is less well understood, but is thought to be driven by glial cell dysfunction. Astrocytes are the only brain resident cells that have ammonia-metabolizing machinery and are therefore putatively most susceptible to ammonia elevation. Based on a large body of mostly in vitro evidence, ammonia-induced cellular and molecular disturbances include astrocyte swelling and oxidative stress. Microglia, the brain resident macrophages, have been linked to the translation of systemic inflammation to the brain microenvironment. Recent evidence from animal studies has provided novel insights into old and new downstream effects of astrocyte and microglial dysfunction such as toxin clearance disruption and myeloid cell attraction to the central nervous system parenchyma. Furthermore, state of the art research increasingly implicates neuronal dysfunction and possibly even irreversible neuronal cell death. Cell-type specific investigation in animal models highlights the need for critical revision of the contribution of astrocytes and microglia to well-established and novel cellular and molecular alterations in hepatic encephalopathy. In this review, we therefore give a current and comprehensive overview of causes, features, and consequences of astrocyte and microglial dysfunction in hepatic encephalopathy, including areas of interest for future investigation.
Collapse
Affiliation(s)
- Wouter Claeys
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anja Geerts
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Lien Van Hoecke
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christophe Van Steenkiste
- Department of Gastroenterology and Hepatology, Antwerp University, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Maria Middelares Hospital, Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
105
|
Zhu W, Yang W, Sun G, Huang J. RNA-binding protein quaking: a multifunctional regulator in tumour progression. Ann Med 2025; 57:2443046. [PMID: 39711373 DOI: 10.1080/07853890.2024.2443046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/03/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Quaking (QKI) is a member of the signal transduction and activators of RNA (STAR) family, performing a crucial multifunctional regulatory role in alternative splicing, mRNA precursor processing, mRNA transport and localization, mRNA stabilization, and translation during tumour progression. Abnormal QKI expression or fusion mutations lead to aberrant RNA and protein expression, thereby promoting tumour progression. However, in many types of tumour, QKI played a role as tumour suppressor, the regulatory role of QKI in tumour progression remains ambiguous. OBJECTIVES This review aims to analyze the isoform and function of QKI, the impact of QKI-regulated gene expression or signalling pathway alterations on tumour progression, and its potential clinical applications as a predictive marker or target for tumour therapy. METHODS We reviewed recent studies and summarized the function of QKI alteration in tumour progression. RESULTS QKI mediate post-transcriptional gene regulation including alternative splicing, polyadenylation, mRNA stabilization, mRNA subcellular location, and noncoding RNA by binding to the QRE elements of targeted nucleotide. The dysregulation of QKI is intricately correlated to tumour proliferation, metastasis, angiogenesis, tumor stem cells, the tumour microenvironment, and treatment sensitivity, and represents as a potential biological predictor in tumour diagnosis and prognosis. CONCLUSIONS QKI play a critical role as tumour suppressor or an oncogene in tumour progression due to the different splicing sites and transcripts with various tumour subtype or tumor micorenvironment. Ongoing research about QKI's functions and mechanisms persist is required to conduct for better understanding the role of QKI in tumour regulation.
Collapse
Affiliation(s)
- Wangyu Zhu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
- Lung Cancer Research Centre, Zhoushan Hospital of Wenzhou Medical, Zhoushan, Zhejiang, China
| | - Weiwei Yang
- Cell and Molecular Biology Laboratory, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
- Lung Cancer Research Centre, Zhoushan Hospital of Wenzhou Medical, Zhoushan, Zhejiang, China
| | - Guoping Sun
- Department of Breast Surgery, Second Affiliated Hospital and Cancer Institute (Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital and Cancer Institute (Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
106
|
Jiang L, Yi R, Chen H, Wu S. Quercetin alleviates metabolic-associated fatty liver disease by tuning hepatic lipid metabolism, oxidative stress and inflammation. Anim Biotechnol 2025; 36:2442351. [PMID: 39718035 DOI: 10.1080/10495398.2024.2442351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
The natural flavonoid quercetin, which exhibits a range of biological activities, has been implicated in liver disease resistance in recent research. In vivo study attesting to quercetin's protective effect against metabolic-associated fatty liver disease (MAFLD) is inadequate, however. Here, our investigation explored the potential benefits of quercetin in preventing MAFLD in C57BL/6 mice fed a high-fat diet (HFD). The results revealed that quercetin ameliorated the aberrant enhancement of body and liver weight. The hepatic histological anomalie induced by MAFLD were also mitigated by quercetin. HFD-induced imbalance in serum LDL, HDL, AST, ALT, TG, and LDH was mitigated by quercetin. Mechanically, we found that quercetin improved lipid metabolism by reducing lipogenesis proteins including ACC, FASN, and SREBP-1c and enhancing β-oxidation proteins including PPARα and CPT1A. In vitro study demonstrated that quercetin regulated hepatic lipid metabolism by targeting SREBP-1c and PPARα. Additionally, quercetin enhanced the antioxidant capacity in HFD-treated mice by downregulating Nrf2 and HO-1 expressions and upregulating SOD and GPX1 expressions. The hyper-activation of inflammation was also restored by quercetin via eliminating the phosphorylation of IκBα and NF-κB p65. Collectively, our observations highlight that quercetin exerts hepatoprotective properties in MAFLD mice by regulating hepatic lipid metabolism, oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China
| | - Rong Yi
- Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China
| | - Huan Chen
- Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China
| | - Shuwu Wu
- Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China
| |
Collapse
|
107
|
Yang X, Liu S, Liu Y, Wang Y, Cui D, Lan T, Zhu D, Su Z, Hao E, Qin L, Guo H. Total flavonoids of litchi seed inhibit breast cancer metastasis by regulating the PI3K/AKT/mTOR and MAPKs signaling pathways. PHARMACEUTICAL BIOLOGY 2025; 63:229-249. [PMID: 40231974 PMCID: PMC12001861 DOI: 10.1080/13880209.2025.2488135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 03/07/2025] [Accepted: 03/30/2025] [Indexed: 04/16/2025]
Abstract
CONTEXT Total flavonoids from Litchi chinensis Sonn. (Sapindaceae) seeds (TFLS) effectively attenuate stem cell-like properties in breast cancer cells. However, their pharmacological effects and mechanisms in suppressing breast cancer metastasis remain unclear. OBJECTIVE This study aimed to elucidate the inhibitory effects and underlying mechanisms of TFLS on breast cancer metastasis. MATERIALS AND METHODS The antiproliferative, migratory, and invasive activities of breast cancer cells following TFLS treatment were evaluated using CCK-8, wound-healing, and transwell assays. The epithelial-mesenchymal transition (EMT) biomarkers were evaluated via Western blot analysis. The anti-metastatic effects of TFLS were further validated in vivo using zebrafish and mouse models. Network pharmacology methodology was utilized to predict potential targets and signaling pathways, which were subsequently corroborated by Western blot. Potential active compounds were identified through molecular docking, and the chemical constituents of TFLS were analyzed and characterized using UPLC-QTOF/MS. RESULTS TFLS suppressed the proliferation of MDA-MB-231 and MDA-MB-468 cells, with IC50 values of 44.47 μg/mL and 37.35 μg/mL at 72 h, respectively. It effectively suppressed breast cancer metastasis in vitro, demonstrated by a marked reduction in cellular motility and invasiveness, alongside the reversal of EMT. Consistent with pathway enrichment analysis, network pharmacology revealed that TFLS reduced the phosphorylation levels of PI3K, AKT, mTOR, JNK, ERK, and p38 in breast cancer cells. Molecular docking identified seven potential active ingredients, and UPLC-MS/MS confirmed the presence of key compounds, including procyanidin A2. DISCUSSION AND CONCLUSION TFLS effectively inhibits breast cancer cell proliferation, migration, and invasion in vitro by reversing the EMT phenotype, while suppressing metastasis in vivo. These effects are likely mediated via the attenuation of the PI3K/AKT/mTOR and MAPK signaling pathways.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| | - Shoushi Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Ying Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica & College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuanshuo Wang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Dianxin Cui
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Taijin Lan
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Dan Zhu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica & College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Lilan Qin
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica & College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongwei Guo
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| |
Collapse
|
108
|
Yu X, Hu Y, Jiang W. Integrative analysis of mitochondrial and immune pathways in diabetic kidney disease: identification of AASS and CASP3 as key predictors and therapeutic targets. Ren Fail 2025; 47:2465811. [PMID: 39988817 PMCID: PMC11852243 DOI: 10.1080/0886022x.2025.2465811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
OBJECTIVES Diabetic kidney disease (DKD) is driven by mitochondrial dysfunction and immune dysregulation, yet the mechanistic interplay remains poorly defined. This study aimed to identify key molecular networks linking mitochondrial and immune pathways to DKD progression, with a focus on uncovering biomarkers and therapeutic targets. METHODS We conducted an integrative analysis of human DKD cohorts (GSE30122, GSE96804) using weighted gene co-expression network analysis (WGCNA) to identify gene modules enriched for immune response genes and mitochondrial pathways (from MitoCarta3.0). Machine learning algorithms were employed to prioritize key biomarkers for further investigation. Experimental validation was performed using a DKD rat model. RESULTS WGCNA revealed significant gene modules associated with immune responses and mitochondrial functions. Machine learning analysis highlighted two central biomarkers: aminoadipate-semialdehyde synthase (AASS) and caspase-3 (CASP3). In the DKD rat model, elevated levels of AASS and CASP3 were found to correlate with increased oxidative stress. Mechanistically, AASS was shown to drive mitochondrial damage via lysine metabolism, while CASP3 amplified inflammatory apoptosis pathways. CONCLUSIONS Our findings establish AASS and CASP3 as dual biomarkers and therapeutic targets, bridging mitochondrial-immune crosstalk to DKD pathogenesis. This multi-omics framework provides actionable insights for targeting kidney damage in diabetes.
Collapse
Affiliation(s)
- Xinxin Yu
- Department of Nephrology, Qingdao Eighth People’s Hospital, Qingdao, Shandong, China
| | - Yongzheng Hu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
109
|
Zhang P, Zhang W, Han Y, Yang T, Zhong J, Yun H, Fang L. Investigation of the connection between triglyceride-glucose (TyG) index and the risk of acute kidney injury in septic patients - a retrospective analysis utilizing the MIMIC-IV database. Ren Fail 2025; 47:2449199. [PMID: 39763061 PMCID: PMC11721622 DOI: 10.1080/0886022x.2024.2449199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
The TyG index serves as a valuable tool for evaluating insulin resistance. An elevated TyG has shown a strong association with the occurrence of acute kidney injury (AKI). Nevertheless, existing literature does not address the relationship between the TyG index and acute kidney injury in patients with sepsis. Sepsis patients were identified from the MIMIC-IV database and categorized into four groups according to quadrilles of their TyG index values. The primary outcome of this study was the incidence of AKI. The relationship between the TyG index and the risk of AKI in septic patients was evaluated using Cox proportional hazards and restricted cubic spline models. Subgroup analyses were conducted to investigate the prognostic value of the TyG index in different subgroups. A total of 2,616 patients with sepsis (57% of whom were male) were included in this study. The incidence of AKI was found to be 78%. Cox proportional hazards analysis revealed a significant correlation between the TyG index and the occurrence of AKI in septic patients. Furthermore, a restricted cubic spline model revealed an approximately linear relationship between a higher TyG index and an elevated risk of AKI in septic patients. The trend of the hazard ratio (HR) remained consistent across various subgroups. These findings emphasize the reliability of the TyG index as an independent predictor for the occurrence of AKI and unfavorable renal outcomes in sepsis patients. Nevertheless, establishing a causal relationship between the two requires demonstration through larger prospective studies.
Collapse
Affiliation(s)
- Pirun Zhang
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Wenli Zhang
- Qingdao Mental Health Center, Qingdao, Shandong Province, China
| | - Yan Han
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Tong Yang
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jiayi Zhong
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Han Yun
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
- Chao En-xiang Famous Chinese Medicine Expert Inheritance Studio, Guangzhou, Guangdong Province, China
| | - Lai Fang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
- Chao En-xiang Famous Chinese Medicine Expert Inheritance Studio, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, Guangdong Province, China
| |
Collapse
|
110
|
Yang J, Tan Y, Liu X. Identification and validation of programmed cell death related biomarkers for the treatment and prevention COVID-19. Ann Med 2025; 57:2492830. [PMID: 40300201 PMCID: PMC12042234 DOI: 10.1080/07853890.2025.2492830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 05/01/2025] Open
Abstract
PURPOSE Programmed cell death (PCD) plays a key role in the progression of coronavirus disease 2019 (COVID-19). However, PCD-relevant biomarkers have not been fully discovered. The aim of this study was to explore the PCD-relevant biomarkers for the treatment and prevention of COVID-19. METHODS Bioinformatic analyses were performed to explore the clinical relevant PCD genes with differential expression (DE) in COVID-19 compared with matched controls. PPI network was used for hub genes screening and machine learning methods were employed for filtering feature genes. The biomarker genes were screened by Venn diagram. The correlations between biomarkers with clinical features and immune microenvironment were further explored. Biomarker validation was performed in clinical samples by real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). RESULTS In total, 118 clinically relevant and PCD associated differential expressed genes (DEGs) were screened, which were mainly related with apoptosis related pathways, among which six biomarkers (Cyclin B1 (CCNB1), cyclin-dependent kinase 1 (CDK1), interferon regulatory factor 4 (IRF4), lipoteichoic acid (LTA), matrix metallopeptidase 9 (MMP9) and Oncostatin M (OSM)) were identified. The excellent or good diagnostic performance of biomarkers was determined by receiver operating characteristic (ROC) curve analysis. The biomarkers showed diverse correlations with clinical indicators, such as age, sex and Intensive Care Unit (ICU) admission. Total 14 types of immune cells exerted differential infiltration between COVID-19 and controls. Biomarkers were correlated with immune cells at varying levels. COVID-19 was classified in three clusters, which showed differential expression of biomarker genes and significant associations with clinical information, such as sex, age and ICU admission. The DEGs of biomarkers were determined in COVID-19 patients relative to controls. CONCLUSION The six biomarkers (CCNB1, CDK1, IRF4, LTA, MMP9 and OSM) can be served as the biomarkers for the treatment and prevention of COVID-19.
Collapse
Affiliation(s)
- Jie Yang
- Department of Infectious Diseases, Affiliated hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - YaoXi Tan
- Department of Infectious Diseases, Affiliated hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xing Liu
- Department of Emergency, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
111
|
Huang R, Zhou G, Cai J, Cao C, Zhu Z, Wu Q, Zhang F, Ding Y. Maternal consumption of urbanized diet compromises early-life health in association with gut microbiota. Gut Microbes 2025; 17:2483783. [PMID: 40176259 PMCID: PMC11988223 DOI: 10.1080/19490976.2025.2483783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025] Open
Abstract
Urbanization has significantly transformed dietary habits worldwide, contributing to a globally increased burden of non-communicable diseases and altered gut microbiota landscape. However, it is often overlooked that the adverse effects of these dietary changes can be transmitted from the mother to offspring during early developmental stages, subsequently influencing the predisposition to various diseases later in life. This review aims to delineate the detrimental effects of maternal urban-lifestyle diet (urbanized diet) on early-life health and gut microbiota assembly, provide mechanistic insights on how urbanized diet mediates mother-to-offspring transfer of bioactive substances in both intrauterine and extrauterine and thus affects fetal and neonatal development. Moreover, we also further propose a framework for developing microbiome-targeted precision nutrition and diet strategies specifically for pregnant and lactating women. The establishment of such knowledge can help develop proactive preventive measures from the beginning of life, ultimately reducing the long-term risk of disease and improving public health outcomes.
Collapse
Affiliation(s)
- Rong Huang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guicheng Zhou
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jie Cai
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Cha Cao
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fen Zhang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
112
|
Lou C, Cai X. The emerging roles of platelet-derived extracellular vesicles in disease. Ann Med 2025; 57:2499029. [PMID: 40317251 PMCID: PMC12054590 DOI: 10.1080/07853890.2025.2499029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 04/12/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025] Open
Abstract
INTRODUCTION Platelet-derived extracellular vesicles (pEVs) are nanoscale, membrane-bound vesicles released by platelets during activation or apoptosis. They contain various bioactive and non-bioactive molecules and play significant roles in numerous physiological and pathological processes through intercellular communication, thus attracting growing attention in biomedical research. METHODS This review comprehensively overviews the biogenesis, clearance, and molecular characteristics of pEVs. It also covers current methodologies for their isolation and characterization. The therapeutic implications of pEVs in key clinical settings like tissue regeneration, hemostasis, immune modulation, and vascular repair, with a focus on cancer progression, wound healing, and hemorrhagic shock management, are explored. Their role in cellular signal transduction is examined, and their functional properties are compared with other platelet-derived products such as platelet-rich plasma. RESULTS pEVs show potential as both therapeutic agents and diagnostic biomarkers. They are involved in modulating inflammatory responses, promoting angiogenesis, and enhancing cellular repair mechanisms. CONCLUSION Future research should concentrate on optimizing their therapeutic efficacy, refining biomarker applications, and exploring targeted delivery strategies to fully utilize their potential in regenerative medicine, oncology, and hemostasis management.
Collapse
Affiliation(s)
- Can Lou
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Blood Transfusion, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Cai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Blood Transfusion, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
113
|
Jimenez-Sanchez M, Celiberto LS, Yang H, Sham HP, Vallance BA. The gut-skin axis: a bi-directional, microbiota-driven relationship with therapeutic potential. Gut Microbes 2025; 17:2473524. [PMID: 40050613 PMCID: PMC11901370 DOI: 10.1080/19490976.2025.2473524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
This review explores the emerging term "gut-skin axis" (GSA), describing the bidirectional signaling that occurs between the skin and the gastrointestinal tract under both homeostatic and disease conditions. Central to GSA communication are the gut and skin microbiota, the microbial communities that colonize these barrier surfaces. By influencing diverse host pathways, including innate immune, vitamin D receptor, and Aryl hydrocarbon receptor signaling, a balanced microbiota contributes to both tissue homeostasis and host defense. In contrast, microbiota imbalance, or dysbiosis at one site, can lead to local barrier dysfunction, resulting in the activation of signaling pathways that can disrupt tissue homeostasis at the other site, potentially leading to inflammatory skin conditions such as atopic dermatitis and psoriasis, or gut diseases like Inflammatory Bowel Disease. To date, most research on the GSA has examined the impact of the gut microbiota and diet on skin health, but recent studies show that exposing the skin to ultraviolet B-light can beneficially modulate both the gut microbiome and intestinal health. Thus, despite the traditional focus of clinicians and researchers on these organ systems as distinct, the GSA offers new opportunities to better understand the pathogenesis of cutaneous and gastrointestinal diseases and promote health at both sites.
Collapse
Affiliation(s)
- Maira Jimenez-Sanchez
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Larissa S. Celiberto
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Hyungjun Yang
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Ho Pan Sham
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Bruce A. Vallance
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
114
|
Lan Y, Liu D, Liang B, Song X, Xie L, Peng H, Guo H, Hong C, Weng X, Wei X, Liao X, Liang R, Huang D, Liu M. ITGA3-MET interaction promotes papillary thyroid cancer progression via ERK and PI3K/AKT pathways. Ann Med 2025; 57:2483379. [PMID: 40138447 PMCID: PMC11948363 DOI: 10.1080/07853890.2025.2483379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Studies have examined the role of integrin α3 (ITGA3) in papillary thyroid carcinoma (PTC). However, the functional and molecular mechanism by which ITGA3 is involved in the progression of PTC remains poorly understood. METHODS To investigate the role of ITGA3 in PTC, raw PTC transcriptome data underwent comprehensive bioinformatics analyses, including differential expression, co-expression network, and enrichment analyses. ITGA3 expression was validated via immunohistochemistry and western blotting in PTC tissues. Cell functional assays and xenograft models assessed PTC cell behaviour. The potential mechanisms of ITGA3 were elucidated using bioinformatics analyses, western blotting, co-immunoprecipitation, and immunofluorescence. Finally, integration of ITGA3 expression with clinical parameters enabled nomogram construction for precise prediction of cervical lymph node metastasis (CLNM) in PTC. RESULTS ITGA3 was upregulated in PTC and associated strongly with CLNM (79.5% vs. 53.84%, p = 0.016). ITGA3 expression enhanced PTC proliferation and migration in vitro and in vivo via cooperating with the MET protein tyrosine kinase, followed by phosphorylation of MET at Tyr1234/1235, and activation of ERK and PI3K/AKT signaling pathways. Furthermore, upregulation ITGA3 reduced phosphorylation at FAK-Tyr397 and Src-Tyr416 in PTC cells. Finally, a nomogram combining ITGA3 expression and clinical parameters for predicting CLNM was constructed and validated, achieving a ROC curve AUC of 0.719, suggesting potential application for PTC diagnosis. CONCLUSIONS ITGA3 promotes PTC cell proliferation and migration by cooperating with MET to activate MET-ERK and MET-PI3K-AKT signalling. ITGA3-MET cooperation may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Youmian Lan
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Dongchen Liu
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Bin Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Xuhong Song
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Lingzhu Xie
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Hanwei Peng
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Haipeng Guo
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Chaoqun Hong
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xuwu Weng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiaolong Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoqi Liao
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Rui Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Dongyang Huang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Muyuan Liu
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
115
|
El-Wakil MH, Ghazala RA, El-Dershaby HA, Drozdowska D, Wróbel-Tałałaj A, Parzych C, Ratkiewicz A, Kolesińska B, Abd El-Razik HA, Soliman FSG. Rational design, synthesis, and molecular modelling insights of dual DNA binders/DHFR inhibitors bearing arylidene-hydrazinyl-1,3-thiazole scaffold with apoptotic and anti-migratory potential in breast MCF-7 cancer cells. J Enzyme Inhib Med Chem 2025; 40:2468353. [PMID: 40035286 PMCID: PMC11881662 DOI: 10.1080/14756366.2025.2468353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 03/05/2025] Open
Abstract
In light of searching for new breast cancer therapies, DNA-targeted small molecules were rationally designed to simultaneously bind DNA and inhibit human dihydrofolate reductase (hDHFR). Fourteen new arylidene-hydrazinyl-1,3-thiazoles (5-18) were synthesised and their dual DNA groove binding potential and in vitro hDHFR inhibition were performed. Two compounds, 5 and 11, proved their dual efficacy. Molecular docking and molecular dynamics simulations were performed for those active derivatives to explore their mode of binding and stability of interactions inside DHFR active site. Anti-breast cancer activity was assessed for 5 and 11 on MCF-7 cells using MTX as reference. IC50 measurements revealed that both compounds were more potent and selective than MTX. Cytotoxicity was examined against normal skin fibroblasts to examine safety and selectivity Moreover, mechanistic studies including apoptosis induction and wound healing were performed. Further in silico ADMET assessment was conducted to determine their eligibility as drug leads suitable for future optimisation and development.
Collapse
Affiliation(s)
- Marwa H. El-Wakil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rasha A. Ghazala
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hadeel A. El-Dershaby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Bialystok, Bialystok, Poland
| | | | - Cezary Parzych
- Department of Physical Chemistry, University of Bialystok, Institute of Chemistry, Bialystok, Poland
| | - Artur Ratkiewicz
- Department of Physical Chemistry, University of Bialystok, Institute of Chemistry, Bialystok, Poland
| | - Beata Kolesińska
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Heba A. Abd El-Razik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Farid S. G. Soliman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
116
|
Wang J, Zhang L, Chen S, Xue H, Du M, Xu Y, Liu S, Ming D. Individuals with high autistic traits exhibit altered interhemispheric brain functional connectivity patterns. Cogn Neurodyn 2025; 19:9. [PMID: 39801910 PMCID: PMC11717774 DOI: 10.1007/s11571-024-10213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 01/16/2025] Open
Abstract
Individuals with high autistic traits (AT) encounter challenges in social interaction, similar to autistic persons. Precise screening and focused interventions positively contribute to improving this situation. Functional connectivity analyses can measure information transmission and integration between brain regions, providing neurophysiological insights into these challenges. This study aimed to investigate the patterns of brain networks in high AT individuals to offer theoretical support for screening and intervention decisions. EEG data were collected during a 4-min resting state session with eyes open and closed from 48 participants. Using the Autism Spectrum Quotient (AQ) scale, participants were categorized into the high AT group (HAT, n = 15) and low AT groups (LAT, n = 15). We computed the interhemispheric and intrahemispheric alpha coherence in two groups. The correlation between physiological indices and AQ scores was also examined. Results revealed that HAT exhibited significantly lower alpha coherence in the homologous hemispheres of the occipital cortex compared to LAT during the eyes-closed resting state. Additionally, significant negative correlations were observed between the degree of AT (AQ scores) and the alpha coherence in the occipital cortex, as well as in the right frontal and left occipital regions. The findings indicated that high AT individuals exhibit decreased connectivity in the occipital region, potentially resulting in diminished ability to process social information from visual inputs. Our discovery contributes to a deeper comprehension of the neural underpinnings of social challenges in high AT individuals, providing neurophysiological signatures for screening and intervention strategies for this population.
Collapse
Affiliation(s)
- Junling Wang
- School of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Ludan Zhang
- School of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Sitong Chen
- School of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Huiqin Xue
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Children’s Hospital of Tianjin University, Tianjin, China
| | - Minghao Du
- School of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Yunuo Xu
- School of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Shuang Liu
- School of Medicine, Tianjin University, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Dong Ming
- School of Medicine, Tianjin University, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| |
Collapse
|
117
|
Kalacun V, Ekart R, Bevc S, Skok P, Hojs R, Vodošek Hojs N. Oxidative stress and inflammation in hemodialysis: a comparison of patients with or without advanced nonalcoholic fatty liver disease (NAFLD). Ren Fail 2025; 47:2455523. [PMID: 39842820 PMCID: PMC11755732 DOI: 10.1080/0886022x.2025.2455523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and chronic kidney disease are global public health issues associated with high morbidity and mortality. Both diseases are also interlinked. Little is known about the meaning of NAFLD in hemodialysis (HD) patients. Therefore, the aim of our study was to investigate the difference in oxidative stress and inflammation in HD patients with or without advanced NAFLD. Seventy-seven HD patients were included (65.14 ± 12.34 years, 59.2% male) and divided according to abdominal ultrasound and two-dimensional shear wave elastography (2D-SWE) measurements into two groups: 1) no NAFLD or no advanced NAFLD (2D-SWE <9 kPa) and 2) advanced NAFLD (2D-SWE ≥9 kPa). Medical history data and blood results were collected. HD patients with advanced NAFLD had significantly higher levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG; p = 0.025), tumor necrosis factor-alpha (TNF-α; p = 0.023), and intercellular adhesion molecule 1 (ICAM-1; p = 0.015) in comparison to HD patients without advanced NAFLD. Interleukin 6 (IL-6) was higher in the advanced NAFLD group, but the difference was of borderline significance (p = 0.054). There was no significant difference in high-sensitivity C-reactive protein (hs-CRP), and vascular cell adhesion molecule 1 (VCAM-1) between groups. In binary logistic regression analysis, advanced NAFLD was significantly associated with 8-OHdG and ICAM-1. In conclusion, higher oxidative stress and inflammation levels are present in HD patients with advanced NAFLD.
Collapse
Affiliation(s)
- Vanja Kalacun
- Department of Gastroenterology, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor, Slovenia
| | - Robert Ekart
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Sebastjan Bevc
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor, Slovenia
| | - Pavel Skok
- Department of Gastroenterology, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Radovan Hojs
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor, Slovenia
| | - Nina Vodošek Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor, Slovenia
| |
Collapse
|
118
|
Girase R, Gujarathi NA, Sukhia A, Kota SSN, Patil TS, Aher AA, Agrawal YO, Ojha S, Sharma C, Goyal SN. Targeted nanoliposomes for precision rheumatoid arthritis therapy: a review on mechanisms and in vivo potential. Drug Deliv 2025; 32:2459772. [PMID: 39891600 PMCID: PMC11789225 DOI: 10.1080/10717544.2025.2459772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/26/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory immune-triggered disease that causes synovitis, cartilage degradation, and joint injury. In nanotechnology, conventional liposomes were extensively investigated for RA. However, they frequently undergo rapid clearance, reducing circulation time and therapeutic efficacy. Additionally, their stability in the bloodstream is often compromised, resulting in premature drug release. The current review explores the potential of targeted liposomal-based nanosystems in the treatment of RA. It highlights the pathophysiology of RA, explores selective targeting sites, and elucidates diverse mechanisms of novel liposomal types and their applications. Furthermore, the targeting strategies of pH-sensitive, flexible, surface-modified, PEGylated, acoustic, ROS-mediated, and biofunctionalized liposomes are addressed. Targeted nanoliposomes showed potential in precisely delivering drugs to CD44, SR-A, FR-β, FLS, and toll-like receptors through the high affinity of ligands. In vitro studies interpreted stable release profiles and improved stability. Ex vivo studies on skin demonstrated that ultradeformable and glycerol-conjugated liposomes enhanced drug penetrability. In vivo experiments for liposomal types in the arthritis rat model depicted remarkable efficacy in reducing joint swelling, pro-inflammatory cytokines, and synovial hyperplasia. In conclusion, these targeted liposomes represented a significant leap forward in drug delivery, offering effective therapeutic options for RA. In the future, integrating these advanced liposomes with artificial intelligence, immunotherapy, and precision medicine holds great promise.
Collapse
Affiliation(s)
- Rushikesh Girase
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, India
| | | | - Amey Sukhia
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sri Sai Nikitha Kota
- Department of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, USA
| | | | - Abhijeet A. Aher
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, India
| | | | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, India
| |
Collapse
|
119
|
Lyu G, Liao H, Li R. Ferroptosis and renal fibrosis: mechanistic insights and emerging therapeutic targets. Ren Fail 2025; 47:2498629. [PMID: 40329437 DOI: 10.1080/0886022x.2025.2498629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 05/08/2025] Open
Abstract
Ferroptosis is a regulated, iron-dependent form of cell death driven by lipid peroxidation and distinct from apoptosis, necroptosis, and pyroptosis. Recent studies implicate ferroptosis as a central contributor to the pathogenesis of renal fibrosis, a hallmark of chronic kidney disease associated with high morbidity and progression to end-stage renal failure. This review synthesizes current evidence linking ferroptotic signaling to fibrotic remodeling in the kidney, focusing on iron metabolism dysregulation, glutathione peroxidase 4 (GPX4) inactivation, lipid peroxide accumulation, and ferroptosis-regulatory pathways such as FSP1-CoQ10-NAD(P)H and GCH1-BH4. We detail how ferroptosis in tubular epithelial cells modulates pro-fibrotic cytokine release, macrophage recruitment, and TGF-β1-driven extracellular matrix deposition. Moreover, we explore ferroptosis as a therapeutic vulnerability in renal fibrosis, highlighting promising agents including iron chelators, GPX4 activators, anti-lipid peroxidants, and exosome-based gene delivery systems. By consolidating emerging preclinical data, this review provides a comprehensive mechanistic framework and identifies translational opportunities for targeting ferroptosis in fibrotic kidney disease.
Collapse
Affiliation(s)
- Guangna Lyu
- The Nephrology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
- The Second People's Hospital of Shanxi Province, Taiyuan, China
| | - Hui Liao
- The Drug Clinical Trial Institution of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- The Nephrology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
120
|
Chen F, Chen R, Yang L, Shen B, Wang Y, Gao Y, Tan R, Zhao X. Magnesium-assisted hydrogen improves isoproterenol-induced heart failure. Med Gas Res 2025; 15:459-470. [PMID: 40300881 DOI: 10.4103/mgr.medgasres-d-24-00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/19/2025] [Indexed: 05/01/2025] Open
Abstract
Heart failure (HF) is a leading cause of mortality among patients with cardiovascular disease and is often associated with myocardial apoptosis and endoplasmic reticulum stress (ERS). While hydrogen has demonstrated potential in reducing oxidative stress and ERS, recent evidence suggests that magnesium may aid in hydrogen release within the body, further enhancing these protective effects. This study aimed to investigate the cardioprotective effects of magnesium in reducing apoptosis and ERS through hydrogen release in a rat model of isoproterenol (ISO)-induced HF. Magnesium was administered orally to ISO-induced HF rats, which improved cardiac function, reduced myocardial fibrosis and cardiac hypertrophy, and lowered the plasma levels of creatine kinase-MB, cardiac troponin-I, and N-terminal B-type natriuretic peptide precursor in ISO-induced HF rats. It also inhibited cardiomyocyte apoptosis by upregulating B-cell lymphoma-2, downregulating Bcl-2-associated X protein, and suppressing ERS markers (glucose-related protein 78, activating transcription factor 4, and C/EBP-homologous protein). Magnesium also elevated hydrogen levels in blood, plasma, and cardiac tissue, as well as in artificial gastric juice and pure water, where hydrogen release lasted for at least four hours. Additionally, complementary in vitro experiments were conducted using H9C2 cardiomyocyte injury models, with hydrogen-rich culture medium as the intervention. Hydrogen-rich culture medium improved the survival and proliferation of ISO-treated H9C2 cells, reduced the cell surface area, inhibited apoptosis, and downregulated ERS pathway proteins. However, the protective effects of hydrogen were negated by tunicamycin (an inducer of ERS) in H9C2 cells. In conclusion, magnesium exerts significant cardioprotection by mitigating ERS and apoptosis through hydrogen release effects in ISO-induced HF.
Collapse
Affiliation(s)
- Fengbao Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Ruimin Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Lili Yang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, Ji'nan, Shandong Province, China
| | - Bowen Shen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Yunting Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Yongfeng Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Rui Tan
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Xiaomin Zhao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| |
Collapse
|
121
|
Tanaka M, Akiyama Y, Mori K, Hosaka I, Endo K, Ogawa T, Sato T, Suzuki T, Yano T, Ohnishi H, Hanawa N, Furuhashi M. Machine learning-based analyses of contributing factors for the development of hypertension: a comparative study. Clin Exp Hypertens 2025; 47:2449613. [PMID: 39773295 DOI: 10.1080/10641963.2025.2449613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/25/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVES Sufficient attention has not been given to machine learning (ML) models using longitudinal data for investigating important predictors of new onset of hypertension. We investigated the predictive ability of several ML models for the development of hypertension. METHODS A total of 15 965 Japanese participants (men/women: 9,466/6,499, mean age: 45 years) who received annual health examinations were randomly divided into a training group (70%, n = 11,175) and a test group (30%, n = 4,790). The predictive abilities of 58 candidates including fatty liver index (FLI), which is calculated by using body mass index, waist circumference and levels of γ-glutamyl transferase and triglycerides, were investigated by statistics analogous to the area under the curve (AUC) in receiver operating characteristic curve analyses using ML models including logistic regression, random forest, naïve Bayes, extreme gradient boosting and artificial neural network. RESULTS During a 10-year period (mean period: 6.1 years), 2,132 subjects (19.1%) in the training group and 917 subjects (19.1%) in the test group had new onset of hypertension. Among the 58 parameters, systolic blood pressure, age and FLI were identified as important candidates by random forest feature selection with 10-fold cross-validation. The AUCs of ML models were 0.765-0.825, and discriminatory capacity was significantly improved in the artificial neural network model compared to that in the logistic regression model. CONCLUSIONS The development of hypertension can be simply and accurately predicted by each ML model using systolic blood pressure, age and FLI as selected features. By building multiple ML models, more practical prediction might be possible.
Collapse
Affiliation(s)
- Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Tanaka Medical Clinic, Yoichi, Japan
| | - Yukinori Akiyama
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Kazuma Mori
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Japan
| | - Itaru Hosaka
- Department of Cardiovascular Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keisuke Endo
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshifumi Ogawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toru Suzuki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Natori Toru Internal Medicine and Diabetes Clinic, Natori, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirofumi Ohnishi
- Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nagisa Hanawa
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
122
|
Rani Jena S, Elanchezhiyan C, Kumar Sam A, Gogoi U, Shende V, Basu S, Bandyopadhyay S, Mandal B, Biswas B, Banerjee A, Baruah K, C. Phuleria H, Bhowmick IP. Spatio-temporal distribution of dengue cases and vectors along with the interrelationship of environmental and climatic factors in the metropolitan city, Kolkata, India, for 2017-2022: calling implications for vector control. Emerg Microbes Infect 2025; 14:2493924. [PMID: 40231455 PMCID: PMC12042241 DOI: 10.1080/22221751.2025.2493924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/17/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
We studied the spatio-temporal distribution of dengue at the micro-scale, along with other important factors for disease transmission, like vector prevalence, seasonality, breeding behaviour, entomological indices, and its relation with environmental and climatic factors in Kolkata, one of the most populous metropolitan cities in India, facing dengue upsurge in recent years. We analysed dengue data from 144 wards, city-level meteorological data for 6 years (2017-2022), Land Use Land Cover (LULC) data for 2022, and entomological surveillance data from 7 wards in 2022. Dengue showed high spatial heterogeneity and clustering at the micro-level, with a yearly post-monsoon peak (August-November) accounting for ∼90% of cases and representing a 2-3 month lag between high rainfall, temperature, and relative humidity (RH). Both Ae. aegypti and Ae. albopictus were prevalent, with distinct spatio-temporal distributions and instances of mixed breeding. Ae. aegypti primarily breeds indoors and peri-domestically, showing a strong correlation with rainfall (R² = 0.78, p-value = 0.0003) in indoor habitats and had a perennial presence. In contrast, Ae. albopictus was the more common outdoor breeder, strongly correlating with rainfall (R² = 0.75, p-value = 0.0003) in outdoor habitats. This is the first study from Kolkata, India, highlighting the spatio-temporal distribution of dengue and its links to vector behaviour, climate, and environmental factors. The findings will help identify recent dengue hotspots in Kolkata, which will help in developing targeted vector control strategies.
Collapse
Affiliation(s)
- Sasmita Rani Jena
- Regional Office of Health & Family Welfare, MOHFW, GOI, Kolkata, India
- Department of Zoology, Annamalai University, Annamalai Nagar, India
| | - C. Elanchezhiyan
- Department of Zoology, Annamalai University, Annamalai Nagar, India
| | - Avik Kumar Sam
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai
| | - Ujjal Gogoi
- Regional Medical Research Center, North East, Dibrugarh, India
| | - Varun Shende
- Regional Medical Research Center, North East, Dibrugarh, India
| | - Srimoyee Basu
- Vector Control Department (Health), Kolkata Municipal Corporation, Kolkata, India
| | | | - Bithika Mandal
- Vector Control Department (Health), Kolkata Municipal Corporation, Kolkata, India
| | - Baishakhi Biswas
- Vector Control Department (Health), Kolkata Municipal Corporation, Kolkata, India
| | - Atanu Banerjee
- Vector Control Department (Health), Kolkata Municipal Corporation, Kolkata, India
| | - Kalpana Baruah
- National Center for Vector Borne Diseases Control, Dte.GHS, MOHFW, GOI, Kolkata, India
| | - Harish C. Phuleria
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai
| | | |
Collapse
|
123
|
Huang M, Ji Q, Huang H, Wang X, Wang L. Gut microbiota in hepatocellular carcinoma immunotherapy: immune microenvironment remodeling and gut microbiota modification. Gut Microbes 2025; 17:2486519. [PMID: 40166981 PMCID: PMC11970798 DOI: 10.1080/19490976.2025.2486519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, with limited treatment options at advanced stages. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, plays a pivotal role in regulating immune responses through the gut-liver axis. Emerging evidence underscores its impact on HCC progression and the efficacy of immunotherapy. This review explores the intricate interactions between gut microbiota and the immune system in HCC, with a focus on key immune cells and pathways involved in tumor immunity. Additionally, it highlights strategies for modulating the gut microbiota - such as fecal microbiota transplantation, dietary interventions, and probiotics - as potential approaches to enhancing immunotherapy outcomes. A deeper understanding of these mechanisms could pave the way for novel therapeutic strategies aimed at improving patient prognosis.
Collapse
Affiliation(s)
- Mingyao Huang
- School of Basic Medicine, Putian University, Putian, Fujian, China
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Quansong Ji
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huiyan Huang
- Ward 3, De’an Hospital, Xianyou County, Putian, Fujian, China
| | - Xiaoqian Wang
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Wang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
124
|
Zhang Y, Ji X, Chang K, Yin H, Zhao M, Zhao L. The regulatory effect of chitooligosaccharides on islet inflammation in T2D individuals after islet cell transplantation: the mechanism behind Candida albicans abundance and macrophage polarization. Gut Microbes 2025; 17:2442051. [PMID: 39694919 DOI: 10.1080/19490976.2024.2442051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Islet cell transplantation (ICT) represents a promising therapeutic approach for addressing diabetes mellitus. However, the islet inflammation during transplantation significantly reduces the surgical outcome rate, which is related to the polarization of macrophages. Chitooligosaccharides (COS) was previously reported which could modulate the immune system, alleviate inflammation, regulate gut microecology, and repair the intestinal barrier. Therefore, we hypothesized COS could relieve pancreatic inflammation by regulating macrophage polarization and gut microbiota. First, 18S rDNA gene sequencing was performed on fecal samples from the ICT population, showing abnormally increased amount of Candida albicans, possibly causing pancreatic inflammation. Functional oligosaccharides responsible for regulating macrophage polarization and inhibiting the growth of Candida albicans were screened. Afterwards, human flora-associated T2D (HMA-T2D) mouse models of gut microbiota were established, and the ability of the selected oligosaccharides were validated in vivo to alleviate inflammation and regulate gut microbiota. The results indicated that ICT significantly decreased the alpha diversity of gut fungal, altered fungal community structures, and increased Candida albicans abundance. Moreover, Candida albicans promoted M1 macrophage polarization, leading to islet inflammation. COS inhibited Candida albicans growth, suppressed the MyD88-NF-κB pathway, activated STAT6, inhibited M1, and promoted M2 macrophage polarization. Furthermore, COS-treated HMA-T2D mice displayed lower M1 macrophage differentiation and higher M2 macrophage numbers. Additionally, COS also enhanced ZO-1 and Occludin mRNA expression, reduced Candida albicans abundance, and balanced gut microecology. This study illustrated that COS modulated macrophage polarization via the MyD88/NF-κB and STAT6 pathways, repaired the intestinal barrier, and reduced Candida albicans abundance to alleviate islet inflammation.
Collapse
Affiliation(s)
- Yayu Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Kunlin Chang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hao Yin
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, China
| |
Collapse
|
125
|
Al-Hamaly MA, Winter E, Blackburn JS. The mitochondria as an emerging target of self-renewal in T-cell acute lymphoblastic leukemia. Cancer Biol Ther 2025; 26:2460252. [PMID: 39905687 PMCID: PMC11801350 DOI: 10.1080/15384047.2025.2460252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/22/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Acute lymphocytic leukemia (ALL) is the most common leukemia in children, with the T-cell subtype (T-ALL) accounting for 15% of those cases. Despite advancements in the treatment of T-ALL, patients still face a dismal prognosis following their first relapse. Relapse can be attributed to the inability of chemotherapy agents to eradicate leukemia stem cells (LSC), which possess self-renewal capabilities and are responsible for the long-term maintenance of the disease. Mitochondria have been recognized as a therapeutic vulnerability for cancer stem cells, including LSCs. Mitocans have shown promise in T-ALL both in vitro and in vivo, with some currently in early-phase clinical trials. However, due to challenges in studying LSCs in T-ALL, our understanding of how mitochondrial function influences self-renewal remains limited. This review highlights the emerging literature on targeting mitochondria in diverse T-ALL models, emphasizing specific mitochondrial vulnerabilities linked to LSC self-renewal and their potential to significantly improve T-ALL treatment.
Collapse
Affiliation(s)
- Majd A. Al-Hamaly
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Evelyn Winter
- Department of Agriculture, Biodiversity and Forestry, Federal University of Santa Catarina, Curitibanos, Brazil
| | - Jessica S. Blackburn
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
126
|
Suárez-Cuenca JA, Campos-Nolasco NP, Rodríguez-Ayala E, Zepeda-Làmbarry AD, Ochoa-Madrigal MG, Maldonado-Tapia D, Vera-Gómez E, Hernández-Patricio A, Martínez-Torres G, Bernal-Figueroa Y, Pineda-Juárez JA, Gutiérrez-Salinas J, Toledo-Lozano CG, García S. Plasma brain-derived neurotrophic factor before hemodialysis reduces the risk of depression in patients with chronic renal failure. Ren Fail 2025; 47:2463561. [PMID: 39961689 PMCID: PMC11834812 DOI: 10.1080/0886022x.2025.2463561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Neurotrophins are related with depressive disorders. Significant neurotrophins variations occur during renal replacement therapy, but whether peri-hemodialysis availability is associated with depression in patients with Chronic Kidney Disease (CKD) is yet unclear. AIM To determine dynamic concentrations of neurotrophins in the peri-hemodialysis range and their association with depressive symptoms in patients with CKD. METHODS Pre-, and post-hemodialysis plasma concentrations of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), as well as their plasma clearance rates, were determined (multiplexing) in patients with stage 5 CKD. Depressive symptoms, as assessed by the Beck Depression Inventory-II (BDI-II), were determined. Finally, the bioavailability of BDNF and NGF was related to the score of depressive symptoms. RESULTS Fifty-three patients were divided according to depressive symptoms. Pre-hemodialysis plasma BDNF was lower in patients with depressive disorder; whereas basal BDNF value >220 pg/mL independently reduced the risk for depressive disorder (Odds Ratio 0.23, p = 0.047) at uni- and multivariate analysis. Post-hemodialysis concentration and clearance rate of neurotrophins were not related with depressive symptoms. CONCLUSION Higher plasma BDNF before hemodialysis reduces the risk of mild depression in patients with CKD under renal replacement therapy.
Collapse
Affiliation(s)
- Juan Antonio Suárez-Cuenca
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación, Centro Médico Nacional “20 de Noviembre”, Mexico City, Mexico
| | | | | | | | | | - Diana Maldonado-Tapia
- Unidad de Hemodialisis, Centro Médico Nacional “20 de Noviembre”, Mexico City, Mexico
| | - Eduardo Vera-Gómez
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación, Centro Médico Nacional “20 de Noviembre”, Mexico City, Mexico
| | - Alejandro Hernández-Patricio
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación, Centro Médico Nacional “20 de Noviembre”, Mexico City, Mexico
| | - Gustavo Martínez-Torres
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación, Centro Médico Nacional “20 de Noviembre”, Mexico City, Mexico
| | - Yareni Bernal-Figueroa
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación, Centro Médico Nacional “20 de Noviembre”, Mexico City, Mexico
| | | | - José Gutiérrez-Salinas
- Laboratorio de Bioquímica y Medicina Experimental, División de Investigación Biomédica, Centro Médico Nacional “20 de Noviembre”, Mexico City, Mexico
| | | | - Silvia García
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación, Centro Médico Nacional “20 de Noviembre”, Mexico City, Mexico
| |
Collapse
|
127
|
Huang SM, Chen HQ, Liu LT, Zhang YT, Wang J, Zhou DH, Fang JP, Xu LH. Clinical characteristics and prognostic analysis of CDKN2A/2B gene in pediatric acute lymphoblastic leukemia: a retrospective case-control study. Hematology 2025; 30:2439606. [PMID: 39676312 DOI: 10.1080/16078454.2024.2439606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
In this retrospective case-control study involving 424 pediatric patients diagnosed with Pediatric Acute Lymphoblastic Leukemia (ALL), the investigation focused on analyzing the clinical characteristics and prognosis associated with the Cyclin-dependent kinase inhibitor 2A/2B (CDKN2A/2B) gene. Treatment and evaluation followed the South China Children's Leukemia Group-ALL-2016 protocol (SCCLG-ALL-2016). Among the cohort, 92 patients (21.7%) exhibited CDKN2A/2B gene deletions, with 11.1% homozygous and 10.6% heterozygous deletions. Notably, ALL patients that do have CDKN2A/2B gene deletions tended to present at an older age (P = 0.001), demonstrate hepatosplenomegaly on palpation (P < 0.001), and exhibit a higher incidence of Central nervous system leukemia (CNSL) (P = 0.037) and T-ALL (P = 0.007). A significant correlation was observed between ALL that does have CDKN2A/2B gene deletions and ETV6::RUNX1-positive (8.7% vs. 19.3%, P = 0.017) and IKZF1 gene deletions (20.7% vs. 8.4%, P = 0.001). Survival analysis of 392 patients revealed no significant differences in 5-year relapse, Overall survival (OS), or Event-free survival (EFS) between ALL that does/ does not have CDKN2A/2B gene deletions. Subgroup analysis highlighted poorer prognosis among hepatosplenomegaly patients in the CDKN2A/2B gene deletion group, with a 5-year EFS of 81.8%, 95%CI (0.695-0.963), P = 0.05. Hepatosplenomegaly emerged as the most significant prognostic factor for EFS [HR = 2.306, 95%CI (1.192-4.461), P = 0.013]. Cox regression analyses identified covariates influencing prognosis, ALL with the CDKN2A/2B gene showing no significant impact on outcomes. In conclusion, while ALL that does have CDKN2A/2B gene deletions is associated with certain clinical characteristics and genetic aberrations, they did not significantly impact OS or EFS. Furthermore, subgroup analysis revealed a potential prognostic role of ALL that does have CDKN2A/2B deletions presenting with hepatosplenomegaly on palpation, emphasizing the importance of comprehensive risk stratification in treatment decision-making for this subgroup.
Collapse
Affiliation(s)
- Shi-Mei Huang
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hui-Qin Chen
- Department of Pediatrics, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li-Ting Liu
- Department of Pediatrics, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ya-Ting Zhang
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jian Wang
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dun-Hua Zhou
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jian-Pei Fang
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lu-Hong Xu
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
128
|
Zhang D, Wang Y, Jiang S, Li W. Simple methods for estimating the maximum 24-hour urinary potassium excretion in kidney failure without replacement therapy patients. Ren Fail 2025; 47:2445157. [PMID: 39780434 PMCID: PMC11721948 DOI: 10.1080/0886022x.2024.2445157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Adjusting dietary potassium intake based on 24-hour urinary potassium excretion is the primary method of preventing hyperkalemia. Currently, there is no accurate and convenient method for calculating maximum 24-hour urinary potassium excretion in kidney failure without replacement therapy patients. We developed and validated two new models to assess the upper limit of dietary potassium consumption in this high-risk cohort, using the maximum 24-hour urinary potassium excretion as a proxy. METHODS The data of 145 kidney failure without replacement therapy patients with hyperkalemia was gathered. The prediction models were developed using multilayer perceptron and stepwise multiple linear regression utilizing a stochastic sample of 102 (70%) patients. Within the rest 43 (30%), the performance of various models was independently verified. RESULTS The two new models had low bias (-0.02 and -0.57 mmol/24h vs 66.74 and 79.91 mmol/24h, mean absolute error = 5.57 and 5.22 vs 68.95 and 81.37), high accuracy (percentage of calculated values within_±30% of measured values = 83.45% and 84.14% vs 0.00% and 0.00%), high correlation with measured values (Spearman correlation coefficient = 0.72 and 0.72 vs 0.46 and 0.45, intraclass correlation coefficient = 0.67 and 0.70 vs 0.03 and 0.03) and high agreement with 24-hour urine potassium measurements (95% limits of agreement of Bland-Altman plot = 13.70 and 13.20 mmol/24h vs 113.8 and 191.3 mmol/24h). CONCLUSION These new models show high clinical application value for the calculation of maximum 24-hour urinary potassium excretion in kidney failure without replacement therapy patients with hyperkalemia.
Collapse
Affiliation(s)
- Danyang Zhang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Yukun Wang
- Department of Biomedical Engineering, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shimin Jiang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Wenge Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
129
|
Pini L, Giordani J, Levi G, Guerini M, Piva S, Peli E, Violini M, Piras S, El Masri Y, Pini A, Visca D, Assanelli D, Muiesan ML, Latronico N, Tantucci C. Long-term alveolar-capillary diffusion impairments after severe SARS-CoV-2 pneumonia. Ann Med 2025; 57:2483383. [PMID: 40152750 PMCID: PMC11956098 DOI: 10.1080/07853890.2025.2483383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Persistent respiratory symptoms and impaired gas exchange are common in patients recovering from COVID-19 pneumonia. The Lung Diffusing Capacity for Carbon Monoxide (DLCO) and Carbon Monoxide Transfer Coefficient (KCO) do not adequately distinguish alveolar membrane dysfunction from vascular abnormalities. This study aimed to characterize persistent diffusion impairment in post-ICU patients with prior SARS-CoV-2 pneumonia and reduced DLCO. METHODS After hospital discharge, patients underwent spirometry, DLCO measurement, and a 6-minute walking test every six months. If DLCO remained impaired at 18-24 months, a combined Lung Diffusing Capacity for Nitric Oxide (DLNO) and DLCO assessment was performed to differentiate alveolar-capillary membrane (DmCO) and pulmonary capillary blood volume (Vc) alterations. RESULTS Among 20 patients with persistent DLCO reduction, 3 had an obstructive ventilatory pattern, 6 had restriction, and 12 had low KCO. In restrictive cases, KCO was reduced but remained within normal limits without compensation. The DLNO/DLCO ratio exceeded 113.5% predicted in all patients. DmCO was impaired in 7 patients, while Vc was reduced in 16. CONCLUSION Both DLCO determinants were affected, with vascular impairment predominating. Vc reduction was present in most patients, with mean values below the lower limit of normality, whereas DmCO was less affected and often normal. The elevated DLNO/DLCO ratio suggests that persistent DLCO reduction is primarily driven by prolonged pulmonary capillary circulation dysfunction rather than alveolar membrane alterations, highlighting the vascular component as the primary site of long-term impairment.
Collapse
Affiliation(s)
- Laura Pini
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Respiratory Physiopathology Unit, ASST – Spedali Civili di Brescia, Brescia, Italy
| | - Jordan Giordani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Guido Levi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Pulmonology Department, ASST – Spedali Civili di Brescia, Brescia, Italy
| | - Michele Guerini
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Simone Piva
- Department of Anesthesia, Critical Care and Emergency, ASST Spedali Civili University Hospital, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Elena Peli
- Department of Anesthesia, Critical Care and Emergency, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Manuela Violini
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Piras
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Yehia El Masri
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Pini
- Department of Emergency, Anaesthesiological and Resuscitation Sciences, University Cattolica Sacro Cuore, Rome, Italy
| | - Dina Visca
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
- Department of Medicine and Cardiopulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Deodato Assanelli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Internal Medicine Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Maria Lorenza Muiesan
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Internal Medicine Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Nicola Latronico
- Department of Anesthesia, Critical Care and Emergency, ASST Spedali Civili University Hospital, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Claudio Tantucci
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | |
Collapse
|
130
|
Vijayan S, Margesan T. The potential of Abrus precatorius leaves in arthritis alleviation computational approaches through lC-MS analysis. Future Sci OA 2025; 11:2483131. [PMID: 40131221 PMCID: PMC11938972 DOI: 10.1080/20565623.2025.2483131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
AIM This study explores the therapeutic potential of Abrus precatorius leaves in arthritis treatment using computational methods and LC-MS analysis. METHODS The plant material was taxonomically authenticated, and phytochemical analysis identified bioactive compounds such as alkaloids, flavonoids, and triterpenoids. RESULTS Swiss ADME analysis confirmed that multiple compounds complied with Lipinski's Rule of Five, while OSIRIS software indicated minimal toxicity. PASS analysis predicted anti-inflammatory and antioxidant activities. Molecular docking simulations of Abrine with key rheumatoid arthritis (RA) targets revealed strong binding affinities, suggesting potential mechanisms for RA treatment. CONCLUSION This research highlights the medicinal potential of Abrus precatorius leaves and emphasizes the importance of computational tools in understanding their pharmacological properties for arthritis management.
Collapse
Affiliation(s)
- Sukanya Vijayan
- Department of Pharmacognosy, SRM College of Pharmacy, SRMIST, Chengalpattu, Tamil Nadu, India
| | - Thirumal Margesan
- Department of Pharmacognosy, SRM College of Pharmacy, SRMIST, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
131
|
Sun X, Wang C, Zheng R, Liu Z, Song W, Du X, Liu C, Lu C. Frailty transitions and risk of chronic kidney disease: insights from the China Health and Retirement Longitudinal Study. Ren Fail 2025; 47:2478483. [PMID: 40101286 PMCID: PMC11921158 DOI: 10.1080/0886022x.2025.2478483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Frailty is increasingly recognized as a critical factor in the risk of chronic kidney disease (CKD), and it is also a condition that can undergo transitions. However, the relationship between frailty transitions and CKD risk in aging populations remains underexplored. This study aims to investigate the association between frailty transitions and CKD risk in middle-aged and older adults using data from the China Health and Retirement Longitudinal Study. METHODS Frailty was assessed using a 40-item Frailty Index (FI), with participants categorized into three groups: robust (FI ≤ 0.10), pre-frail (0.10 < FI ≤ 0.21), and frail (FI > 0.21). Frailty transitions were tracked between the first and second waves of the study. Data on CKD incidence were obtained from self-reported physician-diagnosed kidney disease. Cox proportional hazards models were employed to evaluate the risk of CKD, with adjustments made for potential confounders. RESULTS Among 12,050 participants (52.60% female, mean age 58.37), those who progressed to frailty or pre-frailty had an increased risk of CKD compared with stable participants (HR 1.74, p < 0.001). In contrast, individuals who recovered from frailty to robust or pre-frail status had a reduced CKD risk (HR 0.71, p = 0.023). The results of the sensitivity analysis, which showed consistent findings, support the reliability of the results. CONCLUSION Frailty transitions are significantly associated with the risk of CKD. Worsening frailty is linked to an increased risk of CKD, while improvement in frailty is associated with a lower risk of CKD.
Collapse
Affiliation(s)
- Xiaotong Sun
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Che Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Rujie Zheng
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Zhihao Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Wenjuan Song
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Du
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Chunlei Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
132
|
Chatzimeletiou K, Pappa K, Petrogiannis N, Anifandis G, Chatzovoulou K, Tsakos E, Kolibianakis E, Grimbizis G, Sioga A. In vitro maturation of oocytes (IVM): historical landmarks, current status and future perspectives. Syst Biol Reprod Med 2025; 71:102-115. [PMID: 40073300 DOI: 10.1080/19396368.2025.2469574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/10/2025] [Accepted: 02/16/2025] [Indexed: 03/14/2025]
Abstract
One of the major advancements in in vitro fertilization (IVF) has been the development of culture media that enhance gamete maturation in vitro and sustain embryo development up to the blastocyst stage. The deep understanding of the mechanisms involved in gametogenesis and the complex sequence of events surrounding nuclear and cytoplasmic maturation has also enabled the development of efficient in vitro maturation (IVM) protocols. This review outlines the major landmarks in the history of in vitro maturation of oocytes, the advantages and importance of its clinical application in human, especially in patients with Polycystic Ovary Syndrome (PCOS), Resistant Ovary Syndrome, high antral follicle count or oncology patients, as well as the safety and efficacy of the technique. IVM has not been shown yet to be as effective as controlled ovarian stimulation in terms of maturation rates, fertilization rates, and clinical outcome, possibly owing to a dysfunctional or asynchronous nuclear/cytoplasmic maturation process. A confusing set of IVM clinical protocols may also have contributed to the slow incorporation of the technology into routine IVF practice. However, recent improvements have led to comparable live birth rates between IVM and IVF, in women with high antral follicle count. The current status of IVM in the Assisted Reproductive Technology (ART) laboratory and its future perspectives, aiming to provide maximum fertility care to patients will be discussed.
Collapse
Affiliation(s)
- Katerina Chatzimeletiou
- Unit for Human Reproduction, 1st Department of Obstetrics & Gynaecology, 'Papageorgiou' General Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | | | | | - George Anifandis
- Department of Obstetrics and Gynecology, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa, Greece
| | | | | | - Efstratios Kolibianakis
- Unit for Human Reproduction, 1st Department of Obstetrics & Gynaecology, 'Papageorgiou' General Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Grigoris Grimbizis
- Unit for Human Reproduction, 1st Department of Obstetrics & Gynaecology, 'Papageorgiou' General Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Antonia Sioga
- Laboratory of Histology and Embryology, Aristotle University Medical School, Thessaloniki, Greece
| |
Collapse
|
133
|
Chi J, Fan B, Li Y, Jiao Q, Li GY. Mitochondrial transplantation: a promising strategy for the treatment of retinal degenerative diseases. Neural Regen Res 2025; 20:3370-3387. [PMID: 39851134 PMCID: PMC11974652 DOI: 10.4103/nrr.nrr-d-24-00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 10/24/2024] [Indexed: 01/26/2025] Open
Abstract
The retina, a crucial neural tissue, is responsible for transforming light signals into visual information, a process that necessitates a significant amount of energy. Mitochondria, the primary powerhouses of the cell, play an integral role in retinal physiology by fulfilling the high-energy requirements of photoreceptors and secondary neurons through oxidative phosphorylation. In a healthy state, mitochondria ensure proper visual function by facilitating efficient conversion and transduction of visual signals. However, in retinal degenerative diseases, mitochondrial dysfunction significantly contributes to disease progression, involving a decline in membrane potential, the occurrence of DNA mutations, increased oxidative stress, and imbalances in quality-control mechanisms. These abnormalities lead to an inadequate energy supply, the exacerbation of oxidative damage, and the activation of cell death pathways, ultimately resulting in neuronal injury and dysfunction in the retina. Mitochondrial transplantation has emerged as a promising strategy for addressing these challenges. This procedure aims to restore metabolic activity and function in compromised cells through the introduction of healthy mitochondria, thereby enhancing the cellular energy production capacity and offering new strategies for the treatment of retinal degenerative diseases. Although mitochondrial transplantation presents operational and safety challenges that require further investigation, it has demonstrated potential for reviving the vitality of retinal neurons. This review offers a comprehensive examination of the principles and techniques underlying mitochondrial transplantation and its prospects for application in retinal degenerative diseases, while also delving into the associated technical and safety challenges, thereby providing references and insights for future research and treatment.
Collapse
Affiliation(s)
- Jing Chi
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bin Fan
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yulin Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qing Jiao
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
134
|
Zhang T, Jian Z, Chen J, Xu D, Yang X, Lu Y, Yan S, Pan L, Wu Q, Ouyang Z. Efficiency enhancement in main path extraction in mRNA vaccine field: A novel approach leveraging intermediate patents, with shielding origin and terminus patent edges. Hum Vaccin Immunother 2025; 21:2454078. [PMID: 39838876 DOI: 10.1080/21645515.2025.2454078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/24/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
mRNA vaccines offer groundbreaking technological advantages and broad application potential. Their rapid advancement, particularly during the COVID-19 pandemic, is the result of decades of research and numerous technological breakthroughs. These discoveries build upon each other, forming dense, interconnected networks of progress. Studying the technological development paths of mRNA vaccines is therefore essential. Main path analysis (MPA) is particularly effective for mapping out development trajectories within complex and interconnected networks, which serves as a powerful tool for identifying key nodes and innovations. This study introduces a novel approach to extracting main paths from a patent citation network in the mRNA vaccine field. Initially, we shielded edges connecting the origin and terminus patents. Subsequently, we extracted the main paths from intermediate patents, and then, we reintegrated the edges connecting the origin and terminus patents based on the citation relationships, resulting in a comprehensive extraction of the main paths. The research findings indicate a consistency among the global main paths, global key-route main paths, local forward main paths, and local key-route main paths within the mRNA vaccine field. The patents on the main paths predominantly focus on nucleic acid modifications and delivery systems. The local backward main paths identify a greater number of patents, especially those related to litigation, offering a richer and more diverse set of technological insights. This study significantly advances the methodology of MPA, with the innovative shielding technique offering a fresh perspective for navigating complex networks and providing a deeper understanding of technological development in the mRNA vaccine domain.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhongquan Jian
- Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China
| | - Juan Chen
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Dongzi Xu
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyi Yang
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yan Lu
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shu Yan
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lizi Pan
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | - Zhaolian Ouyang
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
135
|
Deng F, Yang D, Qing L, Chen Y, Zou J, Jia M, Wang Q, Jiang R, Huang L. Exploring the interaction between the gut microbiota and cyclic adenosine monophosphate-protein kinase A signaling pathway: a potential therapeutic approach for neurodegenerative diseases. Neural Regen Res 2025; 20:3095-3112. [PMID: 39589173 PMCID: PMC11881707 DOI: 10.4103/nrr.nrr-d-24-00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/07/2024] [Accepted: 09/10/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction between the gut microbiota and cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut-brain axis. The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites, which activates the vagus nerve and modulates the immune and neuroendocrine systems. Conversely, alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota, creating a dynamic network of microbial-host interactions. This reciprocal regulation affects neurodevelopment, neurotransmitter control, and behavioral traits, thus playing a role in the modulation of neurological diseases. The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation, mitochondrial dysfunction, abnormal energy metabolism, microglial activation, oxidative stress, and neurotransmitter release, which collectively influence the onset and progression of neurological diseases. This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway, along with its implications for potential therapeutic interventions in neurological diseases. Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders. This can be achieved through various methods such as dietary modifications, probiotic supplements, Chinese herbal extracts, combinations of Chinese herbs, and innovative dosage forms. These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- Fengcheng Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lingxi Qing
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yifei Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Jilian Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Meiling Jia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Qian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Runda Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lihua Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
136
|
Yang X, Gao X, Jiang X, Yue K, Luo P. Targeting capabilities of engineered extracellular vesicles for the treatment of neurological diseases. Neural Regen Res 2025; 20:3076-3094. [PMID: 39435635 PMCID: PMC11881733 DOI: 10.4103/nrr.nrr-d-24-00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024] Open
Abstract
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases. Owing to their therapeutic properties and ability to cross the blood-brain barrier, extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions, including ischemic stroke, traumatic brain injury, neurodegenerative diseases, glioma, and psychosis. However, the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body. To address these limitations, multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles, thereby enabling the delivery of therapeutic contents to specific tissues or cells. Therefore, this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles, exploring their applications in treating traumatic brain injury, ischemic stroke, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, glioma, and psychosis. Additionally, we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases. This review offers new insights for developing highly targeted therapies in this field.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Kangyi Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
137
|
Flyger H, Holdsworth SJ, Gunn AJ, Bennet L, Abbasi H. Temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries on magnetic resonance imaging. Neural Regen Res 2025; 20:3144-3150. [PMID: 39665823 PMCID: PMC11881736 DOI: 10.4103/nrr.nrr-d-24-00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in ~ 1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability. Detailed assessment is important to help identify high-risk infants, to help families, and to support appropriate interventions. A wide range of monitoring tools is available to assess changes over time, including urine and blood biomarkers, neurological examination, and electroencephalography. At present, magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy. This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries, with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction, particularly for infants treated with therapeutic hypothermia. A comprehensive literature search, from 2016 to 2024, identified 20 pertinent articles. This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear, overall, it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy. Many challenges limit the timing consistency, particularly the need for intensive care and clinical monitoring. Conversely, although most reports examined the prognostic value of scans taken between 4 and 10 days after birth, there is evidence from small numbers of cases that, at times, brain injury may continue to evolve for weeks after birth. This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.
Collapse
Affiliation(s)
- Holly Flyger
- Mātai Medical Research Institute, Tairāwhiti Gisborne, New Zealand
| | - Samantha J. Holdsworth
- Mātai Medical Research Institute, Tairāwhiti Gisborne, New Zealand
- Department of Anatomy & Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Alistair J. Gunn
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Hamid Abbasi
- Department of Anatomy & Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Center for Brain Research, The University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
138
|
Ahmadi M, Rouhi N, Mirnajafi-Zadeh J, Saab BJ. Context-dependency in medicine: how neuronal excitability influences the impact of dopamine on cognition. Neural Regen Res 2025; 20:3225-3226. [PMID: 39715094 PMCID: PMC11881724 DOI: 10.4103/nrr.nrr-d-24-00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 12/25/2024] Open
Affiliation(s)
- Mahboubeh Ahmadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nahid Rouhi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bechara J. Saab
- Mobio Interactive Pte. Ltd., Singapore, Republic of Singapore
| |
Collapse
|
139
|
Zhang T, Schmidt M. Targeting Epac2 and GluA3-containing AMPARs: a novel therapeutic strategy for Alzheimer's disease. Neural Regen Res 2025; 20:3223-3224. [PMID: 39715093 PMCID: PMC11881712 DOI: 10.4103/nrr.nrr-d-24-00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 12/25/2024] Open
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
140
|
Li H, Li F, Chen Z, Wu E, Dai X, Li D, An H, Zeng S, Wang C, Yang L, Long C. Glutamatergic CYLD deletion leads to aberrant excitatory activity in the basolateral amygdala: association with enhanced cued fear expression. Neural Regen Res 2025; 20:3259-3272. [PMID: 39715097 PMCID: PMC11881721 DOI: 10.4103/nrr.nrr-d-24-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/30/2024] [Accepted: 05/06/2024] [Indexed: 12/25/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00029/figure1/v/2024-12-20T164640Z/r/image-tiff Neuronal activity, synaptic transmission, and molecular changes in the basolateral amygdala play critical roles in fear memory. Cylindromatosis (CYLD) is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway. CYLD is well studied in non-neuronal cells, yet under-investigated in the brain, where it is highly expressed. Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses, neuroinflammation, fear memory, and anxiety- and autism-like behaviors. However, the precise role of CYLD in glutamatergic neurons is largely unknown. Here, we first proposed involvement of CYLD in cued fear expression. We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons. Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice. Further, loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation, impaired excitatory synaptic transmission, and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice. Altogether, our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal, synaptic, and microglial activation. This may contribute, at least in part, to cued fear expression.
Collapse
Affiliation(s)
- Huidong Li
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Faqin Li
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhaoyi Chen
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Erwen Wu
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xiaoxi Dai
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Danni Li
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Haojie An
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Shiyi Zeng
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Chunyan Wang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
| |
Collapse
|
141
|
Jin Q, Wang S, Yao Y, Jiang Q, Li K. The gut-eye axis: from brain neurodegenerative diseases to age-related macular degeneration. Neural Regen Res 2025; 20:2741-2757. [PMID: 39435619 PMCID: PMC11826455 DOI: 10.4103/nrr.nrr-d-24-00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
Age-related macular degeneration is a serious neurodegenerative disease of the retina that significantly impacts vision. Unfortunately, the specific pathogenesis remains unclear, and effective early treatment options are consequently lacking. The microbiome is defined as a large ecosystem of microorganisms living within and coexisting with a host. The intestinal microbiome undergoes dynamic changes owing to age, diet, genetics, and other factors. Such dysregulation of the intestinal flora can disrupt the microecological balance, resulting in immunological and metabolic dysfunction in the host, and affecting the development of many diseases. In recent decades, significant evidence has indicated that the intestinal flora also influences systems outside of the digestive tract, including the brain. Indeed, several studies have demonstrated the critical role of the gut-brain axis in the development of brain neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Similarly, the role of the "gut-eye axis" has been confirmed to play a role in the pathogenesis of many ocular disorders. Moreover, age-related macular degeneration and many brain neurodegenerative diseases have been shown to share several risk factors and to exhibit comparable etiologies. As such, the intestinal flora may play an important role in age-related macular degeneration. Given the above context, the present review aims to clarify the gut-brain and gut-eye connections, assess the effect of intestinal flora and metabolites on age-related macular degeneration, and identify potential diagnostic markers and therapeutic strategies. Currently, direct research on the role of intestinal flora in age-related macular degeneration is still relatively limited, while studies focusing solely on intestinal flora are insufficient to fully elucidate its functional role in age-related macular degeneration. Organ-on-a-chip technology has shown promise in clarifying the gut-eye interactions, while integrating analysis of the intestinal flora with research on metabolites through metabolomics and other techniques is crucial for understanding their potential mechanisms.
Collapse
Affiliation(s)
- Qianzi Jin
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Suyu Wang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yujia Yao
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qin Jiang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Keran Li
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
142
|
Zhao Z, Zhang Y, Li J, Huang S, Xing G, Zhang K, Ma X, Zhang X, Zhang Y. A remotely controlled nanotherapeutic with immunomodulatory property for MRSA-induced bone infection. Biomaterials 2025; 321:123298. [PMID: 40164042 DOI: 10.1016/j.biomaterials.2025.123298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Osteomyelitis is a deep bone tissue infection caused by pathogenic microorganisms, with the primary pathogen being methicillin-resistant Staphylococcus aureus (MRSA). Due to the tendency of the infection site to form biofilms that shield drugs and immune cells to kill bacteria, combined with the severe local inflammatory response causing bone tissue destruction, the treatment of osteomyelitis poses a significant challenge. Herein, we developed a remotely controlled nanotherapeutic (TLBA) with immunomodulatory to treat MRSA-induced osteomyelitis. TLBA, combined with baicalin and gold nanorods, is positively charged to actively target and penetrate biofilms. Near-infrared light (808 nm) triggers spatiotemporal, controllable drug release, while bacteria are eliminated through synergistic interaction of non-antibiotic drugs and photothermal therapy, enhancing bactericidal efficiency and minimizing drug resistance. TLBA eliminated nearly 100 % of planktonic bacteria and dispersed 90 % of biofilms under NIR light stimulation. In MRSA-induced osteomyelitis rat models, laser irradiation raised the infection site temperature to 50 °C, effectively eradicating bacteria, promoting M2 macrophage transformation, inhibiting bone inflammation, curbing bone destruction, and fostering bone tissue repair. In summary, TLBA proposes a more comprehensive treatment strategy for the two characteristic pathological changes of bacterial infection and bone tissue damage in osteomyelitis.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Orthopedics, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin, 300211, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guosheng Xing
- Laboratory of Biochemistry and Molecular Biology, Institute of Orthopedics, Tianjin Hospital, Tianjin, 300050, China
| | - Kai Zhang
- Department of Transfusion, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin, 300211, China
| | - Xinlong Ma
- Department of Orthopedics, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin, 300211, China.
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Yingze Zhang
- The School of Medicine, Nankai University, Tianjin, 300071, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| |
Collapse
|
143
|
Ramaraju H, Verga AS, Steedley BJ, Kowblansky AP, Green GE, Hollister SJ. Investigation of the biodegradation kinetics and associated mechanical properties of 3D-printed polycaprolactone during long-term preclinical testing. Biomaterials 2025; 321:123257. [PMID: 40154121 DOI: 10.1016/j.biomaterials.2025.123257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/01/2025]
Abstract
Polycaprolactone (PCL) is a bioresorbable polymer increasingly utilized for customized tissue reconstruction as it is readily 3D printed. A critical design requirement for PCL devices is determining the in vivo bioresorption rate and the resulting change in device mechanics suited for target tissue repair applications. The primary challenge with meeting this requirement involves accurate prediction of degradation in the target tissues. PCL undergoes bulk hydrolytic degradation following first order kinetics until an 80-90 % drop in the starting number average molecular weight (Mn) after 2-3 years in vivo. However, initial polymer architecture, composite incorporation, manufacturing modality, device architecture, and target tissue can impact degradation. In vitro models do not fully capture device degradation, and the limited long-term (2-3 year) models primarily utilize subcutaneous implants. In this study, we investigate the degradation rate of 3D-printed airway support devices (ASDs) comprised of PCL and 4 % hydroxyapatite (HA) when implanted on Yucatan porcine tracheas for two years. After one year of degradation, we report a mass loss of less than 1 % and Mn reduction of 25 %. After two years, mass and Mn decreased by 10 % and 50 % respectively. These changes are accompanied by an increase in elastic modulus from 146.7 ± 5.2 MPa for freshly printed ASDs to 291.7 ± 16.0 MPa after one year and 362.5 ± 102.4 MPa after two years. Additionally, there was a decrease in yield strain, and increase in yield stress from implantation to 1-year (p < 0.001). Plastic strain completely diminished by two years, resulting in brittle failure at a yield stress of 12.5 MPa. The significantly lower rate of hydrolysis coupled with hydrolytic embrittlement indicates alternate degradation kinetics compared to subcutaneous models. Fitting a new model for degradation and predicting elastic and damage properties of this new degradation paradigm provide significant advancements for 3D-printed device design in clinical repair applications.
Collapse
Affiliation(s)
- Harsha Ramaraju
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Adam S Verga
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Bennett J Steedley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrew P Kowblansky
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Glenn E Green
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Otolaryngology Head and Neck Surgery, Division of Pediatric Otolaryngology, University of Michigan Health System, Ann Arbor, MI, 48104, USA
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
144
|
Guan L, Qiu M, Li N, Zhou Z, Ye R, Zhong L, Xu Y, Ren J, Liang Y, Shao X, Fang J, Fang J, Du J. Inhibitory gamma-aminobutyric acidergic neurons in the anterior cingulate cortex participate in the comorbidity of pain and emotion. Neural Regen Res 2025; 20:2838-2854. [PMID: 39314159 PMCID: PMC11826466 DOI: 10.4103/nrr.nrr-d-24-00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Pain is often comorbid with emotional disorders such as anxiety and depression. Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairments in inhibitory gamma-aminobutyric acid neurotransmission. This review primarily aims to outline the main circuitry (including the input and output connectivity) of the anterior cingulate cortex and classification and functions of different gamma-aminobutyric acidergic neurons; it also describes the neurotransmitters/neuromodulators affecting these neurons, their intercommunication with other neurons, and their importance in mental comorbidities associated with chronic pain disorders. Improving understanding on their role in pain-related mental comorbidities may facilitate the development of more effective treatments for these conditions. However, the mechanisms that regulate gamma-aminobutyric acidergic systems remain elusive. It is also unclear as to whether the mechanisms are presynaptic or postsynaptic. Further exploration of the complexities of this system may reveal new pathways for research and drug development.
Collapse
Affiliation(s)
- Lu Guan
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Mengting Qiu
- Fuchun Community Health Service Center of Fuyang District, Hangzhou, Zhejiang Province, China
| | - Na Li
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhengxiang Zhou
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Ru Ye
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Liyan Zhong
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yashuang Xu
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junhui Ren
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
145
|
Cho H, Ju H, Ahn Y, Jang J, Cho J, Park E, Kang SM, Lee J, Seo D, Baek MC, Yea K. Engineered extracellular vesicles with surface FGF21 and enclosed miR-223 for treating metabolic dysfunction-associated steatohepatitis. Biomaterials 2025; 321:123321. [PMID: 40209593 DOI: 10.1016/j.biomaterials.2025.123321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/22/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disorder with a complex pathogenesis that requires combination therapies rather than monotherapies. Extracellular vesicles (EVs) exhibit inherently efficient delivery to the liver and can be engineered to carry various therapeutic substances, making them promising agents. In this study, EVs were engineered to display fibroblast growth factor 21 (FGF21) on their surface and encapsulate miR-223 (223/F-EVs), aiming to improve steatosis and alleviate inflammation and fibrosis, respectively. Introducing the 223/F-EVs into human liver cell lines significantly reduced both basal and induced levels of lipid storage, inflammation, and fibrosis markers. Furthermore, using an FGF21-blocking antibody or miR-223 inhibitor effectively diminished the efficacy of the 223/F-EVs, confirming the essential roles of FGF21 and miR-223 in these processes. In a Choline-Deficient, l-Amino acid-defined, High-Fat Diet (CDAHFD)-fed mouse model, intravenously administered 223/F-EVs demonstrated liver-preferential delivery and a marked reduction in the MASH phenotype without compromising bone density, unlike conventional FGF21 treatment. Collectively, 223/F-EVs convey FGF21 and miR-223 exclusively to the liver, offering strategic advantages by mitigating MASH progression via multiple pathways. This study lays a solid foundation for further investigation of engineered EVs as a transformative therapeutic approach for treating MASH.
Collapse
Affiliation(s)
- Hanchae Cho
- Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Hyunji Ju
- Department of Molecular Medicine, CMRI, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Yongdeok Ahn
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Juhee Jang
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Juhyeong Cho
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Eunju Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Sung-Min Kang
- Department of Molecular Medicine, CMRI, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Daeha Seo
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea.
| | - Kyungmoo Yea
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea; New Biology Research Center, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 43024, Republic of Korea.
| |
Collapse
|
146
|
Chierichetti M, Cristofani R, Crippa V, Ferrari V, Cozzi M, Casarotto E, Pramaggiore P, Cornaggia L, Patelli G, Mohamed A, Piccolella M, Galbiati M, Rusmini P, Tedesco B, Poletti A. Small heat shock protein B8: from cell functions to its involvement in diseases and potential therapeutic applications. Neural Regen Res 2025; 20:2872-2886. [PMID: 39435632 PMCID: PMC11826450 DOI: 10.4103/nrr.nrr-d-24-00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 10/23/2024] Open
Abstract
Heat shock protein family B (small) member 8 (HSPB8) is a 22 kDa ubiquitously expressed protein belonging to the family of small heat shock proteins. HSPB8 is involved in various cellular mechanisms mainly related to proteotoxic stress response and in other processes such as inflammation, cell division, and migration. HSPB8 binds misfolded clients to prevent their aggregation by assisting protein refolding or degradation through chaperone-assisted selective autophagy. In line with this function, the pro-degradative activity of HSPB8 has been found protective in several neurodegenerative and neuromuscular diseases characterized by protein misfolding and aggregation. In cancer, HSPB8 has a dual role being capable of exerting either a pro- or an anti-tumoral activity depending on the pathways and factors expressed by the model of cancer under investigation. Moreover, HSPB8 exerts a protective function in different diseases by modulating the inflammatory response, which characterizes not only neurodegenerative diseases, but also other chronic or acute conditions affecting the nervous system, such as multiple sclerosis and intracerebellar hemorrhage. Of note, HSPB8 modulation may represent a therapeutic approach in other neurological conditions that develop as a secondary consequence of other diseases. This is the case of cognitive impairment related to diabetes mellitus, in which HSPB8 exerts a protective activity by assuring mitochondrial homeostasis. This review aims to summarize the diverse and multiple functions of HSPB8 in different pathological conditions, focusing on the beneficial effects of its modulation. Drug-based and alternative therapeutic approaches targeting HSPB8 and its regulated pathways will be discussed, emphasizing how new strategies for cell and tissue-specific delivery represent an avenue to advance in disease treatments.
Collapse
Affiliation(s)
- Marta Chierichetti
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Riccardo Cristofani
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Valeria Crippa
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Marta Cozzi
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Paola Pramaggiore
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Laura Cornaggia
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Guglielmo Patelli
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Ali Mohamed
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
147
|
Zhang P, Ran Y, Han L, Li Y, Tian W, Sun X, Jiao M, Jing L, Luo X. Nanomaterial technologies for precision diagnosis and treatment of brain hemorrhage. Biomaterials 2025; 321:123269. [PMID: 40174300 DOI: 10.1016/j.biomaterials.2025.123269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/19/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Brain hemorrhage events present complex clinical challenges due to their rapid progression and the intricate interplay of oxidative stress, inflammation, and neuronal damage. Traditional diagnostic and therapeutic approaches often struggle to meet the demands for timely and effective intervention. This review explores the cutting-edge role of nanomaterials in transforming cerebral hemorrhage management, focusing on both diagnostic and therapeutic advancements. Nanomaterial-enabled imaging techniques, such as optical imaging, magnetic resonance imaging, and magnetic particle imaging, significantly enhance the accuracy of hemorrhage detection by providing real-time, high-resolution assessments of blood-brain barrier (BBB) integrity, cerebral perfusion, and hemorrhage progression, which is critical for guiding intervention strategies. On the therapeutic front, nanomaterial-based systems enable the precise delivery of drugs and bioactive molecules, fostering neural repair and functional recovery while minimizing systemic side effects. Furthermore, multifunctional nanomaterials not only address the primary injury but also offer precise control over secondary injuries, such as edema and oxidative stress. Their ability to enhance neuroprotection, prevent re-bleeding, and stimulate brain tissue regeneration provides a holistic approach and marks a significant advancement in brain hemorrhage therapy. As the field continues to advance, nanotechnology is set to fundamentally reshape the clinical management and long-term outcomes of brain hemorrhages, presenting a paradigm shift towards personalized and highly effective neurological care.
Collapse
Affiliation(s)
- Peisen Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Yi'an Ran
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Lei Han
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Yao Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Wanru Tian
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Xiao Sun
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Mingxia Jiao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China.
| | - Lihong Jing
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China.
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China.
| |
Collapse
|
148
|
Parchwani D, Singh R, Patel D. Biological and translational attributes of mitochondrial DNA copy number: Laboratory perspective to clinical relevance. World J Methodol 2025; 15:102709. [DOI: 10.5662/wjm.v15.i3.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/21/2025] [Accepted: 02/08/2025] [Indexed: 03/06/2025] Open
Abstract
The mitochondrial DNA copy number (mtDNAcn) plays a vital role in cellular energy metabolism and mitochondrial health. As mitochondria are responsible for adenosine triphosphate production through oxidative phosphorylation, maintaining an appropriate mtDNAcn level is vital for the overall cellular function. Alterations in mtDNAcn have been linked to various diseases, including neurodegenerative disorders, metabolic conditions, and cancers, making it an important biomarker for understanding the disease pathogenesis. The accurate estimation of mtDNAcn is essential for clinical applications. Quantitative polymerase chain reaction and next-generation sequencing are commonly employed techniques with distinct advantages and limitations. Clinically, mtDNAcn serves as a valuable indicator for early diagnosis, disease progression, and treatment response. For instance, in oncology, elevated mtDNAcn levels in blood samples are associated with tumor aggressiveness and can aid in monitoring treatment efficacy. In neurodegenerative diseases such as Alzheimer’s and Parkinson’s, altered mtDNAcn patterns provide insights into disease mechanisms and progression. Understanding and estimating mtDNAcn are critical for advancing diagnostic and therapeutic strategies in various medical fields. As research continues to uncover the implications of mtDNAcn alterations, its potential as a clinical biomarker is likely to expand, thereby enhancing our ability to diagnose and manage complex diseases.
Collapse
Affiliation(s)
- Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Ragini Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Digisha Patel
- Department of Physiology, Shantabaa Medical College and General Hospital Amreli, Amreli 365601, Gujarāt, India
| |
Collapse
|
149
|
Chung J, Pierce J, Franklin C, Olson RM, Morrison AR, Amos-Landgraf J. Translating animal models of SARS-CoV-2 infection to vascular, neurological and gastrointestinal manifestations of COVID-19. Dis Model Mech 2025; 18:dmm052086. [PMID: 40195851 PMCID: PMC12010913 DOI: 10.1242/dmm.052086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initiated a global pandemic resulting in an estimated 775 million infections with over 7 million deaths, it has become evident that COVID-19 is not solely a pulmonary disease. Emerging evidence has shown that, in a subset of patients, certain symptoms - including chest pain, stroke, anosmia, dysgeusia, diarrhea and abdominal pain - all indicate a role of vascular, neurological and gastrointestinal (GI) pathology in the disease process. Many of these disease processes persist long after the acute disease has been resolved, resulting in 'long COVID' or post-acute sequelae of COVID-19 (PASC). The molecular mechanisms underlying the acute and systemic conditions associated with COVID-19 remain incompletely defined. Appropriate animal models provide a method of understanding underlying disease mechanisms at the system level through the study of disease progression, tissue pathology, immune system response to the pathogen and behavioral responses. However, very few studies have addressed PASC and whether existing models hold promise for studying this challenging problem. Here, we review the current literature on cardiovascular, neurological and GI pathobiology caused by COVID-19 in patients, along with established animal models of the acute disease manifestations and their prospects for use in PASC studies. Our aim is to provide guidance for the selection of appropriate models in order to recapitulate certain aspects of the disease to enhance the translatability of mechanistic studies.
Collapse
Affiliation(s)
- James Chung
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Julia Pierce
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Department of Research, Ocean State Research Institute, Inc., Providence, RI 02908-4734, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02908, USA
| | - Craig Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Rachel M. Olson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Department of Research, Ocean State Research Institute, Inc., Providence, RI 02908-4734, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02908, USA
| | - James Amos-Landgraf
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
150
|
Ali EAE, Mohammed DM, El Gawad FA, Orabi MA, Gupta RK, Srivastav PP. Valorization of food processing waste byproducts for essential oil production and their application in food system. WASTE MANAGEMENT BULLETIN 2025; 3:100200. [DOI: 10.1016/j.wmb.2025.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|