101
|
Yashaswini C, Kiran NS, Chatterjee A. Zebrafish navigating the metabolic maze: insights into human disease - assets, challenges and future implications. J Diabetes Metab Disord 2025; 24:3. [PMID: 39697864 PMCID: PMC11649609 DOI: 10.1007/s40200-024-01539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 12/20/2024]
Abstract
Zebrafish (Danio rerio) have become indispensable models for advancing our understanding of multiple metabolic disorders such as obesity, diabetes mellitus, dyslipidemia, and metabolic syndrome. This review provides a comprehensive analysis of zebrafish as a powerful tool for dissecting the genetic and molecular mechanisms of these diseases, focusing on key genes, like pparγ, lepr, ins, and srebp. Zebrafish offer distinct advantages, including genetic tractability, optical transparency in early development, and the conservation of key metabolic pathways with humans. Studies have successfully used zebrafish to uncover conserved metabolic mechanisms, identify novel disease pathways, and facilitate high-throughput screening of potential therapeutic compounds. The review also highlights the novelty of using zebrafish to model multifactorial metabolic disorders, addressing challenges such as interspecies differences in metabolism and the complexity of human metabolic disease etiology. Moving forward, future research will benefit from integrating advanced omics technologies to map disease-specific molecular signatures, applying personalized medicine approaches to optimize treatments, and utilizing computational models to predict therapeutic outcomes. By embracing these innovative strategies, zebrafish research has the potential to revolutionize the diagnosis, treatment, and prevention of metabolic disorders, offering new avenues for translational applications. Continued interdisciplinary collaboration and investment in zebrafish-based studies will be crucial to fully harnessing their potential for advancing therapeutic development.
Collapse
Affiliation(s)
- Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064 India
| | | | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064 India
| |
Collapse
|
102
|
Luo Y, Yang Q, Hu J, Qin X, Jiang S, Liu Y. Preliminary study on detection and diagnosis of focal liver lesions based on a deep learning model using multimodal PET/CT images. Eur J Radiol Open 2025; 14:100624. [PMID: 39803389 PMCID: PMC11720101 DOI: 10.1016/j.ejro.2024.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/23/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Objectives To develop and validate a deep learning model using multimodal PET/CT imaging for detecting and classifying focal liver lesions (FLL). Methods This study included 185 patients who underwent 18F-FDG PET/CT imaging at our institution from March 2022 to February 2023. We analyzed serological data and imaging. Liver lesions were segmented on PET and CT, serving as the "reference standard". Deep learning models were trained using PET and CT images to generate predicted segmentations and classify lesion nature. Model performance was evaluated by comparing the predicted segmentations with the reference segmentations, using metrics such as Dice, Precision, Recall, F1-score, ROC, and AUC, and compared it with physician diagnoses. Results This study finally included 150 patients, comprising 46 patients with benign liver nodules, 51 patients with malignant liver nodules, and 53 patients with no FLLs. Significant differences were observed among groups for age, AST, ALP, GGT, AFP, CA19-9and CEA. On the validation set, the Dice coefficient of the model was 0.740. For the normal group, the recall was 0.918, precision was 0.904, F1-score was 0.909, and AUC was 0.976. For the benign group, the recall was 0.869, precision was 0.862, F1-score was 0.863, and AUC was 0.928. For the malignant group, the recall was 0.858, precision was 0.914, F1-score was 0.883, and AUC was 0.979. The model's overall diagnostic performance was between that of junior and senior physician. Conclusion This deep learning model demonstrated high sensitivity in detecting FLLs and effectively differentiated between benign and malignant lesions.
Collapse
Affiliation(s)
- Yingqi Luo
- Department of Nuclear medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qingqi Yang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinglang Hu
- School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiaowen Qin
- Department of Nuclear medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shengnan Jiang
- Department of Nuclear medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ying Liu
- Department of Nuclear medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
103
|
Mao J, Wang J, Chen H, Yan Q. Development of a sandwich-type electrochemical DNA sensor based on CeO 2/AuPt nanoprobes for highly sensitive detection of hepatitis B virus DNA. Bioelectrochemistry 2025; 163:108901. [PMID: 39787729 DOI: 10.1016/j.bioelechem.2025.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
To provide accurate diagnostic evidence for early hepatitis B virus (HBV) infection-related diseases, this study targeted HBV DNA as an analyte, where a sandwich-type electrochemical DNA sensor based on gold nanoparticles/reduced graphene oxide (Au NPs/ERGO) and cerium oxide/gold-platinum nanoparticles (CeO2/AuPt NPs) was constructed. Au NPs/ERGO composite nanomaterials were first synthesized on the surface of a glass carbon electrode using electrochemical co-reduction, which significantly improved the specific surface area and electrical conductivity of the electrode. Further specific hybridization of target HBV-DNA was performed by combining capture probe DNA (S1-DNA) bound to AuNPs/ERGO with CeO2/AuPt modified signal probe DNA (S2-DNA). Leveraging the excellent H2O2 catalytic activity of the CeO2/AuPt nanocomposite, the constructed sandwich-type electrochemical DNA sensor was used to detect HBV DNA. By optimizing the detection conditions, the sensor showed a good linear response in the range of 1 fmol/L to 1 nmol/L, with a detection limit as low as 0.36 fmol/L. The sensor had good specificity, repeatability, and stability. Further, spiked recovery experiments of actual serum samples showed recoveries ranging from 98.7 % to 102.7 %, and the relative standard deviations were all lower than 4.77 %. This study provides a new method for the detection of HBV DNA with potential clinical applications.
Collapse
Affiliation(s)
- Jian Mao
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003 China
| | - Jiaxin Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003 China
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003 China
| | - Qinghua Yan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003 China.
| |
Collapse
|
104
|
Ming M, Chen L, Huang J, Huang Y, Yin J. Effect of perampanel in reducing depression in patients with focal epilepsy. IBRO Neurosci Rep 2025; 18:257-262. [PMID: 39935853 PMCID: PMC11810691 DOI: 10.1016/j.ibneur.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
Background High prevalence of depression is very common in epilepsy. This study aimed to discover the effect of perampanel on depression in patients with focal epilepsy. Methods This is a prospective observational study. We included a total of 68 patients with focal EP, which were treated with perampanel. We analyzed data before perampanel treatment and at 6 and 12 months of follow-up of the optimal dose. Using the Beck Depression Inventory-II (BDI-II) scale to evaluate depression, the Mini-Mental State Examination (MMSE) to assess the cognitive function, and the Quality of Life in Epilepsy-31 items (QOLIE-31) to estimate the quality of life of EP patients. Results The BDI-II score improved significantly compared to before treatment and at 6 and 12 months of follow-up (P < 0.001). The mean total QOLIE-31 score significantly increased from 82.9 ± 20.4 to 88.7 ± 21.2 at the 12-month follow-up (P < 0.001). In addition, seizure control was improved significantly at 12 months: 32.1 % of patients were seizure-free, and 73.2 % were responsive. Moreover, there was statistical relationship between improvement in depression and seizure control. The MMSE score was not different before and after treatment (P > 0.05). Multiple Regression Analysis was found that annual family income, etiology, the frequency of attacks in recent years, types of ASMs and the age were the influence factors of pirampanel in reducing depression (P<0.05). Conclusion Perampanel reduced depression symptoms in patients with focal epilepsy, although the lack of a control group or the relatively small sample size.
Collapse
Affiliation(s)
- Min Ming
- Department of Neurology, the First Affiliated Hospital of Gannan Medical University, China
| | - Long Chen
- Department of Neurology, Jinshan Hospital, Fudan University, China
| | - Jian Huang
- The First Clinical college of Gannan Medical University
| | - Ying Huang
- Department of Neurology, Jinshan Hospital, Fudan University, China
| | - Jiali Yin
- Department of Neurology, the First Affiliated Hospital of Gannan Medical University, China
| |
Collapse
|
105
|
Huang H, Tan L, Wei L, Song H, Xu W, Dong M, Chu X, Wang X. Comparative transcriptomic analysis of left-right sensory differences in Haliotis discus hannai. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101417. [PMID: 39813920 DOI: 10.1016/j.cbd.2025.101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Asymmetric development, in which functional differences occur between left-right symmetrical organs, is widespread in organisms, including fish and mollusks. However, the asymmetry of symmetrical sensory structures in Haliotis discus hannai, a gastropod with a sensitive sensory system, remains unknown. This study analyzed the transcriptomes of three sensory structures (eyestalks, cephalic tentacles, and epipodial tentacles) to explore potential asymmetries in this species. RNA-seq revealed functional differences in sensory ability and sperm-egg recognition between right and left eyestalks, with cephalic tentacles displaying asymmetry in cytoskeletal organization and cell cycle regulation. Epipodial tentacles showed similar asymmetries, including immune response differences. Moreover, the cAMP-protein kinase A (PKA)-CREB-binding protein (CBP) signaling pathway responded asymmetrically, with PKA responding to activators and inhibitors on both sides and CBP showing a stronger response on the right. These findings provide insights into sensory asymmetry in mollusks and guidance for further investigations of the molecular mechanisms underlying asymmetry in symmetrical organs.
Collapse
Affiliation(s)
- Haifeng Huang
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Lintao Tan
- Rushan Marine Economy and Development Center, Rushan 264599, China
| | - Lei Wei
- School of Fisheries, Ludong University, Yantai 264025, China.
| | - Hongce Song
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Wenwen Xu
- School of Fisheries, Ludong University, Yantai 264025, China; Rushan Marine Economy and Development Center, Rushan 264599, China
| | - Meiyun Dong
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Xiaolong Chu
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai 264025, China.
| |
Collapse
|
106
|
Roy S, Biswas S, Nandy A, Guha D, Dasgupta R, Bagchi A, Sil PC. An approach to predict and inhibit Amyloid Beta dimerization pattern in Alzheimer's disease. Toxicol Rep 2025; 14:101879. [PMID: 39867516 PMCID: PMC11762949 DOI: 10.1016/j.toxrep.2024.101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Alzheimer's Disease (AD) is one of the leading neurodegenerative diseases that affect the human population. Several hypotheses are in the pipeline to establish the commencement of this disease; however, the amyloid hypothesis is one of the most widely accepted ones. Amyloid plaques are rich in Amyloid Beta (Aβ) proteins, which are found in the brains of Alzheimer's patients. They are the spliced product of a transmembrane protein called Amyloid Precursor Protein (APP); when they enter into the amylogenic pathway, they get cleaved simultaneously by Beta and Gamma Secretase and produce Aβ protein. Appearances of Amyloid plaques are the significant clinical hallmarks of this disease. AD is mainly present in two genetically distinct forms; sporadic and familial AD. Sporadic Alzheimer's Disease (sAD) is marked by a later clinical onset of the disease, whereas, familial Alzheimer's Disease (fAD) is an early onset of the disease with mendelian inheritance. Several mutations have been clinically reported in the last decades that have shown a direct link with fAD. Many of those mutations are reported to be present in the APP. In this study, we selected a few significant mutations present in the Aβ stretch of the APP and tried to differentiate the wild-type Aβ dimers formed in sAD and the mutant dimers formed in fAD through molecular modelling as there are no structures available from wet-lab studies till date. We analysed the binding interactions leading to formations of the dimers. Our next aim was to come up with a solution to treat AD using the method of drug repurposing. For that we used virtual screening and molecular docking simulations of the already existing anti-inflammatory drugs and studied their potency in resisting the formation of Aβ dimers. This is the first such report of drug repurposing for the treatment of AD, which might pave new pathways in therapy.
Collapse
Affiliation(s)
- Sreekanya Roy
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, West Bengal, India
- Bioinformatics Infrastructure Facility Center, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Sima Biswas
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Anirban Nandy
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Dipanjan Guha
- Bioinformatics Infrastructure Facility Center, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Rakhi Dasgupta
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, West Bengal, India
- Bioinformatics Infrastructure Facility Center, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Parames Chandra Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054, India
| |
Collapse
|
107
|
Zhang J, Ma L, He L, Xu Q, Ding Y, Wang L. MicroRNA-541-3p/Rac2 signaling bridges radiation-induced lung injury and repair. Noncoding RNA Res 2025; 12:10-19. [PMID: 40026446 PMCID: PMC11869541 DOI: 10.1016/j.ncrna.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 03/05/2025] Open
Abstract
Background While radiation-induced lung injury decreases quality of life and suppresses efficacy of radiotherapy, to date, the relationship between radiation-induced lung injury and repair remains unclear. Our previous studies revealed that TNFRSF10B-RIPK1/RIPK3-MLKL signaling induces necroptosis of alveolar epithelial cells and potentiates radiation-induced lung injury. We also found that microRNA-541-3p is differentially expressed in radiation-damaged lungs. The connection between microRNA-541-3p, TNFRSF10B signaling, and TGFβ1 signaling is also unclear. Objective This study was performed to explore the regulatory effects of microRNA-541-3p on TNFRSF10B and TGFβ1 signaling. Methods Mouse alveolar epithelial cells were transfected with a vector expressing microRNA-541-3p to regulate expression of target genes. Flow cytometry, polymerase chain reaction, and western blotting were used to analyze cell necroptosis, target gene expression, and target protein expression, respectively. Results Overexpression of microRNA-541-3p positively regulated TNFRSF10B-RIPK1/RIPK3-MLKL signaling through Rac2 to induce cell necroptosis. MicroRNA-541-3p negatively regulates Rac2. MicroRNA-541-3p and Rac2 regulate the expression of Tgf-beta1 and its encoded proteins. Conclusions The Rac2 gene synchronously regulates TNFRSF10B-RIPK1/RIPK3-MLKL and TGFβ1 signaling. MicroRNA-541-3P/Rac2 act as mediators of radiation damage and repair signaling.
Collapse
Affiliation(s)
- Jiandong Zhang
- Clinical School of Medicine, Henan University of Science and Technology, Luoyang City, Henan Province, 471023, China
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang City, Henan Province, 471023, China
| | - Lei Ma
- Department of Radiation Oncology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang City, Henan Province, 473000, China
| | - Limin He
- Department of Radiation Oncology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang City, Henan Province, 473000, China
| | - Quanxiao Xu
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, 215000, China
| | - Yan Ding
- Department of Radiation Oncology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang City, Henan Province, 473000, China
| | - Lidong Wang
- Clinical School of Medicine, Henan University of Science and Technology, Luoyang City, Henan Province, 471023, China
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang City, Henan Province, 471023, China
| |
Collapse
|
108
|
Hu J, An Y, Wang W, Yang J, Niu W, Jiang X, Li K, Jiang C, Ye J. Enhanced transdermal delivery of pioglitazone hydrochloride via conductive hydrogel microneedles combined with iontophoresis. Int J Pharm X 2025; 9:100317. [PMID: 40026644 PMCID: PMC11871479 DOI: 10.1016/j.ijpx.2025.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025] Open
Abstract
The conventional oral administration of pioglitazone for Type II diabetes management is frequently compromised by hepatic first-pass metabolism and associated systemic adverse effects, necessitating the development of enhanced transdermal delivery approaches. This study developed a transdermal drug delivery system combining conductive hydrogel microneedles and iontophoresis to improve the transdermal delivery of pioglitazone hydrochloride (PIO) and its therapeutic efficacy in the treatment of type II diabetes. The microneedles, fabricated using poly(methyl vinyl ether-alt-maleic anhydride) as the main matrix material, exhibited excellent conductivity, mechanical strength, and high drug loading capacity. In vitro permeation experiments demonstrated that, when combined with iontophoresis at a current intensity of 0.5 mA, the cumulative permeation of PIO reached 238.1 ± 27.14 μg/cm2 within 48 h, significantly higher than that of the microneedle group alone. In a type II diabetic rat model, the microneedle-iontophoresis system displayed a significantly better hypoglycemic effect than the oral administration group, with a blood glucose reduction of 6.3 mmol/L on day 8, significantly higher than the 5.1 mmol/L reduction in the positive control group. Pharmacokinetic analysis indicated that the Tmax, T1/2, and mean residence time of the system were longer than those of oral administration, indicating sustained-release characteristics. Skin irritation tests revealed that the system caused only mild, transient skin irritation, with complete skin recovery within 24 h. In conclusion, conductive hydrogel microneedles combined with iontophoresis can effectively enhance PIO transdermal delivery, bioavailability, and therapeutic efficacy while also exhibiting good safety and potential clinical application value.
Collapse
Affiliation(s)
- Jianling Hu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, China
| | - Yue An
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, China
| | - Weiqing Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, China
| | - Jing Yang
- Collaborative Innovation Center of Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenxin Niu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, China
| | - Xiumei Jiang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, China
| | - Kun Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, China
| | - Changzhao Jiang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, China
| | - Jincui Ye
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, China
| |
Collapse
|
109
|
Wang S, Xie S, Li T, Liu J, Wang P, Wang Y, Gu L, Luo D, Wei M. Eicosapentaenoic acid as an antibiofilm agent disrupts mature biofilms of Candida albicans. Biofilm 2025; 9:100251. [PMID: 39845529 PMCID: PMC11751545 DOI: 10.1016/j.bioflm.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/15/2024] [Accepted: 12/29/2024] [Indexed: 01/24/2025] Open
Abstract
The biofilm formation of Candida albicans, a major human fungal pathogen, represents a crucial virulence factor during candidiasis. Eicosapentaenoic acid (EPA), a polyunsaturated fatty acid, has emerged as a potential antibiofilm agent against C. albicans. Herein, we aim to investigate the antifungal effect of EPA (1 mM) on the mature biofilm of C. albicans and explore the underlying mechanism. Crystal violet and XTT assays showed that EPA exerted a strong inhibitory efficacy on preformed biofilms in C. albicans. Biofilm architecture and cell viability were observed using scanning electron microscopy and confocal laser scanning microscopy, indicating that EPA could block the yeast-to-hypha transition and damage the structure, thereby exhibiting antibiofilm activity. RNA sequencing analysis revealed that EPA treatment led to the downregulation of genes associated with hyphal formation and biofilm development. From the signaling pathway perspective, EPA regulated the C. albicans biofilms involving two signaling pathways, namely, Ras1-cAMP-PKA and Cek-MAPK pathways. Additionally, the EPA could effectively reduce the production of key messenger cAMP in the Ras1-cAMP-PKA pathway. Interestingly, in response to EPA, ergosterol biosynthesis-related genes were down-regulated, indicating EPA as antifungal agent might reduce the risk of developing drug resistance. The findings of this study highlight the potential of EPA as an alternative or adjunctive antibiofilm agent against C. albicans-related infections.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shiwang Xie
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Tianmeng Li
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jun Liu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Peng Wang
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Li Gu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Dan Luo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Ming Wei
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
110
|
Jenabi Ghods M, Amirabadizadeh A, Delbari A, Naserpour M, Saatchi M. Prevalence of macro-vascular complications among type 2 diabetic adults aged 50 and over: results from Ardakan cohort study on aging (ACSA). J Diabetes Metab Disord 2025; 24:39. [PMID: 39801689 PMCID: PMC11711917 DOI: 10.1007/s40200-024-01556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Objective Type 2 diabetes mellitus (T2DM) is a common condition that can lead to adverse macrovascular complications. This study aims to determine the prevalence of macrovascular complications in adults aged ≥ 50 with T2DM in Ardakan city, using data from the Ardakan Cohort Study on Aging (ACSA). Methods A cross-sectional investigation involved 5933 participants from the ACSA; of those assessed, 2340 had T2DM. Macrovascular complications, specifically coronary artery disease (CAD), cerebrovascular disease (CVD), and peripheral artery disease(PAD) were identified through medical records and physician assessment. Logistic regression was used to identify risk factors for these complications. Results The prevalence of CAD and CVD were 16.9% (95% CI:16.0-19.0) and 4% (95% CI:3.3-5.0), respectively. risk factors for CAD included age over 60 (OR = 1.47, 95% CI: 1.08-2.01, p = 0.01), male gender (OR = 1.87, 95% CI: 1.33-2.62, p < 0.001), former smoking (OR = 1.96, 95% CI: 1.30-2.95, p = 0.001), hypertension (OR = 3.16, 95% CI: 2.23-4.46, p < 0.001), and over ten years of diabetes duration(OR = 2.04, 95% CI: 1.39-2.99, p < 0.001) and For CVD, significant risk factors included male gender (OR = 2.61, 95% CI: 1.52-4.51, p = 0.001) and hypertension (OR = 2.36, 95% CI: 1.27-4.39, p = 0.006). Conclusion This study highlights the high prevalence of macrovascular complications in adults over 50 with T2DM in Ardakan. It emphasizes the importance of managing key risk factors such as hypertension and quitting smoking, especially in older adults and males.
Collapse
Affiliation(s)
- Mariye Jenabi Ghods
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Department of Nursing, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Alireza Amirabadizadeh
- Student Research Committee, Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Delbari
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahshad Naserpour
- Department of Nursing, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Saatchi
- Department of Biostatistics and Epidemiology, University of Social Welfare and Rehabilitation Science, Tehran, Iran
- Health in Emergency and Disaster Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
111
|
Moradzad M, Ghaderi D, Abdi M, Sheikh Esmaili F, Rahmani K, Vahabzadeh Z. Gut microbiota dysbiosis contributes to choline unavailability and NAFLD development. J Diabetes Metab Disord 2025; 24:37. [PMID: 39801684 PMCID: PMC11711859 DOI: 10.1007/s40200-024-01511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025]
Abstract
Objectives Non-alcoholic fatty Liver Disease (NAFLD) poses a growing global health concern, yet its complex aetiology remains incompletely understood. Emerging evidence implicates the gut microbiome and choline metabolism in NAFLD pathogenesis. This study aims to elucidate the association of choline-consuming bacteria in gut microbiome with choline level. Methods A population comprising 85 NAFLD patients and 30 healthy controls was selected. DNA extraction from stool samples was conducted using the FavorPrep™ Stool DNA Isolation Mini Kit, followed by polymerase chain reaction (PCR) detection of choline-consuming bacterial strains and quantitative PCR (qPCR) for Cut C gene expression. Choline content measurement was performed using fluorescence high-performance liquid chromatography (FL-HPLC). Results Our findings revealed a significant reduction in choline levels among NAFLD patients compared to healthy controls. ROC curve analysis demonstrated choline levels and Cut C expression as a promising diagnostic tool for NAFLD, with high sensitivity and specificity. The microbial analysis identified specific choline-consuming bacteria enriched in NAFLD patients, notably Anarococcus Hydrogenalis and Clostridium asparagiforme. This was consistent with higher Cut C gene expression in patients compared to healthy individuals, which is responsible for encoding an enzyme to consume choline by these bacteria. Conclusion The current study gives a possible association between gut microbiota and the development of NAFLD, possibly due to an alteration in choline bioavailability. Further research is required to determine whether gut bacteria alter in the context of NAFLD or a change in their composition might lead to NAFLD progression, possibly via alternation in choline bioavailability. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01511-6.
Collapse
Affiliation(s)
- Mohammad Moradzad
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Dana Ghaderi
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Abdi
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Farshad Sheikh Esmaili
- Liver & Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Khaled Rahmani
- Liver & Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zakaria Vahabzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
112
|
Doumar H, Mostafi HE, Elhessni A, Ebn Touhami M, Mesfioui A. Exploring the diversity of cannabis cannabinoid and non-cannabinoid compounds and their roles in Alzheimer's disease: A review. IBRO Neurosci Rep 2025; 18:96-119. [PMID: 39866750 PMCID: PMC11763173 DOI: 10.1016/j.ibneur.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Cannabis sativa is recognized for its chemical diversity and therapeutic potential, particularly in addressing neurodegenerative diseases such as Alzheimer's disease (AD). Given the complexity of AD, where single-target therapies often prove inadequate, a multi-target approach utilizing cannabis-derived compounds may offer promising alternatives. This review first highlights the chemical diversity of cannabis by categorizing its compounds into cannabinoids and non-cannabinoids. It then examines studies investigating the effects of these compounds on AD-related pathological features. By synthesizing existing knowledge, identifying research gaps, and facilitating comparative analysis, this review aims to advance future research and understanding. It underscores cannabis's potential as a multi-target therapeutic strategy for AD, contributing valuable insights to ongoing scientific discussions.
Collapse
Affiliation(s)
- Hanane Doumar
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Hicham El Mostafi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker Elhessni
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mohamed Ebn Touhami
- Laboratory of Materials Engineering and Environment: Modeling and Application, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
113
|
Fan P, Li Q, Zhang Z, Ni S, Jiang P, Sun S, Li L. A novel and universal dual-channel signal amplification aptasensing platform for ultrasensitive and rapid detection of cardiac biomarkers based on the mutual regulation of bimetallic organic framework and silver nanoclusters. Talanta 2025; 288:127745. [PMID: 39961249 DOI: 10.1016/j.talanta.2025.127745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
Cardiac troponin I (cTnI) is a key biomarker for diagnosing myocardial infarction caused by myocardial injury. The accurate and rapid monitoring of ultralow levels of cTnI is crucial for early diagnosis and risk warning of myocardial injury. Herein, a novel dual-channel signal amplification aptasensor for cTnI detection was developed utilizing the mutual regulation of bimetallic organic framework (MOFs) and silver nanoclusters (AgNCs) with the assistance of catalytic hairpin assembly (CHA). Rationally designed triple-helix molecular switch (THMS) and two hairpin probes (HP1 and HP2) containing AgNCs and a guanine-rich DNA sequence could be adsorbed onto the surface of bimetallic Cu, Mo-MOFs, enhancing the catalytic activity and reducing the fluorescence signal. The target cTnI specifically binds to the aptamer in the THMS, releasing the signal transduction probe which triggers CHA to desorb HP1-AgNCs and HP2, thereby restoring the fluorescence and decreasing the catalytic activity as well as initiating cycling. This enables dual-channel fluorescence and colorimetric detection of cTnI. The linear fluorescence and colorimetric response ranges were 0.001-20 ng/mL with LOD of 0.48 pg/mL and 0.001-10 ng/mL with LOD of 0.69 pg/mL, respectively. The aptasensor significantly increases the detection sensitivity and reduces the time required for cTnI detection in human serum, with excellent anti-interference capability. Moreover, the aptasensor shows promise for the construction of universal dual-channel aptasensors for multiple targets by altering the aptamer in THMS.
Collapse
Affiliation(s)
- Pengfei Fan
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Qianji Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Zhengduo Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Shanhong Ni
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Ping Jiang
- The Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Shuhong Sun
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; The Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China.
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; The Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China.
| |
Collapse
|
114
|
Jia Z, Jiang N, Lin L, Li B, Liang X. Integrative proteomic analysis reveals the potential diagnostic marker and drug target for the Type-2 diabetes mellitus. J Diabetes Metab Disord 2025; 24:55. [PMID: 39850446 PMCID: PMC11754769 DOI: 10.1007/s40200-025-01562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025]
Abstract
Objective The escalating prevalence of Type-2 diabetes mellitus (T2DM) poses a significant global health challenge. Utilizing integrative proteomic analysis, this study aimed to identify a panel of potential protein markers for T2DM, enhancing diagnostic accuracy and paving the way for personalized treatment strategies. Methods Proteome profiles from two independent cohorts were integrated: cohort 1 composed of 10 T2DM patients and 10 healthy controls (HC), and cohort 2 comprising 87 T2DM patients and 60 healthy controls. Differential expression analysis, functional enrichment analysis, receiver operating characteristic (ROC) analysis, and classification error matrix analysis were employed. Results Comparative proteomic analysis identified the differential expressed proteins (DEPs) and changes in biological pathways associated with T2DM. Further combined analysis refined a group of protein panel (including CA1, S100A6, and DDT), which were significantly increased in T2DM in both two cohorts. ROC analysis revealed the area under curve (AUC) values of 0.94 for CA1, 0.87 for S100A6, and 0.97 for DDT; the combined model achieved an AUC reaching 1. Classification error matrix analysis demonstrated the combined model could reach an accuracy of 1 and 0.875 in the 60% training set and 40% testing set. Conclusions This study incorporates different cohorts of T2DM, and refines the potential markers for T2DM with high accuracy, offering more reliable markers for clinical translation. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-025-01562-3.
Collapse
Affiliation(s)
- Zhen Jia
- Department of Peripheral Vascular Diseases, First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Ning Jiang
- Department of Cardiovascular Medicine, First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Lin Lin
- Department of Radiology, First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Bing Li
- Department of Peripheral Vascular Diseases, First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xuewei Liang
- Department of Peripheral Vascular Diseases, First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
115
|
Melo VLCO, do Brasil PEAA. ACCREDIT: Validation of clinical score for progression of COVID-19 while hospitalized. GLOBAL EPIDEMIOLOGY 2025; 9:100181. [PMID: 39850445 PMCID: PMC11754157 DOI: 10.1016/j.gloepi.2024.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025] Open
Abstract
COVID-19 is no longer a global health emergency, but it remains challenging to predict its prognosis. Objective To develop and validate an instrument to predict COVID-19 progression for critically ill hospitalized patients in a Brazilian population. Methodology Observational study with retrospective follow-up. Participants were consecutively enrolled for treatment in non-critical units between January 1, 2021, to February 28, 2022. They were included if they were adults, with a positive RT-PCR result, history of exposure, or clinical or radiological image findings compatible with COVID-19. The outcome was characterized as either transfer to critical care or death. Predictors such as demographic, clinical, comorbidities, laboratory, and imaging data were collected at hospitalization. A logistic model with lasso or elastic net regularization, a random forest classification model, and a random forest regression model were developed and validated to estimate the risk of disease progression. Results Out of 301 individuals, the outcome was 41.8 %. The majority of the patients in the study lacked a COVID-19 vaccination. Diabetes mellitus and systemic arterial hypertension were the most common comorbidities. After model development and cross-validation, the Random Forest regression was considered the best approach, and the following eight predictors were retained: D-dimer, Urea, Charlson comorbidity index, pulse oximetry, respiratory frequency, Lactic Dehydrogenase, RDW, and Radiologic RALE score. The model's bias-corrected intercept and slope were - 0.0004 and 1.079 respectively, the average prediction error was 0.028. The ROC AUC curve was 0.795, and the variance explained was 0.289. Conclusion The prognostic model was considered good enough to be recommended for clinical use in patients during hospitalization (https://pedrobrasil.shinyapps.io/INDWELL/). The clinical benefit and the performance in different scenarios are yet to be known.
Collapse
|
116
|
Silva E, Ferreira-Santos P, Teixeira JA, Pereira MO, Rocha CM, Sousa AM. Aqueous extracts of Moringa oleifera and Cinnamomum cassia as promising sources of antibiofilm compounds against mucoid and small colony variants of Pseudomonas aeruginosa and Staphylococcus aureus. Biofilm 2025; 9:100250. [PMID: 39877233 PMCID: PMC11772965 DOI: 10.1016/j.bioflm.2024.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 01/31/2025] Open
Abstract
Bacterial biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa pose significant challenges in treating cystic fibrosis (CF) airway infections due to their resistance to antibiotics. New therapeutic approaches are urgently needed to treat these chronic infections. This study aimed to investigate the antibiofilm potential of various plant extracts, specifically targeting mucoid and small colony variants of P. aeruginosa and S. aureus and strains. Moreover, it aimed to gain insights into the mechanisms of action and the potential phytochemicals responsible for antibiofilm activity. Solid-liquid extractions were performed on seven biomasses using water and ethanol (70 and 96 %) under controlled conditions, resulting in 21 distinct plant extracts. These extracts were evaluated for extraction yield, antioxidant activity, phenolic content, chemical composition by HPLC-TOF-MS, and antibiofilm activity using a 96-well plate assay, followed by crystal violet staining, bacterial adhesion assessment, and brightfield microscopy. Our findings revealed that aqueous extracts exhibited the highest inhibition of biofilm formation, with cinnamon bark and moringa seeds showing strong antibiofilm activity against both bacterial species. Brightfield microscopy confirmed that these extracts effectively inhibited biofilm formation. Chemical analysis identified key bioactive compounds, including moringin, benzaldehyde, coumarin, and quinic acid, which likely contribute to the observed antibiofilm effects. Recognizing that the antibiofilm properties of moringin, a common compound in both moringa seed and cinnamon bark extracts, remain underexplored, we conducted potential target identification via PharmMapper and molecular docking analyses to provide a foundation for future research. Computational analyses indicated that moringin might inhibit aspartate-semialdehyde dehydrogenase in P. aeruginosa and potentially interact with an unknown target in S. aureus. In conclusion, moringa seed and cinnamon bark extracts demonstrated significant potential for developing new therapies targeting biofilm-associated infections in CF. Further studies are needed to validate the computational predictions, identify the bacterial targets, and elucidate the precise mechanisms behind moringin's antibiofilm activity, which is likely the potential key contributor to the observed activity of the moringa and cinnamon bark extracts.
Collapse
Affiliation(s)
- Eduarda Silva
- Centre of Biological Engineering, LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Pedro Ferreira-Santos
- Centre of Biological Engineering, LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Departamento de Enxeñaría Química, Facultade de Ciencias, University of Vigo, As Lagoas, Ourense 32004, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), University of Vigo (Campus Auga), As Lagoas, 32004, Ourense, Spain
| | - José A. Teixeira
- Centre of Biological Engineering, LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina M.R. Rocha
- Centre of Biological Engineering, LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
117
|
Kaufman MJ, Meloni EG. Xenon gas as a potential treatment for opioid use disorder, alcohol use disorder, and related disorders. Med Gas Res 2025; 15:234-253. [PMID: 39812023 DOI: 10.4103/mgr.medgasres-d-24-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/26/2024] [Indexed: 01/16/2025] Open
Abstract
Xenon gas is considered to be a safe anesthetic and imaging agent. Research on its other potentially beneficial effects suggests that xenon may have broad efficacy for treating health disorders. A number of reviews on xenon applications have been published, but none have focused on substance use disorders. Accordingly, we review xenon effects and targets relevant to the treatment of substance use disorders, with a focus on opioid use disorder and alcohol use disorder. We report that xenon inhaled at subsedative concentrations inhibits conditioned memory reconsolidation and opioid withdrawal symptoms. We review work by others reporting on the antidepressant, anxiolytic, and analgesic properties of xenon, which could diminish negative affective states and pain. We discuss research supporting the possibility that xenon could prevent analgesic- or stress-induced opioid tolerance and, by so doing could reduce the risk of developing opioid use disorder. The rapid kinetics, favorable safety and side effect profiles, and multitargeting capability of xenon suggest that it could be used as an ambulatory on-demand treatment to rapidly attenuate maladaptive memory, physical and affective withdrawal symptoms, and pain drivers of substance use disorders when they occur. Xenon may also have human immunodeficiency virus and oncology applications because its effects relevant to substance use disorders could be exploited to target human immunodeficiency virus reservoirs, human immunodeficiency virus protein-induced abnormalities, and cancers. Although xenon is expensive, low concentrations exert beneficial effects, and gas separation, recovery, and recycling advancements will lower xenon costs, increasing the economic feasibility of its therapeutic use. More research is needed to better understand the remarkable repertoire of effects of xenon and its potential therapeutic applications.
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | | |
Collapse
|
118
|
Shamim M, Ali MS, Hossain MA, Hossain MA, Kavey MRH, Hoque MM, Rahman MA, Harrath AH, Rahman MH. Discovery of novel PARP1 inhibitors through computational drug design approaches. Comput Biol Chem 2025; 116:108366. [PMID: 39987745 DOI: 10.1016/j.compbiolchem.2025.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most frequent malignancy in women. It is a prevalent condition, representing 15-20 % of all breast cancer cases, characterized by its aggressive subtype and unfavorable prognosis. OBJECTIVES The main aim of this study is to find and develop a potential novel therapeutic candidate for TNBC treatment utilizing luteolin derivatives compounds. METHODS In this study, we used the stable TNBC protein structure from the Protein Data Bank (PDB) and selected luteolin, a bioactive compound known for its anti-cancer properties, to design potential anti-cancer drugs using computational methods. Structural activity relationship methodologies were used to evaluate active and inactive outcomes using pass prediction scores. Furthermore, we employed in-silico methods such as ADMET, drug-likeness evaluation, DFT quantum calculations, and Frontier Molecular Orbitals (HOMO and LUMO). Afterwards, we performed molecular docking for binding affinity and molecular dynamics simulations over 200 ns to validate interactions with TNBC protein RESULTS: Our results demonstrated that the ligands DM02, DM06, DM07, and DM09 did not violate Lipinski rules, and their reduced HOMO-LUMO energy gap indicates enhanced chemical reactivity and interaction with biological targets. The drug's maximum softness and minimum hardness values showed rapid metabolism and no hepatotoxicity, carcinogenicity, skin sensitization, or aquatic toxicity. Molecular docking studies revealed that DM02 and DM09, luteolin derivatives, have the highest binding affinity with the TNBC protein (PDB ID 5HA9) and our study confirms their stable interactions with the protein, suggesting potential therapeutic agents for TNBC. CONCLUSIONS Our computational data suggest that Luteolin derivatives have the potential to be utilized as therapeutic agents for TNBC. However, further experimental validation is needed to validate these findings.
Collapse
Affiliation(s)
- Md Shamim
- Department of Pharmacy, Faculty of biological science, Islamic University, Kushtia 7003, Bangladesh
| | - Md Sumon Ali
- Department of Pharmacy, Faculty of biological science, Islamic University, Kushtia 7003, Bangladesh
| | - Md Arju Hossain
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Sirajganj 6751, Bangladesh
| | - Md Alfaz Hossain
- Department of Pharmacy, Faculty of biological science, Islamic University, Kushtia 7003, Bangladesh
| | - Md Reduanul Haque Kavey
- Department of Pharmacy, Faculty of biological science, Islamic University, Kushtia 7003, Bangladesh
| | - Md Mobinul Hoque
- Department of Biomedical Engineering, Faculty of Engineering and Technology, Islamic University, Kushtia 7003, Bangladesh
| | - Md Ataur Rahman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh 11451, Saudi Arabia
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, Islamic University, Kushtia 7003, Bangladesh; Center for Advanced Bioinformatics and Artificial Intelligence Research, Islamic University, Kushtia 7003, Bangladesh.
| |
Collapse
|
119
|
Mohammed HE, El-Nekeety AA, Rashwan HM, Abdel-Aziem SH, Hassan NS, Hassan EE, Abdel-Wahhab MA. Screening of bioactive components in Ferula assafo dried oleo-gum resin and assessment of its protective function against cadmium-induced oxidative damage, genotoxicity, and cytotoxicity in rats. Toxicol Rep 2025; 14:101853. [PMID: 39758803 PMCID: PMC11699744 DOI: 10.1016/j.toxrep.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cadmium (Cd) is among the most ecologically harmful heavy metals. The purpose of this work was to identify the biologically active components in dried oleo-resin-gum of Ferula assafo extract (FAE) and assess their preventive efficacy against oxidative damage caused by Cd in rats. The biologically active components were identified using HPLC and GC-MS. Six groups of female Sprague-Dawley rats were randomly assigned and received oral treatment for two weeks. They consisted of the control group, the groups that got FAE at low or high doses (150 and 250 mg/kg b.w.), the group that received CdCl2 (2 mg/kg b.w.), and the groups that received CdCl2 + FAE at the low or high dose. Tissues and blood samples were collected for different assays and pathological examinations. The HPLC detected 11 polyphenol compounds, whereas the GC-MS identified 24 bioactive compounds. The in vivo study revealed that CdCl2 alone disrupted all biochemical indices, oxidative indicators, cytokines, antioxidant enzymes, pro and anti-apoptotic mRNA gene expression, increased DNA fragmentation percentage, and caused pathological alterations in hepatic and renal sections. FAE plus CdCl2 therapy considerably improved all indicators and the histological architecture of the kidney and liver, with the higher dose being more effective in improving all of the measured parameters. Therefore, FAE is a promising option for food and pharmaceutical applications to protect against oxidative damage caused by Cd exposure.
Collapse
Affiliation(s)
- Hagar E. Mohammed
- Zoology Dept., Faculty of Science, Al-Arish University, North Sinai, Egypt
| | - Aziza A. El-Nekeety
- Food Toxicology & Contaminants Dept., National Research Centre, Dokki, Cairo, Egypt
| | - Hanan M. Rashwan
- Zoology Dept., Faculty of Science, Al-Arish University, North Sinai, Egypt
| | | | | | - Entesar E. Hassan
- Genetics and Cytology Dept., National Research Centre, Dokki, Cairo, Egypt
| | | |
Collapse
|
120
|
Fernández Alonso AM, Varikasuvu SR, Pérez-López FR. Telomere length and telomerase activity in men and non-pregnant women with and without metabolic syndrome: a systematic review and bootstrapped meta-analysis. J Diabetes Metab Disord 2025; 24:24. [PMID: 39735175 PMCID: PMC11671447 DOI: 10.1007/s40200-024-01513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024]
Abstract
Purpose We performed a systematic review and meta-analysis to examine the associations between telomere length and telomerase activity in subjects with and without metabolic syndrome (MetS). Methods The meta-analysis protocol was registered in the PROSPERO database. The PubMed, Embase, Cochrane Library, and LILACS databases were searched for studies reporting telomere length or telomerase activity in adult men and non-pregnant women with and without MetS. The risk of bias was assessed with the Newcastle-Ottawa Scale. Random effects and inverse variance methods were used to meta-analyze associations. We conducted a bootstrapped analysis to test the accuracy of clinical results. Results Five studies reported telomere length and two studies telomerase activity. There was no significant difference in telomere length (standardized mean difference [SMD]: 0.10, 95% confidence interval [CI]: -0.07, 0.28, I 2: 54%), between subjects of similar age (mean difference: 2.68, 95%CI: -0.04, 5.40 years) with and without the MetS. Subjects with MetS displayed significantly higher body mass index, triglycerides, and blood pressure, and lower HDL-cholesterol values than subjects without the syndrome. A bootstrapping mediation analysis of telomere length confirmed the clinical results. There was no significant difference in telomerase activity (SMD: 1.19, 95% CI -0.17, 2.55, I 2: 93%) between subjects with and without the MetS. Conclusion There were no significant differences of telomere length and telomerase activity in patients with MetS and subjects of similar age without the syndrome. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01513-4.
Collapse
Affiliation(s)
- Ana Maria Fernández Alonso
- Department of Obstetrics and Gynecology, Torrecárdenas University Hospital, Almería, Paraje Torrecárdenas s/n 04009 Spain
| | | | - Faustino R. Pérez-López
- Aragón Health Research Institute, University of Zaragoza Faculty of Medicine, Domingo Miral s/n, Zaragoza, 50009 Spain
| |
Collapse
|
121
|
Amaral GO, do Espirito Santo G, Avanzi IR, Parisi JR, de Souza A, Garcia-Motta H, Garcia LA, Achilles R, Ribeiro DA, de Oliveira F, Rennó ACM. Injectable hydrogels for treating skin injuries in diabetic animal models: a systematic review. J Diabetes Metab Disord 2025; 24:17. [PMID: 39712339 PMCID: PMC11659534 DOI: 10.1007/s40200-024-01510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
Purpose One of the main causes of chronic wounds is diabetes mellitus (DM), a metabolic disease characterized by chronic hyperglycemia. In this context, hydrogels have been used as a promising treatment for stimulating tissue ingrowth and healing in these injuries. This systematic review aimed to evaluate the findings of studies that investigated the effects of injectable hydrogels of various origins on skin wound healing using in vivo experimental models in diabetic rats. Methods This review was conducted in March 2023 using two databases, PubMed and Scopus, following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines and the SYRCLE (Systematic Review Centre for Laboratory Animal Experimentation). The following Medical Subject Headings (MeSH) descriptors were used: "hydrogels," "injectable," "in vivo," "diabetes mellitus," and "skin wound dressing." Results After the eligibility assessment, 12 studies were selected and analyzed from an initial 95 articles identified across databases. The studies demonstrated that a variety of injectable hydrogels showed biocompatibility and bioactivity, effectively interacting with skin tissue in diabetic wound models. These hydrogels were assessed for their compositions, structural properties, and in vivo effects on wound closure, inflammation reduction, and collagen deposition. Also, immunofluorescence analyses revealed increased expression of neoangiogenesis markers and reduced inflammatory factors in treated groups, highlighting the hydrogels potential for enhancing skin healing in diabetic wounds. Conclusion Injectable hydrogels show significant potential as an effective treatment for diabetic skin wounds, though further clinical studies are needed to fully assess their biological performance.
Collapse
Affiliation(s)
- Gustavo Oliva Amaral
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Giovanna do Espirito Santo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Ingrid Regina Avanzi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Júlia Risso Parisi
- Metropolitan University of Santos (UNIMES), 8 Francisco Glycerio Avenue, Santos, SP 11045002 Brazil
| | - Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Homero Garcia-Motta
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Livia Assis Garcia
- Scientific and Technological Institute, Brazil University, São Paulo, SP 08230-030 Brazil
| | - Rodrigo Achilles
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Flavia de Oliveira
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Ana Claudia Muniz Rennó
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| |
Collapse
|
122
|
Mwachaka PM, Gichangi P, Abdelmalek A, Odula P, Ogeng’o J. Maternal dietary folate imbalance alters cerebellar astrocyte morphology and density in offspring. IBRO Neurosci Rep 2025; 18:78-87. [PMID: 39844943 PMCID: PMC11751541 DOI: 10.1016/j.ibneur.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background Maternal folate usage is essential for neurodevelopment, but its effects on cerebellar structure are unclear. Cerebellum undergoes a protracted period of development, making it sensitive to maternal nutritional imbalances. Astrocytes are necessary for cerebellar cortex structure and function. This study examined the impact of varying maternal dietary folate levels on the morphology and density of cerebellar astrocytes in rat offspring. Materials and methods Twelve adult female rats (Rattus norvegicus) were randomly allocated to one of four premixed food groups: standard (2 mg/kg), folate-deficient (0 mg/kg), folate-supplemented (8 mg/kg), or folate supra-supplemented (40 mg/kg). The rats began their diets 14 days before mating and continued throughout pregnancy and lactation. On postnatal day 35, five pups from each group were sacrificed and their cerebellums were processed for immunohistochemical examination. The cerebellar astrocytes were labelled with an antibody against Glial Fibrillary Acid Protein (GFAP). Results The offspring of the folate-deficient diet group exhibited few Bergmann and granule layer astrocytes. The Bergmann radial glial processes in this group were thinner, discontinuous, poorly organised, and had unclear end feet compared to controls. Conversely, the folate-supplemented group showed a predominance of well-organized Bergmann glia astrocytes with distinct, thicker, and densely packed processes, ending in clear conical pial foot processes. In the supra-supplemented group, there was evidence of astrogliosis in the form of large granule layer astrocytes with extended cytoplasmic projections. The Bergmann glia in this group were fewer and more varied in distribution and morphology. Some locations had many astrocytic processes, whereas others had none. Some processes were discontinuous and tortuous. The proportion of cerebellar cortical GFAP immunoreactive cells in folate-deficient diet, controls, folate-supplemented, and folate supra-supplemented groups were 2.09 ± 0.06 %, 4.69 ± 0.12 %, 10.14 ± 0.67 %, and 23.12 ± 3.48 %, respectively (p < 0.001). Conclusions These findings imply that both folate deficiency and excess supplementation in pregnancy can impair normal cerebellar astrocyte development, highlighting the importance of balanced folate levels during pregnancy for optimal neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Philip Maseghe Mwachaka
- Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Peter Gichangi
- Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Adel Abdelmalek
- Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Paul Odula
- Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Julius Ogeng’o
- Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
123
|
Anoush M, Taghaddosi N, Bokaei Hosseini Z, Rahmati F, Bijani S, Kalantari-Hesari A, Hosseini MJ. Neuroprotective effects of empagliflozin against scopolamine-induced memory impairment and oxidative stress in rats. IBRO Neurosci Rep 2025; 18:163-170. [PMID: 39896712 PMCID: PMC11786754 DOI: 10.1016/j.ibneur.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Alzheimer's disease (AD) is one of the most common age-related neurodegenerative disorders. The main medicinal theory for the management of AD belongs to the acetyl-cholinesterase-inhibition pathway and NMDA antagonism. Recent investigation proposed memory improvement by sodium-glucose co-transporter 2 (SGLT2) inhibitors which indicated to improve glycemic control in adults with type 2 diabetes mellitus. According to the lack of sufficient evidence about the efficacy of empagliflozin (EMPA) for memory improvement, in comparison with donepezil (DON), the present research was carried out in order to investigate this hypothesis towards scopolamine-induced neurotoxicity on experimental male Wistar rats. The animals divided into two sets, each included 4 groups: The first set of Healthy animals [Control, EMPA (4 or 10 mg/kg), DON (1 mg/kg)]. The second set of rat Alzheimer model, which received 2 mg/kg Scopolamine by intraperitoneal route for 10 days followed by other treatments [AD, AD+ EMPA (4 or 10 mg/kg) and AD+DON]. Normal rats and AD rats, with each group receiving different substances for 8 consecutive days and 24 h after the accomplishment of the drug administrations, the memory functions assessed through Morris water maze (MWM) paradigm. This task was followed by decapitation of rats in order to evaluate the biochemical oxidative stress parameters in brain tissue. Our data indicated that EMPA significantly improved animals' performance in the behavioral test with a significant decrease in oxidative stress and antioxidant imbalance. In addition, EMPA (4 mg/kg) significantly reduced both cellular malondialdehyde and protein carbonyl content while conversely increased the total reduced glutathione content. Besides, the levels of total as well as endogenous antioxidants in the ferric reducing antioxidant power assay reported to be augmented. It seems that EMPA significantly improved both cellular biochemical aspects and memory performance in animal models in accordance with histopathological assessments. Conclusively, 4 mg/kg EMPA demonstrated better results in all aspects that were evaluated during this research.
Collapse
Affiliation(s)
- Mahdieh Anoush
- Zanjan Applied Pharmacology Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Neda Taghaddosi
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Bokaei Hosseini
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Rahmati
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soroush Bijani
- Zanjan Applied Pharmacology Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Kalantari-Hesari
- Department of Basic Sciences, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
124
|
AL-Noshokaty TM, Abdelhamid R, Abdelmaksoud NM, Khaled A, Hossam M, Ahmed R, Saber T, Khaled S, Elshaer SS, Abulsoud AI. Unlocking the multifaceted roles of GLP-1: Physiological functions and therapeutic potential. Toxicol Rep 2025; 14:101895. [PMID: 39911322 PMCID: PMC11795145 DOI: 10.1016/j.toxrep.2025.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
Glucagon (GCG) like peptide 1 (GLP-1) has emerged as a powerful player in regulating metabolism and a promising therapeutic target for various chronic diseases. This review delves into the physiological roles of GLP-1, exploring its impact on glucose homeostasis, insulin secretion, and satiety. We examine the compelling evidence supporting GLP-1 receptor agonists (GLP-1RAs) in managing type 2 diabetes (T2D), obesity, and other diseases. The intricate molecular mechanisms underlying GLP-1RAs are explored, including their interactions with pathways like extracellular signal-regulated kinase 1/2 (ERK1/2), activated protein kinase (AMPK), cyclic adenine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), and protein kinase C (PKC). Expanding our understanding, the review investigates the potential role of GLP-1 in cancers. Also, microribonucleic acid (RNA) (miRNAs), critical regulators of gene expression, are introduced as potential modulators of GLP-1 signaling. We delve into the link between miRNAs and T2D obesity and explore specific miRNA examples influencing GLP-1R function. Finally, the review explores the rationale for seeking alternatives to GLP-1RAs and highlights natural products with promising GLP-1 modulatory effects.
Collapse
Affiliation(s)
- Tohada M. AL-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Aya Khaled
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mariam Hossam
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Razan Ahmed
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Toka Saber
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shahd Khaled
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed I. Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
- Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
125
|
Wang Y, Zhou S, Wang X, Lu D, Yang J, Lu Y, Fan X, Li C, Wang Y. Electroactive membranes enhance in-situ alveolar ridge preservation via spatiotemporal electrical modulation of cell motility. Biomaterials 2025; 317:123077. [PMID: 39756273 DOI: 10.1016/j.biomaterials.2024.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/27/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Post-extraction alveolar bone resorption invariably compromises implant placement and aesthetic restoration outcomes. Current non-resorbable membranes exhibit limited efficacy in alveolar ridge preservation (ARP) due to insufficient cell recruitment and osteoinductive capabilities. Herein, we introduce a multifunctional electroactive membrane (PPy-BTO/P(VDF-TrFE), PB/PT) designed to spatiotemporally regulate cell migration and osteogenesis, harmonizing with the socket healing process. Initially, the membrane's endogenous-level surface potential recruits stem cells from the socket. Subsequently, adherent cell-migration-triggered forces generate on-demand piezopotential, stimulating intracellular calcium ion fluctuations and activating the Ca2+/calcineurin/NFAT1 signaling pathway via Cav3.2 channels. This enhances cell motility and osteogenic differentiation predominantly in the coronal socket region, counteracting the natural healing trajectory. The membrane's self-powered energy supply, proportional to cell migration velocity and manifested as nanoparticle deformation, mitigates ridge shrinkage, both independently and in conjunction with bone grafts. This energy-autonomous membrane, based on the spatiotemporal modulation of cell motility, presents a novel approach for in-situ ARP treatment and the development of 4D bionic scaffolds.
Collapse
Affiliation(s)
- Yanlan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shiqi Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xiaoshuang Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Dongheng Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jinghong Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Yu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xiaolei Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Changhao Li
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, 572025, China.
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
| |
Collapse
|
126
|
Akintunde J, Akomolafe V, Ugbaja R, Olude A, Folayan A. Development of therapeutic supplement using roasted-cashew-nut to protect cerebral vasoconstriction injury triggered by mixture of petroleum hydrocarbons in the hypothalamus and hippocampus of rat model. Toxicol Rep 2025; 14:101943. [PMID: 39996038 PMCID: PMC11848775 DOI: 10.1016/j.toxrep.2025.101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Petroleum-related activities have been a health global risk concern, particularly in the limbic disorders. The study aims to investigate the neuroprotection of roasted cashew nuts (RCN) on brain vasoconstriction injury induced by a mixture of petroleum hydrocarbons (MFPP). Seventy Male Wistar rats ranging 160 ± 10 g were randomized into seven groups. Group I was given distilled water. Group II was exposed to 0.2 ml MFPP. Group III, IV and V were exposed to 0.2 ml MFPP followed by treatment with 50 mg/kg atenolol, 10 % RCN and 20 % RCN, respectively. Group VI and VII were treated with 10 % RCN and 20 % RCN, respectively. The regimen period was 28 days. Cell pathological evaluation was done using hematoxylin and eosin staining and visualized under the microscope. Biochemical and molecular markers of brain vasoconstriction injury (BVI) were evaluated using spectrophotometer and RT-PCR analyzer, respectively. Student-T-test and one-way analysis of variance (ANOVA) were used to analyze the results. Sub-chronic exposure to MFPP induced BVI as evident in neuroinflammation and derangements in the histology of the hippocampus and hypothalamus coupled with momentous alterations in the neurons. Post treatment with RCN supplement remarkably modulated the effects by depleting the inflammatory mediators including HIF-1, p53 and MCP-1. Also, adenosinergic, purigenic and cholinergic of the hypothalamus and hippocampus were normalized by the supplement. It is pertinent to conclude that treatment with RCN inhibited BVI in rats via the NO-cAMP-PKA signaling pathway by reversing neuroinflammation, normalizing the purinergic and cholinergic neurotransmission in the hypothalamus and hippocampus, and stabilizing NO level coupled with brain histology improvement.
Collapse
Affiliation(s)
- J.K. Akintunde
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - V.O. Akomolafe
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
- Department of Biochemistry, College of Natural and Applied Sciences, Chrisland University, Ajebo, Abeokuta, Nigeria
| | - R.N. Ugbaja
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - A.M. Olude
- Veterinary Anatomy (Neuroscience Unit), College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - A.D. Folayan
- Molecular Toxicology and Biomedical Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
127
|
Ghobakhloo S, Khoshakhlagh AH, Mostafaii GR, Carlsen L. Biomonitoring of metals in the blood and urine of waste recyclers from exposure to airborne fine particulate matter (PM 2.5). JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2025; 23:2. [PMID: 39583880 PMCID: PMC11582262 DOI: 10.1007/s40201-024-00924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
This is the first systematic investigation of occupational exposure to toxic metals among waste recyclers in municipal waste recycling facilities. Concentrations of heavy metals (HMs) in the blood and urine of exposed recyclers in different jobs were compared to control groups (administrative department), identifying possible work-related and socio-demographic exposure factors. The potential relationship between HMs levels in PM2.5 and HM concentrations in the blood and urine of recyclers was studied for ten elements. Mean concentrations of HMs of recyclers were significantly higher than for the control group. Over 50% of the waste recyclers had HM levels higher than the recommended limits. The study revealed that most of the waste recyclers engaged in a minimum of three tasks, posing a challenge in establishing a correlation between specific tasks and the levels of elements monitored through biomonitoring. Co levels in blood and Fe levels in the urine of waste recyclers have a significant relationship with the increase in daily working hours. Among the variables related to the participant's demographic information, the level of education and monthly income were significantly different compared to the control group. Also, a significant correlation was found between HM levels in PM2.5 personal exposure and recyclers' urine and blood. Management controls include workflow or, in other words, alternate relocation of workers exposed to severe risks. Engineering controls such as ventilation systems, applying appropriate personal protective equipment (PPE), and risk management methods are the implementation cases to reduce exposure. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40201-024-00924-y.
Collapse
Affiliation(s)
- Safiye Ghobakhloo
- Department of Environmental Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholam Reza Mostafaii
- Department of Environmental Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | | |
Collapse
|
128
|
Formoso SO, Chaleix V, Baccile N, Helary C. Cytotoxicity evaluation of microbial sophorolipids and glucolipids using normal human dermal fibroblasts (NHDF) in vitro. Toxicol Rep 2025; 14:101862. [PMID: 39802599 PMCID: PMC11719410 DOI: 10.1016/j.toxrep.2024.101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Fibroblasts are considered a key player in the wound healing process. Although this cellular family is constituted by several distinct subtypes, dermal fibroblasts are crucial thanks to their ability to secrete pro-regenerative growth factors, extracellular matrix (ECM) proteins and their immune and anti-inflammatory role. Sophorolipids (SL), sophorosides (SS) and glucolipids (G), mono-unsaturated (C18:1) or saturated (C18:0), glycolipids derived from microbial fermentation of wild type or engineered yeast Starmerella bombicola, constitute a novel sustainable class of bio-based chemicals with interesting physicochemical characteristics, which allow them to form soft diverse structures from hydrogels to vesicles, micelles or complex coacervates with potential interest in skin regeneration applications. In this study, we first tested the cytocompatibility of a broad set of molecules from this family on normal human dermal fibroblasts (NHDF). Our results show that, up to an upper threshold (0.1 % w/v), the microbial glycolipids (SL-C18:1, G-C18:1, SSbola-C18:1, SL-C18:0 and G-C18:0) under study were able to sustain cell growth. Furthermore, we selected the least cytotoxic glycolipids (SL-C18:1, SSbola-C18:1, SL-C18:0) to study their potential to promote wound healing by measuring the gene expression of several key skin regeneration markers (i.e. collagen, elastin, transforming growth factor β, fibroblast growth factor …) using qPCR. Unfortunately, none of these glycolipids modulated the gene expression of molecules involved in tissue repair. However, this study aims to encourage the community to test this novel class of molecules for novel high-end biomedical applications. Importance Biosurfactants prepared by microbial fermentation are natural amphiphiles of growing importance, with the goal of replacing synthetic surfactants in commercial formulations. However, their cytotoxicity profile is still poorly known, especially for new molecules like single-glucose lipids or bolaform sophorolipids. This wants to contribute to all those applications, which could be developed with biosurfactants in contact with the skin (cosmetics, wound healing). We test the cytotoxicity of five structurally-related molecules (C18:1 and C18:0 sophorolipids, C18:1 and C18:0 single-glucose lipids, C18:1 di-sophoroside) against normal human dermal fibroblasts (NHDF) and evaluate the metabolic activity of the least toxic among them. To the best of our knowledge, cytotoxicity of these molecules, and of microbial biosurfactants in general, was never tested against NHDF.
Collapse
Affiliation(s)
- Sergio Oliveira Formoso
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Paris F-75005, France
| | - Vincent Chaleix
- Université de Limoges, Faculté des sciences et techniques, Laboratoire LABCiS - UR 22722, Limoges 87060, France
| | - Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Paris F-75005, France
| | - Christophe Helary
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Paris F-75005, France
| |
Collapse
|
129
|
Paul JK, Malik A, Azmal M, Gulzar T, Afghan MTR, Talukder OF, Shahzadi S, Ghosh A. Advancing Alzheimer's Therapy: Computational strategies and treatment innovations. IBRO Neurosci Rep 2025; 18:270-282. [PMID: 39995567 PMCID: PMC11849200 DOI: 10.1016/j.ibneur.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/22/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) is a multifaceted neurodegenerative condition distinguished by the occurrence of memory impairment, cognitive deterioration, and neuronal impairment. Despite extensive research efforts, conventional treatment strategies primarily focus on symptom management, highlighting the need for innovative therapeutic approaches. This review explores the challenges of AD treatment and the integration of computational methodologies to advance therapeutic interventions. A comprehensive analysis of recent literature was conducted to elucidate the broad scope of Alzheimer's etiology and the limitations of conventional drug discovery approaches. Our findings underscore the critical role of computational models in elucidating disease mechanisms, identifying therapeutic targets, and expediting drug discovery. Through computational simulations, researchers can predict drug efficacy, optimize lead compounds, and facilitate personalized medicine approaches. Moreover, machine learning algorithms enhance early diagnosis and enable precision medicine strategies by analyzing multi-modal datasets. Case studies highlight the application of computational techniques in AD therapeutics, including the suppression of crucial proteins implicated in disease progression and the repurposing of existing drugs for AD management. Computational models elucidate the interplay between oxidative stress and neurodegeneration, offering insights into potential therapeutic interventions. Collaborative efforts between computational biologists, pharmacologists, and clinicians are essential to translate computational insights into clinically actionable interventions, ultimately improving patient outcomes and addressing the unmet medical needs of individuals affected by AD. Overall, integrating computational methodologies represents a promising paradigm shift in AD therapeutics, offering innovative solutions to overcome existing challenges and transform the landscape of AD treatment.
Collapse
Affiliation(s)
- Jibon Kumar Paul
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Abbeha Malik
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Pakistan
| | - Mahir Azmal
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Tooba Gulzar
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Pakistan
| | - Muhammad Talal Rahim Afghan
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Pakistan
| | - Omar Faruk Talukder
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Samar Shahzadi
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Pakistan
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
130
|
Jin P, Bai X. Exploring the roles and clinical potential of exosome-derived non-coding RNAs in glioma. IBRO Neurosci Rep 2025; 18:323-337. [PMID: 40034544 PMCID: PMC11872630 DOI: 10.1016/j.ibneur.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Non-coding accounts for 98 %-99 % of the human genome and performs many essential regulatory functions in eukaryotes, involved in cancer development and development. Non-coding RNAs are abundantly enriched in exosomes, which play a biological role as vectors. Some biofunctional non-coding RNAs are specifically designed as exosomes for the treatment of cancers such as glioma. Glioma is one of the most common primary tumors within the skull and has varying degrees of malignancy and histologic subtypes of grades I-IV. Gliomas are characterized by high malignancy and an abundant blood supply due to rapid cell proliferation and vascularization, often with a poor prognosis. Exosomal non-coding RNAs can be involved in the tumorigenesis process of glioma from multiple directions, such as angiogenesis, tumor proliferation, metastatic invasion, immune evasion, apoptosis, and autophagy. Therefore, non-coding RNAs in exosomes are suitable as markers or therapeutic targets for early diagnosis of diseases and for predicting the prognosis of a variety of diseases. Regulating exosome production and the level of exosomal non-coding RNA expression may be a new approach to prevent or eliminate glioma. In this review, we review the origin and characteristics of exosomal non-coding RNAs, and introduce the functional studies of exosomal non-coding RNAs in glioma and their potential clinical applications, in order to broaden new ideas for the treatment of glioma.
Collapse
Affiliation(s)
- Peng Jin
- Department of Neurosurgery, Hulunbuir People’s Hospital, Hulunbuir, Inner Mongolia Autonomous Region 021000, China
| | - Xue Bai
- Department of Intensive Care Unit, Hulunbuir People’s Hospital, No. 20, Shengli Street, Hailar District, Hulunbuir, Inner Mongolia Autonomous Region 021000, China
| |
Collapse
|
131
|
Zali F, Absalan A, Bahramali G, Mousavi Nasab SD, Esmaeili F, Ejtahed HS, Nasli-Esfahani E, Siadat SD, Pasalar P, Emamgholipour S, Razi F. Alterations of the gut microbiota in patients with diabetic nephropathy and its association with the renin-angiotensin system. J Diabetes Metab Disord 2025; 24:69. [PMID: 39989880 PMCID: PMC11842656 DOI: 10.1007/s40200-025-01579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
Objective Type 2 Diabetes Mellitus (T2DM) is a global health concern, with complications such as diabetic nephropathy (DN) affecting 16.6% of patients and contributing to end-stage renal failure. Emerging research suggests that gut microbial communities may influence DN progression, potentially through mechanisms involving the renin-angiotensin system (RAS). This study aimed to evaluate changes in specific microbial genera in individuals with T2DM, both with and without DN, and to explore their associations with renal function markers and RAS activation. Methods A total of 120 participants were categorized into three groups: healthy controls, T2DM without DN, and T2DM with DN. Microbial abundances of genera including Escherichia, Prevotella, Bifidobacterium, Lactobacillus, Roseburia, Bacteroides, Faecalibacterium, and Akkermansia were quantified using qPCR targeting the bacterial 16 S rRNA gene. Gene expression levels of RAS-associated markers (ACE, AGT1R, AT2R, and Ang II) and inflammation-related genes (TNF-α, TLR4) were analyzed in peripheral blood mononuclear cells via qPCR. Results The study identified significant alterations in microbial composition. Genera such as Faecalibacterium, Akkermansia, Roseburia (butyrate producers), and Bifidobacterium (a potential probiotic) were markedly reduced in T2DM and DN groups compared to controls. Increased mRNA expression of RAS-related genes, including ACE, AGT1R, and Ang II, was observed in these groups. We also foun correlations between altered microbial genera, RAS gene expression, and clinical markers of renal dysfunction. Conclusion The findings suggest that specific microbial genera may influence the pathogenesis of DN through RAS activation and inflammatory pathways. These insights highlight potential therapeutic targets for mitigating DN progression in T2DM patients.
Collapse
Affiliation(s)
- Fatemeh Zali
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorrahim Absalan
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Bahramali
- Hepatitis, AIDS and Bloodborne Diseases Department, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Dawood Mousavi Nasab
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab), Pasteur Institute of Iran, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Parvin Pasalar
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
132
|
Vieira CSP, Segundo MA, Araújo AN. Cytochrome P450 electrochemical biosensors transforming in vitro metabolism testing - Opportunities and challenges. Bioelectrochemistry 2025; 163:108913. [PMID: 39854934 DOI: 10.1016/j.bioelechem.2025.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The ability of the living world to flourish in the face of constant exposure to dangerous chemicals depends on the management ability of a widespread group of enzymes known as heme-thiolate monooxygenases or cytochrome P450 superfamily. About three-quarters of all reactions determining the metabolism of endogenous compounds, of those carried in foods, of taken drugs, or even of synthetic chemicals discarded into the environment depend on their catalytic performance. The chromatographic and (photo)luminometric methods routinely used as predictive and analytical tools in laboratories have significant drawbacks ranging from limited shelf-life of reagents, use of synthetic substrates, laborious and tedious procedures for highly sensitive detection. In this review, alternative electrochemical biosensors using the cytochrome P450 enzymes as bio-element are emphasized in their main aspects as well regarding their implementation and usefulness. Despite the various schemes proposed for the implementation, reports on real applications are scant for several reasons, including low reaction rates, broad substrate specificity, uncoupling reactions occurrence, and the need for expensive electron transfer partners to promote electron transfer. Finally, the prospect for future developments is introduced, focusing on integrating miniaturized systems with electrochemical techniques, alongside optimizing enzyme immobilization methods and electrode modifications to improve enzymatic stability and enhance sensor reliability. This progress represents a crucial step towards the creation of portable biosensors that mimic human physiological responses, supporting the precision medicine approach.
Collapse
Affiliation(s)
- Carina S P Vieira
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marcela A Segundo
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Alberto N Araújo
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
133
|
Wang D, Liu M, Jia S, Tian Z, Yang J, Liu X. Hyperbaric oxygen therapy for cardiovascular surgery. Med Gas Res 2025; 15:299-308. [PMID: 39829165 DOI: 10.4103/mgr.medgasres-d-24-00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/22/2024] [Indexed: 01/22/2025] Open
Abstract
Common cardiovascular surgeries include coronary artery bypass grafting, cardiac valve replacement, radiofrequency ablation, and cardiac intervention surgery. Multiple postoperative complications, such as hypoxic encephalopathy, air embolism, retained intracardiac air, cognitive dysfunction and major adverse cardiovascular events, including heart failure, ischemic stroke, and myocardial infarction, may occur after these cardiovascular surgeries. Hyperbaric oxygen can be used in preconditioning to lower the morbidity of adverse complications. It is also effective for the treatment of numerous postoperative complications. We provide evidence from the current literature highlighting the use of hyperbaric oxygen therapy for preconditioning and managing postoperative complications.
Collapse
Affiliation(s)
| | - Mo Liu
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shaoting Jia
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | | | - Jing Yang
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xuehua Liu
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
134
|
Sørensen S, Kvich L, Xu Y, Thomsen TR, Bjarnsholt T, Thaarup I. Development of a tri-species wound model for studying fungal-bacterial interactions and antimicrobial therapies. Biofilm 2025; 9:100256. [PMID: 39927095 PMCID: PMC11804781 DOI: 10.1016/j.bioflm.2025.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/11/2025] Open
Abstract
Chronic wounds are increasing in numbers and biofilm-producing bacteria are highly prevalent in these wounds and often create resilient polymicrobial infections. Moreover, estimates suggest that up to 23 % of wounds contain fungi, particularly Candida albicans. Currently, inter-kingdom chronic wound models are scarce; thus, this study presents one of the few in vitro models that incorporate both bacterial and fungal species in a wound-relevant environment, addressing a critical gap in current biofilm research. The newly developed model contained the commonly isolated wound bacteria Pseudomonas aeruginosa and Staphylococcus aureus, and the fungus Candida albicans. Inter-species interactions were investigated through selective plate counting and pH and oxygen measurements, as well as confocal microscopy. Investigations were carried out before and after exposure to commonly used clinical antimicrobial treatments, including silver-infused bandages. When grown in a tri-species consortium, P. aeruginosa and S. aureus exhibited a higher tolerance towards silver-infused bandages than when they were grown individually. This suggests that C. albicans plays a protective role for the bacteria. In addition, the treatment also caused a shift in species ratios, moving from a P. aeruginosa-dominated consortium to a S. aureus-dominated consortium. Moreover, confocal microscopy revealed a change in biofilm architecture when comparing single-species models to tri-species models. Finally, we observed that silver-infused bandages increased the pH in the tri-species model as well as partially restoring the oxygenation within the wound model. In conclusion, our novel model exemplifies how inter-kingdom interactions in fungal-bacterial infections can complicate both the microenvironment and treatment efficacy.
Collapse
Affiliation(s)
- Stine Sørensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Kvich
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Yijuan Xu
- SEGES Innovation P/S, Aarhus, Denmark
| | - Trine R. Thomsen
- Department of Chemistry and Biotechnology, Aalborg University, Aalborg, Denmark
- Danish Technology Institute, Aarhus, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ida Thaarup
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
135
|
Russell G. Theoretical evaluation of the biological activity of hydrogen. Med Gas Res 2025; 15:266-275. [PMID: 39829163 DOI: 10.4103/mgr.medgasres-d-24-00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 01/22/2025] Open
Abstract
Hydrogen (H2), the simplest and most ubiquitous molecule in the universe, has garnered significant scientific interest over the past two decades because of its potential as an effective antioxidant and anti-inflammatory agent. Traditionally considered inert, H2 is now being re-evaluated for its unique bioactive properties. H2 selectively neutralizes reactive oxygen and nitrogen species, mitigating oxidative stress without disrupting essential cellular functions. This review therefore aims to provide a theoretical evaluation of the biological activity of H2, focusing on its pharmacokinetics, including absorption, distribution, and retention within biological systems. The pharmacokinetic profile of H2 is crucial for understanding its potential therapeutic applications. The interaction of H2 with protein pockets is of particular interest, as these sites may serve as reservoirs or active sites for H2, influencing its biological activity and retention time. Additionally, the impact of H2 on cellular signaling pathways, including those regulating glucose metabolism and oxidative stress responses, will be explored, offering insights into its potential as a modulator of metabolic and redox homeostasis. Finally, interactions with ferromagnetic molecules within biological environments, as well as effects on cellular signaling mechanisms, add another layer of complexity to the biological role of H2. By synthesizing the current research, this review seeks to elucidate the underlying mechanisms by which H2 may exert therapeutic effects while also identifying critical areas for further investigation. Understanding these aspects is essential for fully characterizing the pharmacodynamic profile of H2 and assessing its clinical potential in the treatment of oxidative stress-related disorders.
Collapse
Affiliation(s)
- Grace Russell
- Research Consultant, Water Fuel Engineering, Wakefield, UK
- School of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, UK
| |
Collapse
|
136
|
Seplovich G, Bouchi Y, de Rivero Vaccari JP, Pareja JCM, Reisner A, Blackwell L, Mechref Y, Wang KK, Tyndall JA, Tharakan B, Kobeissy F. Inflammasome links traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Neural Regen Res 2025; 20:1644-1664. [PMID: 39104096 PMCID: PMC11688549 DOI: 10.4103/nrr.nrr-d-24-00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 08/07/2024] Open
Abstract
Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasome-dependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.
Collapse
Affiliation(s)
| | - Yazan Bouchi
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer C. Munoz Pareja
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew Reisner
- Department of Pediatrics, Emory University, Atlanta, GA, USA
- Department of Neurosurgery, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Laura Blackwell
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kevin K. Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
137
|
Elsheikh AA, Abd-Almotaleb NA, Ahmed MM, Khayal EES. IONPs-induced neurotoxicity via cascade of neuro-oxidative stress, parthanatos-mediated cell death, neuro-inflammation and neurodegenerative changes: Ameliorating effect of rosemary methanolic extract. Toxicol Rep 2025; 14:101935. [PMID: 39980662 PMCID: PMC11841213 DOI: 10.1016/j.toxrep.2025.101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/18/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Iron oxide nanoparticles (IONPs) are widely used in various fields, particularly in medicine, where they can be directly injected for diagnostic and therapeutic purposes, although they may induce certain types of toxicity. Therefore, the present work aimed to estimate the potential protective role of the oral extract of rosemary (RO)against the toxic effects of injected IONPs on the brain tissues of adult male rats, and to explore the potential underlying mechanisms involved in reversing such toxicity. Thirty adult male albino rats were allocated into five groups: the control, the vehicle (intravenous saline injection once/week), the RO extract group (orally gavaged100mg/kg/day), IONPs (intravenously injected 30 mg/kg once/week), and the combined RO+IONPs (orally gavaged RO extract 1 hrh before intravenous injection of IONPs). IONPs induced neurotoxicity via triggering a cascade of neuro-oxidative stress, neuro-inflammation, and parthanatos-mediated neuronal cell death by increasing MDA, NO, TNF-α levels, PARP-1, AIF, and NF-κB mRNA expression alongside reducing GSH levels. These incidents contributed to neurodegenerative changes, reflected in increased mRNA expression of α-S, β-APP, and TDP-43. Additionally, IONPs induced structural degenerative changes and elevated iron levels in brain tissues reduced occludin expression, and disrupted the BBB. Furthermore, the concurrent oral RO extract alleviated these conditions and repaired BBB by increasing the occludin expression and ameliorating structural changes in brain tissues. Consequently, the current data provide evidence that RO supplementation during IONP administration holds promise to minimize potential health risks, which should be corroborated by translational studies.
Collapse
Affiliation(s)
- Arwa A. Elsheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Noha Ali Abd-Almotaleb
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mona Mostafa Ahmed
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman El-Sayed Khayal
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
138
|
Lincy SA, Richard YA, Jeyavani J, Vaseeharan B, Dharuman V. In-vitro sensing of traumatic brain tissue by electrochemical impedance for diagnosis and therapeutic. Bioelectrochemistry 2025; 163:108871. [PMID: 39642769 DOI: 10.1016/j.bioelechem.2024.108871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Traumatic brain injury (TBI) induces neurogenerative disorders affecting severely daily human activities and early diagnosis is a critical requirement for prevention and cure. Here, we induced TBI formation in the Zebra fish, a model organism, by both mechanical (ultrasonic cleaner generated convulsive shock, UGCS) and chemical (pentylenetetrazol, PTZ) methods. The TBI induced cellular and neuronal changes are monitored by measuring the activities of the indicator biomarkers viz., superoxide anion (O2-) and glutamate by electrochemical techniques. For this, the α-lipoic acid (α-LA, LA) functionalized gold-silver (LA-Au/Ag) is used as an electrochemical sensor to diagnose the presence of these markers in physiological phosphate buffer saline (PBS, pH 7.4), 0.1 M KCl solutions and in TBI tissues. While the oxidation of glutamate is observed in the potential window 0.2-0.5 V, the metal mediated oxidation of O2- is observed at the potential window 0.6-1.0 V. The sensor showed good linear ranges for O2- (from 4 to 48 μM with the LOD of 4 μM for the O2- detection) and glutamate (from 20 to 130 μM with the LOD 19 μM). The TBI tissue modified electrode showed lower resistance than the normal brain tissue ((NBT), as control) due to the presence of higher amount of O2- and occurrence of Fenton's and Heber-Weise's reactions in the presence of [Fe(CN)6]3-/4-. For theragnostic application, the LA-Au/Ag nanoparticles is delivered into the UGCS and PTZ treated Zebrafish and electrochemical signal changes are monitored by cyclic voltammetry and impedance spectroscopy. Electrochemical data further corroborated with the activities of superoxide dismutase (SOD), Catalase (CAT) and lipid peroxidase (MDA) in parallel. The developed method of electrochemical sensing of TBI may provide alternative for the early TBI diagnosis and therapeutics for the prevention of TBI.
Collapse
Affiliation(s)
- Sebastinbaskar Aniu Lincy
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Yesurajan Allwin Richard
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Jeyaraj Jeyavani
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Venkataraman Dharuman
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
139
|
Guan Y, Shen J, Lu J, Fuemmeler BF, Shock LS, Zhao H. Allostatic load score and lifestyle factors in the SWAN cohort: A longitudinal analysis. PUBLIC HEALTH IN PRACTICE 2025; 9:100590. [PMID: 40027225 PMCID: PMC11872450 DOI: 10.1016/j.puhip.2025.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/20/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Objectives Allostatic load (AL) has been used to assess chronic stress. Previous studies have assessed associations between lifestyle factors and the AL. However, those studies have yet to evaluate associations longitudinally. Thus, the effect of lifestyle factors on the AL changes over time remains to be determined. Study design A longitudinal analysis was designed. Methods Our study included 1976 women identified from the Study of Women's Health Across the Nation (SWAN) who had completed at least seven waves of measurements since baseline. The Poisson mixed effects model was used to model AL and to assess how lifestyle factors affected AL over time. Results At baseline, the mean AL score was 2.44 (range 0-11). On average, the AL score increased by 3 % (ORs = 1.03, 95 % CI [1.01, 1.05]) per wave over time. For lifestyle factors, women who smoked cigarettes over time had higher AL than those who never smoked. On the other hand, women who ever drank alcohol at baseline, had leisure physical activity over time, and had at least average sleep quality at baseline, and had lower AL than their counterparts. We also identified a statistically significant interaction between alcohol drinking and time (P < 0.01). Furthermore, we generated a healthy score using the four lifestyle factors above to assess the potential accumulative effect of lifestyle factors on AL. We found that the AL increased by 16 % for each additional unhealthy lifestyle factor (ORs = 1.16, 95%CI: 1.12, 1.2). Conclusions This study demonstrates that lifestyle factors can influence the increase of AL over time.
Collapse
Affiliation(s)
- Yufan Guan
- Departments of Family Medicine and Population Health, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Jie Shen
- Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Juan Lu
- Departments of Family Medicine and Population Health, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Bernard F. Fuemmeler
- Departments of Family Medicine and Population Health, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Lisa S. Shock
- Departments of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Hua Zhao
- Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| |
Collapse
|
140
|
Gong Y, Cheng Y, Zeng F, Liu X, Yang Y, Zhang F, Wen C, Yang F, Li H, He Y, Ni B, Xu Y, Xiao L, Zhang Q, Zhou L, Zheng J, Chen W. A self-gelling hemostatic powder boosting radiotherapy-elicited NK cell immunity to combat postoperative hepatocellular carcinoma relapse. Biomaterials 2025; 317:123068. [PMID: 39813968 DOI: 10.1016/j.biomaterials.2024.123068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Liver resection represents a main curative treatment for patients with early-stage hepatocellular carcinoma (HCC), but there is a rather high incidence of postoperative HCC relapse, which severely shortens long-term survival time. Currently, no standard adjuvant strategies are available for preventing HCC relapse in clinical practice. Impaired natural killer (NK) cell anti-tumor immunity has been disclosed as a crucial root of HCC relapse, indicating that reinstating NK cell anti-tumor immunity may show promise to curb HCC relapse. Coincidently, mounting evidence shows that radiotherapy (RT) can trigger NK cell anti-tumor immunity, though its mechanisms have never been completely elucidated. Herein, we uncover that RT can induce immunogenic cell death and activate cGAS-STING pathway in HCC cells to elicit NK cell anti-tumor immunity. However, RT is also revealed to enhance autophagy and CD73 expression in HCC cells, as well as neutrophil extracellular traps (NETs) formation, which largely limits RT-induced activation of NK cell anti-tumor immunity. Therefore, a cocktail of autophagy inhibitor 3-methyladenine, CD73 inhibitor ARL 67156 trisodium and NETs lyase DNase I may sensitize RT to reinvigorate NK cell anti-tumor immunity and thus prevent HCC relapse postresection. To minimize therapy-related side effects, a nanocomposite powder encapsulating such a triple-drug cocktail is developed. This powder can rapidly form adhesive hydrogel in situ after applied to surgical margin, consequently fulfilling liver-localized sustained drug delivery. Importantly, it can sensitize RT to reinstate NK cell anti-tumor immunity to combat postoperative HCC relapse in Heap1-6-HCC murine model. Besides, this powder can also generate rapid hemostasis in rat and porcine models. Altogether, this work provides an innovative strategy to thwart postoperative HCC relapse and bleeding.
Collapse
Affiliation(s)
- Yihang Gong
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yusheng Cheng
- Department of General Surgery, The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Fanxin Zeng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaoquan Liu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chaoyao Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fan Yang
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yizhan He
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Beibei Ni
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yan Xu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Lan Xiao
- Department of Gynecology Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qi Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Wenjie Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
141
|
Franco-Fuquen P, Figueroa-Aguirre J, Martínez DA, Moreno-Cortes EF, Garcia-Robledo JE, Vargas-Cely F, Castro-Martínez DA, Almaini M, Castro JE. Cellular therapies in rheumatic and musculoskeletal diseases. J Transl Autoimmun 2025; 10:100264. [PMID: 39931050 PMCID: PMC11808717 DOI: 10.1016/j.jtauto.2024.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 02/13/2025] Open
Abstract
A substantial proportion of patients diagnosed with rheumatologic and musculoskeletal diseases (RMDs) exhibit resistance to conventional therapies or experience recurrent symptoms. These diseases, which include autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus, are marked by the presence of autoreactive B cells that play a critical role in their pathogenesis. The persistence of these autoreactive B cells within lymphatic organs and inflamed tissues impairs the effectiveness of B-cell-depleting monoclonal antibodies like rituximab. A promising therapeutic approach involves using T cells genetically engineered to express chimeric antigen receptors (CARs) that target specific antigens. This strategy has demonstrated efficacy in treating B-cell malignancies by achieving long-term depletion of malignant and normal B cells. Preliminary data from patients with RMDs, particularly those with lupus erythematosus and dermatomyositis, suggest that CAR T-cells targeting CD19 can induce rapid and sustained depletion of circulating B cells, leading to complete clinical and serological responses in cases that were previously unresponsive to conventional therapies. This review will provide an overview of the current state of preclinical and clinical studies on the use of CAR T-cells and other cellular therapies for RMDs. Additionally, it will explore potential future applications of these innovative treatment modalities for managing patients with refractory and recurrent manifestations of these diseases.
Collapse
Affiliation(s)
- Pedro Franco-Fuquen
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Juana Figueroa-Aguirre
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - David A. Martínez
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Eider F. Moreno-Cortes
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Juan E. Garcia-Robledo
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Fabio Vargas-Cely
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | | | - Mustafa Almaini
- Rheumatology, Allergy & Clinical Immunology Division, Mafraq Hospital, United Arab Emirates
| | - Januario E. Castro
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
142
|
Liu X, Huang J, Zhou H, Wang S, Guo X, Mao J, Li X, Lu Y, Du Y, Yang F, Luo L, You J. Inhibition of PDT-induced PGE2 surge for enhanced photo-immunotherapy. Biomaterials 2025; 317:123116. [PMID: 39848004 DOI: 10.1016/j.biomaterials.2025.123116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Nowadays, photodynamic therapy (PDT) offers a non-invasive tumor treatment with high safety profiles and minimal side effects, implying a promising clinical application for patients with malignant tumors. However, the lack of efficacy in metastasis and recurrence still notably limits its application. To solve this problem, one promising strategy is to improve the immune response activated by PDT. Unfortunately, tumor cells derived PGE2 could create immunosuppressive microenvironments and impair the function of multiple immune cells, leading to a failure of immune system activation. Moreover, our research revealed the up-regulation of Ptgs2 in tumor cells after the PDT process, which is associated with a series of pro-tumor effects, including proliferation, invasion, metastasis, apoptotic resistance, and immune evasion. Consequently, controlling the PGE2 surge induced by PDT is crucial for optimizing the efficacy of photo-immunotherapy. Therefore, we combined the regulation of the COX2-PGE2 axis with PDT. The addition of COX inhibitors (COX-Is) could improve the efficiency of PDT, reduce the immunosuppressive effect of PGE2, and help dying tumor cells activate the immune system. Herein, a tumor-targeted nano-delivery platform (FI@T-Lipo) was developed using advanced microfluidic technology. FI@T-Lipo based PDT showed a systemic therapeutic effect in triple negative breast cancer through reclaiming the anti-tumor effect of the immune system under COX2-PGE2 blockage. In a word, we developed an in-situ tumor vaccination strategy based on COX-Is enhanced PDT, which could alleviate intra-tumoral immune suppression and boost immune system activation. Our study offers a promising modality for advancing clinical treatment strategies for metastatic malignant tumors.
Collapse
Affiliation(s)
- Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiapeng Mao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yichao Lu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Yongzhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Fuchun Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China.
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| |
Collapse
|
143
|
Wu K, Shao S, Dong YT, Liu YY, Chen XH, Cheng P, Qin X, Peng XH, Zhang YM. Spinal astrocyte-derived M-CSF mediates microglial reaction and drives visceral hypersensitivity following DSS-induced colitis. Neuropharmacology 2025; 270:110373. [PMID: 39978590 DOI: 10.1016/j.neuropharm.2025.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Visceral hypersensitivity is one of the most prevalent symptoms of inflammatory bowel disease (IBD), and it can be difficult to cure despite achieving endoscopic remission. Accumulating studies have described that macrophage colony-stimulating factor (M-CSF) modulates neuroinflammation in the central nervous system (CNS) and the development of chronic pain, while the underlying mechanism for whether and how M-CSF/CSF1R signaling pathway regulates visceral hypersensitivity following colitis remains unknown. In the present study, using the dextran sulfate sodium (DSS)-induced colitis model, we determined that microglial accumulation occurred in the spinal dorsal horn during remission phase. The reactive microglia released inflammatory factor, increased neuronal excitability in the dorsal horn, and produced chronic visceral pain behaviors in DSS-treated adult male mice. In addition, we also found significantly increased signaling mediated by astrocytic M-CSF and microglial CSF1R in dorsal horn in the mice with colitis. Exogenous M-CSF induced microglial activation, neuronal hyperactivity and behavioral hypersensitivity in the control group, inhibition of astrocyte/microglia by fluorocitrate/minocycline significantly suppressed microglial and neuronal activity, and relieved the visceral hypersensitivity in the model mice. Overall, our experimental study uncovers the critical involvement of spinal astrocyte-derived M-CSF and reactive microglia in the initiation and maintenance of visceral hypersensitivity following colitis, thereby identifying spinal M-CSF as a target for treating chronic visceral pain. This may provide more accurate theoretical guidance for clinical patients with IBD.
Collapse
Affiliation(s)
- Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Department of Anesthesia, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuai Shao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ting Dong
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xing-Han Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Peng Cheng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xia Qin
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Han Peng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Department of Anesthesia, Xuzhou Cancer Hospital, Xuzhou, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
144
|
Li W, Chen W, Wu D, Zhang Z, Liu P, Li Z, Yang Y. TMC4 receptor binding properties and interaction mechanisms of salty mushroom peptides. Food Chem 2025; 475:143403. [PMID: 39956075 DOI: 10.1016/j.foodchem.2025.143403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
The transmembrane channel-like protein 4 (TMC4) has been identified as a receptor for anionic salty compounds. However, whether salty peptides can activate TMC4 remains unresolved, and the underlying interaction mechanism between these peptides and the receptor is also unclear. In this study, we analyzed the binding properties and interaction mechanisms of salty mushroom peptides with the TMC4 receptor. A spontaneous, enthalpy-driven specific binding reaction was observed, with TMC4 binding to 2 molecules of the salty peptide KSWDDFFTR and 4 molecules of the peptide RIEDNLVIIR. The intracellular amino acid residues in pocket 1 of the receptor primarily recognized KSWDDFFTR, whereas the extracellular amino acid residues in pocket 4 predominantly bound to RIEDNLVIIR. Notably, the TMC4 receptor can be activated by the salty peptides, and the receptor specifically recognized uncharged peptides. Insights into the interaction between salty peptides and TMC4 may pave the way for the development of novel food additives.
Collapse
Affiliation(s)
- Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
145
|
Boini A, Grasso V, Taher H, Gumbs AA. Artificial intelligence and the impact of multiomics on the reporting of case reports. World J Clin Cases 2025; 13:101188. [DOI: 10.12998/wjcc.v13.i15.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/21/2025] Open
Abstract
The integration of artificial intelligence (AI) and multiomics has transformed clinical and life sciences, enabling precision medicine and redefining disease understanding. Scientific publications grew significantly from 2.1 million in 2012 to 3.3 million in 2022, with AI research tripling during this period. Multiomics fields, including genomics and proteomics, also advanced, exemplified by the Human Proteome Project achieving a 90% complete blueprint by 2021. This growth highlights opportunities and challenges in integrating AI and multiomics into clinical reporting. A review of studies and case reports was conducted to evaluate AI and multiomics integration. Key areas analyzed included diagnostic accuracy, predictive modeling, and personalized treatment approaches driven by AI tools. Case examples were studied to assess impacts on clinical decision-making. AI and multiomics enhanced data integration, predictive insights, and treatment personalization. Fields like radiomics, genomics, and proteomics improved diagnostics and guided therapy. For instance, the “AI radiomics, genomics, oncopathomics, and surgomics project” combined radiomics and genomics for surgical decision-making, enabling preoperative, intraoperative, and postoperative interventions. AI applications in case reports predicted conditions like postoperative delirium and monitored cancer progression using genomic and imaging data. AI and multiomics enable standardized data analysis, dynamic updates, and predictive modeling in case reports. Traditional reports often lack objectivity, but AI enhances reproducibility and decision-making by processing large datasets. Challenges include data standardization, biases, and ethical concerns. Overcoming these barriers is vital for optimizing AI applications and advancing personalized medicine. AI and multiomics integration is revolutionizing clinical research and practice. Standardizing data reporting and addressing challenges in ethics and data quality will unlock their full potential. Emphasizing collaboration and transparency is essential for leveraging these tools to improve patient care and scientific communication.
Collapse
Affiliation(s)
- Aishwarya Boini
- Davao Medical School Foundation, Davao Medical School Foundation, Davao 8000, Philippines
| | - Vincent Grasso
- Department of Computer Engineering, Department of Electrical and Computer Engineering University of New Mexico, Albuquerque, NM 87106, United States
| | - Heba Taher
- Department of Pediatric Surgery, Cairo University Hospital, Cairo 11441, Egypt
| | - Andrew A Gumbs
- Department of Minimally Invasive Digestive Surgery, Hospital Antoine Beclère, Assistance Publique-Hospitals of Paris, Clamart 92140, France
- Department of Surgery, University of Magdeburg, Magdeburg 39130, Saxony-Anhalt, Germany
| |
Collapse
|
146
|
Kaimuangpak K, Lehtonen M, Rautio J, Weerapreeyakul N. Unraveled cancer cell survival-associated amino acid metabolism of HepG2 cells altered by Thai rat-tailed radish microgreen extract examined by untargeted LC-MS/MS analysis. Food Chem 2025; 474:143206. [PMID: 39954416 DOI: 10.1016/j.foodchem.2025.143206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/02/2025] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Thai rat-tailed radish (RS) microgreens are enriched in macro- and micronutrients and phytochemicals with anticancer potential. This study investigates the antiproliferative effects of RS in the liver HepG2 cell model and untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis. RS was partitioned in water and dichloromethane (DCM). DCM was collected and evaporated to yield crude extract. The extract exhibited antiproliferation with inhibitory concentrations (IC50) of 612.5 ± 24.7 μg/ml at 24 h and 568.6 ± 11.0 μg/ml at 48 h. Metabolic pathways relevant to the anticancer effects are amino acid metabolism, including (1) alanine, aspartate, and glutamate metabolism; (2) nicotinate and nicotinamide metabolism; and (3) cysteine and methionine metabolism. Significantly, glutamine was upregulated, and aspartic acid, NAD, 5'-methylthioadenosine, cystathionine, and S-adenosylhomocysteine were downregulated. This finding suggested plausible effects of RS on liver cancer cell survival and invasion activities.
Collapse
Affiliation(s)
- Karnchanok Kaimuangpak
- Graduate School (in the program of Research and Development in Pharmaceuticals), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland.
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland.
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
147
|
Patel DM, Poblete GF, Castellanos A, Salas R. Functional brain connectivity of the salience network in alcohol use and anxiety disorders. J Affect Disord 2025; 377:124-133. [PMID: 39971011 DOI: 10.1016/j.jad.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
The interplay between alcohol use disorder (AUD) and anxiety disorders (ANX) is well-documented, yet the underlying neurobiological mechanisms remain elusive. This study aims to elucidate these mechanisms by examining the resting-state functional connectivity (RSFC) within the salience network and to the amygdala, both implicated in alcohol and anxiety disorders. We analyzed data from 264 inpatient participants culled from a wider group of 518 inpatients at The Menninger Clinic in Houston, TX, categorized into four groups (n = 66 each) based on DSM-IV diagnoses: AUD without ANX (AUD), ANX without AUD (ANX), concurrent AUD and ANX (BOTH), and neither (NEITHER). Our findings reveal significant RSFC differences, particularly between the right supramarginal gyrus (SMG) and 1) right rostral prefrontal cortex (RPFC) (corrected p = 0.029; RSFC significantly higher in NEITHER than in BOTH), and 2) left supramarginal gyrus (SMG) (corrected p = 0.016; RSFC significantly higher in AUD and NEITHER than in BOTH). Furthermore, correlations with a clinical measure for alcohol use (World Health Organization Alcohol, Smoking and Substance Involvement Screening Test; WHO ASSIST) indicated significant relationships: WHO ASSIST alcohol scores negatively correlated with right SMG to right RPFC RSFC (r = -0.14, p = 0.02) and positively correlated with the interhemispheric SMG RSFC (r = 0.17, p = 0.006). This research enhances our understanding of the complex neurobiological interconnections between alcohol use and anxiety disorders, suggesting a disrupted neural architecture that may underpin the behavioral manifestations observed in these highly comorbid conditions.
Collapse
Affiliation(s)
- Dhruv M Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of BioSciences, Rice University, Houston, TX, USA
| | | | - Alexandra Castellanos
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Ramiro Salas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston, TX, USA.
| |
Collapse
|
148
|
Shang Y, Liu S, Liang C, Tuliebieke T, Chen S, Du K, Tian X, Li J, He J, Jin H, Chang Y. A strategy integrated DNA barcoding with metabolomics for screening distinguishable combinatorial chemical quality marker between Pheretima aspergillum and Pheretima vulgaris Chen. J Pharm Biomed Anal 2025; 257:116716. [PMID: 39893778 DOI: 10.1016/j.jpba.2025.116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Pheretima is an animal-derived traditional Chinese medicines (TCMs). The chemical quality markers of Pheretima used to distinguish different species are still ambiguous. Under this premise, a strategy integrated DNA barcoding with metabolomics is promoted for identifying Pheretima and screening distinguishable combinatorial chemical quality marker (DCQ-marker) between Pheretima aspergillum (P. aspergillum) and Pheretima vulgaris Chen (P. vulgaris). As a result, adenosine, adenine, L-phenylalanine and uridine are successfully selected as DCQ-markers between P. aspergillum and P. vulgaris. This study provides convenient strategy for quickly screening DCQ-marker between P. aspergillum and P. vulgaris. It will be meaningful for further promoting quality control on Pheretima and providing a reference for the quality evaluation of other animal-derived TCMs.
Collapse
Affiliation(s)
- Ye Shang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Suyi Liu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunxiao Liang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tenukeguli Tuliebieke
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shujing Chen
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kunze Du
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoxuan Tian
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun He
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hua Jin
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Yanxu Chang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
149
|
He B, Mao L, Xi L, Guo J. Synergistic insights into positive allosteric modulator and agonist using Gaussian accelerated and tau random acceleration simulations in the metabotropic glutamate receptor 2. Neuropharmacology 2025; 269:110351. [PMID: 39929291 DOI: 10.1016/j.neuropharm.2025.110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Schizophrenia is a severe brain disorder that usually produces a lifetime of disability. Related research shows activating metabotropic glutamate receptors holds therapeutic potential. Agonist-positive allosteric modulations (ago-PAMs) not only activate metabotropic glutamate receptors but also enhance glutamate-induced responses, offering a promising treatment strategy. However, the molecular mechanisms by which ago-PAM enhances glutamate-induced responses remain unclear, as does the potential influence of glutamate on ago-PAM. In this study, Gaussian accelerated molecular dynamics and tau random acceleration molecular dynamics simulations were employed to investigate the molecular mechanism between ago-PAM and glutamate in full-length mGlu2. Results suggest that the ago-PAM JNJ-46281222 enhances the binding affinity and residence time of glutamates in the Venus flytrap (VFT) domains by initiating a variant reverse communication from the heptahelical transmembrane (7TM) domains to VFTs via the cysteine-rich domains. Meanwhile, glutamate facilitates the interaction between Trp676 and Glu701 to further induce the relaxation of TM5, promoting the opening of the PAM-binding pocket. Glutamate can also promote the upward rotation of the cyclopropylmethyl group of the JNJ-46281222 to bring the TM6-TM6 distance closer. Nevertheless, it remains uncertain how the binding between mGlu2 and G protein differs when induced by small molecules binding in allosteric sites, orthosteric sites, or both. In conclusion, this study shed new light on the positive coordination relationship between ago-PAM and glutamate in the full-length mGlu2 receptor, which could help develop novel and more effective ago-PAM to treat schizophrenia.
Collapse
Affiliation(s)
- Baoyu He
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999097, China
| | - Longfei Mao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471003, China
| | - Lili Xi
- Office of Institution of Drug Clinical Trial, The First Hospital of Lanzhou University, Lanzhou, 730020, China.
| | - Jingjing Guo
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999097, China.
| |
Collapse
|
150
|
Aja PM, Agu PC, Ogbu C, Alum EU, Fasogbon IV, Musyoka AM, Ngwueche W, Egwu CO, Tusubira D, Ross K. RNA research for drug discovery: Recent advances and critical insight. Gene 2025; 947:149342. [PMID: 39983851 DOI: 10.1016/j.gene.2025.149342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
The field of RNA research has experienced significant changes and is now at the forefront of contemporary drug development. This narrative overview explores the scientific developments and historical turning points in RNA research, emphasising the field's critical significance in the development of novel therapeutics. Important discoveries like antisense oligonucleotides (ASOs), mRNA therapies, and RNA interference (RNAi) have created novel treatment options that can be targeted, such as the ground-breaking mRNA vaccinations against COVID-19. Advances in high-throughput sequencing, single-cell RNA sequencing, and epitranscriptomics have further unravelled the complexity of RNA biology, shedding light on the intricacies of gene regulation and cellular diversity. The integration of computational tools and bioinformatics has propelled the identification of RNA-based biomarkers and the development of RNA therapeutics. Despite significant progress, challenges such as RNA stability, delivery, and off-target effects persist, necessitating continuous innovation and ethical considerations. This review provides a critical insight into the current state and prospects of RNA research, emphasising its transformative potential in drug discovery. By examining the interplay between technological advancements and therapeutic applications, we underscore the promising horizon for RNA-based interventions in treating a myriad of diseases, marking a new era in precision medicine.
Collapse
Affiliation(s)
- Patrick Maduabuchi Aja
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda; Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria.
| | - Peter Chinedu Agu
- Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria; Department of Biochemistry, Faculty of Science, Evangel University, Nigeria
| | - Celestine Ogbu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Federal University of Health Sciences, Otukpo, Nigeria
| | - Esther Ugo Alum
- Publications and Extension Department, Kampala International University, P. O. Box 20000, Uganda; Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria
| | - Ilemobayo Victor Fasogbon
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda
| | - Angela Mumbua Musyoka
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda
| | - Wisdom Ngwueche
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinedu Ogbonia Egwu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Deusdedit Tusubira
- Department of Biochemistry, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|