1451
|
Wang J, Wu D, Guo H, Li M. Hyperandrogenemia and insulin resistance: The chief culprit of polycystic ovary syndrome. Life Sci 2019; 236:116940. [PMID: 31604107 DOI: 10.1016/j.lfs.2019.116940] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common systemic reproductive endocrine diseases, which has a variety of effects on a woman's health. Because of the involvement of multiple pathways and the lack of common clues, PCOS demonstrates multifactorial properties and heterogeneity of symptoms. Recent studies have demonstrated that the core etiology and primary endocrine characteristics of PCOS are hyperandrogenemia (HA) and insulin resistance (IR). HA and IR are the main causes of PCOS and they can interplay each other in the occurrence and development of PCOS. Just because of this, the study about the effects of HA and IR on pathophysiology of various related symptoms of PCOS is very important to understand the pathogenesis of PCOS. This paper reviews the main symptoms of PCOS, including neuroendocrine disorders, reproductive processes, dyslipidemia, obesity, hypertension, nonalcoholic fatty liver disease (NAFLD), and sleep disordered breathing, which seriously affect the physical and mental health of PCOS women. The increasing knowledge of the development pattern of HA and IR in PCOS suggests that changes in diet and lifestyle, and the discovery of potential therapeutic agents may improve PCOS. However, further studies are needed to clarify the mutual influence and relation of HA and IR in development of PCOS. This review provides an overview of the current knowledge about the effects of HA and IR on PCOS.
Collapse
Affiliation(s)
- Juan Wang
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Daichao Wu
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Hui Guo
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Meixiang Li
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China.
| |
Collapse
|
1452
|
NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 2019; 17:170-194. [PMID: 31591535 DOI: 10.1038/s41569-019-0260-8] [Citation(s) in RCA: 370] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS)-dependent production of ROS underlies sustained oxidative stress, which has been implicated in the pathogenesis of cardiovascular diseases such as hypertension, aortic aneurysm, hypercholesterolaemia, atherosclerosis, diabetic vascular complications, cardiac ischaemia-reperfusion injury, myocardial infarction, heart failure and cardiac arrhythmias. Interactions between different oxidases or oxidase systems have been intensively investigated for their roles in inducing sustained oxidative stress. In this Review, we discuss the latest data on the pathobiology of each oxidase component, the complex crosstalk between different oxidase components and the consequences of this crosstalk in mediating cardiovascular disease processes, focusing on the central role of particular NADPH oxidase (NOX) isoforms that are activated in specific cardiovascular diseases. An improved understanding of these mechanisms might facilitate the development of novel therapeutic agents targeting these oxidase systems and their interactions, which could be effective in the prevention and treatment of cardiovascular disorders.
Collapse
|
1453
|
ER Stress Activates the NLRP3 Inflammasome: A Novel Mechanism of Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3462530. [PMID: 31687078 PMCID: PMC6800950 DOI: 10.1155/2019/3462530] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/21/2019] [Accepted: 08/31/2019] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is an important organelle that regulates several fundamental cellular processes, and ER dysfunction has implications for many intracellular events. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is an intracellularly produced macromolecular complex that can trigger pyroptosis and inflammation, and its activation is induced by a variety of signals. ER stress has been found to affect NLRP3 inflammasome activation through multiple effects including the unfolded protein response (UPR), calcium or lipid metabolism, and reactive oxygen species (ROS) generation. Intriguingly, the role of ER stress in inflammasome activation has not attracted a great deal of attention. In addition, increasing evidence highlights that both ER stress and NLRP3 inflammasome activation contribute to atherosclerosis (AS). AS is a common cardiovascular disease with complex pathogenesis, and the precise mechanisms behind its pathogenesis remain to be determined. Both ER stress and the NLRP3 inflammasome have emerged as critical individual contributors of AS, and owing to the multiple associations between these two events, we speculate that they contribute to the mechanisms of pathogenesis in AS. In this review, we aim to summarize the molecular mechanisms of ER stress, NLRP3 inflammasome activation, and the cross talk between these two pathways in AS in the hopes of providing new pharmacological targets for AS treatment.
Collapse
|
1454
|
Jack BU, Malherbe CJ, Mamushi M, Muller CJF, Joubert E, Louw J, Pheiffer C. Adipose tissue as a possible therapeutic target for polyphenols: A case for Cyclopia extracts as anti-obesity nutraceuticals. Biomed Pharmacother 2019; 120:109439. [PMID: 31590126 DOI: 10.1016/j.biopha.2019.109439] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a significant contributor to increased morbidity and premature mortality due to increasing the risk of many chronic metabolic diseases such as type 2 diabetes, cardiovascular disease and certain types of cancer. Lifestyle modifications such as energy restriction and increased physical activity are highly effective first-line treatment strategies used in the management of obesity. However, adherence to these behavioral changes is poor, with an increased reliance on synthetic drugs, which unfortunately are plagued by adverse effects. The identification of new and safer anti-obesity agents is thus of significant interest. In recent years, plants and their phenolic constituents have attracted increased attention due to their health-promoting properties. Amongst these, Cyclopia, an endemic South African plant commonly consumed as a herbal tea (honeybush), has been shown to possess modulating properties against oxidative stress, hyperglycemia, and obesity. Likewise, several studies have reported that some of the major phenolic compounds present in Cyclopia spp. exhibit anti-obesity effects, particularly by targeting adipose tissue. These phenolic compounds belong to the xanthone, flavonoid and benzophenone classes. The aim of this review is to assess the potential of Cyclopia extracts as an anti-obesity nutraceutical as underpinned by in vitro and in vivo studies and the underlying cellular mechanisms and biological pathways regulated by their phenolic compounds.
Collapse
Affiliation(s)
- Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa.
| | - Christiaan J Malherbe
- Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Mokadi Mamushi
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa; Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
1455
|
Alonso-Castro AJ, Alba-Betancourt C, Rocha-González E, Ruiz-Arredondo A, Zapata-Morales JR, Gasca-Martínez D, Pérez-Gutiérrez S. Neuropharmacological effects of d-pinitol and its possible mechanisms of action. J Food Biochem 2019; 43:e13070. [PMID: 31576588 DOI: 10.1111/jfbc.13070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 01/04/2023]
Abstract
The aim was to evaluate the diuretic and neuropharmacological actions of d-pinitol and describe a possible mechanism of action. The diuretic effects of d-pinitol were evaluated using mice placed in metabolic cages. The sedative, anxiolytic-like, antidepressant-like, and anticonvulsant effects of 1-100 mg/kg d-pinitol were assessed. The possible mechanisms of action of the anxiolytic-like, antidepressant-like, and anticonvulsant effects of d-pinitol were evaluated using inhibitors. d-pinitol lacked diuretic effects. However, d-pinitol showed the highest anxiolytic-like actions (ED50 = 70 mg/kg p.o. in mice) in the cylinder exploratory test and the highest antidepressant-like activity in the forced swimming test (ED50 = 26 mg/kg p.o. in mice). d-pinitol (100 mg/kg) exerted anticonvulsant actions in the pentylenetetrazole-induced seizures test. The pre-treatment with 2 mg/kg flumazenil reverted the anxiolytic-like actions and the anticonvulsant effects of d-pinitol, whereas the pre-treatment with 1 mg/kg yohimbine and 0.05 mg/kg prazosin abolished the antidepressant effects of d-pinitol. PRACTICAL APPLICATIONS: d-pinitol (3-O-methyl-d-chiro-inositol) is a polyol found in many fruits, as well as in many members of the Leguminosae and Fabaceae families. The results propose that this compound could contribute in the treatment of anxiety, depression, and convulsions. The findings suggest the possible participation of the GABAergic system in the anxiolytic-like and anticonvulsant actions of d-pinitol, whereas the noradrenergic system is probably involved in the antidepressant effects of d-pinitol. This study provides new information about other pharmacological uses for d-pinitol.
Collapse
Affiliation(s)
| | - Clara Alba-Betancourt
- División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Erik Rocha-González
- División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | | | | | - Deisy Gasca-Martínez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Salud Pérez-Gutiérrez
- División de Ciencias Biológicas y de la Salud, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana unidad Xochimilco, Mexico City, Mexico
| |
Collapse
|
1456
|
Mo Y, Deng S, Zhang L, Huang Y, Li W, Peng Q, Liu Z, Ai Y. SS-31 reduces inflammation and oxidative stress through the inhibition of Fis1 expression in lipopolysaccharide-stimulated microglia. Biochem Biophys Res Commun 2019; 520:171-178. [PMID: 31582222 DOI: 10.1016/j.bbrc.2019.09.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
Abstract
SS-31 is a kind of mitochondrion-targeted peptide. Recent studies indicated significant neuroprotective effects of SS-31. In this study, we investigated that SS-31 protected the murine cultured microglial cells (BV-2) against lipopolysaccharide (LPS)-induced inflammation and oxidative stress through stabilizing mitochondrial morphology. The morphological study showed that SS-31 preserved LPS-induced mitochondrial ultrastructure by reducing the fission protein 1 (Fis1) expression. Flow cytometry and Western blot verified that SS-31 defended the BV-2 cells against LPS-stimulated inflammation and oxidative stress via suppressing Fis1. To sum up, our study represents that SS-31 preserves BV-2 cells from LPS-stimulated inflammation and oxidative stress by down-regulating the Fis1 expression.
Collapse
Affiliation(s)
- Yunan Mo
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Songyun Deng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Yan Huang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Wenchao Li
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Qianyi Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Zhiyong Liu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Yuhang Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
1457
|
Malekahmadi M, Moradi Moghaddam O, Firouzi S, Daryabeygi-Khotbehsara R, Shariful Islam SM, Norouzy A, Soltani S. Effects of pycnogenol on cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2019; 150:104472. [PMID: 31585179 DOI: 10.1016/j.phrs.2019.104472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/29/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
AIM Clinical trials on the effect of pycnogenol supplementation on cardiometabolic health have been controversial. We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to evaluate the potential effect of pycnogenol supplementation on cardiometabolic profile. METHODS PubMed, Scopus, and ISI Web of Science databases were searched until October 2018. RCTs that evaluated the effects of pycnogenol on cardiometabolic parameters were included. DerSimonian and Laird random-effect models were used to compute the weighted mean differences (WMDs) and 95% confidence intervals (CIs). RESULTS Twenty-four RCTs including 1594 participants were included in the meta-analysis. Pycnogenol significantly reduced fasting blood glucose (WMD: -5.86 mg/dl; 95% CI: -9.56, -2.15), glycated hemoglobin (WMD = -0.29%, 95%CI: -0.56, -0.01), systolic blood pressure (WMD: -2.54 mmhg; 95% CI: -4.08, -0.99), diastolic blood pressure (WMD: -1.76 mmhg; 95% CI: -3.12, -0.41), body mass index (WMD: -0.47 kg/m2; 95% CI: -0.90, -0.03), LDL cholesterol (WMD: -7.12 mg/dl; 95% CI: -13.66, -0.58) and increased HDL cholesterol (WMD: 3.27 mg/dl; 95% CI: 0.87, 5.66). CONCLUSION This meta-analysis suggests that pycnogenol may have a role in preventing cardiometabolic disease. However, further well-designed RCTs are recommended to evaluate its long-term effects and explore the optimal duration of use and dosage.
Collapse
Affiliation(s)
- Mahsa Malekahmadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Nutrition Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Moradi Moghaddam
- Trauma and Injury Research Center, Critical Care Department, Rasoul-e-Akram Complex Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Safieh Firouzi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Nutrition Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Daryabeygi-Khotbehsara
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia
| | - Sheikh Mohammed Shariful Islam
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia
| | - Abdolreza Norouzy
- Nutrition Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sepideh Soltani
- Department of Nutrition, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
1458
|
Comparative Transcriptomics of Ex Vivo, Patient-Derived Endothelial Cells Reveals Novel Pathways Associated With Type 2 Diabetes Mellitus. JACC Basic Transl Sci 2019; 4:567-574. [PMID: 31768474 PMCID: PMC6872769 DOI: 10.1016/j.jacbts.2019.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022]
Abstract
Endothelial cells can be harvested directly from humans, rapidly sorted and subjected to RNA-sequencing to study global gene expression. In endothelial cells isolated from patients with type 2 diabetes mellitus, pathways involved in TGF-β and Cyclin-D1 signaling were positively enriched while androgen signaling and oxidative phosphorylation were negatively enriched compared to healthy individuals. Patient-derived endothelial cells can be used to discover and validate disease-associated pathways.
In this study low-input RNA-sequencing was used to annotate the molecular identity of endothelial cells isolated and immunopurified with CD144 microbeads. Using this technique, comparative gene expression profiling from healthy subjects and patients with type 2 diabetes mellitus identified both known and novel pathways linked with EC dysfunction. Modeling of diabetes by treating cultured ECs with high glucose identified shared changes in gene expression in diabetic cells. Overall, the data demonstrate how purified ECs from patients can be used to generate new hypotheses about mechanisms of human vascular disease.
Collapse
Key Words
- BSA, bovine serum albumin
- EC, endothelial cell
- EDTA, ethylenediamine tetra-acetic acid
- FACS, fluorescence activated cell sorting
- FDR, false discovery rate
- GSEA, gene set enrichment analysis
- HUVEC, human umbilical vein endothelial cell
- IV, intravenous
- PBS, phosphate buffered saline
- Seq, sequencing
- T2DM, type 2 diabetes mellitus
- TGFβ, transforming growth factor beta
- VEGF, vascular endothelial growth factor
- VUMC, Vanderbilt University Medical Center
- WBC, white blood cell
- ddCt, delta-delta cycle threshold
- diabetes mellitus
- endothelial cell dysfunction
- endothelial cells
- gene expression
- qPCR, quantitative polymerase chain reaction
Collapse
|
1459
|
Singh-Mallah G, Nair S, Sandberg M, Mallard C, Hagberg H. The Role of Mitochondrial and Endoplasmic Reticulum Reactive Oxygen Species Production in Models of Perinatal Brain Injury. Antioxid Redox Signal 2019; 31:643-663. [PMID: 30957515 PMCID: PMC6657303 DOI: 10.1089/ars.2019.7779] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
Significance: Perinatal brain injury is caused by hypoxia-ischemia (HI) in term neonates, perinatal arterial stroke, and infection/inflammation leading to devastating long-term neurodevelopmental deficits. Therapeutic hypothermia is the only currently available treatment but is not successful in more than 50% of term neonates suffering from hypoxic-ischemic encephalopathy. Thus, there is an urgent unmet need for alternative or adjunct therapies. Reactive oxygen species (ROS) are important for physiological signaling, however, their overproduction/accumulation from mitochondria and endoplasmic reticulum (ER) during HI aggravate cell death. Recent Advances and Critical Issues: Mechanisms underlying ER stress-associated ROS production have been primarily elucidated using either non-neuronal cells or adult neurodegenerative experimental models. Findings from mature brain cannot be simply transferred to the immature brain. Therefore, age-specific studies investigating ER stress modulators may help investigate ER stress-associated ROS pathways in the immature brain. New therapeutics such as mitochondrial site-specific ROS inhibitors that selectively inhibit superoxide (O2•-)/hydrogen peroxide (H2O2) production are currently being developed. Future Directions: Because ER stress and oxidative stress accentuate each other, a combinatorial therapy utilizing both antioxidants and ER stress inhibitors may prove to be more protective against perinatal brain injury. Moreover, multiple relevant targets need to be identified for targeting ROS before they are formed. The role of organelle-specific ROS in brain repair needs investigation. Antioxid. Redox Signal. 31, 643-663.
Collapse
Affiliation(s)
- Gagandeep Singh-Mallah
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Syam Nair
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
1460
|
Mitochondria Lysine Acetylation and Phenotypic Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:59-70. [PMID: 31452135 DOI: 10.1007/978-981-13-8367-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondria have a central role in cellular metabolism and reversible post-translational modifications regulate activity of mitochondrial proteins. Thanks to advances in proteomics, lysine acetylation has arisen as an important post-translational modification in the mitochondrion. During acetylation an acetyl group is covalently attached to the epsilon amino group in the side chain of lysine residues using acetyl-CoA as the substrate donor. Therefore the positive charge is neutralized, and this can affect the function of proteins thereby regulating enzyme activity, protein interactions, and protein stability. The major deacetylase in mitochondria is SIRT3 whose activity regulates many mitochondrial enzymes. The method of choice for the analysis of acetylated proteins foresees the combination of mass spectrometry-based proteomics with affinity enrichment techniques. Beyond the identification of lysine-acetylated proteins, many studies are moving towards the characterization of acetylated patterns in different diseases. Indeed, modifications in lysine acetylation status can directly alter mitochondrial function and, therefore, be linked to human diseases such as metabolic diseases, cancer, myocardial injury and neurodegenerative diseases. Despite the progress in the characterization of different lysine acetylation sites, additional studies are needed to differentiate the specific changes with a significant biological relevance.
Collapse
|
1461
|
Glossmann HH, Lutz OMD. Metformin and Aging: A Review. Gerontology 2019; 65:581-590. [PMID: 31522175 DOI: 10.1159/000502257] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 01/18/2023] Open
Abstract
Metformin is sometimes proposed to be an "anti-aging" drug, based on preclinical experiments with lower-order organisms and numerous retrospective data on beneficial health outcomes for type 2 diabetics. Large prospective, placebo-controlled trials are planned, in pilot stage or running, to find a new use (or indication) for an aging population. As one of the metformin trials has "frailty" as its endpoint, similar to a trial with a plant-derived senolytic, the latter class of novel anti-aging drugs is briefly discussed. Concerns exist not only for vitamin B12 and B6 deficiencies, but also about whether there are adverse effects of metformin on individuals who try to remain healthy by maintaining cardiovascular fitness via exercise.
Collapse
Affiliation(s)
- Hartmut H Glossmann
- Institute for Biochemical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria,
| | | |
Collapse
|
1462
|
Shin MG, Cha HN, Park S, Kim YW, Kim JY, Park SY. Selenoprotein W deficiency does not affect oxidative stress and insulin sensitivity in the skeletal muscle of high-fat diet-fed obese mice. Am J Physiol Cell Physiol 2019; 317:C1172-C1182. [PMID: 31509445 DOI: 10.1152/ajpcell.00064.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selenoprotein W (SelW) is a selenium-containing protein with a redox motif found abundantly in the skeletal muscle of rodents. Previous in vitro studies suggest that SelW plays an antioxidant role; however, relatively few in vivo studies have addressed the antioxidant role of SelW. Since oxidative stress is a causative factor for the development of insulin resistance in obese subjects, we hypothesized that if SelW plays a role as an antioxidant, SelW deficiency could aggravate the oxidative stress and insulin resistance caused by a high-fat diet. SelW deficiency did not affect insulin sensitivity and H2O2 levels in the skeletal muscle of control diet-fed mice. SelW levels in the skeletal muscle were decreased by high-fat diet feeding for 12 wk. High-fat diet induced obesity and insulin resistance and increased the levels of H2O2 and oxidative stress makers, which were not affected by SelW deficiency. High-fat diet feeding increased the expression of antioxidant enzymes; however, SelW deficiency did not affect the expression levels of antioxidants. These results suggest that SelW does not play a protective role against oxidative stress and insulin resistance in the skeletal muscle of high-fat diet-fed obese mice.
Collapse
Affiliation(s)
- Min-Gyeong Shin
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea.,Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Korea
| | - Hye-Na Cha
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea.,Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Korea
| | - Soyoung Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea.,Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Korea
| | - Yong-Woon Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Jong-Yeon Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea.,Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Korea
| |
Collapse
|
1463
|
Catalpol in Diabetes and its Complications: A Review of Pharmacology, Pharmacokinetics, and Safety. Molecules 2019; 24:molecules24183302. [PMID: 31514313 PMCID: PMC6767014 DOI: 10.3390/molecules24183302] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
This review aimed to provide a general view of catalpol in protection against diabetes and diabetic complications, as well as its pharmacokinetics and safety concerns. The following databases were consulted with the retrieval of more than 100 publications through June 2019: PubMed, Chinese National Knowledge Infrastructure, WanFang Data, and web of science. Catalpol exerts an anti-diabetic effect in different animal models with an oral dosage ranging from 2.5 to 200 mg/kg in rats and 10 to 200 mg/kg in mice. Besides, catalpol may prevent the development of diabetic complications in kidney, heart, central nervous system, and bone. The underlying mechanism may be associated with an inhibition of inflammation, oxidative stress, and apoptosis through modulation of various cellular signaling, such as AMPK/PI3K/Akt, PPAR/ACC, JNK/NF-κB, and AGE/RAGE/NOX4 signaling pathways, as well as PKCγ and Cav-1 expression. The pharmacokinetic profile reveals that catalpol could pass the blood-brain barrier and has a potential to be orally administrated. Taken together, catalpol is a well-tolerated natural compound with promising pharmacological actions in protection against diabetes and diabetic complications via multi-targets, offering a novel scaffold for the development of anti-diabetic drug candidate. Further prospective and well-designed clinical trials will shed light on the potential of clinical usage of catalpol.
Collapse
|
1464
|
Tang G, Duan F, Li W, Wang Y, Zeng C, Hu J, Li H, Zhang X, Chen Y, Tan H. Metformin inhibited Nod-like receptor protein 3 inflammasomes activation and suppressed diabetes-accelerated atherosclerosis in apoE -/- mice. Biomed Pharmacother 2019; 119:109410. [PMID: 31518877 DOI: 10.1016/j.biopha.2019.109410] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 01/08/2023] Open
Abstract
AIMS The present study aimed to investigate the effect of metformin on diabetes-accelerated atherosclerosis and whether Nod-like receptor protein 3 (NLRP3) inflammasome is a target for metformin. MATERIALS AND METHODS ApoE-/- male mice were divided randomly into control, streptozocin-induced diabetes mellitus and metformin groups. Metabolic parameters, atherosclerotic lesion, activation of NLRP3 inflammasomes and related signaling pathways were detected. THP-1-differentiated macrophages were used in in vitro experiments. RESULTS Compared with control mice, increased plasma lipids and proinflammatory interleukin-1β, aggravated macrophage infiltration into the atherosclerotic lesion, and accelerated development of atherosclerosis were observed in diabetic mice, which were associated with the activation of NLRP3 inflammasomes and dysregulation of thioredoxin-1 and thioredoxin-interacting protein. Treatment with metformin alleviated diabetes-induced metabolic disorders and atherosclerosis, as well as NLRP3 inflammasomes activation and dysregulation of thioredoxin-1/thioredoxin-interacting protein. In vitro experiments showed that high glucose induced the accumulation of reactive oxygen species and activated NLRP3 inflammasomes, which was significantly suppressed by treatment with metformin or antioxidant N-acetyl-L-cysteine. Moreover, Compound C, an inhibitor of adenosine 5'-monophosphate-activated protein kinase (AMPK), blocked the anti-inflammatory effect of metformin, indicating that metformin inhibited high glucose-induced NLRP3 inflammasomes activation through AMPK activation. Moreover, high glucose decreased thioredoxin-1 expression and increased thioredoxin-interacting protein expression, which was also reversed by metformin. CONCLUSIONS Metformin inhibited NLRP3 inflammasomes activation and suppressed diabetes-accelerated atherosclerosis in apoE-/- mice, which at least partially through activation of AMPK and regulation of thioredoxin-1/thioredoxin-interacting protein.
Collapse
Affiliation(s)
- Ge Tang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Fengqi Duan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weixuan Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yiqin Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Cheng Zeng
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia Hu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongyu Li
- Laboratory Animal Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuanhong Zhang
- Laboratory Animal Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanming Chen
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, 510630, China.
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Laboratory Animal Center, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
1465
|
Merdzo I, Rutkai I, Sure VNLR, Katakam PVG, Busija DW. Effects of prolonged type 2 diabetes on mitochondrial function in cerebral blood vessels. Am J Physiol Heart Circ Physiol 2019; 317:H1086-H1092. [PMID: 31490734 DOI: 10.1152/ajpheart.00341.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the major characteristics of hyperglycemic states such as type 2 diabetes is increased reactive oxygen species (ROS) generation. Since mitochondria are a major source of ROS, it is vital to understand the involvement of these organelles in the pathogenesis of ROS-mediated conditions. Therefore, we investigated mitochondrial function and ROS production in cerebral blood vessels of 21-wk-old Zucker diabetic fatty obese rats and their lean controls. We have previously shown that in the early stages of insulin resistance, and short periods of type 2 diabetes mellitus, only mild differences exist in mitochondrial function. In the present study, we examined mitochondrial respiration, mitochondrial protein expression, and ROS production in large-surface cerebral arteries. We used 21-wk-old animals exposed to peak glucose levels for 7 wk and compared them with our previous studies on younger diabetic animals. We found that the same segments of mitochondrial respiration (basal respiration and proton leak) were diminished in diabetic groups as they were in younger diabetic animals. Levels of rattin, a rat humanin analog, tended to decrease in the diabetic group but did not reach statistical significance (P = 0.08). Other mitochondrial proteins were unaffected, which might indicate the existence of compensatory mechanisms with extension of this relatively mild form of diabetes. Superoxide levels were significantly higher in large cerebral vessels of diabetic animals compared with the control group. In conclusion, prolonged dietary diabetes leads to stabilization, rather than deterioration, of metabolic status in the cerebral circulation, despite continued overproduction of ROS.NEW & NOTEWORTHY We have characterized for the first time the dynamics of mitochondrial function during the progression of type 2 diabetes mellitus with regard to mitochondrial respiration, protein expression, and reactive oxygen species production. In addition, this is the first measurement of rattin levels in the cerebral vasculature, which could potentially lead to novel treatment options.
Collapse
Affiliation(s)
- Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Pharmacology, University of Mostar, School of Medicine, Mostar, Bosnia and Herzegovina
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Venkata N L R Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
1466
|
Martisova A, Sommerova L, Kuricova K, Podhorec J, Vojtesek B, Kankova K, Hrstka R. AGR2 silencing contributes to metformin-dependent sensitization of colorectal cancer cells to chemotherapy. Oncol Lett 2019; 18:4964-4973. [PMID: 31612008 DOI: 10.3892/ol.2019.10800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
There is growing epidemiological evidence indicating an association between diabetes mellitus and the increased incidence of colorectal cancer (CRC). The preferred initial and most widely used pharmacological agent for the treatment of type 2 diabetes is metformin, which in parallel reduces the risk of CRC and improves patient prognosis. AMP-activated protein kinase (AMPK) appears to be tightly associated with the beneficial metabolic effects of metformin, serving as a cellular energy sensor activated in response to a variety of conditions that deplete cellular energy levels. Such conditions include nutrient starvation (particularly glucose), hypoxia and exposure to toxins that inhibit the mitochondrial respiratory chain complex. The aim of the present study was to determine the effect of metformin on CRC cell lines, with different levels of anterior gradient 2 (AGR2) expression, exposed to 5-fluorouracil (5-FU) and oxaliplatin, alone or in combination with metformin. AGR2 has recently emerged as a factor involved in colon carcinogenesis. In AGR2-knockout cells, markedly higher levels of phosphorylated-AMPK were observed in comparison with control cells transfected with GFP-scrambled guide RNA, which indicated that the presence of AGR2 may interfere with the metformin-dependent activation of AMPK. In addition, metformin in combination with 5-FU and oxaliplatin induced ROS production and attenuated autophagy. This effect was enhanced in AGR2-knockout cells.
Collapse
Affiliation(s)
- Andrea Martisova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Lucia Sommerova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Katarina Kuricova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Jan Podhorec
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Katerina Kankova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic.,Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| |
Collapse
|
1467
|
Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. J Clin Med 2019; 8:jcm8091385. [PMID: 31487953 PMCID: PMC6780404 DOI: 10.3390/jcm8091385] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disorder characterized by hyperglycemia and insulin resistance in which oxidative stress is thought to be a primary cause. Considering that mitochondria are the main source of ROS, we have set out to provide a general overview on how oxidative stress is generated and related to T2D. Enhanced generation of reactive oxygen species (ROS) and oxidative stress occurs in mitochondria as a consequence of an overload of glucose and oxidative phosphorylation. Endoplasmic reticulum (ER) stress plays an important role in oxidative stress, as it is also a source of ROS. The tight interconnection between both organelles through mitochondrial-associated membranes (MAMs) means that the ROS generated in mitochondria promote ER stress. Therefore, a state of stress and mitochondrial dysfunction are consequences of this vicious cycle. The implication of mitochondria in insulin release and the exposure of pancreatic β-cells to hyperglycemia make them especially susceptible to oxidative stress and mitochondrial dysfunction. In fact, crosstalk between both mechanisms is related with alterations in glucose homeostasis and can lead to the diabetes-associated insulin-resistance status. In the present review, we discuss the current knowledge of the relationship between oxidative stress, mitochondria, ER stress, inflammation, and lipotoxicity in T2D.
Collapse
|
1468
|
Helfenberger KE, Castillo AF, Mele PG, Fiore A, Herrera L, Finocchietto P, Podestá EJ, Poderoso C. Angiotensin II stimulation promotes mitochondrial fusion as a novel mechanism involved in protein kinase compartmentalization and cholesterol transport in human adrenocortical cells. J Steroid Biochem Mol Biol 2019; 192:105413. [PMID: 31202858 DOI: 10.1016/j.jsbmb.2019.105413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/10/2019] [Accepted: 06/13/2019] [Indexed: 01/22/2023]
Abstract
In steroid-producing cells, cholesterol transport from the outer to the inner mitochondrial membrane is the first and rate-limiting step for the synthesis of all steroid hormones. Cholesterol can be transported into mitochondria by specific mitochondrial protein carriers like the steroidogenic acute regulatory protein (StAR). StAR is phosphorylated by mitochondrial ERK in a cAMP-dependent transduction pathway to achieve maximal steroid production. Mitochondria are highly dynamic organelles that undergo replication, mitophagy and morphology changes, all processes allowed by mitochondrial fusion and fission, known as mitochondrial dynamics. Mitofusin (Mfn) 1 and 2 are GTPases involved in the regulation of fusion, while dynamin-related protein 1 (Drp1) is the major regulator of mitochondrial fission. Despite the role of mitochondrial dynamics in neurological and endocrine disorders, little is known about fusion/fission in steroidogenic tissues. In this context, the present work aimed to study the role of angiotensin II (Ang II) in protein subcellular compartmentalization, mitochondrial dynamics and the involvement of this process in the regulation of aldosterone synthesis. We demonstrate here that Ang II stimulation promoted the recruitment and activation of PKCε, ERK and its upstream kinase MEK to the mitochondria, all of them essential for steroid synthesis. Moreover, Ang II prompted a shift from punctate to tubular/elongated (fusion) mitochondrial shape, in line with the observation of hormone-dependent upregulation of Mfn2 levels. Concomitantly, mitochondrial Drp1 was diminished, driving mitochondria toward fusion. Moreover, Mfn2 expression is required for StAR, ERK and MEK mitochondrial localization and ultimately for aldosterone synthesis. Collectively, this study provides fresh insights into the importance of hormonal regulation in mitochondrial dynamics as a novel mechanism involved in aldosterone production.
Collapse
Affiliation(s)
- Katia E Helfenberger
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Ana F Castillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Pablo G Mele
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Ana Fiore
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Lucía Herrera
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Paola Finocchietto
- Universidad de Buenos Aires, Facultad de Medicina, Hospital de Clínicas "José de San Martín", Laboratorio del Metabolismo del Oxígeno, Av. Córdoba 2351, C1121ABJ, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Ciudad de Buenos Aires, Argentina
| | - Ernesto J Podestá
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina
| | - Cecilia Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th floor, C1121ABG, Ciudad de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
1469
|
Mitochondrial Structural Changes in the Pathogenesis of Diabetic Retinopathy. J Clin Med 2019; 8:jcm8091363. [PMID: 31480638 PMCID: PMC6780143 DOI: 10.3390/jcm8091363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
At the core of proper mitochondrial functionality is the maintenance of its structure and morphology. Physical changes in mitochondrial structure alter metabolic pathways inside mitochondria, affect mitochondrial turnover, disturb mitochondrial dynamics, and promote mitochondrial fragmentation, ultimately triggering apoptosis. In high glucose condition, increased mitochondrial fragmentation contributes to apoptotic death in retinal vascular and Müller cells. Although alterations in mitochondrial morphology have been detected in several diabetic tissues, it remains to be established in the vascular cells of the diabetic retina. From a mechanistic standpoint, our current work supports the notion that increased expression of fission genes and decreased expression of fusion genes are involved in promoting excessive mitochondrial fragmentation. While mechanistic insights are only beginning to reveal how high glucose alters mitochondrial morphology, the consequences are clearly seen as release of cytochrome c from fragmented mitochondria triggers apoptosis. Current findings raise the prospect of targeting excessive mitochondrial fragmentation as a potential therapeutic strategy for treatment of diabetic retinopathy. While biochemical and epigenetic changes have been reported to be associated with mitochondrial dysfunction, this review focuses on alterations in mitochondrial morphology, and their impact on mitochondrial function and pathogenesis of diabetic retinopathy.
Collapse
|
1470
|
Detterich JA, Liu H, Suriany S, Kato RM, Chalacheva P, Tedla B, Shah PM, Khoo MC, Wood JC, Coates TD, Milne GL, Oh JY, Patel RP, Forman HJ. Erythrocyte and plasma oxidative stress appears to be compensated in patients with sickle cell disease during a period of relative health, despite the presence of known oxidative agents. Free Radic Biol Med 2019; 141:408-415. [PMID: 31279092 PMCID: PMC6750280 DOI: 10.1016/j.freeradbiomed.2019.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/03/2019] [Accepted: 07/03/2019] [Indexed: 01/17/2023]
Abstract
Sickle cell disease (SCD) is a monogenetic disease that results in the formation of hemoglobin S. Due to more rapid oxidation of hemoglobin S due to intracellular heme and adventitious iron in SCD, it has been thought that an inherent property of SCD red cells would be an imbalance in antioxidant defenses and oxidant production. Less deformable and fragile RBC in SCD results in intravascular hemolysis and release of free hemoglobin (PFHb) in the plasma, which might be expected to produce oxidative stress in the plasma. Thus, we aimed to characterize intracellular and vascular oxidative stress in whole blood and plasma samples from adult SCD patients and controls recruited into a large study of SCD at Children's Hospital of Los Angeles. We evaluated the cellular content of metHb and several components of the antioxidant system in RBC as well as oxidation of GSH and Prx-2 oxidation in RBC after challenge with hydroperoxides. Plasma markers included PFHb, low molecular weight protein bound heme (freed heme), hemopexin, isoprostanes, and protein carbonyls. While GSH was slightly lower in SCD RBC, protein carbonyls, NADH, NAD+ and total NADP+ + NADPH were not different. Furthermore, GSH or Prx-2 oxidation was not different after oxidative challenge in SCD vs. Control. Elevated freed heme and PFHb had a significant negative, non-linear association with hemopexin. There appeared to be a threshold effect for hemopexin (200 μg/ml), under which the freed heme rose acutely. Plasma F2-isoprostanes were not significantly elevated in SCD. Despite significant release of Hb and elevation of freed heme in SCD when hemopexin was apparently saturated, there was no clear indication of uncompensated vascular oxidative stress. This somewhat surprising result, suggests that oxidative stress is well compensated in RBCs and plasma during a period of relative health.
Collapse
Affiliation(s)
- Jon A Detterich
- Division of Cardiology, Children's Hospital of Los Angeles, USA.
| | - Honglei Liu
- Division of Cardiology, Children's Hospital of Los Angeles, USA
| | - Silvie Suriany
- Division of Cardiology, Children's Hospital of Los Angeles, USA; Division of Hematology, Children's Hospital of Los Angeles, USA
| | | | | | - Bruke Tedla
- Division of Cardiology, Children's Hospital of Los Angeles, USA
| | - Payal M Shah
- Division of Hematology, Children's Hospital of Los Angeles, USA
| | - Michael C Khoo
- Viterbi School of Engineering, University of Southern California, USA
| | - John C Wood
- Division of Cardiology, Children's Hospital of Los Angeles, USA; Viterbi School of Engineering, University of Southern California, USA
| | - Thomas D Coates
- Division of Hematology, Children's Hospital of Los Angeles, USA
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University, USA
| | - Joo-Yeun Oh
- Department of Pathology and Center for Free Radical Biology, University of Alabama School of Medicine, USA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama School of Medicine, USA
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, USA
| |
Collapse
|
1471
|
Vonica CL, Ilie IR, Socaciu C, Moraru C, Georgescu B, Farcaş A, Roman G, Mureşan AA, Georgescu CE. Lipidomics biomarkers in women with polycystic ovary syndrome (PCOS) using ultra-high performance liquid chromatography-quadrupole time of flight electrospray in a positive ionization mode mass spectrometry. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 79:437-442. [PMID: 31462125 DOI: 10.1080/00365513.2019.1658215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polycystic ovary syndrome (PCOS), characterized by oligo-anovulation and androgen excess is considered a high-risk condition for metabolic disorders. Herein, untargeted metabolomics analysis was applied to women with PCOS, aiming to provide deeper insights into lipidomics biomarkers signature of PCOS, for better diagnosis and management. This was a cross-sectional study in which 15 Caucasian women with PCOS and 15 Caucasian healthy, age-matched women were enrolled. Lipidomics analysis was performed using Ultra-High Performance Liquid Chromatography-Quadrupole Time of Flight Electrospray Mass Spectrometry. Partial Least Squares Discriminant Analysis retrieved the most important discriminative metabolites. Significantly increased levels of triacylglycerol (18:2/18:2/0-18:0) in addition to cholestane-3beta, 5alpha, 6beta-triol (18:0/0:0) and cholestane-5alpha (18:1/0:0) appeared as valuable variables to differentiate subjects with PCOS from controls. Acyl-carnitine 2-hydroxylauroylcarnitine was significantly elevated in PCOS in opposition to decreased phosphocholines metabolites (18:1/18:4, 18:3/18:2), to suggest a metabolic pattern linked to lipid peroxidation. A high fat intake or reduced fat energy consumption during nighttime due to diminished ability to switch to lipid oxidation during fasting time possibly contribute to hypertriglyceridemia found in PCOS. Furthermore, inflammatory mediators including metabolites of the prostaglandin (PG) E2 pathway and oxo-leukotrienes (LT) were increased in patients with PCOS. Potential lipidomics biomarkers were identified that could stratify between women with PCOS and healthy controls. The results show particular alterations in acylglycerols, PGs and LTs and phosphocholines and carnitine metabolites. The lipidomics profiles of PCOS indicate a higher risk of developing metabolic diseases.
Collapse
Affiliation(s)
- Camelia Larisa Vonica
- Department of Diabetes, Nutrition and Metabolic Diseases, Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania.,Department of Endocrinology, Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Ioana Rada Ilie
- Department of Endocrinology, Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania.,Endocrinology Clinical Unit, Cluj County Emergency Hospital , Cluj-Napoca , Romania
| | - Carmen Socaciu
- RTD Center of Applied Biotechnology BIODIATECH, SC Proplanta , Cluj-Napoca , Romania
| | - Corina Moraru
- Department of Chemistry, Biochemistry and Molecular Biology, University of Agricultural Sciences and Veterinary Medicine , Cluj-Napoca , Romania
| | - Bogdan Georgescu
- Department of Ecology, Environmental Protection and Zoology, University of Agricultural Sciences and Veterinary Medicine , Cluj-Napoca , Romania
| | - Anca Farcaş
- Department of Internal Medicine I Cardiology and Gastroenterology, Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Gabriela Roman
- Department of Diabetes, Nutrition and Metabolic Diseases, Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Andrada Alina Mureşan
- Department of Diabetes, Nutrition and Metabolic Diseases, Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Carmen Emanuela Georgescu
- Department of Endocrinology, Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania.,Endocrinology Clinical Unit, Cluj County Emergency Hospital , Cluj-Napoca , Romania
| |
Collapse
|
1472
|
The Mitochondrial Antioxidant SS-31 Modulates Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy in Type 2 Diabetes. J Clin Med 2019; 8:jcm8091322. [PMID: 31466264 PMCID: PMC6780723 DOI: 10.3390/jcm8091322] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction has been shown to play a central role in the pathophysiology of type 2 diabetes (T2D), and mitochondria-targeted agents such as SS-31 are emerging as a promising strategy for its treatment. We aimed to study the effects of SS-31 on leukocytes from T2D patients by evaluating oxidative stress, endoplasmic reticulum (ER) stress and autophagy. Sixty-one T2D patients and 53 controls were included. Anthropometric and analytical measurements were performed. We also assessed reactive oxygen species (ROS) production, calcium content, the expression of ER stress markers GRP78, CHOP, P-eIF2α, and autophagy-related proteins Beclin1, LC3 II/I, and p62 in leukocytes from T2D and control subjects treated or not with SS-31. Furthermore, we have evaluated the action of SS-31 on leukocyte-endothelium interactions. T2D patients exhibited elevated ROS concentration, calcium levels and presence of ER markers (GRP78 and CHOP gene expression, and GRP78 and P-eIF2α protein expression), all of which were reduced by SS-31 treatment. SS-31 also led to a drop in BECN1 gene expression, and Beclin1 and LC3 II/I protein expression in T2D patients. In contrast, the T2D group displayed reduced p62 protein levels that were restored by SS-31. SS-20 (with non-antioxidant activity) did not change any analyzed parameter. In addition, SS-31 decreased rolling flux and leukocyte adhesion, and increased rolling velocity in T2D patients. Our findings suggest that SS-31 exerts potentially beneficial effects on leukocytes of T2D patients modulating oxidative stress and autophagy, and ameliorating ER stress.
Collapse
|
1473
|
Zhang J, He Y, Jiang X, Jiang H, Shen J. Nature brings new avenues to the therapy of central nervous system diseases—An overview of possible treatments derived from natural products. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1332-1367. [DOI: 10.1007/s11427-019-9587-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
|
1474
|
Plotnikov EY, Zorov DB. Pros and Cons of Use of Mitochondria-Targeted Antioxidants. Antioxidants (Basel) 2019; 8:antiox8080316. [PMID: 31426455 PMCID: PMC6719234 DOI: 10.3390/antiox8080316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial targeting is a novel strategy, which addresses pathologies originating from mitochondrial dysfunction. Here, one of the most potent therapeutics arises from the group of mitochondria-targeted antioxidants, which specifically quench mitochondrial reactive oxygen species (ROS). They show very high efficacy in the treatment of a diverse array of pathologies encountered in this Special Issue of Antioxidants. However, despite very encouraging results in the use of mitochondria-targeted antioxidants, the mechanistic principle of delivering these agents is, to some extent, counterproductive to the goal of selectively treating a population of damaged mitochondria. The main problem that arises is that injured mitochondria may carry a lower membrane potential when compared with normal ones and as a result, injured mitochondria are capable of taking up less therapeutic antioxidants than healthy mitochondria. Another problem is that the intracellular activity of mitochondrial ROS differs from cytosolic ROS in that they carry specific intracellular functions which are maintained at a delicate equilibrium and which may be disturbed under careless use of antioxidant doses. Consequently, understanding the overall benefit of targeting dysfunctional mitochondria in pathological tissue requires furthering the development of alternative techniques to target mitochondria.
Collapse
Affiliation(s)
- Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| | - Dmitry B Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| |
Collapse
|
1475
|
Sankrityayan H, Oza MJ, Kulkarni YA, Mulay SR, Gaikwad AB. ER stress response mediates diabetic microvascular complications. Drug Discov Today 2019; 24:2247-2257. [PMID: 31430543 DOI: 10.1016/j.drudis.2019.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022]
Abstract
Endoplasmic reticulum (ER) homeostasis orchestrates the folding, modification, and trafficking of secretory and membrane proteins to the Golgi compartment, thus governing cellular functions. Alterations in ER homeostasis result in the activation of signaling pathways, such as the unfolded protein response (UPR), to regain ER homeostasis. Nevertheless, failure of UPR leads to activation of autophagy-mediated cell death. Several recent studies emphasized the association of the ER stress (ERS) response with the initiation and progression of diabetes. In this review, we highlight the contribution of the ERS response, such as UPR and autophagy, in the initiation and progression of diabetes and associated microvascular complications, including diabetic nephropathy (DN), retinopathy, and neuropathy, in various experimental models, as well as in humans. We highlight the ERS as a putative therapeutic target for the treatment of diabetic microvascular complications and, thus, the urgent need for the development of improved synthetic and natural inhibitors of ERS.
Collapse
Affiliation(s)
- Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Manisha J Oza
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India; SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
1476
|
Zhang J, Bao Y, Zhou X, Zheng L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod Biol Endocrinol 2019; 17:67. [PMID: 31420039 PMCID: PMC6698037 DOI: 10.1186/s12958-019-0509-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent hormonal disorder of premenopausal women worldwide and is characterized by reproductive, endocrine, and metabolic abnormalities. The clinical manifestations of PCOS include oligomenorrhea or amenorrhea, hyperandrogenism, ovarian polycystic changes, and infertility. Women with PCOS are at an increased risk of suffering from type 2 diabetes; me\tabolic syndrome; cardiovascular events, such as hypertension, dyslipidemia; gynecological diseases, including infertility, endometrial dysplasia, endometrial cancer, and ovarian malignant tumors; pregnancy complications, such as premature birth, low birthweight, and eclampsia; and emotional and mental disorders in the future. Although numerous studies have focused on PCOS, the underlying pathophysiological mechanisms of this disease remain unclear. Mitochondria play a key role in energy production, and mitochondrial dysfunction at the cellular level can affect systemic metabolic balance. The recent wide acceptance of functional mitochondrial disorders as a correlated factor of numerous diseases has led to the presupposition that abnormal mitochondrial metabolic markers are associated with PCOS. Studies conducted in the past few years have confirmed that increased oxidative stress is associated with the progression and related complications of PCOS and have proven the relationship between other mitochondrial dysfunctions and PCOS. Thus, this review aims to summarize and discuss previous and recent findings concerning the relationship between mitochondrial dysfunction and PCOS.
Collapse
Affiliation(s)
- Jingshun Zhang
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin China
| | - Yigang Bao
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin China
| | - Xu Zhou
- 0000 0004 1760 5735grid.64924.3dCollege of Animal Sciences, Jilin University, Changchun, Jilin China
| | - Lianwen Zheng
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin China
| |
Collapse
|
1477
|
Abstract
PURPOSE OF REVIEW This review summarizes the alterations in the β-cell observed in type 2 diabetes (T2D), focusing on changes in β-cell identity and mass and changes associated with metabolism and intracellular signaling. RECENT FINDINGS In the setting of T2D, β-cells undergo changes in gene expression, reverting to a more immature state and in some cases transdifferentiating into other islet cell types. Alleviation of metabolic stress, ER stress, and maladaptive prostaglandin signaling could improve β-cell function and survival. The β-cell defects leading to T2D likely differ in different individuals and include variations in β-cell mass, development, β-cell expansion, responses to ER and oxidative stress, insulin production and secretion, and intracellular signaling pathways. The recent recognition that some β-cells undergo dedifferentiation without dying in T2D suggests strategies to revive these cells and rejuvenate their functionality.
Collapse
Affiliation(s)
- Ashley A Christensen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Ave, MRB IV 7465, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, 37232, USA.
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
1478
|
Role of Endoplasmic Reticulum and Oxidative Stress Parameters in the Pathophysiology of Disease-Related Malnutrition in Leukocytes of an Outpatient Population. Nutrients 2019; 11:nu11081838. [PMID: 31398886 PMCID: PMC6723381 DOI: 10.3390/nu11081838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 01/22/2023] Open
Abstract
Cellular pathways such as inflammation or oxidative stress are the cause and triggers of disease-related malnutrition (DRM), but the influence of these markers on endoplasmic reticulum (ER) stress is unknown. The objective of this study was to analyze the relationship between mitochondrial function and ER stress parameters in a DRM population. The study population was composed of 82 outpatient subjects, of whom 45 were diagnosed with DRM and 37 were confirmed to be normonourished according to the American Society for Parenteral and Enteral Nutrition ASPEN criteria. We evaluated anthropometrical and biochemical parameters, pro-inflammatory cytokines in serum. Oxidative and ER stress markers were analyzed in leukocytes. DRM patients showed significant reductions in albumin and transferrin concerning the normonourished group, and also displayed higher levels of hsCRP, IL6, and TNFα, and the soluble adhesion molecules VCAM-1 and ICAM-1. Besides, oxygen consumption and mitochondrial membrane potential were reduced and Radical Oxygen Species ROS production was enhanced in DRM patients. In the case of ER markers, protein and mRNA expression revealed that CHOP, ATF6, and the P-eIF2α signal were enhanced in malnourished patients compared to control subjects. Correlation studies supported a relationship between weight loss and increased inflammation, mitochondrial dysfunction, and compromised function of the ER. Our results demonstrate that ER stress signaling pathways are influenced by inflammation and mitochondrial function in the leukocytes of a DRM population.
Collapse
|
1479
|
Lipid profile of cerebrospinal fluid in multiple sclerosis patients: a potential tool for diagnosis. Sci Rep 2019; 9:11313. [PMID: 31383928 PMCID: PMC6683197 DOI: 10.1038/s41598-019-47906-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/25/2019] [Indexed: 11/09/2022] Open
Abstract
Multiple sclerosis (MS) is a complex multifactorial neuropathology. Although its etiology remains unclear, it has been demonstrated that the immune system attacks myelin, leading to demyelination and axonal damage. The involvement of lipids as one of the main components of myelin sheaths in MS and other demyelinating diseases has been postulated. However, it is still a matter of debate whether specific alteration patterns exist over the disease course. Here, using a lipidomic approach, we demonstrated that, at the time of diagnosis, the cerebrospinal fluid of MS patients presented differences in 155 lipid species, 47 of which were identified. An initial hierarchical clusterization was used to classify MS patients based on the presence of 25 lipids. When a supervised method was applied in order to refine this classification, a lipidomic signature was obtained. This signature was composed of 15 molecules belonging to five different lipid families including fatty acids (FAs). An FA-targeted approach revealed differences in two members of this family: 18:3n3 and 20:0 (arachidic acid). These results reveal a CSF lipidomic signature in MS patients at the time of diagnosis that might be considered as a potential diagnostic tool.
Collapse
|
1480
|
Ma Y, Chen Z, Tao Y, Zhu J, Yang H, Liang W, Ding G. Increased mitochondrial fission of glomerular podocytes in diabetic nephropathy. Endocr Connect 2019; 8:1206-1212. [PMID: 31349216 PMCID: PMC6709540 DOI: 10.1530/ec-19-0234] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
AIMS Previous studies showed that abnormal mitochondrial structure and function were involved in the pathological process of diabetic nephropathy (DN). The dynamic mitochondrial processes, including fusion and fission, maintain the mass and quantity of mitochondria. Podocyte injury is a critical factor in the development and progression of DN. The present study evaluated the mitochondrial fission of podocytes in patients with DN. METHODS We recruited 31 patients with biopsy-confirmed DN. A quantitative analysis of the mitochondrial morphology was conducted with electron microscopy using a computer-assisted morphometric analysis application to calculate the aspect ratio values. Immunofluorescence assays were used to evaluate protein colocalization in the glomeruli of patients. RESULTS The urine protein level was significantly increased in DN patients compared to non-DN patients (P < 0.001), and the mitochondria in the podocytes from DN patients were more fragmentated than those from patients without DN. The mitochondrial aspect ratio values were negatively correlated with the proteinuria levels (r = -0.574, P = 0.01), and multiple regression analysis verified that the mitochondrial aspect ratio was significantly and independently associated with the urine protein level (β = -0.519, P = 0.007). In addition, Drp1, a mitochondrial fission factor, preferentially combines with AKAP1, which is located in the mitochondrial membrane. CONCLUSIONS In the podocytes of DN patients, mitochondrial fragmentation was increased, and mitochondrial aspect ratio values were correlated with the proteinuria levels. The AKAP1-Drp1 pathway may contribute to mitochondrial fission in the pathogenesis of DN.
Collapse
Affiliation(s)
- Yiqiong Ma
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yu Tao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Jili Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Hongxia Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Correspondence should be addressed to G Ding:
| |
Collapse
|
1481
|
Marín-Royo G, Rodríguez C, Le Pape A, Jurado-López R, Luaces M, Antequera A, Martínez-González J, Souza-Neto FV, Nieto ML, Martínez-Martínez E, Cachofeiro V. The role of mitochondrial oxidative stress in the metabolic alterations in diet-induced obesity in rats. FASEB J 2019; 33:12060-12072. [PMID: 31370681 DOI: 10.1096/fj.201900347rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The impact of the mitochondria-targeted antioxidant MitoQ was evaluated in the metabolic alterations and the adipose tissue remodeling associated with obesity. Male Wistar rats were fed either a high-fat diet (HFD; 35% fat) or a standard diet (3.5% fat) for 7 wk and treated with MitoQ (200 µM). A proteomic analysis of visceral adipose tissue from patients with obesity and patients without obesity was performed. MitoQ partially prevented the increase in body weight, adiposity, homeostasis model assessment index, and adipose tissue remodeling in HFD rats. It also ameliorated protein level changes of factors involved in insulin signaling observed in adipose tissue of obese rats: reductions in adiponectin and glucose transporter 4 (GLUT 4) and increases in dipeptidylpeptidase 4, suppressor of cytokine signaling 3 (SOCS3), and insulin receptor substrate 1 phosphorylation. MitoQ prevented down-regulation of adiponectin and GLUT 4 and increases in SOCS3 levels in a TNF-α-induced insulin-resistant 3T3-L1 adipocyte model. MitoQ also ameliorated alterations in mitochondrial proteins observed in obese rats: increases in cyclophylin F and carnitine palmitoyl transferase 1A and reductions in mitofusin1, peroxiredoxin 4, and fumarate hydratase. The proteomic analysis of the visceral adipose tissue from patients with obesity show alterations in mitochondrial proteins similar to those observed in obese rats. Therefore, the data show the beneficial effect of MitoQ in the metabolic dysfunction induced by obesity.-Marín-Royo, G., Rodríguez, C., Le Pape, A., Jurado-López, R., Luaces, M., Antequera, A., Martínez-González, J., Souza-Neto, F. V., Nieto, M. L., Martínez-Martínez, E., Cachofeiro, V. The role of mitochondrial oxidative stress in the metabolic alterations in diet-induced obesity in rats.
Collapse
Affiliation(s)
- Gema Marín-Royo
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Cristina Rodríguez
- Institut de Recerca del Hospital de la Santa Creu i Sant Pau, Instituto de Investigaciones Biomédicas (IIB)-Sant Pau, Barcelona, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Aliaume Le Pape
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Raquel Jurado-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María Luaces
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, Madrid, Spain
| | - Alfonso Antequera
- Surgery Department, St. Bernard's Hospital, Gibraltar, United Kingdom
| | - José Martínez-González
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Biomédicas de Barcelona (IIBB) Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigaciones Biomédicas (IIB)-Sant Pau, Barcelona, Spain
| | - Francisco V Souza-Neto
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María Luisa Nieto
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Valladolid, Valladolid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
1482
|
Liu Q, Liu H, Bai H, Huang W, Zhang R, Tan J, Guan L, Fan P. Association of SOD2 A16V and PON2 S311C polymorphisms with polycystic ovary syndrome in Chinese women. J Endocrinol Invest 2019; 42:909-921. [PMID: 30607774 DOI: 10.1007/s40618-018-0999-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the relationship between superoxide dismutase 2 (SOD2) A16V and paraoxonase 2 (PON2) S311C gene variants and the risk of polycystic ovary syndrome (PCOS) and evaluate the effects of the genotypes on clinical, hormonal, metabolic and oxidative stress indexes in Chinese women. METHODS This is a cross-sectional study of 932 patients with PCOS and 745 control women. For the clinical and metabolic association study of genotypes, 631 patients and 492 controls were included after excluding the subjects with interferential factors. Genotypes were determined by polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis. Serum total oxidant status, total antioxidant capacity (T-AOC), oxidative stress index and malondialdehyde (MDA) levels, and clinical and metabolic parameters were also analyzed. RESULTS The prevalence of the A allele of SOD2 A16V polymorphism was significantly greater in patients with PCOS than in control subjects. Genotype (AA + AV) remained a significant predictor for PCOS in prognostic models including age, body mass index, insulin resistance index, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides (TGs) as covariates. Patients carrying the A allele had significantly higher serum luteinizing hormone (LH) levels, and the ratio of LH to follicle-stimulating hormone compared with patients with the VV genotype. We also showed that patients carrying the C allele of the PON2 S311C polymorphism had lower T-AOC compared with patients carrying the SS genotype. However, no significant differences were observed in the frequencies of the S311C genotypes and alleles of the PON2 gene between PCOS and control groups. CONCLUSION The SOD2 A16V, but not PON2 S311C, polymorphism may be one of the genetic determinants for PCOS in Chinese women.
Collapse
Affiliation(s)
- Q Liu
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - H Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - H Bai
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - W Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - R Zhang
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - J Tan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - L Guan
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - P Fan
- Laboratory of Genetic Disease and Perinatal Medicine, West China Second University Hospital, SichuanUniversity, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
1483
|
Influence of metabolic syndrome on female fertility and in vitro fertilization outcomes in PCOS women. Am J Obstet Gynecol 2019; 221:138.e1-138.e12. [PMID: 30910544 DOI: 10.1016/j.ajog.2019.03.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE With a high incidence of insulin resistance, central obesity and dyslipidemia, women with polycystic ovary syndrome are susceptible to metabolic syndrome (MetS). Our objective was to explore whether metabolic syndrome had an effect on overall female fertility and in vitro fertilization outcomes in infertile women with polycystic ovary syndrome. STUDY DESIGN This was a secondary analysis of a multicenter randomized trial in 1508 women with polycystic ovary syndrome, which was originally designed to compare the live birth rate after fresh-embryo transfer vs frozen embryo transfer (Frefro-PCOS). At baseline, metabolic parameters, including body mass index, waist and hip circumference, blood pressure, lipid profile, fasting, and 2 hour glucose and insulin levels after a 75 g oral glucose tolerance test were measured. All subjects were divided into a metabolic syndrome group (metabolic syndrome) and absence of metabolic syndrome group (nonmetabolic syndrome) according to diagnostic criteria. Descriptive statistics and logistic regression models tested the association between metabolic syndrome and overall fertility and in vitro fertilization cycle stimulation characteristics and clinical outcomes. RESULTS Metabolic syndrome was identified in 410 of 1508 infertile women with polycystic ovary syndrome (27.2%). Patients with metabolic syndrome had longer infertility duration (4.0 ± 2.2 vs 3.7 ± 2.2, P = .004) compared with those without metabolic syndrome. During ovarian stimulation, those with metabolic syndrome required significantly higher and longer doses of gonadotropin and had lower peak estradiol level, fewer retrieved oocytes, available embryos, a lower oocyte utilization rate, and ovarian hyperstimulation syndrome than those with nonmetabolic syndrome. The cumulative live birth rate did not show a significant between-group difference (57.8% vs 62.2%, P = .119). Multivariate logistic regression analysis adjusted for age, duration of infertility, body mass index, thyroid-stimulating hormone, metabolic syndrome group, homeostatic model assessment of insulin resistance, metformin utilization, number of available embryos, and embryos transferred showed that the number of embryos transferred and the number of available embryos were positively but metabolic syndrome negatively associated with the cumulative live birth rate (odds ratio, 2.18, 1.10, and 0.70, respectively, P < .05). CONCLUSION Women with polycystic ovary syndrome with metabolic syndrome have a negative impact from female fecundity, and this suggests an adverse effect on in vitro fertilization cycle stimulation characteristics and clinical outcomes.
Collapse
|
1484
|
Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabò I, Zoratti M. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 2019; 181:111557. [PMID: 31374419 DOI: 10.1016/j.ejmech.2019.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Andrea Mattarei
- Dept. Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Martina La Spina
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Michele Azzolini
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Sofia Parrasia
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biology, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
1485
|
Kim H, Bae YU, Jeon JS, Noh H, Park HK, Byun DW, Han DC, Ryu S, Kwon SH. The circulating exosomal microRNAs related to albuminuria in patients with diabetic nephropathy. J Transl Med 2019; 17:236. [PMID: 31331349 PMCID: PMC6647278 DOI: 10.1186/s12967-019-1983-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/12/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is associated with high risk of cardiovascular disease and mortality. Exosomal microRNAs (miRNAs) regulate gene expression in a variety of tissues and play important roles in the pathology of various diseases. We hypothesized that the exosomal miRNA profile would differ between DN patients and patients without nephropathy. METHODS We prospectively enrolled 74 participants, including healthy volunteers (HVs), diabetic patients without nephropathy, and those with DN. The serum exosomal miRNA profiles of participants were examined using RNA sequencing. RESULTS The expression levels of 107 miRNAs differed between HVs and patients without DN, whereas the expression levels of 95 miRNAs differed between HVs and patients with DN. Among these miRNAs, we found 7 miRNAs (miR-1246, miR-642a-3p, let-7c-5p, miR-1255b-5p, let-7i-3p, miR-5010-5p, miR-150-3p) that were uniquely up-regulated in DN patients compared to HVs, and miR-4449 that was highly expressed in DN patients compared to patients without DN. A pathway analysis revealed that these eight miRNAs are likely involved in MAPK signaling, integrin function in angiogenesis, and regulation of the AP-1 transcription factor. Moreover, they were all significantly correlated with the degree of albuminuria. CONCLUSIONS Patients with DN have a different serum exosomal miRNA profile compared to HVs. These miRNAs may be promising candidates for the diagnosis and treatment of DN and cardiovascular disease.
Collapse
Affiliation(s)
- Hyoungnae Kim
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea.,Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, South Korea
| | - Yun-Ui Bae
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Chonan, South Korea
| | - Jin Seok Jeon
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea.,Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, South Korea
| | - Hyunjin Noh
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea.,Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, South Korea
| | - Hyeong Kyu Park
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea
| | - Dong Won Byun
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea
| | - Dong Cheol Han
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea.,Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, South Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Chonan, South Korea. .,Soonchunhyang Institute of Med-bio Sciences (SIMS) and Laboratory of Pathology, Department of Medicine, Soonchunhyang University, Chonan, 336-745, South Korea.
| | - Soon Hyo Kwon
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea. .,Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, South Korea.
| |
Collapse
|
1486
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Role of Cardiolipin in Mitochondrial Function and Dynamics in Health and Disease: Molecular and Pharmacological Aspects. Cells 2019; 8:cells8070728. [PMID: 31315173 PMCID: PMC6678812 DOI: 10.3390/cells8070728] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022] Open
Abstract
In eukaryotic cells, mitochondria are involved in a large array of metabolic and bioenergetic processes that are vital for cell survival. Phospholipids are the main building blocks of mitochondrial membranes. Cardiolipin (CL) is a unique phospholipid which is localized and synthesized in the inner mitochondrial membrane (IMM). It is now widely accepted that CL plays a central role in many reactions and processes involved in mitochondrial function and dynamics. Cardiolipin interacts with and is required for optimal activity of several IMM proteins, including the enzyme complexes of the electron transport chain (ETC) and ATP production and for their organization into supercomplexes. Moreover, CL plays an important role in mitochondrial membrane morphology, stability and dynamics, in mitochondrial biogenesis and protein import, in mitophagy, and in different mitochondrial steps of the apoptotic process. It is conceivable that abnormalities in CL content, composition and level of oxidation may negatively impact mitochondrial function and dynamics, with important implications in a variety of pathophysiological situations and diseases. In this review, we focus on the role played by CL in mitochondrial function and dynamics in health and diseases and on the potential of pharmacological modulation of CL through several agents in attenuating mitochondrial dysfunction.
Collapse
Affiliation(s)
- Giuseppe Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy.
| | | | - Francesca M Ruggiero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy.
| |
Collapse
|
1487
|
Tobore TO. Towards a comprehensive understanding of the contributions of mitochondrial dysfunction and oxidative stress in the pathogenesis and pathophysiology of Huntington's disease. J Neurosci Res 2019; 97:1455-1468. [DOI: 10.1002/jnr.24492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/06/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
|
1488
|
Neufeld EB, Sato M, Gordon SM, Durbhakula V, Francone N, Aponte A, Yilmaz G, Sviridov D, Sampson M, Tang J, Pryor M, Remaley AT. ApoA-I-Mediated Lipoprotein Remodeling Monitored with a Fluorescent Phospholipid. BIOLOGY 2019; 8:E53. [PMID: 31336888 PMCID: PMC6784057 DOI: 10.3390/biology8030053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023]
Abstract
We describe simple, sensitive and robust methods to monitor lipoprotein remodeling and cholesterol and apolipoprotein exchange, using fluorescent Lissamine Rhodamine B head-group tagged phosphatidylethanolamine (*PE) as a lipoprotein reference marker. Fluorescent Bodipy cholesterol (*Chol) and *PE directly incorporated into whole plasma lipoproteins in proportion to lipoprotein cholesterol and phospholipid mass, respectively. *Chol, but not *PE, passively exchanged between isolated plasma lipoproteins. Fluorescent apoA-I (*apoA-I) specifically bound to high-density lipoprotein (HDL) and remodeled *PE- and *Chol-labeled synthetic lipoprotein-X multilamellar vesicles (MLV) into a pre-β HDL-like particle containing *PE, *Chol, and *apoA-I. Fluorescent MLV-derived *PE specifically incorporated into plasma HDL, whereas MLV-derived *Chol incorporation into plasma lipoproteins was similar to direct *Chol incorporation, consistent with apoA-I-mediated remodeling of fluorescent MLV to HDL with concomitant exchange of *Chol between lipoproteins. Based on these findings, we developed a model system to study lipid transfer by depositing fluorescent *PE and *Chol-labeled on calcium silicate hydrate crystals, forming dense lipid-coated donor particles that are readily separated from acceptor lipoprotein particles by low-speed centrifugation. Transfer of *PE from donor particles to mouse plasma lipoproteins was shown to be HDL-specific and apoA-I-dependent. Transfer of donor particle *PE and *Chol to HDL in whole human plasma was highly correlated. Taken together, these studies suggest that cell-free *PE efflux monitors apoA-I functionality.
Collapse
Affiliation(s)
- Edward B Neufeld
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Masaki Sato
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott M Gordon
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vinay Durbhakula
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Francone
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angel Aponte
- Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gizem Yilmaz
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Denis Sviridov
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maureen Sampson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jingrong Tang
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Milton Pryor
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
1489
|
Kostyniuk DJ, Marandel L, Jubouri M, Dias K, de Souza RF, Zhang D, Martyniuk CJ, Panserat S, Mennigen JA. Profiling the rainbow trout hepatic miRNAome under diet-induced hyperglycemia. Physiol Genomics 2019; 51:411-431. [PMID: 31282806 DOI: 10.1152/physiolgenomics.00032.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Carnivorous rainbow trout exhibit prolonged postprandial hyperglycemia when fed a diet exceeding 20% carbohydrate content. This poor capacity to utilize carbohydrates has led to rainbow trout being classified as "glucose-intolerant" (GI). The metabolic phenotype has spurred research to identify the underlying cellular and molecular mechanisms of glucose intolerance, largely because carbohydrate-rich diets provide economic and ecological advantages over traditionally used fish meal, considered unsustainable for rainbow trout aquaculture operations. Evidence points to a contribution of hepatic intermediary carbohydrate and lipid metabolism, as well as upstream insulin signaling. Recently, microRNAs (miRNAs), small noncoding RNAs acting as negative posttranscriptional regulators affecting target mRNA stability and translation, have emerged as critical regulators of hepatic control of glucose-homeostasis in mammals, revealing that dysregulated hepatic miRNAs might play a role in organismal hyperglycemia in metabolic disease. To determine whether hepatic regulatory miRNA networks may contribute to GI in rainbow trout, we induced prolonged postprandial hyperglycemia in rainbow trout by using a carbohydrate-rich diet and profiled genome-wide hepatic miRNAs in hyperglycemic rainbow trout compared with fasted trout and trout fed a diet devoid of carbohydrates. Using small RNA next-generation sequencing and real-time RT-PCR validation, we identified differentially regulated hepatic miRNAs between these groups and used an in silico approach to predict bona fide mRNA targets and enriched pathways. Diet-induced hyperglycemia resulted in differential regulation of hepatic miRNAs compared with fasted fish. Some of the identified miRNAs, such as miRNA-27b-3p and miRNA-200a-3p, are known to be responsive to hyperglycemia in the liver of hyperglycemic glucose-tolerant fish and mammals, suggesting an evolutionary conserved regulation. Using Gene Ontology term-based enrichment analysis, we identify intermediate carbohydrate and lipid metabolism and insulin signaling as potential targets of posttranscriptional regulation by hyperglycemia-regulated miRNAs and provide correlative expression analysis of specific predicted miRNA-target pairs. This study identifies hepatic miRNAs in rainbow trout that exhibit differential postprandial expression in response to diets with different carbohydrate content and predicts posttranscriptionally regulated target mRNAs enriched for pathways involved in glucoregulation. Together, these results provide a framework for testable hypotheses of functional involvement of specific hepatic miRNAs in GI in rainbow trout.
Collapse
Affiliation(s)
| | - Lucie Marandel
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Mais Jubouri
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Karine Dias
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Robson F de Souza
- Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dapeng Zhang
- Department of Biology, Saint Louis University, Saint Louis, Missouri
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Stéphane Panserat
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
1490
|
Lyu X, Zhang M, Li G, Cai Y, Li G, Qiao Q. Interleukin-6 production mediated by the IRE1-XBP1 pathway confers radioresistance in human papillomavirus-negative oropharyngeal carcinoma. Cancer Sci 2019; 110:2471-2484. [PMID: 31187548 PMCID: PMC6676107 DOI: 10.1111/cas.14094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 06/05/2019] [Indexed: 12/24/2022] Open
Abstract
Endoplasmic reticulum stress (ERS) plays a key role in the pathogenesis and development of tumors and protects tumor cells from radiation damage and drug-induced stress. We previously demonstrated that EGFR confers radioresistance in human papillomavirus (HPV)-negative human oropharyngeal carcinoma by activating ERS signaling through PERK and IRE1α. In addition, PERK confers radioresistance by activating the inflammatory cytokine NF-κB. However, the effect of IRE1 on radiosensitivity has not yet been fully elucidated. Here, we clarified that IRE1 overexpression was associated with poor outcome in HPV-negative patients treated with radiotherapy (P = 0.0001). In addition, a significantly higher percentage of radioresistant HPV-negative patients than radiosensitive HPV-negative patients exhibited high IRE expression (66.7% vs 27.8%, respectively; P = 0.001). Silencing IRE1 and XBP1 increased DNA double-strand break (DSB) and radiation-induced apoptosis, thereby increasing the radiosensitivity of HPV-negative oropharyngeal carcinoma cells. IRE1-XBP1 silencing also inhibited radiation-induced IL-6 expression at both the RNA and protein levels. The regulatory effect of IRE1-XBP1 silencing on DNA DSB-induced and radiation-induced apoptosis was inhibited by pretreatment with IL-6. These data indicate that IRE1 regulates radioresistance in HPV-negative oropharyngeal carcinoma through IL-6 activation, enhancing X-ray-induced DNA DSB and cell apoptosis.
Collapse
Affiliation(s)
- Xintong Lyu
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao Zhang
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guangqi Li
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiru Cai
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Li
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiao Qiao
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
1491
|
Wang S, Zhao Z, Fan Y, Zhang M, Feng X, Lin J, Hu J, Cheng Z, Sun C, Liu T, Xiong Z, Yang Z, Wang H, Sun D. Mst1 inhibits Sirt3 expression and contributes to diabetic cardiomyopathy through inhibiting Parkin-dependent mitophagy. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1905-1914. [DOI: 10.1016/j.bbadis.2018.04.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
|
1492
|
Turkson S, Kloster A, Hamilton PJ, Neigh GN. Neuroendocrine drivers of risk and resilience: The influence of metabolism & mitochondria. Front Neuroendocrinol 2019; 54:100770. [PMID: 31288042 PMCID: PMC6886586 DOI: 10.1016/j.yfrne.2019.100770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The manifestation of risk versus resilience has been considered from varying perspectives including genetics, epigenetics, early life experiences, and type and intensity of the challenge with which the organism is faced. Although all of these factors are central to determining risk and resilience, the current review focuses on what may be a final common pathway: metabolism. When an organism is faced with a perturbation to the environment, whether internal or external, appropriate energy allocation is essential to resolving the divergence from equilibrium. This review examines the potential role of metabolism in the manifestation of stress-induced neural compromise. In addition, this review details the current state of knowledge on neuroendocrine factors which are poised to set the tone of the metabolic response to a systemic challenge. The goal is to provide an essential framework for understanding stress in a metabolic context and appreciation for key neuroendocrine signals.
Collapse
Affiliation(s)
- Susie Turkson
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Alix Kloster
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Peter J Hamilton
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
1493
|
Mendy A, Gopal R, Alcorn JF, Forno E. Reduced mortality from lower respiratory tract disease in adult diabetic patients treated with metformin. Respirology 2019; 24:646-651. [PMID: 30761687 PMCID: PMC6579707 DOI: 10.1111/resp.13486] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Chronic lower respiratory diseases (CLRD) increase the risk of type 2 diabetes, which in turn may worsen lung function. Metformin, a common antidiabetic with anti-inflammatory and antioxidant properties, may improve respiratory outcomes. Therefore, we examined the association of metformin use with the risk of mortality from CLRD. METHODS We analysed data from the National Health and Nutrition Examination Survey during 1988-1994 and 1999-2010 for participants aged 40 years or older who had diabetes and were followed up for mortality through 2011. Information on prescription medicine was collected at baseline and CLRD-related mortality during follow-up was defined using the 10th Revision of the International Classification of Diseases (ICD-10). Cox proportional hazards modelling was used to determine the mortality hazard ratio (HR) associated with metformin use, adjusting for relevant covariates. RESULTS A total of 5266 participants with a median follow-up of 6.1 years were included. The prevalence of metformin use was 31.9% and 1869 participants died during follow-up, including 72 of CLRD. In the adjusted Cox proportional regression analysis, metformin was associated with a decreased risk of CLRD mortality in the overall population (HR: 0.39, 95% CI: 0.15-0.99) and among participants with baseline CLRD (HR: 0.30, 95% CI: 0.10-0.93), after adjusting for age, gender, race/ethnicity, cigarette smoking, body mass index, current asthma and chronic obstructive pulmonary disease (COPD), insulin and other diabetic medications, and glycohaemoglobin level. We found no association between other antidiabetic medications and CLRD mortality. CONCLUSION In this sample representative of the U.S. population, metformin was associated with lower CLRD mortality in adults with diabetes.
Collapse
Affiliation(s)
- Angelico Mendy
- College of Public Health, University of Iowa, Iowa City, IA
| | - Radha Gopal
- Division of Pulmonary Medicine, Dept. of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John F. Alcorn
- Division of Pulmonary Medicine, Dept. of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erick Forno
- Division of Pulmonary Medicine, Dept. of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
1494
|
Banihani SA. Effect of ginger (Zingiber officinale) on semen quality. Andrologia 2019; 51:e13296. [PMID: 31012134 DOI: 10.1111/and.13296] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/22/2022] Open
Abstract
To date, according to the Scopus database, the biological effects of ginger (binominal name: Zingiber officinale), or ginger extracts, and its derived compounds on semen quality and sperm parameters have been revealed in more than 35 original articles. Though, still, there are no collective systematic or narrative discussion and conclusion of this specific research streak. Here, we systematically review and summarise the current link between ginger and its bioactive compounds with semen quality. To achieve this, we searched the central databases (Scopus and PubMed) for original studies, published in English language from August 2004 through February 2019 using the keywords "ginger" versus "sperm" and "semen." In summary, there is solid evidence that ginger enhances semen quality and improves the main sperm parameters such as concentration, viability, motility and morphology. Such beneficial effects of ginger on semen quality are attributable, at least in part, to increased levels of gonadal hormones, in particular, testosterone and luteinising hormone, decreased oxidative damage to cells, increased production of nitric oxide, hypoglycaemic response of ginger and the presence of valued nutrients in ginger such as manganese. Still, the positive effects of ginger on semen quality require additional approval in men.
Collapse
Affiliation(s)
- Saleem Ali Banihani
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
1495
|
Zhang J, Cao J, Zhang H, Jiang C, Lin T, Zhou Z, Song Y, Li Y, Liu C, Liu L, Wang B, Tang G, Li J, Zhang Y, Cui Y, Huo Y, Yang Y, Ling W, Yang J, Guo H, Wang X, Xu X, Qin X. Plasma copper and the risk of first stroke in hypertensive patients: a nested case-control study. Am J Clin Nutr 2019; 110:212-220. [PMID: 31161196 DOI: 10.1093/ajcn/nqz099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Previous studies indicated that trace elements may play an important role in cardiovascular diseases. However, data concerning the association between blood copper and the risk of stroke are limited. OBJECTIVE The aim of this study was to evaluate the association between plasma copper and the risk of first stroke, and examine any possible effect modifiers in hypertensive patients. METHODS We conducted a nested case-control study, using data from the China Stroke Primary Prevention Trial. Hypertension is defined as systolic blood pressure ≥ 140 mm Hg or diastolic blood pressure ≥ 90 mm Hg, or taking antihypertensive medication. A total of 618 first stroke cases and 618 controls matched for age, sex, treatment group, and study site were included in this study. The crude and adjusted risks of first stroke were estimated by ORs and 95% CIs using conditional logistic regression, without or with adjusting for pertinent covariates, respectively. RESULTS There were significant positive associations of plasma copper with risk of first stroke (per SD increment-OR: 1.20; 95% CI: 1.03, 1.39) and first ischemic stroke (OR: 1.26; 95% CI: 1.07, 1.50). When plasma copper was categorized in quartiles, significantly higher risks of first stroke (OR: 1.72; 95% CI: 1.12, 2.65) and first ischemic stroke (OR: 1.91; 95% CI: 1.18, 3.11) were found in participants in quartile 4 (≥ 117.0 μg/dL) than in those in quartile 1 (< 91.2 μg/dL). Furthermore, the plasma copper-first stroke association was significantly stronger in participants with higher BMI (< 25.0 compared with ≥ 25.0 kg/m2, P-interaction = 0.024). However, there was no significant association between plasma copper and first hemorrhagic stroke. CONCLUSIONS In Chinese hypertensive patients, there was a significant positive association between baseline plasma copper and the risk of first stroke, especially among those with higher BMI.This trial was registered at clinicaltrials.gov as NCT00794885.
Collapse
Affiliation(s)
- Jingping Zhang
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Jingjing Cao
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chongfei Jiang
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tengfei Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ziyi Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yun Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youbao Li
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Lishun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Binyan Wang
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Genfu Tang
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yan Yang
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China.,School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Wenhua Ling
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China.,Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jingang Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiyuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiping Xu
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianhui Qin
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Institute of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
1496
|
Xiang AS, Kingwell BA. Rethinking good cholesterol: a clinicians' guide to understanding HDL. Lancet Diabetes Endocrinol 2019; 7:575-582. [PMID: 30910502 DOI: 10.1016/s2213-8587(19)30003-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022]
Abstract
Low HDL cholesterol dyslipidaemia affects about half of people with type 2 diabetes and represents a major independent risk factor for atherosclerotic cardiovascular disease. The "good cholesterol" label was coined decades ago on the basis of a presumed causal role of HDL cholesterol in atherosclerotic cardiovascular disease. However, this view has been challenged by the negative results of several studies of HDL cholesterol-raising drugs, creating a paradox for clinicians regarding the value of HDL cholesterol as a risk biomarker and therapeutic target, and seemingly contradicting decades of evidence substantiating an inverse relation between HDL cholesterol and cardiovascular disease risk. We seek to resolve this issue by revisiting the history of the HDL hypothesis, chronicling how this paradox is ultimately rooted in the progressive erroneous blurring of the distinction between HDL and HDL cholesterol. We describe the compositional complexity of HDL particles beyond their cholesterol cargo and focus on their role in lipid transport. We discuss the evidence regarding novel HDL functions, including effects on glucose metabolism, and speculate on the implications for type 2 diabetes. HDL cholesterol is an imperfect biomarker of a highly complex and multifunctional lipid transport system, and we should now consider how new HDL markers more causally linked to cardiovascular complications could be adapted for clinical use. In the absence of a superior alternative, HDL cholesterol generally has value as a component of primary cardiovascular disease risk prediction models, including in people with type 2 diabetes. However, to avoid prognostic overgeneralisations, it is high time that the good cholesterol label is dropped.
Collapse
Affiliation(s)
- Angie S Xiang
- Metabolic and Vascular Physiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bronwyn A Kingwell
- Metabolic and Vascular Physiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
1497
|
Conley SM, Shook JE, Zhu XY, Eirin A, Jordan KL, Woollard JR, Isik B, Hickson LJ, Puranik AS, Lerman LO. Metabolic Syndrome Induces Release of Smaller Extracellular Vesicles from Porcine Mesenchymal Stem Cells. Cell Transplant 2019; 28:1271-1278. [PMID: 31250656 PMCID: PMC6767891 DOI: 10.1177/0963689719860840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) belong to the endogenous cellular reparative
system, and can be used exogenously in cell-based therapy. MSCs release extracellular
vesicles (EVs), including exosomes and microvesicles, which mediate some of their
therapeutic activity through intercellular communication. We have previously demonstrated
that metabolic syndrome (MetS) modifies the cargo packed within swine EV, but whether it
influences their phenotypical characteristics remains unclear. This study tested the
hypothesis that MetS shifts the size distribution of MSC-derived EVs. Adipose
tissue-derived MSC-EV subpopulations from Lean (n = 6) and MetS
(n = 6) pigs were characterized for number and size using
nanoparticle-tracking analysis, flow cytometry, and transmission electron microscopy.
Expression of exosomal genes was determined using next-generation RNA-sequencing
(RNA-seq). The number of EV released from Lean and MetS pig MSCs was similar, yet
MetS-MSCs yielded a higher proportion of small-size EVs (202.4 ± 17.7 nm vs. 280.3 ± 15.1
nm), consistent with exosomes. RNA-seq showed that their EVs were enriched with exosomal
markers. Lysosomal activity remained unaltered in MetS-MSCs. Therefore, MetS alters the
size distribution of MSC-derived EVs in favor of exosome release. These observations may
reflect MSC injury and membrane recycling in MetS or increased expulsion of waste
products, and may have important implications for development of adequate cell-based
treatments.
Collapse
Affiliation(s)
- Sabena M Conley
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| | - John E Shook
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, USA.,Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| | - John R Woollard
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| | - Busra Isik
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| | - Amrutesh S Puranik
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, USA.,Division of Rheumatology, Colton Center for Autoimmunity, New York University Langone Medical Center, New York, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| |
Collapse
|
1498
|
Yu Z, Wang N, Ahn DU, Ma M. Long Term Egg Yolk Consumption Alters Lipid Metabolism and Attenuates Hyperlipidemia in Mice Fed a High‐Fat Diet Based on Lipidomics Analysis. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhihui Yu
- National R&D Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural UniversityWuhan 430070HubeiChina
| | - Ning Wang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and EconomyZhengzhou 450046HenanChina
| | - Dong U. Ahn
- Department of Animal Science, Iowa State UniversityAmesIA50011USA
| | - Meihu Ma
- National R&D Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural UniversityWuhan 430070HubeiChina
| |
Collapse
|
1499
|
Diabetic Pregnancy and Maternal High-Fat Diet Impair Mitochondrial Dynamism in the Developing Fetal Rat Heart by Sex-Specific Mechanisms. Int J Mol Sci 2019; 20:ijms20123090. [PMID: 31242551 PMCID: PMC6627740 DOI: 10.3390/ijms20123090] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Infants born to diabetic or obese mothers are at greater risk of heart disease at birth and throughout life, but prevention is hindered because underlying mechanisms remain poorly understood. Using a rat model, we showed that prenatal exposure to maternal diabetes and a high-fat diet caused diastolic and systolic dysfunction, myocardial lipid accumulation, decreased respiratory capacity, and oxidative stress in newborn offspring hearts. This study aimed to determine whether mitochondrial dynamism played a role. Using confocal live-cell imaging, we examined mitochondrial dynamics in neonatal rat cardiomyocytes (NRCM) from four prenatally exposed groups: controls, diabetes, high-fat diet, and combination exposed. Cardiac expression of dynamism-related genes and proteins were compared, and gender-specific differences were evaluated. Findings show that normal NRCM have highly dynamic mitochondria with a well-balanced number of fusion and fission events. Prenatal exposure to diabetes or a high-fat diet impaired dynamism resulting in shorter, wider mitochondria. Mechanisms of impaired dynamism were gender-specific and protein regulated. Females had higher expression of fusion proteins which may confer a cardioprotective effect. Prenatally exposed male hearts had post-translational modifications known to impair dynamism and influence mitophagy-mediated cell death. This study identifies mitochondrial fusion and fission proteins as targetable, pathogenic regulators of heart health in offspring exposed to excess circulating maternal fuels.
Collapse
|
1500
|
Atef MM, Abd-Ellatif RN, Emam MN, Abo El Gheit RE, Amer AI, Hafez YM. Therapeutic potential of sodium selenite in letrozole induced polycystic ovary syndrome rat model: Targeting mitochondrial approach (selenium in PCOS). Arch Biochem Biophys 2019; 671:245-254. [PMID: 31251923 DOI: 10.1016/j.abb.2019.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/14/2019] [Accepted: 06/23/2019] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endorinopathy in fertile women with heterogeneous reproductive and metabolic phenotypes and unknown etiology. This study was undertaken to investigate the beneficial effect of selenium in management of letrozole induced PCOS and its role in modulating mitochondrial dynamics, and its associated signals. Twenty four adult female rats were enrolled and randomly divided into four equal groups; control group received 0.5% w/v carboxymethyl cellulose (CMC); PCOS group received letrozole (1 mg/kg, daily) in 0.5% CMC for 21 days. From day 22 to day 36, after letrozole PCOS induction, the (PCOS +Metformin) group received metformin (2 mg/kg, daily) while (PCOS + sodium selenite) group received sodium selenite (0.1 mg/kg, daily). All doses were given via oral gavage. At the study end, serum hormone levels, lipid profile and HOMA-IR were assessed. Ovaries were dissected, used for histopathological evaluation, immunohistochemical detection of B-cell lymphoma-2 (Bcl-2), and its associated X protein (Bax) expression, measurement of redox status, mitochondrial dynamics markers and citrate synthase (CS) activity. Furthermore Mitofusins 2 (Mfn2) and dynamin related protein 1 (Drp1) mRNA expression was assessed by real time PCR. Selenium treatment of PCOS rats succeeded, comparable to metformin, to greatly improve the PCOS associated endocrine and metabolic phenotypes and histopathological changes, mostly through modulating mitochondrial dynamics, anti-apoptotic action, alleviating oxidative stress and mitochondrial dysfunction. So, selenium could provide a novel therapeutic strategy for PCOS.
Collapse
Affiliation(s)
- Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Marwa Nagy Emam
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | | - Alaa Ibrahim Amer
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|