1451
|
Minabe-Saegusa C, Saegusa H, Tsukahara M, Noguchi S. Sequence and expression of a novel mouse gene PRDC (protein related to DAN and cerberus) identified by a gene trap approach. Dev Growth Differ 1998; 40:343-53. [PMID: 9639362 DOI: 10.1046/j.1440-169x.1998.t01-1-00010.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gene trapping in embryonic stem (ES) cells was used to identify a novel gene involved in mouse development. In order to screen trapped ES cell lines for the presence of developmentally regulated genes, an in vitro differentiation test was used. One of the G418 resistant cell lines, in conjunction with the lacZ reporter gene, showed differential expression patterns under differentiated and undifferentiated conditions. The gene trap insertion in this cell line was germ-line transmitted and X-gal staining was used to assess the expression pattern of lacZ in embryos heterozygous for the trapped allele. The reporter gene's expression was detected in commissural neurons in the developing spinal cord, suggesting functions for the trapped gene in mouse neural development. Structural analysis of the cDNA revealed that this trapped gene, named PRDC (protein related to DAN and cerberus), is a novel gene that encodes a putative secretory protein consisting of 168 amino acid residues. PRDC gene product shows limited similarities to the products of DAN (differential screening-selected gene aberrative in neuroblastoma) and cerberus. (DAN is a possible tumor-suppressor for neuroblastoma in human. Cerberus can induce an ectopic head in Xenopus embryos when ectopically expressed.) These three gene products may form a novel family of signaling molecules.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Adhesion Molecules, Neuronal
- Cell Cycle Proteins
- Cell Line
- Cloning, Molecular
- Contactin 2
- Cytokines
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Embryo, Mammalian/chemistry
- Embryo, Mammalian/metabolism
- Female
- Gene Expression/genetics
- Gene Expression Regulation, Developmental
- Genes/genetics
- Genetic Techniques
- Homozygote
- Humans
- Intercellular Signaling Peptides and Proteins
- Lac Operon/genetics
- Membrane Glycoproteins/analysis
- Membrane Glycoproteins/genetics
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Pregnancy
- Proteins/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Recombinant Fusion Proteins/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Stem Cells/cytology
- Stem Cells/metabolism
- Xenopus Proteins
Collapse
Affiliation(s)
- C Minabe-Saegusa
- Bio Signal Pathway Project, Kanagawa Academy of Science and Technology, Meiji Institute of Health Science, Japan
| | | | | | | |
Collapse
|
1452
|
Donadelli R, Benatti L, Remuzzi A, Morigi M, Gullans SR, Benigni A, Remuzzi G, Noris M. Identification of a novel gene--SSK1--in human endothelial cells exposed to shear stress. Biochem Biophys Res Commun 1998; 246:881-7. [PMID: 9618306 DOI: 10.1006/bbrc.1998.8713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To identify transcriptionally regulated genes potentially involved in the effect of shear stress on endothelial gene expression, we performed a differential display analysis of mRNAs from human umbilical vein endothelial cell (HUVEC) exposed to laminar shear stress (12 dynes/cm2) in comparison to HUVEC maintained in static condition. We identified a cDNA fragment overexpressed by laminar shear stress. The full-length, SSK1, was 3653 long and encoded for a novel protein of 1050 amino acids. Northern blot demonstrates that SSK1 mRNA is expressed at high levels also in placenta, a weak transcript was present in heart, skeletal muscle, kidney and pancreas. Homology searches of the protein databases showed that SSK1 is related to numerous serine-threonine kinases. The highest homology was found with a very recently described gene, BUBR1, an analogue of BUB1, which is a kinase involved in the regulation of cell cycle. The most conserved residues in catalytic domains II, III, VIb, VII, VIII and IX of serine-threonine protein kinases were found in the C terminal region of SSK1 which further supports the kinase nature of the new protein. The putative serine-threonine kinase SSK1 may represent a tool by which mechanical forces regulates phosphorylation events within endothelial cells.
Collapse
Affiliation(s)
- R Donadelli
- Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
1453
|
Wang GJ, Collinge M, Blasi F, Pardi R, Bender JR. Posttranscriptional regulation of urokinase plasminogen activator receptor messenger RNA levels by leukocyte integrin engagement. Proc Natl Acad Sci U S A 1998; 95:6296-301. [PMID: 9600959 PMCID: PMC27663 DOI: 10.1073/pnas.95.11.6296] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As an adhesion receptor, the beta2 integrin lymphocyte function-associated antigen-1 (LFA-1) contributes a strong adhesive force to promote T lymphocyte recirculation and interaction with antigen-presenting cells. As a signaling molecule, LFA-1-mediates transmembrane signaling, which leads to the generation of second messengers and costimulation resulting in T cell activation. We recently have demonstrated that, in costimulatory fashion, LFA-1 activation promotes the induction of T cell membrane urokinase plasminogen activator receptor (uPAR) and that this induced uPAR is functional. To investigate the mechanism(s) of this induction, we used the RNA polymerase II inhibitor 5, 6-dichloro-1-beta-D-ribobenzimidazole and determined that uPAR mRNA degradation is delayed by LFA-1 activation. Cloning of the wild-type, deleted and mutated 3'-untranslated region of the uPAR cDNA into a serum-inducible rabbit beta-globin cDNA reporter construct revealed that the AU-rich elements and, in particular the nonameric UUAUUUAUU sequence, are crucial cis-acting elements in uPAR mRNA degradation. Experiments in which Jurkat T cells were transfected with reporter constructs demonstrated that LFA-1 engagement was able to stabilize the unstable reporter mRNA containing the uPAR 3'-untranslated region. Our study reveals a consequence of adhesion receptor-mediated signaling in T cells, which is potentially important in the regulation of T cell activation, including production of cytokines and expression of proto-oncogenes, many of which are controlled through 3' AU-rich elements.
Collapse
Affiliation(s)
- G J Wang
- Section of Immunobiology, Molecular Cardiobiology, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | | | | | | | |
Collapse
|
1454
|
Abstract
Long-chain fatty acids are important fuel molecules for the heart, their oxidation in mitochondria providing the bulk of energy required for cardiac functioning. The low solubility of fatty acids in aqueous solutions impairs their cellular transport. However, cardiac tissue contains several proteins capable of binding fatty acids non-covalently. These fatty acid-binding proteins (FABPs) are thought to facilitate both cellular uptake and intracellular transport of fatty acids. The majority of fatty acids taken up by the heart seems to pass the sarcolemma through a carrier-mediated translocation mechanism consisting of one or more membrane-associated FABPs. Intracellular transport of fatty acids towards sites of metabolic conversion is most likely accomplished by cytoplasmic FABPs. In this review, the roles of membrane-associated and cytoplasmic FABPs in cardiac fatty acid metabolism under (patho)physiological circumstances are discussed.
Collapse
Affiliation(s)
- F G Schaap
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | | | | |
Collapse
|
1455
|
Cañete-Soler R, Schwartz ML, Hua Y, Schlaepfer WW. Characterization of ribonucleoprotein complexes and their binding sites on the neurofilament light subunit mRNA. J Biol Chem 1998; 273:12655-61. [PMID: 9575228 DOI: 10.1074/jbc.273.20.12655] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Levels of neurofilament (NF) gene expression are important determinants of basic neuronal properties, but overexpression can lead to motoneuron degeneration in transgenic mice. In a companion study (Cañete-Soler, R., Schwartz, M. L., Hua, Y., and Schlaepfer, W. W. (1998) J. Biol. Chem. 273, 12650-12654), we show that levels of NF expression are regulated by altering mRNA stability and that stability determinants are present in the 3'-coding region (3'-CR) and 3'-untranslated region (3'-UTR) of the NF light subunit (NF-L) transcript. This study characterizes the ribonucleoprotein complexes that bind to the NF-L mRNA when cytoplasmic brain extracts are incubated with radioactive probes. Gel retardation assays reveal ribonucleoprotein complexes that are selectively competed with poly(C) or poly(U))/poly(A) homoribopolymers and are referred to as C-binding and U/A-binding complexes, respectively. The C-binding complex forms on the proximal 45 nucleotides of 3'-UTR, but its assembly is markedly enhanced by 23 nucleotides of flanking 3'-CR sequence. U/A-binding complexes form at multiple binding sites in the 3'-CR and 3'-UTR. A pattern of reciprocal binding suggests that the C-binding and U/A-binding complexes interact and may compete for common components or binding sites. Cross-linking studies reveal unique polypeptides in the C-binding and U/A-binding complexes. The findings provide the basis for probing mechanisms regulating NF-L mRNA stability and the relationship between NF overexpression and motoneuron degeneration in transgenic mice.
Collapse
Affiliation(s)
- R Cañete-Soler
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
1456
|
Wilson G, Vasa M, Deeley R. Stabilization and cytoskeletal-association of LDL receptor mRNA are mediated by distinct domains in its 3′ untranslated region. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)33870-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
1457
|
Zhang YL, Akmal KM, Tsuruta JK, Shang Q, Hirose T, Jetten AM, Kim KH, O'Brien DA. Expression of germ cell nuclear factor (GCNF/RTR) during spermatogenesis. Mol Reprod Dev 1998; 50:93-102. [PMID: 9547515 DOI: 10.1002/(sici)1098-2795(199805)50:1<93::aid-mrd12>3.0.co;2-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Germ cell nuclear factor (GCNF/RTR), a novel orphan receptor in the nuclear receptor superfamily of ligand-activated transcription factors, is expressed predominantly in developing germ cells. In several mammalian species two GCNF/RTR mRNAs are present in the testis, with the smaller 2.3-kb transcript generally expressed at higher levels than the larger 7.4- or 8.0-kb transcript. In both the mouse and rat, the 2.3- and 7.4-kb GCNF/RTR transcripts were detected in isolated spermatogenic cells, but not in Sertoli cells. Expression of these transcripts is differentially regulated, with the larger 7.4-kb mRNA appearing earlier during testicular development. The major 2.3-kb transcript is expressed predominantly in round spermatids in the mouse and rat. In situ hybridization studies in the rat demonstrated that GCNF/RTR transcripts reach maximal steady-state levels in round spermatids at stages VII and VIII of the spermatogenic cycle, and then decline abruptly as spermatids begin to elongate. RNase protection assays were used to predict the 3' termination site of the 2.3-kb transcript. An alternative polyadenylation signal (AGUAAA) was identified just upstream of this termination site. These studies suggest that GCNF/RTR may regulate transcription during spermatogenesis, particularly in round spermatids just prior to the initiation of nuclear elongation and condensation.
Collapse
Affiliation(s)
- Y L Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry, Chinese Academy of Sciences, China
| | | | | | | | | | | | | | | |
Collapse
|
1458
|
Abstract
The existence of naturally occurring antisense RNAs has been illustrated, in eukaryotes, by an increasing number of reports. The following review presents the major findings in this field, with a special focus on the regulation of gene expression exerted by endogenous complementary transcripts. A large variety of eukaryotic organisms, contains antisense transcripts. Moreover, the great diversity of genetic loci encoding overlapping sense and antisense RNAs suggests that such transcripts may be involved in numerous biological functions, such as control of development, adaptative response. viral infection. The regulation of gene expression by endogenous antisense RNAs seems of general importance in eukaryotes as already established in prokaryotes: it is likely to be involved in the control of various biological functions and to play a role in the development of pathological situations. Several experimental evidences for coupled, balanced or unbalanced expression of sense and antisense RNAs suggest that antisense transcripts may govern the expression of their sense counterparts. Furthermore, documented examples indicate that this control may be exerted at many levels of gene expression (transcription, maturation, transport, stability and translation). This review also addresses the underlying molecular mechanisms of antisense regulation and presents the current mechanistic hypotheses.
Collapse
|
1459
|
Conaway JW, Kamura T, Conaway RC. The Elongin BC complex and the von Hippel-Lindau tumor suppressor protein. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1377:M49-54. [PMID: 9606976 DOI: 10.1016/s0304-419x(97)00035-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J W Conaway
- Howard Hughes Medical Institute, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
1460
|
Asselbergs FA, Grossenbacher R, Ortmann R, Hengerer B, McMaster GK, Sutter E, Widmer R, Buxton F. Position-independent expression of a human nerve growth factor-luciferase reporter gene cloned on a yeast artificial chromosome vector. Nucleic Acids Res 1998; 26:1826-33. [PMID: 9512559 PMCID: PMC147460 DOI: 10.1093/nar/26.7.1826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Two yeast artificial chromosomes containing the entire human nerve growth factor gene were isolated and mapped. By homologous recombination a luciferase gene was precisely engineered into the coding portion of the NGF gene and a neomycin selection marker was placed adjacent to one of the YAC telomeres. Expression of the YAC-based NGF reporter gene and a plasmid-based NGF reporter gene were compared with the regulation of endogenous mouse NGF protein in mouse L929 fibroblasts. In contrast to the plasmid-based reporter gene, expression and regulation of the YAC-based reporter gene was independent of the site of integration of the transgene. Basic fibroblast growth factor and okadaic acid stimulated expression of the YAC transgene, whereas transforming growth factor-beta and dexamethasone inhibited it. Although cyclic AMP strongly stimulated production of the endogenous mouse NGF, no effect was seen on the human NGF reporter genes. Downregulation of the secretion of endogenous mouse NGF already occurred at an EC50 of 1-2 nM dexamethasone, but downregulation of the expression of NGF reporter genes occurred only at EC50 of 10 nM. This higher concentration was also required for upregulation of luciferase genes driven by the dexamethasone-inducible promoter of the mouse mammary tumor virus in L929 fibroblasts.
Collapse
Affiliation(s)
- F A Asselbergs
- Pharma Research Department, Novartis Pharma Inc., CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
1461
|
Nathens AB, Bitar R, Watson RW, Issekutz TB, Marshall JC, Dackiw AP, Rotstein OD. Thiol-Mediated Regulation of ICAM-1 Expression in Endotoxin-Induced Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.6.2959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The intracellular redox state regulates several aspects of cell function, suggesting that strategies directed toward altering the cellular redox state may modulate cell activation in inflammatory states. As the most abundant intracellular thiol, glutathione plays a critical role as an intracellular redox buffer. Using diethylmaleate (DEM) as a glutathione-depleting agent, we evaluated the effects of GSH depletion in a rodent model of polymorphonuclear neutrophil (PMN)-dependent acute lung injury. Rats received 500 μg of LPS by intratracheal challenge, inducing a 5.5-fold increase in lung permeability and sixfold increase in lung PMN content. Pretreatment with DEM prevented the LPS-induced increase in lung PMN influx and lung permeability. Northern analysis and immunohistochemical studies suggest that this effect may be mediated by preventing up-regulation of lung ICAM-1 mRNA and protein expression. This effect is specific to ICAM-1, because lung cytokine-induced neutrophil chemoattractant and TNF-α mRNA levels are unaffected. This finding is not unique to the lung, because a similar effect on PMN influx was recapitulated in a rodent model of chemical peritonitis. Further, in vitro studies demonstrated that pretreatment of HUVEC monolayers with DEM prevented both ICAM-1 up-regulation and PMN transendothelial migration. These data indicate the presence of a thiol-sensitive mechanism for modulating ICAM-1 gene expression and suggest a potential novel therapeutic strategy for diseases characterized by PMN-mediated tissue injury.
Collapse
Affiliation(s)
- Avery B. Nathens
- Departments of Surgery and Medicine, University of Toronto, and the Toronto Hospital, Toronto, Canada
| | - Richard Bitar
- Departments of Surgery and Medicine, University of Toronto, and the Toronto Hospital, Toronto, Canada
| | - Ronald W.G. Watson
- Departments of Surgery and Medicine, University of Toronto, and the Toronto Hospital, Toronto, Canada
| | - Thomas B. Issekutz
- Departments of Surgery and Medicine, University of Toronto, and the Toronto Hospital, Toronto, Canada
| | - John C. Marshall
- Departments of Surgery and Medicine, University of Toronto, and the Toronto Hospital, Toronto, Canada
| | - Alan P.B. Dackiw
- Departments of Surgery and Medicine, University of Toronto, and the Toronto Hospital, Toronto, Canada
| | - Ori D. Rotstein
- Departments of Surgery and Medicine, University of Toronto, and the Toronto Hospital, Toronto, Canada
| |
Collapse
|
1462
|
Levy NS, Chung S, Furneaux H, Levy AP. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 1998; 273:6417-23. [PMID: 9497373 DOI: 10.1074/jbc.273.11.6417] [Citation(s) in RCA: 489] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a potent angiogenic factor whose expression is dramatically induced by hypoxia due in large part to an increase in the stability of its mRNA. Here we show that HuR binds with high affinity and specificity to the element that regulates VEGF mRNA stability by hypoxia. Inhibition of HuR expression abrogates the hypoxia-mediated increase in VEGF mRNA stability. Overexpression of HuR increases the stability of VEGF mRNA. However, this only occurs efficiently in hypoxic cells. We further show that the stabilization of VEGF mRNA can be recapitulated in vitro. Using an S-100 extract, we show that the addition of recombinant HuR stabilizes VEGF mRNA markedly. These data support the critical role of HuR in mediating the hypoxic stabilization of VEGF mRNA by hypoxia.
Collapse
Affiliation(s)
- N S Levy
- Cardiology Division, Georgetown University Medical Center, Washington, D.C. 20007, USA
| | | | | | | |
Collapse
|
1463
|
Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 1998. [PMID: 9464988 DOI: 10.1523/jneurosci.18-05-01633.1998] [Citation(s) in RCA: 585] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tumor necrosis factor-alpha (TNFalpha) and nitric oxide (NO), the product of inducible NO synthase (iNOS), mediate inflammatory and immune responses in the CNS under a variety of neuropathological situations. They are produced mainly by "activated" astrocytes and microglia, the two immune regulatory cells of the CNS. In this study we have examined the regulation of TNFalpha and iNOS gene expression in endotoxin-stimulated primary glial cultures, focusing on the role of mitogen-activated protein (MAP) kinase cascades. The bacterial lipopolysaccharide (LPS) was able to activate extracellular signal-regulated kinase (ERK) and p38 kinase subgroups of MAP kinases in microglia and astrocytes. ERK activation was sensitive to PD98059, the kinase inhibitor that is specific for ERK kinase. The activity of p38 kinase was inhibited by SB203580, a member of the novel class of cytokine suppressive anti-inflammatory drugs (CSAIDs), as revealed by blocked activation of the downstream kinase, MAP kinase-activated protein kinase-2. The treatment of glial cells with either LPS alone (microglia) or a combination of LPS and interferon-gamma (astrocytes) resulted in an induced production of NO and TNFalpha. The two kinase inhibitors, at micromolar concentrations, individually suppressed and, in combination, almost completely blocked glial production of NO and the expression of iNOS and TNFalpha, as determined by Western blot analysis. Reverse transcriptase-PCR analysis showed changes in iNOS mRNA levels that paralleled iNOS protein and NO while indicating a lack of effect of either of the kinase inhibitors on TNFalpha mRNA expression. The results demonstrate key roles for ERK and p38 MAP kinase cascades in the transcriptional and post-transcriptional regulation of iNOS and TNFalpha gene expression in endotoxin-activated glial cells.
Collapse
|
1464
|
Gera JF, Baker EJ. Deadenylation-dependent and -independent decay pathways for alpha1-tubulin mRNA in Chlamydomonas reinhardtii. Mol Cell Biol 1998; 18:1498-505. [PMID: 9488466 PMCID: PMC108864 DOI: 10.1128/mcb.18.3.1498] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/1997] [Accepted: 12/15/1997] [Indexed: 02/06/2023] Open
Abstract
The alpha- and beta-tubulin mRNAs of Chlamydomonas reinhardtii exhibit different half-lives under different conditions: when expressed constitutively, they degrade with half-lives of about 1 h, whereas when induced by deflagellation, they degrade with half-lives of only 10 to 15 min. To investigate the decay pathway(s) used under these two conditions, an alpha1-tubulin gene construct which included an insert of 30 guanidylate residues within the 3' untranslated region was introduced into cells. This transgene was efficiently expressed in stably transformed cells, and the mRNA exhibited constitutive and postinduction half-lives like those of the alpha1-tubulin mRNA. Northern blot analysis revealed the occurrence of a 3' RNA fragment derived from the poly(G)-containing alpha1-tubulin transcripts. The 3' fragment was shown to accumulate as full-length mRNA disappeared in actinomycin D-treated cells, indicating a precursor-product relationship. Insertion of a second poly(G) tract upstream of the first resulted in accumulation of only a longer 3' fragment, suggesting that the decay intermediate is generated by 5'-to-3' exonucleolytic digestion. A translational requirement for generation of the 3' fragment was demonstrated by experiments in which cells were deflagellated in the presence of cycloheximide. Analysis of fragment poly(A) length revealed that the fragments were, at most, oligoadenylated in nondeflagellated cells but had a long poly(A) tail in deflagellated cells. These findings suggest that the oligoadenylated fragment is a decay intermediate in a deadenylation-dependent, constitutive degradation pathway and that the requirement for deadenylation is bypassed in deflagellated cells. This represents the first example in which a single transcript has been shown to be targeted to different decay pathways under different cellular conditions.
Collapse
Affiliation(s)
- J F Gera
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno 89557, USA
| | | |
Collapse
|
1465
|
Gong DW, Bi S, Weintraub BD, Reitman M. Rat mitochondrial glycerol-3-phosphate dehydrogenase gene: multiple promoters, high levels in brown adipose tissue, and tissue-specific regulation by thyroid hormone. DNA Cell Biol 1998; 17:301-9. [PMID: 9539110 DOI: 10.1089/dna.1998.17.301] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial FAD-linked glycerol-3-phosphate dehydrogenase (mtGPDH) is one of the two enzymes of the glycerol phosphate shuttle. This shuttle transfers reducing equivalents from the cytoplasm to the mitochondria in a unidirectional, exothermic manner. Here, the isolation and characterization of the rat nuclear gene (Gpd2) encoding mtGPDH is reported. The mtGPDH gene spans 100 kb and consists of 17 exons. The use of alternate promoters was suggested by the presence of three different first exons and confirmed by transient expression for two of them. The first exons are expressed in a tissue-restricted manner. Exon 1a was found primarily in brain, exon 1b was used in all tissues examined, and exon 1c was detected predominantly in testis. Depending on the tissue, different transcript lengths were also observed: 5.9 kb (all tissues), 3.6 kb (skeletal muscle), and 2.5 kb (testis). The length isoforms are attributable to alternate splicing and polyadenylation site use. Very high mtGPDH mRNA levels were found in brown adipose tissue, 75 fold greater than in white adipose tissue. Thyroid hormone increased mtGPDH mRNA levels in liver and heart but not in brown adipose tissue, brain, or testis. This pattern corresponds to that of thyroid hormone-induced oxygen consumption and is consistent with a role for mtGPDH in thyroid hormone-induced thermogenesis. Both thyroid-responsive and nonresponsive tissues used promoter 1b, suggesting that tissue-specific factor(s) contribute to the tissue-restricted responsiveness to thyroid hormone.
Collapse
Affiliation(s)
- D W Gong
- Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1770, USA
| | | | | | | |
Collapse
|
1466
|
|
1467
|
Danner S, Frank M, Lohse MJ. Agonist regulation of human beta2-adrenergic receptor mRNA stability occurs via a specific AU-rich element. J Biol Chem 1998; 273:3223-9. [PMID: 9452435 DOI: 10.1074/jbc.273.6.3223] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prolonged agonist stimulation of beta2-adrenergic receptors results in receptor down-regulation, which is closely associated with a reduction of the corresponding mRNA, an effect mediated in part by changes in mRNA stability. Transfection experiments with human beta2-adrenergic receptor cDNAs bearing or lacking the untranslated regions suggested that the essential agonist sensitivity of the mRNA resides within the 3'-untranslated region. The importance of this region was further confirmed in gel shift experiments; cytosolic preparations from agonist-stimulated DDT1-MF2 smooth muscle cells caused a shift of beta2-adrenergic receptor mRNAs containing the 3'-untranslated region. Progressive 3'-terminal truncations of the receptor cDNA led to the identification of an AU-rich element at positions 329-337 of the 3'-untranslated region as the responsible cis-acting element. Substitution of this motif by cytosine residues almost completely abolished mRNA down-regulation and inhibited the formation of the RNA-protein complex. Even though the beta2-adrenergic receptor AU-rich element showed two U --> A transitions compared with the recently proposed AU-rich element consensus sequence, it revealed an almost identical destabilizing potency. Fusion of the beta2-adrenergic receptor 3'-untranslated region to the beta-globin coding sequence dramatically reduced the half-life of the chimeric transcript in an agonist- and cAMP-dependent manner. This suggests that the agonist-induced beta2-adrenergic receptor mRNA destabilization is regulated by cAMP-dependent RNA-binding protein(s) via a specific AU-rich element.
Collapse
Affiliation(s)
- S Danner
- Institute of Pharmacology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | | | | |
Collapse
|
1468
|
Sokolowski M, Tan W, Jellne M, Schwartz S. mRNA instability elements in the human papillomavirus type 16 L2 coding region. J Virol 1998; 72:1504-15. [PMID: 9445054 PMCID: PMC124632 DOI: 10.1128/jvi.72.2.1504-1515.1998] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1997] [Accepted: 11/03/1997] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus capsid proteins L1 and L2 are detected only in terminally differentiated cells, indicating that expression of the L1 and L2 genes is blocked in dividing cells. The results presented here establish that the human papillomavirus type 16 L2 coding region contains cis-acting inhibitory sequences. When placed downstream of a reporter gene, the human papillomavirus type 16 L2 sequence reduced both mRNA and protein levels in an orientation-dependent manner. Deletion analysis revealed that the L2 sequence contains two cis-acting inhibitory RNA regions. We identified an inhibitory region in the 5'-most 845 nucleotides of L2 that acted by reducing cytoplasmic mRNA stability and a second, weaker inhibitory region in the 3' end of L2. In contrast, human papillomavirus type 1 L1 and L2 genes did not encode strong inhibitory sequences. This result is consistent with observations of high virus production in human papillomavirus type 1-infected tissue, whereas only low levels of human papillomavirus type 16 virions are detectable in infected epithelium. The presence of inhibitory sequences in the L1 and L2 mRNAs may aid the virus in avoiding the host immunosurveillance and in establishing persistent infections.
Collapse
Affiliation(s)
- M Sokolowski
- Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
1469
|
Claffey KP, Shih SC, Mullen A, Dziennis S, Cusick JL, Abrams KR, Lee SW, Detmar M. Identification of a human VPF/VEGF 3' untranslated region mediating hypoxia-induced mRNA stability. Mol Biol Cell 1998; 9:469-81. [PMID: 9450968 PMCID: PMC25276 DOI: 10.1091/mbc.9.2.469] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/1997] [Accepted: 11/07/1997] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is a prominent feature of malignant tumors that are characterized by angiogenesis and vascular hyperpermeability. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) has been shown to be up-regulated in the vicinity of necrotic tumor areas, and hypoxia potently induces VPF/VEGF expression in several tumor cell lines in vitro. Here we report that hypoxia-induced VPF/VEGF expression is mediated by increased transcription and mRNA stability in human M21 melanoma cells. RNA-binding/electrophoretic mobility shift assays identified a single 125-bp AU-rich element in the 3' untranslated region that formed hypoxia-inducible RNA-protein complexes. Hypoxia-induced expression of chimeric luciferase reporter constructs containing this 125-bp AU-rich hypoxia stability region were significantly higher than constructs containing an adjacent 3' untranslated region element without RNA-binding activity. Using UV-cross-linking studies, we have identified a series of hypoxia-induced proteins of 90/88 kDa, 72 kDa, 60 kDa, 56 kDa, and 46 kDa that bound to the hypoxia stability region element. The 90/88-kDa and 60-kDa species were specifically competed by excess hypoxia stability region RNA. Thus, increased VPF/VEGF mRNA stability induced by hypoxia is mediated, at least in part, by specific interactions between a defined mRNA stability sequence in the 3' untranslated region and distinct mRNA-binding proteins in human tumor cells.
Collapse
MESH Headings
- Base Sequence
- Cell Hypoxia/genetics
- Cloning, Molecular
- DNA, Complementary/genetics
- Endothelial Growth Factors/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Half-Life
- Humans
- Lymphokines/genetics
- Melanoma
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA-Binding Proteins/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Analysis, DNA
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- K P Claffey
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
1470
|
Oishi I, Sugiyama S, Otani H, Yamamura H, Nishida Y, Minami Y. A novel Drosophila nuclear protein serine/threonine kinase expressed in the germline during its establishment. Mech Dev 1998; 71:49-63. [PMID: 9507063 DOI: 10.1016/s0925-4773(97)00200-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nuclear protein kinases are believed to play important roles in regulating gene expression. We report here the identification and developmental expression of Dmnk (Drosophila maternal nuclear kinase), a Drosophila gene encoding a putative nuclear protein serine/threonine kinase with no apparent homology to previously identified protein kinases and located at 38B on the second chromosome. Dmnk mRNAs are transcribed in nurse cells and are subsequently localized in the anterior of oocytes during oogenesis, in a manner similar to several maternal transcripts regulating oogenesis and early embryogenesis. At early cleavage-stages Dmnk transcripts are transiently present throughout the embryo, but become restricted to the posterior pole and then to the newly-formed primordial germ cells (pole cells) by the blastoderm stage. The transcripts are sustained in the pole cells during gastrulation until they pass through the midgut pocket wall into the body cavity. Immunostaining with specific antibodies revealed that Dmnk proteins are localized to the nuclei in a speckled pattern. Dmnk proteins become detectable in both somatic and germ line cell nuclei upon their arrival at the periplasm of the syncytial embryo, but then disappear from the somatic cell nuclei. Consistent with mRNA expression, Dmnk proteins in pole cell nuclei are sustained during gastrulation. Taken together, Dmnk represents a novel class of nuclear protein kinases and the dynamic expression of Dmnk suggests a role in germ line establishment. The results are discussed in the light of recent findings concerning germ line establishment in Caenorhabditis and Drosophila.
Collapse
Affiliation(s)
- I Oishi
- Department of Biochemistry, Kobe University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
1471
|
Xu N, Loflin P, Chen CY, Shyu AB. A broader role for AU-rich element-mediated mRNA turnover revealed by a new transcriptional pulse strategy. Nucleic Acids Res 1998; 26:558-65. [PMID: 9421516 PMCID: PMC147286 DOI: 10.1093/nar/26.2.558] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The widespread occurrence of AU-rich elements (AREs) in mRNAs encoding proteins with diversified functions and synthesized under a vast variety of physiological conditions suggests that AREs are involved in finely tuned and stringent control of gene expression. Thus it is important to investigate the regulation of ARE-mediated mRNA decay in a variety of mammalian cells in different physiological states. The tetracycline (Tet)-regulatory promoter system appears appropriate for these investigations. However, we found that efficient degradation of mRNAs bearing different AREs cannot be observed simply by blocking constitutive transcription from the Tet-regulated promoter with Tet, possibly due to saturation of the cellular decay machinery. In addition, deadenylation kinetics and their relationship to mRNA decay cannot be adequately measured under these conditions. To overcome these obstacles we have developed a new strategy that employs the Tet-regulated promoter system to achieve a transient burst of transcription that results in synthesis of a population of cytoplasmic mRNAs fairly homogeneous in size. Using this new system we show that ARE-destabilizing function, necessary for down-regulating mRNAs for cytokines, growth factors and transcription factors, is maintained in quiescent or growth-arrested cells as well as in saturation density-arrested NIH 3T3 cells. We also demonstrate that the ARE-mediated decay pathway is conserved between NIH 3T3 fibroblasts and K562 erythroblasts. These in vivo observations support a broader role for AREs in the control of cell growth and differentiation. In addition, we observed that there is a significant difference in deadenylation and decay rates for beta-globin mRNA expressed in these two cell lines. Deadenylation and decay of beta-globin mRNA in K562 cells is extraordinarily slow compared with NIH 3T3 cells, suggesting that the increased stability gained by beta-globin mRNA in K562 cells is mainly controlled at the deadenylation step. Our strategy for studying mammalian mRNA turnover now permits a more general application to different cell lines harboring the Tet-regulated system under various physiological conditions.
Collapse
Affiliation(s)
- N Xu
- Department of Biochemistry and Molecular Biology, The University of Texas Houston Health Science Center, Medical School, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
1472
|
Yoshikawa T, Sanders AR, Esterling LE, Detera-Wadleigh SD. Multiple transcriptional variants and RNA editing in C18orf1, a novel gene with LDLRA and transmembrane domains on 18p11.2. Genomics 1998; 47:246-57. [PMID: 9479497 DOI: 10.1006/geno.1997.5118] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
C18orf1 is a novel brain-expressed transcript, mapping to 18p11.2. Upon further characterization, we found multiple and differentially expressed transcriptional variants. C18orf1 alpha 1, an 8.5-kb transcript, was predicted to code for a 306-amino-acid protein and a 7.1-kb 3'-untranslated region (UTR). This variant was encoded by at least six exons. Alternative transcripts included alpha 2, identical to alpha 1 but missing 18 residues, and N-terminal-truncated variants termed beta 1 and beta 2. A motif search suggested the presence of a transmembrane domain in both alpha and beta and a low-density lipoprotein receptor class A (LDLRA) domain in the alpha-specific N-terminal. In LDLR, LDLRA has been shown to be involved in binding Ca2+ and LDL, raising the possibility that C18orf1 might bind Ca2+ and an unknown ligand. We also present evidence of RNA editing in the 5'-UTR of beta 2, the first demonstration of this phenomenon in 5'-UTR.
Collapse
Affiliation(s)
- T Yoshikawa
- Unit on Gene Mapping and Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
1473
|
Vilcek S, Belák S. Organization and diversity of the 3'-noncoding region of classical swine fever virus genome. Virus Genes 1998; 15:181-6. [PMID: 9421882 DOI: 10.1023/a:1007971110065] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Specific PCR primers were selected to amplify a 359 bp DNA fragment flanking the 3'-part of the polymerase gene and the 3'-noncoding (3'-NC) region of the genome of classical swine fever virus (CSFV). In RT-PCR the selected fragment was amplified from the genomes of 27 viral strains collected from Europe, America and Asia over a period of a half century as well as from three vaccine strains of CSFV. Eight PCR products were sequenced using an automatic sequencing device. Nucleotide sequence analysis was performed by computer programs DNASTAR and PHYLIP. The comparative studies revealed that the 3'-NC region contains a variable region of nucleotides which is located immediately after the stop codon TGA or TAA. Furthermore, a strongly conserved constant region was identified near to the extreme 3'-terminus. Two imperfect repeated sequences were found both in the variable and in the constant regions. In addition, the variable region was characterized by the occurrence of a 50 bp long poly AT track. Phylogenetic analysis with different mathematical approaches (MegAlign, Neighbor-Joining method, Maximum Likelihood, Parsimony) revealed that the studied CSFV strains were clustered into two main phylogenetic groups. Group I was comprised of the reference strain Brescia, together with old American and European field isolates and a Brazilian vaccine strain. Group II included the reference strain Alfort (Tübingen) and recent European field strains. The Congenital Tremor strain formed a distinct lineage which, although being highly divergent, was more closely related to group I than to group II. In conclusion, the present phylogenetic grouping yielded very similar results as previous studies base on comparison of the E2 (gp55) region. The agreement of the phylogenetic analysis in the two distinct regions confirms the reliability of the genetic grouping of CSFV strains into two main genogroups.
Collapse
Affiliation(s)
- S Vilcek
- Department of Infectology and Tropical Disease, University of Veterinary Medicine, Kosice, Slovakia
| | | |
Collapse
|
1474
|
Kafert S, Winzen R, Loos A, Bollig F, Resch K, Holtmann H. Protein binding regions of the mRNAs for the 55 kDa tumor necrosis factor receptor and the glucose transporter 1: sequence homology and competition for cellular proteins. FEBS Lett 1998; 421:2-6. [PMID: 9462827 DOI: 10.1016/s0014-5793(97)01521-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gene expression is influenced by mechanisms regulating mRNA degradation. Knowledge on regulatory RNA elements involved and on proteins interacting with them is still limited. A 33 nucleotide (nt) region of the 55 kDa tumor necrosis factor receptor (TNFR-55) mRNA, previously reported by us to engage in such interaction with proteins from U-937 cells, exhibits homology to a 38 nt regulatory region of the glucose transporter GLUT-1 mRNA. Labeled RNA fragments comprising these two regions bind similar sets of proteins. Upon phorbol ester-induced differentiation into macrophage-like cells, protein binding to both fragments is changed similarly. Furthermore, both compete with each other for protein binding. This suggests that GLUT-1 and TNFR-55 RNA share a novel protein binding RNA motif involved in regulation of their half life.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Base Sequence
- Binding Sites
- Cattle
- Cell Differentiation
- DNA Primers
- Glucose Transporter Type 1
- Humans
- Lymphoma, Large B-Cell, Diffuse
- Macrophages/metabolism
- Male
- Monosaccharide Transport Proteins/biosynthesis
- Polymerase Chain Reaction
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA-Binding Proteins/metabolism
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor, Type I
- Regulatory Sequences, Nucleic Acid
- Sequence Alignment
- Sequence Homology, Nucleic Acid
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- S Kafert
- Institute of Molecular Pharmacology, Medical School Hannover, Germany
| | | | | | | | | | | |
Collapse
|
1475
|
Abstract
In the mammalian central nervous system (CNS), each neuron receives signals from other neurons through numerous synapses located on its cell body and dendrites. Molecules involved in the postsynaptic signaling pathways need to be targeted to the appropriate subcellular domains at the right time during both synaptogenesis and the maintenance of synaptic functions. The presence of messenger RNAs (mRNAs) in dendrites offers a mechanism for synthesizing the appropriate molecules at the right place in response to local extracellular stimuli. Several dendritic mRNAs have been identified, and the mechanisms controlling their localization are beginning to be understood. In many cell types, controls on mRNA stability play an important role in the regulation of gene expression, but it is unclear to what extent this type of control operates in dendrites. The regulation of protein synthesis and the control of mRNA stability in dendrites could have important implications for neuronal function.
Collapse
Affiliation(s)
- F B Gao
- Medical Research Council Developmental Neurobiology Programme, University College London, United Kingdom
| |
Collapse
|
1476
|
Abstract
The nuclear export of intron-containing HIV-1 RNA is critically dependent on the activity of Rev, a virally encoded sequence-specific RNA-binding protein. Rev shuttles between the nucleus and the cytoplasm and harbors both a nuclear localization signal and a nuclear export signal. These essential peptide motifs have now been shown to function by accessing cellular signal-mediated pathways for nuclear import and nuclear export. HIV-1 Rev therefore represents an excellent system with which to study aspects of transport across the nuclear envelope.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Carrier Proteins/analysis
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Carrier Proteins/physiology
- Cell Nucleus/metabolism
- Gene Expression Regulation, Viral
- Gene Products, rev/analysis
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Gene Products, rev/physiology
- HIV Infections/therapy
- HIV-1/chemistry
- Humans
- Karyopherins
- Molecular Sequence Data
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- Receptors, Cytoplasmic and Nuclear
- Trans-Activators
- rev Gene Products, Human Immunodeficiency Virus
- Exportin 1 Protein
Collapse
Affiliation(s)
- V W Pollard
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA.
| | | |
Collapse
|
1477
|
Guzdek A, Rokita H, Cichy J, Allison AC, Koj A. Rooperol tetraacetate decreases cytokine mRNA levels and binding capacity of transcription factors in U937 cells. Mediators Inflamm 1998; 7:13-8. [PMID: 9839693 PMCID: PMC1781819 DOI: 10.1080/09629359891324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously described inhibition of the synthesis of three acute-phase inflammatory cytokines in human and rat macrophages by acetate esters of rooperol, a dicatechol of plant origin. Analysing the mechanism of anticytokine activity of rooperol, we compared levels of TNFalpha, IL-1beta and IL-6 mRNAs in the human promonocytic U937 cell line pretreated with phorbol myristate acetate (PMA) and incubated with rooperol tetraacetate (RTA) alone or in combination with LPS (500 ng/ml). It was found that 10 microM RTA decreased the levels of cytokine mRNAs both in the presence and absence of LPS, suggesting pretranslational inhibition of cytokine synthesis. Electrophoretic mobility shift analysis (EMSA) showed that RTA may influence cytokine mRNA expression by decreasing the binding activity of transcription factors NF-kappaB and AP-1.
Collapse
Affiliation(s)
- A Guzdek
- Institute of Molecular Biology, Jagiellonian University, Kraków, Poland
| | | | | | | | | |
Collapse
|
1478
|
Chicheportiche Y, Bourdon PR, Xu H, Hsu YM, Scott H, Hession C, Garcia I, Browning JL. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem 1997; 272:32401-10. [PMID: 9405449 DOI: 10.1074/jbc.272.51.32401] [Citation(s) in RCA: 510] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The members of the tumor necrosis factor (TNF) family play pivotal roles in the regulation of the immune system. Here we describe a new ligand in this family, designated TWEAK. The mouse and human versions of this protein are unusually conserved with 93% amino acid identity in the receptor binding domain. The protein was efficiently secreted from cells indicating that, like TNF, TWEAK may have the long range effects of a secreted cytokine. TWEAK transcripts were abundant and found in many tissues, suggesting that TWEAK and TRAIL belong to a new group of widely expressed ligands. Like many members of the TNF family, TWEAK was able to induce interleukin-8 synthesis in a number of cell lines. The human adenocarcinoma cell line, HT29, underwent apoptosis in the presence of both TWEAK and interferon-gamma. Thus, TWEAK resembles many other TNF ligands in the capacity to induce cell death; however, the fact that TWEAK-sensitive cells are relatively rare suggests that TWEAK along with lymphotoxins alpha/beta and possibly CD30L trigger death via a weaker, nondeath domain-dependent mechanism.
Collapse
Affiliation(s)
- Y Chicheportiche
- Department of Pathology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
1479
|
Abstract
The period (per) and timeless (tim) genes are intimately involved in the generation and maintenance of Drosophila circadian rhythms. Both genes are expressed in a circadian manner, and the two proteins (PER and TIM) participate in feedback regulation which contributes to the mRNA oscillations. Previous studies indicate that the circadian regulation is in part transcriptional. To investigate quantitative features of per and tim transcription, we analyzed the in vivo transcription rate in fly-head nuclei with a nuclear run-on assay. The results show a robust transcriptional regulation, which is similar but not identical for the two genes. In addition, per mRNA levels are regulated at a post-transcriptional level. This regulatory mode makes a major contribution to the per mRNA oscillations from a previously described per transgenic strain as well as to the mRNA oscillations of a recently identified Drosophila circadianly regulated gene (Crg-1). The data show that circadian mRNA oscillations can take place without evident transcriptional regulation.
Collapse
Affiliation(s)
- W V So
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02254, USA
| | | |
Collapse
|
1480
|
Lai EC, Posakony JW. The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. Development 1997; 124:4847-56. [PMID: 9428421 DOI: 10.1242/dev.124.23.4847] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the development of the Drosophila adult peripheral nervous system (PNS), inhibitory cell-cell interactions mediated by the Notch receptor are essential for proper specification of sensory organ cell fates. We have reported previously (M. W. Leviten, E. C. Lai and J. W. Posakony (1997) Development 124, 4039–4051) that the 3′ untranslated regions (UTRs) of many genes involved in Notch signalling, including Bearded (Brd) and the genes of the Enhancer of split Complex (E(spl)-C), contain (often in multiple copies) two novel heptanucleotide sequence motifs, the Brd box (AGCTTTA) and the GY box (GTCTTCC). Moreover, the molecular lesion associated with a strong gain-of-function mutant of Brd suggested that the loss of these sequence elements from its 3′ UTR might be responsible for the hyperactivity of the mutant gene. We show here that the wild-type Brd 3′ UTR confers negative regulatory activity on heterologous transcripts in vivo and that this activity requires its three Brd box elements and, to a lesser extent, its GY box. We find that Brd box-mediated regulation decreases both transcript and protein levels, and our results suggest that deadenylation or inhibition of polyadenylation is a component of this regulation. Though Brd and the E(spl)-C genes are expressed in spatially restricted patterns in both embryos and imaginal discs, we find that the regulatory activity that functions through the Brd box is both temporally and spatially general. A Brd genomic DNA transgene with specific mutations in its Brd and GY boxes exhibits hypermorphic activity that results in characteristic defects in PNS development, demonstrating that Brd is normally regulated by these motifs. Finally, we show that Brd boxes and GY boxes in the E(spl)m4 gene are specifically conserved between two distantly related Drosophila species, strongly suggesting that E(spl)-C genes are regulated by these elements as well.
Collapse
Affiliation(s)
- E C Lai
- Department of Biology and Center for Molecular Genetics, University of California San Diego, La Jolla 92093-0349, USA
| | | |
Collapse
|
1481
|
DeMaria CT, Sun Y, Long L, Wagner BJ, Brewer G. Structural determinants in AUF1 required for high affinity binding to A + U-rich elements. J Biol Chem 1997; 272:27635-43. [PMID: 9346902 DOI: 10.1074/jbc.272.44.27635] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AUF1 is an RNA-binding protein that contains two nonidentical RNA recognition motifs (RRMs). AUF1 binds to A + U-rich elements (AREs) with high affinity. The binding of AUF1 to AREs is believed to serve as a signal to an mRNA-processing pathway that degrades mRNAs encoding many cytokines, oncoproteins, and G protein-coupled receptors. Because the ARE binding activity of AUF1 appears central to the regulation of many important genes, we analyzed the domains of the protein that are important for this activity. Examination of the RNA binding affinity of various AUF1 mutants suggests that both RRMs may be required for binding to the human c-fos ARE. However, the two RRMs together are not sufficient. Highest affinity binding of AUF1 to an ARE requires an alanine-rich region of the N terminus and a short glutamine-rich region in the C terminus. In addition, the N terminus is required for dimerization of AUF1. However, AUF1 binds an ARE as a hexameric protein. Thus, protein-protein interactions are important for high affinity ARE binding activity of AUF1.
Collapse
Affiliation(s)
- C T DeMaria
- Department of Microbiology and Immunology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1064, USA
| | | | | | | | | |
Collapse
|
1482
|
Lin Q, Taylor SJ, Shalloway D. Specificity and determinants of Sam68 RNA binding. Implications for the biological function of K homology domains. J Biol Chem 1997; 272:27274-80. [PMID: 9341174 DOI: 10.1074/jbc.272.43.27274] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sam68, a specific target of the Src tyrosine kinase in mitosis, possesses features common to RNA-binding proteins, including a K homology (KH) domain. To elucidate its biological function, we first set out to identify RNA species that bound to Sam68 with high affinity using in vitro selection. From a degenerate 40-mer pool, 15 RNA sequences were selected that bound to Sam68 with Kd values of 12-140 nM. The highest affinity RNA sequences (Kd approximately 12-40 nM) contained a UAAA motif; mutation to UACA abolished binding to Sam68. Binding of the highest affinity ligand, G8-5, was assessed to explore the role of different regions of Sam68 in RNA binding. The KH domain alone did not bind G8-5, but a fragment containing the KH domain and a region of homology within the Sam68 subgroup of KH-containing proteins was sufficient for G8-5 binding. Deletion of the KH domain or mutation of KH domain residues analogous to loss-of-function mutations in the human Fragile X syndrome gene product and the Caenorhabditis elegans tumor suppressor protein Gld-1 abolished G8-5 binding. Our results establish that a KH domain-containing protein can bind RNA with specificity and high affinity and suggest that specific RNA binding is integral to the functions of some regulatory proteins in growth and development.
Collapse
Affiliation(s)
- Q Lin
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
1483
|
Fan XC, Myer VE, Steitz JA. AU-rich elements target small nuclear RNAs as well as mRNAs for rapid degradation. Genes Dev 1997; 11:2557-68. [PMID: 9334320 PMCID: PMC316563 DOI: 10.1101/gad.11.19.2557] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/1997] [Accepted: 08/04/1997] [Indexed: 02/05/2023]
Abstract
AU-rich elements (AREs, usually containing repeated copies of AUUUA), when present in the 3'-untranslated regions (UTRs) of many mammalian mRNAs, confer instability on their host RNA molecules. The viral small nuclear RNA (snRNA) Herpesvirus saimiri U RNA 1 (HSUR 1) also contains an AUUUA-rich sequence. Here, we report that this ARE induces rapid degradation of HSUR 1 itself and of other snRNAs including HSUR 2 and cellular U1. Mutational analyses of the viral ARE establish that sequence requirements for mRNA and snRNA decay are the same, suggesting a similar mechanism. Moreover, the in vivo degradation activity of mutant AREs correlates with their in vitro binding to the HuR protein, implicated previously as a component of the mRNA degradation machinery. Our results suggest that ARE-mediated instability can be uncoupled from both ongoing translation and deadenylation of the target RNA.
Collapse
MESH Headings
- Antigens, Surface
- Base Sequence
- ELAV Proteins
- ELAV-Like Protein 1
- Gene Expression Regulation/genetics
- Genes, Reporter
- Globins/genetics
- Herpesvirus 2, Saimiriine/chemistry
- Herpesvirus 2, Saimiriine/genetics
- Molecular Sequence Data
- Mutation
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Repetitive Sequences, Nucleic Acid
- Ribonucleases/metabolism
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- X C Fan
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
1484
|
Henics T, Nagy E, Szekeres-Barthó J. Interaction of AU-rich sequence binding proteins with actin: possible involvement of the actin cytoskeleton in lymphokine mRNA turnover. J Cell Physiol 1997; 173:19-27. [PMID: 9326445 DOI: 10.1002/(sici)1097-4652(199710)173:1<19::aid-jcp3>3.0.co;2-m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the current study, we report that cytochalasin-induced disruption of microfilaments stabilizes lymphokine mRNAs in activated human peripheral blood lymphocytes. Parallel with this, a dose- and time-dependent increase in AU-rich sequence binding protein (AUPB) activities is apparent in the nonionic detergent-resistant fractions of these cells, suggesting that cytochalasin-induced modulation of lymphokine mRNA stability might be mediated through cytoplasmic AUBPs. We provide evidence that some of the AUBPs can be immunoprecipitated with anti-actin antibodies, implicating the potential of these proteins to associate with the actin-based cytoskeleton in vivo. Moreover, disruption of the microfilament network by cytochalasins produces increased immunoprecipitable actin-AUBP complexes in the detergent-resistant cytoplasmic subfractions of lymphocytes. We show that cytochalasin-induced changes in AUBP activities are parallel with their higher binding affinity to RNA containing AU-rich instability sequence element as judged by in vitro competition and in vivo ultraviolet-crosslinking analysis. Correlation of these findings with changes in mRNA stability indicates that the actin cytoskeleton may play a physiologically important role in posttranscriptional regulation of lymphokine gene expression during early lymphocyte activation.
Collapse
Affiliation(s)
- T Henics
- Department of Microbiology, University Medical School of Pécs, Hungary.
| | | | | |
Collapse
|
1485
|
Ladomery M, Lyons S, Sommerville J. Xenopus HDm, a maternally expressed histone deacetylase, belongs to an ancient family of acetyl-metabolizing enzymes. Gene X 1997; 198:275-80. [PMID: 9370292 DOI: 10.1016/s0378-1119(97)00325-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Modification of core histones can alter chromatin structure, facilitating the activation and repression of genes. A key example is the acetylation of N-terminal lysines of the core histones. Recently, the mammalian histone deacetylase HD1 was cloned from Jurkat T cells, and shown to be 60% identical to the yeast global gene regulator Rpd3 (Taunton et al., 1996). Here we report the cloning of HDm, a maternally expressed putative deposition histone deacetylase from Xenopus laevis. Comparison of the amino acid sequences of histone deacetylases from diverse eukaryotes shows high levels of identity within a putative enzyme core region. Further alignment with other types of protein: acetoin-utilizing enzymes from eubacteria; acetylpolyamine hydrolases from mycoplasma and cyanobacteria; and a protein of unknown function from an archaebacterium, reveals an apparently conserved core, and suggests that histone deacetylases belong to an ancient family of enzymes with related functions.
Collapse
Affiliation(s)
- M Ladomery
- Division of Cell and Molecular Biology, School of Biological and Medical Sciences, University of St Andrews, Fife, Scotland, UK
| | | | | |
Collapse
|
1486
|
Sueoka E, Sueoka N, Okabe S, Kozu T, Komori A, Ohta T, Suganuma M, Kim SJ, Lim IK, Fujiki H. Expression of the tumor necrosis factor alpha gene and early response genes by nodularin, a liver tumor promoter, in primary cultured rat hepatocytes. J Cancer Res Clin Oncol 1997; 123:413-9. [PMID: 9292703 DOI: 10.1007/bf01372544] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nodularin is a new liver carcinogen possessing a potent tumor-promoting activity in rat liver, mediated through inhibition of protein phosphatases 1 and 2A, and a weak initiating activity. Since we previously reported evidence that nodularin up-regulated expression of the tumor necrosis factor alpha gene (TNF alpha) and early-response genes in rat liver after its i.p. administration, and since TNF alpha had tumor-promoting activity in vitro, it is possible that TNF alpha itself is involved in liver tumor promotion. We investigated whether hepatocytes themselves induce expression of the TNF alpha gene and early-response genes in primary cultured rat hepatocytes treated with nodularin. Like nodularin, microcystin-LR, which is another liver tumor promoter belonging to the okadaic acid class, strongly induced TNF alpha gene expression in rat hepatocytes, as well as TNF alpha release from those cells into the medium. On the other hand, 12-O-tetradecanoylphorbol-13-acetate, which has been reported to induce no tumor promotion in rat liver, induced no apparent expression of the TNF alpha gene in primary cultured rat hepatocytes. As for the expression of early-response genes, 1 microM nodularin or microcystin-LR induced expression of the c-jun, jun B, jun D, c-fos, fos B and fra-1 genes in the hepatocytes, and the expression of these genes was prolonged up to 24 h, suggesting mRNA stabilization induced by inhibition of protein phosphatases 1 and 2A. This paper presents new evidence that the TNF alpha gene and early-response genes were expressed in hepatocytes treated with a liver tumor promoter.
Collapse
MESH Headings
- Animals
- Carcinogens/pharmacokinetics
- Carcinogens/pharmacology
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- Gene Expression/drug effects
- Genes, Immediate-Early/drug effects
- Genes, fos/drug effects
- Genes, jun/drug effects
- Liver/drug effects
- Liver/metabolism
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Male
- Marine Toxins
- Microcystins
- Peptides, Cyclic/pharmacokinetics
- Peptides, Cyclic/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred F344
- Tetradecanoylphorbol Acetate/pharmacology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- E Sueoka
- Saitama Cancer Center Research Institute, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1487
|
Laterza OF, Hansen WR, Taylor L, Curthoys NP. Identification of an mRNA-binding protein and the specific elements that may mediate the pH-responsive induction of renal glutaminase mRNA. J Biol Chem 1997; 272:22481-8. [PMID: 9278399 DOI: 10.1074/jbc.272.36.22481] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Various segments of the 3'-nontranslated region of the renal glutaminase (GA) mRNA were tested for their ability to enhance turnover and pH responsiveness. The combined effects were retained in the 340-base R-2 segment. However, the combined R-1 and R-3 fragments also imparted a partial destabilization and pH responsiveness to a chimeric beta-globin mRNA. RNA electrophoretic mobility shift assays indicated that cytosolic extracts of rat renal cortex contain a protein that binds to the R-2 and R-3 RNAs. The binding observed with the R-2 RNA was mapped to a direct repeat of an 8-base AU sequence. This binding was effectively competed with an excess of the same RNA, but not by adjacent or unrelated RNAs. UV cross-linking experiments identified a 48-kDa protein that binds to the AU repeats of the R-2 RNA. The apparent binding of this protein was greatly reduced in renal cytosolic extracts prepared from acutely acidotic rats. Two related RNA sequences in the R-3 segment also exhibited specific binding. However, the latter binding was more effectively competed by R-2 RNA than by itself, indicating that the homologous sites may be weaker binding sites for the same 48-kDa protein. Thus, a single protein may bind specifically to multiple instability elements within the 3'-nontranslated region of the GA mRNA and mediate its pH-responsive stabilization.
Collapse
Affiliation(s)
- O F Laterza
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | |
Collapse
|
1488
|
Izquierdo JM, Cuezva JM. Control of the translational efficiency of beta-F1-ATPase mRNA depends on the regulation of a protein that binds the 3' untranslated region of the mRNA. Mol Cell Biol 1997; 17:5255-68. [PMID: 9271403 PMCID: PMC232376 DOI: 10.1128/mcb.17.9.5255] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The expression of the nucleus-encoded beta-F1-ATPase gene of oxidative phosphorylation is developmentally regulated in the liver at both the transcriptional and posttranscriptional levels. In this study we have analyzed the potential mechanisms that control the cytoplasmic expression of beta-F1-ATPase mRNA during liver development. Remarkably, a full-length 3' untranslated region (UTR) of the transcript is required for its efficient in vitro translation. When the 3' UTR of beta-F1-ATPase mRNA is placed downstream of a reporter construct, it functions as a translational enhancer. In vitro translation experiments with full-length beta-F1-ATPase mRNA and with a chimeric reporter construct containing the 3' UTR of beta-F1-ATPase mRNA suggested the existence of an inhibitor of beta-F1-ATPase mRNA translation in the fetal liver. Electrophoretic mobility shift assays and UV cross-linking experiments allowed the identification of an acutely regulated protein (3'betaFBP) of the liver that binds at the 3' UTR of beta-F1-ATPase mRNA. The developmental profile of 3'betaFBP parallels the reported changes in the translational efficiency of beta-F1-ATPase mRNA during development. Fractionation of fetal liver extracts revealed that the inhibitory activity of beta-F1-ATPase mRNA translation cofractionates with 3'-UTR band-shifting activity. Compared to other tissues of the adult rat, kidney and spleen extracts showed very high expression levels of 3'betaFBP. Translation of beta-F1-ATPase mRNA in the presence of kidney and spleen extracts further supported a translational inhibitory role for 3'betaFBP. Mapping experiments and a deletion mutant of the 3' UTR revealed that the cis-acting element for binding 3'betaFBP is located within a highly conserved region of the 3' UTR of mammalian beta-F1-ATPase mRNAs. Overall, we have identified a mechanism of translational control that regulates the rapid postnatal differentiation of liver mitochondria.
Collapse
Affiliation(s)
- J M Izquierdo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Spain
| | | |
Collapse
|
1489
|
Wakamatsu Y, Weston JA. Sequential expression and role of Hu RNA-binding proteins during neurogenesis. Development 1997; 124:3449-60. [PMID: 9310339 DOI: 10.1242/dev.124.17.3449] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have identified three avian (chicken) Hu/elav family RNA-binding protein genes. cHuD and cHuC are expressed specifically in neurons of both the central and peripheral nervous systems. Although cHuA is expressed in a wide variety of tissues, including neurogenic precursor cells, it is transiently down-regulated, and is then re-expressed in maturing neurons. Misexpression of cHuD in cultured neural crest cells results in a dramatic increase in the proportion of cells exhibiting neuronal morphology, molecular markers for neurons, and neurotrophin dependence. These data confirm that cHuD protein is involved in regulating neuronal differentiation.
Collapse
Affiliation(s)
- Y Wakamatsu
- Institute of Neuroscience, University of Oregon, Eugene 97403-1254, USA
| | | |
Collapse
|
1490
|
Kiledjian M, DeMaria CT, Brewer G, Novick K. Identification of AUF1 (heterogeneous nuclear ribonucleoprotein D) as a component of the alpha-globin mRNA stability complex. Mol Cell Biol 1997; 17:4870-6. [PMID: 9234743 PMCID: PMC232339 DOI: 10.1128/mcb.17.8.4870] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
mRNA turnover is an important regulatory component of gene expression and is significantly influenced by ribonucleoprotein (RNP) complexes which form on the mRNA. Studies of human alpha-globin mRNA stability have identified a specific RNP complex (alpha-complex) which forms on the 3' untranslated region (3'UTR) of the mRNA and appears to regulate the erythrocyte-specific accumulation of alpha-globin mRNA. One of the protein activities in this multiprotein complex is a poly(C)-binding activity which consists of two proteins, alphaCP1 and alphaCP2. Neither of these proteins, individually or as a pair, can bind the alpha-globin 3'UTR unless they are complexed with the remaining non-poly(C) binding proteins of the alpha-complex. With the yeast two-hybrid screen, a second alpha-complex protein was identified. This protein is a member of the previously identified A+U-rich (ARE) binding/degradation factor (AUF1) family of proteins, which are also known as the heterogeneous nuclear RNP (hnRNP) D proteins. We refer to these proteins as AUF1/hnRNP-D. Thus, a protein implicated in ARE-mediated mRNA decay is also an integral component of the mRNA stabilizing alpha-complex. The interaction of AUF1/hnRNP-D is more efficient with alphaCP1 relative to alphaCP2 both in vitro and in vivo, suggesting that the alpha-complex might be dynamic rather than a fixed complex. AUF1/hnRNP-D could, therefore, be a general mRNA turnover factor involved in both stabilization and decay of mRNA.
Collapse
Affiliation(s)
- M Kiledjian
- Department of Cell, Developmental and Neurobiology, Rutgers University, Piscataway, New Jersey 08855, USA.
| | | | | | | |
Collapse
|
1491
|
Antic D, Keene JD. Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression. Am J Hum Genet 1997; 61:273-8. [PMID: 9311730 PMCID: PMC1715898 DOI: 10.1086/514866] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- D Antic
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
1492
|
Cuezva JM, Ostronoff LK, Ricart J, López de Heredia M, Di Liegro CM, Izquierdo JM. Mitochondrial biogenesis in the liver during development and oncogenesis. J Bioenerg Biomembr 1997; 29:365-77. [PMID: 9387097 DOI: 10.1023/a:1022450831360] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The analysis of the expression of oxidative phosphorylation genes in the liver during development reveals the existence of two biological programs involved in the biogenesis of mitochondria. Differentiation is a short-term program of biogenesis that is controlled at post-transcriptional levels of gene expression and is responsible for the rapid changes in the bioenergetic phenotype of mitochondria. In contrast, proliferation is a long-term program controlled both at the transcriptional and post-transcriptional levels of gene expression and is responsible for the increase in mitochondrial mass in the hepatocyte. Recently, a specific subcellular structure involved in the localization and control of the translation of the mRNA encoding the beta-catalytic subunit of the H(+)-ATP synthase (beta-mRNA) has been identified. It is suggested that this structure plays a prominent role in the control of mitochondrial biogenesis at post-transcriptional levels. The fetal liver has many phenotypic manifestations in common with highly glycolytic tumor cells. In addition, both have a low mitochondrial content despite a paradoxical increase in the cellular representation of oxidative phosphorylation transcripts. Based on the paradigm provided by the fetal liver we hypothesize that the aberrant mitochondrial phenotype of fast-growing hepatomas represents a reversion to a fetal program of expression of oxidative phosphorylation genes by the activation, or increased expression, of an inhibitor of beta-mRNA translation.
Collapse
Affiliation(s)
- J M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
1493
|
Hotz HR, Hartmann C, Huober K, Hug M, Clayton C. Mechanisms of developmental regulation in Trypanosoma brucei: a polypyrimidine tract in the 3'-untranslated region of a surface protein mRNA affects RNA abundance and translation. Nucleic Acids Res 1997; 25:3017-26. [PMID: 9224601 PMCID: PMC146859 DOI: 10.1093/nar/25.15.3017] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Salivarian trypanosomes are extracellular parasites of mammals that are transmitted by tsetse flies. The procyclic acidic repetitive proteins (PARPs) are the major surface glycoproteins of the form of Trypanosoma brucei that replicates in the fly. The abundance of PARP mRNA and protein is very strongly regulated, mostly at the post-transcriptional level. The 3'-untranslated regions of two PARP genes are of similar lengths, but are dissimilar in sequence apart from a 16mer stem-loop that stimulates translation and a 26mer polypyrimidine tract. Addition of either of these PARP 3'-untranslated regions immediately downstream of a reporter gene resulted in developmental regulation mimicking that of PARP. We show that the PARP 3'-UTR reduces RNA stability and translation in bloodstream forms and that the 26mer polypyrimidine tract is necessary for both effects.
Collapse
Affiliation(s)
- H R Hotz
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
1494
|
Xu N, Chen CY, Shyu AB. Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol Cell Biol 1997; 17:4611-21. [PMID: 9234718 PMCID: PMC232314 DOI: 10.1128/mcb.17.8.4611] [Citation(s) in RCA: 288] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Regulation of cytoplasmic deadenylation has a direct impact on the fate of mRNA and, consequently, its expression in the cytoplasm. AU-rich elements (AREs) found in the 3' untranslated regions of many labile mRNAs are the most common RNA-destabilizing elements known in mammalian cells. AREs direct accelerated deadenylation as the first step in mRNA turnover. Recently we have proposed that AREs can be divided into three different classes. mRNAs bearing either the class I AUUUA-containing ARE or the class III non-AUUUA ARE display synchronous poly(A) shortening, whereas class II ARE-containing mRNAs are deadenylated asynchronously, with the formation of poly(A)- intermediates. In this study, we have systematically characterized the deadenylation kinetics displayed by various AREs and their mutant derivatives. We find that a cluster of five or six copies of AUUUA motifs in close proximity forming various degrees of reiteration is the key feature that dictates the choice between processive versus distributive deadenylation. An AU-rich region 20 to 30 nucleotides long immediately 5' to this cluster of AUUUA motifs can greatly enhance the destabilizing ability of the AUUUA cluster and is, therefore, an integral part of the class I and class II AREs. These two features are the defining characteristics of class II AREs. Our results are consistent with the interpretation that the pentanucleotide AUUUA, rather than the nonamer UUAUUUA(U/A)(U/A), is both an essential and the minimal sequence motif of AREs. Our study provides the groundwork for future characterization of ARE-binding proteins identified by in vitro gel shift assays in order to stringently define their potential role in the ARE-mediated decay pathway. Moreover, transformation of deadenylation kinetics from one type to the other by mutations of AREs implies the existence of cross talk between the ARE and 3' poly(A) tail, which dictates the decay kinetics.
Collapse
Affiliation(s)
- N Xu
- Department of Biochemistry and Molecular Biology, The University of Texas Houston Health Science Center, Medical School, 77030, USA
| | | | | |
Collapse
|
1495
|
Morelli S, Delia D, Capaccioli S, Quattrone A, Schiavone N, Bevilacqua A, Tomasini S, Nicolin A. The antisense bcl-2-IgH transcript is an optimal target for synthetic oligonucleotides. Proc Natl Acad Sci U S A 1997; 94:8150-5. [PMID: 9223330 PMCID: PMC21572 DOI: 10.1073/pnas.94.15.8150] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In most human follicular B cell lymphomas the bcl-2 gene is up-regulated as a result of the t(14;18) chromosomal translocation generating a hybrid bcl-2-IgH mRNA. Recently, we have identified in t(14;18)-positive cells a bcl-2-IgH mRNA in the antisense orientation, putatively responsible for the overexpression of bcl-2. Herein we show that this chimeric antisense transcript is an optimal target for synthetic oligodeoxynucleotides (ODNs). A variety of sense-oriented oligonucleotides have been designed that target the antisense transcript in regions endowed with a sequence specificity presumably restricted to an individual cell line (the bcl-2-IgH fusion regions) or extended to all t(14;18) cells (the ectopic bcl-2 segment upstream from the major breakpoint region and the IgH segment). All sense-oriented ODNs complementary to the antisense transcript induced an early strong inhibition of cell growth and a late fulminant cell death. As expected, the activity of ODNs targeting the fusion region was restricted to each individual cell line, whereas the activity of all ODNs targeting the common bcl-2 and IgH segments was extended to all t(14;18) cell lines tested. These sense ODNs were not effective in untranslocated cell lines. Antisense-oriented ODNs, complementary to the bcl-2-IgH mRNA, and control ODNs (scrambled, inverted, or mismatched) were biologically ineffective. The selectivity and efficacy of all sense ODNs tested provide support for the development of therapeutic ODNs targeting the bcl-2-IgH antisense transcript expressed in human follicular lymphomas.
Collapse
Affiliation(s)
- S Morelli
- Department of Pharmacology, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
1496
|
Penalva LO, Yokosawa J, Stocker AJ, Soares MA, Graessmann M, Orlando TC, Winter CE, Botella LM, Graessmann A, Lara FJ. Molecular characterization of the C-3 DNA puff gene of Rhynchosciara americana. Gene X 1997; 193:163-72. [PMID: 9256073 DOI: 10.1016/s0378-1119(97)00104-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have mapped a region of about 33 kb which includes the transcription unit of the C-3 DNA puff gene of Rhynchosciara americana. The C-3 TU and a region extending approximately 800 bp upstream of the C-3 promoter were characterized. The TU is composed of three exons and produces a 1.1-kb mRNA whose level in salivary glands increases with the expansion of the C-3 puff. The C-3 messenger appears to undergo rapid deadenylation resulting in an RNA of about 0.95 kb which can still be observed in gland cells 15 h after the puff has regressed. The 1.1-kb mRNA codes for a 32.4-kDa, predominantly alpha-helical polypeptide with three conserved parallel coiled-coil stretches. The aa composition and structure of this polypeptide suggests that it is secreted and contributes to the formation of the cocoon in which the larvae pupate. The region upstream of the promoter contains several A-rich sequences with similarity to the ACS of yeast which might have a role in the initiation of replication/amplification.
Collapse
Affiliation(s)
- L O Penalva
- Departamento de Biologia, Instituto de Biociências, Universidade de São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1497
|
Banholzer R, Nair AP, Hirsch HH, Ming XF, Moroni C. Rapamycin destabilizes interleukin-3 mRNA in autocrine tumor cells by a mechanism requiring an intact 3' untranslated region. Mol Cell Biol 1997; 17:3254-60. [PMID: 9154824 PMCID: PMC232178 DOI: 10.1128/mcb.17.6.3254] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We analyzed the effect of rapamycin on autocrine mast cell tumor lines with abnormally stable interleukin-3 (IL-3) transcripts due to a defect in mRNA degradation. Rapamycin inhibited IL-3 mRNA expression specifically, while transcripts of IL-4 and IL-6 were not affected. As indicated by the use of the transcriptional inhibitor actinomycin D or by reporter constructs, inhibition was posttranscriptional and resulted from destabilization of the mRNA. Transcripts from transgenes lacking the AU-rich 3' untranslated region were refractory to drug-induced degradation, suggesting that these 3' sequences contain the target of the rapamycin effect. Rapamycin did not promote IL-3 mRNA degradation in cells of a tumor variant lacking expression of FKBP12, the binding protein of rapamycin. Experiments with wortmannin indicated that rapamycin does not act via p70S6 kinase. FK-506, another ligand of FKBP12 affecting the phosphatase calcineurin, did not antagonize but shared the effect of rapamycin. Our data fit a model whereby both FKBP12 and calcineurin target an unknown regulator of IL-3 mRNA turnover.
Collapse
Affiliation(s)
- R Banholzer
- Institute for Medical Microbiology, University of Basel, Switzerland
| | | | | | | | | |
Collapse
|
1498
|
Rotondaro L, Mazzanti L, Mele A, Rovera G. High-level expression of a cDNA for human granulocyte colony-stimulating factor in Chinese hamster ovary cells. Effect of 3'-noncoding sequences. Mol Biotechnol 1997; 7:231-40. [PMID: 9219237 DOI: 10.1007/bf02740814] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We compared the production of recombinant human granulocyte colony-stimulating factor (rhG-CSF) by Chinese hamster ovary (CHO) cells in a transient expression system, using different analogous vectors carrying a human G-CSF-encoding cDNA under the transcriptional control of the murine cytomegalovirus (CMV) major immediate early promoter. Comparison of two transcription units carrying a human (h)G-CSF cDNA deleted of 3'-untranslated (UTR) sequences containing AT-rich elements (ARE) and using 3'-UTR sequences for processing of transcripts from the SV40 early region or from the rabbit beta 1-globin gene showed that use of the sequences from the rabbit beta 1-globin gene resulted in 7- to 12-fold higher levels of rhG-CSF production. Deletion of ARE of hG-CSF cDNA resulted in increased rhG-CSF synthesis when transcription units using 3'-UTR sequences from the rabbit beta 1-globin gene were compared. By contrast, deletion of ARE did not appear to affect rhG-CSF production when 3'-UTR sequences from the SV40 early region were used. The most efficient G-CSF transcription unit, fused to a dihydrofolate reductase (DHFR) marker gene and transfected into a CHO cell line, yielded initial transfectant CHO cell lines secreting up to 21 micrograms rhG-CSF/1 x 10(6) cells in 24 h. After two rounds of DHFR gene amplification, a cell line was isolated that contains approx 12 copies of the vector and produces rhG-CSF at a rate of 90 micrograms/1 x 10(6) cells in 24 h.
Collapse
Affiliation(s)
- L Rotondaro
- Department of Biotechnology, Menarini Ricerche S.p.A. Pomezia, Roma, Italy
| | | | | | | |
Collapse
|
1499
|
Parthasarathy L, Parthasarathy R, Vadnal R. Molecular characterization of coding and untranslated regions of rat cortex lithium-sensitive myo-inositol monophosphatase cDNA. Gene 1997; 191:81-7. [PMID: 9210592 DOI: 10.1016/s0378-1119(97)00045-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lithium sensitive myo-inositol monophosphatase (IMPase) is a pivotal enzyme which controls the levels of brain inositol within the inositol-based signaling system. Its capacity to release free myo-inositol from inositol monophosphates generated from receptor-linked and de novo pathways is crucial to the maintenance of appropriate amounts of intracellular myo-inositol, which is essential for both inositol-based cell signaling and cell volume control. We present here the full length cDNA encompassing the coding and untranslated regions (5'- and 3'-UTRs) of rat brain IMPase. This cDNA was derived from rat cortex mRNA by the RT-PCR technique. Analysis of this cDNA revealed several interesting features which include a short 5'-untranslated region (5'-UTR) of 68 nucleotides followed by coding region of approximately 0.8 kb and a long 3'-untranslated region (3'-UTR) of 1.2 kb. Both 5'-rapid amplification of cDNA ends (5'-RACE) and 3'-RACE techniques were carried out to isolate both UTRs and double stranded sequencing was carried out to its entirety (approximately 2.1 kb) by 'gene walking' using several oligonucleotide primers. All nucleotides were sequenced unambiguously using the sense and antisense strands of DNA. PCR analysis for the coding region and the deduced amino acid sequence demonstrated a DNA fragment of 831 bp and 277 amino acids, respectively, which are strikingly similar to human hippocampal IMPase. The 5'-UTR demonstrated distinct CpG doublets, characteristic of 'housekeeping' genes. The sequence around the initiator methionine, AAGATGG, conforms well to the Kozak consensus sequence for mammalian protein biosynthesis and the 3'-UTR demonstrated three canonical (AATAAT, AATTAA, AATACA) and one unusual polyadenylation signals (ATTAAA) followed by a 31 base poly(A) tail. The presence of a CCTGTG in the 3'-UTR (putative carbohydrate response element) links IMPase mRNA to brain carbohydrate metabolic pathways. Computer analyses demonstrated several unique features of this mRNA, including the potential formation of hairpin loops which might be important in its intracellular regulation and turn-over. In summary, this lithium-sensitive brain IMPase mRNA has the following characteristics: a 5'-CpG-rich short untranslated segment, a highly conserved coding region, and a long 3'-untranslated region with several polyadenylation signals.
Collapse
Affiliation(s)
- L Parthasarathy
- Molecular Neuroscience Laboratory, Mental Health and Behavioral Science Service, Department of Veterans Affairs Medical Center, Louisville, KY 40206, USA
| | | | | |
Collapse
|
1500
|
Wang W, Shakes DC. Expression patterns and transcript processing of ftt-1 and ftt-2, two C. elegans 14-3-3 homologues. J Mol Biol 1997; 268:619-30. [PMID: 9171285 DOI: 10.1006/jmbi.1997.1002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A wide diversity of biological functions have been attributed to the highly conserved and ubiquitous 14-3-3 protein family. Yet how much of this diversity is inherent in the basic structure of 14-3-3 and how much is due to isoform specific functions is not yet fully understood. Here, two Caenorhabditis elegans 14-3-3 isoforms whose protein sequences are 90% similar were found to differ significantly in both their genomic structure and expression patterns. The two genes, ftt-1 (IV) (fourteen-three-three) and ftt-2 (X), differ in both the position and sequence of their introns. Since the various intron/exon boundaries respect neither functional nor structural protein motifs, the introns appear to be relatively recent evolutionary additions. ftt-1(IV) encodes three germline enhanced transcripts, two of which are related through the differential use of alternative poly(A) addition sites. RNA in situ hybridization studies reveal high levels of ftt-1 throughout the gonad with particularly high levels in the distal arm. In contrast, ftt-2 (X) encodes a single transcript which is expressed somatically. In embryos, high levels of ftt-1 transcripts appear to be maternally supplied, whereas ftt-2 is expressed as an early zygotic transcript whose expression pattern later localizes to the posterior region of post-proliferative embryos. These expression pattern differences between ftt-1 and ftt-2 suggest that these two 14-3-3 isoforms perform distinct biological roles within the worm.
Collapse
Affiliation(s)
- W Wang
- Department of Biology, University of Houston, TX 22304-5513, USA
| | | |
Collapse
|