1551
|
Sharif N, Alzahrani KJ, Ahmed SN, Dey SK. Efficacy, Immunogenicity and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis. Front Immunol 2021; 12:714170. [PMID: 34707602 PMCID: PMC8542872 DOI: 10.3389/fimmu.2021.714170] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
There is a significant research gap in meta-analysis on the efficacy and safety of coronavirus disease 2019 (COVID-19) vaccines. This study analyzed the efficacy of COVID-19 vaccines. Published phase I, phase II, and phase III trials analyzing safety and immunogenicity and phase III randomized clinical trials evaluating the efficacy of COVID-19 vaccines were included. We searched MEDLINE, Scopus, and The Lancet for published articles evaluating the relative reduction in COVID-19 risk after vaccination. Selected literatures were published between December 15, 2019 and May 15, 2021 on the safety, efficacy, and immunogenicity of COVID-19 vaccines. This meta-analysis included studies that confirmed cases of COVID-19 using reverse transcriptase polymerase chain reaction. This study detected 8,926 eligible research articles published on COVID-19 vaccines. Of these, 25 studies fulfilled the inclusion criteria. Among the selected articles, 19 randomized clinical trials, 2 non-randomized clinical trials, and 3 observational studies were analyzed. Seven (28%) studies were included in the meta-analysis. The efficacy of the adenovirus vector vaccine was 73% (95% CI = 69–77) and that of the messenger RNA (mRNA) vaccine was 85% (95% CI = 82–88) in participants aged ≥18 years. There are no reports of clinical trials in participants aged under 16 years. The production of neutralizing antibodies against receptor-binding domains (RBDs) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in >90% of the vaccinated samples was reported within 0–30 days of the first or the second dose of the vaccine. Pain at the injection site was the most common local symptom in people receiving mRNA vaccines (29%–85% of participants). Fever (0.2%–95%) was the most prevalent in people receiving adenovirus vector vaccines, and fatigue (8.4%–55%) was the most common side effect in people receiving the mRNA vaccines. Studies suggest that mRNA vaccines and adenovirus vector vaccines can provide moderate to high protection against COVID-19 infection in people over 18 years. Evidence of the long-term protection of the vaccines in people aged under 16 years against the multiple variants of COVID-19 are limited. This study will provide an integrated evaluation on the efficacy, safety, and immunogenicity of the COVID-19 vaccines.
Collapse
Affiliation(s)
- Nadim Sharif
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
1552
|
Tiyo BT, Schmitz GJH, Ortega MM, da Silva LT, de Almeida A, Oshiro TM, Duarte AJDS. What Happens to the Immune System after Vaccination or Recovery from COVID-19? Life (Basel) 2021; 11:1152. [PMID: 34833028 PMCID: PMC8619084 DOI: 10.3390/life11111152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Due to its leading role in fighting infections, the human immune system has been the focus of many studies in the context of Coronavirus disease 2019 (COVID-19). In a worldwide effort, the scientific community has transitioned from reporting about the effects of the novel coronavirus on the human body in the early days of the pandemic to exploring the body's many immunopathological and immunoprotecting properties that have improved disease treatment and enabled the development of vaccines. The aim of this review is to explain what happens to the immune system after recovery from COVID-19 and/or vaccination against SARS-CoV-2, the virus that causes the disease. We detail the way in which the immune system responds to a SARS-CoV-2 infection, including innate and adaptive measures. Then, we describe the role of vaccination, the main types of COVID-19 vaccines and how they protect us. Further, we explain the reason why immunity after COVID-19 infection plus a vaccination appears to induce a stronger response compared with virus exposure alone. Additionally, this review reports some correlates of protection from SARS-CoV-2 infection. In conclusion, we reinforce that vaccination is safe and important in achieving herd immunity.
Collapse
|
1553
|
Clinical outcomes and cost-effectiveness of COVID-19 vaccination in South Africa. Nat Commun 2021; 12:6238. [PMID: 34716349 PMCID: PMC8556310 DOI: 10.1038/s41467-021-26557-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/14/2021] [Indexed: 11/26/2022] Open
Abstract
Low- and middle-income countries are implementing COVID-19 vaccination strategies in light of varying vaccine efficacies and costs, supply shortages, and resource constraints. Here, we use a microsimulation model to evaluate clinical outcomes and cost-effectiveness of a COVID-19 vaccination program in South Africa. We varied vaccination coverage, pace, acceptance, effectiveness, and cost as well as epidemic dynamics. Providing vaccines to at least 40% of the population and prioritizing vaccine rollout prevented >9 million infections and >73,000 deaths and reduced costs due to fewer hospitalizations. Model results were most sensitive to assumptions about epidemic growth and prevalence of prior immunity to SARS-CoV-2, though the vaccination program still provided high value and decreased both deaths and health care costs across a wide range of assumptions. Vaccination program implementation factors, including prompt procurement, distribution, and rollout, are likely more influential than characteristics of the vaccine itself in maximizing public health benefits and economic efficiency. Cost, supply and logistics present challenges to COVID-19 vaccine rollout in low and middle income countries. Here, the authors model vaccination programmes in South Africa and demonstrate the importance of the pace of vaccine rollout, with even moderately efficacious vaccines likely to be cost-effective.
Collapse
|
1554
|
Cattel L, Giordano S, Traina S, Lupia T, Corcione S, Angelone L, La Valle G, De Rosa FG, Cattel F. Vaccine development and technology for SARS-CoV-2: Current insight. J Med Virol 2021; 94:878-896. [PMID: 34713912 PMCID: PMC8662109 DOI: 10.1002/jmv.27425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 02/23/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 is associated with a severe respiratory disease in China, that rapidly spread across continents. Since the beginning of the pandemic, available data suggested the asymptomatic transmission and patients were treated with specific drugs with efficacy and safety data not always satisfactory. The aim of this review is to describe the vaccines developed by three companies, Pfizer‐BioNTech, Moderna, and University of Oxford/AstraZeneca, in terms of both technological and pharmaceutical formulation, safety, efficacy, and immunogenicity. A critical analysis of Phases 1, 2, and 3 clinical trial results available was conducted, comparing the three vaccine candidates, underlining their similarities and differences. All candidates showed consistent efficacy and tolerability; although some differences can be noted, such as their technological formulation, temperature storage, which will be related to logistics and costs. Further studies will be necessary to evaluate long‐term effects and to assess the vaccine safety and efficacy in the general population. The rapid development of SARS‐CoV‐2 vaccines has been possible because in the last 20 years there have been rapid improvements in vaccine development in different scientific areas, such as molecular biology, genetic engineering, nano‐materials and lipid nanotechnology. The first three SARS‐CoV‐2 vaccines developed by Pfizer–BioNTech, Moderna and the University of Oxford/AstraZeneca are described, in terms of technology, pharmaceutical formulation, safety, efficacy and immunogenicity. The main detectable difference concerns the technological formulation, influencing logistics: two of these are mRNA‐based vaccines encapsulated in LNPs, whereas one is a DNA‐based vaccine encapsulated in viral vector. mRNA‐based vaccines have an advantage over DNA ones, because mRNA is directly translated in the cytoplasm form ribosomes once inside the cell. Technological and scientific advances allowed the encapsulation of mRNA into custom‐designed LNPs that mimic the structural features of a viral vector. Efficacy and safety studies of Pfizer–BioNTech, Moderna and the University of Oxford/AstraZeneca vaccines are reported, to report the massive pharmaceutical innovation brought.
Collapse
Affiliation(s)
- Luigi Cattel
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Susanna Giordano
- Department of Hospital Pharmacy, Città della Salute e della Scienza, Turin, Italy
| | - Sara Traina
- Department of Hospital Pharmacy, Città della Salute e della Scienza, Turin, Italy
| | - Tommaso Lupia
- Infectious Diseases Unit, Cardinal Massaia Hospital, Asti, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Medical Sciences, Infectious Diseases, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Lorenzo Angelone
- General Management, Città della Salute e della Scienza, Turin, Italy
| | - Giovanni La Valle
- General Management, Città della Salute e della Scienza, Turin, Italy
| | - Francesco G De Rosa
- Infectious Diseases Unit, Cardinal Massaia Hospital, Asti, Italy.,Department of Medical Sciences, Infectious Diseases, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Francesco Cattel
- Department of Hospital Pharmacy, Città della Salute e della Scienza, Turin, Italy
| |
Collapse
|
1555
|
Amanzio M, Mitsikostas DD, Giovannelli F, Bartoli M, Cipriani GE, Brown WA. Adverse events of active and placebo groups in SARS-CoV-2 vaccine randomized trials: A systematic review. LANCET REGIONAL HEALTH-EUROPE 2021; 12:100253. [PMID: 34729549 PMCID: PMC8553263 DOI: 10.1016/j.lanepe.2021.100253] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Background For safety assessment in clinical trials, adverse events (AEs) are reported for the drug under evaluation and compared with AEs in the placebo group. Little is known about the nature of the AEs associated with clinical trials of SARS-CoV-2 vaccines and the extent to which these can be traced to nocebo effects, where negative treatment-related expectations favor their occurrence. Methods In our systematic review, we compared the rates of solicited AEs in the active and placebo groups of SARS-CoV-2 vaccines approved by the Western pharmaceutical regulatory agencies.We implemented a search strategy to identify trial-III studies of SARS-CoV-2 vaccines through the PubMed database. We adopted the PRISMA Statement to perform the study selection and the data collection and identified three trial: two mRNA-based (37590 participants) and one adenovirus type (6736 participants). Findings Relative risks showed that the occurrence of AEs reported in the vaccine groups was higher compared with the placebo groups. The most frequently AEs in both groups were fatigue, headache, local pain, as injection site reactions, and myalgia. In particular, for first doses in placebo recipients, fatigue was reported in 29% and 27% in BNT162b2 and mRNA-1273 groups, respectively, and in 21% of Ad26.COV2.S participants. Headache was reported in 27% in both mRNA groups and in 24% of Ad26.COV2.S recipients. Myalgia was reported in 10% and 14% in mRNA groups (BNT162b2 and mRNA-1273, respectively) and in 13% of Ad26.COV2.S participants. Local pain was reported in 12% and 17% in mRNA groups (BNT162b2 and mRNA-1273, respectively), and in 17% of Ad26.COV2.S recipients. These AEs are more common in the younger population and in the first dose of placebo recipients of the mRNA vaccines. Interpretation Our results are in agreement with the expectancy theory of nocebo effects and suggest that the AEs associated with COVID-19 vaccines may be related to the nocebo effect. Funding Fondazione CRT - Cassa di Risparmio di Torino, IT (grant number 66346, "GAIA-MENTE" 2019).
Collapse
Affiliation(s)
- Martina Amanzio
- Department of Psychology, University of Turin, Via Verdi 10, 10124 Turin, Italy
| | - Dimos D Mitsikostas
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, 72-74 V. Sofia's Avenue, Athens 11528, Hellas, Greece
| | - Fabio Giovannelli
- Section of Psychology - Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Via di San Salvi 12, 50135 Florence, Italy
| | - Massimo Bartoli
- Department of Psychology, University of Turin, Via Verdi 10, 10124 Turin, Italy
| | | | - Walter A Brown
- Department of Psychiatry and Human Behavior, Brown University, 69 Brown Street Providence, RI 02912, USA
| |
Collapse
|
1556
|
Kleanthous H, Silverman JM, Makar KW, Yoon IK, Jackson N, Vaughn DW. Scientific rationale for developing potent RBD-based vaccines targeting COVID-19. NPJ Vaccines 2021; 6:128. [PMID: 34711846 PMCID: PMC8553742 DOI: 10.1038/s41541-021-00393-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/01/2021] [Indexed: 12/31/2022] Open
Abstract
Vaccination of the global population against COVID-19 is a great scientific, logistical, and moral challenge. Despite the rapid development and authorization of several full-length Spike (S) protein vaccines, the global demand outweighs the current supply and there is a need for safe, potent, high-volume, affordable vaccines that can fill this gap, especially in low- and middle-income countries. Whether SARS-CoV-2 S-protein receptor-binding domain (RBD)-based vaccines could fill this gap has been debated, especially with regards to its suitability to protect against emerging viral variants of concern. Given a predominance for elicitation of neutralizing antibodies (nAbs) that target RBD following natural infection or vaccination, a key biomarker of protection, there is merit for selection of RBD as a sole vaccine immunogen. With its high-yielding production and manufacturing potential, RBD-based vaccines offer an abundance of temperature-stable doses at an affordable cost. In addition, as the RBD preferentially focuses the immune response to potent and recently recognized cross-protective determinants, this domain may be central to the development of future pan-sarbecovirus vaccines. In this study, we review the data supporting the non-inferiority of RBD as a vaccine immunogen compared to full-length S-protein vaccines with respect to humoral and cellular immune responses against both the prototype pandemic SARS-CoV-2 isolate and emerging variants of concern.
Collapse
Affiliation(s)
| | | | | | - In-Kyu Yoon
- Coalition for Epidemic Preparedness Innovations, Greater London, UK
| | - Nicholas Jackson
- Coalition for Epidemic Preparedness Innovations, Greater London, UK.
| | | |
Collapse
|
1557
|
Lanini S, Capone S, Antinori A, Milleri S, Nicastri E, Camerini R, Agrati C, Castilletti C, Mori F, Sacchi A, Matusali G, Gagliardini R, Ammendola V, Cimini E, Grazioli F, Scorzolini L, Napolitano F, Plazzi MM, Soriani M, De Luca A, Battella S, Sommella A, Contino AM, Barra F, Gentile M, Raggioli A, Shi Y, Girardi E, Maeurer M, Capobianchi MR, Vaia F, Piacentini M, Kroemer G, Vitelli A, Colloca S, Folgori A, Ippolito G, Ottou S, Vita S, Vergori A, D'Abramo A, Petrecchia A, Montaldo C, Scalise E, Grassi G, Casetti R, Bordoni V, Notari S, Colavita F, Meschi S, Lapa D, Bordi L, Murachelli S, Tambasco T, Grillo A, Masone E, Marchioni E, Bardhi D, Porzio O, Cocca F, Murachelli S, Turrini I, Malescio F, Ziviani L, Lawlor R, Poli F, Martire F, Zamboni D, Mazzaferri F. GRAd-COV2, a gorilla adenovirus-based candidate vaccine against COVID-19, is safe and immunogenic in younger and older adults. Sci Transl Med 2021; 14:eabj1996. [PMID: 34698501 DOI: 10.1126/scitranslmed.abj1996] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Simone Lanini
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS; 00149, Rome, Italy
| | | | - Andrea Antinori
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS; 00149, Rome, Italy
| | - Stefano Milleri
- Centro Ricerche Cliniche di Verona srl; 37134, Verona, Italy
| | - Emanuele Nicastri
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS; 00149, Rome, Italy
| | | | - Chiara Agrati
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS; 00149, Rome, Italy
| | - Concetta Castilletti
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS; 00149, Rome, Italy
| | | | - Alessandra Sacchi
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS; 00149, Rome, Italy
| | - Giulia Matusali
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS; 00149, Rome, Italy
| | - Roberta Gagliardini
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS; 00149, Rome, Italy
| | | | - Eleonora Cimini
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS; 00149, Rome, Italy
| | | | - Laura Scorzolini
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS; 00149, Rome, Italy
| | | | - Maria M Plazzi
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS; 00149, Rome, Italy
| | | | - Aldo De Luca
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS; 00149, Rome, Italy
| | | | | | | | | | | | | | - Yufang Shi
- First Affiliated Hospital of Soochow University; Suzhou, 215008, Jiangsu, China.,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; 200061, Shanghai, China
| | - Enrico Girardi
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS; 00149, Rome, Italy
| | - Markus Maeurer
- Division of Immunotherapy, ImmunoSurgery, Champalimaud Foundation; 1400-038, Lisboa, Portugal.,I Medical Clinic, University of Mainz; 55122, Mainz, Germany
| | - Maria R Capobianchi
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS; 00149, Rome, Italy.,Saint Camillus International University of Health Sciences, 00131, Rome, Italy
| | - Francesco Vaia
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS; 00149, Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata; 00133, Rome, Italy
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy; 94805, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou; 75015, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, 17164, Stockholm, Sweden
| | | | | | | | - Giuseppe Ippolito
- Istituto Nazionale per Le Malattie Infettive Lazzaro Spallanzani IRCCS; 00149, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1558
|
Two-Component Nanoparticle Vaccine Displaying Glycosylated Spike S1 Domain Induces Neutralizing Antibody Response against SARS-CoV-2 Variants. mBio 2021; 12:e0181321. [PMID: 34634927 PMCID: PMC8510518 DOI: 10.1128/mbio.01813-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Vaccines pave the way out of the SARS-CoV-2 pandemic. Besides mRNA and adenoviral vector vaccines, effective protein-based vaccines are needed for immunization against current and emerging variants. We have developed a virus-like particle (VLP)-based vaccine using the baculovirus-insect cell expression system, a robust production platform known for its scalability, low cost, and safety. Baculoviruses were constructed encoding SARS-CoV-2 spike proteins: full-length S, stabilized secreted S, or the S1 domain. Since subunit S only partially protected mice from SARS-CoV-2 challenge, we produced S1 for conjugation to bacteriophage AP205 VLP nanoparticles using tag/catcher technology. The S1 yield in an insect-cell bioreactor was ∼11 mg/liter, and authentic protein folding, efficient glycosylation, partial trimerization, and ACE2 receptor binding was confirmed. Prime-boost immunization of mice with 0.5 μg S1-VLPs showed potent neutralizing antibody responses against Wuhan and UK/B.1.1.7 SARS-CoV-2 variants. This two-component nanoparticle vaccine can now be further developed to help alleviate the burden of COVID-19.
Collapse
|
1559
|
Zhu W, Feng J, Li C, Wang H, Zhong Y, Zhou L, Zhang X, Zhang T. COVID-19 Risk Assessment for the Tokyo Olympic Games. Front Public Health 2021; 9:730611. [PMID: 34760863 PMCID: PMC8572808 DOI: 10.3389/fpubh.2021.730611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: As of June 7, 2021, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread to more than 200 countries. The global number of reported cases is more than 172.9 million, with more than 3.7 million deaths, and the number of infected individuals is still growing rapidly. Consequently, events and activities around the world were canceled or postponed, and the preparation for sporting events were greatly challenged. Under such circumstances, about 11,000 athletes from ~206 countries are arriving in Tokyo for the 32nd Summer Olympic Games. Therefore, it is urgently necessary to assess the occurrence and spread risk of COVID-19 for the Games. Objectives: To explore effective prevention and control measures for COVID-19 in large international events through simulations of different interventions according to risk assessment. Methods: We used a random model to calculate the number of initial infected patients and used Poisson distribution to determine the number of initial infected patients based on the number of countries involved. Furthermore, to simulate the COVID-19 transmission, the susceptible-exposed-symptomatic-asymptomatic-recovered-hospitalized (SEIARH) model was established based on the susceptible-exposed-infectious-recovered (SEIR) mathematical model of epidemic diseases. According to risk assessment indicators produced by different scenarios of the simulated interventions, the risk of COVID-19 transmission in Tokyo Olympic Games was assessed. Results: The current COVID-19 prevention measures proposed by the Japan Olympic Committee need to be enhanced. And large-scale vaccination will effectively control the spread of COVID-19. When the protective efficacy of vaccines is 78.1% or 89.8%, and if the vaccination rate of athletes reaches 80%, an epidemic prevention barrier can be established.
Collapse
Affiliation(s)
- Wenhui Zhu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jie Feng
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Cheng Li
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huimin Wang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yang Zhong
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lijun Zhou
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Xingyu Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Tao Zhang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
1560
|
Pogostin BH, McHugh KJ. Novel Vaccine Adjuvants as Key Tools for Improving Pandemic Preparedness. Bioengineering (Basel) 2021; 8:155. [PMID: 34821721 PMCID: PMC8615241 DOI: 10.3390/bioengineering8110155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Future infectious disease outbreaks are inevitable; therefore, it is critical that we maximize our readiness for these events by preparing effective public health policies and healthcare innovations. Although we do not know the nature of future pathogens, antigen-agnostic platforms have the potential to be broadly useful in the rapid response to an emerging infection-particularly in the case of vaccines. During the current COVID-19 pandemic, recent advances in mRNA engineering have proven paramount in the rapid design and production of effective vaccines. Comparatively, however, the development of new adjuvants capable of enhancing vaccine efficacy has been lagging. Despite massive improvements in our understanding of immunology, fewer than ten adjuvants have been approved for human use in the century since the discovery of the first adjuvant. Modern adjuvants can improve vaccines against future pathogens by reducing cost, improving antigen immunogenicity, and increasing antigen stability. In this perspective, we survey the current state of adjuvant use, highlight potentially impactful preclinical adjuvants, and propose new measures to accelerate adjuvant safety testing and technology sharing to enable the use of "off-the-shelf" adjuvant platforms for rapid vaccine testing and deployment in the face of future pandemics.
Collapse
Affiliation(s)
| | - Kevin J. McHugh
- Department of Bioengineering, Rice University, Houston, TX 77030, USA;
| |
Collapse
|
1561
|
Gagne M, Corbett KS, Flynn BJ, Foulds KE, Wagner DA, Andrew SF, Todd JPM, Honeycutt CC, McCormick L, Nurmukhambetova ST, Davis-Gardner ME, Pessaint L, Bock KW, Nagata BM, Minai M, Werner AP, Moliva JI, Tucker C, Lorang CG, Zhao B, McCarthy E, Cook A, Dodson A, Mudvari P, Roberts-Torres J, Laboune F, Wang L, Goode A, Kar S, Boyoglu-Barnum S, Yang ES, Shi W, Ploquin A, Doria-Rose N, Carfi A, Mascola JR, Boritz EA, Edwards DK, Andersen H, Lewis MG, Suthar MS, Graham BS, Roederer M, Moore IN, Nason MC, Sullivan NJ, Douek DC, Seder RA. Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in nonhuman primates is coincident with an anamnestic antibody response in the lower airway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34729558 DOI: 10.1101/2021.10.23.465542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. We immunized rhesus macaques at weeks 0 and 4 and assessed immune responses over one year in blood, upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID 50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody binding titers also decreased in bronchoalveolar lavage (BAL). Four days after challenge, virus was unculturable in BAL and subgenomic RNA declined ∼3-log 10 compared to control animals. In nasal swabs, sgRNA declined 1-log 10 and virus remained culturable. Anamnestic antibody responses (590-fold increase) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.
Collapse
|
1562
|
Abstract
Since it was discovered at the end of 2019; the pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made a serious public health threat worldwide, with over 175 million confirmed cases reported globally. Even when COVID-19 was initially considered a respiratory disease, it was actually known to be multisystemic, with gastrointestinal involvement a common clinical finding. Furthermore, COVID-19 may affect patients with gastrointestinal comorbidities, being the clinical intersectionality of utmost interest for gastroenterologists; critical care physicians and all the healthcare team taking care of COVID-19 patients. The present article presents a brief review of the reported gastrointestinal manifestations of COVID-19 disease in both previously healthy individuals and in patients with gastrointestinal comorbidities.
Collapse
|
1563
|
Pascucci D, Nurchis MC, Sapienza M, Castrini F, Beccia F, D’Ambrosio F, Grossi A, Castagna C, Pezzullo AM, Zega M, Staiti D, De Simone FM, Mores N, Cambieri A, Vetrugno G, Damiani G, Laurenti P. Evaluation of the Effectiveness and Safety of the BNT162b2 COVID-19 Vaccine in the Vaccination Campaign among the Health Workers of Fondazione Policlinico Universitario Agostino Gemelli IRCCS. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111098. [PMID: 34769618 PMCID: PMC8582885 DOI: 10.3390/ijerph182111098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022]
Abstract
Health workers, especially those in patient-facing roles, had a significantly increased risk of COVID-19 infection, having serious outcomes, and risking spreading the virus to patients and staff. Vaccination campaign planning suggests allocating initial supplies of BNT162b2 vaccine to health workers given the importance of early protection to safeguard the continuity of care to patients. The aim of the study is to assess the effectiveness and safety of BNT162b2 vaccine among the health workers of Fondazione Policlinico Universitario Agostino Gemelli IRCCS (FPG). The retrospective cohort study was conducted among health staff working at the FPG. Vaccination data were collected from hospital records. The primary end points were vaccine effectiveness and safety. A total of 6649 health workers were included, of whom 5162 received injections. There were 14 cases of COVID-19 with onset at least 14 days after the second dose among vaccinated health workers and 45 cases among unvaccinated ones. BNT162b2 was 91.5% effective against COVID-19 (95% credible interval, 84.7% to 95.3%). The safety profile of BNT162b2 vaccine consisted of short-term, non-serious events. The promotion and boost of the COVID-19 vaccination campaign represents a key public health measure useful to curb the spread of the pandemic especially in vulnerable contexts, such as hospitals, where health workers carry out a paramount role for the entire community, and requires further protection with a possible booster dose in view of autumn-winter 2021.
Collapse
Affiliation(s)
- Domenico Pascucci
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (M.S.); (F.C.); (F.B.); (F.D.); (A.G.); (C.C.); (A.M.P.); (D.S.); (N.M.); (G.V.); (G.D.); (P.L.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.Z.); (F.M.D.S.); (A.C.)
| | - Mario Cesare Nurchis
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (M.S.); (F.C.); (F.B.); (F.D.); (A.G.); (C.C.); (A.M.P.); (D.S.); (N.M.); (G.V.); (G.D.); (P.L.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.Z.); (F.M.D.S.); (A.C.)
- Correspondence: ; Tel.: +39-063-015-4396
| | - Martina Sapienza
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (M.S.); (F.C.); (F.B.); (F.D.); (A.G.); (C.C.); (A.M.P.); (D.S.); (N.M.); (G.V.); (G.D.); (P.L.)
| | - Francesco Castrini
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (M.S.); (F.C.); (F.B.); (F.D.); (A.G.); (C.C.); (A.M.P.); (D.S.); (N.M.); (G.V.); (G.D.); (P.L.)
| | - Flavia Beccia
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (M.S.); (F.C.); (F.B.); (F.D.); (A.G.); (C.C.); (A.M.P.); (D.S.); (N.M.); (G.V.); (G.D.); (P.L.)
| | - Floriana D’Ambrosio
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (M.S.); (F.C.); (F.B.); (F.D.); (A.G.); (C.C.); (A.M.P.); (D.S.); (N.M.); (G.V.); (G.D.); (P.L.)
| | - Adriano Grossi
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (M.S.); (F.C.); (F.B.); (F.D.); (A.G.); (C.C.); (A.M.P.); (D.S.); (N.M.); (G.V.); (G.D.); (P.L.)
| | - Carolina Castagna
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (M.S.); (F.C.); (F.B.); (F.D.); (A.G.); (C.C.); (A.M.P.); (D.S.); (N.M.); (G.V.); (G.D.); (P.L.)
| | - Angelo Maria Pezzullo
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (M.S.); (F.C.); (F.B.); (F.D.); (A.G.); (C.C.); (A.M.P.); (D.S.); (N.M.); (G.V.); (G.D.); (P.L.)
| | - Maurizio Zega
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.Z.); (F.M.D.S.); (A.C.)
| | - Domenico Staiti
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (M.S.); (F.C.); (F.B.); (F.D.); (A.G.); (C.C.); (A.M.P.); (D.S.); (N.M.); (G.V.); (G.D.); (P.L.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.Z.); (F.M.D.S.); (A.C.)
| | - Francesco Maria De Simone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.Z.); (F.M.D.S.); (A.C.)
| | - Nadia Mores
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (M.S.); (F.C.); (F.B.); (F.D.); (A.G.); (C.C.); (A.M.P.); (D.S.); (N.M.); (G.V.); (G.D.); (P.L.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.Z.); (F.M.D.S.); (A.C.)
| | - Andrea Cambieri
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.Z.); (F.M.D.S.); (A.C.)
| | - Giuseppe Vetrugno
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (M.S.); (F.C.); (F.B.); (F.D.); (A.G.); (C.C.); (A.M.P.); (D.S.); (N.M.); (G.V.); (G.D.); (P.L.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.Z.); (F.M.D.S.); (A.C.)
| | - Gianfranco Damiani
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (M.S.); (F.C.); (F.B.); (F.D.); (A.G.); (C.C.); (A.M.P.); (D.S.); (N.M.); (G.V.); (G.D.); (P.L.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.Z.); (F.M.D.S.); (A.C.)
| | - Patrizia Laurenti
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (M.S.); (F.C.); (F.B.); (F.D.); (A.G.); (C.C.); (A.M.P.); (D.S.); (N.M.); (G.V.); (G.D.); (P.L.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.Z.); (F.M.D.S.); (A.C.)
| |
Collapse
|
1564
|
Clusters of SARS-CoV-2 Lineage B.1.1.7 Infection after Vaccination with Adenovirus-Vectored and Inactivated Vaccines. Viruses 2021; 13:v13112127. [PMID: 34834934 PMCID: PMC8623206 DOI: 10.3390/v13112127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
A SARS-CoV-2 B.1.1.7 variant of concern (VOC) has been associated with increased transmissibility, hospitalization, and mortality. This study aimed to explore the factors associated with B.1.1.7 VOC infection in the context of vaccination. On March 2021, we detected SARS-CoV-2 RNA in nasopharyngeal samples from 14 of 22 individuals vaccinated with a single-dose of ChAdOx1 (outbreak A, n = 26), and 22 of 42 of individuals with two doses of the CoronaVac vaccine (outbreak B, n = 52) for breakthrough infection rates for ChAdOx1 of 63.6% and 52.4% for CoronaVac. The outbreaks were caused by two independent clusters of the B.1.1.7 VOC. The serum of PCR-positive symptomatic SARS-CoV-2-infected individuals had ~1.8-3.4-fold more neutralizing capacity against B.1.1.7 compared to the serum of asymptomatic individuals. These data based on exploratory analysis suggest that the B.1.1.7 variant can infect individuals partially immunized with a single dose of an adenovirus-vectored vaccine or fully immunized with two doses of an inactivated vaccine, although the vaccines were able to reduce the risk of severe disease and death caused by this VOC, even in the elderly.
Collapse
|
1565
|
Abstract
Exceptional efforts have been undertaken to shed light into the biology of adaptive immune responses to SARS-CoV-2. T cells occupy a central role in adaptive immunity to mediate helper functions to different arms of the immune system and are fundamental to mediate protection, control, and clearance of most viral infections. Even though many questions remain unsolved, there is a growing literature linking specific T cell characteristics to differential COVID-19 severity and vaccine outcome. In this review, we summarize our current understanding of CD4+ and CD8+ T cell responses in acute and convalescent COVID-19. Further, we discuss the T cell literature coupled to pre-existing immunity and vaccines and highlight the need to look beyond blood to fully understand how T cells function in the tissue space.
Collapse
Affiliation(s)
- Julia Niessl
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Takuya Sekine
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
1566
|
Saied EM, El-Maradny YA, Osman AA, Darwish AMG, Abo Nahas HH, Niedbała G, Piekutowska M, Abdel-Rahman MA, Balbool BA, Abdel-Azeem AM. A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19. Pharmaceutics 2021; 13:1759. [PMID: 34834174 PMCID: PMC8624722 DOI: 10.3390/pharmaceutics13111759] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
In 2019, the world suffered from the emergence of COVID-19 infection, one of the most difficult pandemics in recent history. Millions of confirmed deaths from this pandemic have been reported worldwide. This disaster was caused by SARS-CoV-2, which is the last discovered member of the family of Coronaviridae. Various studies have shown that natural compounds have effective antiviral properties against coronaviruses by inhibiting multiple viral targets, including spike proteins and viral enzymes. This review presents the classification and a detailed explanation of the SARS-CoV-2 molecular characteristics and structure-function relationships. We present all currently available crystal structures of different SARS-CoV-2 proteins and emphasized on the crystal structure of different virus proteins and the binding modes of their ligands. This review also discusses the various therapeutic approaches for COVID-19 treatment and available vaccinations. In addition, we highlight and compare the existing data about natural compounds extracted from algae, fungi, plants, and scorpion venom that were used as antiviral agents against SARS-CoV-2 infection. Moreover, we discuss the repurposing of select approved therapeutic agents that have been used in the treatment of other viruses.
Collapse
Affiliation(s)
- Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Yousra A. El-Maradny
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt;
| | - Alaa A. Osman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Giza University, Newgiza, km 22 Cairo-Alexandria Desert Road, Cairo 12256, Egypt;
| | - Amira M. G. Darwish
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA City), Alexandria 21934, Egypt;
| | - Hebatallah H. Abo Nahas
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (H.H.A.N.); (M.A.A.-R.)
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Magdalena Piekutowska
- Department of Geoecology and Geoinformation, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Partyzantów 27, 76-200 Słupsk, Poland;
| | - Mohamed A. Abdel-Rahman
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (H.H.A.N.); (M.A.A.-R.)
| | - Bassem A. Balbool
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12585, Egypt;
| | - Ahmed M. Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
1567
|
Huang X, Yu M, Fu G, Lan G, Li L, Yang J, Qiao Y, Zhao J, Qian HZ, Zhang X, Liu X, Jin X, Chen G, Jiang H, Tang W, Wang Z, Xu J. Willingness to Receive COVID-19 Vaccination Among People Living With HIV and AIDS in China: Nationwide Cross-sectional Online Survey. JMIR Public Health Surveill 2021; 7:e31125. [PMID: 34543223 PMCID: PMC8534487 DOI: 10.2196/31125] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
Background HIV infection is a significant independent risk factor for both severe COVID-19 presentation at hospital admission and in-hospital mortality. Available information has suggested that people living with HIV and AIDS (PLWHA) could benefit from COVID-19 vaccination. However, there is a dearth of evidence on willingness to receive COVID-19 vaccination among PLWHA. Objective The aim of this study was to investigate willingness to receive COVID-19 vaccination among a national sample of PLWHA in China. Methods This cross-sectional online survey investigated factors associated with willingness to receive COVID-19 vaccination among PLWHA aged 18 to 65 years living in eight conveniently selected Chinese metropolitan cities between January and February 2021. Eight community-based organizations (CBOs) providing services to PLWHA facilitated the recruitment. Eligible PLWHA completed an online survey developed using a widely used encrypted web-based survey platform in China. We fitted a single logistic regression model to obtain adjusted odds ratios (aORs), which involved one of the independent variables of interest and all significant background variables. Path analysis was also used in the data analysis. Results Out of 10,845 PLWHA approached by the CBOs, 2740 completed the survey, and 170 had received at least one dose of the COVID-19 vaccine. This analysis was performed among 2570 participants who had never received COVID-19 vaccination. Over half of the participants reported willingness to receive COVID-19 vaccination (1470/2570, 57.2%). Perceptions related to COVID-19 vaccination were significantly associated with willingness to receive COVID-19 vaccination, including positive attitudes (aOR 1.11, 95% CI 1.09-1.12; P<.001), negative attitudes (aOR 0.96, 95% CI 0.94-0.97; P<.001), perceived support from significant others (perceived subjective norm; aOR 1.53, 95% CI 1.46-1.61; P<.001), and perceived behavioral control (aOR 1.13, 95% CI 1.11-1.14; P<.001). At the interpersonal level, receiving advice supportive of COVID-19 vaccination from doctors (aOR 1.99, 95% CI 1.65-2.40; P<.001), CBO staff (aOR 1.89, 95% CI 1.51-2.36; P<.001), friends and/or family members (aOR 3.22, 95% CI 1.93-5.35; P<.001), and PLWHA peers (aOR 2.38, 95% CI 1.85-3.08; P<.001) was associated with higher willingness to receive COVID-19 vaccination. The overall opinion supporting COVID-19 vaccination for PLWHA on the internet or social media was also positively associated with willingness to receive COVID-19 vaccination (aOR 1.59, 95% CI 1.31-1.94; P<.001). Path analysis indicated that interpersonal-level variables were indirectly associated with willingness to receive COVID-19 vaccination through perceptions (β=.43, 95% CI .37-.51; P<.001). Conclusions As compared to PLWHA in other countries and the general population in most parts of the world, PLWHA in China reported a relatively low willingness to receive COVID-19 vaccination. The internet and social media as well as interpersonal communications may be major sources of influence on PLWHA’s perceptions and willingness to receive COVID-19 vaccination.
Collapse
Affiliation(s)
- Xiaojie Huang
- Infectious Disease Department, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Maohe Yu
- Tianjin Center for Disease Control and Prevention, Tianjin, China
| | - Gengfeng Fu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Guanghua Lan
- Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Linghua Li
- Infectious Disease Department, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianzhou Yang
- Department of Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Ying Qiao
- Infectious Disease Department, The Second Hospital of Huhhot, Huhhot, China
| | - Jin Zhao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Han-Zhu Qian
- SJTU-Yale Joint Center for Biostatistics and Data Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangjun Zhang
- Department of Public Health, University of Tennessee, Knoxville, TN, United States
| | - Xinchao Liu
- Infectious Disease Department, Peking Union Medical College Hospital, Beijing, China
| | - Xia Jin
- AIDS Healthcare Foundation China, Beijing, China
| | - Guohong Chen
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Hui Jiang
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Weiming Tang
- STD Prevention and Control Department, University of North Carolina Project-China, Guangzhou, China
| | - Zixin Wang
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Junjie Xu
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
| |
Collapse
|
1568
|
Corbett KS, Gagne M, Wagner DA, O' Connell S, Narpala SR, Flebbe DR, Andrew SF, Davis RL, Flynn B, Johnston TS, Stringham CD, Lai L, Valentin D, Van Ry A, Flinchbaugh Z, Werner AP, Moliva JI, Sriparna M, O'Dell S, Schmidt SD, Tucker C, Choi A, Koch M, Bock KW, Minai M, Nagata BM, Alvarado GS, Henry AR, Laboune F, Schramm CA, Zhang Y, Yang ES, Wang L, Choe M, Boyoglu-Barnum S, Wei S, Lamb E, Nurmukhambetova ST, Provost SJ, Donaldson MM, Marquez J, Todd JPM, Cook A, Dodson A, Pekosz A, Boritz E, Ploquin A, Doria-Rose N, Pessaint L, Andersen H, Foulds KE, Misasi J, Wu K, Carfi A, Nason MC, Mascola J, Moore IN, Edwards DK, Lewis MG, Suthar MS, Roederer M, McDermott A, Douek DC, Sullivan NJ, Graham BS, Seder RA. Protection against SARS-CoV-2 beta variant in mRNA-1273 vaccine-boosted nonhuman primates. Science 2021; 374:1343-1353. [PMID: 34672695 DOI: 10.1126/science.abl8912] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah O' Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep R Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachel L Davis
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy S Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher D Stringham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lilin Lai
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | | | | | | | - Anne P Werner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjari Sriparna
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Courtney Tucker
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Kevin W Bock
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriela S Alvarado
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shi Wei
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evan Lamb
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saule T Nurmukhambetova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha J Provost
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitzi M Donaldson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Josue Marquez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Andrew Pekosz
- Department of Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Eli Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Wu
- Moderna Inc., Cambridge, MA 02139, USA
| | | | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Mehul S Suthar
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
1569
|
Collier ARY, Brown CM, Mcmahan K, Yu J, Liu J, Jacob-Dolan C, Chandrashekar A, Tierney D, Ansel JL, Rowe M, Sellers D, Ahmad K, Aguayo R, Anioke T, Gardner S, Siamatu M, Bermudez Rivera L, Hacker MR, Madoff LC, Barouch DH. Immune Responses in Fully Vaccinated Individuals Following Breakthrough Infection with the SARS-CoV-2 Delta Variant in Provincetown, Massachusetts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.10.18.21265113. [PMID: 34704104 PMCID: PMC8547536 DOI: 10.1101/2021.10.18.21265113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND A cluster of over a thousand infections with the SARS-CoV-2 delta variant was identified in a predominantly fully vaccinated population in Provincetown, Massachusetts in July 2021. Immune responses in breakthrough infections with the SARS-CoV-2 delta variant remain to be defined. METHODS Humoral and cellular immune responses were assessed in 35 vaccinated individuals who were tested for SARS-CoV-2 in the Massachusetts Department of Public Health outbreak investigation. RESULTS Vaccinated individuals who tested positive for SARS-CoV-2 demonstrated substantially higher antibody responses than vaccinated individuals who tested negative for SARS-CoV-2, including 28-fold higher binding antibody titers and 34-fold higher neutralizing antibody titers against the SARS-CoV-2 delta variant. Vaccinated individuals who tested positive also showed 4.4-fold higher Spike-specific CD8+ T cell responses against the SARS-CoV-2 delta variant than vaccinated individuals who tested negative. CONCLUSIONS Fully vaccinated individuals developed robust anamnestic antibody and T cell responses following infection with the SARS-CoV-2 delta variant. These data suggest important immunologic benefits of vaccination in the context of breakthrough infections.
Collapse
|
1570
|
Gadani SP, Reyes-Mantilla M, Jank L, Harris S, Douglas M, Smith MD, Calabresi PA, Mowry EM, Fitzgerald KC, Bhargava P. Discordant humoral and T cell immune responses to SARS-CoV-2 vaccination in people with multiple sclerosis on anti-CD20 therapy. EBioMedicine 2021; 73:103636. [PMID: 34666226 PMCID: PMC8520057 DOI: 10.1016/j.ebiom.2021.103636] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Background Sphingosine-1-phosphate receptor (S1P) modulators and anti-CD20 therapies impair humoral responses to SARS-CoV-2 mRNA vaccines. Relatively few studies have assessed the impact of an array of disease modifying therapies (DMTs) for multiple sclerosis (MS) on T cell immune responses to SARS-CoV-2 vaccination. Methods In 101 people with MS, we measured humoral responses via an immunoassay to measure IgG against the COVID-19 spike S1 glycoprotein in serum. We also measured T cell responses using FluoroSpot assay for interferon gamma (IFN-γ) (Mabtech, Sweden) using cryopreserved rested PBMCs and then incubated in cRPMI with 1µg/ml of pooled peptides spanning the entire spike glycoprotein (Genscript, 2 pools; 158 peptides each). Plates were read on an AID iSpot Spectrum to determine the number of spot forming cells (SFC)/106 PBMCs. We tested for differences in immune responses across DMTs using linear models. Findings Humoral responses were detected in 22/39 (56.4%) participants on anti-CD20 and in 59/63 (93.6%) participants on no or other DMTs. In a subset (n=88; 87%), T cell responses were detected in 76/88 (86%), including 32/33 (96.9%) participants on anti-CD20 therapies. Anti-CD20 therapies were associated with an increase in IFN-γ SFC counts relative to those on no DMT or other DMTs (for anti-CD20 vs. no DMT: 425.9% higher [95%CI: 109.6%, 1206.6%] higher; p<0.001; for anti-CD20 vs. other DMTs: 289.6% [95%CI: 85.9%, 716.6%] higher; p<0.001). Interpretation We identified a robust T cell response in individuals on anti-CD20 therapies despite a reduced humoral response to SARS-CoV-2 vaccination. Follow up studies are needed to determine if this translates to protection against COVID-19 infection. Funding This study was funded partially by 1K01MH121582-01 from NIH/NIMH and TA-1805-31136 from the National MS Society (NMSS) to KCF and TA-1503-03465 and JF-2007-37655 from the NMSS to PB. This study was also supported through the generosity of the collective community of donors to the Johns Hopkins University School of Medicine for COVID research.
Collapse
Affiliation(s)
- Sachin P Gadani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Reyes-Mantilla
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Larissa Jank
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samantha Harris
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Morgan Douglas
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew D Smith
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ellen M Mowry
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Pavan Bhargava
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
1571
|
Ramesh S, Govindarajulu M, Parise RS, Neel L, Shankar T, Patel S, Lowery P, Smith F, Dhanasekaran M, Moore T. Emerging SARS-CoV-2 Variants: A Review of Its Mutations, Its Implications and Vaccine Efficacy. Vaccines (Basel) 2021; 9:1195. [PMID: 34696303 PMCID: PMC8537675 DOI: 10.3390/vaccines9101195] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
The widespread increase in multiple severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants is causing a significant health concern in the United States and worldwide. These variants exhibit increased transmissibility, cause more severe disease, exhibit evasive immune properties, impair neutralization by antibodies from vaccinated individuals or convalescence sera, and reinfection. The Centers for Disease Control and Prevention (CDC) has classified SARS-CoV-2 variants into variants of interest, variants of concern, and variants of high consequence. Currently, four variants of concern (B.1.1.7, B.1.351, P.1, and B.1.617.2) and several variants of interests (B.1.526, B.1.525, and P.2) are characterized and are essential for close monitoring. In this review, we discuss the different SARS-CoV-2 variants, emphasizing variants of concern circulating the world and highlight the various mutations and how these mutations affect the characteristics of the virus. In addition, we discuss the most common vaccines and the various studies concerning the efficacy of these vaccines against different variants of concern.
Collapse
Affiliation(s)
- Sindhu Ramesh
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Rachel S. Parise
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Logan Neel
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Tharanath Shankar
- Department of Internal Medicine, Ramaiah Medical College and Hospital, Bengaluru 560054, Karnataka, India;
| | - Shriya Patel
- Department of Neuroscience, Middlebury College, Middlebury, VT 05753, USA;
| | - Payton Lowery
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Forrest Smith
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Timothy Moore
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| |
Collapse
|
1572
|
Al-Jighefee HT, Najjar H, Ahmed MN, Qush A, Awwad S, Kamareddine L. COVID-19 Vaccine Platforms: Challenges and Safety Contemplations. Vaccines (Basel) 2021; 9:1196. [PMID: 34696306 PMCID: PMC8537163 DOI: 10.3390/vaccines9101196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 01/15/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic as of March 2020, creating a global crisis and claiming millions of lives. To halt the pandemic and alleviate its impact on society, economy, and public health, the development of vaccines and antiviral agents against SARS-CoV-2 was a dire need. To date, various platforms have been utilized for SARS-CoV-2 vaccine development, and over 200 vaccine candidates have been produced, many of which have obtained the United States Food and Drug Administration (FDA) approval for emergency use. Despite this successful development and licensure, concerns regarding the safety and efficacy of these vaccines have arisen, given the unprecedented speed of vaccine development and the newly emerging SARS-CoV-2 strains and variants. In this review, we summarize the different platforms used for Coronavirus Disease 2019 (COVID-19) vaccine development, discuss their strengths and limitations, and highlight the major safety concerns and potential risks associated with each vaccine type.
Collapse
Affiliation(s)
- Hadeel T. Al-Jighefee
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hoda Najjar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
| | - Muna Nizar Ahmed
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
| | - Abeer Qush
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
| | - Sara Awwad
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
| | - Layla Kamareddine
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
1573
|
Ahn TK, Kang S, Paik JH, Seo YH. Adverse events and preventive measures related to COVID-19 vaccines. Clin Exp Emerg Med 2021; 8:153-159. [PMID: 34649403 PMCID: PMC8517461 DOI: 10.15441/ceem.21.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/11/2021] [Indexed: 01/28/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) vaccines are categorized according to the manufacturing technique, including mRNA vaccines and adenovirus vector vaccines. According to previous studies, the reported efficacy of the COVID-19 vaccine is excellent regardless of the type of vaccine, and the majority of studies have shown similar results for safety. Most of the adverse reactions after vaccination were mild or moderate grade, and severe reactions were reported in a very small proportion. However, the adverse reactions that might occur after nationwide vaccinations can contribute to crowding of emergency departments, and this can further lead to significant obstacles to providing necessary treatment for life-threatening conditions. Therefore, as emergency physicians, we would like to present some concerns and suggestions to prevent these predictable problems.
Collapse
Affiliation(s)
- Tae Kyu Ahn
- Department of Emergency Medicine, Inha University School of Medicine, Incheon, Korea
| | - Soo Kang
- Department of Emergency Medicine, Inha University School of Medicine, Incheon, Korea
| | - Jin Hui Paik
- Department of Emergency Medicine, Inha University School of Medicine, Incheon, Korea
| | - Young Ho Seo
- Department of Emergency Medicine, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
1574
|
Williams G. Trust issues in vaccine uptake. J Crit Care 2021; 67:198-199. [PMID: 34649746 PMCID: PMC8506347 DOI: 10.1016/j.jcrc.2021.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Affiliation(s)
- George Williams
- UT Health McGovern Medical School at Houston, Department of Anesthesiology, 6431 Fannin St, MSB 5.020, Houston, TX 77030, United States.
| |
Collapse
|
1575
|
Rovida F, Cassaniti I, Paolucci S, Percivalle E, Sarasini A, Piralla A, Giardina F, Sammartino JC, Ferrari A, Bergami F, Muzzi A, Novelli V, Meloni A, Cutti S, Grugnetti AM, Grugnetti G, Rona C, Daglio M, Marena C, Triarico A, Lilleri D, Baldanti F. SARS-CoV-2 vaccine breakthrough infections with the alpha variant are asymptomatic or mildly symptomatic among health care workers. Nat Commun 2021; 12:6032. [PMID: 34654808 PMCID: PMC8521593 DOI: 10.1038/s41467-021-26154-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
Vaccine breakthrough SARS-CoV-2 infection has been monitored in 3720 healthcare workers receiving 2 doses of BNT162b2. SARS-CoV-2 infection is detected in 33 subjects, with a 100-day cumulative incidence of 0.93%. Vaccine protection against acquisition of SARS-CoV-2 infection is 83% (95%CI: 58-93%) in the overall population and 93% (95%CI: 69-99%) in SARS-CoV-2-experienced subjects, when compared with a non-vaccinated control group from the same Institution, in which SARS-CoV-2 infection occurs in 20/346 subjects (100-day cumulative incidence: 5.78%). The infection is symptomatic in 16 (48%) vaccinated subjects vs 17 (85%) controls (p = 0.01). All analyzed patients, in whom the amount of viral RNA was sufficient for genome sequencing, results infected by the alpha variant. Antibody and T-cell responses are not reduced in subjects with breakthrough infection. Evidence of virus transmission, determined by contact tracing, is observed in two (6.1%) cases. This real-world data support the protective effect of BNT162b2 vaccine. A triple antigenic exposure, such as two-dose vaccine schedule in experienced subjects, may confer a higher protection.
Collapse
Affiliation(s)
- Francesca Rovida
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania Paolucci
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonella Sarasini
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Piralla
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Giardina
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Josè Camilla Sammartino
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Bergami
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alba Muzzi
- Medical Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Viola Novelli
- Medical Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro Meloni
- Medical Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Public Health, Experimental and Forensic Medicine, Section of Hygiene, University of Pavia, Pavia, Italy
| | - Sara Cutti
- Medical Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna Maria Grugnetti
- Health Professions Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giuseppina Grugnetti
- Health Professions Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Claudia Rona
- Medical Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marinella Daglio
- Medical Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlo Marena
- Medical Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Triarico
- Direzione Sanitaria, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniele Lilleri
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
1576
|
Atmar RL, Lyke KE, Deming ME, Jackson LA, Branche AR, El Sahly HM, Rostad CA, Martin JM, Johnston C, Rupp RE, Mulligan MJ, Brady RC, Frenck RW, Bäcker M, Kottkamp AC, Babu TM, Rajakumar K, Edupuganti S, Dobryzynski D, Posavad CM, Archer JI, Crandon S, Nayak SU, Szydlo D, Zemanek J, Dominguez Islas CP, Brown ER, Suthar MS, McElrath MJ, McDermott AB, O’Connell SE, Montefiori DC, Eaton A, Neuzil KM, Stephens DS, Roberts PC, Beigel JH, DMID 21-0012 Study Group. Heterologous SARS-CoV-2 Booster Vaccinations - Preliminary Report. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.10.10.21264827. [PMID: 34671773 PMCID: PMC8528081 DOI: 10.1101/2021.10.10.21264827] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background While Coronavirus disease 2019 (Covid-19) vaccines are highly effective, breakthrough infections are occurring. Booster vaccinations have recently received emergency use authorization (EUA) for certain populations but are restricted to homologous mRNA vaccines. We evaluated homologous and heterologous booster vaccination in persons who had received an EUA Covid-19 vaccine regimen. Methods In this phase 1/2 open-label clinical trial conducted at ten U.S. sites, adults who received one of three EUA Covid-19 vaccines at least 12 weeks prior to enrollment and had no reported history of SARS-CoV-2 infection received a booster injection with one of three vaccines (Moderna mRNA-1273 100-μg, Janssen Ad26.COV2.S 5×1010 virus particles, or Pfizer-BioNTech BNT162b2 30-μg; nine combinations). The primary outcomes were safety, reactogenicity, and humoral immunogenicity on study days 15 and 29. Results 458 individuals were enrolled: 154 received mRNA-1273, 150 received Ad26.CoV2.S, and 153 received BNT162b2 booster vaccines. Reactogenicity was similar to that reported for the primary series. Injection site pain, malaise, headache, and myalgia occurred in more than half the participants. Booster vaccines increased the neutralizing activity against a D614G pseudovirus (4.2-76-fold) and binding antibody titers (4.6-56-fold) for all combinations; homologous boost increased neutralizing antibody titers 4.2-20-fold whereas heterologous boost increased titers 6.2-76-fold. Day 15 neutralizing and binding antibody titers varied by 28.7-fold and 20.9-fold, respectively, across the nine prime-boost combinations. Conclusion Homologous and heterologous booster vaccinations were well-tolerated and immunogenic in adults who completed a primary Covid-19 vaccine regimen at least 12 weeks earlier.
Collapse
Affiliation(s)
- Robert L. Atmar
- Departments of Medicine and Molecular Virology & MIcrobiology, Baylor College of Medicine, Houston, TX 77030
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health collaborating with the Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Meagan E. Deming
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Lisa A. Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA
| | - Angela R. Branche
- Department of Medicine, Division of Infectious Diseases, University of Rochester, Rochester, NY 14642
| | - Hana M. El Sahly
- Departments of Molecular Virology & MIcrobiology and Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Christina A. Rostad
- Department of Pediatrics and Center for Childhood Infections and Vaccines, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322
| | - Judith M. Martin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Christine Johnston
- Departments of Medicine and Laboratory Medicine, University of Washington, Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | - Richard E. Rupp
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555
| | - Mark J. Mulligan
- NYU Langone Vaccine Center and Division of Infectious Diseases and Immunology, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016
| | - Rebecca C. Brady
- Cincinnati Children’s Hospital Medical Center, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039
| | - Robert W. Frenck
- Cincinnati Children’s Hospital Medical Center, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039
| | - Martín Bäcker
- NYU Langone Hospital—Long Island Vaccine Center Research Clinic and Division of Infectious Disease, Department of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501
| | - Angelica C. Kottkamp
- NYU Langone Vaccine Center Bellevue Hospital Research Clinic and Division of Infectious Diseases and Immunology, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016
| | - Tara M. Babu
- Department of Medicine, University of Washington, Seattle, WA 98104
| | - Kumaravel Rajakumar
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Srilatha Edupuganti
- Division of Infectious Diseases, Department of Medicine, Hope Clinic of Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30030
| | - David Dobryzynski
- Department of Medicine, Division of Infectious Diseases, University of Rochester, Rochester, NY 14642
| | - Christine M. Posavad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | | | - Sonja Crandon
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Seema U. Nayak
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Daniel Szydlo
- Statistical Center for HIV/AIDS Research and Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jillian Zemanek
- Statistical Center for HIV/AIDS Research and Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Clara P. Dominguez Islas
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Elizabeth R. Brown
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Mehul S. Suthar
- Emory Vaccine Center, Yerkes National Primate Research Center; Department of Pediatrics; Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Department of Medicine and Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sarah E. O’Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - David C. Montefiori
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC
| | - Amanda Eaton
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Kathleen M. Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201
| | | | - Paul C. Roberts
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - John H. Beigel
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
1577
|
Min YG, Ju W, Ha YE, Ban JJ, Lee SA, Sung JJ, Shin JY. Sensory Guillain-Barre syndrome following the ChAdOx1 nCov-19 vaccine: Report of two cases and review of literature. J Neuroimmunol 2021; 359:577691. [PMID: 34416410 PMCID: PMC8349403 DOI: 10.1016/j.jneuroim.2021.577691] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 01/12/2023]
Abstract
Massive vaccination against COVID-19 has become a global priority. Simultaneously, concerns regarding the safety of vaccines are growing. We describe two patients who developed sensory Guillain-Barre syndrome (GBS) shortly after the first dose of the ChAdOx1 vaccine. We also summarize 12 published cases of GBS after ChAdOx1 vaccination, highlighting their unique clinical and paraclinical features. We propose a possible association between the risk of GBS and the ChAdOx1 vaccine and recommend surveillance for GBS following vaccination. Population-based studies are needed to determine causality and whether specific subpopulations are susceptible.
Collapse
Affiliation(s)
- Young Gi Min
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woohee Ju
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ye-Eun Ha
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jae-Jun Ban
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Research Institute, Seoul, Republic of Korea
| | - Seol Ah Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Je-Young Shin
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
1578
|
American perspectives on COVID-19 vaccination hesitancy and refusal: Time for a new approach? J Crit Care 2021; 67:189-190. [PMID: 34663531 PMCID: PMC8519662 DOI: 10.1016/j.jcrc.2021.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022]
|
1579
|
Beck EJ, Hsieh YH, Fernandez RE, Dashler G, Egbert ER, Truelove SA, Garliss C, Wang R, Bloch EM, Shrestha R, Blankson J, Cox AL, Manabe YC, Kickler T, Rothman RE, Redd AD, Tobian AA, Milstone AM, Quinn TC, Laeyendecker O. Differentiation of SARS-CoV-2 naturally infected and vaccinated individuals in an inner-city emergency department. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34671778 PMCID: PMC8528087 DOI: 10.1101/2021.10.13.21264968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Emergency Departments (EDs) can serve as surveillance sites for infectious diseases. Our purpose was to determine the burden of SARS-CoV-2 infection and prevalence of vaccination against COVID-19 among patients attending an urban ED in Baltimore City. Methods Using 1914 samples of known exposure status, we developed an algorithm to differentiate previously infected, vaccinated, and unexposed individuals using a combination of antibody assays. We applied this testing algorithm to 4360 samples ED patients obtained in the springs of 2020 and 2021. Using multinomial logistic regression, we determined factors associated with infection and vaccination. Results For the algorithm, sensitivity and specificity for identifying vaccinated individuals was 100% and 99%, respectively, and 84% and 100% for naturally infected individuals. Among the ED subjects, seroprevalence to SARS-CoV-2 increased from 2% to 24% between April 2020 and March 2021. Vaccination prevalence rose to 11% by mid-March 2021. Marked differences in burden of disease and vaccination coverage were seen by sex, race, and ethnicity. Hispanic patients, though 7% of the study population, had the highest relative burden of disease (17% of total infections) but similar vaccination rates. Women and White individuals were more likely to be vaccinated than men or Black individuals (adjusted odds ratios [aOR] 1.35 [95% CI: 1.02, 1.80] and aOR 2.26 [95% CI: 1.67, 3.07], respectively). Conclusions Individuals previously infected with SARS-CoV-2 can be differentiated from vaccinated individuals using a serologic testing algorithm. SARS-CoV-2 exposure and vaccination uptake frequencies reflect gender, race and ethnic health disparities in this urban context. Summary Using an antibody testing algorithm, we distinguished between immune responses from SARS-CoV-2-infected and vaccinated individuals. When applied to blood samples from an emergency department in Baltimore, disparities in disease burden and vaccine uptake by sex, race, and ethnicity were identified.
Collapse
|
1580
|
Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S, Mittal SK. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology 2021; 10:e1345. [PMID: 34667600 PMCID: PMC8510854 DOI: 10.1002/cti2.1345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses.
Collapse
Affiliation(s)
- Ahmed Elkashif
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Marwa Alhashimi
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Ekramy E Sayedahmed
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | | | - Suresh K Mittal
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| |
Collapse
|
1581
|
Laurini E, Marson D, Aulic S, Fermeglia A, Pricl S. Molecular rationale for SARS-CoV-2 spike circulating mutations able to escape bamlanivimab and etesevimab monoclonal antibodies. Sci Rep 2021; 11:20274. [PMID: 34642465 PMCID: PMC8511038 DOI: 10.1038/s41598-021-99827-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022] Open
Abstract
The purpose of this work is to provide an in silico molecular rationale of the role eventually played by currently circulating mutations in the receptor binding domain of the SARS-CoV-2 spike protein (S-RBDCoV‑2) in evading the immune surveillance effects elicited by the two Eli Lilly LY-CoV555/bamlanivimab and LY-CoV016/etesevimab monoclonal antibodies. The main findings from this study show that, compared to the wild-type SARS-CoV-2 spike protein, mutations E484A/G/K/Q/R/V, Q493K/L/R, S494A/P/R, L452R and F490S are predicted to be markedly resistant to neutralization by LY-CoV555, while mutations K417E/N/T, D420A/G/N, N460I/K/S/T, T415P, and Y489C/S are predicted to confer LY-CoV016 escaping advantage to the viral protein. A challenge of our global in silico results against relevant experimental data resulted in an overall 90% agreement. Thus, the results presented provide a molecular-based rationale for all relative experimental findings, constitute a fast and reliable tool for identifying and prioritizing all present and newly reported circulating spike SARS-CoV-2 variants with respect to antibody neutralization, and yield substantial structural information for the development of next-generation vaccines and monoclonal antibodies more resilient to viral evolution.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy.
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136, Lodz, Poland.
| |
Collapse
|
1582
|
Finsterer J, Scorza FA, Scorza CA. Post SARS-CoV-2 vaccination Guillain-Barre syndrome in 19 patients. Clinics (Sao Paulo) 2021; 76:e3286. [PMID: 34644738 PMCID: PMC8478139 DOI: 10.6061/clinics/2021/e3286] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 vaccinations are not free from side effects. Usually, they are mild or moderate but occasionally severe. One of these severe side effects is Guillain-Barré syndrome (GBS). This review summarizes and discusses GBS as a side effect of SARS-CoV-2 vaccinations (SCoVaG) based on recent research reports. Altogether, nine articles reporting 18 patients with SCoVaG were identified and one more report on another patient is under review. The age for the studies ranged between 20-86y. Nine patients were male, and ten were female. In all 19 patients, SCoVaG developed after the first dose of the vaccine. The Astra Zeneca vaccine was used in fourteen patients, the Pfizer vaccine in four patients, and the Johnson & Johnson vaccine was applied in one patient. The latency between vaccination and onset of GBS ranged from 3h to 39d. The treatment of SCoVaG included IVIGs (n=13), steroids (n=3), or no therapy (n=3). Six patients required mechanical ventilation. Only a single patient recovered completely and partial recovery was achieved in nine patients. In conclusion, GBS may develop time-linked to the first dose of a SARS-CoV-2 vaccination. Though a causal relationship between SARS-CoV-2 vaccinations and SCoVaG remains speculative, more evidence is in favour than against it.
Collapse
Affiliation(s)
| | - Fulvio A. Scorza
- Disciplina de Neurociencia, Escola Paulista de Medicina/Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
| | - Carla A. Scorza
- Disciplina de Neurociencia, Escola Paulista de Medicina/Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
| |
Collapse
|
1583
|
Weinberger B. Vaccination of older adults: Influenza, pneumococcal disease, herpes zoster, COVID-19 and beyond. Immun Ageing 2021; 18:38. [PMID: 34627326 PMCID: PMC8501352 DOI: 10.1186/s12979-021-00249-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Preserving good health in old age is of utmost importance to alleviate societal, economic and health care-related challenges caused by an aging society. The prevalence and severity of many infectious diseases is higher in older adults, and in addition to the acute disease, long-term sequelae, such as exacerbation of underlying chronic disease, onset of frailty or increased long-term care dependency, are frequent. Prevention of infections e.g. by vaccination is therefore an important measure to ensure healthy aging and preserve quality of life. Several vaccines are specifically recommended for older adults in many countries, and in the current SARS-CoV-2 pandemic older adults were among the first target groups for vaccination due to their high risk for severe disease. This review highlights clinical data on the influenza, Streptococcus pneumoniae and herpes zoster vaccines, summarizes recent developments to improve vaccine efficacy, such as the use of adjuvants or higher antigen dose for influenza, and gives an overview of SARS-CoV-2 vaccine development for older adults. Substantial research is ongoing to further improve vaccines, e.g. by developing universal influenza and pneumococcal vaccines to overcome the limitations of the current strain-specific vaccines, and to develop novel vaccines against pathogens, which cause considerable morbidity and mortality in older adults, but for which no vaccines are currently available. In addition, we need to improve uptake of the existing vaccines and increase awareness for life-long vaccination in order to provide optimal protection for the vulnerable older age group.
Collapse
Affiliation(s)
- Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Rennweg 10, 6020, Innsbruck, Austria.
| |
Collapse
|
1584
|
Rodriguez EVC, Bouazza FZ, Dauby N, Mullier F, d'Otreppe S, Jissendi Tchofo P, Bartiaux M, Sirjacques C, Roman A, Hermans C, Cliquennois M. Fatal vaccine-induced immune thrombotic thrombocytopenia (VITT) post Ad26.COV2.S: first documented case outside US. Infection 2021; 50:531-536. [PMID: 34626338 PMCID: PMC8501343 DOI: 10.1007/s15010-021-01712-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022]
Abstract
Purpose We reported the first described post Ad26.COV2.S (Janssen, Johnson & Johnson) vaccine-induced immune thrombocytopenia (VITT) case outside US. Case description CA young woman without any medical history presented association of deep vein thrombosis and thrombocytopenia at day 10 after vaccine injection. The patient was treated with low-molecular weight heparin at a first medical institution. Twelve days post Ad26.COV2.S vaccination, the patient was admitted at our hospital for neurological deterioration and right hemiplegia. Medical imaging using MRI showed thrombosis of the major anterior part of the sagittal superior sinus with bilateral intraparenchymal hemorrhagic complications. Screening tests for antibodies against platelet factor 4 (PF4)–heparin by rapid lateral flow immunoassay and chemiluminescence techniques were negative. Platelet activation test using heparin-induced multiple electrode aggregometry confirmed the initial clinical hypothesis. Despite immediate treatment with intravenous immunoglobulin, dexamethasone, danaparoid and attempted neurosurgery the patient evolved toward brain death. Conclusion Even though it is an extremely rare complication of vaccination physicians should maintain a high index of suspicion of VITT in patients who received an adenovirus-vector-based SARS-CoV-2 vaccine within the last 30 days with persistent complains compatible with VITT or thromboembolic event associated with thrombocytopenia. The diagnosis should not be excluded if the rapid anti-PF4 immunological nor chemiluminescence techniques yield negative results. An adapted functional assay should be performed to confirm the diagnosis. Early treatment with intravenous immunoglobulin and non-heparin anticoagulants is essential as delayed diagnosis and administration of appropriate treatment is associated with poor prognosis.
Collapse
Affiliation(s)
- Elsa V C Rodriguez
- Department of Emergency Medicine, CHU Saint-Pierre, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Fatima-Zohra Bouazza
- Department of Emergency Medicine, CHU Saint-Pierre, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Dauby
- Department of Infectious Diseases, CHU Saint-Pierre, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - François Mullier
- Namur Thrombosis and Hemostasis Center (NTHC), CHU UCL Namur, Université catholique de Louvain (UCL), Yvoir, Belgium
| | - Stéphanie d'Otreppe
- Department of Laboratory Medicine, LHUB-ULB, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Patrice Jissendi Tchofo
- Department of Radiology, CHU Saint-Pierre, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Magali Bartiaux
- Department of Emergency Medicine, CHU Saint-Pierre, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Camille Sirjacques
- Department of Intensive Care Medicine, CHU Saint-Pierre, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Alain Roman
- Department of Intensive Care Medicine, CHU Saint-Pierre, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Hermans
- Division of Hematology, Hemostasis and Thrombosis Unit, Saint-Luc University Hospital, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Manuel Cliquennois
- Department of Clinical Hematology, CHU Saint-Pierre, Université libre de Bruxelles (ULB), Rue Haute 322, 1000, Brussels, Belgium.
| |
Collapse
|
1585
|
Loyal L, Braun J, Henze L, Kruse B, Dingeldey M, Reimer U, Kern F, Schwarz T, Mangold M, Unger C, Dörfler F, Kadler S, Rosowski J, Gürcan K, Uyar-Aydin Z, Frentsch M, Kurth F, Schnatbaum K, Eckey M, Hippenstiel S, Hocke A, Müller MA, Sawitzki B, Miltenyi S, Paul F, Mall MA, Wenschuh H, Voigt S, Drosten C, Lauster R, Lachman N, Sander LE, Corman VM, Röhmel J, Meyer-Arndt L, Thiel A, Giesecke-Thiel C. Cross-reactive CD4 + T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. Science 2021; 374:eabh1823. [PMID: 34465633 PMCID: PMC10026850 DOI: 10.1126/science.abh1823] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The functional relevance of preexisting cross-immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a subject of intense debate. Here, we show that human endemic coronavirus (HCoV)–reactive and SARS-CoV-2–cross-reactive CD4+ T cells are ubiquitous but decrease with age. We identified a universal immunodominant coronavirus-specific spike peptide (S816-830) and demonstrate that preexisting spike- and S816-830–reactive T cells were recruited into immune responses to SARS-CoV-2 infection and their frequency correlated with anti–SARS-CoV-2-S1-IgG antibodies. Spike–cross-reactive T cells were also activated after primary BNT162b2 COVID-19 messenger RNA vaccination and displayed kinetics similar to those of secondary immune responses. Our results highlight the functional contribution of preexisting spike–cross-reactive T cells in SARS-CoV-2 infection and vaccination. Cross-reactive immunity may account for the unexpectedly rapid induction of immunity after primary SARS-CoV-2 immunization and the high rate of asymptomatic or mild COVID-19 disease courses.
Collapse
Affiliation(s)
- Lucie Loyal
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julian Braun
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Larissa Henze
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Beate Kruse
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Manuela Dingeldey
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, Berlin, Germany
| | - Florian Kern
- JPT Peptide Technologies GmbH, Berlin, Germany
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Tatjana Schwarz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maike Mangold
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Clara Unger
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friederike Dörfler
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Shirin Kadler
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Jennifer Rosowski
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Kübrah Gürcan
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Zehra Uyar-Aydin
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Marco Frentsch
- Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Therapy-Induced Remodeling in Immuno-Oncology, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, and Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Maren Eckey
- JPT Peptide Technologies GmbH, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Hocke
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel A. Müller
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Clinical Neuroimmunology, NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
| | | | - Sebastian Voigt
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
- Institute for Virology, Universitätsklinikum Essen, Essen, Germany
| | - Christian Drosten
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Roland Lauster
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Nils Lachman
- Institute for Transfusion Medicine, Tissue Typing Laboratory, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Leif-Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Victor M. Corman
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Lil Meyer-Arndt
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Clinical Neuroimmunology, NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Thiel
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Corresponding author. (A.T.); (C.G.-T.)
| | - Claudia Giesecke-Thiel
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Corresponding author. (A.T.); (C.G.-T.)
| |
Collapse
|
1586
|
Thompson MG, Stenehjem E, Grannis S, Ball SW, Naleway AL, Ong TC, DeSilva MB, Natarajan K, Bozio CH, Lewis N, Dascomb K, Dixon BE, Birch RJ, Irving SA, Rao S, Kharbanda E, Han J, Reynolds S, Goddard K, Grisel N, Fadel WF, Levy ME, Ferdinands J, Fireman B, Arndorfer J, Valvi NR, Rowley EA, Patel P, Zerbo O, Griggs EP, Porter RM, Demarco M, Blanton L, Steffens A, Zhuang Y, Olson N, Barron M, Shifflett P, Schrag SJ, Verani JR, Fry A, Gaglani M, Azziz-Baumgartner E, Klein NP. Effectiveness of Covid-19 Vaccines in Ambulatory and Inpatient Care Settings. N Engl J Med 2021; 385:1355-1371. [PMID: 34496194 PMCID: PMC8451184 DOI: 10.1056/nejmoa2110362] [Citation(s) in RCA: 335] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND There are limited data on the effectiveness of the vaccines against symptomatic coronavirus disease 2019 (Covid-19) currently authorized in the United States with respect to hospitalization, admission to an intensive care unit (ICU), or ambulatory care in an emergency department or urgent care clinic. METHODS We conducted a study involving adults (≥50 years of age) with Covid-19-like illness who underwent molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We assessed 41,552 admissions to 187 hospitals and 21,522 visits to 221 emergency departments or urgent care clinics during the period from January 1 through June 22, 2021, in multiple states. The patients' vaccination status was documented in electronic health records and immunization registries. We used a test-negative design to estimate vaccine effectiveness by comparing the odds of a positive test for SARS-CoV-2 infection among vaccinated patients with those among unvaccinated patients. Vaccine effectiveness was adjusted with weights based on propensity-for-vaccination scores and according to age, geographic region, calendar time (days from January 1, 2021, to the index date for each medical visit), and local virus circulation. RESULTS The effectiveness of full messenger RNA (mRNA) vaccination (≥14 days after the second dose) was 89% (95% confidence interval [CI], 87 to 91) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization, 90% (95% CI, 86 to 93) against infection leading to an ICU admission, and 91% (95% CI, 89 to 93) against infection leading to an emergency department or urgent care clinic visit. The effectiveness of full vaccination with respect to a Covid-19-associated hospitalization or emergency department or urgent care clinic visit was similar with the BNT162b2 and mRNA-1273 vaccines and ranged from 81% to 95% among adults 85 years of age or older, persons with chronic medical conditions, and Black or Hispanic adults. The effectiveness of the Ad26.COV2.S vaccine was 68% (95% CI, 50 to 79) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization and 73% (95% CI, 59 to 82) against infection leading to an emergency department or urgent care clinic visit. CONCLUSIONS Covid-19 vaccines in the United States were highly effective against SARS-CoV-2 infection requiring hospitalization, ICU admission, or an emergency department or urgent care clinic visit. This vaccine effectiveness extended to populations that are disproportionately affected by SARS-CoV-2 infection. (Funded by the Centers for Disease Control and Prevention.).
Collapse
Affiliation(s)
- Mark G Thompson
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Edward Stenehjem
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Shaun Grannis
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Sarah W Ball
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Allison L Naleway
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Toan C Ong
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Malini B DeSilva
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Karthik Natarajan
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Catherine H Bozio
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Ned Lewis
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Kristin Dascomb
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Brian E Dixon
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Rebecca J Birch
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Stephanie A Irving
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Suchitra Rao
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Elyse Kharbanda
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Jungmi Han
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Sue Reynolds
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Kristin Goddard
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Nancy Grisel
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - William F Fadel
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Matthew E Levy
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Jill Ferdinands
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Bruce Fireman
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Julie Arndorfer
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Nimish R Valvi
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Elizabeth A Rowley
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Palak Patel
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Ousseny Zerbo
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Eric P Griggs
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Rachael M Porter
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Maria Demarco
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Lenee Blanton
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Andrea Steffens
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Yan Zhuang
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Natalie Olson
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Michelle Barron
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Patricia Shifflett
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Stephanie J Schrag
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Jennifer R Verani
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Alicia Fry
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Manjusha Gaglani
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Eduardo Azziz-Baumgartner
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| | - Nicola P Klein
- From the Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta (M.G.T., C.H.B., S. Reynolds, J.F., P.P., E.P.G., R.M.P., L.B., A.S., N.O., S.J.S., J.R.V., A.F., E.A.-B.); the Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City (E.S., K.D., N.G., J.A.); the Center for Biomedical Informatics, Regenstrief Institute (S.G., B.E.D., W.F.F., N.R.V.), Indiana University School of Medicine (S.G.), and Indiana University Richard M. Fairbanks School of Public Health (B.E.D., W.F.F., N.R.V.) - all in Indianapolis; Westat, Rockville, MD (S.W.B., R.J.B., M.E.L., E.A.R., M.D., Y.Z., P.S.); the Kaiser Permanente Northwest Center for Health Research, Portland, OR (A.L.N., S.A.I.); the Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (T.C.O., S. Rao, M.B.); HealthPartners Institute, Minneapolis (M.B.D., E.K.); the Department of Biomedical Informatics, Columbia University Irving Medical Center (K.N., J.H.), and New York-Presbyterian Hospital (K.N.) - both in New York; the Vaccine Study Center, Division of Research, Kaiser Permanente Northern California, Oakland (N.L., K.G., B.F., O.Z., N.P.K.); and Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX (M.G.)
| |
Collapse
|
1587
|
Liu C, Lee J, Ta C, Soroush A, Rogers JR, Kim JH, Natarajan K, Zucker J, Weng C. A Retrospective Analysis of COVID-19 mRNA Vaccine Breakthrough Infections - Risk Factors and Vaccine Effectiveness. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.10.05.21264583. [PMID: 34642696 PMCID: PMC8509087 DOI: 10.1101/2021.10.05.21264583] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Little is known about COVID vaccine breakthrough infections and their risk factors. OBJECTIVE To identify risk factors associated with COVID-19 breakthrough infections among vaccinated individuals and to reassess the effectiveness of COVID-19 vaccination against severe outcomes using real-world data. DESIGN SETTING AND PARTICIPANTS We conducted a series of observational retrospective analyses using the electronic health records (EHRs) of Columbia University Irving Medical Center/New York Presbyterian (CUIMC/NYP) up to September 21, 2021. New York adult residence with PCR test records were included in this analysis. MAIN OUTCOMES AND MEASURES Poisson regression was used to assess the association between breakthrough infection rate in vaccinated individuals and multiple risk factors - including vaccine brand, demographics, and underlying conditions - while adjusting for calendar month, prior number of visits and observational days. Logistic regression was used to assess the association between vaccine administration and infection rate by comparing a vaccinated cohort to a historically matched cohort in the pre-vaccinated period. Infection incident rate was also compared between vaccinated individuals and longitudinally matched unvaccinated individuals. Cox regression was used to estimate the association of the vaccine and COVID-19 associated severe outcomes by comparing breakthrough cohort and two matched unvaccinated infection cohorts. RESULTS Individuals vaccinated with Pfizer/BNT162b2 (IRR against Moderna/mRNA-1273 [95% CI]: 1.66 [1.17 - 2.35]); were male (1.47 [1.11 - 1.94%]); and had compromised immune systems (1.48 [1.09 - 2.00]) were at the highest risk for breakthrough infections. Vaccinated individuals had a significant lower infection rate among all subgroups. An increased incidence rate was found in both vaccines over the time. Among individuals infected with COVID-19, vaccination significantly reduced the risk of death (adj. HR: 0.20 [0.08 - 0.49]). CONCLUSION AND RELEVANCE While we found both mRNA vaccines were effective, Moderna/mRNA-1273 had a lower incidence rate of breakthrough infections. Both vaccines had increased incidence rates over the time. Immunocompromised individuals were among the highest risk groups experiencing breakthrough infections. Given the rapidly changing nature of the SARS-CoV-2, continued monitoring and a generalizable analysis pipeline are warranted to inform quick updates on vaccine effectiveness in real time. KEY POINTS Question: What risk factors contribute to COVID-19 breakthrough infections among mRNA vaccinated individuals? How do clinical outcomes differ between vaccinated but still SARS-CoV-2 infected individuals and non-vaccinated, infected individuals?Findings: This retrospective study uses CUIMC/NYP EHR data up to September 21, 2021. Individuals who were vaccinated with Pfizer/BNT162b2, male, and had compromised immune systems had significantly higher incidence rate ratios of breakthrough infections. Comparing demographically matched pre-vaccinated and unvaccinated individuals, vaccinated individuals had a lower incidence rate of SARS-CoV-2 infection among all subgroups.Meaning: Leveraging real-world EHR data provides insight on who may optimally benefit from a booster COVID-19 vaccination.
Collapse
Affiliation(s)
- Cong Liu
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York NY 10032, USA
| | - Junghwan Lee
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York NY 10032, USA
| | - Casey Ta
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York NY 10032, USA
| | - Ali Soroush
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York NY 10032, USA
| | - James R. Rogers
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York NY 10032, USA
| | - Jae Hyun Kim
- School of Pharmacy, Jeonbuk National University, Jeonju, South Korea
| | - Karthik Natarajan
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York NY 10032, USA
| | - Jason Zucker
- Department of Medicine, Columbia University Irving Medical Center, New York NY 10032, USA
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York NY 10032, USA
| |
Collapse
|
1588
|
Roozendaal R, Solforosi L, Stieh DJ, Serroyen J, Straetemans R, Dari A, Boulton M, Wegmann F, Rosendahl Huber SK, van der Lubbe JEM, Hendriks J, Le Gars M, Dekking L, Czapska-Casey DN, Guimera N, Janssen S, Tete S, Chandrashekar A, Mercado NB, Yu J, Koudstaal W, Perez-Ruixo JJ, Sadoff J, Barouch DH, Schuitemaker H, Zahn R. SARS-CoV-2 binding and neutralizing antibody levels after Ad26.COV2.S vaccination predict durable protection in rhesus macaques. Nat Commun 2021; 12:5877. [PMID: 34620860 PMCID: PMC8497464 DOI: 10.1038/s41467-021-26117-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/16/2021] [Indexed: 01/08/2023] Open
Abstract
Several COVID-19 vaccines have recently gained authorization for emergency use. Limited knowledge on duration of immunity and efficacy of these vaccines is currently available. Data on other coronaviruses after natural infection suggest that immunity to SARS-CoV-2 might be short-lived, and preliminary evidence indicates waning antibody titers following SARS-CoV-2 infection. In this work, we model the relationship between immunogenicity and protective efficacy of a series of Ad26 vectors encoding stabilized variants of the SARS-CoV-2 Spike protein in rhesus macaques and validate the analyses by challenging macaques 6 months after immunization with the Ad26.COV2.S vaccine candidate that has been selected for clinical development. We show that Ad26.COV2.S confers durable protection against replication of SARS-CoV-2 in the lungs that is predicted by the levels of Spike-binding and neutralizing antibodies, indicating that Ad26.COV2.S could confer durable protection in humans and immunological correlates of protection may enable the prediction of durability of protection.
Collapse
Affiliation(s)
| | | | - Daniel J Stieh
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Jan Serroyen
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | | | | | - Frank Wegmann
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | | | - Jenny Hendriks
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | | | | | - Nuria Guimera
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Sarah Janssen
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Sarah Tete
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Noe B Mercado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | - Jerry Sadoff
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | | | - Roland Zahn
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands.
| |
Collapse
|
1589
|
Kircheis R. Coagulopathies after Vaccination against SARS-CoV-2 May Be Derived from a Combined Effect of SARS-CoV-2 Spike Protein and Adenovirus Vector-Triggered Signaling Pathways. Int J Mol Sci 2021; 22:10791. [PMID: 34639132 PMCID: PMC8509779 DOI: 10.3390/ijms221910791] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Novel coronavirus SARS-CoV-2 has resulted in a global pandemic with worldwide 6-digit infection rates and thousands of death tolls daily. Enormous efforts are undertaken to achieve high coverage of immunization to reach herd immunity in order to stop the spread of SARS-CoV-2 infection. Several SARS-CoV-2 vaccines based on mRNA, viral vectors, or inactivated SARS-CoV-2 virus have been approved and are being applied worldwide. However, the recent increased numbers of normally very rare types of thromboses associated with thrombocytopenia have been reported, particularly in the context of the adenoviral vector vaccine ChAdOx1 nCoV-19 from Astra Zeneca. The statistical prevalence of these side effects seems to correlate with this particular vaccine type, i.e., adenoviral vector-based vaccines, but the exact molecular mechanisms are still not clear. The present review summarizes current data and hypotheses for molecular and cellular mechanisms into one integrated hypothesis indicating that coagulopathies, including thromboses, thrombocytopenia, and other related side effects, are correlated to an interplay of the two components in the vaccine, i.e., the spike antigen and the adenoviral vector, with the innate and immune systems, which under certain circumstances can imitate the picture of a limited COVID-19 pathological picture.
Collapse
|
1590
|
Clemens SAC, Folegatti PM, Emary KRW, Weckx LY, Ratcliff J, Bibi S, De Almeida Mendes AV, Milan EP, Pittella A, Schwarzbold AV, Sprinz E, Aley PK, Bonsall D, Fraser C, Fuskova M, Gilbert SC, Jenkin D, Kelly S, Kerridge S, Lambe T, Marchevsky NG, Mujadidi YF, Plested E, Ramasamy MN, Simmonds P, Golubchik T, Voysey M, Pollard AJ. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 lineages circulating in Brazil. Nat Commun 2021; 12:5861. [PMID: 34615860 PMCID: PMC8494913 DOI: 10.1038/s41467-021-25982-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022] Open
Abstract
Several COVID-19 vaccines have shown good efficacy in clinical trials, but there remains uncertainty about the efficacy of vaccines against different variants. Here, we investigate the efficacy of ChAdOx1 nCoV-19 (AZD1222) against symptomatic COVID-19 in a post-hoc exploratory analysis of a Phase 3 randomised trial in Brazil (trial registration ISRCTN89951424). Nose and throat swabs were tested by PCR in symptomatic participants. Sequencing and genotyping of swabs were performed to determine the lineages of SARS-CoV-2 circulating during the study. Protection against any symptomatic COVID-19 caused by the Zeta (P.2) variant was assessed in 153 cases with vaccine efficacy (VE) of 69% (95% CI 55, 78). 49 cases of B.1.1.28 occurred and VE was 73% (46, 86). The Gamma (P.1) variant arose later in the trial and fewer cases (N = 18) were available for analysis. VE was 64% (-2, 87). ChAdOx1 nCoV-19 provided 95% protection (95% CI 61%, 99%) against hospitalisation due to COVID-19. In summary, we report that ChAdOx1 nCoV-19 protects against emerging variants in Brazil despite the presence of the spike protein mutation E484K.
Collapse
Affiliation(s)
- Sue Ann Costa Clemens
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- Institute of Global Health, University of Siena, Siena, Italy
| | - Pedro M Folegatti
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katherine R W Emary
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Lily Yin Weckx
- Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jeremy Ratcliff
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Ana Verena De Almeida Mendes
- Escola Bahiana de Medicina e Saúde Pública, Brazil and ID'OR, Salvador, Brazil
- Hospital São Rafael, Salvador, Brazil
| | | | - Ana Pittella
- Hospital Quinta D'Or, Rio de Janeiro, Brazil
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil
- Universidade Unigranrio, Rio de Janeiro, Brazil
| | - Alexandre V Schwarzbold
- Clinical Research Unit, Department of Clinical Medicine, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Eduardo Sprinz
- Infectious Diseases Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Parvinder K Aley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - David Bonsall
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michelle Fuskova
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah C Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel Jenkin
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Simon Kerridge
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Natalie G Marchevsky
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Yama F Mujadidi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Emma Plested
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Maheshi N Ramasamy
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Tanya Golubchik
- Oxford Viral Sequencing Group, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Merryn Voysey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
1591
|
Chun JY, Jeong H, Kim Y. Contact-adjusted Immunity Levels against SARS-CoV-2 in Korea and Prospects for Achieving Herd Immunity. J Korean Med Sci 2021; 36:e272. [PMID: 34609093 PMCID: PMC8490791 DOI: 10.3346/jkms.2021.36.e272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022] Open
Abstract
The proportion of population vaccinated cannot be directly translated into the herd immunity. We have to account for the age-stratified contact patterns to calculate the population immunity level, since not every individual gathers evenly. Here, we calculated the contact-adjusted population immunity against severe acute respiratory syndrome coronavirus 2 in South Korea using age-specific incidence and vaccine uptake rate. We further explored options to achieve the theoretical herd immunity with age-varying immunity scenarios. As of June 21, 2021, when a quarter of the population received at least one dose of a coronavirus disease 2019 (COVID-19) vaccine, the contact-adjusted immunity level was 12.5% under the social distancing level 1. When 80% of individuals aged 10 years and over gained immunity, we could achieve a 58.2% contact-adjusted immunity level. The pros and cons of vaccinating children should be weighed since the risks of COVID-19 for the young are less than the elderly, and the long-term safety of vaccines is still obscure.
Collapse
Affiliation(s)
- June Young Chun
- Department of Internal Medicine, National Cancer Center, Goyang, Korea.
| | - Hwichang Jeong
- Department of Statistics, Seoul National University, Seoul, Korea
| | - Yongdai Kim
- Department of Statistics, Seoul National University, Seoul, Korea.
| |
Collapse
|
1592
|
Brehm TT, Thompson M, Ullrich F, Schwinge D, Addo MM, Spier A, Knobloch JK, Aepfelbacher M, Lohse AW, Lütgehetmann M, Schulze Zur Wiesch J. Low SARS-CoV-2 infection rates and high vaccine-induced immunity among German healthcare workers at the end of the third wave of the COVID-19 pandemic. Int J Hyg Environ Health 2021; 238:113851. [PMID: 34601375 PMCID: PMC8463331 DOI: 10.1016/j.ijheh.2021.113851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022]
Abstract
In this longitudinal cohort study, we assessed the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) seroconversion rates and analyzed the coronavirus disease 2019 (COVID-19) vaccine-induced immunity of 872 hospital workers at the University Medical Center Hamburg-Eppendorf between May 11 and May 31, 2021. The overall seroprevalence of anti–NC–SARS-CoV-2 antibodies was 4.7% (n = 41), indicating low SARS-CoV-2 infection rates and persistent effectiveness of hospital-wide infection control interventions during the second and third wave of the pandemic. In total, 92.7% (n = 808) out of the entire study cohort, 98.2% (n = 325) of those who had been vaccinated once and all 393 individuals who had been vaccinated twice had detectable anti-S1-RBD-SARS-CoV-2 antibody titers and no significant differences in vaccine-induced immune response were detected between male and female individuals and between different age groups. Vaccinated study participants with detectable anti–NC–SARS-CoV-2 antibody titers (n = 30) developed generally higher anti-S1-RBD-SARS-CoV-2 antibody titers compared to anti–NC–SARS-CoV-2 negative individuals (n = 694) (median titer: 7812 vs. 345 BAU/ml, p < 0.0001). Furthermore, study participants who received heterologous vaccination with AZD1222 followed by an mRNA vaccine showed markedly higher anti-S1-RBD-SARS-CoV-2 antibody titers than individuals who received two doses of an mRNA vaccine or two doses of AZD1222 (median titer: AZD1222/AZD1222: 1069 BAU/ml, mRNA/mRNA: 1388 BAU/ml, AZD1222/mRNA: 9450 BAU/ml; p < 0.0001). Our results indicate that infection control interventions were generally effective in preventing nosocomial transmission of SARS-CoV-2 and that COVID-19 vaccines can elicit strong humoral responses in the majority of a real-world cohort of hospital workers.
Collapse
Affiliation(s)
- Thomas Theo Brehm
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Michelle Thompson
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Felix Ullrich
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Dorothee Schwinge
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Marylyn M Addo
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Anthea Spier
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Johannes K Knobloch
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany.
| |
Collapse
|
1593
|
Martínez-Baz I, Trobajo-Sanmartín C, Miqueleiz A, Guevara M, Fernández-Huerta M, Burgui C, Casado I, Portillo ME, Navascués A, Ezpeleta C, Castilla J. Product-specific COVID-19 vaccine effectiveness against secondary infection in close contacts, Navarre, Spain, April to August 2021. ACTA ACUST UNITED AC 2021; 26. [PMID: 34596016 PMCID: PMC8485582 DOI: 10.2807/1560-7917.es.2021.26.39.2100894] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
COVID-19 vaccine effectiveness by product (two doses Comirnaty, Spikevax or Vaxzevria and one of Janssen), against infection ranged from 50% (95% CI: 42 to 57) for Janssen to 86% (70 to 93) for Vaxzevria-Comirnaty combination; among ≥ 60 year-olds, from 17% (−26 to 45) for Janssen to 68% (48 to 80) for Spikevax; and against hospitalisation from 74% (43 to 88) for Janssen to > 90% for other products. Two doses of vaccine were highly effective against hospitalisation, but suboptimal for infection control.
Collapse
Affiliation(s)
- Iván Martínez-Baz
- Instituto de Salud Pública de Navarra, Pamplona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Camino Trobajo-Sanmartín
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Clinical Microbiology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Ana Miqueleiz
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Clinical Microbiology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Marcela Guevara
- Instituto de Salud Pública de Navarra, Pamplona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Miguel Fernández-Huerta
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Clinical Microbiology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Cristina Burgui
- Instituto de Salud Pública de Navarra, Pamplona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Itziar Casado
- Instituto de Salud Pública de Navarra, Pamplona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - María Eugenia Portillo
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Clinical Microbiology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Ana Navascués
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Clinical Microbiology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Carmen Ezpeleta
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Clinical Microbiology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Jesús Castilla
- Instituto de Salud Pública de Navarra, Pamplona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | -
- Other members of the Working Group for the Study of COVID-19 in Navarre are listed in the Investigators tab
| | | |
Collapse
|
1594
|
Strong LE, Middendorf I, Turner M, Sama V, Edwards V DK, Mou J, Adams KC. Usability of an At-Home Anterior Nares SARS-CoV-2 RT-PCR Sample Collection Kit: Human Factors Feasibility Study. JMIR Hum Factors 2021; 8:e29234. [PMID: 34609947 PMCID: PMC8673714 DOI: 10.2196/29234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/13/2021] [Accepted: 10/02/2021] [Indexed: 11/24/2022] Open
Abstract
Background Readily available testing for SARS-CoV-2 is necessary to mitigate COVID-19 disease outbreaks. At-home collection kits, in which samples are self-collected without requiring a laboratory or clinic visit and sent to an external laboratory for testing, can provide convenient testing to those with barriers to access. They can prevent unnecessary exposure between patient and clinical staff, increase access for patients with disabilities or remote workers, and decrease burdens on health care resources, such as provider time and personal protective equipment. Exact Sciences developed an at-home collection kit for samples to be tested to detect SARS-CoV-2 that includes an Instructions for Use (IFU) document, which guides people without prior experience on collecting a nasal swab sample. Demonstrating successful sample collection and usability is critical to ensure that these samples meet the same high-quality sample collection standards as samples collected in clinics. Objective The aim of this study was to determine the usability of a SARS-CoV-2 at-home nasal swab sample collection kit. Methods A human factors usability study was conducted with 30 subjects without prior medical, laboratory, or health care training and without COVID-19 sample self-collection experience. Subjects were observed while they followed the IFU for the at-home sample collection portion of the SARS-CoV-2 test in a setting that simulated a home environment. IFU usability was further evaluated by requiring the subjects to complete a survey, answer comprehension questions, provide written feedback, and respond to questions from the observer about problems during use. Results All 30 subjects successfully completed the sample collection process, and all 30 samples were determined by reverse transcription–polymerase chain reaction (RT-PCR) testing to meet quality standards for SARS-CoV-2 testing. The subjects’ written feedback and comments revealed several recommendations to improve the IFU. Conclusions The study demonstrated the overall usability of an at-home SARS-CoV-2 collection kit. Various feedback mechanisms provided opportunities to improve the wording and graphics for some critical tasks, including placing the label correctly on the tube. A modified IFU was prepared based on study outcomes.
Collapse
|
1595
|
Kewan T, Flores M, Mushtaq K, Alwakeel M, Burton R, Campbell J, Perry H, Al‐Jaghbeer M, Abi Fadel F. Characteristics and outcomes of adverse events after COVID-19 vaccination. J Am Coll Emerg Physicians Open 2021; 2:e12565. [PMID: 34693399 PMCID: PMC8514147 DOI: 10.1002/emp2.12565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/20/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES BNT-162b2, mRNA-1273, and Ad26.COV2.S vaccines data regarding adverse events (AEs) are scarce. In this report, we aimed to describe fatal and non-fatal possible AEs after COVID-19 vaccine administration. METHODS An observational multicenter study investigating the causes of emergency department visits and hospital admissions within 10 days of COVID-19 vaccination. Patients who received first or second doses of COVID-19 vaccines and presented to the emergency department (ED), as well as those admitted to the hospitals or intensive care units (ICUs) were included. Causes of ED, hospital, and ICU admissions and discharges were collected based on the International Classification of Diseases, Tenth Revision (ICD-10) coding system. RESULTS Between December 2020 and March 2021, 1842 patients visited the ED within 10 days of COVID-19 vaccine administration. The mean age was 70.3 years. Overall, 1221 patients presented after the first dose of the vaccine and 653 after the second dose. Trauma (14.9%), hypertensive emergency/urgency (7.8%), generalized pain and arthralgia (5.7%), and chest pain (4.4%) were the most common causes of presentation to the ED. Of all ED presentations, mortality rate was at 2.2% (41 patients) with a median follow-up time of 68.0 days, versus 2.6% in unvaccinated ED patients. Postvaccination acute hypoxemic respiratory failure (46.3%), septic shock (24.4%), and cardiogenic shock (12.2%) were the most common causes of death. CONCLUSION Although reported AEs are not necessarily caused by the vaccination, this study provides further information about possible AEs after COVID-19 immunization, especially those requiring hospital admission. This study also supports prior data that serious AEs post vaccination are much lower than primary COVID-19 infections. Further studies are needed to investigate causalities between vaccines and reported AEs across all age groups.
Collapse
Affiliation(s)
- Tariq Kewan
- Department of Internal MedicineFairview HospitalCleveland ClinicClevelandOhioUSA
| | - Monica Flores
- Department of Internal MedicineFairview HospitalCleveland ClinicClevelandOhioUSA
| | - Komal Mushtaq
- Department of Internal MedicineFairview HospitalCleveland ClinicClevelandOhioUSA
| | - Mahmoud Alwakeel
- Department of Internal MedicineFairview HospitalCleveland ClinicClevelandOhioUSA
| | - Robert Burton
- Department of Business IntelligenceCleveland ClinicClevelandOhioUSA
| | - James Campbell
- Department of Coding and ReimbursementCleveland ClinicClevelandOhioUSA
| | - Hunter Perry
- Business OperationsCoding and ReimbursementCleveland ClinicClevelandOhioUSA
| | - Mohammed Al‐Jaghbeer
- Respiratory InstitutePulmonary and Critical Care MedicineCleveland ClinicClevelandOhioUSA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve UniversityClevelandOhioUSA
| | - Francois Abi Fadel
- Respiratory InstitutePulmonary and Critical Care MedicineCleveland ClinicClevelandOhioUSA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
1596
|
González S, Olszevicki S, Salazar M, Calabria A, Regairaz L, Marín L, Campos P, Varela T, Martínez VVG, Ceriani L, Garcia E, Kreplak N, Pifano M, Estenssoro E, Marsico F. Effectiveness of the first component of Gam-COVID-Vac (Sputnik V) on reduction of SARS-CoV-2 confirmed infections, hospitalisations and mortality in patients aged 60-79: a retrospective cohort study in Argentina. EClinicalMedicine 2021; 40:101126. [PMID: 34541480 PMCID: PMC8435263 DOI: 10.1016/j.eclinm.2021.101126] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND A first-dose of various vaccines provides acceptable protection against infections by SARS-CoV-2 and evolution to the most severe forms of COVID-19. The recombinant adenovirus (rAd)-based vaccine, Gam-COVID-Vac (Sputnik V), was proven efficacious but information about effectiveness in the real-world setting is lacking. The aim of our study was to investigate the association between the rollout of the first component (rAd26) of Gam-COVID-Vac and PCR-positive tests, hospitalisations and deaths. METHODS We conducted a retrospective cohort study which analyzed individuals aged 60-79 who self-registered in the online vaccination system of the Province of Buenos Aires, Argentina, from December 29, 2020 to March 21, 2021. Exclusion criteria were having a previous positive RT-PCR or antigen tests for SARS-CoV-2, having received other vaccines, or two doses of any vaccine.Proportions of new laboratory-confirmed SARS-CoV-2 infections, hospitalisations and deaths until 83 days of vaccination were compared between vaccinated and unvaccinated subjects. Vaccine effectiveness for the three outcomes was calculated as (1-OR) × 100. Kaplan-Meier cumulative incidence curves were constructed. FINDINGS During the study period 415995 registered subjects received the first component of Gam-COVID-Vac; 40387 belonged to the 60-79 age group, and were compared to 38978 unvaccinated. Vaccine effectiveness for preventing laboratory-confirmed infections was 78•6% [CI95% 74·8 - 81·7]; and for reducing hospitalizations and deaths was, respectively, 87·6% [CI95% 80·3 - 92·2] and 84·8% [CI95% 75·0 - 90·7]. Effectiveness was high across all subgroups. INTERPRETATION Similarly to other vaccines, the administration of one dose of Gam-COVID-Vac was effective for a wide range of COVID-19-related outcomes. FUNDING This study did not receive any funding.
Collapse
Affiliation(s)
- Soledad González
- Ministry of Health of the Province of Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Santiago Olszevicki
- Ministry of Health of the Province of Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Martín Salazar
- Faculty of Medical Sciences - National University of La Plata
| | - Ana Calabria
- Ministry of Health of the Province of Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Lorena Regairaz
- Immunology Unit, Children's Hospital Sor Maria Ludovica, La Plata, Buenos Aires, Argentina
| | - Lupe Marín
- Ministry of Health of the Province of Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Patricia Campos
- Ministry of Health of the Province of Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Teresa Varela
- Ministry of Health of the Province of Buenos Aires, La Plata, Buenos Aires, Argentina
| | | | - Leticia Ceriani
- Ministry of Health of the Province of Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Enio Garcia
- Ministry of Health of the Province of Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Nicolás Kreplak
- Ministry of Health of the Province of Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Marina Pifano
- Ministry of Health of the Province of Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Elisa Estenssoro
- Ministry of Health of the Province of Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Franco Marsico
- Calculus Institute, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
1597
|
Abstract
PURPOSE OF REVIEW Over the course of the coronavirus disease 2019 (COVID-19) pandemic, it has become clear that the clinical features, epidemiology, and outcomes of COVID-19 are distinct in children relative to adults. In this review, we will present recent pediatric studies informing our current understanding of COVID-19 in children, and review pediatric considerations surrounding disease transmission, currently available therapies, and vaccination. RECENT FINDINGS Recent studies have shed light on the clinical epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in children, identifying a high prevalence of asymptomatic and mild infections, with severe COVID-19 infrequently reported. Several adult clinical trials have informed the use of remdesivir, anti-SARS-CoV-2 monoclonal antibodies, dexamethasone, and tocilizumab in the management of COVID-19. Associations between underlying comorbid medical conditions and severe outcomes, as well as transmission dynamics of SARS-CoV-2 in children, are complex and warrant further study. Finally, highly efficacious vaccines are available for adults and adolescents, with pediatric trials ongoing. SUMMARY Children generally fare well with acute COVID-19 infection, though critical illness is possible. Future research should focus on clarifying the role of children in SARS-CoV-2 transmission and optimal prevention strategies, particularly in the school setting, as well as evaluating pediatric vaccine candidates.
Collapse
Affiliation(s)
- Emily R Levy
- Division of Pediatric Infectious Diseases
- Division of Pediatric Critical Care Medicine, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jennifer Blumenthal
- Division of Infectious Diseases, Department of Medicine
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Kathleen Chiotos
- Division of Infectious Diseases, Department of Pediatrics
- Division of Critical Care Medicine, Department of Anesthesia and Critical Care, Children's Hospital of Philadelphia, Pennsylvania, USA
| |
Collapse
|
1598
|
Chambers C. Using observational epidemiology to evaluate COVID-19 vaccines: integrating traditional methods with new data sources and tools. CANADIAN JOURNAL OF PUBLIC HEALTH = REVUE CANADIENNE DE SANTE PUBLIQUE 2021; 112:867-871. [PMID: 34160784 PMCID: PMC8220874 DOI: 10.17269/s41997-021-00554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/10/2021] [Indexed: 11/24/2022]
Abstract
Although clinical trials are necessary for vaccine approval, observational epidemiology will be required to evaluate the long-term effectiveness, safety, and population impacts of newly approved COVID-19 vaccines under real-world field conditions. In this commentary, I argue that a hybrid approach that combines new data sources and tools, including COVID-19 vaccine registries, with traditional epidemiological methods will be needed to evaluate COVID-19 vaccines using observational epidemiology. Wherever possible, primary data collection, active surveillance, and linkage with existing population-based cohorts should be leveraged to supplement secondary data sources and passive surveillance systems. Evidence-informed public health decision making around provincial COVID-19 immunization programs will need to account for potential biases, incomplete or conflicting information, and heterogeneity across subpopulations.
Collapse
Affiliation(s)
- Catharine Chambers
- Department of Public Health Sciences, Dalla Lana School of Public Health, University of Toronto, 155 College St, Toronto, ON, M5T 3M7, Canada.
- MAP Centre for Urban Health Solutions, St. Michael's Hospital, Unity Health Toronto, 30 Bond St, Toronto, ON, M5B 1W8, Canada.
| |
Collapse
|
1599
|
Olsen RJ, Christensen PA, Long SW, Subedi S, Hodjat P, Olson R, Nguyen M, Davis JJ, Yerramilli P, Saavedra MO, Pruitt L, Reppond K, Shyer MN, Cambric J, Gadd R, Thakur RM, Batajoo A, Finkelstein IJ, Gollihar J, Musser JM. Trajectory of Growth of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants in Houston, Texas, January through May 2021, Based on 12,476 Genome Sequences. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1754-1773. [PMID: 34303698 PMCID: PMC8299152 DOI: 10.1016/j.ajpath.2021.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Certain genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of substantial concern because they may be more transmissible or detrimentally alter the pandemic course and disease features in individual patients. SARS-CoV-2 genome sequences from 12,476 patients in the Houston Methodist health care system diagnosed from January 1 through May 31, 2021 are reported here. Prevalence of the B.1.1.7 (Alpha) variant increased rapidly and caused 63% to 90% of new cases in the latter half of May. Eleven B.1.1.7 genomes had an E484K replacement in spike protein, a change also identified in other SARS-CoV-2 lineages. Compared with non-B.1.1.7-infected patients, individuals with B.1.1.7 had a significantly lower cycle threshold (a proxy for higher virus load) and significantly higher hospitalization rate. Other variants [eg, B.1.429 and B.1.427 (Epsilon), P.1 (Gamma), P.2 (Zeta), and R.1] also increased rapidly, although the magnitude was less than that in B.1.1.7. Twenty-two patients infected with B.1.617.1 (Kappa) or B.1.617.2 (Delta) variants had a high rate of hospitalization. Breakthrough cases (n = 207) in fully vaccinated patients were caused by a heterogeneous array of virus genotypes, including many not currently designated variants of interest or concern. In the aggregate, this study delineates the trajectory of SARS-CoV-2 variants circulating in a major metropolitan area, documents B.1.1.7 as the major cause of new cases in Houston, TX, and heralds the arrival of B.1.617 variants in the metroplex.
Collapse
Affiliation(s)
- Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Departments of Pathology and Laboratory Medicine, and Microbiology and Immunology, Weill Cornell Medical College, New York, New York
| | - Paul A Christensen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - S Wesley Long
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Departments of Pathology and Laboratory Medicine, and Microbiology and Immunology, Weill Cornell Medical College, New York, New York
| | - Sishir Subedi
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Parsa Hodjat
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Robert Olson
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois; Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, Illinois
| | - Marcus Nguyen
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois; Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, Illinois
| | - James J Davis
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois; Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, Illinois
| | - Prasanti Yerramilli
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Matthew O Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Layne Pruitt
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Kristina Reppond
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Madison N Shyer
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Jessica Cambric
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Ryan Gadd
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Rashi M Thakur
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Akanksha Batajoo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Jimmy Gollihar
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Combat Capabilities Development Command (CCDC) Army Research Laboratory-South, University of Texas, Austin, Texas
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Departments of Pathology and Laboratory Medicine, and Microbiology and Immunology, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
1600
|
Martins-Filho PR, Ferreira LC, Heimfarth L, Araújo AADS, Quintans-Júnior LJ. Efficacy and safety of hydroxychloroquine as pre-and post-exposure prophylaxis and treatment of COVID-19: A systematic review and meta-analysis of blinded, placebo-controlled, randomized clinical trials. LANCET REGIONAL HEALTH. AMERICAS 2021; 2:100062. [PMID: 34485970 PMCID: PMC8403035 DOI: 10.1016/j.lana.2021.100062] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hydroxychloroquine (HCQ) is an anti-malarial and immunomodulatory drug considered a potential candidate for drug repurposing in COVID-19 due to their in vitro antiviral activity against SARS-CoV-2. Despite the potential antiviral effects and anti-inflammatory profile, the results based on clinical studies are contradictory. Therefore, the quality of the decision-making process from meta-analyses summarizing the available evidence selecting studies with different designs and unblinded trials is limited. The aim of this study was to synthesize the best evidence on the efficacy and safety of HCQ as pre-and post-exposure prophylaxis and treatment of non-hospitalized and hospitalized patients with COVID-19. METHODS Searches were performed in PubMed, Web of Science, Embase, Lilacs, the website ClinicalTrials.gov and the preprint server medRxiv from January 1, 2020 to May 17, 2021. The following elements were used to define eligibility criteria: (1) Population: individuals at high-risk of exposure to SARS-CoV-2 (pre-exposure), individuals who had close contact with a positive or probable case of COVID-19 (post-exposure), non-hospitalized patients with COVID-19 and hospitalized patients with COVID-19; (2) Intervention: HCQ; (3) Comparison: placebo; (4) Outcomes: incidence of SARS-CoV-2 infection, need for hospitalization, length of hospital stay, need for invasive mechanical ventilation (MV), death, and adverse events; and (5) Study type: blinded, placebo-controlled, randomized clinical trials (RCTs). Risk of bias was judged according to the Cochrane guidelines for RCTs. Treatment effects were reported as relative risk (RR) for dichotomous variables and mean difference (MD) for continuous variables with 95% confidence intervals (CI). We used either a fixed or random-effects model to pool the results of individual studies depending on the presence of heterogeneity. The GRADE system was used to evaluate the strength of evidence between use of HCQ and the outcomes of interest. FINDINGS Fourteen blinded, placebo-controlled RCTs were included in this meta-analysis. Four trials (1942 patients: HCQ = 1271; placebo = 671) used HCQ as a prophylactic medication pre-exposure to COVID-19, two (1650 patients: HCQ = 821; placebo = 829) as a prophylactic medication post-exposure to COVID-19, three (1018 patients: HCQ = 497; placebo = 521) as treatment for non-hospitalized patients, and five (1138 patients: HCQ = 572; placebo = 566) as treatment for hospitalized patients with COVID-19. We found no decreased risk of SARS-CoV-2 infection among individuals receiving HCQ as pre-exposure (RR = 0.90; 95% CI 0.46 to 1.77) or post-exposure (RR = 0.96; 95% CI 0.72 to 1.29) prophylaxis to prevent COVID-19. There was no significant decreased risk of hospitalization for outpatients with SARS-CoV-2 infection (RR = 0.64; 95% CI 0.33 to 1.23) and no decreased risk of MV (RR = 0.81; 95% CI 0.49 to 1.34) and death (RR = 1.05; 95% CI 0.62 to 1.78) among hospitalized patients with COVID-19 receiving HCQ. The certainty of the results on the lack of clinical benefit for HCQ was rated as moderate. Moreover, our results demonstrated an increased risk for any adverse events and gastrointestinal symptoms among those using HCQ. INTERPRETATION Available evidence based on the results of blinded, placebo-controlled RCTs showed no clinical benefits of HCQ as pre-and post-exposure prophylaxis and treatment of non-hospitalized and hospitalized patients with COVID-19. FUNDING There was no funding source.
Collapse
Affiliation(s)
- Paulo Ricardo Martins-Filho
- Investigative Pathology Laboratory, Federal University of Sergipe, Aracaju, Sergipe, Brazil,Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil,Corresponding author. Prof. Paulo Ricardo Martins-Filho. Universidade Federal de Sergipe, Hospital Universitário, Laboratório de Patologia Investigativa. Rua Cláudio Batista, s/n. Bairro Sanatório. Aracaju, Sergipe, Brasil. CEP
| | - Lis Campos Ferreira
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil,Department of Medicine, Tiradentes University, Aracaju, Sergipe, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Adriano Antunes de Souza Araújo
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil,Laboratory of Pharmaceutical Assays and Toxicity, Department of Pharmacy, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Lucindo José Quintans-Júnior
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil,Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| |
Collapse
|