1601
|
Abstract
Enhancing and protecting testosterone production is one target for many scientists because of its crucial role as a primary sex hormone in males. Several in vivo trials have utilized different dietary supplements and medicinal plants to enhance testosterone production in males. Since 1991, various in-vivo, as well as basic research studies, have discovered a link between ginger (Zingiber officinale) and testosterone. However, such a link has not yet been collectively reviewed. This review systematically discusses and summarizes the effect of ginger and ginger extracts on testosterone. To achieve this contribution, we searched the PubMed, Scopus, and Web of Science databases for English language articles (full texts or abstracts) from November 1991 through August 2018 using the keywords "ginger" and "Zingiber officinale" versus "testosterone". Additionally, the references from related published articles were also reviewed, only if relevant. In conclusion, the mainstream of research that links ginger to testosterone demonstrated that ginger supplementation, particularly in oxidative stress conditions, enhances testosterone production in males. The mechanisms by which this occurs mainly by enhancing luteinizing hormone (LH) production, increasing the level of cholesterol in the testes, reducing oxidative stress and lipid peroxidation in the testes, enhancing the activity of the antioxidant enzymes, normalizing blood glucose, increasing blood flow in the testes, increasing testicular weight, and recycling testosterone receptors. However, the effect of ginger on testosterone is not yet confirmed in humans. Therefore, clinical studies in this context of research are imperative.
Collapse
Affiliation(s)
- Saleem Ali Banihani
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
1602
|
Chronic heart failure is characterized by altered mitochondrial function and structure in circulating leucocytes. Oncotarget 2018; 9:35028-35040. [PMID: 30416677 PMCID: PMC6205552 DOI: 10.18632/oncotarget.26164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is currently viewed as a key factor in the genesis and progression of Heart Failure (HF). The aim of this study was to characterize the mitochondrial changes linked to oxidative stress generation in circulating peripheral blood mononuclear cells isolated from chronic HF patients (HF_PBMCs) in order to highlight the involvement of mitochondrial dysfunction in the pathophysiology of HF. To assess the production of reactive oxygen species (ROS), mitochondrial function and ultrastructure and the mitophagic flux in circulating PBMCs we enrolled 15 patients with HF and a control group of ten healthy subjects. The HF_PBMCs showed a mitochondrial population consisting of damaged and less functional organelles responsible of higher superoxide anion production both at baseline and under in vitro stress conditions, with evidence of cellular apoptosis. Although the mitophagic flux at baseline was enhanced in HF_PBMCs at level similar to those that could be achieved in control PBMCs only under inflammatory stress conditions, the activation of mitophagy was unable to preserve a proper mitochondrial dynamics upon stress stimuli in HF. In summary, circulating HF_PBMCs show structural and functional derangements of mitochondria with overproduction of reactive oxidant species. This mitochondrial failure sustains a leucocyte dysfunctional status in the blood that may contribute to development and persistence of stress conditions within the cardiovascular system in HF.
Collapse
|
1603
|
Lakes AL, Puleo DA, Hilt JZ, Dziubla TD. Highly Thiolated Poly (Beta-Amino Ester) Nanoparticles for Acute Redox Applications. Gels 2018; 4:gels4040080. [PMID: 30674856 PMCID: PMC6318580 DOI: 10.3390/gels4040080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/13/2018] [Accepted: 09/23/2018] [Indexed: 12/20/2022] Open
Abstract
Disulfides are used extensively in reversible cross-linking because of the ease of reduction into click-reactive thiols. However, the free-radical scavenging properties upon reduction are often under-considered. The free thiols produced upon reduction of this disulfide material mimic the cellular reducing chemistry (glutathione) that serves as a buffer against acute oxidative stress. A nanoparticle formulation producing biologically relevant concentrations of thiols may not only provide ample chemical conjugation sites, but potentially be useful against severe acute oxidative stress exposure, such as in targeted radioprotection. In this work, we describe the synthesis and characterization of highly thiolated poly (β-amino ester) (PBAE) nanoparticles formed from the reduction of bulk disulfide cross-linked PBAE hydrogels. Degradation-tunable PBAE hydrogels were initially synthesized containing up to 26 wt % cystamine, which were reduced into soluble thiolated oligomers and formulated into nanoparticles upon single emulsion. These thiolated nanoparticles were size-stable in phosphate buffered saline consisting of up to 11.0 ± 1.1 mM (3.7 ± 0.3 mmol thiol/g, n = 3 M ± SD), which is an antioxidant concentration within the order of magnitude of cellular glutathione (1–10 mM).
Collapse
Affiliation(s)
- Andrew L Lakes
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - David A Puleo
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - Thomas D Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
1604
|
Abstract
Mitochondria undergo continuous challenges in the course of their life, from their generation to their degradation. These challenges include the management of reactive oxygen species, the proper assembly of mitochondrial respiratory complexes and the need to balance potential mutations in the mitochondrial DNA. The detection of damage and the ability to keep it under control is critical to fine-tune mitochondrial function to the organismal energy needs. In this review, we will analyze the multiple mechanisms that safeguard mitochondrial function in light of in crescendo damage. This sequence of events will include initial defense against excessive reactive oxygen species production, compensation mechanisms by the unfolded protein response (UPRmt), mitochondrial dynamics and elimination by mitophagy.
Collapse
Affiliation(s)
- Miriam Valera-Alberni
- Nestlé Institute of Health Sciences (NIHS), EPFL Innovation Park, 1015 Lausanne.,School of Life Sciences, EPFL, 1015 Lausanne
| | - Carles Canto
- Nestlé Institute of Health Sciences (NIHS), EPFL Innovation Park, 1015 Lausanne.,School of Life Sciences, EPFL, 1015 Lausanne
| |
Collapse
|
1605
|
Majerczyk M, Kocełak P, Choręza P, Arabzada H, Owczarek AJ, Bożentowicz-Wikarek M, Brzozowska A, Szybalska A, Puzianowska-Kuźnicka M, Grodzicki T, Więcek A, Olszanecka-Glinianowicz M, Chudek J. Components of metabolic syndrome in relation to plasma levels of retinol binding protein 4 (RBP4) in a cohort of people aged 65 years and older. J Endocrinol Invest 2018; 41:1211-1219. [PMID: 29524177 PMCID: PMC6182353 DOI: 10.1007/s40618-018-0856-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/26/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Elevated plasma concentration of retinol binding protein 4 (RBP4) has recently emerged as a potential risk factor as a component of developing metabolic syndrome (MS). Therefore, this study aimed to analyse the relationship between components of MS and concentrations of plasma RBP4 in a population of subjects 65 years and older. METHODS The study sample consisted of 3038 (1591 male) participants of the PolSenior study, aged 65 years and older. Serum lipid profile, concentrations of RBP4, glucose, insulin, C-reactive protein, IL-6, and activity of aminotransferases were measured. Nutritional status (BMI/waist circumference) and treatment with statins and fibrates were evaluated. Glomerular filtration rate (eGFR), de Ritis ratio, and fatty liver index (FLI), as well as HOMA-IR were calculated. RESULTS Our study revealed a strong relationship between components of MS and RBP4 in both sexes: plasma RBP4 levels were increased in men by at least 3×, and in women by at least 4×. Hypertriglyceridemia was most strongly associated with elevated plasma RBP4 levels. Multivariate, sex-adjusted regression analysis demonstrated that chronic kidney disease [OR 1.86 (95% CI 1.78-1.94)], hypertriglyceridemia [OR 1.52 (1.24-1.87)], hypertension [OR 1.15 (1.12-1.19)], low serum HDL cholesterol [OR 0.94 (0.92-0.97)], and age > 80 years [OR 0.86 (0.81-0.90)] were each independently associated with RBP4 concentration (all p < 0.001). CONCLUSIONS In Caucasians 65 years and older, RBP4 serum levels are associated with a number of components of MS, independent of sex and kidney function. Hypertriglyceridemia as a component of MS is most significantly related to RBP4 concentration.
Collapse
Affiliation(s)
- M Majerczyk
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Medyków Street 18, 40-752, Katowice, Poland.
- Department of Cardiology, District Hospital in Zakopane, Zakopane, Poland.
| | - P Kocełak
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - P Choręza
- Department of Statistics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - H Arabzada
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Medyków Street 18, 40-752, Katowice, Poland
| | - A J Owczarek
- Department of Statistics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - M Bożentowicz-Wikarek
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Medyków Street 18, 40-752, Katowice, Poland
| | - A Brzozowska
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - A Szybalska
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - M Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - T Grodzicki
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Krakow, Poland
| | - A Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - M Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - J Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
1606
|
Simvastatin Effects on Inflammation and Platelet Activation Markers in Hypercholesterolemia. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6508709. [PMID: 30402489 PMCID: PMC6191949 DOI: 10.1155/2018/6508709] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/16/2018] [Indexed: 12/19/2022]
Abstract
Background Beside the lipid-lowering effect, statins slow the progression of atherosclerosis by exerting anti-inflammatory and platelet inhibiting effects. We investigated whether platelet inhibition by simvastatin correlates with the statin effects on lipid lowering, inflammation, oxidative stress, and endothelial and platelet activation. Methods In hypercholesterolemic patients allocated to diet (n=20) or a 2-month treatment with diet plus 40 mg simvastatin (n=25), we evaluated platelet aggregating responses to ADP, collagen, and arachidonic acid (AA), the effect of aspirin on AA-induced aggregation, pro- and anti-inflammatory and atherogenic mediators (IL-1β, -5, -6, -7, -8, -9, -10, -12, and -13, IFN-γ, IP-10, Eotaxin, and sRAGE), markers of endothelium (sE-selectin, VEGF, and MCP-1) and platelet activation (sP-selectin, sCD-40L, RANTES, and PDGF-bb), and oxidative stress (8-OH-2'-deoxyguanosine). Results After treatment, beside the improvement of lipid profile, we observed the following: a reduction of platelet aggregation to ADP (p=0.0001), collagen (p=0.0001), AA (p=0.003); an increased antiaggregating effect of aspirin in the presence of AA (p=0.0001); a reduction of circulating levels of IL-6 (p=0.0034), IL-13 (p<0.0001), IFN-γ (p<0.0001), VEGF (p<0.0001), sE-selectin (p<0.0001), sCD-40L (p<0.0001), sP-selectin (p=0.003), and 8-OH-2'-deoxyguanosine (p<0.0001); an increase of IL-10 and sRAGEs (p=0.0001 for both). LDL-cholesterol levels (i) positively correlated with IL-6, IFN-γ, E-selectin, sCD-40L, 8-OH-2'-deoxyguanosine, platelet aggregation to ADP, collagen, AA, and aspirin IC-50 and (ii) negatively correlated with IL-10 and sRAGE. In multiple regression analyses, LDL-cholesterol was the strongest predictor for most parameters of platelet reactivity. Conclusion In primary hypercholesterolemia, simvastatin treatment reduced platelet activation and subclinical inflammation and improved endothelial dysfunction. LDL-cholesterol levels were the major correlate of platelet reactivity; however, other effects of statins may contribute to reducing the progression of atherosclerosis.
Collapse
|
1607
|
Marycz K, Kornicka K, Irwin‐Houston JM, Weiss C. Combination of resveratrol and 5-azacytydine improves osteogenesis of metabolic syndrome mesenchymal stem cells. J Cell Mol Med 2018; 22:4771-4793. [PMID: 29999247 PMCID: PMC6156237 DOI: 10.1111/jcmm.13731] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
Endocrine disorders have become more and more frequently diagnosed in humans and animals. In horses, equine metabolic syndrome (EMS) is characterized by insulin resistance, hyperleptinemia, hyperinsulinemia, inflammation and usually by pathological obesity. Due to an increased inflammatory response in the adipose tissue, cytophysiological properties of adipose derived stem cells (ASC) have been impaired, which strongly limits their therapeutic potential. Excessive accumulation of reactive oxygen species, mitochondria deterioration and accelerated ageing of those cells affect their multipotency and restrict the effectiveness of the differentiation process. In the present study, we have treated ASC isolated from EMS individuals with a combination of 5-azacytydine (AZA) and resveratrol (RES) in order to reverse their aged phenotype and enhance osteogenic differentiation. Using SEM and confocal microscope, cell morphology, matrix mineralization and mitochondrial dynamics were assessed. Furthermore, we investigated the expression of osteogenic-related genes with RT-PCR. We also investigated the role of autophagy during differentiation and silenced PARKIN expression with siRNA. Obtained results indicated that AZA/RES significantly enhanced early osteogenesis of ASC derived from EMS animals. Increased matrix mineralization, RUNX-2, collagen type I and osteopontin levels were noted. Furthermore, we proved that AZA/RES exerts its beneficial effects by modulating autophagy and mitochondrial dynamics through PARKIN and RUNX-2 activity.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental BiologyWroclaw University of Environmental and Life SciencesWroclawPoland
- Wroclaw Research Centre EIT+WrocławPoland
| | - Katarzyna Kornicka
- Department of Experimental BiologyWroclaw University of Environmental and Life SciencesWroclawPoland
| | | | - Christine Weiss
- PferdePraxis Dr. Med. Vet. Daniel WeissFreienbachSwitzerland
| |
Collapse
|
1608
|
The Causal Role of Mitochondrial Dynamics in Regulating Insulin Resistance in Diabetes: Link through Mitochondrial Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7514383. [PMID: 30363990 PMCID: PMC6186363 DOI: 10.1155/2018/7514383] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
Background Mitochondrial dynamics (mtDYN) has been proposed as a bridge between mitochondrial dysfunction and insulin resistance (IR), which is involved in the pathogenesis of type 2 diabetes (T2D). Our previous study has identified that mitochondrial DNA (mtDNA) haplogroup B4 is a T2D-susceptible genotype. Using transmitochondrial cybrid model, we have confirmed that haplogroup B4 contributes to cellular IR as well as a profission mtDYN, which can be reversed by antioxidant treatment. However, the causal relationship between mtDYN and cellular IR pertaining to T2D-susceptible haplogroup B4 remains unanswered. Methods To dissect the mechanisms between mtDYN and IR, knockdown or overexpression of MFN1, MFN2, DRP1, and FIS1 was performed using cybrid B4. We then examined the mitochondrial network and mitochondrial oxidative stress (mtROS) as well as insulin signaling IRS-AKT pathway and glucose transporters (GLUT) translocation to plasma membrane stimulated by insulin. We employed Drp1 inhibitor, mdivi-1, to interfere with endogenous expression of fission to validate the pharmacological effects on IR. Results Overexpression of MFN1 or MFN2 increased mitochondrial network and reduced mtROS, while knockdown had an opposing effect. In contrast, overexpression of DRP1 or FIS1 decreased mitochondrial network and increased mtROS, while knockdown had an opposing effect. Concomitant with the enhanced mitochondrial network, activation of the IRS1-AKT pathway and GLUT translocation stimulated by insulin were improved. On the contrary, suppression of mitochondrial network caused a reduction of the IRS1-AKT pathway and GLUT translocation stimulated by insulin. Pharmacologically inhibiting mitochondrial fission by the Drp1 inhibitor, mdivi-1, also rescued mitochondrial network, reduced mtROS, and improved insulin signaling of diabetes-susceptible cybrid cells. Conclusion Our results discovered the causal role of mtDYN proteins in regulating IR resulted from diabetes-susceptible mitochondrial haplogroup. The existence of a bidirectional interaction between mtDYN and mtROS plays an important role. Direct intervention to reverse profission in mtDYN provides a novel therapeutic strategy for IR and T2D.
Collapse
|
1609
|
Bell MB, Bush Z, McGinnis GR, Rowe GC. Adult skeletal muscle deletion of Mitofusin 1 and 2 impedes exercise performance and training capacity. J Appl Physiol (1985) 2018; 126:341-353. [PMID: 30260752 DOI: 10.1152/japplphysiol.00719.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Endurance exercise has been shown to be a positive regulator of skeletal muscle metabolic function. Changes in mitochondrial dynamics (fusion and fission) have been shown to influence mitochondrial oxidative capacity. We therefore tested whether genetic disruption of mitofusins (Mfns) affected exercise performance in adult skeletal muscle. We generated adult-inducible skeletal muscle-specific Mfn1 (iMS-Mfn1KO), Mfn2 (iMS-Mfn2KO), and Mfn1/2 (iMS-MfnDKO) knockout mice. We assessed exercise capacity by performing a treadmill time to exhaustion stress test before deletion and up to 8 wk after deletion. Analysis of either the iMS-Mfn1KO or the iMS-Mfn2KO did not reveal an effect on exercise capacity. However, analysis of iMS-MfnDKO animals revealed a progressive reduction in exercise performance. We measured individual electron transport chain (ETC) complex activity and observed a reduction in ETC activity in both the subsarcolemmal and intermyofibrillar mitochondrial fractions specifically for NADH dehydrogenase (complex I) and cytochrome- c oxidase (complex IV), which was associated with a decrease in ETC subunit expression for these complexes. We also tested whether voluntary exercise training would prevent the decrease in exercise capacity observed in iMS-MfnDKO animals ( n = 10/group). However, after 8 wk of training we did not observe any improvement in exercise capacity or ETC subunit parameters in iMS-MfnDKO animals. These data suggest that the decrease in exercise capacity observed in the iMS-MfnDKO animals is in part the result of impaired ETC subunit expression and ETC complex activity. Taken together, these results provide strong evidence that mitochondrial fusion in adult skeletal muscle is important for exercise performance. NEW & NOTEWORTHY This study is the first to utilize an adult-inducible skeletal muscle-specific knockout model for Mitofusin (Mfn)1 and Mfn2 to assess exercise capacity. Our findings reveal a progressive decrease in exercise performance with Mfn1 and Mfn2 deletion. The decrease in exercise capacity was accompanied by impaired oxidative phosphorylation specifically for complex I and complex IV. Furthermore, voluntary exercise training was unable to rescue the impairment, suggesting that normal fusion is essential for exercise-induced mitochondrial adaptations.
Collapse
Affiliation(s)
- Margaret B Bell
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Alabama
| | - Zachary Bush
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Alabama
| | - Graham R McGinnis
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Alabama
| | - Glenn C Rowe
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Alabama.,Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Alabama
| |
Collapse
|
1610
|
Nanoparticles in Medicine: A Focus on Vascular Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6231482. [PMID: 30356429 PMCID: PMC6178176 DOI: 10.1155/2018/6231482] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/26/2018] [Accepted: 08/19/2018] [Indexed: 01/16/2023]
Abstract
Nanotechnology has had a significant impact on medicine in recent years, its application being referred to as nanomedicine. Nanoparticles have certain properties with biomedical applications; however, in some situations, they have demonstrated cell toxicity, which has caused concern surrounding their clinical use. In this review, we focus on two aspects: first, we summarize the types of nanoparticles according to their chemical composition and the general characteristics of their use in medicine, and second, we review the applications of nanoparticles in vascular alteration, especially in endothelial dysfunction related to oxidative stress. This condition can lead to a reduction in nitric oxide (NO) bioavailability, consequently affecting vascular tone regulation and endothelial dysfunction, which is the first phase in the development of cardiovascular diseases. Therefore, nanoparticles with antioxidant properties may improve vascular dysfunction associated with hypertension, diabetes mellitus, or atherosclerosis.
Collapse
|
1611
|
Rovira-Llopis S, Apostolova N, Bañuls C, Muntané J, Rocha M, Victor VM. Mitochondria, the NLRP3 Inflammasome, and Sirtuins in Type 2 Diabetes: New Therapeutic Targets. Antioxid Redox Signal 2018; 29:749-791. [PMID: 29256638 DOI: 10.1089/ars.2017.7313] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Type 2 diabetes mellitus and hyperglycemia can lead to the development of comorbidities such as atherosclerosis and microvascular/macrovascular complications. Both type 2 diabetes and its complications are related to mitochondrial dysfunction and oxidative stress. Type 2 diabetes is also a chronic inflammatory condition that leads to inflammasome activation and the release of proinflammatory mediators, including interleukins (ILs) IL-1β and IL-18. Moreover, sirtuins are energetic sensors that respond to metabolic load, which highlights their relevance in metabolic diseases, such as type 2 diabetes. Recent Advances: Over the past decade, great progress has been made in clarifying the signaling events regulated by mitochondria, inflammasomes, and sirtuins. Nod-like receptor family pyrin domain containing 3 (NLRP3) is the best characterized inflammasome, and the generation of oxidant species seems to be critical for its activation. NLRP3 inflammasome activation and altered sirtuin levels have been observed in type 2 diabetes. Critical Issue: Despite increasing evidence of the relationship between the NLRP3 inflammasome, mitochondrial dysfunction, and oxidative stress and of their participation in type 2 diabetes physiopathology, therapeutic strategies to combat type 2 diabetes that target NLRP3 inflammasome and sirtuins are yet to be consolidated. FUTURE DIRECTIONS In this review article, we attempt to provide an overview of the existing literature concerning the crosstalk between mitochondrial impairment and the inflammasome, with particular attention to cellular and mitochondrial redox metabolism and the potential role of the NLRP3 inflammasome and sirtuins in the pathogenesis of type 2 diabetes. In addition, we discuss potential targets for therapeutic intervention based on these molecular interactions. Antioxid. Redox Signal. 29, 749-791.
Collapse
Affiliation(s)
- Susana Rovira-Llopis
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Nadezda Apostolova
- 2 Department of Pharmacology, University of Valencia , Valencia, Spain
- 4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Celia Bañuls
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Jordi Muntané
- 3 Department of General Surgery, Hospital University "Virgen del Rocío"/IBiS/CSIC/University of Seville , Seville, Spain
- 4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Milagros Rocha
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- 4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Victor M Victor
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- 4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
- 5 Department of Physiology, University of Valencia , Valencia, Spain
| |
Collapse
|
1612
|
Metabolically Healthy versus Unhealthy Morbidly Obese: Chronic Inflammation, Nitro-Oxidative Stress, and Insulin Resistance. Nutrients 2018; 10:nu10091199. [PMID: 30200422 PMCID: PMC6164113 DOI: 10.3390/nu10091199] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023] Open
Abstract
Metabolically heathy obesity is characterised by the presence of obesity in the absence of metabolic disturbances. The aim of our study was to analyse pro-inflammatory, nitro-oxidative stress, and insulin-resistance (IR) markers in metabolically healthy morbidly obese (MHMO) with respect to metabolically unhealthy morbidly obese (MUHMO) with metabolic syndrome (MS) and to identify the potential predictors of MS in the MHMO group. Two groups of MHMO and MUHMO with MS were analysed. We evaluated serum high sensitivity C reactive protein (hsCRP), tumor necrosis factor alpha (TNF-α), chemerin, nitrite and nitrate (NOx), total oxidant status (TOS), total antioxidant response (TAR), fasting blood glucose, insulin, and homeostasis model assessment of insulin resistance (HOMA-IR.) MHMO have similar hsCRP and TNF-α values as the MUHMO with MS, while chemerin was significantly lower in MHMO. NOx was higher in MUHMO with MS patients, while no difference regarding TOS and TAR was found between the two groups. HOMA-IR and insulin values were lower in MHMO as compared to the MUHMO with MS group. Insulin, HOMA-IR, and chemerin were identified predictors of MS in MHMO. In conclusion, MHMO and MUHMO display similarities and differences in terms of chronic inflammation, nitro-oxidative stress, and IR. Markers of IR and chemerin are possible predictors of MS in MHMO.
Collapse
|
1613
|
Anagnostis P, Tarlatzis BC, Kauffman RP. Polycystic ovarian syndrome (PCOS): Long-term metabolic consequences. Metabolism 2018; 86:33-43. [PMID: 29024702 DOI: 10.1016/j.metabol.2017.09.016] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women during their reproductive ages, associated with a plethora of cardiometabolic consequences, with obesity, insulin resistance and hyperandrogenemia playing a major role in the degree of such manifestations. These consequences include increased risk of glucose intolerance and diabetes mellitus (both type 2 and gestational), atherogenic dyslipidemia, systemic inflammation, non-alcoholic fatty liver disease, hypertension and coagulation disorders. Whether this cluster of metabolic abnormalities is also translated in increased cardiovascular disease (CVD) morbidity and mortality in later life, remains to be established. Data so far based on markers of subclinical atherosclerosis as well as retrospective and prospective cohort studies indicate a possible increased CVD risk, mainly for coronary heart disease. Future studies are needed to further elucidate this issue.
Collapse
Affiliation(s)
- Panagiotis Anagnostis
- First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Basil C Tarlatzis
- First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Robert P Kauffman
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX, USA
| |
Collapse
|
1614
|
Yu J, Li X, Matei N, McBride D, Tang J, Yan M, Zhang JH. Ezetimibe, a NPC1L1 inhibitor, attenuates neuronal apoptosis through AMPK dependent autophagy activation after MCAO in rats. Exp Neurol 2018; 307:12-23. [PMID: 29852178 DOI: 10.1016/j.expneurol.2018.05.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 12/25/2022]
Abstract
Autophagy activation exerts neuroprotective effects in the ischemic stroke model. Ezetimibe (Eze), a Niemann-Pick disease type C1-Like 1 (NPC1L1) pharmacological inhibitor, has been reported to protect hepatocytes from apoptosis via autophagy activation. In this study, we explored whether Eze could attenuate neuronal apoptosis in the rat model of middle cerebral artery occlusion (MCAO), specifically via activation of the AMPK/ULK1/autophagy pathway. Two hundred and one male Sprague-Dawley rats were subjected to transient MCAO followed by reperfusion. Eze was administered 1 h after MCAO. To elucidate the underlying molecular mechanism, Dorsomorphin, a selective AMPK inhibitor, and 3-methyladenine (3-MA), an autophagy inhibitor, were injected intracerebroventricularly before MCAO. Infarct volume, neurological score, brain cholesterol levels, immunofluorescence staining, Western blot, and Fluoro-Jade C (FJC) staining were used to evaluate the effects of Eze. The endogenous NPC1L1 expression increased and mainly expressed in neurons after MCAO. Intranasal administration of Eze reduced brain infarct volume at 24 and 72 h after MCAO, with improved short and long-term neurological functions after MCAO. Eze reduced brain cholesterol levels (total cholesterol, free cholesterol and cholesteryl esters) and the number of FJC-positive neurons. The expression of phosphorylated AMPK (p-AMPK) and downstream ULK1, Beclin1, LC3BII, Bcl-2, and Bcl-xl increased, while P62 and proapoptotic Bax decreased after treatment with Eze. Pretreatment with Dorsomorphin and 3-MA reversed the beneficial effects of Eze. These findings suggest that intranasal administration of Eze plays neuroprotective role through autophagy activation after MCAO in rats. Lowered cholesterol levels and AMPK activation may act in conjunction to induce autophagy after treatment with Eze. Eze merits further investigation as a potential therapeutic agent in ischemic stroke patients.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China; Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Xue Li
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China; Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Nathanael Matei
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Devin McBride
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA; The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jiping Tang
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China.
| | - John H Zhang
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
1615
|
Wang X, Li W, Ma L, Ping F, Liu J, Wu X, Mao J, Wang X, Nie M. Micro-ribonucleic acid-binding site variants of type 2 diabetes candidate loci predispose to gestational diabetes mellitus in Chinese Han women. J Diabetes Investig 2018; 9:1196-1202. [PMID: 29352517 PMCID: PMC6123053 DOI: 10.1111/jdi.12803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/21/2017] [Accepted: 01/14/2018] [Indexed: 12/17/2022] Open
Abstract
AIMS/INTRODUCTION Emerging evidence has suggested that the genetic background of gestational diabetes mellitus (GDM) was analogous to type 2 diabetes mellitus. In contrast to type 2 diabetes mellitus, the genetic studies for GDM were limited. Accordingly, the aim of the present study was to extensively explore the influence of micro-ribonucleic acid-binding single-nucleotide polymorphisms (SNPs) in type 2 diabetes mellitus candidate loci on GDM susceptibility in Chinese. MATERIALS AND METHODS A total of 839 GDM patients and 900 controls were enrolled. Six micro-ribonucleic acid-binding SNPs were selected from 30 type 2 diabetes mellitus susceptibility loci and genotyped using TaqMan allelic discrimination assays. RESULTS The minor allele of three SNPs, PAX4 rs712699 (OR 1.366, 95% confidence interval 1.021-1.828, P = 0.036), KCNB1 rs1051295 (OR 1.579, 95% confidence interval 1.172-2.128, P = 0.003) and MFN2 rs1042842 (OR 1.398, 95% confidence interval 1.050-1.862, P = 0.022) were identified to significantly confer higher a risk of GDM in the additive model. The association between rs1051295 and increased fasting plasma glucose (b = 0.006, P = 0.008), 3-h oral glucose tolerance test plasma glucose (b = 0.058, P = 0.025) and homeostatic model assessment of insulin resistance (b = 0.065, P = 0.017) was also shown. Rs1042842 was correlated with higher 3-h oral glucose tolerance test plasma glucose (b = 0.056, P = 0.028). However, no significant correlation between the other included SNPs (LPIN1 rs1050800, VPS26A rs1802295 and NLRP3 rs10802502) and GDM susceptibility were observed. CONCLUSIONS The present findings showed that micro-ribonucleic acid-binding SNPs in type 2 diabetes mellitus candidate loci were also associated with GDM susceptibility, which further highlighted the similar genetic basis underlying GDM and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Wei Li
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Liangkun Ma
- Department of Obstetrics and GynecologyPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Fan Ping
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Juntao Liu
- Department of Obstetrics and GynecologyPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xueyan Wu
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Jiangfeng Mao
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xi Wang
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Min Nie
- Department of EndocrinologyKey Laboratory of EndocrinologyMinistry of HealthPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
1616
|
Anupama N, Preetha Rani MR, Shyni GL, Raghu KG. Glucotoxicity results in apoptosis in H9c2 cells via alteration in redox homeostasis linked mitochondrial dynamics and polyol pathway and possible reversal with cinnamic acid. Toxicol In Vitro 2018; 53:178-192. [PMID: 30144576 DOI: 10.1016/j.tiv.2018.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 01/03/2023]
Abstract
Several mechanisms have been proposed for the heart dysfunction during hyperglycemia. The aim of the present in vitro study is to elucidate the role of alterations in redox homeostasis in the induction of apoptosis during hyperglycemia in H9c2 cells via dysfunction in mitochondria and polyol pathway and evaluation of the beneficial effect of cinnamic acid against the same. The H9c2 cells were incubated with 33 mM glucose for 48 h to simulate the diabetic condition. Cell injury was confirmed with a significant increase of atrial natriuretic peptide and lactate dehydrogenase release. Alterations in the innate antioxidant system, polyol pathway, mitochondrial integrity, dynamics and apoptosis were investigated. Hyperglycemic insult has significantly affected redox homeostasis via depletion of superoxide dismutase, glutathione and enhanced reactive oxygen species generation. It also caused dysregulation in mitochondrial dynamics (fusion, fission proteins), dissipation of mitochondrial transmembrane potential and increased sorbitol accumulation. Finally, apoptosis was observed with upregulation of Bax, activation of caspase-3 and downregulation of Bcl-2. Cinnamic acid cotreatment increased the innate antioxidant status, improved mitochondrial function and prevented apoptosis in H9c2 cardiomyoblasts. Moreover, this in vitro model is found to be ideal for the elucidation of mechanisms at the cellular and molecular level of any physiological, pharmacological and toxicological incidents in H9c2 cells.
Collapse
Affiliation(s)
- Nair Anupama
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India
| | - M R Preetha Rani
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India
| | - G L Shyni
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India.
| |
Collapse
|
1617
|
Diaz-Morales N, Lopez-Domenech S, Iannantuoni F, Lopez-Gallardo E, Sola E, Morillas C, Rocha M, Ruiz-Pesini E, Victor VM. Mitochondrial DNA Haplogroup JT is Related to Impaired Glycaemic Control and Renal Function in Type 2 Diabetic Patients. J Clin Med 2018; 7:jcm7080220. [PMID: 30115863 PMCID: PMC6111716 DOI: 10.3390/jcm7080220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022] Open
Abstract
The association between mitochondrial DNA (mtDNA) haplogroup and risk of type 2 diabetes (T2D) is undetermined and controversial. This study aims to evaluate the impact of the main mtDNA haplogroups on glycaemic control and renal function in a Spanish population of 303 T2D patients and 153 healthy controls. Anthropometrical and metabolic parameters were assessed and mtDNA haplogroup was determined in each individual. Distribution of the different haplogroups was similar in diabetic and healthy populations and, as expected, T2D patients showed poorer glycaemic control and renal function than controls. T2D patients belonging to the JT haplogroup (polymorphism m.4216T>C) displayed statistically significant higher levels of fasting glucose and HbA1c than those of the other haplogroups, suggesting a poorer glycaemic control. Furthermore, diabetic patients with the JT haplogroup showed a worse kidney function than those with other haplogroups, evident by higher levels of serum creatinine, lower estimated glomerular filtration rate (eGFR), and slightly higher (although not statistically significant) urinary albumin-to-creatinine ratio. Our results suggest that JT haplogroup (in particular, change at position 4216 of the mtDNA) is associated with poorer glycaemic control in T2D, which can trigger the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Noelia Diaz-Morales
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
| | - Sandra Lopez-Domenech
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
| | - Francesca Iannantuoni
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
| | - Ester Lopez-Gallardo
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50013 Zaragoza, Spain.
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50013 Zaragoza, Spain.
- Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), 50013 Zaragoza, Spain.
| | - Eva Sola
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
| | - Carlos Morillas
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
| | - Milagros Rocha
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
- CIBERehd-Department of Pharmacology and Physiology, University of Valencia, 46010 Valencia, Spain.
| | - Eduardo Ruiz-Pesini
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50013 Zaragoza, Spain.
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50013 Zaragoza, Spain.
- Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), 50013 Zaragoza, Spain.
- Fundación ARAID, 50018 Zaragoza, Spain.
| | - Victor M Victor
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
- CIBERehd-Department of Pharmacology and Physiology, University of Valencia, 46010 Valencia, Spain.
| |
Collapse
|
1618
|
Impact of Obesity and Hyperglycemia on Placental Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2378189. [PMID: 30186542 PMCID: PMC6112210 DOI: 10.1155/2018/2378189] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/13/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023]
Abstract
A lipotoxic placental environment is recognized in maternal obesity, with increased inflammation and oxidative stress. These changes might alter mitochondrial function, with excessive production of reactive oxygen species, in a vicious cycle leading to placental dysfunction and impaired pregnancy outcomes. Here, we hypothesize that maternal pregestational body mass index (BMI) and glycemic levels can alter placental mitochondria. We measured mitochondrial DNA (mtDNA, real-time PCR) and morphology (electron microscopy) in placentas of forty-seven singleton pregnancies at elective cesarean section. Thirty-seven women were normoglycemic: twenty-one normal-weight women, NW, and sixteen obese women, OB/GDM(−). Ten obese women had gestational diabetes mellitus, OB/GDM(+). OB/GDM(−) presented higher mtDNA levels versus NW, suggesting increased mitochondrial biogenesis in the normoglycemic obese group. These mitochondria showed similar morphology to NW. On the contrary, in OB/GDM(+), mtDNA was not significantly increased versus NW. Nevertheless, mitochondria showed morphological abnormalities, indicating impaired functionality. The metabolic response of the placenta to impairment in obese pregnancies can possibly vary depending on several parameters, resulting in opposite strains acting when insulin resistance of GDM occurs in the obese environment, characterized by inflammation and oxidative stress. Therefore, mitochondrial alterations represent a feature of obese pregnancies with changes in placental energetics that possibly can affect pregnancy outcomes.
Collapse
|
1619
|
Bonomi R, Popov V, Laws MT, Gelovani D, Majhi A, Shavrin A, Lu X, Muzik O, Turkman N, Liu R, Mangner T, Gelovani JG. Molecular Imaging of Sirtuin1 Expression-Activity in Rat Brain Using Positron-Emission Tomography-Magnetic-Resonance Imaging with [ 18F]-2-Fluorobenzoylaminohexanoicanilide. J Med Chem 2018; 61:7116-7130. [PMID: 30052441 DOI: 10.1021/acs.jmedchem.8b00253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sirtuin 1 (SIRT1) is a class III histone deacetylase that plays significant roles in the regulation of lifespan, metabolism, memory, and circadian rhythms and in the mechanisms of many diseases. However, methods of monitoring the pharmacodynamics of SIRT1-targeted drugs are limited to blood sampling because of the invasive nature of biopsies. For the noninvasive monitoring of the spatial and temporal dynamics of SIRT1 expression-activity in vivo by PET-CT-MRI, we developed a novel substrate-type radiotracer, [18F]-2-fluorobenzoylaminohexanoicanilide (2-[18F]BzAHA). PET-CT-MRI studies in rats demonstrated increased accumulation of 2-[18F]BzAHA-derived radioactivity in the hypothalamus, hippocampus, nucleus accumbens, and locus coeruleus, consistent with autoradiographic and immunofluorescent (IMF) analyses of brain-tissue sections. Pretreatment with the SIRT1 specific inhibitor, EX-527 (5 mg/kg, ip), resulted in about a 20% reduction of 2-[18F]BzAHA-derived-radioactivity accumulation in these structures. In vivo imaging of SIRT1 expression-activity should facilitate studies that improve the understanding of SIRT1-mediated regulation in the brain and aid in the development and clinical translation of SIRT1-targeted therapies.
Collapse
Affiliation(s)
- Robin Bonomi
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Vadim Popov
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Maxwell T Laws
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - David Gelovani
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Anjoy Majhi
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Aleksandr Shavrin
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | | | | | - Nashaat Turkman
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Renshyan Liu
- National Taiwan University , Taipei City 10617 , Taiwan
| | | | - Juri G Gelovani
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| |
Collapse
|
1620
|
|
1621
|
Du X, Shen T, Wang H, Qin X, Xing D, Ye Q, Shi Z, Fang Z, Zhu Y, Yang Y, Peng Z, Zhao C, Lv B, Li X, Liu G, Li X. Adaptations of hepatic lipid metabolism and mitochondria in dairy cows with mild fatty liver. J Dairy Sci 2018; 101:9544-9558. [PMID: 30100495 DOI: 10.3168/jds.2018-14546] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/17/2018] [Indexed: 12/14/2022]
Abstract
The inevitable deficiency in nutrients and energy at the onset of lactation requires an optimal adaptation of the hepatic metabolism to overcome metabolic stress. Fatty liver is one of the main health disorders after parturition. Therefore, to investigate changes in hepatic lipid metabolic status and mitochondria in dairy cows with mild fatty liver, liver and blood samples were collected from healthy cows (n = 15) and cows with mild fatty liver (n = 15). To determine the effects of palmitic acids (PA), one of the major component of fatty acids, on lipid metabolism and mitochondria in vitro, calf hepatocytes were isolated from healthy calves and treated with various concentrations of PA (0, 50, 100, and 200 μM). Dairy cows with mild fatty liver displayed hepatic lipid accumulation. The protein levels of sterol regulatory element-binding protein 1c (SREBP-1c) and peroxisome proliferator-activated receptor-α (PPARα) and mRNA levels of acetyl CoA carboxylase 1 (ACC1), fatty acid synthase (FAS), acyl-CoA oxidase (ACO), and carnitine palmitoyltransferase 1A (CPT1A) were significantly higher in dairy cows with mild fatty liver than in control cows. The hepatic mitochondrial DNA content, mRNA levels of oxidative phosphorylation complexes I to V (CO 1-V), protein levels of cytochrome c oxidase subunit IV (COX IV), voltage dependent anion channel 1 (VDAC1), peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α) and nuclear respiratory factor 1 (NRF1), and adenosine triphosphate (ATP) content were all markedly increased in the liver of dairy cows with mild fatty liver compared with healthy cows. The PA treatment significantly increased lipid accumulation; protein levels of SREBP-1c and PPARα; and mRNA levels of ACC1, FAS, ACO, and CPT1A in calf hepatocytes. Moreover, the mitochondrial DNA content, mRNA levels of CO 1-V, protein levels of COX IV, VDAC1, PGC-1α, NRF1, mitochondrial transcription factor A, and ATP content were significantly increased in PA-treated hepatocytes compared with control hepatocytes. The protein level of mitofusin-2 was significantly decreased in PA-treated groups. In conclusion, lipid synthesis and oxidation, number of mitochondria, and ATP production were increased in the liver of dairy cows with mild fatty liver and PA-treated calf hepatocytes. These changes in hepatic mitochondria and lipid metabolism may be the adaptive mechanism of dairy cows with mild fatty liver.
Collapse
Affiliation(s)
- Xiliang Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Taiyu Shen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital, Jilin University, 71 Xinmin Road, Changchun, Jilin Province, 130021, China
| | - Xia Qin
- College of Veterinary Medicine, Shenyang Agriculture University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning Province 110866, China
| | - Dongmei Xing
- Animal Medicine College, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Qianqian Ye
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Zhen Shi
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Zhiyuan Fang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yiwei Zhu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yuchen Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Zhicheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Chenxu Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Bin Lv
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| |
Collapse
|
1622
|
Zhang W, Song J, Zhang Y, Ma Y, Yang J, He G, Chen S. Intermittent high glucose-induced oxidative stress modulates retinal pigmented epithelial cell autophagy and promotes cell survival via increased HMGB1. BMC Ophthalmol 2018; 18:192. [PMID: 30081847 PMCID: PMC6091182 DOI: 10.1186/s12886-018-0864-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background In this study, we evaluated the effects of intermittent high glucose on oxidative stress production in retinal pigmented epithelial (RPE) cells and explored whether the mechanisms of autophagy and apoptosis in oxidative stress are associated with high-mobility group box 1 (HMGB1) protein. Methods Cultured human RPE cell line ARPE-19 cells were exposed to intermittent high glucose-induced oxidative stress. Reactive oxygen species (ROS) was determined by 2′, 7′-dichlorofluorescin diacetate (DCFH-DA); and malonyldialdehyde (MDA), superoxide dismutase (SOD) by commercial kits. Transmission electron microscopy was used to observe the generation of autophagosome. And MTT assay was used to examine the effect of autophagy on cell viability. For the inhibition experiments, cells were pre-incubated with lysosomal inhibitors NH4Cl or N-acetyl cysteine (NAC).Western blot was used to measure the expression patterns of autophagic markers, including LC3 and p62. The expression of HMGB1 was detected by immunohistochemistry.Cells were pre-incubated with HMGB1 inhibitor ethyl pyruvate (EP) ,then detected the expression pattern of autophagic markers and level of cellular ROS. Results We found that intermittent high glucose significantly increased oxidative stress levels (as indicated by ROS, MDA, SOD), increased in the generation of autophagosome, decreased the level of p62, induced conversion of LC3 I to LC3 II. We further demonstrated that the NH4Cl/NAC inhibited intermittent high glucose-induced autophage by altered level of LC3 and p62. Intermittent high glucose-induced autophagy is independent of HMGB1 signaling, inhibition of HMGB1 release by EP decreased expression pattern of autophagic markers and level of cellular viability. Conclusions Under intermittent high glucose condition, autophagy may be required for preventing oxidative stress-induced injury in RPE. HMGB1 plays important roles in signaling for both autophagy and oxidative stress.
Collapse
Affiliation(s)
- Wei Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Jian Song
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Yue Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Yingxue Ma
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Jing Yang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Guanghui He
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Song Chen
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China.
| |
Collapse
|
1623
|
Dong SA, Zhang Y, Yu JB, Li XY, Gong LR, Shi J, Kang YY. Carbon monoxide attenuates lipopolysaccharide-induced lung injury by mitofusin proteins via p38 MAPK pathway. J Surg Res 2018; 228:201-210. [DOI: 10.1016/j.jss.2018.03.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/01/2018] [Accepted: 03/15/2018] [Indexed: 01/31/2023]
|
1624
|
Farmer T, Naslavsky N, Caplan S. Tying trafficking to fusion and fission at the mighty mitochondria. Traffic 2018; 19:569-577. [PMID: 29663589 PMCID: PMC6043374 DOI: 10.1111/tra.12573] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 01/03/2023]
Abstract
The mitochondrion is a unique organelle that serves as the main site of ATP generation needed for energy in the cell. However, mitochondria also play essential roles in cell death through apoptosis and necrosis, as well as a variety of crucial functions related to stress regulation, autophagy, lipid synthesis and calcium storage. There is a growing appreciation that mitochondrial function is regulated by the dynamics of its membrane fusion and fission; longer, fused mitochondria are optimal for ATP generation, whereas fission of mitochondria facilitates mitophagy and cell division. Despite the significance of mitochondrial homeostasis for such crucial cellular events, the intricate regulation of mitochondrial fusion and fission is only partially understood. Until very recently, only a single mitochondrial fission protein had been identified. Moreover, only now have researchers turned to address the upstream machinery that regulates mitochondrial fusion and fission proteins. Herein, we review the known GTPases involved in mitochondrial fusion and fission, but also highlight recent studies that address the mechanisms by which these GTPases are regulated. In particular, we draw attention to a substantial new body of literature linking endocytic regulatory proteins, such as the retromer VPS35 cargo selection complex subunit, to mitochondrial homeostasis. These recent studies suggest that relationships and cross-regulation between endocytic and mitochondrial pathways may be more widespread than previously assumed.
Collapse
Affiliation(s)
- Trey Farmer
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, Nebraska
| | - Naava Naslavsky
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, Nebraska
| | - Steve Caplan
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, Nebraska
- The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
1625
|
Dalton B, Bartholdy S, Robinson L, Solmi M, Ibrahim MAA, Breen G, Schmidt U, Himmerich H. A meta-analysis of cytokine concentrations in eating disorders. J Psychiatr Res 2018; 103:252-264. [PMID: 29906710 DOI: 10.1016/j.jpsychires.2018.06.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 01/02/2023]
Abstract
Cytokines are signalling molecules, which play an important role in both immune system function and brain development and function, and subsequently mental states and behaviour. Cytokines have been implicated in eating disorders (EDs) due to their role in psychological health, body weight and appetite regulation. This meta-analysis examined cross-sectional and longitudinal studies measuring concentrations of cytokines in individuals with EDs. Using PRISMA guidelines, we systematically reviewed relevant articles in PubMed, Web of Science, and MEDLINE. Random-effects meta-analyses were conducted for interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β, and tumor necrosis factor (TNF)-α, independently, firstly with all EDs combined and then stratified by ED diagnosis. Twenty-five studies were included: serum/plasma cytokine concentrations were measured in people with anorexia nervosa (AN) in 23 studies and bulimia nervosa (BN) in 4 studies. TNF-α and IL-6 were elevated in ED participants compared to healthy controls (HCs). Specifically, this pattern was seen only when comparing AN participants to HCs. Concentrations of these cytokines did not differ between people with BN and HCs. IL-1β and TGF-β did not differ between HCs and any ED group. Therefore, AN seems to be associated with elevated concentrations of TNF-α and IL-6. Considering the role of cytokines in appetite, mood regulation, and anxiety, these pro-inflammatory cytokines could be a potential future drug target to help people with AN, not only with weight gain, but also with various coexisting psychological problems. Future studies should consider confounding factors that affect cytokine concentrations and report ED-relevant clinical characteristics.
Collapse
Affiliation(s)
- Bethan Dalton
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK.
| | - Savani Bartholdy
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Lauren Robinson
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Marco Solmi
- Department of Neurosciences, Psychiatry Unit, University of Padua, Padua, Italy; Cognitive Neuroscience Center, University of Padua, Padua, Italy; University Hospital Padua, Padua, Italy
| | - Mohammad A A Ibrahim
- Department of Immunological Medicine and Allergy, King's Health Partners, King's College Hospital, London SE5 9RS, UK
| | - Gerome Breen
- MRC Social, Genetic, and Developmental Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Ulrike Schmidt
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Hubertus Himmerich
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK; South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
1626
|
López-Domènech S, Bañuls C, Díaz-Morales N, Escribano-López I, Morillas C, Veses S, Orden S, Álvarez Á, Víctor VM, Hernández-Mijares A, Rocha M. Obesity impairs leukocyte-endothelium cell interactions and oxidative stress in humans. Eur J Clin Invest 2018; 48:e12985. [PMID: 29924382 DOI: 10.1111/eci.12985] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/19/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND To evaluate the relationship between leukocyte-endothelial cell interactions and oxidative stress parameters in non-diabetic patients with different grades of obesity. MATERIAL AND METHODS For this cross-sectional study, 225 subjects were recruited from January 1, 2014 to December 31, 2016 and divided into groups according to BMI (<30 kg/m2 , 30-40 kg/m2 and >40 kg/m²). We determined clinical parameters, systemic inflammatory markers, soluble cellular adhesion molecules, leukocyte-endothelium cell interactions-rolling flux, velocity and adhesion-, oxidative stress parameters-total ROS, total superoxide, glutathione-and mitochondrial membrane potential in leukocytes. RESULTS We verified that HOMA-IR and hsCRP increased progressively as obesity developed, whereas A1c, IL6 and TNFα were augmented in the BMI > 40 kg/m² group. The cellular adhesion molecule sP-selectin was increased in patients with obesity, while sICAM, total ROS, total superoxide and mitochondrial membrane potential were selectively higher in the BMI > 40 kg/m² group. Obesity induced a progressive decrease in rolling velocity and an enhancement of rolling flux and leukocyte adhesion. CONCLUSION Our findings reveal that endothelial dysfunction markers are altered in human obesity and are associated with proinflammatory cytokines and increased oxidative stress parameters.
Collapse
Affiliation(s)
- Sandra López-Domènech
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Celia Bañuls
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain.,Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | - Noelia Díaz-Morales
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Irene Escribano-López
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Carlos Morillas
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Silvia Veses
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Samuel Orden
- CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases, University of Valencia, Valencia, Spain
| | - Ángeles Álvarez
- CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases, University of Valencia, Valencia, Spain.,Facultad de Ciencias de la Salud, Universidad Jaume I, Castellón de la Plana, Spain
| | - Víctor M Víctor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain.,Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain.,CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases, University of Valencia, Valencia, Spain.,Department of Physiology, University of Valencia, Valencia, Spain
| | - Antonio Hernández-Mijares
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain.,Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain.,Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain.,CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases, University of Valencia, Valencia, Spain
| |
Collapse
|
1627
|
Ramakrishanan N, Denna T, Devaraj S, Adams-Huet B, Jialal I. Exploratory lipidomics in patients with nascent Metabolic Syndrome. J Diabetes Complications 2018; 32:791-794. [PMID: 29895440 DOI: 10.1016/j.jdiacomp.2018.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Metabolic Syndrome (MetS) is a cardio-metabolic cluster that confers an increased risk of developing both diabetes and atherosclerotic cardiovascular disease (ASCVD). The mechanisms governing the increased ASCVD risk remains to be elucidated. Moreover, lipidomics poses as an exciting new tool that has potential to shed more light on the pathogenesis of MetS. OBJECTIVE The aim of this study was to explore the lipidome in an unbiased fashion in patients with nascent MetS uncomplicated by diabetes and CVD. METHODS Patients with nascent MetS (n = 30) without diabetes or ASCVD and controls (n = 20) who participated in the study had normal hepatic and renal function. Early morning urine samples from patients were collected and frozen at -70° until analysis. Lipidomic analyses were undertaken at the National Institute of Health Western Metabolomics Center. RESULTS Phosphatidylcholine 34:2, PC (34:2) was significantly increased in patients with MetS compared to controls. PC (34:2) had a significant positive correlation with waist circumference, plasma glucose, free fatty acid, and triglyceride levels. It had a significant positive correlation with pro-inflammatory markers such as plasma hs CRP, IL-1b, and IL-8. Additionally, PC (34:2) significantly correlated positively with Leptin and inversely with adiponectin. Levels of various acyl carnitines and PC34:1 were not significantly altered. CONCLUSION We propose that PC (34:2) could emerge as a novel biomarker in MetS that promotes a pro-inflammatory state.
Collapse
Affiliation(s)
| | - Travis Denna
- California North-State University College of Medicine, Elk Grove, CA, USA
| | | | | | - Ishwarlal Jialal
- California North-State University College of Medicine, Elk Grove, CA, USA.
| |
Collapse
|
1628
|
Li G, Tang X, Chen H, Sun W, Yuan F. miR-148a inhibits pro-inflammatory cytokines released by intervertebral disc cells by regulating the p38/MAPK pathway. Exp Ther Med 2018; 16:2665-2669. [PMID: 30186499 DOI: 10.3892/etm.2018.6516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/07/2017] [Indexed: 01/29/2023] Open
Abstract
The present study aimed to verify the expression and investigate the role of microRNA (miR)-148a in intervertebral disc degeneration (IDD) and explore the associated underlying mechanisms. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to investigate levels of miR-148a in the peripheral blood mononuclear cells (PBMCs) of patients with IDD. To investigate the role of miR-148a in IDD, a stable miR-148a-overexpression/underexpression human nucleus pulposus (NP) cell line was generated by transfection with miR-148a mimic/inhibitor. Then, NP cells were treated with LPS (10 µM) to induce inflammation. The mRNA expression level of miR-148a in NP cells was determined by RT-qPCR and the expression levels of p38 and p-p38 were measured using western blotting. The mRNA expression and supernatant level of pro-inflammatory cytokines, tumor necrosis factor (TNF-α), interleukin (IL)-1β and IL-6, was evaluated by RT-qPCR and ELISA, respectively. The results indicated that miR-148a was significantly downregulated in the PBMCs of IDD patients compared with healthy controls. In vitro upregulation of miR-148a in LPS-stimulated NP cells, by transfection with miR-148a mimic, resulted in inhibition of p-p38 expression; however, inhibition of miR-148a led to overexpression of p-p38. Meanwhile, the production of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) was significantly reduced in miR-148a-overexpressing LPS-stimulated NP cells and significantly increased in miR-148a-underexpressing NP cells. In conclusion, miR-148a inhibits pro-inflammatory cytokines released by intervertebral disc cells via regulation of the p38/mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Guangfeng Li
- Graduate School of Xuzhou Medical College, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Xianye Tang
- Department of Spinal Surgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Hongliang Chen
- Department of Spinal Surgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Wei Sun
- Department of Spinal Surgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Feng Yuan
- Department of Spinal Surgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
1629
|
Pereira CA, Carneiro FS, Matsumoto T, Tostes RC. Bonus Effects of Antidiabetic Drugs: Possible Beneficial Effects on Endothelial Dysfunction, Vascular Inflammation and Atherosclerosis. Basic Clin Pharmacol Toxicol 2018; 123:523-538. [PMID: 29890033 DOI: 10.1111/bcpt.13054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/04/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Camila A. Pereira
- Department of Pharmacology; Ribeirao Preto Medical School; University of Sao Paulo; Ribeirao Preto Brazil
| | - Fernando S. Carneiro
- Department of Pharmacology; Ribeirao Preto Medical School; University of Sao Paulo; Ribeirao Preto Brazil
| | - Takayuki Matsumoto
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku Tokyo Japan
| | - Rita C. Tostes
- Department of Pharmacology; Ribeirao Preto Medical School; University of Sao Paulo; Ribeirao Preto Brazil
| |
Collapse
|
1630
|
Mitochondrial bioenergetics, redox state, dynamics and turnover alterations in renal mass reduction models of chronic kidney diseases and their possible implications in the progression of this illness. Pharmacol Res 2018; 135:1-11. [PMID: 30030169 DOI: 10.1016/j.phrs.2018.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 01/13/2023]
Abstract
Nowadays, chronic kidney disease (CKD) is considered a worldwide public health problem. CKD is a term used to describe a set of pathologies that structurally and functionally affect the kidney, it is mostly characterized by the progressive loss of kidney function. Current therapeutic approaches are insufficient to avoid the development of this disease, which highlights the necessity of developing new strategies to reverse or at least delay CKD progression. Kidney is highly dependent on mitochondrial homeostasis and function, consequently, the idea that mitochondrial pathologies could play a pivotal role in the genesis and development of kidney diseases has risen. Although many research groups have recently published studies of mitochondrial function in acute kidney disease models, the existing information about CKD is still limited, especially in renal mass reduction (RMR) models. This paper focuses on reviewing current experimental information about the bioenergetics, dynamics (fission and fusion processes), turnover (mitophagy and biogenesis) and redox mitochondrial alterations in RMR, to discuss and integrate the mitochondrial changes triggered by nephron loss, as well as its relationship with loss of kidney function in CKD, in these models. Understanding these mechanisms would allow us to design new therapies that target these mitochondrial alterations.
Collapse
|
1631
|
Huang YJ, Yuan YJ, Liu YX, Zhang MY, Zhang JG, Wang TC, Zhang LN, Hu YY, Li L, Xian XH, Qi J, Zhang M. Nitric Oxide Participates in the Brain Ischemic Tolerance Induced by Intermittent Hypobaric Hypoxia in the Hippocampal CA1 Subfield in Rats. Neurochem Res 2018; 43:1779-1790. [PMID: 29995175 DOI: 10.1007/s11064-018-2593-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/23/2018] [Accepted: 07/05/2018] [Indexed: 12/30/2022]
Abstract
Previous studies have shown that intermittent hypobaric hypoxia (IH) preconditioning protected neurons survival from brain ischemia. However, the mechanism remains to be elucidated. The present study explored the role of nitric oxide (NO) in the process by measuring the expression of NO synthase (NOS) and NO levels. Male Wistar rats (100) were randomly assigned into four groups: sham group, IH + sham group, ischemia group and IH + ischemia group. Rats for IH preconditioning were exposed to hypobaric hypoxia mimicking 5000 m high-altitude (PB = 404 mmHg, PO2 = 84 mmHg) 6 h/day, once daily for 28 days. Global brain ischemia was established by four-vessel occlusion that has been created by Pulsinelli. Rats were sacrificed at 7th day after the ischemia for neuropathological evaluation by thionin stain. In addition, the expression of neuronal NOS (nNOS), inducible NOS (iNOS), and NO content in the hippocampal CA1 subfield were measured at 2nd day and 7th day after the ischemia. Results revealed that global brain ischemia engendered delayed neuronal death (DND), both nNOS and iNOS expression up-regulated, and NO content increased in the hippocampal CA1 subfield. IH preconditioning reduced neuronal injury induced by the ischemia, and prevented the up-regulation of NOS expression and NO production. In addition, L-NAME + ischemia group was designed to detect whether depressing NO production could alleviate the DND. Pre-administration of L-NAME alleviated DND induced by the ischemia. These results suggest that IH preconditioning plays a protective role by inhibiting the over expression of NOS and NO content after brain ischemia.
Collapse
Affiliation(s)
- Ya-Jie Huang
- Undergraduate of Clinical Medicine, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Yu-Jia Yuan
- Undergraduate of Clinical Medicine, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Yi-Xian Liu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Meng-Yue Zhang
- Undergraduate of Clinical Medicine, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Jing-Ge Zhang
- Department of Pathophysiology, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
| | - Tian-Ci Wang
- Undergraduate of Clinical Medicine, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Li-Nan Zhang
- Department of Pathophysiology, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yu-Yan Hu
- Department of Pathophysiology, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Li Li
- Department of Science and Technology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, People's Republic of China
| | - Xiao-Hui Xian
- Department of Pathophysiology, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Jie Qi
- Department of Pathophysiology, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China. .,Aging and Cognition Neuroscience Laboratory of Hebei Province, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
1632
|
Mota-Martorell N, Pradas I, Jové M, Naudí A, Pamplona R. [De novo biosynthesis of glycerophospholipids and longevity]. Rev Esp Geriatr Gerontol 2018; 54:88-93. [PMID: 30879491 DOI: 10.1016/j.regg.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The glycerophospholipids, synthesised from diacylglycerol (DAG), are one of the main lipid components of cell membranes. The lipid profile is an optimised feature associated with animal longevity. In this context, the hypothesis is presented that the DAG biosynthesis rate, and thus, the glycerophospholipids content, is related to animal longevity. MATERIAL AND METHODS A plasma lipidomic analysis was performed based on the mass spectrometry of 11 mammalian species with a maximum longevity ranging from 3.5 to 120 years. Lipid identification was based on exact mass, retention time, and isotopic distribution. ANOVA test was applied to differentiate the lipids between animal species. The relationship between these lipids and longevity was carried out with a Spearman correlation. Data was analysed using SPSS and MetaboAnalyst. RESULTS Among the 1,061 different lipid molecular species found between species, 47 were defined as DAG. Interestingly, 14 of them showed a negative correlation with mammalian maximum longevity. Multivariate statistics revealed that 14 DAGs were enough to define mammalian species and their maximum longevity. CONCLUSIONS Data suggest that long-lived mammalian species have a lower rate of glycerophospholipids synthesis through the de novo pathway, possibly associated with a lower rate of membrane lipid exchange, which in turn is related to lower energy expenditure.
Collapse
Affiliation(s)
- Natalia Mota-Martorell
- Departament de Medicina Experimental, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (UdL-IRBLleida), Lleida, España
| | - Irene Pradas
- Departament de Medicina Experimental, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (UdL-IRBLleida), Lleida, España
| | - Mariona Jové
- Departament de Medicina Experimental, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (UdL-IRBLleida), Lleida, España
| | - Alba Naudí
- Departament de Medicina Experimental, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (UdL-IRBLleida), Lleida, España
| | - Reinald Pamplona
- Departament de Medicina Experimental, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (UdL-IRBLleida), Lleida, España.
| |
Collapse
|
1633
|
Carvalho C, Moreira PI. Oxidative Stress: A Major Player in Cerebrovascular Alterations Associated to Neurodegenerative Events. Front Physiol 2018; 9:806. [PMID: 30018565 PMCID: PMC6037979 DOI: 10.3389/fphys.2018.00806] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022] Open
Abstract
The brain is one of the most exquisite organs in the body with high metabolic demands, and requires a tight regulation of the surrounding environment. This tight control is exerted by the neurovascular unit (NVU) comprising different cell types, where endothelial cells play the commander-in-chief role. Thus, it is assumable that even slight perturbations in NVU might affect, in some cases irreversibly, brain homeostasis and health. In this line, recent findings support the two-hit vascular hypothesis for neurodegenerative conditions, where vascular dysfunction underlies the development of neurodegenerative diseases, such as Alzheimer’s disease (AD). Knowing that endothelial cells are rich in mitochondria and nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, two major reactive oxygen species (ROS) sources, this review aims to gather information on how oxidative stress is in the front line of vascular alterations observed in brain aging and neurodegenerative conditions, particularly AD. Also, a brief discussion about the therapeutic strategies aimed to protect against cerebrovascular diseases is included.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
1634
|
Bajuk Studen K, Pfeifer M. Cardiometabolic risk in polycystic ovary syndrome. Endocr Connect 2018; 7:R238-R251. [PMID: 29844207 PMCID: PMC6026886 DOI: 10.1530/ec-18-0129] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common disorder in women of reproductive age. Besides hyperandrogenism, oligomenorrhea and fertility issues, it is associated with a high prevalence of metabolic disorders and cardiovascular risk factors. Several genetic polymorphisms have been identified for possible associations with cardiometabolic derangements in PCOS. Different PCOS phenotypes differ significantly in their cardiometabolic risk, which worsens with severity of androgen excess. Due to methodological difficulties, longer time-scale data about cardiovascular morbidity and mortality in PCOS and about possible beneficial effects of different treatment interventions is missing leaving many issues regarding cardiovascular risk unresolved.
Collapse
Affiliation(s)
- Katica Bajuk Studen
- Nuclear Medicine DepartmentUniversity Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Marija Pfeifer
- Faculty of MedicineUniversity of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
1635
|
FOXO1 inhibition potentiates endothelial angiogenic functions in diabetes via suppression of ROCK1/Drp1-mediated mitochondrial fission. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2481-2494. [DOI: 10.1016/j.bbadis.2018.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/30/2018] [Accepted: 04/08/2018] [Indexed: 12/22/2022]
|
1636
|
Pandey AK, Gupta A, Tiwari M, Prasad S, Pandey AN, Yadav PK, Sharma A, Sahu K, Asrafuzzaman S, Vengayil DT, Shrivastav TG, Chaube SK. Impact of stress on female reproductive health disorders: Possible beneficial effects of shatavari (Asparagus racemosus). Biomed Pharmacother 2018; 103:46-49. [DOI: 10.1016/j.biopha.2018.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/28/2022] Open
|
1637
|
A ketogenic amino acid rich diet benefits mitochondrial homeostasis by altering the AKT/4EBP1 and autophagy signaling pathways in the gastrocnemius and soleus. Biochim Biophys Acta Gen Subj 2018; 1862:1547-1555. [DOI: 10.1016/j.bbagen.2018.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/16/2018] [Accepted: 03/09/2018] [Indexed: 12/14/2022]
|
1638
|
Lorente L, Martín MM, Pérez-Cejas A, Abreu-González P, López RO, Ferreres J, Solé-Violán J, Labarta L, Díaz C, Palmero S, Jiménez A. Serum total antioxidant capacity during the first week of sepsis and mortality. J Crit Care 2018; 47:139-144. [PMID: 29981999 DOI: 10.1016/j.jcrc.2018.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/03/2018] [Accepted: 06/29/2018] [Indexed: 01/22/2023]
Abstract
PURPOSE Higher circulating total antioxidant capacity (TAC) concentrations have been found in non-survivor than in survivor septic patients at moment of sepsis diagnosis. The objectives of this study were to determine whether serum TAC levels during the first week of sepsis are associated with lipid peroxidation, sepsis severity, and sepsis mortality, and whether could be used as a prognostic biomarker. METHODS This prospective and observational study with 319 septic patients admitted to Intensive Care Units was carried out in 8 Spanish hospitals. We determined serum concentrations of malondialdehyde (to estimate lipid peroxidation) and TAC at days 1, 4 and 8 of sepsis. Mortality at 30 days was the end-point study. RESULTS We found that serum TAC concentrations at days 1, 4 and 8 could predict 30-day mortality according to ROC curve analyses (p < 0.001), that were associated with 30-day mortality according to regression analyses (p < 0.001), and that were associated with serum levels of malondialdehyde and SOFA score. CONCLUSIONS The new findings of our study were that serum TAC levels during the first week of sepsis are associated with lipid peroxidation, sepsis severity, and sepsis mortality, and that could be used as a prognostic biomarker.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna 38320, Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, Crta Rosario s/n, Santa Cruz Tenerife 38010, Spain
| | - Antonia Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n, La Laguna 38320, Tenerife, Spain
| | - Pedro Abreu-González
- Department of Physiology, Faculty of Medicine, University of the La Laguna, Ofra, s/n, La Laguna 38320, Santa Cruz de Tenerife, Spain.
| | - Raquel Ortiz López
- Intensive Care Unit, Hospital General de La Palma, Buenavista de Arriba s/n, Breña Alta 38713, La Palma, Spain
| | - José Ferreres
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda, Blasco Ibáñez n°17-19, Valencia 46004, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, Las Palmas de Gran Canaria 35010, Spain.
| | - Lorenzo Labarta
- Intensive Care Unit, Hospital San Jorge de Huesca, Avenida Martínez de Velasco n°36, Huesca 22004, Spain.
| | - César Díaz
- Intensive Care Unit, Hospital Insular, Plaza Dr. Pasteur s/n, Las Palmas de Gran Canaria 35016, Spain
| | - Salomé Palmero
- Intensive Care Unit, Hospital Quirón Tenerife, Poeta Rodriguez Herrera n°1, Santa Cruz de Tenerife 38006, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna 38320, Tenerife, Spain
| |
Collapse
|
1639
|
Weighted Gene Co-Expression Network Analysis Reveals Dysregulation of Mitochondrial Oxidative Phosphorylation in Eating Disorders. Genes (Basel) 2018; 9:genes9070325. [PMID: 29958387 PMCID: PMC6070803 DOI: 10.3390/genes9070325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/16/2018] [Accepted: 06/25/2018] [Indexed: 01/22/2023] Open
Abstract
The underlying mechanisms of eating disorders (EDs) are very complicated and still poorly understood. The pathogenesis of EDs may involve the interplay of multiple genes. To investigate the dysregulated gene pathways in EDs we analyzed gene expression profiling in dorsolateral prefrontal cortex (DLPFC) tissues from 15 EDs cases, including 3 with anorexia nervosa (AN), 7 with bulimia nervosa (BN), 2 AN-BN cases, 3 cases of EDs not otherwise specified, and 102 controls. We further used a weighted gene co-expression network analysis to construct a gene co-expression network and to detect functional modules of highly correlated genes. The functional enrichment analysis of genes in co-expression modules indicated that an altered mitochondrial oxidative phosphorylation process may be involved in the pathogenesis of EDs.
Collapse
|
1640
|
Metallic Nanoantioxidants as Potential Therapeutics for Type 2 Diabetes: A Hypothetical Background and Translational Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3407375. [PMID: 30050652 PMCID: PMC6040303 DOI: 10.1155/2018/3407375] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/04/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023]
Abstract
Hyperglycemia-induced overproduction of reactive oxygen species (ROS) is an important contributor to type 2 diabetes (T2D) pathogenesis. The conventional antioxidant therapy, however, proved to be ineffective for its treatment. This may likely be due to limited absorption profiles and low bioavailability of orally administered antioxidants. Therefore, novel antioxidant agents that may be delivered to specific target organs are actively developed now. Metallic nanoparticles (NPs), nanosized materials with a dimension of 1–100 nm, appear very promising for the treatment of T2D due to their tuned physicochemical properties and ability to modulate the level of oxidative stress. An excessive generation of ROS is considered to be the most common negative outcome related to the application of NPs. Several nanomaterials, however, were shown to exhibit enzyme-like antioxidant properties in animal models. Such NPs are commonly referred to as “nanoantioxidants.” Since NPs can provide specifically targeted or localized therapy, their use is a promising therapeutic option in addition to conventional therapy for T2D. NP-based therapies should certainly be used with caution given their potential toxicity and risk of adverse health outcomes. However, despite these challenges, NP-based therapeutic approaches have a great clinical potential and further translational studies are needed to confirm their safety and efficacy.
Collapse
|
1641
|
Effects of inositol on glucose homeostasis: Systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2018; 38:1146-1152. [PMID: 29980312 DOI: 10.1016/j.clnu.2018.06.957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The effect of inositol on glucose homeostasis is not well characterized. The aim of the present meta-analysis is to synthesize the effects of inositol on glucose homeostasis in different clinical conditions. METHODS We performed a systematic review (CRD42017057927) following PRISMA guidelines. Web of Science and Medline were searched for randomized controlled trials (RCTs) that addressed supplementation with compounds of the inositol family in humans and assessed their effects on glucose homeostasis. RESULTS We screened 476 abstracts and included 20 RCTs with a total of 1239 subjects. Meta-analysis showed in the treatment arm a reduction in fasting plasma glucose (Mean difference (MD) -0.44 mmol/l, 95% CI -0.65, -0.23), 2 h PG after 75 g OGTT (MD -0.69 mmol/l, 95% CI -1.14, -0.23), abnormal glucose tolerance (Relative risk (RR) 0.28, 95% CI 0.12, 0.66), fasting insulin (MD -38.49 pmol/l, 95% CI -52.63, -24.36), and HOMA-IR (MD -1.96 mmol × mUI/l, 95% CI -2.62, -1.30). No differences were observed in BMI, HbA1c and % of patients requiring insulin treatment. Sensitivity analysis did not change treatment estimates. Mention to adverse events was only present in 13 articles with no sign of seriousness. CONCLUSIONS Inositol supplementation decreases blood glucose through an improvement in insulin sensitivity that is independent of weight. Assessment of adverse effects is scarce among published trials and should be fully addressed before considering inositol as a therapeutic agent for glucose-related outcomes. The characterization of the subjects achieving benefit from the intervention and the formulations to be used should also be known.
Collapse
|
1642
|
Korek E, Gibas-Dorna M, Chęcińska-Maciejewska Z, Krauss H, Łagiedo-Żelazowska M, Kołodziejczak B, Bogdański P. Serum RBP4 positively correlates with triglyceride level but not with BMI, fat mass and insulin resistance in healthy obese and non-obese individuals. Biomarkers 2018; 23:683-688. [DOI: 10.1080/1354750x.2018.1479770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Emilia Korek
- Department of Physiology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Hanna Krauss
- Department of Physiology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Barbara Kołodziejczak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Paweł Bogdański
- Department of Education and Obesity Treatment and Metabolic Disorders, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
1643
|
Zhou J, Wang H, Shen R, Fang J, Yang Y, Dai W, Zhu Y, Zhou M. Mitochondrial-targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2-ARE pathway. Am J Transl Res 2018; 10:1887-1899. [PMID: 30018728 PMCID: PMC6038061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Mitoquinone (MitoQ) is a powerful mitochondrial-targeted antioxidant whose neuroprotective effects have been shown in a variety of animal models of neurological diseases. However, its roles in traumatic brain injury (TBI) remain unexplored. The primary objective of this study was to investigate the neuroprotection afforded by MitoQ in a mouse model of TBI, and the involvement of the Nrf2-ARE signaling pathway in the putative neuroprotective mechanism. Mice were randomly divided into four groups: sham group, TBI group, TBI + vehicle group, and TBI + MitoQ group. MitoQ (4 mg/kg, administered intraperitoneally) or an equal volume of vehicle was given at 30 min after TBI. After 24 h, brain samples were harvested for analysis. The results demonstrated that treatment with MitoQ significantly improved neurological deficits, alleviated brain edema and inhibited cortical neuronal apoptosis. Furthermore, MitoQ administration increased the activity of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GPx), whereas it decreased the malondialdehyde (MDA) content. In addition, MitoQ treatment reduced Bax protein translocation to mitochondria and cytochrome c release into the cytosol. Moreover, MitoQ greatly accelerated the Nrf2 nuclear translocation and subsequently upregulated the expression of Nrf2 downstream proteins, including heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (Nqo1). In conclusion, the results in the study demonstrate that MitoQ exerts neuroprotective effects in the mouse model of TBI, possibly by activating the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing Medical UniversityNanjing 210002, Jiangsu Province, China
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical CollegeHaikou 570102, Hainan Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing Medical UniversityNanjing 210002, Jiangsu Province, China
| | - Ruiming Shen
- Department of Rheumatology, The First Affiliated Hospital of Hainan Medical CollegeHaikou 570102, Hainan Province, China
| | - Jiang Fang
- Department of Neurosurgery, Jinling Hospital, Medical College of Southeast UniversityNanjing 210002, Jiangsu Province, China
| | - Youqin Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453100, Henan Province, China
| | - Wei Dai
- Department of Neurosurgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing Medical UniversityNanjing 210002, Jiangsu Province, China
| | - Yihao Zhu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, Jiangsu Province, China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, Jiangsu Province, China
| |
Collapse
|
1644
|
Neuropeptide B and Vaspin as New Biomarkers in Anorexia Nervosa. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9727509. [PMID: 29984256 PMCID: PMC6015710 DOI: 10.1155/2018/9727509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/17/2018] [Indexed: 12/28/2022]
Abstract
Introduction The aim of the study was to assess the correlation between the levels of neuropeptide B (NPB), neuropeptide W (NPW), vaspin (VAS), and the total antioxidant status (TAS) in the blood, as well as nutritional status of patients with anorexia nervosa (AN). Materials and Methods The study covered a cohort of 76 female teenagers, including 46 females with extreme AN and 30 healthy peers (CONTR) aged 12-17. Results AN persons were characterized by higher (in comparison to CONTR) NPB and VAS concentrations and lower values of TAS levels, body weight, and anthropometric values. Positive correlations between NPB and VAS levels were noted in the AN group (R=0.33; p<0.001) as well as between concentrations of NPW and VAS in the same group (R=0.49; p<0.001). Furthermore, positive correlations existed between NPB and NPW concentrations across the whole studied population (AN+CONTR; R=0.75; p<0.000001), AN (R=0.73; p<0.000001) and CONTR (R=0.90; p<0.0005). Conclusions In detailed diagnostics of AN it is worth considering testing NPB and VAS levels.
Collapse
|
1645
|
Diaz-Morales N, Iannantuoni F, Escribano-Lopez I, Bañuls C, Rovira-Llopis S, Sola E, Rocha M, Hernandez-Mijares A, Victor VM. Does Metformin Modulate Endoplasmic Reticulum Stress and Autophagy in Type 2 Diabetic Peripheral Blood Mononuclear Cells? Antioxid Redox Signal 2018; 28:1562-1569. [PMID: 29061071 DOI: 10.1089/ars.2017.7409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since type 2 diabetes (T2D) is associated with oxidative stress and metformin has been shown to exert a protective role against the said stress, we wondered whether metformin treatment might also modulate endoplasmic reticulum (ER) stress and autophagy in leukocytes of T2D patients. We studied 53 T2D patients (37 of whom had been treated with metformin 1700 mg for at least 1 year) and 30 healthy volunteers. Leukocytes from both groups of T2D patients exhibited increased protein levels of 78-kDa glucose-regulated protein (GRP78) with respect to controls, whereas activating transcription factor 6 (ATF6) was enhanced specifically in nonmetformin-treated T2D, and (s-xbp1) and phosphorylated eukaryotic initiation factor 2α (p-eIF2α) increased only in the metformin-treated group. The autophagy markers beclin1 (becn1), autophagy-related 7 (atg7), and microtubule-associated protein 1A/1B-light chain 3II/I (LC3 II/I) increased in nonmetformin-treated T2D, and metformin treatment reduced mitochondrial superoxide and increased glutathione (GSH) levels. Our observations raise the question of whether metformin treatment could reduce oxidative stress and act as an ER stress modulator in T2D patients by promoting an adaptive unfolded protein response (s-xbp1 and p-eIF2α) in their leukocytes; this was in contrast with nonmetformin-treated patients whose response could be driven by the ATF6-dependent pro-apoptotic pathway. Further, our findings lead to us to form the hypothesis of an autophagy-dependent clearance of misfolded proteins in nonmetformin-treated T2D patients that could be repressed by metformin treatment.-Antioxid. Redox Signal. 28, 1562-1569.
Collapse
Affiliation(s)
- Noelia Diaz-Morales
- 1 Service of Endocrinology, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Francesca Iannantuoni
- 1 Service of Endocrinology, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Irene Escribano-Lopez
- 1 Service of Endocrinology, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Celia Bañuls
- 1 Service of Endocrinology, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Susana Rovira-Llopis
- 1 Service of Endocrinology, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Eva Sola
- 1 Service of Endocrinology, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Milagros Rocha
- 1 Service of Endocrinology, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- 2 CIBERehd-Department of Pharmacology and Physiology, University of Valencia , Valencia, Spain
| | - Antonio Hernandez-Mijares
- 1 Service of Endocrinology, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- 3 Institute of Health Research INCLIVA, University of Valencia , Valencia, Spain
- 4 Department of Medicine, University of Valencia , Valencia, Spain
| | - Victor M Victor
- 1 Service of Endocrinology, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- 2 CIBERehd-Department of Pharmacology and Physiology, University of Valencia , Valencia, Spain
- 5 Department of Physiology, University of Valencia , Valencia, Spain
| |
Collapse
|
1646
|
RAGE-dependent mitochondria pathway: a novel target of silibinin against apoptosis of osteoblastic cells induced by advanced glycation end products. Cell Death Dis 2018; 9:674. [PMID: 29867140 PMCID: PMC5986782 DOI: 10.1038/s41419-018-0718-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/17/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
Advanced glycation end products (AGEs) can stimulate osteoblast apoptosis and have a critical role in the pathophysiology of diabetic osteoporosis. Mitochondrial abnormalities are closely related to osteoblast dysfunction. However, it remains unclear whether mitochondrial abnormalities are involved in AGE-induced osteoblastic cell apoptosis. Silibinin, a major flavonolignan compound of silimarin, has strong antioxidant and mitochondria-protective properties. In the present study, we explored the possible mitochondrial mechanisms underlying AGE-induced apoptosis of osteoblastic cells and the effect of silibinin on osteoblastic cell apoptosis. We demonstrated that mitochondrial abnormalities largely contributed to AGE-induced apoptosis of osteoblastic cells, as evidenced by enhanced mitochondrial oxidative stress, conspicuous reduction in mitochondrial membrane potential and adenosine triphosphate production, abnormal mitochondrial morphology, and altered mitochondrial dynamics. These AGE-induced mitochondrial abnormalities were mainly mediated by the receptor of AGEs (RAGE). In addition, we found that silibinin directly downregulated the expression of RAGE and modulated RAGE-mediated mitochondrial pathways, thereby preventing AGE-induced apoptosis of osteoblastic cells. This study not only provides a new insight into the mitochondrial mechanisms underlying AGE-induced osteoblastic cell apoptosis, but also lays a foundation for the clinical use of silibinin for the prevention or treatment of diabetic osteoporosis.
Collapse
|
1647
|
Do inositol supplements enhance phosphatidylinositol supply and thus support endoplasmic reticulum function? Br J Nutr 2018; 120:301-316. [PMID: 29859544 DOI: 10.1017/s0007114518000946] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review attempts to explain why consuming extra myoinositol (Ins), an essential component of membrane phospholipids, is often beneficial for patients with conditions characterised by insulin resistance, non-alcoholic fatty liver disease and endoplasmic reticulum (ER) stress. For decades we assumed that most human diets provide an adequate Ins supply, but newer evidence suggests that increasing Ins intake ameliorates several disorders, including polycystic ovary syndrome, gestational diabetes, metabolic syndrome, poor sperm development and retinopathy of prematurity. Proposed explanations often suggest functional enhancement of minor facets of Ins Biology such as insulin signalling through putative inositol-containing 'mediators', but offer no explanation for this selectivity. It is more likely that eating extra Ins corrects a deficiency of an abundant Ins-containing cell constituent, probably phosphatidylinositol (PtdIns). Much of a cell's PtdIns is in ER membranes, and an increase in ER membrane synthesis, enhancing the ER's functional capacity, is often an important part of cell responses to ER stress. This review: (a) reinterprets historical information on Ins deficiency as describing a set of events involving a failure of cells adequately to adapt to ER stress; (b) proposes that in the conditions that respond to dietary Ins there is an overstretching of Ins reserves that limits the stressed ER's ability to make the 'extra' PtdIns needed for ER membrane expansion; and (c) suggests that eating Ins supplements increases the Ins supply to Ins-deficient and ER-stressed cells, allowing them to make more PtdIns and to expand the ER membrane system and sustain ER functions.
Collapse
|
1648
|
Daghestani MH. Evaluation of biochemical, endocrine, and metabolic biomarkers for the early diagnosis of polycystic ovary syndrome among non-obese Saudi women. Int J Gynaecol Obstet 2018; 142:162-169. [DOI: 10.1002/ijgo.12527] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/22/2018] [Accepted: 05/08/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Maha H. Daghestani
- Zoology Department; Science College; King Saud University; Riyadh Saudi Arabia
- Central Laboratory; Center for Female Scientific and Medical Colleges; King Saud University; Riyadh Saudi Arabia
| |
Collapse
|
1649
|
Nagar H, Piao S, Kim CS. Role of Mitochondrial Oxidative Stress in Sepsis. Acute Crit Care 2018; 33:65-72. [PMID: 31723865 PMCID: PMC6849061 DOI: 10.4266/acc.2018.00157] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
Mitochondria are considered the power house of the cell and are an essential part of the cellular infrastructure, serving as the primary site for adenosine triphosphate production via oxidative phosphorylation. These organelles also release reactive oxygen species (ROS), which are normal byproducts of metabolism at physiological levels; however, overproduction of ROS under pathophysiological conditions is considered part of a disease process, as in sepsis. The inflammatory response inherent in sepsis initiates changes in normal mitochondrial functions that may result in organ damage. There is a complex system of interacting antioxidant defenses that normally function to combat oxidative stress and prevent damage to the mitochondria. It is widely accepted that oxidative stress-mediated injury plays an important role in the development of organ failure; however, conclusive evidence of any beneficial effect of systemic antioxidant supplementation in patients with sepsis and organ dysfunction is lacking. Nevertheless, it has been suggested that antioxidant therapy delivered specifically to the mitochondria may be useful.
Collapse
Affiliation(s)
- Harsha Nagar
- Department of Physiology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Shuyu Piao
- Department of Physiology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Cuk-Seong Kim
- Department of Physiology, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
1650
|
Cuperfain AB, Zhang ZL, Kennedy JL, Gonçalves VF. The Complex Interaction of Mitochondrial Genetics and Mitochondrial Pathways in Psychiatric Disease. MOLECULAR NEUROPSYCHIATRY 2018; 4:52-69. [PMID: 29998118 DOI: 10.1159/000488031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/27/2018] [Indexed: 12/18/2022]
Abstract
While accounting for only 2% of the body's weight, the brain utilizes up to 20% of the body's total energy. Not surprisingly, metabolic dysfunction and energy supply-and-demand mismatch have been implicated in a variety of neurological and psychiatric disorders. Mitochondria are responsible for providing the brain with most of its energetic demands, and the brain uses glucose as its exclusive energy source. Exploring the role of mitochondrial dysfunction in the etiology of psychiatric disease is a promising avenue to investigate further. Genetic analysis of mitochondrial activity is a cornerstone in understanding disease pathogenesis related to metabolic dysfunction. In concert with neuroimaging and pathological study, genetics provides an important bridge between biochemical findings and clinical correlates in psychiatric disease. Mitochondrial genetics has several unique aspects to its analysis, and corresponding special considerations. Here, we review the components of mitochondrial genetic analysis - nuclear DNA, mitochon-drial DNA, mitochondrial pathways, pseudogenes, nuclear-mitochondrial mismatch, and microRNAs - that could contribute to an observable clinical phenotype. Throughout, we highlight psychiatric diseases that can arise due to dysfunction in these processes, with a focus on schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Ari B Cuperfain
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Neuroscience Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Zhi Lun Zhang
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Neuroscience Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - James L Kennedy
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Neuroscience Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Vanessa F Gonçalves
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Neuroscience Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|