1651
|
Abstract
Ligands and receptors in the tumour necrosis factor (TNF) and tumour necrosis factor receptor (TNFR) superfamilies have been the subject of extensive investigation over the past 10-15 years. For certain TNFR family members, such as Fas and CD40, some of the consequences of receptor ligation were predicted before the identification and cloning of their corresponding ligands through in vitro functional studies using agonistic receptor-specific antibodies. For other members of the TNFR family, including CD30, cross-linking the receptor with specific antibodies failed to yield many clues about the functional significance of the relevant ligand-receptor interactions. In many instances, the subsequent availability of TNF family ligands in the form of recombinant protein facilitated the determination of biological consequences of interactions with their relevant receptor in both in vitro and in vivo settings. In the case of CD30 ligand (CD30L; CD153), definition of its biological role remained frustratingly elusive. Early functional studies using CD30L+ cells or agonistic CD30-specific antibodies logically focused attention on cell types that had been shown to express CD30, namely certain lymphoid malignancies and subsets of activated T cells. However, it was not immediately clear how the reported activities from these in vitro studies relate to the biological activity of CD30L in the more complex whole animal setting. Recently, results from in vivo models involving CD30 or CD30L gene disruption, CD30L overexpression, or pharmacological blockade of CD30/CD30L interactions have begun to provide clues about the role played by CD30L in immunological processes. In this review we consider the reported biology of CD30L and focus on results from several recent studies that point to an important role for CD30/CD30L interactions in humoral immune responses.
Collapse
Affiliation(s)
- Mary K Kennedy
- Inflammation Research, Amgen Inc., Seattle, WA 98119-3105, USA
| | | | | |
Collapse
|
1652
|
|
1653
|
Mihailova M, Fiedler M, Boos M, Petrovskis I, Sominskaya I, Roggendorf M, Viazov S, Pumpens P. Preparation of hepatitis C virus structural and non-structural protein fragments and studies of their immunogenicity. Protein Expr Purif 2006; 50:43-8. [PMID: 16889980 DOI: 10.1016/j.pep.2006.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/15/2006] [Accepted: 06/15/2006] [Indexed: 02/05/2023]
Abstract
Plasmids pQE-60 and pQE-30 containing 6 x His-tag sequence were used for expression of fragments of HCV structural and non-structural proteins in Escherichia coli (E. coli). The following fragments were used: core (1-98 aa), NS3 (202-482 aa), and tetramer of hypervariable region 1 (HVR1) of E2 protein. The constructed plasmids directed high levels of expression of HCV proteins in E. coli JM109. After purification by the metal-affinity chromatography on nickel-nitrilotriacetic acid (Ni-NTA) agarose, the His-tagged HCV proteins were used for immunization of BALB/c mice. All three proteins were able to induce high levels of specific antibodies and, in the case of the NS3 and HVR1 tetramer, also to mount vigorous cell-proliferating responses. High immunogenicity of the tested fragments of HCV proteins shows them as good candidates for inclusion into the future HCV vaccine preparations.
Collapse
Affiliation(s)
- Marija Mihailova
- Institute of Virology, Essen University Hospital, Hufelandstr. 55, 45122 Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
1654
|
Bharat A, Fields RC, Mohanakumar T. Regulatory T cell-mediated transplantation tolerance. Immunol Res 2006; 33:195-212. [PMID: 16461998 DOI: 10.1385/ir:33:3:195] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The existence of naturally occurring regulatory T cells in normal hosts and their pivotal role in maintaining both auto- and allo-tolerance have direct implications on the therapy of autoimmune disorders and for achieving immunosuppression-free allotransplantation. Among the various forms of regulatory T cells described, CD4(+)CD25(+) T cells have emerged as one of the most potent tolerogenic subsets. In this review, we discuss the molecular basis of development and function of these regulatory T cells and their potential role in the context of chronic lung allograft rejection.
Collapse
Affiliation(s)
- Ankit Bharat
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
1655
|
Abstract
Dendritic cells (DCs) play a crucial role during the initiation of immune responses against non-self antigens. Following organ transplantation, activated donor- and recipient-derived DCs participate actively in graft rejection by sensitising recipient T cells via the direct or indirect pathways of allorecognition, respectively. There is increasing evidence that immature/semi-mature DCs induce antigen-specific unresponsiveness or tolerance to self antigens, both in central lymphoid tissue and in the periphery, through a variety of mechanisms (deletion, anergy and regulation). In the past few years, DC-based therapy of experimental allograft rejection has focused on ex vivo biological, pharmacological and genetic engineering of DCs to mimic/enhance their natural tolerogenicity. Successful outcomes in rodent models have built the case that DC-based therapy may provide a novel approach to transplant tolerance. Ongoing research into the role that DCs play in the induction of tolerance should allow for its clinical application in the near future.
Collapse
Affiliation(s)
- Mahyar Nouri-Shirazi
- Texas A&M University System Health Science Center, Baylor College of Dentistry, Department of Biomedical Sciences, Immunology Laboratory, 3302 Gaston Avenue, Dallas, TX 75246, USA.
| | | |
Collapse
|
1656
|
Aifantis I, Bassing CH, Garbe AI, Sawai K, Alt FW, von Boehmer H. The E delta enhancer controls the generation of CD4- CD8- alphabetaTCR-expressing T cells that can give rise to different lineages of alphabeta T cells. J Exp Med 2006; 203:1543-50. [PMID: 16754716 PMCID: PMC2118313 DOI: 10.1084/jem.20051711] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 05/05/2006] [Indexed: 11/12/2022] Open
Abstract
It is well established that the pre-T cell receptor for antigen (TCR) is responsible for efficient expansion and differentiation of thymocytes with productive TCRbeta rearrangements. However, Ptcra- as well as Tcra-targeting experiments have suggested that the early expression of Tcra in CD4- CD8- cells can partially rescue the development of alphabeta CD4+ CD8+ cells in Ptcra-deficient mice. In this study, we show that the TCR E delta but not E alpha enhancer function is required for the cell surface expression of alphabetaTCR on immature CD4- CD8- T cell precursors, which play a crucial role in promoting alphabeta T cell development in the absence of pre-TCR. Thus, alphabetaTCR expression by CD4- CD8- thymocytes not only represents a transgenic artifact but occurs under physiological conditions.
Collapse
MESH Headings
- Animals
- Artifacts
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Enhancer Elements, Genetic
- Gene Rearrangement, T-Lymphocyte/immunology
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Organ Culture Techniques
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes/immunology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Iannis Aifantis
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
1657
|
Nissen RM, Amsterdam A, Hopkins N. A zebrafish screen for craniofacial mutants identifies wdr68 as a highly conserved gene required for endothelin-1 expression. BMC DEVELOPMENTAL BIOLOGY 2006; 6:28. [PMID: 16759393 PMCID: PMC1523201 DOI: 10.1186/1471-213x-6-28] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 06/07/2006] [Indexed: 12/16/2022]
Abstract
BACKGROUND Craniofacial birth defects result from defects in cranial neural crest (NC) patterning and morphogenesis. The vertebrate craniofacial skeleton is derived from cranial NC cells and the patterning of these cells occurs within the pharyngeal arches. Substantial efforts have led to the identification of several genes required for craniofacial skeletal development such as the endothelin-1 (edn1) signaling pathway that is required for lower jaw formation. However, many essential genes required for craniofacial development remain to be identified. RESULTS Through screening a collection of insertional zebrafish mutants containing approximately 25% of the genes essential for embryonic development, we present the identification of 15 essential genes that are required for craniofacial development. We identified 3 genes required for hyomandibular development. We also identified zebrafish models for Campomelic Dysplasia and Ehlers-Danlos syndrome. To further demonstrate the utility of this method, we include a characterization of the wdr68 gene. We show that wdr68 acts upstream of the edn1 pathway and is also required for formation of the upper jaw equivalent, the palatoquadrate. We also present evidence that the level of wdr68 activity required for edn1 pathway function differs between the 1st and 2nd arches. Wdr68 interacts with two minibrain-related kinases, Dyrk1a and Dyrk1b, required for embryonic growth and myotube differentiation, respectively. We show that a GFP-Wdr68 fusion protein localizes to the nucleus with Dyrk1a in contrast to an engineered loss of function mutation Wdr68-T284F that no longer accumulated in the cell nucleus and failed to rescue wdr68 mutant animals. Wdr68 homologs appear to exist in all eukaryotic genomes. Notably, we found that the Drosophila wdr68 homolog CG14614 could substitute for the vertebrate wdr68 gene even though insects lack the NC cell lineage. CONCLUSION This work represents a systematic identification of approximately 25% of the essential genes required for craniofacial development. The identification of zebrafish models for two human disease syndromes indicates that homologs to the other genes are likely to also be relevant for human craniofacial development. The initial characterization of wdr68 suggests an important role in craniofacial development for the highly conserved Wdr68-Dyrk1 protein complexes.
Collapse
Affiliation(s)
- Robert M Nissen
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Adam Amsterdam
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Nancy Hopkins
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
1658
|
Lee BPL, Chen W, Shi H, Der SD, Förster R, Zhang L. CXCR5/CXCL13 interaction is important for double-negative regulatory T cell homing to cardiac allografts. THE JOURNAL OF IMMUNOLOGY 2006; 176:5276-83. [PMID: 16621993 DOI: 10.4049/jimmunol.176.9.5276] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Accumulating evidence indicates that regulatory T (Treg) cells control development of various diseases both systemically and locally. However, molecular mechanisms involved in Treg cell homing remain elusive. We have shown previously that alphabetaTCR(+)CD3(+)CD4(-)CD8(-) double-negative (DN) Treg cells selectively accumulate in tolerant allografts to maintain localized immune regulation. However, the molecular mechanism leading to the accumulation of DN Treg cells in tolerant grafts was not known. Our cDNA microarray analysis revealed significant up-regulation of chemokine receptor CXCR5 mRNA in DN Treg clones compared with nonregulatory clones. In this study, we examined the importance of CXCR5 in mediating DN Treg migration. Compared with CD4 and CD8 T cells, both primary DN Treg cells and clones constitutively express high levels of CXCR5 protein, enabling them to migrate toward increasing CXCL13 gradients in vitro. After infusion into recipient mice, CXCR5(+) DN Treg clones, but not their CXCR5(-) mutants, preferentially accumulated in cardiac allografts and could prevent graft rejection. Furthermore, we found that allogeneic cardiac allografts express high levels of CXCL13 mRNA compared with either recipient native hearts or nontransplanted donor hearts. Ab neutralization of CXCL13 abrogated DN Treg cell migration in vitro and prevented in vivo homing of DN Treg clones into allografts. These data demonstrate that DN Treg cells preferentially express CXCR5, and interaction of this chemokine receptor with its ligand CXCL13 plays an important role in DN Treg cell migration both in vitro and in vivo.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Chemokine CXCL13
- Chemokines, CXC/immunology
- Chemokines, CXC/metabolism
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/immunology
- Graft Survival/immunology
- Heart Transplantation/immunology
- Mice
- Mutation/genetics
- Protein Binding
- Receptors, CXCR5
- Receptors, Chemokine
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Transplantation, Homologous/immunology
Collapse
Affiliation(s)
- Boris P-L Lee
- Toronto Medical Discovery Towers, University Health Network, 101 College Street, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
1659
|
Wilczyński JR. Immunological analogy between allograft rejection, recurrent abortion and pre-eclampsia - the same basic mechanism? Hum Immunol 2006; 67:492-511. [PMID: 16829304 DOI: 10.1016/j.humimm.2006.04.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Indexed: 12/30/2022]
Abstract
There are still controversies concerning the role of immunological mechanisms engaged both in recurrent abortions (RA) and pre-eclampsia (PE). According to some opinions, recurrent miscarriage is comparable to organ-specific autoimmune disease. Analysis of immune reactions shows that graft rejection shares many similar mechanisms with RA and PE. This fact allows us to conclude that rejection of transplanted alloantigenic organs and pregnancy loss have probably the same evolutionary origin. Subsets and functions of immunocompetent cells (T CD4, suppressor gammadeltaT, cytotoxic T CD8, Treg, Tr1, uterine NK cells), over-activation of innate immunity (activation of NK cytotoxic cells, macrophages, neutrophils and complement), changes of Th1/Th2 cytokine balance (IL-2, IL-12, IL-15, IL-18, IFNgamma, TNFalpha vs. IL-4, IL-10, TGFbeta), importance of HLA-G molecule, CD200/CD200R interaction, over-expression of adhesion molecules, fgl2 prothrombinase activation and stimulation of IDO and HO expression, all suggest that RA and PE are syndromes of fetal allograft rejection, and not organ-specific autoimmune diseases. According to that supposition, an analogy might exist between acute graft rejection and recurrent abortion, and between chronic graft rejection and pre-eclampsia.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery, Polish Mother's Health Center Research Institute, Lodz, Poland.
| |
Collapse
|
1660
|
Zhai Y, Meng L, Gao F, Wang Y, Busuttil RW, Kupiec-Weglinski JW. CD4+ T Regulatory Cell Induction and Function in Transplant Recipients after CD154 Blockade Is TLR4 Independent. THE JOURNAL OF IMMUNOLOGY 2006; 176:5988-94. [PMID: 16670307 DOI: 10.4049/jimmunol.176.10.5988] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although the role of CD4(+) T regulatory cells (Treg) in transplantation tolerance has been established, putative mechanisms of Treg induction and function in vivo remain unclear. TLR4 signaling has been implicated in the regulation of CD4(+)CD25(+) Treg functions recently. In this study, we first examined the role of recipient TLR4 in the acquisition of operational CD4(+) Treg following CD154 blockade in a murine cardiac transplant model. Then, we determined whether TLR4 activation in allograft tolerant recipients would reverse alloimmune suppression mediated by CD4(+) Treg. We document that donor-specific immune tolerance was readily induced in TLR4-deficient recipients by a single dose of anti-CD154 mAb, similar to wild-type counterparts. The function and phenotype of CD4(+) Treg in both wild-type and TLR4 knockout long-term hosts was demonstrated by a series of depletion experiments examining their ability to suppress the rejection of secondary donor-type test skin grafts and to inhibit alloreactive CD8(+) T cell activation in vivo. Furthermore, TLR4 activation in tolerant recipients following exogenous LPS infusion in conjunction with donor-type skin graft challenge, failed to break Treg-mediated immune suppression. In conclusion, our data reveals a distinctive property of CD4(+) Treg in tolerant allograft recipients, whose induction and function are independent of TLR4 signaling.
Collapse
Affiliation(s)
- Yuan Zhai
- Division of Liver and Pancreas Transplantation, Department of Surgery, The Dumont-University of California Los Angeles (UCLA) Transplant Center, David Geffen School of Medicine, UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
1661
|
Louis S, Braudeau C, Giral M, Dupont A, Moizant F, Robillard N, Moreau A, Soulillou JP, Brouard S. Contrasting CD25hiCD4+T cells/FOXP3 patterns in chronic rejection and operational drug-free tolerance. Transplantation 2006; 81:398-407. [PMID: 16477227 DOI: 10.1097/01.tp.0000203166.44968.86] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Although immunosuppression withdrawal in kidney recipients usually leads to rejection, in some patients it does not, leading to a state of clinical operational tolerance. METHODS We compared these highly contrasted situations by analyzing blood cell phenotype and transcriptional patterns in drug-free spontaneously tolerant kidney recipients, recipients with chronic rejection, recipients with stable graft function under standard or minimal immunosuppression and healthy individuals RESULTS The blood cell phenotype of clinically tolerant patients did not differ from that of healthy individuals. In contrast, recipients with chronic rejection had significantly less CD25hiCD4+T cells and lower levels of FOXP3 transcripts compared with clinically tolerant recipients. Patients with chronic rejection also displayed CD25-CD4+T cells expressing NKG2D+CD94+ and CD57+CD27-CD28- cytotoxic-associated markers (P<0.05). CONCLUSION These data show that whereas clinically tolerant recipients displayed normal levels of CD25hiCD4+T cells and FOXP3 transcripts, chronic rejection is associated with a decrease in CD25hiCD4+T cells and FOXP3 transcripts, suggesting that clinically "operational tolerance" may be due to a maintained phenomenon of natural tolerance that is lacking in patients with chronic rejection.
Collapse
Affiliation(s)
- Stéphanie Louis
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Nantes University, Nantes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
1662
|
Abstract
High throughput, high density platforms for transcriptional, proteomic, and metabonomic analyses are opening new doors for improving our understanding of the complexity and redundancy of the immune system in the interplay of the innate and allo-immune responses in organ transplantation. New insights are being obtained into the possible discrepancies between the gold standard of tissue pathological diagnosis and clinical graft outcomes, as new transcriptional categories of transplant rejection evolve. The bystander effects of chronic immunosuppression underlying the complexities of graft dysfunction are beginning to be understood. Non-invasive mechanisms to monitor transplants, by following 'footprints' of biomarker sets that reflect the disease phenotype, are being pursued for their clinical application for direct patient care. Utilization of these same biomarker sets may also offer a unique means to titrate immunosuppression and predict specific graft dysfunction events prior to clinical decline, thus bringing in the potential to reduce patient morbidity from infection and malignancy, preserve graft integrity, and limit the progression of chronic graft injury. Bioinformatics support is integral to the unraveling of the mysteries of the human genome, proteome, and metabolome in disease and in health.
Collapse
Affiliation(s)
- Minnie M Sarwal
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA.
| |
Collapse
|
1663
|
Lunsford KE, Koester MA, Eiring AM, Horne PH, Gao D, Bumgardner GL. Targeting LFA-1 and cd154 suppresses the in vivo activation and development of cytolytic (cd4-Independent) CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2006; 175:7855-66. [PMID: 16339521 DOI: 10.4049/jimmunol.175.12.7855] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Short-term immunotherapy targeting both LFA-1 and CD40/CD154 costimulation produces synergistic effects such that long-term allograft survival is achieved in the majority of recipients. This immunotherapeutic strategy has been reported to induce the development of CD4+ regulatory T cells. In the current study, the mechanisms by which this immunotherapeutic strategy prevents CD8+ T cell-dependent hepatocyte rejection in CD4 knockout mice were examined. Combined blockade of LFA-1 and CD40/CD154 costimulation did not influence the overall number or composition of inflammatory cells infiltrating the liver where transplanted hepatocytes engraft. Expression of T cell activation markers CD43, CD69, and adhesion molecule CD103 by liver-infiltrating cells was suppressed in treated mice with long-term hepatocellular allograft survival compared to liver-infiltrating cells of untreated rejector mice. Short-term immunotherapy with anti-LFA-1 and anti-CD154 mAb also abrogated the in vivo development of alloreactive CD8+ cytotoxic T cell effectors. Treated mice with long-term hepatocyte allograft survival did not reject hepatocellular allografts despite adoptive transfer of naive CD8+ T cells. Unexpectedly, treated mice with long-term hepatocellular allograft survival demonstrated prominent donor-reactive delayed-type hypersensitivity responses, which were increased in comparison to untreated hepatocyte rejectors. Collectively, these findings support the conclusion that short-term immunotherapy with anti-LFA-1 and anti-CD154 mAbs induces long-term survival of hepatocellular allografts by interfering with CD8+ T cell activation and development of CTL effector function. In addition, these recipients with long-term hepatocellular allograft acceptance show evidence of immunoregulation which is not due to immune deletion or ignorance and is associated with early development of a novel CD8+CD25high cell population in the liver.
Collapse
Affiliation(s)
- Keri E Lunsford
- Integrated Biomedical Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
1664
|
Maile R, Pop SM, Tisch R, Collins EJ, Cairns BA, Frelinger JA. Low-avidity CD8lo T cells induced by incomplete antigen stimulationin vivo regulate naive higher avidity CD8hi T cell responses to the same antigen. Eur J Immunol 2006; 36:397-410. [PMID: 16402405 DOI: 10.1002/eji.200535064] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously reported that multiple injections of soluble MHC class I tetramers assembled with wild-type HY peptide induces unresponsiveness to male skin grafts in naive female C57BL/6 (B6) mice. Induction of unresponsiveness is dependent on a population of unresponsive allospecific CD8(lo )T cells. Reduced expression of CD8 acts to limit a T cell response to HY peptide by limiting the avidity window of effective signal transduction. We and others have demonstrated that CD8(lo) T cells are an alternative stable phenotype of CD8alphabeta(+) T cells in vitro and in vivo after antigen stimulation. We show here that CD8(lo) T cells can suppress naive CD8(+) T cell responses to HY antigen in vitro and male skin graft rejection in vivo after adoptive transfer into female recipients. These novel regulatory T cells express surface TGF-beta1 and secrete T cytotoxic 2 cytokines after antigen-specific stimulation. Anti-TGF-beta antibody and latency-associated peptide inhibit the suppressive effects in vitro. We also show that HY-specific memory CD8(+) T cells overcome regulation by CD8(lo) T cells. These data define a novel peripheral regulatory CD8(+ )T cell population that arises after repeated antigen encounter in vivo. These cells have implications in the maintenance of tolerance and memory.
Collapse
Affiliation(s)
- Robert Maile
- Department of Surgery, University of North Carolina at Chapel Hill, 25799, USA.
| | | | | | | | | | | |
Collapse
|
1665
|
Abstract
Enthusiasm for tolerance induction has been tempered by the realization that it is more difficult to achieve clinically than was predicted by experimental models. Unlike the view that the immune response to an allograft is ordered and thus predictable, we view alloimmunity as highly plastic and molded by previous and ongoing experiences with allogeneic and environmental antigens. This implies that an individual's response to an allograft changes over time and that responses of seemingly similar individuals may vary greatly. This variability highlights the need to develop assays for monitoring the recipient immune response as well as individualized methods for therapeutic immune modulation.
Collapse
Affiliation(s)
- Kenneth A Newell
- The Emory Transplant Center, Emory University, Atlanta, GA 30345, USA.
| | | | | |
Collapse
|
1666
|
Johansson C, Zhao H, Bajak E, Granberg F, Pettersson U, Svensson C. Impact of the interaction between adenovirus E1A and CtBP on host cell gene expression. Virus Res 2005; 113:51-63. [PMID: 15899534 DOI: 10.1016/j.virusres.2005.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/12/2005] [Accepted: 04/14/2005] [Indexed: 11/20/2022]
Abstract
In cell lines harbouring inducible adenovirus E1A genes, the cytotoxicity of wild type E1A was manifested by poor and subsiding expression of the E1A protein during prolonged induction. In contrast, cells expressing E1A deleted in the C-terminal binding protein (CtBP)-interaction domain (E1ADeltaCID) demonstrated high levels of expression for extended time. Microarray analyses of host cell gene expression demonstrated that approximately 70% of the regulated genes were increased upon E1A induction and that the majority of E1A-regulated genes were similarly regulated by wild type E1A and E1ADeltaCID. However, for 29 genes, regulation by wild type E1A and E1ADeltaCID were different. Consistent with the altered transforming capacity of E1A unable to bind CtBP, genes involved in tumour cell progression and growth suppression were found among the differently regulated genes. Moreover, promoter sequences of genes up regulated by wild type E1A and/or repressed by E1ADeltaCID demonstrated a higher prevalence of potential binding sites for the CtBP-targeted transcription factors Ets, Ikaros and/or partial differentialEF1/ZEB, suggesting that the failure to block CtBP-repression contributed to the "hyper-transforming" phenotype of E1ADeltaCID. Since E1ADeltaCID also specifically activated host cell gene expression, we find it likely that additional, possibly CtBP-independent, mechanisms contribute to the altered phenotype of E1ADeltaCID-expressing cells.
Collapse
Affiliation(s)
- Cecilia Johansson
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Box 582, S-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
1667
|
Hoffmann P, Ermann J, Edinger M. CD4+CD25+ Regulatory T Cells in Hematopoietic Stem Cell Transplantation. Curr Top Microbiol Immunol 2005; 293:265-85. [PMID: 15981484 DOI: 10.1007/3-540-27702-1_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (SCT) is a well-established treatment modality for malignant and nonmalignant hematologic diseases. High-dose radio- and/or chemotherapy eradicate the hematopoietic system of the patient and induce sufficient immunosuppression to enable donor stem cell engraftment. The replacement of the recipient's immune system with that of the donor significantly contributes to the success of this treatment, since donor immune cells facilitate stem cell engraftment, provide protection from infections, and eliminate residual malignant or nonmalignant host hematopoiesis, thereby protecting from disease relapse in patients transplanted for leukemia or lymphoma (graft-versus-leukemia effect, GVL). Mediators of these beneficial effects are mature T cells within the stem cell graft. However, donor T cells can also attack host tissues and induce a life-threatening syndrome called graft-versus-host disease (GVHD). The challenge of allogeneic SCT is to find a balance between beneficial and harmful T cell effects, which at present is only insufficiently achieved by the use of immunosuppressive drugs. In the future, it might be possible to replace or support such medications by using the intrinsic regulatory capacity of the transplanted immune system, as represented by T cell subpopulations with suppressive activity, such as CD4+ CD25+ regulatory T (Treg) cells. In various mouse model systems, these cells have been shown to suppress GVHD while preserving the GVL effect. As the characterization of their human counterparts is rapidly progressing, their application in allogeneic SCT might soon be explored in clinical trials.
Collapse
Affiliation(s)
- P Hoffmann
- Institute of Immunology, University Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
1668
|
Avitzur Y, Galindo-Mata E, Jones NL. Oral vaccination against Helicobacter pylori infection is not effective in mice with Fas ligand deficiency. Dig Dis Sci 2005; 50:2300-6. [PMID: 16416178 DOI: 10.1007/s10620-005-3051-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 03/08/2005] [Indexed: 01/05/2023]
Abstract
The aim of this study was to delineate the role of the Fas pathway in vaccination against Helicobacter pylori. C57BL/6 and Fas ligand-deficient (gld) mice were divided into 3 groups: control, H. pylori infected, and orally vaccinated (H. pylori whole cell sonicate and cholera toxin adjuvant). Oral vaccination prevented H. pylori colonization in 78% of C57BL/6 mice compared to only 18% of gld mice. Vaccination did not alter the degree of apoptosis in either strain of mice. Vaccination led to significant increase in interleukin (IL)-5 and IL-10 in C57BL/6 but not gld mice. H. pylori infection increased interferon (IFN)-gamma levels in C57BL/6 but not in gld mice while vaccination had no effect on IFN-gamma levels in either strain. Oral vaccination is not effective in Fas ligand-deficient mice likely owing to lack of effective cytokine responses. This indicates that the Fas pathway plays a critical role in promoting an appropriate effector response following H. pylori vaccination.
Collapse
Affiliation(s)
- Yaron Avitzur
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
1669
|
Romagnoli P, Hudrisier D, van Meerwijk JPM. Molecular signature of recent thymic selection events on effector and regulatory CD4+ T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2005; 175:5751-8. [PMID: 16237066 PMCID: PMC2346488 DOI: 10.4049/jimmunol.175.9.5751] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Natural CD4+CD25+ regulatory T lymphocytes (Treg) are key protagonists in the induction and maintenance of peripheral T cell tolerance. Their thymic origin and biased repertoire continue to raise important questions about the signals that mediate their development. We validated analysis of MHC class II capture by developing thymocytes from thymic stroma as a tool to study quantitative and qualitative aspects of the cellular interactions involved in thymic T cell development and used it to analyze Treg differentiation in wild-type mice. Our data indicate that APCs of bone marrow origin, but, surprisingly and importantly, not thymic epithelial cells, induce significant negative selection among the very autoreactive Treg precursors. This fundamental difference between thymic development of regulatory and effector T lymphocytes leads to the development of a Treg repertoire enriched in cells specific for a selected subpopulation of self-Ags, i.e., those specifically expressed by thymic epithelial cells.
Collapse
Affiliation(s)
- Paola Romagnoli
- Institut National de la Santé et de la Recherche Médicale, Unité 563, Centre de Physiopathologie Toulouse Purpan, Toulouse, France.
| | | | | |
Collapse
|
1670
|
Glasspool RM, Burns S, Hoare SF, Svensson C, Keith WN. The hTERT and hTERC telomerase gene promoters are activated by the second exon of the adenoviral protein, E1A, identifying the transcriptional corepressor CtBP as a potential repressor of both genes. Neoplasia 2005; 7:614-22. [PMID: 16036112 PMCID: PMC1501281 DOI: 10.1593/neo.04766] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 02/17/2005] [Accepted: 02/21/2005] [Indexed: 12/25/2022] Open
Abstract
Telomerase plays a role in the unlimited replicative capacity of the majority of cancer cells and provides a potential anticancer target. The regulation of telomerase is complex but transcriptional control of its two essential components, hTERC (RNA component) and hTERT (reverse transcriptase component), is of major importance. To investigate this further, we have used the adenoviral protein, E1A, as a tool to probe potential pathways involved in the control of telomerase transcription. The second exon of the adenoviral protein E1A activates both telomerase gene promoters in transient transfections. The corepressor, C terminal binding protein, is one of only two proteins known to bind to this region, and we propose that E1A activates both promoters by sequestering CtBP, thereby relieving repression. Activation by exon 2 of E1A involves the SP1 sites in both promoters, and consistent with this, SP1 and CtBP interact in coimmunoprecipitation studies. Modulation of the chromatin environment has been implicated in the regulation of hTERT transcription and appears to involve the SP1 sites. CtBP can be found within a histone-modifying complex and it is possible that a CtBP complex, associating with the SP1 sites, represses transcription from the telomerase promoters by modifying chromatin structure.
Collapse
Affiliation(s)
- Rosalind M Glasspool
- Cancer Research UK Centre for Oncology and Applied Pharmacology, University of Glasgow, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | | | | | |
Collapse
|
1671
|
Abstract
The role of wild-type adenomatous polyposis coli (APC) protein in native epithelia is poorly understood. The present study examined the relationships between wild-type APC and beta-catenin expression in an established model of hyperproliferation, transmissible murine colonic hyperplasia (TMCH). Distal colonic crypts isolated from normal or TMCH mice were: (i) fractionated into cytosolic and nuclear components for Western blotting and immunoprecipitation (IP), (ii) extracted for total RNA isolation for Northern blotting and, (iii) analysed immunohistochemically by confocal microscopy. Western blots performed sequentially through day 12 TMCH with N-terminal APC antibodies revealed increased abundance of approximately 312 kDa (p312) protein by day 6 (4.0 +/- 0.75-fold, n = 6) that peaked by day 9, before declining by day 12. A approximately 130 kDa (p130) band appeared at day 9 and increased by day 12 (1.5 +/- 0.11-fold, n = 6). A C-terminal antibody detected only p312. APC mRNA level did not change during TMCH and appearance of p130 was not due to alternative splicing. Co-IP with N-terminal anti-APC antibodies, revealed APC's association with beta-catenin both at day 6 and day 12. p130, but not p312, associated predominantly with beta-catenin at day 12 during co-IP with anti-beta-catenin. p130 also selectively accumulated in the nucleus, bound to nuclear beta-catenin at day 12. Immunocytochemistry with N-terminal antibodies revealed an increasing crypt base : surface gradient of APC within the apical pole/apical-lateral membranes at day 6. At day 12, intense apical/cytoplasmic and occasional nuclear staining along the longitudinal crypt axis was observed. Full-length APC increases during epithelial hyperproliferation and may represent a homoeostatic response. The dramatic increase in cytoplasmic and sporadic nuclear APC staining at day 12 with N-terminal antibodies may represent p130. The nuclear accumulation of p130 may be a novel mechanism regulating nuclear beta-catenin function during TMCH.
Collapse
Affiliation(s)
- Shahid Umar
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston, 77555-0632, USA.
| | | | | |
Collapse
|
1672
|
Stremmel C, Siebenhaar R, Croner R, Reingruber B, Slavin AJ, Hohenberger W. Characterization of gene expression profiles of T cells during anti-tumor response. Int J Colorectal Dis 2005; 20:485-93. [PMID: 15812645 DOI: 10.1007/s00384-004-0714-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2004] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS T cells of tumor-bearing mice or cancer patients exhibit an immune dysfunction, enabling the tumor to escape immune surveillance. METHODS The experiments are based on EL4 thymoma cells that were transfected with costimulatory ligands B7-1, B7-2, or both at the same time. We used oligonucleotide-based DNA chip microarrays to characterize the genomic expression profile of peripheral T cells according to their anti-tumor immune response in vivo. These murine T cells were also characterized by ELISA, FACS analysis, and co-stimulatory assays. RESULTS Using commonly established methods, such as FACS analysis or the analysis of the cytokine profile by ELISA, it was not possible to determine functional differences in the in vivo activity of T lymphocytes against tumor cells. EL4 tumor cells induced multiple anti-tumor immune responses in vivo depending on their B7 expression. We successfully used microarray analysis to identify genes that were differentially expressed in the dysfunctional T cells, which were unable to reject tumors in vivo. Although Th1 and Th2 cytokine expression was not affected, we observed differential expression of genes involved in the regulation of an innate immune response. CONCLUSION Our results provide evidence that the anti-tumor response can be identified by the "gene profile" of T cells. Genomic scale analysis offers the opportunity to identify subtle changes in gene expression in T cells reflecting a distinct biological behavior in vivo.
Collapse
Affiliation(s)
- Christian Stremmel
- Department of Surgery, University of Erlangen-Nuremberg, Krankenhausstrasse 12, 91054, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
1673
|
Polster K, Walker A, Fildes J, Entwistle G, Yonan N, Hutchinson IV, Leonard CT. CD4-veCD8-ve CD30+ve T cells are detectable in human lung transplant patients and their proportion of the lymphocyte population after in vitro stimulation with donor spleen cells correlates with preservation of lung physiology. Transplant Proc 2005; 37:2257-60. [PMID: 15964393 DOI: 10.1016/j.transproceed.2005.03.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2004] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Survival following lung transplantation is less than 50% at 5 years, mainly due to immune-mediated chronic rejection. Recently a novel subset of T cells, CD4-veCD8-ve CD30+ve, so-called double negative (DN) CD30+ve T cells, has been described and shown to be responsible for tolerance in an animal model of skin transplantation. METHODS We investigated 18 lung transplant recipients for the presence of DN CD30+ve T cells in resting peripheral blood and also following in vitro stimulation of recipient peripheral blood mononuclear cells (PBMCs) with donor spleen cells. RESULTS Small percentages (0.2% to 6%) of DN T cells are detectable in resting PBMCs of human transplant patients (n = 18), but these did not correlate with allograft function, acute rejection episodes, HLA mismatch, or CMV status. On repeated stimulation of recipient PBMCs (two exposures) in vitro by donor spleen cells (2:1 ratio stimulators to responders) the percentage of DN CD30+ve T cells within the lymphocyte pool correlated with preservation of allograft lung function (both for FEV(1), P = .009, and FEF(25-75), P = .036) and was inversely correlated with grade of chronic rejection. On repeated exposure of recipient PBMCs to donor spleen cells with a 1:1 ratio the percentage of DN CD30+ve T cells correlated with the number of acute rejection episodes of grade 2 or greater. The total number of HLA mismatches correlated with the percentage DN CD30+ve T cells present after primary stimulation of recipient PBMCs with donor spleen cells (1:1 ratio). The number of mismatches at the B locus inversely correlated with the percentage of DN CD30+ve T cells after primary stimulation of recipient PBMCs with donor spleen cells (1:1 ratio; P = .031, n = 18). CONCLUSION Percentages of DN CD30+ve T cells present following repeated stimulation of recipient PBMCs by donor spleen cells correlated with preservation of graft function following lung transplantation.
Collapse
Affiliation(s)
- K Polster
- Transplant Unit, Wythenshawe Hospital, Manchester M23 9LT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
1674
|
Kumar KR, Zhu J, Bhaskarabhatla M, Yan M, Mohan C. Enhanced expression of stem cell antigen-1 (Ly-6A/E) in lymphocytes from lupus prone mice correlates with disease severity. J Autoimmun 2005; 25:215-22. [PMID: 16246522 DOI: 10.1016/j.jaut.2005.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 06/22/2005] [Accepted: 09/07/2005] [Indexed: 12/18/2022]
Abstract
B6.Sle1 mice, congenic for the NZM2410-derived lupus susceptibility locus, Sle1 on chromosome 1 exhibit many of the features seen in human lupus including activated lymphocytes and high titers of antinuclear autoantibodies. Among the different surface molecules that were aberrantly expressed on the B6.Sle1 lymphocytes was Ly-6A/E. Splenic B- and T-lymphocytes but not myeloid cells from B6.Sle1 mice exhibited enhanced levels of Ly-6A/E compared to B6 controls. In particular, MZ B cells, GC B cells and B-cell blasts expressed the highest levels of Ly-6A/E in both strains, with the levels being even higher on B6.Sle1 derived cells. Following stimulation with LPS or anti-IgM, there was a profound up-regulation in Ly-6A/E, particularly on MZ B cells and B-cell blasts. CD4 and CD8 T cells also up-regulated Ly-6A/E after stimulation with anti-CD3 and anti-CD28. These studies were extended to additional autoimmune strains including B6.Sle3, B6.Sle1.lpr and BXSB. Importantly, Ly-6A/E levels on lymphocytes were commensurate with the degree of disease exhibited by these lupus strains. Finally, it appears that increased interferon levels, in addition to antigen receptor stimulation, may also be a factor accounting for elevated Ly-6A/E in lupus. Given these observations it is important to elucidate the functional role of Ly-6A/E in lupus in future studies.
Collapse
Affiliation(s)
- Kirthi Raman Kumar
- Department of Internal Medicine, Rheumatology, and the Center for Immunology, University of Texas Southwestern Medical School, Dallas, 75235, USA
| | | | | | | | | |
Collapse
|
1675
|
Scotto L, Naiyer AJ, Galluzzo S, Rossi P, Manavalan JS, Kim-Schulze S, Fang J, Favera RD, Cortesini R, Suciu-Foca N. Overlap between molecular markers expressed by naturally occurring CD4+CD25+ regulatory T cells and antigen specific CD4+CD25+ and CD8+CD28- T suppressor cells. Hum Immunol 2005; 65:1297-306. [PMID: 15556680 DOI: 10.1016/j.humimm.2004.09.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 09/09/2004] [Indexed: 10/26/2022]
Abstract
Alloantigen specific CD8+CD28- T suppressor (TS) cells differ from naturally occurring CD4+CD25+ T-regulatory (natural TR) cells not only by their phenotype but also by their mechanism of action. Natural TR have been extensively studied, leading to the identification of characteristic "molecular markers" such as Forkhead box P3 (FOXP3), glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). We have investigated the expression of these genes in alloantigen specific TS and CD4+CD25+ T regulatory (TR) cells and found that they are expressed at levels similar to those observed in natural TR. Furthermore, similar to natural CD4+CD25+ TR, antigen-specific CD8+CD28-CD62L+ TS cells have more suppressive capacity than CD8+CD28-CD62L- TS cells. In spite of these similarities, natural TR are not antigen-specific and inhibit other T cells by T cell-to-T cell interaction, whereas TS are antigen-specific and exert their inhibitory function by interacting with antigen-presenting cells and render them tolerogenic to other T cells. The molecular characterization of TS cells may contribute to a better understanding of mechanisms involved in inhibition of immune responses in autoimmunity, transplantation, and chronic viral infection.
Collapse
Affiliation(s)
- Luigi Scotto
- Department of Pathology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1676
|
Kitade H, Kawai M, Rutgeerts O, Landuyt W, Waer M, Mathieu C, Pirenne J. Early Presence of Regulatory Cells in Transplanted Rats Rendered Tolerant by Donor-Specific Blood Transfusion. THE JOURNAL OF IMMUNOLOGY 2005; 175:4963-70. [PMID: 16210598 DOI: 10.4049/jimmunol.175.8.4963] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mechanisms by which donor-specific blood transfusion (DSBT) promotes organ allograft acceptance are unclear. In a rat fully mismatched cardiac allograft model, we found that DSBT alone (without immunotherapy) induces the development of regulatory T cells (DSBT-Tregs) posttransplant, thereby shedding new light in the mechanisms of the transfusion effect. Compartments and timing of expansion, requirements, and phenotype of DSBT-Tregs are unknown. It is generally assumed that some time is necessary before Tregs develop. However, we show-by adoptive transfer from DSBT-tolerant into naive recipients: 1) the presence of DSBT-Tregs at 5 days posttransplant in spleen and lymph nodes; 2) their gradual expansion in these compartments; and 3) their presence in the graft 14 of 30 days posttransplant. DSBT-Tregs are donor specific and do not protect third-party allografts. Splenocytes from DSBT-treated nontransplanted recipients or from transplanted DSBT-untreated (rejecting) recipients do not transfer tolerance, indicating that both DSBT and graft are required for sufficient numbers of DSBT-Tregs to develop. Thymectomy (or splenectomy) before DSBT (not at transplantation) abrogate DSBT-Tregs generation and tolerance, showing that thymus (and spleen) are required for DSBT-Tregs generation (not for expansion/maintenance). In contrast with other Tregs models, DSBT-Tregs activity is not restricted to CD4(+)CD25(+) but to CD4(+)CD45RC(-) cells, whereas CD4(+)CD45RC(+) cells act as effector cells and accelerate rejection. In conclusion, DSBT alone induces-rapidly posttransplant-the development of alloantigen-specific Tregs in lymphoid tissues and in the graft. DSBT, graft, thymus, and spleen are required for DSBT-Tregs generation. DSBT-Tregs in this model are CD4(+)CD45RC(-) (identical to Tregs protecting from autoimmunity in rats).
Collapse
Affiliation(s)
- Hiroaki Kitade
- Laboratory for Experimental Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
1677
|
Mocellin S, Marincola FM, Young HA. Interleukin-10 and the immune response against cancer: a counterpoint. J Leukoc Biol 2005; 78:1043-51. [PMID: 16204623 DOI: 10.1189/jlb.0705358] [Citation(s) in RCA: 287] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although interleukin-10 (IL-10) is commonly regarded as an anti-inflammatory, immunosuppressive cytokine that favors tumor escape from immune surveillance, a wealth of evidence is accumulating that IL-10 also possesses some immunostimulating properties. In fact, IL-10 has the pleiotropic ability of influencing positively and negatively the function of innate and adaptive immunity in different experimental models, which makes it questionable to merely categorize this cytokine as a target of anti-immune escape therapeutic strategies or rather, as an immunological adjuvant in the fight against cancer. Here, we review available data about the immunostimulating anticancer properties of IL-10, and in particular, we focus on the hypothesis that in contrast to what occurs in secondary lymphoid organs, IL-10 overexpression within the tumor microenvironment may catalyze cancer immune rejection.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Oncological & Surgical Sciences, University of Padova, Italy.
| | | | | |
Collapse
|
1678
|
Cowley SC, Hamilton E, Frelinger JA, Su J, Forman J, Elkins KL. CD4-CD8- T cells control intracellular bacterial infections both in vitro and in vivo. ACTA ACUST UNITED AC 2005; 202:309-19. [PMID: 16027239 PMCID: PMC2212999 DOI: 10.1084/jem.20050569] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Memory T cells, including the well-known CD4+ and CD8+ T cells, are central components of the acquired immune system and are the basis for successful vaccination. After infection, CD4+ and CD8+ T cells expand into effector cells, and then differentiate into long-lived memory cells. We show that a rare population of CD4−CD8−CD3+αβ+γδ−NK1.1− T cells has similar functions. These cells potently and specifically inhibit the growth of the intracellular bacteria Mycobacterium tuberculosis (M. tb.) or Francisella tularensis Live Vaccine Strain (LVS) in macrophages in vitro, promote survival of mice infected with these organisms in vivo, and adoptively transfer immunity to F. tularensis LVS. Furthermore, these cells expand in the spleens of mice infected with M. tb. or F. tularensis LVS, and then acquire a memory cell phenotype. Thus, CD4−CD8− T cells have a role in the control of intracellular infection and may contribute to successful vaccination.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens/immunology
- Antigens, Ly
- Antigens, Surface
- CD4 Antigens/immunology
- CD8 Antigens/immunology
- Cells, Cultured
- Francisella tularensis/immunology
- Immunologic Memory
- Lectins, C-Type
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mycobacterium tuberculosis/immunology
- NK Cell Lectin-Like Receptor Subfamily B
- Proteins/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Tuberculosis/immunology
- Tuberculosis/prevention & control
- Tuberculosis/therapy
- Tuberculosis Vaccines/immunology
- Tularemia/immunology
- Tularemia/prevention & control
- Tularemia/therapy
- Vaccination
Collapse
Affiliation(s)
- Siobhán C Cowley
- Laboratory of Mycobacterial Diseases and Cellular Immunology, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
1679
|
Chen W, Zhou D, Torrealba JR, Waddell TK, Grant D, Zhang L. Donor Lymphocyte Infusion Induces Long-Term Donor-Specific Cardiac Xenograft Survival through Activation of Recipient Double-Negative Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:3409-16. [PMID: 16116235 DOI: 10.4049/jimmunol.175.5.3409] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous studies have shown that pretransplant donor lymphocyte infusion (DLI) can enhance xenograft survival. However, the mechanism by which DLI induces xenograft survival remains obscure. Using T cell subset-deficient mice as recipients we show that CD4+, but not CD8+, T cells are necessary to mediate the rejection of concordant cardiac xenografts. Adoptive transfer of naive CD4+ T cells induces rejection of accepted cardiac xenografts in CD4-/- mice. This rejection can be prevented by pretransplant DLI in the absence of any other treatment. Furthermore, we demonstrate that DLI activates alphabeta-TCR+CD3+CD4-CD8- double-negative (DN) regulatory T (Treg) cells in xenograft recipients, and that DLI-activated DN Treg cells can inhibit the proliferation of donor-specific xenoreactive CD4+ T cells in vitro. More importantly, adoptive transfer of DLI-activated DN Treg cells from xenograft recipients can suppress the proliferation of xenoreactive CD4+ T cells and their ability to produce IL-2 and IFN-gamma in vivo. Adoptive transfer of DLI-activated DN Treg cells also prevents CD4+ T cell-mediated cardiac xenograft rejection in an Ag-specific fashion. These data provide direct evidence that DLI can activate recipient DN Treg cells, which can induce donor-specific long-term cardiac xenograft survival by suppressing the proliferation and function of donor-specific CD4+ T cells in vivo.
Collapse
Affiliation(s)
- Wenhao Chen
- Department of Laboratory Medicine and Pathobiology, Multi Organ Transplantation Program, Toronto General Research Institute, University Health Network, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
1680
|
Akl A, Luo S, Wood KJ. Induction of transplantation tolerance—the potential of regulatory T cells. Transpl Immunol 2005; 14:225-30. [PMID: 15982567 DOI: 10.1016/j.trim.2005.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2005] [Indexed: 11/20/2022]
Abstract
Solid organ transplantation is widely accepted as an effective treatment for end organ failure. Although the treatment with immunosuppressive drugs has undoubtedly greatly improved graft survival, chronic rejection still has considerable impact on long term outcome. This, together with the undesirable side effects associated with life long treatment with immunosuppressive drugs, have significant implications for long term outcomes. In a small number of patients, drug non-compliance as well as controlled reduction or removal of maintenance immune suppressive drug therapy has led to the uncovering of a tolerant state. The challenge of achieving improved monitoring of all transplant patients may allow tailoring of immunosupression in a proportion of recipients thereby increasing the opportunities for the induction of specific unresponsiveness to donor alloantigens in the future. The immune system using several mechanisms to both induce and maintain tolerance to alloantigens, including the deletion of allo-reactive T cells, the induction of anergy, clonal exhaustion, ignorance and active suppression (immunoregulation) of allo-responses. A minor subpopulation of CD4+ T cells, regulatory or suppressor CD4+ T cells that co-express the cell-surface molecule CD25 (IL2 alpha subunit) at a high level may play a major role in the maintenance of specific unresponsiveness and operational tolerance to donor antigens in vivo. Intensive investigation of these cells in recent years has started to uncover the mechanisms of active suppression by regulatory T cells in this setting.
Collapse
Affiliation(s)
- Ahmed Akl
- Nuffield Department of Surgery, The John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | | | | |
Collapse
|
1681
|
Hudrisier D, Riond J, Garidou L, Duthoit C, Joly E. T cell activation correlates with an increasedproportion of antigen among the materials acquiredfrom target cells. Eur J Immunol 2005; 35:2284-94. [PMID: 16021601 DOI: 10.1002/eji.200526266] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have investigated the density of peptides required to elicit different biological responses in cytotoxic T lymphocytes (CTL), including trogocytosis (i.e., the phenomenon whereby the lymphocytes actively capture fragments of plasma membrane from those cells with which they establish an immune synapse). We have used two separate mouse models of CTL recognising defined peptides presented by MHC class I molecules. In both systems, triggering of cytotoxicity and capture of membrane components reached saturation with low densities of ligand. On the other hand, down-modulation of cell-surface levels of TCR, induction of IFN-gamma production and detection of peptide captured required much higher ligand densities. Interestingly, fratricide (i.e., killing between CTL sharing the same specificity), a mechanism proposed to account for CTL exhaustion, was detected only at antigen concentrations still well above that second threshold leading to full blown activation. Taken together, our results show that the different thresholds that govern the elicitation of different CTL functions correlate with different proportions of antigen among the target cell components being captured via trogocytosis.
Collapse
MESH Headings
- Animals
- Antigens/biosynthesis
- Biotin/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Cytokines/metabolism
- Histocompatibility Antigens/immunology
- Interferon-gamma/biosynthesis
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Peptide Fragments/immunology
- Plasma Cells/immunology
- Plasma Cells/metabolism
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Denis Hudrisier
- CPTP, INSERM U563, Institut Claude de Préval, Toulouse, France.
| | | | | | | | | |
Collapse
|
1682
|
Yang MH, Suen JL, Li SL, Chiang BL. Identification of T-cell epitopes on U1A protein in MRL/lpr mice: double-negative T cells are the major responsive cells. Immunology 2005; 115:279-86. [PMID: 15885135 PMCID: PMC1782149 DOI: 10.1111/j.1365-2567.2005.02139.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by the existence of a heterogeneous group of autoantibodies such as anti-DNA, chromatin, histone, and ribonucleoprotein antibodies (Abs). Although the B-cell antigenic determinants have been well characterized, very limited data about the T-cell epitopes of self-antigen (Ag) have been reported. In the present study, we analysed auto-T-cell epitopes using bone marrow-derived dendritic cells (BM-DCs) pulsed with murine U1A (mU1A) protein capable of activating autoreactive T cells from unprimed MRL/lpr mice in vitro. The data suggested that there are at least four T-cell epitopes on the U1A protein, U1A31-50, U1A61-80, U1A201-220 and U1A271-287, and U1A31-50 had the most significant T-cell proliferative response. In addition, the main responsive T cells are the CD4- CD8- double-negative subgroup of T cells. Furthermore, we also demonstrated that the activation of double-negative T cells is major histocompatibility complex class II restricted. The study here provides information on T-cell epitope analysis of the U1A antigen using BM-DCs as the effective antigen-presenting cells.
Collapse
MESH Headings
- Aging/immunology
- Animals
- Antibodies, Antinuclear/biosynthesis
- Autoantibodies/biosynthesis
- Autoantigens/analysis
- Bone Marrow Cells/immunology
- CD4 Antigens/analysis
- CD8 Antigens/analysis
- Cell Proliferation
- Cells, Cultured
- Dendritic Cells/immunology
- Disease Models, Animal
- Epitopes, T-Lymphocyte/analysis
- Female
- Genes, MHC Class II
- Lupus Erythematosus, Systemic/immunology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C3H
- Mice, Inbred MRL lpr
- Mice, Inbred Strains
- RNA-Binding Proteins/immunology
- Ribonucleoprotein, U1 Small Nuclear/immunology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Mei-Hui Yang
- Graduate Institute of Clinical Medicine Sciences, Chang Gung UniversityTaoyuan
| | - Jau-Ling Suen
- Department of Microbiology, Kaohsiung Medical UniversityKaohsiung
| | - Shiao-Lan Li
- Graduate Institute of Immunology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
1683
|
Rushbrook SM, Ward SM, Unitt E, Vowler SL, Lucas M, Klenerman P, Alexander GJM. Regulatory T cells suppress in vitro proliferation of virus-specific CD8+ T cells during persistent hepatitis C virus infection. J Virol 2005; 79:7852-9. [PMID: 15919939 PMCID: PMC1143649 DOI: 10.1128/jvi.79.12.7852-7859.2005] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The basis of chronic infection following exposure to hepatitis C virus (HCV) infection is unexplained. One factor may be the low frequency and immature phenotype of virus-specific CD8(+) T cells. The role of CD4(+)CD25(+) T regulatory (T(reg)) cells in priming and expanding virus-specific CD8(+) T cells was investigated. Twenty HLA-A2-positive patients with persistent HCV infection and 46 healthy controls were studied. Virus-specific CD8(+) T-cell proliferation and gamma interferon (IFN-gamma) frequency were analyzed with/without depletion of T(reg) cells, using peptides derived from HCV, Epstein-Barr virus (EBV), and cytomegalovirus (CMV). CD4(+)CD25(+) T(reg) cells inhibited anti-CD3/CD28 CD8(+) T-cell proliferation and perforin expression. Depletion of CD4(+)CD25(+) T(reg) cells from chronic HCV patients in vitro increased HCV and EBV peptide-driven expansion (P = 0.0005 and P = 0.002, respectively) and also the number of HCV- and EBV-specific IFN-gamma-expressing CD8(+) T cells. Although stimulated CD8(+) T cells expressed receptors for transforming growth factor beta and interleukin-10, the presence of antibody to transforming growth factor beta and interleukin-10 had no effect on the suppressive effect of CD4(+)CD25(+) regulatory T cells on CD8(+) T-cell proliferation. In conclusion, marked CD4(+)CD25(+) regulatory T-cell activity is present in patients with chronic HCV infection, which may contribute to weak HCV-specific CD8(+) T-cell responses and viral persistence.
Collapse
Affiliation(s)
- Simon M Rushbrook
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
1684
|
Abstract
The expression of HLA-G at the fetal-maternal interface during pregnancy and in transplanted tissue makes this a key molecule in the acceptance of a semiallogeneic fetus and allogeneic transplant. Dendritic cells (DC) play a critical role in the control of innate and adaptive immune responses. DC are present in maternal decidua, but must be kept under tight control. Here we describe the mechanism of tolerization of DC by HLA-G through inhibitory receptor interactions. The HLA-G-ILT (immunoglobulin-like transcript) interaction leads to development of tolerogenic DC with the induction of anergic and immunosuppressive T cells. Using human monocyte-derived DC and ILT4-transgenic mice, we show that (i) HLA-G induces the development of tolerogenic DC with arrest maturation/activation of myeloid DC, (ii) HLA-G-modified DC induce differentiation of anergic and immunosuppressive CD4(+) and CD8(+) effector T cells, and (iii) the gene expression profile provides evidence that HLA-G induces tolerogenic DC by disruption of the MHC class II presentation pathway. Ligation of ILT4 receptor on DC from transgenic mice diminished peptide presentation by MHC class II molecules and significantly prolonged allograft survival. These findings provide support that HLA-G is an important tolerogenic molecule on DC for the acceptance of a semiallogeneic fetus and transplanted tissue/organ.
Collapse
Affiliation(s)
- Vladimir Ristich
- Institute of Molecular Medicine and Genetics, Department of Medicine, Medical College of Georgia, Augusta 30912-2600, USA
| | | | | | | | | |
Collapse
|
1685
|
Abstract
Despite improvements in allogeneic stem cell transplantation, acute graft-versus-host disease (GVHD) remains a significant problem after transplantation, and it is still a major cause of post-transplant mortality. Disease progression is characterized by the differentiation of alloreactive T cells to effector cells leading to tissue damage, recruitment of additional inflammatory cell populations and further cytokine dysregulation. To make the complex process of acute GVHD more explicit, the pathophysiology of acute GVHD is often divided into three different phases. This review summarizes the mechanisms involved in the three phases of acute GVHD.
Collapse
Affiliation(s)
- M Jaksch
- Division of Clinical Immunology, Karolinska Institute at Karolinska University Hospital, Huddinge, Sweden.
| | | |
Collapse
|
1686
|
Lee BPL, Mansfield E, Hsieh SC, Hernandez-Boussard T, Chen W, Thomson CW, Ford MS, Bosinger SE, Der S, Zhang ZX, Zhang M, Kelvin DJ, Sarwal MM, Zhang L. Expression profiling of murine double-negative regulatory T cells suggest mechanisms for prolonged cardiac allograft survival. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 174:4535-4544. [PMID: 15814674 DOI: 10.4049/jimmunol.174.8.4535] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies have demonstrated that both mouse and human alpha beta TCR(+)CD3(+)NK1.1(-)CD4(-)CD8- double-negative regulatory T (DN Treg) cells can suppress Ag-specific immune responses mediated by CD8+ and CD4+ T cells. To identify molecules involved in DN Treg cell function, we generated a panel of murine DN Treg clones, which specifically kill activated syngeneic CD8+ T cells. Through serial cultivation of DN Treg clones, mutant clones arose that lost regulatory capacity in vitro and in vivo. Although all allogeneic cardiac grafts in animals preinfused with tolerant CD4/CD8 negative 12 DN Treg clones survived over 100 days, allograft survival is unchanged following infusion of mutant clones (19.5 +/- 11.1 days) compared with untreated controls (22.8 +/- 10.5 days; p < 0.001). Global gene expression differences between functional DN Treg cells and nonfunctional mutants were compared. We found 1099 differentially expressed genes (q < 0.025%), suggesting increased cell proliferation and survival, immune regulation, and chemotaxis, together with decreased expression of genes for Ag presentation, apoptosis, and protein phosphatases involved in signal transduction. Expression of 33 overexpressed and 24 underexpressed genes were confirmed using quantitative real-time PCR. Protein expression of several genes, including Fc epsilon RI gamma subunit and CXCR5, which are >50-fold higher, was also confirmed using FACS. These findings shed light on the mechanisms by which DN Treg cells down-regulate immune responses and prolong cardiac allograft survival.
Collapse
Affiliation(s)
- Boris P-L Lee
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1687
|
Sánchez-Fueyo A. [Immunological tolerance and liver transplantation]. GASTROENTEROLOGIA Y HEPATOLOGIA 2005; 28:250-6. [PMID: 15811269 DOI: 10.1157/13073096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The induction of tolerance to allografts has traditionally been one of the basic aims of transplantation research. Multiple data obtained in experimental models indicate that the outcome of transplantation (rejection versus acceptance/tolerance) depends on the balance between allo-reactive cytopathic lymphocytes and immunoregulatory lymphocytes. Thus, most tolerance-inducing treatments aim to reduce the number of allo-aggressive lymphocytes and, at the same time, to increase the population of regulatory lymphocytes, which ensure graft viability once drug therapy has been withdrawn. Liver allografts are singular in that they are accepted without the need for treatment in most experimental models. Likewise, in humans, liver grafts also show a lower susceptibility to rejection than any other organ and immunosuppressive treatment can be completely eliminated in approximately 25% of recipients. Many mechanisms have been proposed to explain the tolerogenic properties of the liver. Notable among these are the effects derived from the large number of passing leukocytes present in the liver and its peculiar anatomy that maximizes contact among blood lymphocytes and liver cells with tolerogenic potential. Although there are many cases of tolerance in human allograft recipients, therapeutic strategies that would allow predictable tolerance induction and without a high risk of adverse affects are still lacking. Therefore, most studies in humans have traditionally aimed to minimize doses of immunosuppressive drugs rather than eliminate them. However, recent results in preclinical models and pilot studies indicate that therapeutic protocols for tolerance induction may become available in the not too distant future.
Collapse
Affiliation(s)
- A Sánchez-Fueyo
- Instituto de Enfermedades Digestivas, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain.
| |
Collapse
|
1688
|
Kienzle N, Olver S, Buttigieg K, Groves P, Janas ML, Baz A, Kelso A. Progressive differentiation and commitment of CD8+ T cells to a poorly cytolytic CD8low phenotype in the presence of IL-4. THE JOURNAL OF IMMUNOLOGY 2005; 174:2021-9. [PMID: 15699131 DOI: 10.4049/jimmunol.174.4.2021] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure to IL-4 during activation of naive murine CD8+ T cells leads to generation of IL-4-producing effector cells with reduced surface CD8, low perforin, granzyme B and granzyme C mRNA, and poor cytolytic function. We show in this study that maximal development of these cells depended on exposure to IL-4 for the first 5 days of activation. Although IL-4 was not required at later times, CD8 T cell clones continued to lose surface CD8 expression with prolonged culture, suggesting commitment to the CD8low phenotype. This state was reversible in early differentiation. When single CD8low cells from 4-day cultures were cultured without IL-4, 65% gave rise to clones that partly or wholly comprised CD8high cells; the proportion of reverted clones was reduced or increased when the cells were cloned in the presence of IL-4 or anti-IL-4 Ab, respectively. CD8 expression positively correlated with perforin and granzyme A, B, and C mRNA, and negatively correlated with IL-4 mRNA levels among these clones. By contrast, most CD8low cells isolated at later time points maintained their phenotype, produced IL-4, and exhibited poor cytolytic function after many weeks in the absence of exogenous IL-4. We conclude that IL-4-dependent down-regulation of CD8 is associated with progressive differentiation and commitment to yield IL-4-producing cells with little cytolytic activity. These data suggest that the CD4-CD8- cells identified in some disease states may be the product of a previously unrecognized pathway of effector differentiation from conventional CD8+ T cells.
Collapse
Affiliation(s)
- Norbert Kienzle
- Cooperative Research Centre for Vaccine Technology and Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|
1689
|
Dai Z, Nasr IW, Reel M, Deng S, Diggs L, Larsen CP, Rothstein DM, Lakkis FG. Impaired recall of CD8 memory T cells in immunologically privileged tissue. THE JOURNAL OF IMMUNOLOGY 2005; 174:1165-70. [PMID: 15661869 DOI: 10.4049/jimmunol.174.3.1165] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Foreign Ags that enter immunologically privileged sites such as the eye, brain, and testis persist for an extended period of time, whereas the same Ags are rapidly eliminated at conventional sites. Immune privilege, therefore, provides unwanted refuge for pathogens and tumor cells but is beneficial for the survival of allogeneic grafts. In this study, we asked whether memory T cells can eliminate foreign Ags deposited at an immunologically privileged site by studying CD8 memory T cell-mediated rejection of pancreatic islet allografts placed either in the testis (a privileged organ) or under the kidney capsule (a nonprivileged site) of diabetic mice. We found that CD8 memory T cells reject intratesticular grafts at a significantly slower rate than the rejection of intrarenal grafts. Delayed graft rejection in the testis was not due to reduced homing or proliferation of memory T cells but due to their increased apoptosis at that site. Apoptosis was mediated by the combined actions of two TNFR family members that are up-regulated on activated memory T cells, Fas, and CD30. Therefore, memory T cells survey immunologically privileged tissues but are subject to the immunosuppressive mechanisms present at these sites.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/transplantation
- Cell Movement/genetics
- Cell Movement/immunology
- Epitopes, T-Lymphocyte/immunology
- Graft Rejection/genetics
- Graft Rejection/immunology
- Graft Rejection/pathology
- Immunologic Memory
- Islets of Langerhans Transplantation/immunology
- Islets of Langerhans Transplantation/methods
- Islets of Langerhans Transplantation/pathology
- Ki-1 Antigen/physiology
- Kidney/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred MRL lpr
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Testis/cytology
- Testis/immunology
- Testis/pathology
- Transplantation, Heterotopic/immunology
- Transplantation, Heterotopic/methods
- Transplantation, Heterotopic/pathology
- fas Receptor/physiology
Collapse
Affiliation(s)
- Zhenhua Dai
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
1690
|
Asavaroengchai W, Kotera Y, Koike N, Pilon-Thomas S, Mulé JJ. Augmentation of antitumor immune responses after adoptive transfer of bone marrow derived from donors immunized with tumor lysate-pulsed dendritic cells. Biol Blood Marrow Transplant 2005; 10:524-33. [PMID: 15282530 DOI: 10.1016/j.bbmt.2004.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We demonstrated previously that tumor lysate-pulsed dendritic cells (TP-DC) could mediate a specific and long-lasting antitumor immune response against a weakly immunogenic breast tumor during early lymphoid reconstitution. The purpose of this study was to examine the potential therapeutic efficacy of bone marrow transplants from TP-DC-vaccinated donors. In 2 aggressive metastatic models, bone marrow transplantation with donor bone marrow cells from TP-DC-immunized mice mediated a tumor-specific immune response in the recipient, and this caused regressions of preexisting tumor metastases. After vaccination with TP-DC, donors harbored increased numbers of both activated CD4+ and CD8+ T-cell populations in the bone marrow. Adoptive transfer of T cells purified from the bone marrow of TP-DC-vaccinated mice led to a reduction in preestablished lung metastases, whereas depletion of T cells from bone marrow abolished this effect. By using T cells derived from the bone marrow of TP-DC-vaccinated major histocompatibility complex class I and class II knockout mice, the effector cells required for the observed antitumor effect were determined to be major histocompatibility complex class I-restricted CD8+ T cells. Additionally, the tumor burden in TP-DC-immunized transplant recipients could be reduced further by repetitive TP-DC immunizations after bone marrow transplantation. Collectively, these results demonstrate an important therapeutic role of bone marrow from TP-DC-immunized donors and raise the potential for this approach in patients with advanced cancer.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, CD/analysis
- Antigens, Neoplasm/immunology
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Transplantation/immunology
- Bone Marrow Transplantation/methods
- Coculture Techniques
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Female
- Flow Cytometry
- Genes, MHC Class I/genetics
- Genes, MHC Class I/immunology
- Immunophenotyping
- Interferon-gamma/metabolism
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/secondary
- Lymphocyte Activation/immunology
- Lymphocyte Depletion
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Vaccination
Collapse
Affiliation(s)
- W Asavaroengchai
- Department of Surgery and Tumor Immunology and Immunotherapy Program of the Comprehensive Cancer Center and Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
1691
|
Rharbaoui F, Bruder D, Vidakovic M, Ebensen T, Buer J, Guzmán CA. Characterization of a B220+Lymphoid Cell Subpopulation with Immune Modulatory Functions in Nasal-Associated Lymphoid Tissues. THE JOURNAL OF IMMUNOLOGY 2005; 174:1317-24. [PMID: 15661888 DOI: 10.4049/jimmunol.174.3.1317] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Complex mechanisms operate on mucosal tissues to regulate immune responsiveness and tolerance. When the lymphocyte subpopulations from murine nasal-associated lymphoid tissues (NALT) were characterized, we observed an accumulation of B220(low)CD3(low)CD4(-)CD8(-)CD19(-)c-Kit(+) cells. TCR transgenic mice and athymic mice were used for monitoring T cell lineage and the presence of extrathymic T cell precursors. The majority of cells from NALT exhibited a T cell precursor phenotype (CD4(-)CD8(-)CD19(-)c-Kit(+)). Fas-independent apoptosis was their main mechanism of cell death. We also demonstrated that B220(low)CD4(-)CD8(-)CD19(-) cells from NALT exhibited the potential to down-regulate the activation of mature T cells. However, the innate immunity receptor TLR2 was also highly expressed by this cell subpopulation. Moreover, nasal stimulation with a TLR2/6 agonist resulted in a partial activation of the double-negative cells. These results suggest that the immune responses in NALT may be in part modulated by a cell subpopulation that maintains a tolerogenic milieu by its proapoptotic status and suppressive activity, which can be reverted through stimulation of a TLR signaling cascade.
Collapse
Affiliation(s)
- Faiza Rharbaoui
- Division of Microbiology, GBF-German Research Center for Biotechnology, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
1692
|
Mezyk-Kopeć R, Bzowska M, Bzowska M, Mickowska B, Mak P, Potempa J, Bereta J. Effects of elastase and cathepsin G on the levels of membrane and soluble TNFα. Biol Chem 2005; 386:801-11. [PMID: 16201876 DOI: 10.1515/bc.2005.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neutrophil elastase (NE) and cathepsin G (CG), the proteolytic enzymes localized in azurophil granules of neutrophils (PMN), are involved in PMN responses to various stimuli. When released at sites of inflammation, they participate in the degradation of numerous proteins involved in the regulation of the immune response. In this study, we employed ADAM17(-/-) fibroblasts stably transfected with cDNA of human pro-tumor necrosis factor alpha (proTNFalpha) (ADAM17(-/-)TNF(+)) to investigate the effects of NE and CG on shedding and degradation of TNFalpha. Both NE and CG were found to diminish the level of membrane TNFalpha (mTNFalpha) as measured by flow cytometry. This process was accompanied by the accumulation of biologically active soluble TNFalpha (sTNFalpha) in the culture medium, as determined by an increase in both the cytotoxic activity of TNFalpha and its ability to serve as a co-stimulator in the induction of inducible nitric oxide synthase (iNOS). However, in contrast to CG, NE at high concentrations was able to degrade sTNFalpha released from the cell surface. Using soluble recombinant human TNFalpha, we identified Val(93)-Ala(94) and Val(117)-Glu(118) as the NE cleavage sites within the sTNFalpha molecule. Taken together, the ability of NE and CG to modulate levels of membrane and soluble forms of TNFalpha may contribute to the proinflammatory activity of neutrophils.
Collapse
Affiliation(s)
- Renata Mezyk-Kopeć
- Department of Cell Biochemistry, Faculty of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
1693
|
Minagawa R, Okano S, Tomita Y, Kishihara K, Yamada H, Nomoto K, Shimada M, Maehara Y, Sugimachi K, Yoshikai Y, Nomoto K. The critical role of Fas-Fas ligand interaction in donor-specific transfusion-induced tolerance to H-Y antigen. Transplantation 2004; 78:799-806. [PMID: 15385797 DOI: 10.1097/01.tp.0000129799.96439.6f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Donor-specific transfusion (DST) has been clinically used to enhance the survival of transplanted organs, and it has been shown in mice to induce tolerance to male (H-Y) antigen (Ag). Although the biologic mechanisms that initiate and maintain DST-induced tolerance involve clonal deletion, induction of anergy, and generation of regulatory cells, the molecules essential to tolerance induction are still unclear. In this study, we investigated the role of Fas-FasL interaction in DST-induced tolerance to H-Y Ag. METHODS C57BL/6 (B6) or B6-Fas(lpr) (lpr) female mice were intravenously injected with B6, lpr, or B6-FasL(gld) (gld) male spleen cells (SC). B6 male skin grafts, mixed lymphocyte reaction (MLR) assay, and cytotoxicity assay (CTL) were performed 7 days after DST. In some experiments, purified B-cells were used as transfused cells. RESULTS B6 female mice treated with B6 male SC permanently accepted B6 male skins, whereas untreated B6 or lpr female mice rejected B6 male skins. On the other hand, B6 female mice treated with gld male SC acceleratingly rejected male skin, as did lpr female mice treated with B6 or gld male SC. The recipient mice in the experimental groups, in which DST resulted in the accelerated rejection of the skin grafts, had strong allo-responses to H-Y Ag in MLR and CTL. Further, B6 female mice treated with gld male B-cells acceleratingly rejected male skins, whereas B6 female mice treated with B6 or lpr male B-cells from mice accepted male skins. CONCLUSIONS These findings suggest that the interaction between FasL upon infused SC, especially upon B-cells and Fas in a recipient, is essential in DST-induced tolerance to H-Y Ag.
Collapse
Affiliation(s)
- Ryosuke Minagawa
- Department of Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1694
|
Hadj-Slimane R, Chelbi-Alix MK, Tovey MG, Bobé P. An Essential Role for IFN-α in the Overexpression of Fas Ligand on MRL/lpr Lymphocytes and on Their Spontaneous Fas-Mediated Cytotoxic Potential. J Interferon Cytokine Res 2004; 24:717-28. [PMID: 15684739 DOI: 10.1089/jir.2004.24.717] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lymphocytes from aged autoimmune MRL/lpr mice overexpress Fas ligand (FasL), and are cytotoxic against Fas+ target cells. This cytotoxic potential is only partly due to FasL, as wild-type MRL+/+ lymphocytes are not able to kill Fas+ targets after induction of FasL. In addition, serum levels of interferon-alpha (IFN-alpha) increase in parallel with the Fas-dependent cytotoxic potential of lymphocytes from MRL/lpr mice as they age. To understand the mechanisms underlying these observations, combined suppression subtractive hybridization (SSH) and RT-PCR were used to study differential gene expression in splenocytes from MRL/lpr mice compared with splenocytes from MRL+/+ mice. Twenty-two genes were upregulated transcriptionally in MRL/lpr splenocytes compared with their MRL+/+ counterparts. Furthermore, 9 of these genes were also upregulated after treatment of MRL/lpr splenocytes with IFN-alpha, and 4 were strongly downregulated. MRL/lpr lymphocytes were also found to be hyperresponsive to IFN-alpha. Thus, MRL/lpr lymphocytes overexpressed mRNA for the IFN-alpha receptor (IFNAR-1 and IFNAR-2) chains of the IFN-alpha/beta receptor and exhibited high endogenous levels of both Stat1 and phosphorylated Stat1 proteins. Lymphocytes from young MRL/lpr mice, with low Fas-dependent cytotoxic activity, were found to become highly cytotoxic against Fas+ targets after treatment with IFN-alpha. These data suggest that IFN-alpha plays an important role in the physiopathology of the systemic lupus erythematosus (SLE)-like syndrome that occurs in MRL/lpr mice.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cytotoxicity, Immunologic/genetics
- DNA, Complementary/analysis
- DNA-Binding Proteins/metabolism
- Fas Ligand Protein
- Gene Expression Regulation
- Interferon-alpha/blood
- Interferon-alpha/pharmacology
- Interferon-alpha/physiology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred MRL lpr
- Nucleic Acid Hybridization
- Phosphorylation
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Receptor, Interferon alpha-beta
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- STAT1 Transcription Factor
- Spleen/cytology
- Spleen/metabolism
- Trans-Activators/metabolism
- Transcription, Genetic/drug effects
- Transcriptional Activation
Collapse
Affiliation(s)
- Réda Hadj-Slimane
- Laboratoire d'Oncologie Virale, CNRS UPR 9045, Institut André Lwoff, Villejuif, France
| | | | | | | |
Collapse
|
1695
|
Fischer K, Voelkl S, Heymann J, Przybylski GK, Mondal K, Laumer M, Kunz-Schughart L, Schmidt CA, Andreesen R, Mackensen A. Isolation and characterization of human antigen-specific TCR alpha beta+ CD4(-)CD8- double-negative regulatory T cells. Blood 2004; 105:2828-35. [PMID: 15572590 DOI: 10.1182/blood-2004-07-2583] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Down-regulation of immune responses by regulatory T (Treg) cells is an important mechanism involved in the induction of tolerance to allo-antigens (Ags). Recently, a novel subset of Ag-specific T-cell receptor (TCR)alpha beta+ CD4(-)CD8- (double-negative [DN]) Treg cells has been found to be able to prevent the rejection of skin and heart allografts by specifically inhibiting the function of antigraft-specific CD8+ T cells. Here we demonstrate that peripheral DN Treg cells are present in humans, where they constitute about 1% of total CD3+ T cells, and consist of both naive and Ag-experienced cells. Similar to murine DN Treg cells, human DN Treg cells are able to acquire peptide-HLA-A2 complexes from antigen-presenting cells by cell contact-dependent mechanisms. Furthermore, such acquired peptide-HLA complexes appear to be functionally active, in that CD8+ T cells specific for the HLA-A2-restricted self-peptide, Melan-A, became sensitive to apoptosis by neighboring DN T cells after acquisition of Melan-A-HLA-A2 complexes and revealed a reduced proliferative response. These results demonstrate for the first time that a sizable population of peripheral DN Treg cells, which are able to suppress Ag-specific T cells, exists in humans. DN Treg cells may serve to limit clonal expansion of allo-Ag-specific T cells after transplantation.
Collapse
Affiliation(s)
- Karin Fischer
- Department of Hematology and Oncology, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93042 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1696
|
Paxillin selectively associates with constitutive and chemoattractant-induced high-affinity α4β1 integrins: implications for integrin signaling. Blood 2004; 104:2818-24. [DOI: 10.1182/blood-2003-12-4402] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractLeukocyte α4β1 integrins regulate hematopoietic and lymphoid development, as well as the emigration of circulating cells to sites of inflammation. Because vascular cell adhesion molecule-1 (VCAM-1) binding to high-affinity α4β1 is stable, these integrins can be detected and selectively precipitated from cell lysates using VCAM-1/Fc. With this approach, high-affinity α4β1 integrin expression was demonstrated on lymphocytes in the bone marrow, thymus, spleen, and the peritoneal cavity of normal mice, but not in peripheral lymph nodes. Immature lymphocytes preferentially expressed high-affinity α4β1 in the bone marrow and thymus. Paxillin is a cytoplasmic adaptor molecule that can bind to the α4 tail and initiate signaling. Paxillin was associated selectively with high-affinity integrins that were isolated from human Jurkat T cells or from murine tissues, and blotting with a phospho-specific antibody demonstrated that Ser988 in the α4 cytoplasmic tail was dephosphorylated in high-affinity but not low-affinity integrins. A rapid and transient α4β1 affinity up-regulation in formyl peptide receptor-transfected U937 cells stimulated with N-formyl-methyonyl-leucyl-phenylalanine (fMLP) correlated temporally with induced paxillin binding to α4 integrins. These data suggest that ligand binding to high-affinity α4β1 integrins may initiate outside-in signaling cascades through paxillin that regulate leukocyte maturation and emigration. (Blood. 2004;104:2818-2824)
Collapse
|
1697
|
Affiliation(s)
- Alberto Sánchez-Fueyo
- Liver Unit, Institut de Malalties Digestives, Hospital Clínic de Barcelona, Institut d'Investigacions Biomédiques August PiSunyer, Universitat de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
1698
|
Abstract
The induction and maintenance of immune tolerance to transplanted tissues constitute an active process involving multiple mechanisms that work cooperatively to prevent graft rejection. These mechanisms are similar to inherent tolerance toward self antigens and have a requirement for active immunoregulation, largely T cell mediated, that promotes specific unresponsiveness to donor alloantigens. This review outlines our current understanding of the Treg subsets that contribute to allotolerance and the mechanisms by which these cells exert their effects as well as their potential for therapy.
Collapse
Affiliation(s)
- Patrick T Walsh
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6144, USA
| | | | | |
Collapse
|
1699
|
Avvakumov N, Kajon AE, Hoeben RC, Mymryk JS. Comprehensive sequence analysis of the E1A proteins of human and simian adenoviruses. Virology 2004; 329:477-92. [PMID: 15518825 DOI: 10.1016/j.virol.2004.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/22/2004] [Accepted: 08/09/2004] [Indexed: 01/27/2023]
Abstract
Despite extensive study of human adenovirus type 5 E1A, surprisingly little is known about the E1A proteins of other adenoviruses. We report here a comprehensive analysis of the sequences of 34 E1A proteins. These represent all six primate adenovirus subgroups and include all human representatives of subgroups A, C, E, and F, eight from subgroup B, nine from subgroup D, and seven simian adenovirus E1A sequences. We observed that many, but not all, functional domains identified in human adenovirus type 5 E1A are recognizably present in the other E1A proteins. Importantly, we identified highly conserved sequences without known activities or binding partners, suggesting that previously unrecognized determinants of E1A function remain to be uncovered. Overall, our analysis forms a solid foundation for future study of the activities and features of the E1A proteins of different serotypes and identifies new avenues for investigating E1A function.
Collapse
Affiliation(s)
- N Avvakumov
- Department of Microbiology and Immunology, London Regional Cancer Centre, The University of Western Ontario, London, Ontario, Canada N6A 4L6
| | | | | | | |
Collapse
|
1700
|
Faubert A, Lessard J, Sauvageau G. Are genetic determinants of asymmetric stem cell division active in hematopoietic stem cells? Oncogene 2004; 23:7247-55. [PMID: 15378084 DOI: 10.1038/sj.onc.1207944] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stem cells have acquired a golden glow in the past few years as they represent possible tools for reversing the damage wreak on organs. These cells are found not only in major regenerative tissues, such as the epithelia, blood and testes, but also in 'static tissues', such as the nervous system and liver, where they play a central role in tissue growth and maintenance. The mechanism by which stem cells maintain populations of highly differentiated, short-lived cells seems to involve a critical balance between alternate fates: daughter cells either maintain stem cell identity or initiate differentiation. Recent studies in lower organisms have unveiled the regulatory mechanisms of asymmetric stem cell divisions. In these models, the surrounding environment likely provides key instructive signals for the cells to choose one fate over another. Our understanding now extends to the intrinsic mechanisms of cell polarity that influence asymmetrical stem cell divisions. This article focuses on the genetic determinants of asymmetric stem cell divisions in lower organisms as a model for studying the process of self-renewal of mammalian hematopoietic stem cells.
Collapse
Affiliation(s)
- Amélie Faubert
- Laboratory of Molecular Genetics of Hematopoietic Stem Cells, Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | | | | |
Collapse
|