1651
|
Hashimoto M, Asai A, Kawagishi H, Mikawa R, Iwashita Y, Kanayama K, Sugimoto K, Sato T, Maruyama M, Sugimoto M. Elimination of p19 ARF-expressing cells enhances pulmonary function in mice. JCI Insight 2016; 1:e87732. [PMID: 27699227 DOI: 10.1172/jci.insight.87732] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Senescent cells accumulate in many tissues as animals age and are considered to underlie several aging-associated pathologies. The tumor suppressors p19ARF and p16INK4a, both of which are encoded in the CDKN2A locus, play critical roles in inducing and maintaining permanent cell cycle arrest during cellular senescence. Although the elimination of p16INK4a-expressing cells extends the life span of the mouse, it is unclear whether tissue function is restored by the elimination of senescent cells in aged animals and whether and how p19ARF contributes to tissue aging. The aging-associated decline in lung function is characterized by an increase in compliance as well as pathogenic susceptibility to pulmonary diseases. We herein demonstrated that pulmonary function in 12-month-old mice was reversibly restored by the elimination of p19ARF-expressing cells. The ablation of p19ARF-expressing cells using a toxin receptor-mediated cell knockout system ameliorated aging-associated lung hypofunction. Furthermore, the aging-associated gene expression profile was reversed after the elimination of p19ARF. Our results indicate that the aging-associated decline in lung function was, at least partly, attributed to p19ARF and was recovered by eliminating p19ARF-expressing cells.
Collapse
Affiliation(s)
- Michihiro Hashimoto
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Azusa Asai
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hiroyuki Kawagishi
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Ryuta Mikawa
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yuji Iwashita
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | | | - Kazushi Sugimoto
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, Tsu, Mie, Japan
| | - Tadashi Sato
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Mitsuo Maruyama
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Masataka Sugimoto
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
1652
|
Matjusaitis M, Chin G, Sarnoski EA, Stolzing A. Biomarkers to identify and isolate senescent cells. Ageing Res Rev 2016; 29:1-12. [PMID: 27212009 DOI: 10.1016/j.arr.2016.05.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 12/25/2022]
Abstract
Aging is the main risk factor for many degenerative diseases and declining health. Senescent cells are part of the underlying mechanism for time-dependent tissue dysfunction. These cells can negatively affect neighbouring cells through an altered secretory phenotype: the senescence-associated secretory phenotype (SASP). The SASP induces senescence in healthy cells, promotes tumour formation and progression, and contributes to other age-related diseases such as atherosclerosis, immune-senescence and neurodegeneration. Removal of senescent cells was recently demonstrated to delay age-related degeneration and extend lifespan. To better understand cell aging and to reap the benefits of senescent cell removal, it is necessary to have a reliable biomarker to identify these cells. Following an introduction to cellular senescence, we discuss several classes of biomarkers in the context of their utility in identifying and/or removing senescent cells from tissues. Although senescence can be induced by a variety of stimuli, senescent cells share some characteristics that enable their identification both in vitro and in vivo. Nevertheless, it may prove difficult to identify a single biomarker capable of distinguishing senescence in all cell types. Therefore, this will not be a comprehensive review of all senescence biomarkers but rather an outlook on technologies and markers that are most suitable to identify and isolate senescent cells.
Collapse
Affiliation(s)
- Mantas Matjusaitis
- Scottish Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, England, UK
| | - Greg Chin
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ethan Anders Sarnoski
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Alexandra Stolzing
- Institute IZBI, University of Leipzig, Leipzig, Germany; Loughborough University, Loughborough, England, UK.
| |
Collapse
|
1653
|
Wang Y, Boerma M, Zhou D. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases. Radiat Res 2016; 186:153-61. [PMID: 27387862 DOI: 10.1667/rr14445.1] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells.
Collapse
Affiliation(s)
- Yingying Wang
- Division of Radiation Health Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205
| | - Marjan Boerma
- Division of Radiation Health Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205
| | - Daohong Zhou
- Division of Radiation Health Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
1654
|
Satyamitra MM, DiCarlo AL, Taliaferro L. Understanding the Pathophysiology and Challenges of Development of Medical Countermeasures for Radiation-Induced Vascular/Endothelial Cell Injuries: Report of a NIAID Workshop, August 20, 2015. Radiat Res 2016; 186:99-111. [PMID: 27387859 DOI: 10.1667/rr14436.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
After the events of September 11, 2001, a decade of research on the development of medical countermeasures (MCMs) to treat victims of a radiological incident has yielded two FDA-approved agents to mitigate acute radiation syndrome. These licensed agents specifically target the mitigation of radiation-induced neutropenia and infection potential, while the ramifications of the exposure event in a public health emergency incident could include the entire body, causing additional acute and/or delayed organ/tissue injuries. Anecdotal data as well as recent findings from both radiation accident survivors and animal experiments implicate radiation-induced injury or dysfunction of the vascular endothelium leading to tissue and organ injuries. There are significant gaps in our understanding of the disease processes and progression, as well as the optimum approaches to develop medical countermeasures to mitigate radiation vascular injury. To address this issue, the Radiation and Nuclear Countermeasures Program of the National Institute of Allergy and Infectious Diseases (NIAID) organized a one-day workshop to examine the current state of the science in radiation-induced vascular injuries and organ dysfunction, the natural history of the pathophysiology and the product development maturity of potential medical countermeasures to treat these injuries. Meeting presentations were followed by a NIAID-led open discussion among academic investigators, industry researchers and government agency representatives. This article provides a summary of these presentations and subsequent discussion from the workshop.
Collapse
Affiliation(s)
- Merriline M Satyamitra
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Andrea L DiCarlo
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Lanyn Taliaferro
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| |
Collapse
|
1655
|
Selman M, López-Otín C, Pardo A. Age-driven developmental drift in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir J 2016; 48:538-52. [DOI: 10.1183/13993003.00398-2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and usually lethal disease of unknown aetiology. A growing body of evidence supports that IPF represents an epithelial-driven process characterised by aberrant epithelial cell behaviour, fibroblast/myofibroblast activation and excessive accumulation of extracellular matrix with the subsequent destruction of the lung architecture. The mechanisms involved in the abnormal hyper-activation of the epithelium are unclear, but we propose that recapitulation of pathways and processes critical to embryological development associated with a tissue specific age-related stochastic epigenetic drift may be implicated. These pathways may also contribute to the distinctive behaviour of IPF fibroblasts. Genomic and epigenomic studies have revealed that wingless/Int, sonic hedgehog and other developmental signalling pathways are reactivated and deregulated in IPF. Moreover, some of these pathways cross-talk with transforming growth factor-β activating a profibrotic feedback loop. The expression pattern of microRNAs is also dysregulated in IPF and exhibits a similar expression profile to embryonic lungs. In addition, senescence, a process usually associated with ageing, which occurs early in alveolar epithelial cells of IPF lungs, likely represents a conserved programmed developmental mechanism. Here, we review the major developmental pathways that get twisted in IPF, and discuss the connection with ageing and potential therapeutic approaches.
Collapse
|
1656
|
Mendelsohn AR, Larrick JW. Telomerase Reverse Transcriptase and Peroxisome Proliferator-Activated Receptor γ Co-Activator-1α Cooperate to Protect Cells from DNA Damage and Mitochondrial Dysfunction in Vascular Senescence. Rejuvenation Res 2016; 18:479-83. [PMID: 26414604 DOI: 10.1089/rej.2015.1780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Reduced telomere length with increasing age in dividing cells has been implicated in contributing to the pathologies of human aging, which include cardiovascular and metabolic disorders, through induction of cellular senescence. Telomere shortening results from the absence of telomerase, an enzyme required to maintain telomere length. Telomerase reverse transcriptase (TERT), the protein subunit of telomerase, is expressed only transiently in a subset of adult somatic cells, which include stem cells and smooth muscle cells. A recent report from Xiong and colleagues demonstrates a pivotal role for the transcription co-factor peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α) in maintaining TERT expression and preventing vascular senescence and atherosclerosis in mice. Ablation of PGC-1α reduced TERT expression and increased DNA damage and reactive oxygen species (ROS), resulting in shortened telomeres and vascular senescence. In the ApoE(-/-) mouse model of atherosclerosis, forced expression of PGC-1α increased expression of TERT, extended telomeres, and reversed genomic DNA damage, vascular senescence, and the development of atherosclerotic plaques. Alpha lipoic acid (ALA) stimulated expression of PGC-1α and TERT and reversed DNA damage, vascular senescence, and atherosclerosis, similarly to ectopic expression of PGC-1α. ALA stimulated cyclic adenosine monophosphate (cAMP) signaling, which in turn activated the cAMP response element-binding protein (CREB), a co-factor for PGC-1α expression. The possibility that ALA might induce TERT to extend telomeres in human cells suggests that ALA may be useful in treating atherosclerosis and other aging-related diseases. However, further investigation is needed to identify whether ALA induces TERT in human cells, which cell types are susceptible, and whether such changes have clinical significance.
Collapse
Affiliation(s)
- Andrew R Mendelsohn
- Panorama Research Institute and Regenerative Sciences Institute , Sunnyvale, California
| | - James W Larrick
- Panorama Research Institute and Regenerative Sciences Institute , Sunnyvale, California
| |
Collapse
|
1657
|
Lees H, Walters H, Cox LS. Animal and human models to understand ageing. Maturitas 2016; 93:18-27. [PMID: 27372369 DOI: 10.1016/j.maturitas.2016.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
Abstract
Human ageing is the gradual decline in organ and tissue function with increasing chronological time, leading eventually to loss of function and death. To study the processes involved over research-relevant timescales requires the use of accessible model systems that share significant similarities with humans. In this review, we assess the usefulness of various models, including unicellular yeasts, invertebrate worms and flies, mice and primates including humans, and highlight the benefits and possible drawbacks of each model system in its ability to illuminate human ageing mechanisms. We describe the strong evolutionary conservation of molecular pathways that govern cell responses to extracellular and intracellular signals and which are strongly implicated in ageing. Such pathways centre around insulin-like growth factor signalling and integration of stress and nutritional signals through mTOR kinase. The process of cellular senescence is evaluated as a possible underlying cause for many of the frailties and diseases of human ageing. Also considered is ageing arising from systemic changes that cannot be modelled in lower organisms and instead require studies either in small mammals or in primates. We also touch briefly on novel therapeutic options arising from a better understanding of the biology of ageing.
Collapse
Affiliation(s)
- Hayley Lees
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Hannah Walters
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Lynne S Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
1658
|
Mendelsohn AR, Larrick JW. Stem Cell Depletion by Global Disorganization of the H3K9me3 Epigenetic Marker in Aging. Rejuvenation Res 2016; 18:371-5. [PMID: 26160351 DOI: 10.1089/rej.2015.1742] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epigenomic change and stem cell exhaustion are two of the hallmarks of aging. Accumulation of molecular damage is thought to underlie aging, but the precise molecular composition of the damage remains controversial. That some aging phenotypes, especially those that result from impaired stem cell function, are reversible suggest that such "damage" is repairable. Evidence is accumulating that dysfunction in aging stem cells results from increasing, albeit, subtle disorganization of the epigenome over time. Zhang et al. (2015) report that decreasing levels of WRN, Werner's syndrome (WS) helicase, with increasing age results in loss of heterochromatin marks in mesenchymal stem cells (MSCs) and correlates with an increased rate of cellular senescence. Although WRN plays a role in DNA repair, WRN exerted its effects on aging via maintaining heterochromatin, evidenced by reduced levels of interacting chromatin regulators heterochromatin protein 1α (HP1α), suppressor of variegation 3-9 homolog 1 (SUV39H1), and lamina-associated polypeptide 2β (LAP2β) as well as modified histone H3K9me3. Reducing expression of chromatin modeling co-factors SUV39H1 or HP1α in wild-type MSCs recapitulates the phenotype of WRN deficiency, resulting in reduced H3K9me3 levels and increased senescence without induction of markers of DNA damage, suggesting that chromatin disorganization and not DNA damage is responsible for the pathology of WS during aging in animals. Ectopic expression of HP1α restored H3K9me3 levels and repressed senescence in WRN-deficient MSCs. That HP1α can also suppress senescence in Hutchinson-Gilford progeria syndrome (HGPS) and extend life span in flies when over-expressed suggests that HP1α and H3K9me3 play conserved roles in maintenance of cell state. H3K9me3 levels are dynamic and expected to be potentially responsive to manipulation by extrinsic factors. Recent reports that migration inhibitory factor (MIF) or periodic fasting rejuvenate old MSCs provide the opportunity to link intrinsic and extrinsic mechanisms of aging in novel and potentially medically important ways and may lead to anti-aging treatments that reorganize the epigenome to rejuvenate cells and tissues.
Collapse
Affiliation(s)
- Andrew R Mendelsohn
- Panorama Research Institute and Regenerative Sciences Institute , Sunnyvale, California
| | - James W Larrick
- Panorama Research Institute and Regenerative Sciences Institute , Sunnyvale, California
| |
Collapse
|
1659
|
Ribezzo F, Shiloh Y, Schumacher B. Systemic DNA damage responses in aging and diseases. Semin Cancer Biol 2016; 37-38:26-35. [PMID: 26773346 PMCID: PMC4886830 DOI: 10.1016/j.semcancer.2015.12.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/28/2015] [Accepted: 12/31/2015] [Indexed: 01/09/2023]
Abstract
The genome is constantly attacked by a variety of genotoxic insults. The causal role for DNA damage in aging and cancer is exemplified by genetic defects in DNA repair that underlie a broad spectrum of acute and chronic human disorders that are characterized by developmental abnormalities, premature aging, and cancer predisposition. The disease symptoms are typically tissue-specific with uncertain genotype-phenotype correlation. The cellular DNA damage response (DDR) has been extensively investigated ever since yeast geneticists discovered DNA damage checkpoint mechanisms, several decades ago. In recent years, it has become apparent that not only cell-autonomous but also systemic DNA damage responses determine the outcome of genome instability in organisms. Understanding the mechanisms of non-cell-autonomous DNA damage responses will provide important new insights into the role of genome instability in human aging and a host of diseases including cancer and might better explain the complex phenotypes caused by genome instability.
Collapse
Affiliation(s)
- Flavia Ribezzo
- Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD) Research Center, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Genetic Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD) Research Center, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
1660
|
Schafer MJ, White TA, Evans G, Tonne JM, Verzosa GC, Stout MB, Mazula DL, Palmer AK, Baker DJ, Jensen MD, Torbenson MS, Miller JD, Ikeda Y, Tchkonia T, van Deursen JM, Kirkland JL, LeBrasseur NK. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue. Diabetes 2016; 65:1606-15. [PMID: 26983960 PMCID: PMC4878429 DOI: 10.2337/db15-0291] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 02/29/2016] [Indexed: 12/12/2022]
Abstract
Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span.
Collapse
Affiliation(s)
- Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | - Glenda Evans
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | - Jason M Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | | | - Michael B Stout
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Daniel L Mazula
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | - Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN
| | - Michael D Jensen
- Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN
| | | | - Jordan D Miller
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN Department of Surgery, Mayo Clinic, Rochester, MN
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | - Jan M van Deursen
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| |
Collapse
|
1661
|
Moskalev A, Chernyagina E, Tsvetkov V, Fedintsev A, Shaposhnikov M, Krut'ko V, Zhavoronkov A, Kennedy BK. Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell 2016; 15:407-15. [PMID: 26970234 PMCID: PMC4854916 DOI: 10.1111/acel.12463] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 01/15/2023] Open
Abstract
In the coming decades, a massive shift in the aging segment of the population will have major social and economic consequences around the world. One way to offset this increase is to expedite the development of geroprotectors, substances that slow aging, repair age‐associated damage and extend healthy lifespan, or healthspan. While over 200 geroprotectors are now reported in model organisms and some are in human use for specific disease indications, the path toward determining whether they affect aging in humans remains obscure. Translation to the clinic is hampered by multiple issues including absence of a common set of criteria to define, select, and classify these substances, given the complexity of the aging process and their enormous diversity in mechanism of action. Translational research efforts would benefit from the formation of a scientific consensus on the following: the definition of ‘geroprotector’, the selection criteria for geroprotectors, a comprehensive classification system, and an analytical model. Here, we review current approaches to selection and put forth our own suggested selection criteria. Standardizing selection of geroprotectors will streamline discovery and analysis of new candidates, saving time and cost involved in translation to clinic.
Collapse
Affiliation(s)
- Alexey Moskalev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences Moscow 119991 Russia
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences Syktyvkar 167982 Russia
- Moscow Institute of Physics and Technology Dolgoprudny 141700 Russia
| | | | - Vasily Tsvetkov
- Moscow Institute of Physics and Technology Dolgoprudny 141700 Russia
- The Research Institute for Translational Medicine Pirogov Russian National Research Medical University Moscow 117997 Russia
| | - Alexander Fedintsev
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences Syktyvkar 167982 Russia
| | - Mikhail Shaposhnikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences Moscow 119991 Russia
| | - Vyacheslav Krut'ko
- Institute for Systems Analysis Russian Academy of Sciences Moscow 117312 Russia
| | - Alex Zhavoronkov
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences Syktyvkar 167982 Russia
- D. Rogachev FRC Center for Pediatric Hematology, Oncology and Immunology Samory Machela 1 Moscow 117997 Russia
- The Biogerontology Research Foundation 2354 Chynoweth House, Trevissome Park, Blackwater, Truro Cornwall TR4 8UN UK
| | | |
Collapse
|
1662
|
The harder you run, the longer (and smoother) the road: exercise, muscle and ageing. Biogerontology 2016; 17:431-3. [PMID: 27241673 DOI: 10.1007/s10522-016-9649-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
1663
|
Zhu Y, Tchkonia T, Fuhrmann‐Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson KO, Giles CB, Wren JD, Niedernhofer LJ, Robbins PD, Kirkland JL. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 2016; 15:428-35. [PMID: 26711051 PMCID: PMC4854923 DOI: 10.1111/acel.12445] [Citation(s) in RCA: 762] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2015] [Indexed: 12/29/2022] Open
Abstract
Clearing senescent cells extends healthspan in mice. Using a hypothesis‐driven bioinformatics‐based approach, we recently identified pro‐survival pathways in human senescent cells that contribute to their resistance to apoptosis. This led to identification of dasatinib (D) and quercetin (Q) as senolytics, agents that target some of these pathways and induce apoptosis preferentially in senescent cells. Among other pro‐survival regulators identified was Bcl‐xl. Here, we tested whether the Bcl‐2 family inhibitors, navitoclax (N) and TW‐37 (T), are senolytic. Like D and Q, N is senolytic in some, but not all types of senescent cells: N reduced viability of senescent human umbilical vein epithelial cells (HUVECs), IMR90 human lung fibroblasts, and murine embryonic fibroblasts (MEFs), but not human primary preadipocytes, consistent with our previous finding that Bcl‐xl siRNA is senolytic in HUVECs, but not preadipocytes. In contrast, T had little senolytic activity. N targets Bcl‐2, Bcl‐xl, and Bcl‐w, while T targets Bcl‐2, Bcl‐xl, and Mcl‐1. The combination of Bcl‐2, Bcl‐xl, and Bcl‐w siRNAs was senolytic in HUVECs and IMR90 cells, while combination of Bcl‐2, Bcl‐xl, and Mcl‐1 siRNAs was not. Susceptibility to N correlated with patterns of Bcl‐2 family member proteins in different types of human senescent cells, as has been found in predicting response of cancers to N. Thus, N is senolytic and acts in a potentially predictable cell type‐restricted manner. The hypothesis‐driven, bioinformatics‐based approach we used to discover that dasatinib (D) and quercetin (Q) are senolytic can be extended to increase the repertoire of senolytic drugs, including additional cell type‐specific senolytic agents.
Collapse
Affiliation(s)
- Yi Zhu
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester MN USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester MN USA
| | | | - Haiming M. Dai
- Center of Medical Physics and Technology Hefei Institutes of Physical Sciences Hefei China
| | - Yuanyuan Y. Ling
- Department of Metabolism and Aging The Scripps Research Institute Jupiter FL USA
| | - Michael B. Stout
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester MN USA
| | | | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester MN USA
| | - Kurt O. Johnson
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester MN USA
| | - Cory B. Giles
- Arthritis and Clinical Immunology Research Program Oklahoma Medical Research Foundation Oklahoma City OK USA
| | - Jonathan D. Wren
- Arthritis and Clinical Immunology Research Program Oklahoma Medical Research Foundation Oklahoma City OK USA
| | | | - Paul D. Robbins
- Department of Metabolism and Aging The Scripps Research Institute Jupiter FL USA
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester MN USA
| |
Collapse
|
1664
|
Chang NC, Chevalier FP, Rudnicki MA. Satellite Cells in Muscular Dystrophy - Lost in Polarity. Trends Mol Med 2016; 22:479-496. [PMID: 27161598 PMCID: PMC4885782 DOI: 10.1016/j.molmed.2016.04.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022]
Abstract
Recent findings employing the mdx mouse model for Duchenne muscular dystrophy (DMD) have revealed that muscle satellite stem cells play a direct role in contributing to disease etiology and progression of DMD, the most common and severe form of muscular dystrophy. Lack of dystrophin expression in DMD has critical consequences in satellite cells including an inability to establish cell polarity, abrogation of asymmetric satellite stem-cell divisions, and failure to enter the myogenic program. Thus, muscle wasting in dystrophic mice is not only caused by myofiber fragility but is exacerbated by intrinsic satellite cell dysfunction leading to impaired regeneration. Despite intense research and clinical efforts, there is still no effective cure for DMD. In this review we highlight recent research advances in DMD and discuss the current state of treatment and, importantly, how we can incorporate satellite cell-targeted therapeutic strategies to correct satellite cell dysfunction in DMD.
Collapse
Affiliation(s)
- Natasha C Chang
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Fabien P Chevalier
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
1665
|
Huffman DM, Schafer MJ, LeBrasseur NK. Energetic interventions for healthspan and resiliency with aging. Exp Gerontol 2016; 86:73-83. [PMID: 27260561 DOI: 10.1016/j.exger.2016.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
Abstract
Several behavioral and pharmacological strategies improve longevity, which is indicative of delayed organismal aging, with the most effective interventions extending both life- and healthspan. In free living creatures, maintaining health and function into old age requires resilience against a multitude of stressors. Conversely, in experimental settings, conventional housing of rodents limits exposure to such challenges, thereby obscuring an accurate assessment of resilience. Caloric restriction (CR) and exercise, as well as pharmacologic strategies (resveratrol, rapamycin, metformin, senolytics), are well established to improve indices of health and aging, but some paradoxical effects have been observed on resilience. For instance, CR potently retards the onset of age-related diseases, and improves lifespan to a greater extent than exercise in a variety of models. However, exercise has proven more consistently beneficial to organismal resilience against a broad array of stressors, including infections, surgery, wound healing and frailty. CR can improve cellular stress defenses and protect from frailty, but also impairs the response to infections, bed rest and healing. How an intervention will impact not only longevity, health and function, but also resiliency, is critical to better understanding translational implications. Thus, organismal robustness represents a critical, albeit understudied aspect of aging, which needs more careful attention in order to better inform on how putative age-delaying strategies will impact preservation of health and function in response to stressors with aging in humans.
Collapse
Affiliation(s)
- Derek M Huffman
- Department of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
1666
|
Xu M, Tchkonia T, Kirkland JL. Perspective: Targeting the JAK/STAT pathway to fight age-related dysfunction. Pharmacol Res 2016; 111:152-154. [PMID: 27241018 DOI: 10.1016/j.phrs.2016.05.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/05/2023]
Abstract
Senescent cells accumulate in a variety of tissues with aging. They can develop a senescence-associated secretory phenotype (SASP) that entails secretion of inflammatory cytokines, chemokines, proteases, and growth factors. These SASP components can alter the microenvironment within tissues and affect the function of neighboring cells, which can eventually lead to local and systemic dysfunction. The JAK pathway is more highly activate in senescent than non-senescent cells. Inhibition of the JAK pathway suppresses the SASP in senescent cells and alleviates age-related tissue dysfunction. Targeting senescent cells could be a promising way to improve healthspan in aged population.
Collapse
Affiliation(s)
- Ming Xu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States.
| |
Collapse
|
1667
|
Building for the future: essential infrastructure for rodent ageing studies. Mamm Genome 2016; 27:440-4. [PMID: 27221665 PMCID: PMC4935732 DOI: 10.1007/s00335-016-9646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/13/2016] [Indexed: 11/21/2022]
Abstract
When planning ageing research using rodent models, the logistics of supply, long term housing and infrastructure provision are important factors to take into consideration. These issues need to be prioritised to ensure they meet the requirements of experiments which potentially will not be completed for several years. Although these issues are not unique to this discipline, the longevity of experiments and indeed the animals, requires a high level of consistency and sustainability to be maintained throughout lengthy periods of time. Moreover, the need to access aged stock or material for more immediate experiments poses many issues for the completion of pilot studies and/or short term intervention studies on older models. In this article, we highlight the increasing demand for ageing research, the resources and infrastructure involved, and the need for large-scale collaborative programmes to advance studies in both a timely and a cost-effective way.
Collapse
|
1668
|
Malaquin N, Martinez A, Rodier F. Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Exp Gerontol 2016; 82:39-49. [PMID: 27235851 DOI: 10.1016/j.exger.2016.05.010] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/17/2022]
Abstract
Cellular senescence is historically associated with cancer suppression and aging. Recently, the reach of the senescence genetic program has been extended to include the ability of senescent cells to actively participate in tissue remodelling during many physiological processes, including placental biology, embryonic patterning, wound healing, and tissue stress responses caused by cancer therapy. Besides growth arrest, a significant feature of senescent cells is their ability to modify their immediate microenvironment using a senescence-associated (SA) secretome, commonly termed the SA secretory phenotype (SASP). Among others, the SASP contains growth factors, cytokines, and extracellular proteases that modulate the majority of both the beneficial and detrimental microenvironmental phenotypes caused by senescent cells. The SASP is thus becoming an obvious pharmaceutical target to manipulate SA effects. Herein, we review known signalling pathways underlying the SASP, including the DNA damage response (DDR), stress kinases, inflammasome, alarmin, inflammation- and cell survival-related transcription factors, miRNAs, RNA stability, autophagy, chromatin components, and metabolic regulators. We also describe the SASP as a temporally regulated dynamic sub-program of senescence that can be divided into a rapid DDR-associated phase, an early self-amplification phase, and a late "mature" phase, the late phase currently being the most widely studied SASP signature. Finally, we discuss how deciphering the signalling pathways regulating the SASP reveal targets that can be manipulated to harness the SA effects to benefit therapies for cancer and other age-related pathologies.
Collapse
Affiliation(s)
| | | | - Francis Rodier
- CRCHUM et Institut du cancer de Montréal, Montreal, QC, Canada; Université de Montréal, Département de radiologie, radio-oncologie et médecine nucléaire, Montreal, QC, Canada.
| |
Collapse
|
1669
|
Abstract
Ageing-associated changes that affect articular tissues promote the development of osteoarthritis (OA). Although ageing and OA are closely linked, they are independent processes. Several potential mechanisms by which ageing contributes to OA have been elucidated. This Review focuses on the contributions of the following factors: age-related inflammation (also referred to as 'inflammaging'); cellular senescence (including the senescence-associated secretory phenotype (SASP)); mitochondrial dysfunction and oxidative stress; dysfunction in energy metabolism due to reduced activity of 5'-AMP-activated protein kinase (AMPK), which is associated with reduced autophagy; and alterations in cell signalling due to age-related changes in the extracellular matrix. These various processes contribute to the development of OA by promoting a proinflammatory, catabolic state accompanied by increased susceptibility to cell death that together lead to increased joint tissue destruction and defective repair of damaged matrix. The majority of studies to date have focused on articular cartilage, and it will be important to determine whether similar mechanisms occur in other joint tissues. Improved understanding of ageing-related mechanisms that promote OA could lead to the discovery of new targets for therapies that aim to slow or stop the progression of this chronic and disabling condition.
Collapse
Affiliation(s)
- Richard F Loeser
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, 3300 Thurston Building, Campus Box 7280, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7280, USA
| | - John A Collins
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, 3300 Thurston Building, Campus Box 7280, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7280, USA
| | - Brian O Diekman
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 450 West Drive, Campus Box 7295, Chapel Hill, North Carolina 27599-7295, USA
| |
Collapse
|
1670
|
Bautista-Niño PK, Portilla-Fernandez E, Vaughan DE, Danser AHJ, Roks AJM. DNA Damage: A Main Determinant of Vascular Aging. Int J Mol Sci 2016; 17:E748. [PMID: 27213333 PMCID: PMC4881569 DOI: 10.3390/ijms17050748] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 01/16/2023] Open
Abstract
Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (cGMP) signaling, phosphodiesterase (PDE) 1 and 5, transcription factor NF-E2-related factor-2 (Nrf2), and diet restriction.
Collapse
Affiliation(s)
- Paula K Bautista-Niño
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Eliana Portilla-Fernandez
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Douglas E Vaughan
- Department of Medicine & Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - A H Jan Danser
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
1671
|
Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 2016; 21:1424-35. [PMID: 26646499 DOI: 10.1038/nm.4000] [Citation(s) in RCA: 1575] [Impact Index Per Article: 175.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/28/2015] [Indexed: 12/14/2022]
Abstract
Cellular senescence, a process that imposes permanent proliferative arrest on cells in response to various stressors, has emerged as a potentially important contributor to aging and age-related disease, and it is an attractive target for therapeutic exploitation. A wealth of information about senescence in cultured cells has been acquired over the past half century; however, senescence in living organisms is poorly understood, largely because of technical limitations relating to the identification and characterization of senescent cells in tissues and organs. Furthermore, newly recognized beneficial signaling functions of senescence suggest that indiscriminately targeting senescent cells or modulating their secretome for anti-aging therapy may have negative consequences. Here we discuss current progress and challenges in understanding the stressors that induce senescence in vivo, the cell types that are prone to senesce, and the autocrine and paracrine properties of senescent cells in the contexts of aging and age-related diseases as well as disease therapy.
Collapse
|
1672
|
Triana-Martínez F, Pedraza-Vázquez G, Maciel-Barón LA, Königsberg M. Reflections on the role of senescence during development and aging. Arch Biochem Biophys 2016; 598:40-9. [PMID: 27059850 DOI: 10.1016/j.abb.2016.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 01/07/2023]
Abstract
New and stimulating results have challenged the concept that cellular senescence might not be synonymous with aging. It is indisputable that during aging, senescent cell accumulation has an impact on organismal health. Nevertheless, senescent cells are now known to display physiological roles during embryonic development, during wound healing repair and as a cellular response to stress. The fact that senescence has been found in cells that did not attain their maximal round of replications, nor have metabolic alterations or DNA damage, also challenges the paradigm that senescence is cellular aging, and it is in favor of the idea that cellular senescence is a phenomenon that has a function by itself. Therefore, in order to understand this phenomenon it is important to analyze the relationship between senescence and other cellular responses that have many features in common, such as apoptosis, cancer and autophagy, particularly highlighting their role during development and adulthood.
Collapse
Affiliation(s)
- F Triana-Martínez
- Dept. Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México D.F. 09340, Mexico
| | - G Pedraza-Vázquez
- Dept. Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México D.F. 09340, Mexico
| | - L A Maciel-Barón
- Dept. Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México D.F. 09340, Mexico
| | - M Königsberg
- Dept. Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México D.F. 09340, Mexico.
| |
Collapse
|
1673
|
Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S, Vadai E, Dassa L, Shahar E, Condiotti R, Ben-Porath I, Krizhanovsky V. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun 2016; 7:11190. [PMID: 27048913 PMCID: PMC4823827 DOI: 10.1038/ncomms11190] [Citation(s) in RCA: 690] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 02/26/2016] [Indexed: 01/03/2023] Open
Abstract
Senescent cells, formed in response to physiological and oncogenic stresses, facilitate protection from tumourigenesis and aid in tissue repair. However, accumulation of such cells in tissues contributes to age-related pathologies. Resistance of senescent cells to apoptotic stimuli may contribute to their accumulation, yet the molecular mechanisms allowing their prolonged viability are poorly characterized. Here we show that senescent cells upregulate the anti-apoptotic proteins BCL-W and BCL-XL. Joint inhibition of BCL-W and BCL-XL by siRNAs or the small-molecule ABT-737 specifically induces apoptosis in senescent cells. Notably, treatment of mice with ABT-737 efficiently eliminates senescent cells induced by DNA damage in the lungs as well as senescent cells formed in the epidermis by activation of p53 through transgenic p14(ARF). Elimination of senescent cells from the epidermis leads to an increase in hair-follicle stem cell proliferation. The finding that senescent cells can be eliminated pharmacologically paves the way to new strategies for the treatment of age-related pathologies.
Collapse
Affiliation(s)
- Reut Yosef
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noam Pilpel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronit Tokarsky-Amiel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Anat Biran
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yossi Ovadya
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Snir Cohen
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ezra Vadai
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Dassa
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Elisheva Shahar
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Reba Condiotti
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ittai Ben-Porath
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
1674
|
Velarde MC, Demaria M. Targeting Senescent Cells: Possible Implications for Delaying Skin Aging: A Mini-Review. Gerontology 2016; 62:513-8. [PMID: 27031122 DOI: 10.1159/000444877] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/22/2016] [Indexed: 11/19/2022] Open
Abstract
Senescent cells are induced by a wide variety of stimuli. They accumulate in several tissues during aging, including the skin. Senescent cells secrete proinflammatory cytokines, chemokines, growth factors, and proteases, a phenomenon called senescence-associated secretory phenotype (SASP), which are thought to contribute to the functional decline of the skin as a consequence of aging. Due to the potential negative effects of the SASP in aged organisms, drugs that selectively target senescent cells represent an intriguing therapeutic strategy to delay aging and age-related diseases. Here, we review studies on the role of senescent cells in the skin, with particular emphasis on the age-related mechanisms and phenotypes associated with excessive accumulation of cellular senescence. We discuss the aberrant behavior of senescent cells in aging and how the different signaling pathways associated with survival and secretion of senescent cells can be engaged for the development of targeted therapies.
Collapse
|
1675
|
Abstract
Aging is characterized by the progressive accumulation of degenerative changes, culminating in impaired function and increased probability of death. It is the major risk factor for many human pathologies - including cancer, type 2 diabetes, and cardiovascular and neurodegenerative diseases - and consequently exerts an enormous social and economic toll. The major goal of aging research is to develop interventions that can delay the onset of multiple age-related diseases and prolong healthy lifespan (healthspan). The observation that enhanced longevity and health can be achieved in model organisms by dietary restriction or simple genetic manipulations has prompted the hunt for chemical compounds that can increase lifespan. Most of the pathways that modulate the rate of aging in mammals have homologs in yeast, flies, and worms, suggesting that initial screening to identify such pharmacological interventions may be possible using invertebrate models. In recent years, several compounds have been identified that can extend lifespan in invertebrates, and even in rodents. Here, we summarize the strategies employed, and the progress made, in identifying compounds capable of extending lifespan in organisms ranging from invertebrates to mice and discuss the formidable challenges in translating this work to human therapies.
Collapse
Affiliation(s)
- Surinder Kumar
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Institute of Gerontology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
1676
|
|
1677
|
Wang F, Cai F, Shi R, Wang XH, Wu XT. Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration. Osteoarthritis Cartilage 2016; 24:398-408. [PMID: 26455958 DOI: 10.1016/j.joca.2015.09.019] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/13/2015] [Accepted: 09/30/2015] [Indexed: 02/02/2023]
Abstract
Intervertebral disc (IVD) degeneration is a complicated process that involves both age-related change and tissue damage caused by multiple stresses. In a degenerative IVD, cellular senescence accumulates and is associated with reduced proliferation, compromised self-repair, increased inflammatory response, and enhanced catabolic metabolism. In this review, we decipher the senescence mechanism of IVD degeneration (IVDD) by interpreting how aging coordinates with age-related, microenvironment-derived stresses in promoting disc cell senescence and accelerating IVDD. After chronic and prolonged replication, cell senescence may occur as a natural part of the disc aging process, but can potentially be accelerated by growth factor deficiency, oxidative accumulation, and inflammatory irritation. While acute disc injury, excessive mechanical overloading, diabetes, and chronic tobacco smoking contribute to the amplification of senescence-inducing stresses, the avascular nature of IVD impairs the immune-clearance of the senescent disc cells, which accumulate in cell clusters, demonstrate inflammatory and catabolic phenotypes, deteriorate disc microenvironment, and accelerate IVDD. Anti-senescence strategies, including telomerase transduction, supply of growth factors, and blocking cell cycle inhibitors, have been shown to be feasible in rescuing disc cells from early senescence, but their efficiency for disc regeneration requires more in vivo validations. Guidelines dedicated to avoiding or alleviating senescence-inducing stresses might decelerate cellular senescence and benefit patients with IVD degenerative diseases.
Collapse
Affiliation(s)
- F Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - F Cai
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - R Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - X-H Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - X-T Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| |
Collapse
|
1678
|
Aging and adipose tissue: potential interventions for diabetes and regenerative medicine. Exp Gerontol 2016; 86:97-105. [PMID: 26924669 DOI: 10.1016/j.exger.2016.02.013] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 12/15/2022]
Abstract
Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging and may serve as potential therapeutic targets in age-related disease. In this review, we examine the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity may represent a state of accelerated aging. We discuss the potential therapeutic potential of targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II diabetes and regenerative medicine as examples. We make the case that aging should not be neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly patients make up a large portion of individuals in need of such therapies.
Collapse
|
1679
|
Yin H, Pickering JG. Cellular Senescence and Vascular Disease: Novel Routes to Better Understanding and Therapy. Can J Cardiol 2016; 32:612-23. [PMID: 27040096 DOI: 10.1016/j.cjca.2016.02.051] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is a definable fate of cells within aging, diseased, and remodelling tissues. The traditional hallmark of cellular senescence is permanent cell cycle arrest but the senescent state is also accompanied by secretion of proteins that can reinforce the senescent phenotype and adversely affect the local tissue environment. Assessment for cellular markers of senescence has revealed the existence of senescent smooth muscle cells and senescent endothelial cells in vessels of patients with atherosclerosis and hypertension. This raises the possibility that cellular senescence might contribute to the initiation or progression of vascular disease. Potential disease-promoting pathways include blunted replicative reserve, reduced nitric oxide production, and increased cellular stiffness. Moreover, the secretory phenotype of senescent vascular cells might promote vascular degeneration through chronic inflammation and extracellular matrix degradation. Slowing of vascular cell aging and selective clearing of cells that have become senescent are emerging as exciting possibilities for controlling vascular disease.
Collapse
Affiliation(s)
- Hao Yin
- Robarts Research Institute, London, Ontario, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute, London, Ontario, Canada; Departments of Medicine (Cardiology), Biochemistry, and Medical Biophysics, University of Western Ontario, London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|
1680
|
Bhatia-Dey N, Kanherkar RR, Stair SE, Makarev EO, Csoka AB. Cellular Senescence as the Causal Nexus of Aging. Front Genet 2016; 7:13. [PMID: 26904101 PMCID: PMC4751276 DOI: 10.3389/fgene.2016.00013] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/26/2016] [Indexed: 12/15/2022] Open
Abstract
In this paper we present cellular senescence as the ultimate driver of the aging process, as a "causal nexus" that bridges microscopic subcellular damage with the phenotypic, macroscopic effect of aging. It is important to understand how the various types of subcellular damage correlated with the aging process lead to the larger, visible effects of anatomical aging. While it has always been assumed that subcellular damage (cause) results in macroscopic aging (effect), the bridging link between the two has been hard to define. Here, we propose that this bridge, which we term the "causal nexus", is in fact cellular senescence. The subcellular damage itself does not directly cause the visible signs of aging, but rather, as the damage accumulates and reaches a critical mass, cells cease to proliferate and acquire the deleterious "senescence-associated secretory phenotype" (SASP) which then leads to the macroscopic consequences of tissue breakdown to create the physiologically aged phenotype. Thus senescence is a precondition for anatomical aging, and this explains why aging is a gradual process that remains largely invisible during most of its progression. The subcellular damage includes shortening of telomeres, damage to mitochondria, aneuploidy, and DNA double-strand breaks triggered by various genetic, epigenetic, and environmental factors. Damage pathways acting in isolation or in concert converge at the causal nexus of cellular senescence. In each species some types of damage can be more causative than in others and operate at a variable pace; for example, telomere erosion appears to be a primary cause in human cells, whereas activation of tumor suppressor genes is more causative in rodents. Such species-specific mechanisms indicate that despite different initial causes, most of aging is traced to a single convergent causal nexus: senescence. The exception is in some invertebrate species that escape senescence, and in non-dividing cells such as neurons, where senescence still occurs, but results in the SASP rather than loss of proliferation plus SASP. Aging currently remains an inevitable endpoint for most biological organisms, but the field of cellular senescence is primed for a renaissance and as our understanding of aging is refined, strategies capable of decelerating the aging process will emerge.
Collapse
Affiliation(s)
- Naina Bhatia-Dey
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| | - Riya R Kanherkar
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| | | | - Evgeny O Makarev
- Vision Genomics, LLCWashington, DC, USA; InSilico Medicine, Emerging Technology Center, Johns Hopkins UniversityBaltimore, MD, USA
| | - Antonei B Csoka
- Epigenetics Laboratory, Department of Anatomy, Howard UniversityWashington, DC, USA; InSilico Medicine, Emerging Technology Center, Johns Hopkins UniversityBaltimore, MD, USA
| |
Collapse
|
1681
|
Accardi G, Aiello A, Gambino CM, Virruso C, Caruso C, Candore G. Mediterranean nutraceutical foods: Strategy to improve vascular ageing. Mech Ageing Dev 2016; 159:63-70. [PMID: 26879630 DOI: 10.1016/j.mad.2016.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 01/06/2023]
Abstract
Ageing is characterized by a decline in all systemic functions. A greater susceptibility to apoptosis and senescence may contribute to proliferative and functional impairment of endothelial progenitor cells. They play an important role in neo-angiogenesis and endothelial repair. Vascular ageing is associated with changes in the structure and functions of vessels' wall. There are many possible causes of this damage. For sure, inflammation and oxidative stress play a fundamental role in the pathogenesis of endothelial dysfunction, commonly attributed to a reduced availability of nitric oxide. Inflammageing, the chronic low-grade inflammation that characterizes elderly people, aggravates vascular pathology and provokes atherosclerosis, the major cardiovascular disease. Nutraceutical and molecular biology represent new insights in this field. In fact, the first could represent a possible treatment in the prevention or delay of vascular ageing; the second could offer new possible targets for potential therapeutic interventions. In this review, we pay attention on the causes of vascular ageing and on the effects of nutraceuticals on it.
Collapse
Affiliation(s)
- Giulia Accardi
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Anna Aiello
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Caterina Maria Gambino
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Claudia Virruso
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Calogero Caruso
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Giuseppina Candore
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| |
Collapse
|
1682
|
|
1683
|
Kaeberlein M, Rabinovitch PS, Martin GM. Healthy aging: The ultimate preventative medicine. Science 2016; 350:1191-3. [PMID: 26785476 DOI: 10.1126/science.aad3267] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Age is the greatest risk factor for nearly every major cause of mortality in developed nations. Despite this, most biomedical research focuses on individual disease processes without much consideration for the relationships between aging and disease. Recent discoveries in the field of geroscience, which aims to explain biological mechanisms of aging, have provided insights into molecular processes that underlie biological aging and, perhaps more importantly, potential interventions to delay aging and promote healthy longevity. Here we describe some of these advances, along with efforts to move geroscience from the bench to the clinic. We also propose that greater emphasis should be placed on research into basic aging processes, because interventions that slow aging will have a greater effect on quality of life compared with disease-specific approaches.
Collapse
Affiliation(s)
- Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | | - George M Martin
- Department of Pathology, University of Washington, Seattle, WA 98195, USA. Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
1684
|
Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int 2016; 89:767-78. [PMID: 26924058 DOI: 10.1016/j.kint.2015.11.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a global health care burden affecting billions of individuals worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD patients is imperative. Two cell types have been most commonly applied in regenerative medicine. Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal stem cells also exert paracrine effects, including proangiogenic, anti-inflammatory, and antifibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This Review highlights current knowledge on stem and progenitor cell function and vitality, aspects of the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell function for potential transplantation.
Collapse
|
1685
|
Stout MB, Steyn FJ, Jurczak MJ, Camporez JPG, Zhu Y, Hawse JR, Jurk D, Palmer AK, Xu M, Pirtskhalava T, Evans GL, de Souza Santos R, Frank AP, White TA, Monroe DG, Singh RJ, Casaclang-Verzosa G, Miller JD, Clegg DJ, LeBrasseur NK, von Zglinicki T, Shulman GI, Tchkonia T, Kirkland JL. 17α-Estradiol Alleviates Age-related Metabolic and Inflammatory Dysfunction in Male Mice Without Inducing Feminization. J Gerontol A Biol Sci Med Sci 2016; 72:3-15. [PMID: 26809497 PMCID: PMC5155656 DOI: 10.1093/gerona/glv309] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Aging is associated with visceral adiposity, metabolic disorders, and chronic low-grade inflammation. 17α-estradiol (17α-E2), a naturally occurring enantiomer of 17β-estradiol (17β-E2), extends life span in male mice through unresolved mechanisms. We tested whether 17α-E2 could alleviate age-related metabolic dysfunction and inflammation. 17α-E2 reduced body mass, visceral adiposity, and ectopic lipid deposition without decreasing lean mass. These declines were associated with reductions in energy intake due to the activation of hypothalamic anorexigenic pathways and direct effects of 17α-E2 on nutrient-sensing pathways in visceral adipose tissue. 17α-E2 did not alter energy expenditure or excretion. Fasting glucose, insulin, and glycosylated hemoglobin were also reduced by 17α-E2, and hyperinsulinemic-euglycemic clamps revealed improvements in peripheral glucose disposal and hepatic glucose production. Inflammatory mediators in visceral adipose tissue and the circulation were reduced by 17α-E2. 17α-E2 increased AMPKα and reduced mTOR complex 1 activity in visceral adipose tissue but not in liver or quadriceps muscle, which is in contrast to the generalized systemic effects of caloric restriction. These beneficial phenotypic changes occurred in the absence of feminization or cardiac dysfunction, two commonly observed deleterious effects of exogenous estrogen administration. Thus, 17α-E2 holds potential as a novel therapeutic for alleviating age-related metabolic dysfunction through tissue-specific effects.
Collapse
Affiliation(s)
- Michael B Stout
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Frederik J Steyn
- Center for Clinical Research and School of Biomedical Sciences, University of Queensland, Herston, Australia
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pennsylvania
| | | | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Diana Jurk
- Institutes for Cell & Molecular Biosciences and Ageing, Newcastle University
| | - Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Ming Xu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Glenda L Evans
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Roberta de Souza Santos
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Beverly Hills, California
| | - Aaron P Frank
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Beverly Hills, California
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - David G Monroe
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Ravinder J Singh
- Department of Laboratory Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Jordan D Miller
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Deborah J Clegg
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Beverly Hills, California
| | | | | | - Gerald I Shulman
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
1686
|
Abstract
The search for elixir of immortality has yielded mixed results. While some of the interventions like percutaneous coronary interventions and coronary artery bypass grafting have been a huge disappointment at least as far as prolongation of life is concerned, their absolute benefit is meager and that too in very sick patients. Cardiac specific drugs like statins and aspirin have fared slightly better, being useful in patients with manifest coronary artery disease, particularly in sicker populations although even their usefulness in primary prevention is rather low. The only strategies of proven benefit in primary/primordial prevention are pursuing a healthy life-style and its modification when appropriate, like cessation of smoking, weight reduction, increasing physical activity, eating a healthy diet and bringing blood pressure, serum cholesterol, and blood glucose under control.
Collapse
Affiliation(s)
- Sundeep Mishra
- Professor, Department of Cardiology, AIIMS, New Delhi, India.
| |
Collapse
|
1687
|
|
1688
|
Pole A, Dimri M, P. Dimri G. Oxidative stress, cellular senescence and ageing. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.3.300] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
1689
|
Ali AH, Tabibian JH, Carey EJ, Lindor KD. Emerging drugs for the treatment of Primary Biliary Cholangitis. Expert Opin Emerg Drugs 2016; 21:39-56. [PMID: 26901615 DOI: 10.1517/14728214.2016.1150999] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Primary biliary cholangitis (PBC) is an autoimmune chronic disease of the liver that can progress to cirrhosis and hepatocellular carcinoma. It affects approximately 1 in 4,000 with a 10:1 female to male ratio. The diagnosis of PBC can be made based on serum antimitochondrial antibodies (AMA) in a patient with abnormally high serum alkaline phosphatase after ruling out other causes of cholestasis and biliary obstruction. Genome-wide association studies have revealed several human leukocyte antigen (HLA) and non-HLA risk loci in PBC, and complex environmental-host immunogenetic interactions are believed to underlie the etiopathogenesis of the disease. Fatigue and pruritus are the most common and often problematic symptoms; although often mild, these can be severe and life-alternating in a subset of patients. Ursodeoxycholic acid (UDCA) is the only drug approved by the United States Food and Drug Administration for the treatment of PBC. Clinical trials have shown that UDCA significantly improves transplant-free survival. However, nearly 40% of PBC patients do not respond adequately to PBC and are at higher risk for serious complications when compared to PBC patients with complete response to UDCA. AREAS COVERED Here we provide a detailed discussion regarding novel therapeutic agents and potential areas for further investigation in PBC-related research. EXPERT OPINION Results of ongoing clinical trials and emerging treatment paradigms for PBC will likely further improve medical management of this disorder in the near future.
Collapse
|
1690
|
Stenvinkel P, Kooman JP, Shiels PG. Nutrients and ageing: what can we learn about ageing interactions from animal biology? Curr Opin Clin Nutr Metab Care 2016; 19:19-25. [PMID: 26485336 DOI: 10.1097/mco.0000000000000234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Many prevalent clinical conditions, such as chronic kidney disease, diabetes mellitus, chronic obstructive pulmonary, and cardiovascular disease associate with features of premature ageing, such as muscle wasting, hypogonadism, osteoporosis, and arteriosclerosis. Studies on various animal models have shown that caloric restriction prolongs lifespan. Studies of animals with unusual long or short life for their body size may also contribute to better understanding of ageing processes. The aim of the present article is to review what we can learn about nutritional modulations and ageing interactions from animal biology. RECENT FINDINGS Caloric restriction is a powerful intervention that increases longevity in animals ranging from short-lived species, such as worms and flies, to primates. As long-term studies on caloric restriction are not feasible to conduct in humans, much interest has focused on the impact of caloric restriction mimetics, such as resveratrol, on ageing processes. Recent data from studies on the long-lived naked mole rat have provided important novel information on metabolic alterations and antioxidative defense mechanisms that characterize longevity. SUMMARY Better understanding of the biology of exceptionally long-lived animals will contribute to better understanding of ageing processes and novel interventions to extend lifespan also in humans.
Collapse
Affiliation(s)
- Peter Stenvinkel
- aDivision of Renal Medicine, Karolinska University Hospital at Huddinge, Karolinska Institutet Stockholm, Sweden bDivision of Nephrology, Department of Internal Medicine, University Hospital Maastricht, the Netherlands cInstitute of Cancer Sciences, Wolfson Wohl Translational Research Center, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
1691
|
Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA, Sepe A, Johnson KO, Stout MB, Giorgadze N, Jensen MD, LeBrasseur NK, Tchkonia T, Kirkland JL. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 2015; 4:e12997. [PMID: 26687007 PMCID: PMC4758946 DOI: 10.7554/elife.12997] [Citation(s) in RCA: 438] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022] Open
Abstract
Senescent cells accumulate in fat with aging. We previously found genetic clearance of senescent cells from progeroid INK-ATTAC mice prevents lipodystrophy. Here we show that primary human senescent fat progenitors secrete activin A and directly inhibit adipogenesis in non-senescent progenitors. Blocking activin A partially restored lipid accumulation and expression of key adipogenic markers in differentiating progenitors exposed to senescent cells. Mouse fat tissue activin A increased with aging. Clearing senescent cells from 18-month-old naturally-aged INK-ATTAC mice reduced circulating activin A, blunted fat loss, and enhanced adipogenic transcription factor expression within 3 weeks. JAK inhibitor suppressed senescent cell activin A production and blunted senescent cell-mediated inhibition of adipogenesis. Eight weeks-treatment with ruxolitinib, an FDA-approved JAK1/2 inhibitor, reduced circulating activin A, preserved fat mass, reduced lipotoxicity, and increased insulin sensitivity in 22-month-old mice. Our study indicates targeting senescent cells or their products may alleviate age-related dysfunction of progenitors, adipose tissue, and metabolism. DOI:http://dx.doi.org/10.7554/eLife.12997.001 The likelihood of developing metabolic diseases such as diabetes increases with age. This is, in part, because the cells within fat and other tissues become less sensitive to the hormone insulin as people and other animals get older. Also, the stem cells that give rise to new, insulin-responsive fat cells become dysfunctional with increasing age. This is related to the accumulation of “senescent” cells, which, unlike normal fat cell progenitors, release molecules that are toxic to nearby and distant cells. Xu, Palmer et al. have now investigated if senescent cells interfere with the activity of stem cells from human fat tissue, and if getting rid of these senescent cells might restore the normal activity and insulin responsiveness of aged fat tissue. The experiments revealed that human senescent fat cell progenitors release a protein called activin A, which impedes the normal function of stem cells and fat tissue. Additionally, older mice had higher levels of activin A in both their blood and fat tissue than young mice. Xu, Palmer et al. then analyzed older mice that had been engineered to have senescent fat cells that could be triggered to essentially kill themselves when the mice were treated with a drug. Eliminating the senescent cells from these mice led to lower levels of activin A and more fat tissue (due to improved stem cell capacity to become fully functional fat cells) that expressed genes required for insulin responsiveness. This showed that senescent cells are a cause of age-related fat tissue loss and metabolic disease in older mice. Next, Xu, Palmer et al. treated older mice with drugs called JAK inhibitors, which they found reduce the production of activin A by senescent cells isolated from fat tissue. After two months of treatment, the levels of activin A in the blood and in fat tissue were indeed reduced. The fat tissue in treated mice also showed fewer features associated with the development of diabetes than the fat tissue of untreated mice. As such, these results paralleled those after selectively eliminating the senescent cells. Together these findings suggest that JAK inhibitors or drugs (called senolytics) that selectively eliminate senescent cells may have clinical benefits in treating age-related conditions such as diabetes and stem cell dysfunction. DOI:http://dx.doi.org/10.7554/eLife.12997.002
Collapse
Affiliation(s)
- Ming Xu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Husheng Ding
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Megan M Weivoda
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Anna Sepe
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Kurt O Johnson
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Michael B Stout
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Michael D Jensen
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| |
Collapse
|
1692
|
Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 2015; 22:78-83. [PMID: 26657143 DOI: 10.1038/nm.4010] [Citation(s) in RCA: 1299] [Impact Index Per Article: 129.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/16/2015] [Indexed: 12/15/2022]
Abstract
Senescent cells (SCs) accumulate with age and after genotoxic stress, such as total-body irradiation (TBI). Clearance of SCs in a progeroid mouse model using a transgenic approach delays several age-associated disorders, suggesting that SCs play a causative role in certain age-related pathologies. Thus, a 'senolytic' pharmacological agent that can selectively kill SCs holds promise for rejuvenating tissue stem cells and extending health span. To test this idea, we screened a collection of compounds and identified ABT263 (a specific inhibitor of the anti-apoptotic proteins BCL-2 and BCL-xL) as a potent senolytic drug. We show that ABT263 selectively kills SCs in culture in a cell type- and species-independent manner by inducing apoptosis. Oral administration of ABT263 to either sublethally irradiated or normally aged mice effectively depleted SCs, including senescent bone marrow hematopoietic stem cells (HSCs) and senescent muscle stem cells (MuSCs). Notably, this depletion mitigated TBI-induced premature aging of the hematopoietic system and rejuvenated the aged HSCs and MuSCs in normally aged mice. Our results demonstrate that selective clearance of SCs by a pharmacological agent is beneficial in part through its rejuvenation of aged tissue stem cells. Thus, senolytic drugs may represent a new class of radiation mitigators and anti-aging agents.
Collapse
|
1693
|
JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A 2015; 112:E6301-10. [PMID: 26578790 DOI: 10.1073/pnas.1515386112] [Citation(s) in RCA: 595] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic, low grade, sterile inflammation frequently accompanies aging and age-related diseases. Cellular senescence is associated with the production of proinflammatory chemokines, cytokines, and extracellular matrix (ECM) remodeling proteases, which comprise the senescence-associated secretory phenotype (SASP). We found a higher burden of senescent cells in adipose tissue with aging. Senescent human primary preadipocytes as well as human umbilical vein endothelial cells (HUVECs) developed a SASP that could be suppressed by targeting the JAK pathway using RNAi or JAK inhibitors. Conditioned medium (CM) from senescent human preadipocytes induced macrophage migration in vitro and inflammation in healthy adipose tissue and preadipocytes. When the senescent cells from which CM was derived had been treated with JAK inhibitors, the resulting CM was much less proinflammatory. The administration of JAK inhibitor to aged mice for 10 wk alleviated both adipose tissue and systemic inflammation and enhanced physical function. Our findings are consistent with a possible contribution of senescent cells and the SASP to age-related inflammation and frailty. We speculate that SASP inhibition by JAK inhibitors may contribute to alleviating frailty. Targeting the JAK pathway holds promise for treating age-related dysfunction.
Collapse
|
1694
|
Yun MH. Changes in Regenerative Capacity through Lifespan. Int J Mol Sci 2015; 16:25392-432. [PMID: 26512653 PMCID: PMC4632807 DOI: 10.3390/ijms161025392] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 12/14/2022] Open
Abstract
Most organisms experience changes in regenerative abilities through their lifespan. During aging, numerous tissues exhibit a progressive decline in homeostasis and regeneration that results in tissue degeneration, malfunction and pathology. The mechanisms responsible for this decay are both cell intrinsic, such as cellular senescence, as well as cell-extrinsic, such as changes in the regenerative environment. Understanding how these mechanisms impact on regenerative processes is essential to devise therapeutic approaches to improve tissue regeneration and extend healthspan. This review offers an overview of how regenerative abilities change through lifespan in various organisms, the factors that underlie such changes and the avenues for therapeutic intervention. It focuses on established models of mammalian regeneration as well as on models in which regenerative abilities do not decline with age, as these can deliver valuable insights for our understanding of the interplay between regeneration and aging.
Collapse
Affiliation(s)
- Maximina H Yun
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
1695
|
Serrano M. The InflammTORy Powers of Senescence. Trends Cell Biol 2015; 25:634-636. [PMID: 26471225 DOI: 10.1016/j.tcb.2015.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/07/2023]
Abstract
Cellular senescence is accompanied by secretion of cytokines and ensuing inflammation. Recent work reveals that mTOR is crucial for the secretory phenotype of senescent cells. These findings open the possibility of disabling the pathological effects of senescence with mTOR inhibitors and may explain the anti-aging properties of rapamycin.
Collapse
Affiliation(s)
- Manuel Serrano
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
1696
|
LeBrasseur NK, Tchkonia T, Kirkland JL. Cellular Senescence and the Biology of Aging, Disease, and Frailty. NESTLE NUTRITION INSTITUTE WORKSHOP SERIES 2015; 83:11-8. [PMID: 26485647 DOI: 10.1159/000382054] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Population aging simultaneously highlights the remarkable advances in science, medicine, and public policy, and the formidable challenges facing society. Indeed, aging is the primary risk factor for many of the most common chronic diseases and frailty, which result in profound social and economic costs. Population aging also reveals an opportunity, i.e. interventions to disrupt the fundamental biology of aging could significantly delay the onset of age-related conditions as a group, and, as a result, extend the healthy life span, or health span. There is now considerable evidence that cellular senescence is an underlying mechanism of aging and age-related conditions. Cellular senescence is a process in which cells lose the ability to divide and damage neighboring cells by the factors they secrete, collectively referred to as the senescence-associated secretory phenotype (SASP). Herein, we discuss the concept of cellular senescence, review the evidence that implicates cellular senescence and SASP in age-related deterioration, hyperproliferation, and inflammation, and propose that this underlying mechanism of aging may play a fundamental role in the biology of frailty.
Collapse
|
1697
|
Cheung HH, Pei D, Chan WY. Stem cell aging in adult progeria. ACTA ACUST UNITED AC 2015; 4:6. [PMID: 26435834 PMCID: PMC4592574 DOI: 10.1186/s13619-015-0021-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/29/2015] [Indexed: 12/21/2022]
Abstract
Aging is considered an irreversible biological process and also a major risk factor for a spectrum of geriatric diseases. Advanced age-related decline in physiological functions, such as neurodegeneration, development of cardiovascular disease, endocrine and metabolic dysfunction, and neoplastic transformation, has become the focus in aging research. Natural aging is not regarded as a programmed process. However, accelerated aging due to inherited genetic defects in patients of progeria is programmed and resembles many aspects of natural aging. Among several premature aging syndromes, Werner syndrome (WS) and Hutchinson–Gilford progeria syndrome (HGPS) are two broadly investigated diseases. In this review, we discuss how stem cell aging in WS helps us understand the biology of aging. We also discuss briefly how the altered epigenetic landscape in aged cells can be reversed to a “juvenile” state. Lastly, we explore the potential application of the latest genomic editing technique for stem cell-based therapy and regenerative medicine in the context of aging.
Collapse
Affiliation(s)
- Hoi-Hung Cheung
- CUHK-CAS GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Duanqing Pei
- Chinese Academy of Sciences (CAS) Guangzhou Institutes of Biomedicine and Health (GIBH), Guangzhou, China
| | - Wai-Yee Chan
- CUHK-CAS GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China ; The Chinese University of Hong Kong, Room G03A, Lo Kwee-Seong Intergrated Biomedical Science Building, Shatin, N.T., Hong Kong S.A.R., China
| |
Collapse
|
1698
|
Giacconi R, Malavolta M, Costarelli L, Provinciali M. Cellular Senescence and Inflammatory Burden as Determinants of Mortality in Elderly People Until the Extreme old age. EBioMedicine 2015; 2:1316-7. [PMID: 26629526 PMCID: PMC4634772 DOI: 10.1016/j.ebiom.2015.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 01/03/2023] Open
Affiliation(s)
- Robertina Giacconi
- Nutrition and aging Centre, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Italy
| | - Marco Malavolta
- Nutrition and aging Centre, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Italy
| | - Laura Costarelli
- Nutrition and aging Centre, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, Italian National Institute of Health and Science on Aging (INRCA), Italy
| |
Collapse
|
1699
|
Gonzalez LC, Ghadaouia S, Martinez A, Rodier F. Premature aging/senescence in cancer cells facing therapy: good or bad? Biogerontology 2015; 17:71-87. [DOI: 10.1007/s10522-015-9593-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/22/2015] [Indexed: 01/07/2023]
|
1700
|
Tower J. Programmed cell death in aging. Ageing Res Rev 2015; 23:90-100. [PMID: 25862945 DOI: 10.1016/j.arr.2015.04.002] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/15/2015] [Accepted: 04/01/2015] [Indexed: 02/08/2023]
Abstract
Programmed cell death (PCD) pathways, including apoptosis and regulated necrosis, are required for normal cell turnover and tissue homeostasis. Mis-regulation of PCD is increasingly implicated in aging and aging-related disease. During aging the cell turnover rate declines for several highly-mitotic tissues. Aging-associated disruptions in systemic and inter-cell signaling combined with cell-autonomous damage and mitochondrial malfunction result in increased PCD in some cell types, and decreased PCD in other cell types. Increased PCD during aging is implicated in immune system decline, skeletal muscle wasting (sarcopenia), loss of cells in the heart, and neurodegenerative disease. In contrast, cancer cells and senescent cells are resistant to PCD, enabling them to increase in abundance during aging. PCD pathways limit life span in fungi, but whether PCD pathways normally limit adult metazoan life span is not yet clear. PCD is regulated by a balance of negative and positive factors, including the mitochondria, which are particularly subject to aging-associated malfunction.
Collapse
|