1701
|
Kim D, Won J, Shin DW, Kang J, Kim YJ, Choi SY, Hwang MK, Jeong BW, Kim GS, Joe CO, Chung SH, Song WJ. Regulation of Dyrk1A kinase activity by 14-3-3. Biochem Biophys Res Commun 2004; 323:499-504. [PMID: 15369779 DOI: 10.1016/j.bbrc.2004.08.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Indexed: 11/16/2022]
Abstract
Dual-specificity tyrosine(Y) regulated kinase 1A (DYRK1A) is a serine/threonine protein kinase implicated in mental retardation resulting from Down syndrome. In this study, we carried out yeast two-hybrid screening to find proteins regulating DYRK1A kinase activity. We identified 14-3-3 as a Dyrk1A interacting protein, which is consistent with the previous finding of the interaction between the yeast orthologues Yak1p and Bmh1/2p. We showed the interaction between Dyrk1A and 14-3-3 in vitro and in vivo. The binding required the N-terminus of Dyrk1A and was independent of the Dyrk1A phosphorylation status. Functionally, 14-3-3 binding increased Dyrk1A kinase activity in a dose dependent manner in vitro. In vivo, a small peptide inhibiting 14-3-3 binding, sc138, decreased Dyrk1A kinase activity in COS7. In summary, these results suggest that DYRK1A kinase activity could be regulated by the interaction of 14-3-3.
Collapse
Affiliation(s)
- Doyeun Kim
- Division of CNS, Hanwha Chemical R&D Center, Daejon 305-345, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1702
|
Abstract
Activation-induced cell death, anergy and/or immune response modulation by T-regulatory cells (T(Reg)) are essential mechanisms of peripheral T-cell tolerance. There is growing evidence that anergy, tolerance and active suppression are not entirely distinct, but rather, represent linked mechanisms possibly involving the same cells and multiple suppressor mechanisms. Skewing of allergen-specific effector T cells to T(Reg) cells appears as a crucial event in the control of healthy immune response to allergens and successful allergen-specific immunotherapy. The T(Reg) cell response is characterized by abolished allergen-induced specific T-cell proliferation and suppressed T helper 1 (Th1)- and Th2-type cytokine secretion. In addition, mediators of allergic inflammation that trigger cAMP-associated G-protein coupled receptors, such as histamine receptor 2 may contribute to peripheral tolerance mechanisms. The increased levels of interleukin-10 (IL-10) and transforming growth factor-beta (TGF-beta) that are produced by T(Reg) cells potently suppress immunoglobulin E (IgE) production, while simultaneously increasing production of noninflammatory isotypes IgG4 and IgA, respectively. In addition, T(Reg) cells directly or indirectly suppress effector cells of allergic inflammation such as mast cells, basophils and eosinophils. In conclusion, peripheral tolerance to allergens is controlled by multiple active suppression mechanisms. It is associated with regulation of antibody isotypes and effector cells to the direction of a healthy immune response and opens a window for novel therapies of allergic diseases.
Collapse
Affiliation(s)
- C A Akdis
- Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | | | | |
Collapse
|
1703
|
Hofmann B, Tao K, Mai L, West LJ. Acceptance of related and unrelated cardiac allografts in neonatally tolerized mice is cardio-specific and transferable by regulatory CD4+ T cells. J Heart Lung Transplant 2004; 23:1069-76. [PMID: 15454173 DOI: 10.1016/j.healun.2004.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 06/19/2004] [Accepted: 07/14/2004] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Non-donor-specific cardiac allograft acceptance is induced in C3H/He (C3H; H-2k) recipients injected as neonates with allogeneic BALB/c (BALB; H-2d) fetal liver cells (FLC). This occurs despite intact reactivity to donor-type and third-party alloantigens in in vitro assays and skin transplants. To investigate a role for regulatory T cells, we performed adoptive transfer studies and specifically assessed CD4+ and CD4- T cells. METHODS Three cell populations (splenocytes, CD4+, CD4-) derived from neonatally-treated mice with accepted C57BL/6 (B6; H-2b) third-party cardiac grafts were adoptively transferred into sub-lethally-irradiated C3H mice. Reconstituted mice were challenged with B6 cardiac grafts, B6 skin grafts, or unrelated cardiac grafts. Separated cells were assessed in vitro. RESULTS B6, BALB, and NZW (H-2z) graft acceptance was transferred by unfractionated splenocytes. CD4+ cells transferred B6 graft acceptance (85% survival > 100 days). CD4- cells, unfractionated cells from naive or only irradiated mice, and unfractionated cells from neonatally-treated non-transplanted C3H mice rejected grafts within 35 days. No inoculum induced skin graft acceptance. Co-cultured assays confirmed the suppressive function of CD4+ cells in vitro. CONCLUSIONS Cardiac allograft acceptance in our model is regulated by CD4+ cells. The regulatory cell population is induced by the cardiac graft itself and mediates in vivo cardiac graft acceptance in a tissue-specific but not donor-strain-specific manner.
Collapse
Affiliation(s)
- Britt Hofmann
- Paediatric Heart Transplant Program, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | | | | |
Collapse
|
1704
|
Thornton CA, Upham JW, Wikström ME, Holt BJ, White GP, Sharp MJ, Sly PD, Holt PG. Functional Maturation of CD4+CD25+CTLA4+CD45RA+T Regulatory Cells in Human Neonatal T Cell Responses to Environmental Antigens/Allergens. THE JOURNAL OF IMMUNOLOGY 2004; 173:3084-92. [PMID: 15322168 DOI: 10.4049/jimmunol.173.5.3084] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A number of laboratories have reported cord blood T cell responses to ubiquitous environmental Ags, including allergens, by proliferation and cytokine secretion. Moreover, the magnitude of these responses has been linked with risk for subsequent expression of allergy. These findings have been widely interpreted as evidence for transplacental priming and the development of fetal T memory cells against Ags present in the maternal environment. However, we present findings below that suggest that neonatal T cell responses to allergens (and other Ags) differ markedly from those occurring in later life. Notably, in contrast to allergen-responsive adult CD4(+) T cell cultures, responding neonatal T cell cultures display high levels of apoptosis. Comparable responses were observed against a range of microbial Ags and against a parasite Ag absent from the local environment, but not against autoantigen. A notable finding was the appearance in these cultures of CD4(+)CD25(+)CTLA4(+) T cells that de novo develop MLR-suppressive activity. These cells moreover expressed CD45RA and CD38, hallmarks of recent thymic emigrants. CFSE-labeling studies indicate that the CD4(+)CD25(+) cells observed at the end of the culture period were present in the day 0 starting populations, but they were not suppressive in MLR responses. Collectively, these findings suggest that a significant component of the reactivity of human neonatal CD4(+) T cells toward nominal Ag (allergen) represents a default response by recent thymic emigrants, providing an initial burst of short-lived cellular immunity in the absence of conventional T cell memory, which is limited in intensity and duration via the parallel activation of regulatory T cells.
Collapse
|
1705
|
Tu-Rapp H, Hammermüller A, Mix E, Kreutzer HJ, Goerlich R, Köhler H, Nizze H, Thiesen HJ, Ibrahim SM. A proinflammatory role for Fas in joints of mice with collagen-induced arthritis. Arthritis Res Ther 2004; 6:R404-14. [PMID: 15380040 PMCID: PMC546278 DOI: 10.1186/ar1205] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 04/30/2004] [Accepted: 06/07/2004] [Indexed: 11/18/2022] Open
Abstract
Collagen-induced arthritis (CIA) is a chronic inflammatory disease bearing all the hallmarks of rheumatoid arthritis, e.g. polyarthritis, synovitis, and subsequent cartilage/bone erosions. One feature of the disease contributing to joint damage is synovial hyperplasia. The factors responsible for the hyperplasia are unknown; however, an imbalance between rates of cell proliferation and cell death (apoptosis) has been suggested. To evaluate the role of a major pathway of cell death – Fas (CD95)/FasL – in the pathogenesis of CIA, DBA/1J mice with a mutation of the Fas gene (lpr) were generated. The susceptibility of the mutant DBA-lpr/lpr mice to arthritis induced by collagen type II was evaluated. Contrary to expectations, the DBA-lpr/lpr mice developed significantly milder disease than the control littermates. The incidence of disease was also significantly lower in the lpr/lpr mice than in the controls (40% versus 81%; P < 0.05). However DBA-lpr/lpr mice mounted a robust immune response to collagen, and the expression of local proinflammatory cytokines such as, e.g., tumor necrosis factor α (TNF-α) and IL-6 were increased at the onset of disease. Since the contribution of synovial fibroblasts to inflammation and joint destruction is crucial, the potential activating effect of Fas on mouse fibroblast cell line NIH3T3 was investigated. On treatment with anti-Fas in vitro, the cell death of NIH3T3 fibroblasts was reduced and the expression of proinflammatory cytokines TNF-α and IL-6 was increased. These findings suggest that impairment of immune tolerance by increased T-cell reactivity does not lead to enhanced susceptibility to CIA and point to a role of Fas in joint destruction.
Collapse
Affiliation(s)
- Hoang Tu-Rapp
- Department of Immunology, University of Rostock, Rostock, Germany
| | | | - Eilhard Mix
- Department of Neurology, University of Rostock, Rostock, Germany
| | | | | | | | - Horst Nizze
- Department of Pathology, University of Rostock, Rostock, Germany
| | | | - Saleh M Ibrahim
- Department of Immunology, University of Rostock, Rostock, Germany
| |
Collapse
|
1706
|
Chen W, Ford MS, Young KJ, Zhang L. Infusion of in vitro-generated DN T regulatory cells induces permanent cardiac allograft survival in mice. Transplant Proc 2004; 35:2479-80. [PMID: 14611991 DOI: 10.1016/j.transproceed.2003.08.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previously, we have demonstrated that pretransplant donor lymphocyte infusion (DLI) can activate recipient-derived CD3+CD4-CD8- double negative T regulatory (DN Tr) cells which have a potent immune regulatory function in vitro and in vivo. Here we studied the regulatory ability of DN T cell clones generated from the spleens of nai;ve anti-L(d) transgenic TCR+ (2C x dm2)F1 mice. We were able to identify subsets of DN T cell clones that were able to kill anti-Ld CD8+ T cells, and therefore had regulatory properties, and DN T cells with no regulatory properties. Next, we investigated the ability of these in vitro generated DN T cell clones to enhance cardiac allograft survival. (2C x dm2)F1 transgenic mice were infused with either regulatory or non-regulatory DN T cell clones, or left untreated one day before receiving an Ld-mismatched cardiac grafts from (C57BL/6 x Balb/c)F1 mice. Injection of non-regulatory DN T clone cells did not prolong cardiac graft survival in (2C x dm2)F1 mice when compare to untreated controls. In contrast, all of the cardiac grafts survived more than 100 days in mice that received DN Tr clone cells prior to transplantation. These results demonstrate that DN Tr cells can be generated in vitro and protect cardiac allograft from rejection when infused into recipients prior to transplantation. They also suggest that DN Tr cells may provide a novel therapy for the treatment of allograft rejection.
Collapse
Affiliation(s)
- W Chen
- Department of Laboratory Medicine and Pathobiology, Multi Organ Transplantation Program, Toronto General Research Institute, University Health Network, Toronto, Canada
| | | | | | | |
Collapse
|
1707
|
Sumpter TL, Wilkes DS. Role of autoimmunity in organ allograft rejection: a focus on immunity to type V collagen in the pathogenesis of lung transplant rejection. Am J Physiol Lung Cell Mol Physiol 2004; 286:L1129-39. [PMID: 15136293 DOI: 10.1152/ajplung.00330.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung transplantation is the only definitive treatment modality for many forms of end-stage lung disease. However, the lung is rejected more often than any other type of solid organ allograft due to chronic rejection known as bronchiolitis obliterans (BO). Indeed, BO is the primary reason why the 5- and 7-yr survival rates are worse for the lung than for any other transplanted organ. Alloimmunity to donor antigens is established as the primary mechanism that mediates rejection responses. However, newer immunosuppressive regimens designed to abrogate alloimmune activation have not improved survival. Therefore, these data suggest that other antigens, unrelated to donor transplantation antigens, are involved in rejection. Utilizing human and rodent studies of lung transplantation, our laboratory has documented that a native collagen, type V collagen [col(V)], is a target of the rejection response. Col(V) is highly conserved; therefore, these data indicate that transplant rejection involves both alloimmune and autoimmune responses. The role of col(V) in lung transplant rejection is described in this review article. In addition, the potential role of regulatory T cells that are crucial to modulating autoimmunity and alloimmunity is also discussed.
Collapse
Affiliation(s)
- Tina L Sumpter
- Department of Medicine, Indiana University School of Medicine, Richard L. Roudebush Veterans Affairs Medicine Center, 1481 W. 10th St. 111P, Indianapolis, IN 46202, USA
| | | |
Collapse
|
1708
|
Brenner MK. Haematopoietic stem cell transplantation for autoimmune disease: limits and future potential. Best Pract Res Clin Haematol 2004; 17:359-74. [PMID: 15302346 DOI: 10.1016/j.beha.2004.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Indexed: 12/23/2022]
Abstract
Stem cell transplantation (SCT) for autoimmune disease is handicapped by a lack of definitive clinical trials able to demonstrate an overall benefit. This deficiency will become more problematic as the impetus grows to introduce and evaluate additional technologies intended to improve the safety and efficacy of the procedure. The development of effective surrogate analyses to predict outcome by measuring resurgent autoimmune clones or by genomic- and proteomic-based technologies to detect early disease recurrence may be of value in assessing the benefits of these modifications without the need for full-scale, long-term, randomized trials. The introduction of safer allogeneic transplantation techniques may increase the effectiveness of the procedure, while work on marrow stem cell plasticity and/or fusion suggests that SCT may serve not simply to halt the autoimmune process, but also to contribute cells capable of healing or regenerating diseased organs. Finally, the introduction of therapeutic transgenes into transplanted cells may further increase the effectiveness of SCT, although the regulatory complexities of gene therapy trials will probably delay this process. All these innovations will ensure that the next decade will see major changes in the practice and purpose of SCT for autoimmune disease.
Collapse
Affiliation(s)
- Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital, Texas Children's Hospital, Suite 1140, 1102 Bates Street, Houston, TX 77030, USA.
| |
Collapse
|
1709
|
Tahara H, Iwanami N, Tabata N, Matsumura H, Matsuura T, Kurita T, Miyazawa M. Both T and non-T cells with proliferating potentials are effective in inducing suppression of allograft responses by alloantigen-specific intravenous presensitization combined with suboptimal doses of 15-deoxyspergualin. Transpl Immunol 2004; 13:25-32. [PMID: 15203125 DOI: 10.1016/j.trim.2004.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 01/21/2004] [Indexed: 11/15/2022]
Abstract
In an MHC class I-disparate combination of mouse strains, a single intravenous injection of donor spleen cells combined with 10 suboptimal doses of 15-deoxyspergualin (DSG) administration was effective in inducing donor-specific suppression of cytotoxic T-lymphocyte (CTL) responses and prolonged survival of the relevant skin allograft. Proliferative potentials of the donor spleen cells were requirement for the induction of suppressed allospecific responses, but both highly purified T cells and non-T cells were equally effective to induce the suppression of CTL responses by intravenous injection. These results have shown that, although working on different mechanisms, DSG is as effective as FK506 or rapamycin in inducing allograft tolerance when used at suboptimal doses along with the donor-specific intravenous presensitization, and an immune mechanism other than well-characterized veto T cells is working in this model in suppressing alloreactive CTL precursors.
Collapse
Affiliation(s)
- Hideo Tahara
- Department of Immunology, Kinki University School of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
1710
|
Frelin L, Ahlén G, Alheim M, Weiland O, Barnfield C, Liljeström P, Sällberg M. Codon optimization and mRNA amplification effectively enhances the immunogenicity of the hepatitis C virus nonstructural 3/4A gene. Gene Ther 2004; 11:522-33. [PMID: 14999224 DOI: 10.1038/sj.gt.3302184] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have recently shown that the NS3-based genetic immunogens should contain also hepatitis C virus (HCV) nonstructural (NS) 4A to utilize fully the immunogenicity of NS3. The next step was to try to enhance immunogenicity by modifying translation or mRNA synthesis. To enhance translation efficiency, a synthetic NS3/4A-based DNA (coNS3/4A-DNA) vaccine was generated in which the codon usage was optimized (co) for human cells. In a second approach, expression of the wild-type (wt) NS3/4A gene was enhanced by mRNA amplification using the Semliki forest virus (SFV) replicon (wtNS3/4A-SFV). Transient tranfections of human HepG2 cells showed that the coNS3/4A gene gave 11-fold higher levels of NS3 as compared to the wtNS3/4A gene when using the CMV promoter. We have previously shown that the presence of NS4A enhances the expression by SFV. Both codon optimization and mRNA amplification resulted in an improved immunogenicity as evidenced by higher levels of NS3-specific antibodies. This improved immunogenicity also resulted in a more rapid priming of cytotoxic T lymphocytes (CTLs). Since HCV is a noncytolytic virus, the functionality of the primed CTL responses was evaluated by an in vivo challenge with NS3/4A-expressing syngeneic tumor cells. The priming of a tumor protective immunity required an endogenous production of the immunogen and CD8+ CTLs, but was independent of B and CD4+ T cells. This model confirmed the more rapid in vivo activation of an NS3/4A-specific tumor-inhibiting immunity by codon optimization and mRNA amplification. Finally, therapeutic vaccination with the coNS3/4A gene using gene gun 6-12 days after injection of tumors significantly reduced the tumor growth in vivo. Codon optimization and mRNA amplification effectively enhances the overall immunogenicity of NS3/4A. Thus, either, or both, of these approaches should be utilized in an NS3/4A-based HCV genetic vaccine.
Collapse
Affiliation(s)
- L Frelin
- Division of Clinical Virology, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
1711
|
Morris ES, MacDonald KPA, Rowe V, Johnson DH, Banovic T, Clouston AD, Hill GR. Donor treatment with pegylated G-CSF augments the generation of IL-10-producing regulatory T cells and promotes transplantation tolerance. Blood 2004; 103:3573-81. [PMID: 14726406 DOI: 10.1182/blood-2003-08-2864] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe investigated whether the protection from graft-versus-host disease (GVHD) afforded by donor treatment with granulocyte colony-stimulating factor (G-CSF) could be enhanced by dose escalation. Donor treatment with human G-CSF prevented GVHD in the B6 → B6D2F1 murine model in a dose-dependent fashion, and murine G-CSF provided equivalent protection from GVHD at 10-fold lower doses. Donor pretreatment with a single dose of pegylated G-CSF (peg-G-CSF) prevented GVHD to a significantly greater extent than standard G-CSF (survival, 75% versus 11%, P < .001). Donor T cells from peg-G-CSF-treated donors failed to proliferate to alloantigen and inhibited the responses of control T cells in an interleukin 10 (IL-10)-dependent fashion in vitro. T cells from peg-G-CSF-treated IL-10-/- donors induced lethal GVHD; T cells from peg-G-CSF-treated wild-type (wt) donors promoted long-term survival. Whereas T cells from peg-G-CSF wt donors were able to regulate GVHD induced by T cells from control-treated donors, T cells from G-CSF-treated wt donors and peg-G-CSF-treated IL-10-/- donors did not prevent mortality. Thus, peg-G-CSF is markedly superior to standard G-CSF for the prevention of GVHD following allogeneic stem cell transplantation (SCT), due to the generation of IL-10-producing regulatory T cells. These data support prospective clinical trials of peg-G-CSF-mobilized allogeneic blood SCT. (Blood. 2004;103:3573-3581)
Collapse
Affiliation(s)
- Edward S Morris
- Queensland Institute of Medical Research, Herston, Australia
| | | | | | | | | | | | | |
Collapse
|
1712
|
Mi QS, Ly D, Zucker P, McGarry M, Delovitch TL. Interleukin-4 but not interleukin-10 protects against spontaneous and recurrent type 1 diabetes by activated CD1d-restricted invariant natural killer T-cells. Diabetes 2004; 53:1303-10. [PMID: 15111500 DOI: 10.2337/diabetes.53.5.1303] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In nonobese diabetic (NOD) mice, a deficiency in the number and function of invariant natural killer T-cells (iNKT cells) contributes to the onset of type 1 diabetes. The activation of CD1d-restricted iNKT cells by alpha-galactosylceramide (alpha-GalCer) corrects these deficiencies and protects against spontaneous and recurrent type 1 diabetes. Although interleukin (IL)-4 and IL-10 have been implicated in alpha-GalCer-induced protection from type 1 diabetes, a precise role for these cytokines in iNKT cell regulation of susceptibility to type 1 diabetes has not been identified. Here we use NOD.IL-4(-/-) and NOD.IL-10(-/-) knockout mice to further evaluate the roles of IL-4 and IL-10 in alpha-GalCer-induced protection from type 1 diabetes. We found that IL-4 but not IL-10 expression mediates protection against spontaneous type 1 diabetes, recurrent type 1 diabetes, and prolonged syngeneic islet graft function. Increased transforming growth factor-beta gene expression in pancreatic lymph nodes may be involved in alpha-GalCer-mediated protection in NOD.IL-10(-/-) knockout mice. Unlike the requirement of IL-7 and IL-15 to maintain iNKT cell homeostasis, IL-4 and IL-10 are not required for alpha-GalCer-induced iNKT cell expansion and/or survival. Our data identify an important role for IL-4 in the protection against type 1 diabetes by activated iNKT cells, and these findings have important implications for cytokine-based therapy of type 1 diabetes and islet transplantation.
Collapse
Affiliation(s)
- Qing-Sheng Mi
- Autoimmunity/Diabetes Group, Robarts Research Institute, 1400 Western Road, London, Ontario N6G 2V4, Canada
| | | | | | | | | |
Collapse
|
1713
|
Sutmuller RPM, Offringa R, Melief CJM. Revival of the regulatory T cell: new targets for drug development. Drug Discov Today 2004; 9:310-6. [PMID: 15037230 DOI: 10.1016/s1359-6446(03)03021-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Compelling new evidence supports the idea that regulatory T cells play a major role in our immune system. Several subsets of these regulators have been identified recently. Differences in the phenotypical and functional characteristics of these subsets have immunological implications. From our growing knowledge of the field of immunology, we could potentially generate a new class of therapeutic agents that target immune-related diseases.
Collapse
Affiliation(s)
- Roger P M Sutmuller
- Department of Tumor Immunology, NCMLS University Medical Center, Post Box 9101 6500HB, Nijmegen, The Netherlands
| | | | | |
Collapse
|
1714
|
Jolivet-Reynaud C, Adida A, Michel S, Deléage G, Paranhos-Baccala G, Gonin V, Battail-Poirot N, Lacoux X, Rolland D. Characterization of mimotopes mimicking an immunodominant conformational epitope on the hepatitis C virus NS3 helicase. J Med Virol 2004; 72:385-95. [PMID: 14748062 DOI: 10.1002/jmv.20002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hepatitis C virus (HCV) nonstructural 3 (NS3) protein is composed of an amino terminal protease and a carboxyl terminal RNA helicase. NS3 contains major antigenic epitopes. The antibody response to NS3 appears early in the course of infection and is focused on the helicase region. However, this response cannot be defined by short synthetic peptides indicating the recognition of conformation-dependent epitopes. In this study, we have screened a dodecapeptide library displayed on phage with anti-NS3 mouse monoclonal antibodies (mAbs) that compete with each other and human anti-HCV NS3 positive sera. Two peptides (mimotopes) were selected that appeared to mimic an immunodominant epitope since they were recognized specifically by the different anti-NS3 mAbs of the study and by human sera from HCV infected patients. Homology search between the two mimotopes and the NS3 sequence showed that one of the two peptides shared amino acid similarities with NS3 at residues 1396-1398 on a very accessible loop as visualized on the three-dimensional structure of the helicase domain whereas the other one had two amino acids similar to nearby residues 1376 and 1378. Reproduced as synthetic dodecapeptides, the two mimotopes were recognized specifically by 19 and 22, respectively, out of 49 sera from HCV infected patients. These mimotopes allowed also the detection of anti-NS3 antibodies in sera of HCV patients at the seroconversion stage. These results suggest that the two NS3 mimotopes are potential tools for the diagnosis of HCV infection.
Collapse
|
1715
|
Krajina T, Leithäuser F, Reimann J. MHC class II-independent CD25+ CD4+ CD8alpha beta+ alpha beta T cells attenuate CD4+ T cell-induced transfer colitis. Eur J Immunol 2004; 34:705-714. [PMID: 14991600 DOI: 10.1002/eji.200324463] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
CD4+ alpha beta T cell populations that develop in mice deficient in MHC class II (through 'knockout' of either the Aalpha, or the Abeta chain of the I-A(b) molecule) comprise a major 'single-positive' (SP) CD4+ CD8- subset (60-90%) and a minor 'double-positive' (DP) CD4+ CD8alpha beta+ subset (10-40%). Many DP T cells found in spleen, mesenteric lymph nodes (MLN) and colonic lamina propria (cLP) express CD25, CD103 and Foxp3. Adoptive transfer of SP but not DP T cells from Aalpha(-/-) or Abeta(-/-) B6 mice into congenic RAG(-/-) hosts induces colitis. Transfer of SP T cells repopulates the host with only SP T cells; transfer of DP T cells repopulates the host with DP and SP T cells. Anti-CD25 antibody treatment of mice transplanted with DP T cells induces severe, lethal colitis; anti-CD25 antibody treatment of mice transplanted with SP T cells further aggravates the course of severe colitis. Hence, regulatory CD25+ T cells within (or developing from) the DP T cell population of MHC class II-deficient mice control the colitogenic potential of CD25- CD4+ T cells.
Collapse
Affiliation(s)
- Tamara Krajina
- Department of Medical Microbiology and Immunology, University of Ulm, Ulm, Germany
| | | | - Jörg Reimann
- Department of Medical Microbiology and Immunology, University of Ulm, Ulm, Germany
| |
Collapse
|
1716
|
Abstract
Regulatory T cells participate in immunologic homeostasis by active suppression of inappropriate immune responses. Regulatory T lymphocytes expressing CD4 and CD25 antigens and naturally present in the peripheral blood were the first to be phenotypically characterized. However, their small number and antigen nonspecific suppression has prompted efforts to identify and dissect antigen-specific regulatory T cells. In this review we discuss how antigen-specific regulatory T cells can be identified, the cellular and molecular mechanisms underlying their induction and activity, and the challenges facing their potential clinical application.
Collapse
Affiliation(s)
- Stephane Vigouroux
- Center for Cell and Gene Therapy and Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, 77030, USA.
| | | | | | | |
Collapse
|
1717
|
Chinnadurai G. Modulation of oncogenic transformation by the human adenovirus E1A C-terminal region. Curr Top Microbiol Immunol 2004; 273:139-61. [PMID: 14674601 DOI: 10.1007/978-3-662-05599-1_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The E1A oncogene of human adenoviruses cooperates with other viral and cellular oncogenes in oncogenic transformation of primary and established cells. The N-terminal half of E1A proteins that form specific protein complexes with pRb family and p300/CBP transcriptional regulators is essential for the transforming activities of E1A. Although the C-terminal half of E1A is dispensable for the transforming activities, it negatively modulates the oncogenic activities of the N-terminal region. Mutants of E1A lacking the C-terminal half or a short C-terminal region exhibit a hyper-transforming phenotype in cooperative transformation assays with the activated ras oncogene. The E1A C-terminal region implicated in the oncogenesis-restraining activity interacts with a 48-kDa cellular phosphoprotein, CtBP, that functions as a transcriptional corepressor. It appears that the C-terminal region of E1A may suppress E1A-mediated oncogenic transformation by a dual mechanism of relieving repression cellular genes by CtBP, and also by antagonizing the oncogenic activities of the N-terminal half of E1A.
Collapse
Affiliation(s)
- G Chinnadurai
- Institute for Molecular Virology, Saint Louis University School of Medicine, 3681 Park Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
1718
|
Graca L, Le Moine A, Cobbold SP, Waldmann H. Antibody-induced transplantation tolerance: the role of dominant regulation. Immunol Res 2004; 28:181-91. [PMID: 14713713 DOI: 10.1385/ir:28:3:181] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A short-treatment with nondepleting antibodies, such as those targeting CD4 or CD154 (CD40 ligand), allows long-term graft survival without the need for continuous immunosuppression. This state of immune tolerance is maintained by regulatory CD4+ T cells present within both the lymphoid tissue and the tolerated graft. The nature of such regulatory T cells, their relationship to CD4+CD25+ T cells, and their mode of action have all been the subjects of much attention recently. Here, we review recent progress on understanding the nature, specificity, and mechanisms of action of T cells mediating dominant tolerance brought about by antibody therapy.
Collapse
Affiliation(s)
- Luis Graca
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | | | |
Collapse
|
1719
|
Abstract
The alloimmune response can be divided into specific junctures where critical decisions between tolerance and immunity are made which define the outcome of the transplant. At these "decision nodes" various cytokines direct alloresponsive T cells to develop either a proinflammatory response aimed at graft destruction or an immunoregulatory response facilitating graft acceptance. This review will focus on the role of these cytokines in influencing the progression of an alloimmune response leading ultimately to either allograft survival or rejection.
Collapse
Affiliation(s)
- Patrick T. Walsh
- University of Pennsylvania, 700 Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104
| | - Terry B. Strom
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Laurence A. Turka
- University of Pennsylvania, 700 Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104
- Correspondence:
| |
Collapse
|
1720
|
Blank C, Brown I, Marks R, Nishimura H, Honjo T, Gajewski TF. Absence of programmed death receptor 1 alters thymic development and enhances generation of CD4/CD8 double-negative TCR-transgenic T cells. THE JOURNAL OF IMMUNOLOGY 2004; 171:4574-81. [PMID: 14568931 DOI: 10.4049/jimmunol.171.9.4574] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Programmed death receptor 1 (PD-1) is expressed on thymocytes in addition to activated lymphocyte cells. Its ligation is thought to negatively regulate T cell activation, and PD-1(-/-) mice develop autoimmunity. To study the role of PD-1 on the development and function of a monoclonal CD8(+) T cell population, 2C TCR-transgenic/recombination-activating gene 2(-/-)/PD-1(-/-) mice were generated. Unexpectedly, approximately 30% of peripheral T cells in these mice were CD4/CD8 double negative (DN). Although the DN cells were not activated by Ag-expressing APCs, they functioned normally in response to anti-CD3/anti-CD28. These cells had a naive surface phenotype and lacked expression of NK1.1, B220, and gammadelta TCR; and the majority did not up-regulate CD8alphaalpha expression upon activation, arguing that they are not predominantly diverted gammadelta-lineage cells. The thymus was studied in detail to infer the mechanism of generation of DN peripheral T cells. Total thymus cellularity was reduced in 2C TCR-transgenic/recombination-activating gene 2(-/-)/PD-1(-/-) mice, and a relative increase in DN cells and decrease in double-positive (DP) cells were observed. Increased annexin V(+) cells among the DP population argued for augmented negative selection in PD-1(-/-) mice. In addition, an increased fraction of the DN thymocytes was HSA negative, suggesting that they had undergone positive selection. This possibility was supported by decreased emergence of DN PD-1(-/-) 2C cells in H-2(k) bone marrow chimera recipients. Our results are consistent with a model in which absence of PD-1 leads to greater negative selection of strongly interacting DP cells as well as increased emergence of DN alphabeta peripheral T cells.
Collapse
MESH Headings
- Animals
- Antigens/pharmacology
- Antigens, Surface/biosynthesis
- Antigens, Surface/genetics
- Antigens, Surface/physiology
- Apoptosis Regulatory Proteins
- CD28 Antigens/immunology
- CD3 Complex/immunology
- CD4 Antigens/biosynthesis
- CD4 Antigens/genetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Division/genetics
- Cell Division/immunology
- Cell Line, Tumor
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Immune Sera/pharmacology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Lymphocyte Count
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Programmed Cell Death 1 Receptor
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Christian Blank
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
1721
|
Marra LE, Zhang ZX, Joe B, Campbell J, Levy GA, Penninger J, Zhang L. IL-10 induces regulatory T cell apoptosis by up-regulation of the membrane form of TNF-alpha. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2004; 172:1028-1035. [PMID: 14707076 DOI: 10.4049/jimmunol.172.2.1028] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Numerous studies have demonstrated the role of regulatory T (Treg) cells in peripheral tolerance. Nevertheless, how the survival and death of Treg cells is controlled is largely unknown. In this study, we investigated the mechanisms involved in regulating the homeostasis of a subset of Ag-specific alphabetaTCR+ CD4-CD8- double negative (DN) Treg cells. We demonstrate that DN Treg cells are naturally resistant to TCR cross-linking-induced apoptosis. Administration of exogenous IL-10 renders DN Treg cells susceptible to apoptosis, and abolishes their suppressive function. Furthermore, TCR cross-linking of DN Treg cells in the presence of IL-10 leads to the up-regulation of the membrane-bound but not the soluble form of TNF-alpha. Interaction of membrane bound TNF-alpha with TNFR2 sends death signals to DN Treg cells. Blocking their interaction can reverse the effects of IL-10 on DN Treg cells. These results provide insights into the mechanisms that regulate the function and homeostasis of DN Treg cells.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antigens, CD/biosynthesis
- Antigens, CD/metabolism
- Apoptosis/genetics
- Apoptosis/immunology
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cells, Cultured
- Clone Cells
- Down-Regulation/genetics
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/immunology
- Immunity, Innate
- Interleukin-10/antagonists & inhibitors
- Interleukin-10/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Oligonucleotides, Antisense/pharmacology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Receptors, Tumor Necrosis Factor/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type II
- Solubility
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Luciano E Marra
- Departments of Laboratory Medicine and Pathobiology, Immunology and Multi Organ Transplantation Program, Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
1722
|
Dai Z, Li Q, Wang Y, Gao G, Diggs LS, Tellides G, Lakkis FG. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism. J Clin Invest 2004; 113:310-7. [PMID: 14722622 PMCID: PMC311434 DOI: 10.1172/jci19727] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 11/11/2003] [Indexed: 01/07/2023] Open
Abstract
CD4(+)CD25(+) regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8(+) T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8(+) T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8(+) T cells was observed when Treg cells lacked CD30 or when CD30 ligand-CD30 interaction was blocked with anti-CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses.
Collapse
Affiliation(s)
- Zhenhua Dai
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
1723
|
Shuen M, Avvakumov N, Torchia J, Mymryk JS. The E1A proteins of all six human adenovirus subgroups target the p300/CBP acetyltransferases and the SAGA transcriptional regulatory complex. Virology 2003; 316:75-83. [PMID: 14599792 DOI: 10.1016/j.virol.2003.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The N-terminal/conserved region 1 (CR1) portion of the human adenovirus (Ad) 5 E1A protein was previously shown to inhibit growth in the simple eukaryote Saccharomyces cerevisiae. We now demonstrate that the corresponding regions of the E1A proteins of Ad3,-4,-9,-12, and -40, which represent the remaining five Ad subgroups, also inhibit yeast growth. These results suggest that the E1A proteins of all six human Ad subgroups share a common cellular target(s) conserved in yeast. Growth inhibition induced by either full-length or the N-terminal/CR1 portion of Ad5 E1A was relieved by coexpression of the E1A binding portions of the mammalian p300, CBP, and pCAF acetyltransferases. Similarly, growth inhibition by the N-terminal/CR1 portions of the other Ad E1A proteins was suppressed by expression of the same regions of CBP or pCAF known to bind Ad5 E1A. The physical interaction of each of the different Ad E1A proteins with CBP, p300, and pCAF was confirmed in vitro. Furthermore, deletion of the gene encoding yGcn5, the yeast homolog of pCAF and a subunit of the SAGA transcriptional regulatory complex, restored growth in yeast expressing each of the different Ad E1A proteins. This indicates that the SAGA complex is a conserved target of all Ad E1A proteins. Our results demonstrate for the first time that the p300, CBP, and pCAF acetyltransferases are common targets for the E1A proteins of all six human Ad subgroups, highlighting the importance of these interactions for E1A function.
Collapse
Affiliation(s)
- Michael Shuen
- Department of Microbiology and Immunology, The University of Western Ontario, London, Regional Cancer Centre, 790 Commissioners Road East, N6A 4L6, London, Ontario, Canada
| | | | | | | |
Collapse
|
1724
|
Davis DM, Igakura T, McCann FE, Carlin LM, Andersson K, Vanherberghen B, Sjöström A, Bangham CRM, Höglund P. The protean immune cell synapse: a supramolecular structure with many functions. Semin Immunol 2003; 15:317-24. [PMID: 15001170 DOI: 10.1016/j.smim.2003.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heterogeneity in the supramolecular organization of immunological synapses arises from the involvement of different cells, distinct environmental stimuli, and varying levels of protein expression. There may also be heterogeneity in the types and amounts of cell surface proteins and lipids that transfer between lymphocytes during immune surveillance. In addition, immune cells can be involved in the assembly of a 'viral synapse', such that micrometer-scale organization of proteins at intercellular contacts occurs during transmission of a virus between T cells. Thus, while there may be unity in molecular mechanisms underlying the organization of cell surface receptors at immune cell synapses, there is diversity in their function.
Collapse
Affiliation(s)
- Daniel M Davis
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
1725
|
Abstract
Long-term allograft survival in the absence of continuous immunosuppression can be induced following a short treatment of nondepleting antibodies, such as those that target CD4 or CD154 (CD40 ligand). It is now established that this may involve dominant tolerance mechanisms that are maintained by CD4+ regulatory T cells present within the lymphoid tissue and the tolerated graft. The phenotype of these cells, their relationship to CD4+CD25+ T cells, and the mechanism of action are still controversial.
Collapse
Affiliation(s)
- Luis Graca
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | | | |
Collapse
|
1726
|
Jiang S, Camara N, Lombardi G, Lechler RI. Induction of allopeptide-specific human CD4+CD25+ regulatory T cells ex vivo. Blood 2003; 102:2180-6. [PMID: 12775574 DOI: 10.1182/blood-2003-04-1164] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although CD4+CD25+ regulatory T cells are pivotal in the prevention of autoimmunity and appear to mediate transplantation tolerance, little is known concerning their antigen specificity. Here we describe the induction of a human CD4+CD25+ regulatory T-cell line specific for a defined peptide alloantigen (human leukocyte antigen A2 [HLA-A2] 138-170) by priming purified CD4+CD25+ cells ex vivo. The regulatory cells were anergic and retained their ability to suppress antigen-driven responses of CD4+CD25- cells. They inhibited not only interleukin 2 (IL-2) secretion by CD4+CD25- T cells specific for the same peptide but also direct alloresponse of naive CD4+CD25- T cells stimulated by semiallogeneic dendritic cells (DCs) in the presence of the peptide ("linked suppression"). They also suppressed the response of CD4+ T cells specific for viral and bacterial antigens. The suppressive T-cell line showed sustained high CD25 expression. These findings suggest that peripheral CD4+CD25+ regulatory cells are a precommitted cell lineage from which cells with specificity for non-self-peptides can be selected. This may pave the way for inducing and expanding peptide antigen-specific regulatory T cells ex vivo for cell therapy in transplantation, allergy, and autoimmune disease.
Collapse
Affiliation(s)
- Shuiping Jiang
- Department of Immunology, Faculty of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | |
Collapse
|
1727
|
Hamad ARA, Mohamood AS, Trujillo CJ, Huang CT, Yuan E, Schneck JP. B220+ double-negative T cells suppress polyclonal T cell activation by a Fas-independent mechanism that involves inhibition of IL-2 production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2421-6. [PMID: 12928389 DOI: 10.4049/jimmunol.171.5.2421] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fas-mediated apoptosis is a key mechanism for elimination of autoreactive T cells, yet loss of function mutations in the Fas signaling pathway does not result in overt T cell-mediated autoimmunity. Furthermore, mice and humans with homozygous Fas(lpr) or Fas ligand(gld) mutations develop significant numbers of B220+ CD4- CD8- double-negative (DN) alphabeta T cells (hereafter referred to as B220+ DN T cells) of poorly understood function. In this study, we show that B220+ DN T cells, whether generated in vitro or isolated from mutant mice, can suppress the ability of activated T cells to proliferate or produce IL-2, IL-10, and IFN-gamma. B220+ DN T cells that were isolated from either lpr or gld mice were able to suppress proliferation of autologous and syngeneic CD4 T cells, showing that suppression is Fas independent. Furthermore, restoration of Fas/Fas ligand interaction did not enhance suppression. The mechanism of suppression involves inhibition of IL-2 production and its high affinity IL-2R alpha-chain (CD25). Suppression also requires cell/cell contact and TCR activation of B220+ DN T cells, but not soluble cytokines. These findings suggest that B220+ DN T cells may be involved in controlling autoreactive T cells in the absence of Fas-mediated peripheral tolerance.
Collapse
Affiliation(s)
- Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland/Ross 659, Baltimore, MD 21205, USA.
| | | | | | | | | | | |
Collapse
|
1728
|
Chakraborty S, Sinha KK, Senyuk V, Nucifora G. SUV39H1 interacts with AML1 and abrogates AML1 transactivity. AML1 is methylated in vivo. Oncogene 2003; 22:5229-37. [PMID: 12917624 DOI: 10.1038/sj.onc.1206600] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute myeloid leukemia 1 (AML1) belongs to a family of DNA-binding proteins highly conserved through evolution. AML1 regulates the expression of several hematopoietic genes and is essential for murine fetal liver hematopoiesis. We report here that the histone methyltransferase SUV39H1, a mammalian ortholog of the Drosophila melanogaster SU(VAR) 3-9, forms complex with AML1. SUV39H1 methylates lysine 9 of the histone protein H3 leading to the formation of the high-affinity binding site on chromatin for proteins of the heterochromatin protein 1 family (HP1). The interaction of AML1 with SUV39H1 requires the N-terminus of AML1 where the Runt domain is located. Binding of AML1 to SUV39H1 abrogates the transactivating and DNA-binding properties of AML1 and dissociates the net-like nuclear structure of AML1. It has been reported that AML1 is capable of interaction with histone acetyl transferases (CBP, p300, and MOZ) and with component of the histone deacetylase complex (Sin3), and that the interaction with these coregulators affects the strength of AML1 in promoter regulation. Our data suggest that other enzymes are also involved in gene regulation by AML1 activity by modulating the affinity of AML1 for DNA.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Department of Pathology and The Cancer Center, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
1729
|
Abstract
The continued and growing success of lung allotransplantation has intensified the worldwide shortage of donor organs. Yet, xenotransplantation remains a daunting challenge. Additional molecular incompatibilities and unforeseen complications will continue to be discovered. Progress has been made, notably on the generation of alpha-Gal double knockout pigs. Progressive increases in organ survival times have been seen for most organs after significant investments of time and money. The lung continues to be an organ with the lowest supply of cadaveric donors and the least potential for expanded living donation or mechanical alternatives. As such, the impetus for xenotransplantation is strong. The lung appears to be exquisitely sensitive to xenograft rejection and resistant to strategies that have been moderately successful in other organs. A complex program involving genetically modified donor organs, recipient preparation for antibody removal or tolerance promotion, and multitargeted drug therapy will likely be required for successful clinical application.
Collapse
Affiliation(s)
- Thomas K Waddell
- Department of Surgery, Division of Thoracic Surgery, Toronto General Hospital, 200 Elizabeth Street, EN 10-233, Toronto, Ontario M5G 2C4, Canada.
| | | |
Collapse
|
1730
|
Ng CC, Arakawa H, Fukuda S, Kondoh H, Nakamura Y. p53RFP, a p53-inducible RING-finger protein, regulates the stability of p21WAF1. Oncogene 2003; 22:4449-58. [PMID: 12853982 DOI: 10.1038/sj.onc.1206586] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanisms by which p53 prevents development of cancer are much more complicated than previously thought. Under normal conditions, p53 is involved in cell-cycle arrest, Q1apoptosis, DNA repair, and inhibition of angiogenesis; it also promotes degradation of proteins through transcriptional regulation of certain target genes. Here we report the isolation of a novel transcriptional target of p53, designated p53RFP (p53-inducible RING-finger protein), whose product has E3 ubiquitin ligase activity. Its expression was negatively correlated to that of p21(WAF1) protein; p53RFP is likely to play a role in the regulation of this protein, probably through interaction with, and ubiquitination of, p21(WAF1). p53RFP appears to represent the second known example, the first being MDM2, of an E3 ubiquitin ligase as a p53 target. Our results further suggest that p53 might regulate the stability of p21(WAF1) through transcriptional regulation of p53RFP, and this feature may represent a novel mechanism for a p53-dependent cell-cycle checkpoint.
Collapse
Affiliation(s)
- Ching-Ching Ng
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
1731
|
Isaguliants MG, Petrakova NV, Mokhonov VV, Pokrovskaya K, Suzdaltzeva YG, Krivonos AV, Zaberezhny AD, Garaev MM, Smirnov VD, Nordenfelt E. DNA immunization efficiently targets conserved functional domains of protease and ATPase/helicase of nonstructural 3 protein (NS3) of human hepatitis C virus. Immunol Lett 2003; 88:1-13. [PMID: 12853154 DOI: 10.1016/s0165-2478(03)00051-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nonstructural protein 3 (NS3) of human hepatitis C virus (HCV) is a conserved multi-functional protein essential for replication and translation of viral RNA and polyprotein processing. Early T-cell response against NS3 is capable of restricting viremia. We aimed at characterizing the immunogenicity in gene immunization of the conserved regions of NS3 critical for protein folding and activity. C57BL/6 mice were injected with NS3 gene of Russian HCV 1b isolate 274933RU. Immunization did not exert any overt histological changes and had no long-term effects on the immune status of NS3 gene-recipients. The immune response in NS3 gene-recipients was screened by antibody ELISA, T-cell proliferation test and immune assays for specific cytokine production. T-lymphocytes of NS3 gene-recipients proliferated in response to peptides representing conserved regions of protease and ATPase/helicase. Stimulated T-lymphocytes produced IL-2, and in response to protease-derived peptides, also IFN-gamma. Potent and long-lasting antibody response was raised against conserved NS3 regions including "Greek-key" motif of protease, motifs II, V and polynucleotide-binding domains of ATPase/helicase. Thus, gene immunization effectively targeted conserved regions critical for NS3 protease and helicase function. In type and specificity, immune response of NS3 gene-immunized mice mimicked immunity achieved in the acute self-limiting HCV infection of human and primates and in virus-exposed healthy individuals, indicating promiscuity of NS3 as immunogen.
Collapse
Affiliation(s)
- Maria G Isaguliants
- D.I. Ivanovsky Institute of Virology, Gamaleja str. 16, 123098, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1732
|
Young KJ, DuTemple B, Phillips MJ, Zhang L. Inhibition of graft-versus-host disease by double-negative regulatory T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:134-41. [PMID: 12816991 DOI: 10.4049/jimmunol.171.1.134] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pretransplant infusion of lymphocytes that express a single allogeneic MHC class I Ag has been shown to induce tolerance to skin and heart allografts that express the same alloantigens. In this study, we demonstrate that reconstitution of immunoincompetent mice with spleen cells from MHC class I L(d)-mismatched donors does not cause graft-vs-host disease (GVHD). Recipient mice become tolerant to skin allografts of lymphocyte donor origin while retaining immunity to third-party alloantigens. The mechanism involves donor-derived CD3(+)CD4(-)CD8(-) double-negative T regulatory (DN Treg) cells, which greatly increase and form the majority of T lymphocytes in the spleen of recipient mice. DN Treg cells isolated from tolerant recipient mice can suppress the proliferation of syngeneic antihost CD8(+) T cells in vitro. Furthermore, we demonstrate that DN Treg cells can be generated in vitro by stimulating them with MHC class I L(d)-mismatched lymphocytes. These in vitro generated L(d)-specific DN Treg cells are able to down-regulate the activity of antihost CD8(+) T cells in vitro by directly killing activated CD8(+) T cells. Moreover, infusing in vitro generated L(d)-mismatched DN Treg cells prevented the development of GVHD caused by allogeneic CD8(+) T cells. Together these data demonstrate that infusion of single MHC class I locus-mismatched lymphocytes may induce donor-specific transplantation tolerance through activation of DN Treg cells, which can suppress antihost CD8(+) T cells and prevent the development of GVHD. This finding indicates that using single class I locus-mismatched grafts may be a viable alternative to using fully matched grafts in bone marrow transplantation.
Collapse
MESH Headings
- Animals
- CD3 Complex/biosynthesis
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/transplantation
- Cell Division/genetics
- Cell Division/immunology
- Clone Cells
- Coculture Techniques
- Cytotoxicity, Immunologic/genetics
- Graft vs Host Disease/genetics
- Graft vs Host Disease/immunology
- Graft vs Host Disease/pathology
- Graft vs Host Disease/prevention & control
- H-2 Antigens/administration & dosage
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- Histocompatibility Antigen H-2D
- Histocompatibility Testing
- Lymphocyte Transfusion
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, SCID
- Mice, Transgenic
- Skin Transplantation/adverse effects
- Skin Transplantation/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/transplantation
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Transplantation Tolerance/genetics
- Transplantation, Isogeneic/immunology
- Transplantation, Isogeneic/pathology
Collapse
Affiliation(s)
- Kevin J Young
- Department of Laboratory Medicine and Pathobiology, Multi Organ Transplantation Program, Toronto General Research Institute, University Health Network, and Department of Immunology, University of Toronto, Toronto, Canada
| | | | | | | |
Collapse
|
1733
|
Abstract
Self-tolerance is maintained by several mechanisms including deletion (via apoptosis) and regulation. Acquired tolerance to allogeneic tissues and organs exploits similar strategies. One key difference between alloantigens and peptide antigens is the enormous number of T cells that are alloreactive. Accumulating evidence suggests that in the face of this large mass of potentially graft-destructive T cells, tolerance requires an initial wave of deletion. This creates a more level playing field in which a smaller number of regulatory T cells can then act to maintain an established tolerant state. Deletion of alloreactive T cells by apoptosis actively promotes immunoregulation as well, by interfering with proinflammatory maturation of antigen presenting cells. This article reviews the immune response to alloantigens, the development and use of both necrotic and apoptotic means of cell death during the evolution of the immune response, and the likely role and mechanisms by which apoptosis promotes, and may even be required for, transplantation tolerance.
Collapse
Affiliation(s)
- Elise Chiffoleau
- Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
1734
|
Abstract
A role for immunoregulatory T cells in the maintenance of self-tolerance and in transplantation tolerance has long been suggested, but the identification of such cells has not been achieved until recently. With the characterisation of spontaneously occurring CD4+CD25+ and NK1.1+ T subpopulations of T cells as regulatory cells in rodents and in humans, together with several in vitro generated regulatory T-cell populations, it seems possible that 'customised' regulatory cells possessing antidonor specificity may become therapeutic tools in clinical transplantation tolerance.
Collapse
Affiliation(s)
- Shuiping Jiang
- Department of Immunology, Faculty of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London, UK
| | | |
Collapse
|
1735
|
Frelin L, Alheim M, Chen A, Söderholm J, Rozell B, Barnfield C, Liljeström P, Sällberg M. Low dose and gene gun immunization with a hepatitis C virus nonstructural (NS) 3 DNA-based vaccine containing NS4A inhibit NS3/4A-expressing tumors in vivo. Gene Ther 2003; 10:686-99. [PMID: 12692597 DOI: 10.1038/sj.gt.3301933] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hepatitis C virus (HCV) protease and helicase encompasses the nonstructural (NS) 3 protein and the cofactor NS4A, which targets the NS3/4A-complex to intracellular membranes. We here evaluate the importance of NS4A in NS3-based genetic immunogens. A full-length genotype 1 NS3/4A gene was cloned into a eucaryotic expression vector in the form of NS3/4A and NS3 alone. Transient transfections revealed that the inclusion of NS4A increased the expression levels of NS3. Subsequently, immunization with the NS3/4A gene primed 10- to 100-fold higher levels of NS3-specific antibodies as compared to immunization with the NS3 gene. Humoral responses primed by the NS3/4A gene had a higher IgG2a/IgG1 ratio (>20) as compared to the NS3 gene (3.0), suggesting a T helper 1-skewed response. Low dose i.m. (10 microg) immunization with the NS3/4A gene inhibited the growth of NS3/4A-expressing tumor cells in vivo, whereas the NS3 gene alone or NS3 protein did not. We then evaluated the efficiency of the NS3/4A gene administered by the gene gun, at the same doses used for humans, in priming cytotoxic T lymphocyte (CTL) responses. Three to four 4 microg doses of the NS3/4A gene primed CTL at a precursor frequency of 2-4%, which inhibited the growth of NS3/4A-expressing tumor cells in vivo. Thus, NS4A enhances the expression levels and immunogenicity of NS3, and an NS3/4A gene delivered transdermally could be a therapeutic vaccine candidate.
Collapse
Affiliation(s)
- L Frelin
- Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
1736
|
Garin MI, Lechler RI. Regulatory T cells. Curr Opin Organ Transplant 2003. [DOI: 10.1097/00075200-200303000-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
1737
|
Abstract
The identification and characterization of regulatory T (T(Reg)) cells that can control immune responsiveness to alloantigens have opened up exciting opportunities for new therapies in transplantation. After exposure to alloantigens in vivo, alloantigen-specific immunoregulatory activity is enriched in a population of CD4+ T cells that express high levels of CD25. In vivo, common mechanisms seem to underpin the activity of CD4+CD25+ T(Reg) cells in both naive and manipulated hosts. However, the origin, allorecognition properties and molecular basis for the suppressive activity of CD4+CD25+ T(Reg) cells, as well as their relationship to other populations of regulatory cells that exist after transplantation, remain a matter of debate..
Collapse
Affiliation(s)
- Kathryn J Wood
- Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.
| | | |
Collapse
|
1738
|
Johansson M, Lycke N. A unique population of extrathymically derived alpha beta TCR+CD4-CD8- T cells with regulatory functions dominates the mouse female genital tract. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1659-66. [PMID: 12574328 DOI: 10.4049/jimmunol.170.4.1659] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A better understanding of the regulatory role of genital tract T cells is much needed. In this study, we have analyzed the phenotype, distribution, and function of T lymphocytes in the female genital tract of naive, pregnant, or Chlamydia trachomatis-infected C57BL/6 mice. Unexpectedly, we found that the dominant lymphocyte population (70-90%) in the genital tract was that of CD3(+)alphabetaTCR(int)CD4(-)CD8(-) T cells. Moreover, these cells were CD90(low) but negative for the classical T cell markers CD2 and CD5. The CD3(+)B220(low) cells were NK1.1 negative and found in nude mice as well as in mice deficient for MHC class II, beta(2)-microglobulin, and CD1, indicating extrathymic origin. They dominated the KJ126(+)Vbeta8.2(+) population in the genital tract of DO11.10 OVA TCR-transgenic mice, further supporting the idea that the CD3(+)B220(low) cells are truly T cells. The function of these T cells appeared not to be associated with immune protection, because only CD4(+) and CD8(+) T cells increased in the genital tract following chlamydial infection. Notwithstanding this, the infected, as well as the uninfected and the pregnant, uterus was dominated by a high level of the CD3(+)CD4(-)CD8(-)B220(low) cells. Following in vitro Ag or polyclonal stimulation of the CD3(+)CD4(-)CD8(-)B220(low) cells, poor proliferative responses were observed. However, these cells strongly impaired splenic T cell proliferation in a cell density-dependent manner. A large fraction of the cells expressed CD25 and produced IFN-gamma upon anti-CD3 plus anti-CD28 stimulation, arguing for a strong regulatory role of this novel T cell population in the mouse female genital tract.
Collapse
MESH Headings
- Animals
- Antibody Specificity
- CD3 Complex/biosynthesis
- CD4 Antigens/biosynthesis
- CD8 Antigens/biosynthesis
- Cells, Cultured
- Chlamydia Infections/immunology
- Clone Cells
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/analysis
- Female
- Immunoglobulin Idiotypes/biosynthesis
- Immunophenotyping
- Leukocyte Common Antigens/biosynthesis
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Mice, Transgenic
- Pregnancy
- Pregnancy Complications, Infectious/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocyte Subsets/chemistry
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/microbiology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Uterine Diseases/immunology
- Uterus/chemistry
- Uterus/cytology
- Uterus/immunology
- Uterus/metabolism
Collapse
Affiliation(s)
- Martina Johansson
- Department of Clinical Immunology, University of Göteborg, S-413 46 Göteborg, Sweden.
| | | |
Collapse
|
1739
|
Chen W, Ford MS, Young KJ, Cybulsky MI, Zhang L. Role of double-negative regulatory T cells in long-term cardiac xenograft survival. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1846-53. [PMID: 12574350 DOI: 10.4049/jimmunol.170.4.1846] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel subset of CD3(+)CD4(-)CD8(-) (double negative; DN) regulatory T cells has recently been shown to induce donor-specific skin allograft acceptance following donor lymphocyte infusion (DLI). In this study, we investigated the effect of DLI on rat to mouse cardiac xenotransplant survival and the ability of DN T cells to regulate xenoreactive T cells. B6 mice were given either DLI from Lewis rats, a short course of depleting anti-CD4 mAb, both DLI and anti-CD4 treatment together, or left untreated. DLI alone did not prolong graft survival when compared with untreated controls. Although anti-CD4-depleting mAb alone significantly prolonged graft survival, grafts were eventually rejected by all recipients. However, the combination of DLI and anti-CD4 treatment induced permanent cardiac xenograft survival. We demonstrate that recipients given both DLI and anti-CD4 treatment had a significant increase in the total number of DN T cells in their spleens when compared with all other treatment groups. Furthermore, DN T cells harvested from the spleens of DLI plus anti-CD4-treated mice could dose-dependently inhibit the proliferation of syngeneic antidonor T cells. Suppression mediated by these DN T cells was specific for antidonor T cells as T cells stimulated by third-party Ags were not suppressed. These results demonstrate for the first time that a combination of pretransplant DLI and anti-CD4-depleting mAb can induce permanent survival of rat to mouse cardiac xenografts and that DN T regulatory cells play an important role in preventing long-term concordant xenograft rejection through the specific suppression of antidonor T cells.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antigens/metabolism
- Antigens, Surface
- CD3 Complex/biosynthesis
- CD4 Antigens/immunology
- CD4 Antigens/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD8 Antigens/metabolism
- CD8-Positive T-Lymphocytes/immunology
- Cell Division/genetics
- Cell Division/immunology
- Epitopes, T-Lymphocyte/immunology
- Graft Enhancement, Immunologic/methods
- Graft Survival/genetics
- Graft Survival/immunology
- Heart Transplantation/immunology
- Immune Tolerance/genetics
- Immunosuppression Therapy
- Injections, Intraperitoneal
- Interphase/immunology
- Lectins, C-Type
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Lymphocyte Transfusion
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- NK Cell Lectin-Like Receptor Subfamily B
- Proteins/metabolism
- Rats
- Rats, Inbred Lew
- Rats, Inbred WF
- Spleen/cytology
- Spleen/metabolism
- Spleen/transplantation
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transplantation Conditioning
- Transplantation, Heterologous/immunology
Collapse
Affiliation(s)
- Wenhao Chen
- Department of Laboratory Medicine and Pathobiology, Multi Organ Transplantation Program, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, M5G 2C4 Canada
| | | | | | | | | |
Collapse
|
1740
|
Ito CY, Li CYJ, Bernstein A, Dick JE, Stanford WL. Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood 2003; 101:517-23. [PMID: 12393491 DOI: 10.1182/blood-2002-06-1918] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite its wide use as a marker for hematopoietic stem cells (HSCs), the function of stem cell antigen-1 (Sca-1) (also known as lymphocyte activation protein-6A [Ly-6A]) in hematopoiesis remains poorly defined. We have previously established that Sca-1(-/-) T cells develop normally, although they are hyperresponsive to antigen. Here, we report detailed analysis of hematopoiesis in Sca-1-deficient animals. The differentiation potential of Sca-1-null bone marrow was determined from examination of the most mature precursors (culture colony-forming units [CFU-Cs]) to less committed progenitors (spleen CFUs [CFU-Ss]) to long-term repopulating HSCs. Sca-1-null mice are mildly thrombocytopenic with a concomitant decrease in megakaryocytes and their precursors. Bone marrow cells derived from Sca-1(-/-) mice also have decreased multipotential granulocyte, erythroid, macrophage, and megakaryocyte CFU (GEMM-CFU) and CFU-S progenitor activity. Competitive repopulation assays demonstrated that Sca-1(-/-) HSCs are at a competitive disadvantage compared with wild-type HSCs. To further analyze the potential of Sca-1(-/-) HSCs, serial transplantations were performed. While secondary repopulations using wild-type bone marrow completely repopulated Sca-1(-/-) mice, Sca-1(-/-) bone marrow failed to rescue one third of lethally irradiated wild-type mice receiving secondary bone marrow transplants from irradiation-induced anemia and contributed poorly to the surviving transplant recipients. These data strongly suggest that Sca-1 is required for regulating HSC self-renewal and the development of committed progenitor cells, megakaryocytes, and platelets. Thus, our studies conclusively demonstrate that Sca-1, in addition to being a marker of HSCs, regulates the developmental program of HSCs and specific progenitor populations.
Collapse
Affiliation(s)
- Caryn Y Ito
- Programme in Cancer/Blood, Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
1741
|
de Moraes LV, Sun B, Rizzo LV. Development of CD4+ T cell lines that suppress an antigen-specific immune response in vivo. Clin Exp Immunol 2003; 131:17-25. [PMID: 12519381 PMCID: PMC1808607 DOI: 10.1046/j.1365-2249.2003.02018.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been suggested for many years that the regulation of the immune system for the maintenance of peripheral tolerance may involve regulatory/suppressor T cells. In the past few years, several investigators have demonstrated that these cells can be generated in vitro. It has also been shown that they can inhibit the progression of various autoimmune disease models when infused into susceptible mice. We have generated two murine T cell lines in the presence of KLH-specific T cell clones from BALB/c or DBA2 mice. The lines are characterized by a low proliferative response to mitogens, the capacity to secrete high amounts of IL-10 and TGF-beta, and small amounts of IFN-gamma. Interestingly, these cells are unable to produce IL-2, IL-4 or IL-5. The study of the surface phenotype of both lines revealed CD4+, CD25high, CD44low and CTLA-4- cells. When injected intravenously in (CBy.D2) F1 mice, these cells were able to inhibit 50-100% of the TNP-specific antibody production, when the hapten was coupled to KLH. In the present study we offer another evidence for the existence of regulatory T cells in the T lymphocyte repertoire, suggesting that they can also regulate immune responses to foreign antigens. Furthermore, we demonstrate an alternative pathway to generate these cells different from approaches used thus far.
Collapse
Affiliation(s)
- L Vieira de Moraes
- Department of Immunology, Instituto de Ciências Biomédicas, University of São Paulo, Brazil
| | | | | |
Collapse
|
1742
|
Galceran J, de Graaf K, Tejedor FJ, Becker W. The MNB/DYRK1A protein kinase: genetic and biochemical properties. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2003:139-48. [PMID: 15068246 DOI: 10.1007/978-3-7091-6721-2_12] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The "Down syndrome critical region" of human chromosome 21 has been defined based on the analysis of rare cases of partial trisomy 21. Evidence is accumulating that DYRK1A, one of the 20 genes located in this region, is an important candidate gene involved in the neurobiological alterations of Down syndrome. Both the structure of the DYRK1A gene and the sequence of the encoded protein kinase are highly conserved in evolution. The protein contains a unique assembly of structural motifs outside the catalytic domain, including a nuclear localization signal, a PEST region, and a repeat of 13 consecutive histidines. MNB/DYRK1A and related kinases are unique among serine/threonine-specific protein kinases in that their activity depends on tyrosine autophosphorylation in the catalytic domain. Also, evidence is accumulating that mRNA levels of MNB/DYRK1A are subject to tight regulation. A number of putative substrates of MNB/DYRK1A have emerged in the recent years, the majority of them being transcription factors. Although the function of MNB/DYRK1A in intracellular signalling and regulation of cell function is still poorly defined, current evidence suggests that the kinase may play a role in the regulation of gene expression.
Collapse
Affiliation(s)
- J Galceran
- Instituto de Neurociencias, Unidad de Neurobiologia del Desarrollo, CSIC y Universidad Miguel Hernandez, Campus de San Juan, San Juan (Alicante), Spain
| | | | | | | |
Collapse
|
1743
|
Affiliation(s)
- Sandra J Jacobson
- Department of Biology, University of California, San Diego, La Jolla, California 92093-0347, USA
| | | | | |
Collapse
|
1744
|
Abstract
Regulatory T cells are shown to originate form the thymus and their role is to maintain self-tolerance to intra-thymic as well as extra-thymic self-antigens. Their mode of action, using in vivo and in vitro systems, has led to different conclusions as to the need of cell-cell interactions or regulation upon suppressive cytokines. The more we study regulatory T cells the more we find similarities to the old notion of the suppressor T cell network. The limited knowledge in molecular technology in the early 70s and 80s discouraged investigators to further scrutinize the issue and the terms T suppressors and contra-suppressors that were coined back then have been forgotten over the years. It is now time to remember the work of these investigators and attempt to explain their findings using the current knowledge and technology.
Collapse
Affiliation(s)
- I Athanassakis
- Department of Biology, University of Crete, P.O. Box 2208, 714-09 Heraklion Crete, Greece.
| | | |
Collapse
|
1745
|
Sullivan DE, Mondelli MU, Curiel DT, Krasnykh V, Mikheeva G, Gaglio P, Morris CB, Dash S, Gerber MA. Construction and characterization of an intracellular single-chain human antibody to hepatitis C virus non-structural 3 protein. J Hepatol 2002; 37:660-8. [PMID: 12399234 DOI: 10.1016/s0168-8278(02)00270-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND/AIMS We developed a single-chain antibody fragment (scFv) to the non-structural 3 protein (NS3) of hepatitis C virus (HCV) and tested its ability to interfere with the HCV replication cycle in infected hepatocytes. METHODS The variable regions of the human monoclonal antibody CM3.B6 that recognizes a conformational epitope within the helicase domain of NS3 were introduced into adenoviral vectors for expression in mammalian hepatocytes. Expression and binding properties of the scFv were analyzed by immunological assays. Effects of intracellular expression of the scFv on HCV replication were assessed in primary hepatocytes isolated from explanted livers of patients with chronic HCV infection by reverse transcription-polymerase chain reaction. RESULTS Transduction of HepG2 cells by the recombinant adenoviruses resulted in stable, efficient expression of scFv in the cytoplasm that was non-toxic to the cells. The scFv specifically bound to its cognate antigen. Significantly, intracellular expression of scFv resulted in a decrease in HCV genomic RNA in HCV infected hepatocytes. CONCLUSIONS These results indicate that specific binding of a scFv to NS3 may inhibit one or more functions of this essential viral protein thus interfering with the HCV replication cycle.
Collapse
Affiliation(s)
- Deborah E Sullivan
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1746
|
Young KJ, Yang L, Phillips MJ, Zhang L. Donor-lymphocyte infusion induces transplantation tolerance by activating systemic and graft-infiltrating double-negative regulatory T cells. Blood 2002; 100:3408-14. [PMID: 12384444 DOI: 10.1182/blood-2002-01-0235] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Donor-lymphocyte infusion (DLI) before transplantation can lead to specific tolerance to allografts in mice, nonhuman primates, and humans. We and others have demonstrated a role for regulatory T cells in DLI-induced, donor-specific transplantation tolerance, but it is not known how regulatory T cells are activated and where they execute their function. In this study, we observed, in both transgenic and normal mice, that DLI before transplantation is required for activation of alphabeta-T-cell-receptor-positive, CD3(+)CD4(-)CD8(-) double-negative (DN) regulatory T cells in the periphery of recipient mice. More interestingly, DLI induced DN regulatory T cells to migrate preferentially to donor-specific allogeneic skin grafts and to form a majority of graft-infiltrating T cells in accepted skin allografts. Furthermore, both recipient-derived peripheral and graft-infiltrating DN T cells were able to suppress and kill antidonor CD8(+) T cells in an antigen-specific manner. These data indicate that DLI may induce donor-specific transplantation tolerance by activating recipient DN regulatory T cells in the periphery and by promoting migration of regulatory T cells to donor-specific allogeneic skin grafts. Our results also show that DN regulatory T cells can eliminate antidonor T cells both systemically and locally, a finding suggesting that graft-infiltrating T cells can be beneficial to graft survival.
Collapse
Affiliation(s)
- Kevin J Young
- Department of Laboratory Medicine, Multi Organ Transplantation Program, Toronto General Research Institute, University Health Network, University of Toronto, 101 College Street, Toronto, Ontario, Canada M5G 2C4
| | | | | | | |
Collapse
|
1747
|
Athanassakis I, Vassiliadis S. Interplay between T helper type 1 and type 2 cytokines and soluble major histocompatibility complex molecules: a paradigm in pregnancy. Immunology 2002; 107:281-7. [PMID: 12423303 PMCID: PMC1782809 DOI: 10.1046/j.1365-2567.2002.01518.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2002] [Revised: 05/23/2002] [Accepted: 08/08/2002] [Indexed: 01/07/2023] Open
Affiliation(s)
- Irene Athanassakis
- Department of Biology, Faculty of Medicine, University of Crete, PO Box 2208, 714-09 Heraklion, Crete, Greece.
| | | |
Collapse
|
1748
|
Abstract
Organ transplantation can be considered as replacement therapy for patients with end-stage organ failure. The percent of one-year allograft survival has increased due, among other factors, to a better understanding of the rejection process and new immunosuppressive drugs. Immunosuppressive therapy used in transplantation prevents activation and proliferation of alloreactive T lymphocytes, although not fully preventing chronic rejection. Recognition by recipient T cells of alloantigens expressed by donor tissues initiates immune destruction of allogeneic transplants. However, there is controversy concerning the relative contribution of CD4+ and CD8+ T cells to allograft rejection. Some animal models indicate that there is an absolute requirement for CD4+ T cells in allogeneic rejection, whereas in others CD4-depleted mice reject certain types of allografts. Moreover, there is evidence that CD8+ T cells are more resistant to immunotherapy and tolerance induction protocols. An intense focal infiltration of mainly CD8+CTLA4+ T lymphocytes during kidney rejection has been described in patients. This suggests that CD8+ T cells could escape from immunosuppression and participate in the rejection process. Our group is primarily interested in the immune mechanisms involved in allograft rejection. Thus, we believe that a better understanding of the role of CD8+ T cells in allograft rejection could indicate new targets for immunotherapy in transplantation. Therefore, the objective of the present review was to focus on the role of the CD8+ T cell population in the rejection of allogeneic tissue.
Collapse
Affiliation(s)
- V Bueno
- Disciplina de Nefrologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil.
| | | |
Collapse
|
1749
|
Madison DL, Yaciuk P, Kwok RPS, Lundblad JR. Acetylation of the adenovirus-transforming protein E1A determines nuclear localization by disrupting association with importin-alpha. J Biol Chem 2002; 277:38755-63. [PMID: 12161448 DOI: 10.1074/jbc.m207512200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Posttranslational modifications may alter the biochemical functions of a protein by modifying associations with other macromolecules, allosterically altering intrinsic catalytic activities, or determining subcellular localization. The adenovirus-transforming protein E1A is acetylated by its cellular targets, the co-activators CREB-binding protein, p300, and p300/CREB-binding protein-associated factor in vitro and also in vivo at a single lysine residue (Lys(239)) within a multifunctional carboxyl-terminal domain necessary for both nuclear localization and interaction with the transcriptional co-repressor carboxyl-terminal binding protein (CtBP). In contrast to a previous report, we demonstrate that acetylation of Lys(239) does not disrupt CtBP binding and that 12 S E1A-mediated repression of CREB-binding protein-dependent transcription does not require recruitment of CtBP. Instead we find that the cytoplasmic fraction of E1-transformed 293 cells is enriched for acetylated E1A with relative exclusion from the nuclear compartment. Whereas wild type 12 S E1A binds importin-alpha 3, binding affinity was markedly reduced both by single amino acid substitution mutations and acetylation at Lys(239). This is the first demonstration that acetylation may alter nuclear partitioning by direct interference with nuclear import receptor recognition. The finding that the cytoplasmic fraction of E1A is acetylated indicates that E1A may exert its pleiotropic effects on cellular transformation in part by affecting cytoplasmic processes.
Collapse
Affiliation(s)
- Dana L Madison
- Division of Molecular Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon 97201, USA
| | | | | | | |
Collapse
|
1750
|
Bickerstaff AA, Wang JJ, Xia D, Orosz CG. Allograft acceptance despite differential strain-specific induction of TGF-beta/IL-10-mediated immunoregulation. Am J Transplant 2002; 2:819-27. [PMID: 12392287 DOI: 10.1034/j.1600-6143.2002.20903.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We examined the immune approaches that C57BI/6 and BALB/c mice take when treated to accept cardiac allografts. C57BI/6 mice accept DBA/2 cardiac allografts when treated with gallium nitrate (GN) or anti-CD40L mAb (MR1). These allograft acceptor mice fail to mount donor-reactive delayed type hypersensitivity (DTH) responses, and develop a donor-induced immunoregulatory mechanism that inhibits DTH responses. In contrast, BALB/c mice accept C57BI/6 cardiac allografts when treated with MR1 but not with GN. These allograft acceptor mice display modest donor-reactive DTH responses, and do not develop donor-induced immune regulation of DTH responses. Real-time PCR analysis of rejecting graft tissues demonstrated no strain-related skewing in the production of cytokines mRNAs. In related studies, C57BI/6 recipients of cytokine and alloantigen educated syngeneic peritoneal exudate cells (PECs) failed to mount DTH responses to the alloantigens unless neutralizing antibodies to transforming growth factor-beta (TGF-p were present at the DTH site demonstrating regulation of cell-mediated alloimmune responses. In contrast, BALB/c recipients of cytokine-and alloantigen-educated PECs expressed strong DTH responses to alloantigens demonstrating a lack of regulated alloimmunity. In conclusion, C57BI/6 mice respond to immunosuppression by accepting cardiac allografts and generating TGF-beta-related regulation of donor-reactive T cell responses, unlike BALB/c mice that do not generate these regulatory responses yet still can accept cardiac allografts.
Collapse
Affiliation(s)
- Alice A Bickerstaff
- The Ohio State University College of Medicine, Department of Surgery, Columbus 43210, USA.
| | | | | | | |
Collapse
|