1751
|
Rezaei Kolahchi A, Khadem Mohtaram N, Pezeshgi Modarres H, Mohammadi MH, Geraili A, Jafari P, Akbari M, Sanati-Nezhad A. Microfluidic-Based Multi-Organ Platforms for Drug Discovery. MICROMACHINES 2016; 7:E162. [PMID: 30404334 PMCID: PMC6189912 DOI: 10.3390/mi7090162] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022]
Abstract
Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality. Recent advances in physiologically-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling, micro- and nanotechnology, and in silico modeling have enabled single- and multi-organ platforms for investigation of new chemical agents and tissue-tissue interactions. This review provides an overview of the principles of designing microfluidic-based organ-on-chip models for drug testing and highlights current state-of-the-art in developing predictive multi-organ models for studying the cross-talk of interconnected organs. We further discuss the challenges associated with establishing a predictive body-on-chip (BOC) model such as the scaling, cell types, the common medium, and principles of the study design for characterizing the interaction of drugs with multiple targets.
Collapse
Affiliation(s)
- Ahmad Rezaei Kolahchi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Nima Khadem Mohtaram
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Mohammad Hossein Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Armin Geraili
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Parya Jafari
- Department of Electrical Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
- Center for Bioengineering Research and Education, Biomedical Engineering Program, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
1752
|
Busek M, Grünzner S, Steege T, Klotzbach U, Sonntag F. Hypoxia-on-a-chip. CURRENT DIRECTIONS IN BIOMEDICAL ENGINEERING 2016. [DOI: 10.1515/cdbme-2016-0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractIn this work a microfluidic cell cultivation device for perfused hypoxia assays as well as a suitable controlling unit are presented. The device features active components like pumps for fluid actuation and valves for fluid direction as well as an oxygenator element to ensure a sufficient oxygen transfer. It consists of several individually structured layers which can be tailored specifically to the intended purpose. Because of its clearness, its mechanical strength and chemical resistance as well as its well-known biocompatibility polycarbonate was chosen to form the fluidic layers by thermal diffusion bonding. Several oxygen sensing spots are integrated into the device and monitored with fluorescence lifetime detection. Furthermore an oxygen regulator module is implemented into the controlling unit which is able to mix different process gases to achieve a controlled oxygenation. First experiments show that oxygenation/deoxygenation of the system is completed within several minutes when pure nitrogen or air is applied to the oxygenator. Lastly the oxygen input by the pneumatically driven micro pump was quantified by measuring the oxygen content before and after the oxygenator.
Collapse
Affiliation(s)
- Mathias Busek
- 1Fraunhofer IWS Dresden, Winterbergstraße 28, 01277 Dresden, Germany
| | - Stefan Grünzner
- 2Fraunhofer IWS Dresden & TU Dresden, Institute of manufacturing technology, Chair of Large Area Based Surface micro/nano-Structuring, George-Bähr-Straße 3c, 01069 Dresden, Germany
| | - Tobias Steege
- 2Fraunhofer IWS Dresden & TU Dresden, Institute of manufacturing technology, Chair of Large Area Based Surface micro/nano-Structuring, George-Bähr-Straße 3c, 01069 Dresden, Germany
| | - Udo Klotzbach
- 2Fraunhofer IWS Dresden & TU Dresden, Institute of manufacturing technology, Chair of Large Area Based Surface micro/nano-Structuring, George-Bähr-Straße 3c, 01069 Dresden, Germany
| | - Frank Sonntag
- 2Fraunhofer IWS Dresden & TU Dresden, Institute of manufacturing technology, Chair of Large Area Based Surface micro/nano-Structuring, George-Bähr-Straße 3c, 01069 Dresden, Germany
| |
Collapse
|
1753
|
Picollet-D’hahan N, Dolega ME, Liguori L, Marquette C, Le Gac S, Gidrol X, Martin DK. A 3D Toolbox to Enhance Physiological Relevance of Human Tissue Models. Trends Biotechnol 2016; 34:757-769. [DOI: 10.1016/j.tibtech.2016.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 01/21/2023]
|
1754
|
A decade of progress in tissue engineering. Nat Protoc 2016; 11:1775-81. [DOI: 10.1038/nprot.2016.123] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
|
1755
|
Subramanyam M, Goyal J. Translational biomarkers: from discovery and development to clinical practice. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 21-22:3-10. [PMID: 27978985 DOI: 10.1016/j.ddtec.2016.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/12/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
The refinement of disease taxonomy utilizing molecular phenotypes has led to significant improvements in the precision of disease diagnosis and customization of treatment options. This has also spurred efforts to identify novel biomarkers to understand the impact of therapeutically altering the underlying molecular network on disease course, and to support decision-making in drug discovery and development. However, gaps in knowledge regarding disease heterogeneity, combined with the inadequacies of surrogate disease model systems, make it challenging to demonstrate the unequivocal association of molecular and physiological biomarkers to disease pathology. This article will discuss the current landscape in biomarker research and highlight strategies being adopted to increase the likelihood of transitioning biomarkers from discovery to medical practice to enable more objective decision making, and to improve health outcome.
Collapse
Affiliation(s)
- Meena Subramanyam
- Global Biomarker Discovery and Development, Biogen, 300 Binney St., Cambridge, MA 02142, United States.
| | - Jaya Goyal
- Value Based Medicine, Biogen, 300 Binney St., Cambridge, MA 02142, United States
| |
Collapse
|
1756
|
Brandenberg N, Lutolf MP. In Situ Patterning of Microfluidic Networks in 3D Cell-Laden Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7450-7456. [PMID: 27334545 DOI: 10.1002/adma.201601099] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 06/06/2023]
Abstract
Focalized short-pulsed lasers have sufficient power to generate micrometer-sized cavities in various hydrogels. An in situ technique based on laser ablation to fabricate intricate microfluidic networks in biocompatible gels without manual handling is presented. This method is fully compatible with 3D cell culture and opens up unprecedented opportunities for cell biology, developmental biology, and stem-cell-based tissue engineering.
Collapse
Affiliation(s)
- Nathalie Brandenberg
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
1757
|
Visone R, Gilardi M, Marsano A, Rasponi M, Bersini S, Moretti M. Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering. Molecules 2016; 21:E1128. [PMID: 27571058 PMCID: PMC6274098 DOI: 10.3390/molecules21091128] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022] Open
Abstract
In the last few years microfluidics and microfabrication technique principles have been extensively exploited for biomedical applications. In this framework, organs-on-a-chip represent promising tools to reproduce key features of functional tissue units within microscale culture chambers. These systems offer the possibility to investigate the effects of biochemical, mechanical, and electrical stimulations, which are usually applied to enhance the functionality of the engineered tissues. Since the functionality of muscle tissues relies on the 3D organization and on the perfect coupling between electrochemical stimulation and mechanical contraction, great efforts have been devoted to generate biomimetic skeletal and cardiac systems to allow high-throughput pathophysiological studies and drug screening. This review critically analyzes microfluidic platforms that were designed for skeletal and cardiac muscle tissue engineering. Our aim is to highlight which specific features of the engineered systems promoted a typical reorganization of the engineered construct and to discuss how promising design solutions exploited for skeletal muscle models could be applied to improve cardiac tissue models and vice versa.
Collapse
Affiliation(s)
- Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milano 20133, Italy.
| | - Mara Gilardi
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy.
- Department of Biotechnology and Biosciences, PhD School in Life Sciences, University of Milano-Bicocca, Milano 20126, Italy.
| | - Anna Marsano
- Departments of Surgery and Biomedicine, University Basel, University Hospital Basel, Basel 4065, Switzerland.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milano 20133, Italy.
| | - Simone Bersini
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy.
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy.
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano 6900, Switzerland.
- Swiss Institute for Regenerative Medicine, Lugano 6900, Switzerland.
- Cardiocentro Ticino, Lugano 6900, Switzerland.
| |
Collapse
|
1758
|
Autophagy transduces physical constraints into biological responses. Int J Biochem Cell Biol 2016; 79:419-426. [PMID: 27566364 DOI: 10.1016/j.biocel.2016.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/15/2022]
Abstract
Autophagy is a fundamental cell biological process that controls the quality and quantity of the eukaryotic cytoplasm. Dysfunctional autophagy, when defective or excessive, has been linked to human pathologies ranging from neurodegenerative and infectious diseases to cancer and inflammatory diseases. Autophagy takes place at basal levels in all eukaryotic cells. The process is stimulated during metabolic, genotoxic, infectious, and hypoxic stress conditions and acts an adaptive mechanism essential for cell survival. Recent data demonstrate that changes in the mechanical cellular environment influence cell fate through the modulation of the autophagic pathway. Mechanical stimuli, such as applied forces, combine with biochemical signals to control development and physiological functions of different organs and can also contribute to the progression of various human diseases. Here we review recent findings regarding the regulation of autophagy upon three types of mechanical stress, compression, shear stress, and stretching, and discuss the potential implications of mechanical stress-induced autophagy in physiology and physiopathology.
Collapse
|
1759
|
Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci 2016; 19:542-53. [PMID: 27021939 DOI: 10.1038/nn.4273] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/22/2016] [Indexed: 02/08/2023]
Abstract
Directing the differentiation of induced pluripotent stem cells into motor neurons has allowed investigators to develop new models of amyotrophic lateral sclerosis (ALS). However, techniques vary between laboratories and the cells do not appear to mature into fully functional adult motor neurons. Here we discuss common developmental principles of both lower and upper motor neuron development that have led to specific derivation techniques. We then suggest how these motor neurons may be matured further either through direct expression or administration of specific factors or coculture approaches with other tissues. Ultimately, through a greater understanding of motor neuron biology, it will be possible to establish more reliable models of ALS. These in turn will have a greater chance of validating new drugs that may be effective for the disease.
Collapse
|
1760
|
Sirenko O, Mitlo T, Hesley J, Luke S, Owens W, Cromwell EF. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Assay Drug Dev Technol 2016; 13:402-14. [PMID: 26317884 PMCID: PMC4556086 DOI: 10.1089/adt.2015.655] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is an increasing interest in using three-dimensional (3D) spheroids for modeling cancer and tissue biology to accelerate translation research. Development of higher throughput assays to quantify phenotypic changes in spheroids is an active area of investigation. The goal of this study was to develop higher throughput high-content imaging and analysis methods to characterize phenotypic changes in human cancer spheroids in response to compound treatment. We optimized spheroid cell culture protocols using low adhesion U-bottom 96- and 384-well plates for three common cancer cell lines and improved the workflow with a one-step staining procedure that reduces assay time and minimizes variability. We streamlined imaging acquisition by using a maximum projection algorithm that combines cellular information from multiple slices through a 3D object into a single image, enabling efficient comparison of different spheroid phenotypes. A custom image analysis method was implemented to provide multiparametric characterization of single-cell and spheroid phenotypes. We report a number of readouts, including quantification of marker-specific cell numbers, measurement of cell viability and apoptosis, and characterization of spheroid size and shape. Assay performance was assessed using established anticancer cytostatic and cytotoxic drugs. We demonstrated concentration–response effects for different readouts and measured IC50 values, comparing 3D spheroid results to two-dimensional cell cultures. Finally, a library of 119 approved anticancer drugs was screened across a wide range of concentrations using HCT116 colon cancer spheroids. The proposed methods can increase performance and throughput of high-content assays for compound screening and evaluation of anticancer drugs with 3D cell models.
Collapse
Affiliation(s)
| | - Trisha Mitlo
- 1 Molecular Devices , LLC, Sunnyvale, California
| | - Jayne Hesley
- 1 Molecular Devices , LLC, Sunnyvale, California
| | - Steve Luke
- 1 Molecular Devices , LLC, Sunnyvale, California
| | | | | |
Collapse
|
1761
|
Brooks JC, Ford KI, Holder DH, Holtan MD, Easley CJ. Macro-to-micro interfacing to microfluidic channels using 3D-printed templates: application to time-resolved secretion sampling of endocrine tissue. Analyst 2016; 141:5714-5721. [PMID: 27486597 DOI: 10.1039/c6an01055e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Employing 3D-printed templates for macro-to-micro interfacing, a passively operated polydimethysiloxane (PDMS) microfluidic device was designed for time-resolved secretion sampling from primary murine islets and epidiymal white adipose tissue explants. Interfacing in similar devices is typically accomplished through manually punched or drilled fluidic reservoirs. We previously introduced the concept of using hand fabricated polymer inserts to template cell culture and sampling reservoirs into PDMS devices, allowing rapid stimulation and sampling of endocrine tissue. However, fabrication of the fluidic reservoirs was time consuming, tedious, and was prone to errors during device curing. Here, we have implemented computer-aided design and 3D printing to circumvent these fabrication obstacles. In addition to rapid prototyping and design iteration advantages, the ability to match these 3D-printed interface templates with channel patterns is highly beneficial. By digitizing the template fabrication process, more robust components can be produced with reduced fabrication variability. Herein, 3D-printed templates were used for sculpting millimetre-scale reservoirs into the above-channel, bulk PDMS in passively-operated, eight-channel devices designed for time-resolved secretion sampling of murine tissue. Devices were proven functional by temporally assaying glucose-stimulated insulin secretion from <10 pancreatic islets and glycerol secretion from 2 mm adipose tissue explants, suggesting that 3D-printed interface templates could be applicable to a variety of cells and tissue types. More generally, this work validates desktop 3D printers as versatile interfacing tools in microfluidic laboratories.
Collapse
Affiliation(s)
- Jessica C Brooks
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36830, USA.
| | | | | | | | | |
Collapse
|
1762
|
Abstract
While studies of cultured cells have led to new insights into biological control, greater understanding of human pathophysiology requires the development of experimental systems that permit analysis of intercellular communications and tissue-tissue interactions in a more relevant organ context. Human organs-on-chips offer a potentially powerful new approach to confront this long-standing problem.
Collapse
Affiliation(s)
- Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA; Vascular Biology Program, Departments of Pathology & Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, USA.
| |
Collapse
|
1763
|
Shatkin JA, Ong KJ. Alternative Testing Strategies for Nanomaterials: State of the Science and Considerations for Risk Analysis. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2016; 36:1564-1580. [PMID: 27273523 DOI: 10.1111/risa.12642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 03/02/2016] [Accepted: 04/19/2016] [Indexed: 06/06/2023]
Abstract
The rapid growth of the nanotechnology industry has warranted equal progress in the nanotoxicology and risk assessment fields. In vivo models have traditionally been used to determine human and environmental risk for chemicals; however, the use of these tests has limitations, and there are global appeals to develop reliable alternatives to animal testing. Many have investigated the use of alternative (nonanimal) testing methods and strategies have quickly developed and resulted in the generation of large toxicological data sets for numerous nanomaterials (NMs). Due to the novel physicochemical properties of NMs that are related to surface characteristics, the approach toward toxicity test development has distinct considerations from traditional chemicals, bringing new requirements for adapting these approaches for NMs. The methodical development of strategies that combine multiple alternative tests can be useful for predictive NM risk assessment and help screening-level decision making. This article provides an overview of the main developments in alternative methods and strategies for reducing uncertainty in NM risk assessment, including advantages and disadvantages of in vitro, ex vivo, and in silico methods, and examples of existing comprehensive strategies. In addition, knowledge gaps are identified toward improvements for experimental and strategy design, specifically highlighting the need to represent realistic exposure scenarios and to consider NM-specific concerns such as characterization, assay interferences, and standardization. Overall, this article aims to improve the reliability and utility of alternative testing methods and strategies for risk assessment of manufactured NMs.
Collapse
Affiliation(s)
| | - K J Ong
- Vireo Advisors, LLC, Boston, MA, USA
| |
Collapse
|
1764
|
Lee J, Choi JH, Kim HJ. Human gut-on-a-chip technology: will this revolutionize our understanding of IBD and future treatments? Expert Rev Gastroenterol Hepatol 2016; 10:883-5. [PMID: 27291426 DOI: 10.1080/17474124.2016.1200466] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jaewon Lee
- a Department of Biomedical Engineering , The University of Texas at Austin , Austin , TX , USA
| | - Jin-Ha Choi
- a Department of Biomedical Engineering , The University of Texas at Austin , Austin , TX , USA
| | - Hyun Jung Kim
- a Department of Biomedical Engineering , The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
1765
|
Secondary pharmacology: screening and interpretation of off-target activities – focus on translation. Drug Discov Today 2016; 21:1232-42. [DOI: 10.1016/j.drudis.2016.04.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/22/2016] [Accepted: 04/22/2016] [Indexed: 12/19/2022]
|
1766
|
Samatov TR, Senyavina NV, Galatenko VV, Trushkin EV, Tonevitskaya SA, Alexandrov DE, Shibukhova GP, Schumacher U, Tonevitsky AG. Tumour-like druggable gene expression pattern of CaCo2 cells in microfluidic chip. BIOCHIP JOURNAL 2016. [DOI: 10.1007/s13206-016-0308-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
1767
|
Weltin A, Hammer S, Noor F, Kaminski Y, Kieninger J, Urban GA. Accessing 3D microtissue metabolism: Lactate and oxygen monitoring in hepatocyte spheroids. Biosens Bioelectron 2016; 87:941-948. [PMID: 27665516 DOI: 10.1016/j.bios.2016.07.094] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 02/06/2023]
Abstract
3D hepatic microtissues, unlike 2D cell cultures, retain many of the in-vivo-like functionalities even after long-term cultivation. Such 3D cultures are increasingly applied to investigate liver damage due to drug exposure in toxicology. However, there is a need for thorough metabolic characterization of these microtissues for mechanistic understanding of effects on culture behaviour. We measured metabolic parameters from single human HepaRG hepatocyte spheroids online and continuously with electrochemical microsensors. A microsensor platform for lactate and oxygen was integrated in a standard 96-well plate. Electrochemical microsensors for lactate and oxygen allow fast, precise and continuous long-term measurement of metabolic parameters directly in the microwell. The demonstrated capability to precisely detect small concentration changes by single spheroids is the key to access their metabolism. Lactate levels in the culture medium starting from 50µM with production rates of 5µMh-1 were monitored and precisely quantified over three days. Parallel long-term oxygen measurements showed no oxygen depletion or hypoxic conditions in the microwell. Increased lactate production by spheroids upon suppression of the aerobic metabolism was observed. The dose-dependent decrease in lactate production caused by the addition of the hepatotoxic drug Bosentan was determined. We showed that in a toxicological application, metabolic monitoring yields quantitative, online information on cell viability, which complements and supports other methods such as microscopy. The demonstrated continuous access to 3D cell culture metabolism within a standard setup improves in vitro toxicology models in replacement strategies of animal experiments. Controlling the microenvironment of such organotypic cultures has impact in tissue engineering, cancer therapy and personalized medicine.
Collapse
Affiliation(s)
- Andreas Weltin
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.
| | - Steffen Hammer
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Fozia Noor
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
| | - Yeda Kaminski
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
| | - Jochen Kieninger
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Gerald A Urban
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| |
Collapse
|
1768
|
Kashaninejad N, Nikmaneshi MR, Moghadas H, Kiyoumarsi Oskouei A, Rismanian M, Barisam M, Saidi MS, Firoozabadi B. Organ-Tumor-on-a-Chip for Chemosensitivity Assay: A Critical Review. MICROMACHINES 2016; 7:mi7080130. [PMID: 30404302 PMCID: PMC6190381 DOI: 10.3390/mi7080130] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/22/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023]
Abstract
With a mortality rate over 580,000 per year, cancer is still one of the leading causes of death worldwide. However, the emerging field of microfluidics can potentially shed light on this puzzling disease. Unique characteristics of microfluidic chips (also known as micro-total analysis system) make them excellent candidates for biological applications. The ex vivo approach of tumor-on-a-chip is becoming an indispensable part of personalized medicine and can replace in vivo animal testing as well as conventional in vitro methods. In tumor-on-a-chip, the complex three-dimensional (3D) nature of malignant tumor is co-cultured on a microfluidic chip and high throughput screening tools to evaluate the efficacy of anticancer drugs are integrated on the same chip. In this article, we critically review the cutting edge advances in this field and mainly categorize each tumor-on-a-chip work based on its primary organ. Specifically, design, fabrication and characterization of tumor microenvironment; cell culture technique; transferring mechanism of cultured cells into the microchip; concentration gradient generators for drug delivery; in vitro screening assays of drug efficacy; and pros and cons of each microfluidic platform used in the recent literature will be discussed separately for the tumor of following organs: (1) Lung; (2) Bone marrow; (3) Brain; (4) Breast; (5) Urinary system (kidney, bladder and prostate); (6) Intestine; and (7) Liver. By comparing these microchips, we intend to demonstrate the unique design considerations of each tumor-on-a-chip based on primary organ, e.g., how microfluidic platform of lung-tumor-on-a-chip may differ from liver-tumor-on-a-chip. In addition, the importance of heart–liver–intestine co-culture with microvasculature in tumor-on-a-chip devices for in vitro chemosensitivity assay will be discussed. Such system would be able to completely evaluate the absorption, distribution, metabolism, excretion and toxicity (ADMET) of anticancer drugs and more realistically recapitulate tumor in vivo-like microenvironment.
Collapse
Affiliation(s)
- Navid Kashaninejad
- School of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran.
| | | | - Hajar Moghadas
- School of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran.
| | | | - Milad Rismanian
- School of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran.
| | - Maryam Barisam
- School of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran.
| | - Mohammad Said Saidi
- School of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran.
| | - Bahar Firoozabadi
- School of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran.
| |
Collapse
|
1769
|
Wang YI, Abaci HE, Shuler ML. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng 2016; 114:184-194. [PMID: 27399645 DOI: 10.1002/bit.26045] [Citation(s) in RCA: 358] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/19/2016] [Accepted: 07/04/2016] [Indexed: 12/23/2022]
Abstract
Efficient delivery of therapeutics across the neuroprotective blood-brain barrier (BBB) remains a formidable challenge for central nervous system drug development. High-fidelity in vitro models of the BBB could facilitate effective early screening of drug candidates targeting the brain. In this study, we developed a microfluidic BBB model that is capable of mimicking in vivo BBB characteristics for a prolonged period and allows for reliable in vitro drug permeability studies under recirculating perfusion. We derived brain microvascular endothelial cells (BMECs) from human induced pluripotent stem cells (hiPSCs) and cocultured them with rat primary astrocytes on the two sides of a porous membrane on a pumpless microfluidic platform for up to 10 days. The microfluidic system was designed based on the blood residence time in human brain tissues, allowing for medium recirculation at physiologically relevant perfusion rates with no pumps or external tubing, meanwhile minimizing wall shear stress to test whether shear stress is required for in vivo-like barrier properties in a microfluidic BBB model. This BBB-on-a-chip model achieved significant barrier integrity as evident by continuous tight junction formation and in vivo-like values of trans-endothelial electrical resistance (TEER). The TEER levels peaked above 4000 Ω · cm2 on day 3 on chip and were sustained above 2000 Ω · cm2 up to 10 days, which are the highest sustained TEER values reported in a microfluidic model. We evaluated the capacity of our microfluidic BBB model to be used for drug permeability studies using large molecules (FITC-dextrans) and model drugs (caffeine, cimetidine, and doxorubicin). Our analyses demonstrated that the permeability coefficients measured using our model were comparable to in vivo values. Our BBB-on-a-chip model closely mimics physiological BBB barrier functions and will be a valuable tool for screening of drug candidates. The residence time-based design of a microfluidic platform will enable integration with other organ modules to simulate multi-organ interactions on drug response. Biotechnol. Bioeng. 2017;114: 184-194. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ying I Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 381 Kimball Hall, Ithaca, New York, 14853-7202
| | - Hasan Erbil Abaci
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 381 Kimball Hall, Ithaca, New York, 14853-7202
| | - Michael L Shuler
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 381 Kimball Hall, Ithaca, New York, 14853-7202
| |
Collapse
|
1770
|
Gori M, Simonelli MC, Giannitelli SM, Businaro L, Trombetta M, Rainer A. Investigating Nonalcoholic Fatty Liver Disease in a Liver-on-a-Chip Microfluidic Device. PLoS One 2016; 11:e0159729. [PMID: 27438262 PMCID: PMC4954713 DOI: 10.1371/journal.pone.0159729] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIM Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease worldwide, ranging from simple steatosis to nonalcoholic steatohepatitis, which may progress to cirrhosis, eventually leading to hepatocellular carcinoma (HCC). HCC ranks as the third highest cause of cancer-related death globally, requiring an early diagnosis of NAFLD as a potential risk factor. However, the molecular mechanisms underlying NAFLD are still under investigation. So far, many in vitro studies on NAFLD have been hampered by the limitations of 2D culture systems, in which cells rapidly lose tissue-specific functions. The present liver-on-a-chip approach aims at filling the gap between conventional in vitro models, often scarcely predictive of in vivo conditions, and animal models, potentially biased by their xenogeneic nature. METHODS HepG2 cells were cultured into a microfluidically perfused device under free fatty acid (FFA) supplementation, namely palmitic and oleic acid, for 24h and 48h. The device mimicked the endothelial-parenchymal interface of a liver sinusoid, allowing the diffusion of nutrients and removal of waste products similar to the hepatic microvasculature. Assessment of intracellular lipid accumulation, cell viability/cytotoxicity and oxidative stress due to the FFA overload, was performed by high-content analysis methodologies using fluorescence-based functional probes. RESULTS The chip enables gradual and lower intracellular lipid accumulation, higher hepatic cell viability and minimal oxidative stress in microfluidic dynamic vs. 2D static cultures, thus mimicking the chronic condition of steatosis observed in vivo more closely. CONCLUSIONS Overall, the liver-on-a-chip system provides a suitable culture microenvironment, representing a more reliable model compared to 2D cultures for investigating NAFLD pathogenesis. Hence, our system is amongst the first in vitro models of human NAFLD developed within a microfluidic device in a sinusoid-like fashion, endowing a more permissive tissue-like microenvironment for long-term culture of hepatic cells than conventional 2D static cultures.
Collapse
Affiliation(s)
- Manuele Gori
- Department of Engineering, Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Maria Chiara Simonelli
- Department of Engineering, Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Sara Maria Giannitelli
- Department of Engineering, Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Luca Businaro
- National Research Council - Institute for Photonics and Nanotechnologies (CNR-IFN), Rome, Italy
- UCBM-IFN Joint Laboratory for Nanotechnologies for the Life Sciences, Rome, Italy
| | - Marcella Trombetta
- Department of Engineering, Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, Rome, Italy
- UCBM-IFN Joint Laboratory for Nanotechnologies for the Life Sciences, Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, Rome, Italy
- National Research Council - Institute for Photonics and Nanotechnologies (CNR-IFN), Rome, Italy
- UCBM-IFN Joint Laboratory for Nanotechnologies for the Life Sciences, Rome, Italy
- * E-mail:
| |
Collapse
|
1771
|
Jorge KC, Alvarado MA, Melo EG, Carreño MNP, Alayo MI, Wetter NU. Directional random laser source consisting of a HC-ARROW reservoir connected to channels for spectroscopic analysis in microfluidic devices. APPLIED OPTICS 2016; 55:5393-5398. [PMID: 27409316 DOI: 10.1364/ao.55.005393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Light sources are used in optofluidic devices for real-time system control and quantitative analysis of important process parameters. In this work, we present a random laser source using a hollow-core antiresonant reflecting optical waveguide (HC-ARROW) containing the gain media inside a reservoir to reduce dye bleaching, which is connected to microchannel waveguides to increase beam directionality. The device is pumped externally and emits a highly coherent and collimated laser beam.
Collapse
|
1772
|
Nieskens TTG, Wilmer MJ. Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction. Eur J Pharmacol 2016; 790:46-56. [PMID: 27401035 DOI: 10.1016/j.ejphar.2016.07.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
The renal proximal tubule epithelium is responsible for active secretion of endogenous and exogenous waste products from the body and simultaneous reabsorption of vital compounds from the glomerular filtrate. The complexity of this transport machinery makes investigation of processes such as tubular drug secretion a continuous challenge for researchers. Currently available renal cell culture models often lack sufficient physiological relevance and reliability. Introducing complex biological culture systems in a 3D microfluidic design improves the physiological relevance of in vitro renal proximal tubule epithelium models. Organ-on-a-chip technology provides a promising alternative, as it allows the reconstruction of a renal tubule structure. These microfluidic systems mimic the in vivo microenvironment including multi-compartmentalization and exposure to fluid shear stress. Increasing data supports that fluid shear stress impacts the phenotype and functionality of proximal tubule cultures, for which we provide an extensive background. In this review, we discuss recent developments of kidney-on-a-chip platforms with current and future applications. The improved proximal tubule functionality using 3D microfluidic systems is placed in perspective of investigating cellular signalling that can elucidate mechanistic aberrations involved in drug-induced kidney toxicity.
Collapse
Affiliation(s)
- Tom T G Nieskens
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn J Wilmer
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
1773
|
Clark AM, Ma B, Taylor DL, Griffith L, Wells A. Liver metastases: Microenvironments and ex-vivo models. Exp Biol Med (Maywood) 2016; 241:1639-52. [PMID: 27390264 DOI: 10.1177/1535370216658144] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The liver is a highly metastasis-permissive organ, tumor seeding of which usually portends mortality. Its unique and diverse architectural and cellular composition enable the liver to undertake numerous specialized functions, however, this distinctive biology, notably its hemodynamic features and unique microenvironment, renders the liver intrinsically hospitable to disseminated tumor cells. The particular focus for this perspective is the bidirectional interactions between the disseminated tumor cells and the unique resident cell populations of the liver; notably, parenchymal hepatocytes and non-parenchymal liver sinusoidal endothelial, Kupffer, and hepatic stellate cells. Understanding the early steps in the metastatic seeding, including the decision to undergo dormancy versus outgrowth, has been difficult to study in 2D culture systems and animals due to numerous limitations. In response, tissue-engineered biomimetic systems have emerged. At the cutting-edge of these developments are ex vivo 'microphysiological systems' (MPS) which are cellular constructs designed to faithfully recapitulate the structure and function of a human organ or organ regions on a milli- to micro-scale level and can be made all human to maintain species-specific interactions. Hepatic MPSs are particularly attractive for studying metastases as in addition to the liver being a main site of metastatic seeding, it is also the principal site of drug metabolism and therapy-limiting toxicities. Thus, using these hepatic MPSs will enable not only an enhanced understanding of the fundamental aspects of metastasis but also allow for therapeutic agents to be fully studied for efficacy while also monitoring pharmacologic aspects and predicting toxicities. The review discusses some of the hepatic MPS models currently available and although only one MPS has been validated to relevantly modeling metastasis, it is anticipated that the adaptation of the other hepatic models to include tumors will not be long in coming.
Collapse
Affiliation(s)
- Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bo Ma
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - D Lansing Taylor
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA University of Pittsburgh Cancer Institute, University of Pittsburgh, PA 15213, USA
| | - Linda Griffith
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
1774
|
Organ-on-chip models: new opportunities for biomedical research. Future Sci OA 2016; 3:FSO130. [PMID: 28670461 PMCID: PMC5481808 DOI: 10.4155/fsoa-2016-0038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/10/2023] Open
|
1775
|
Schepers A, Li C, Chhabra A, Seney BT, Bhatia S. Engineering a perfusable 3D human liver platform from iPS cells. LAB ON A CHIP 2016; 16:2644-53. [PMID: 27296616 PMCID: PMC5318999 DOI: 10.1039/c6lc00598e] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In vitro models of human tissue are crucial to our ability to study human disease as well as develop safe and effective drug therapies. Models of single organs in static and microfluidic culture have been established and shown utility for modeling some aspects of health and disease; however, these systems lack multi-organ interactions that are critical to some aspects of drug metabolism and toxicity. Thus, as part of a consortium of researchers, we have developed a liver chip that meets the following criteria: (1) employs human iPS cells from a patient of interest, (2) cultures cells in perfusable 3D organoids, and (3) is robust to variations in perfusion rate so as to be compatible in series with other specialized tissue chips (e.g. heart, lung). In order to achieve this, we describe methods to form hepatocyte aggregates from primary and iPS-derived cells, alone and in co-culture with support cells. This necessitated a novel culture protocol for the interrupted differentiation of iPS cells that permits their removal from a plated surface and aggregation while maintaining phenotypic hepatic functions. In order to incorporate these 3D aggregates in a perfusable platform, we next encapsulated the cells in a PEG hydrogel to prevent aggregation and overgrowth once on chip. We adapted a C-trap chip architecture from the literature that enabled robust loading with encapsulated organoids and culture over a range of flow rates. Finally, we characterize the liver functions of this iHep organoid chip under perfusion and demonstrate a lifetime of at least 28 days. We envision that such this strategy can be generalized to other microfluidic tissue models and provides an opportunity to query patient-specific liver responses in vitro.
Collapse
Affiliation(s)
- Arnout Schepers
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cheri Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arnav Chhabra
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin Tschudy Seney
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sangeeta Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA and Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139, USA and Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| |
Collapse
|
1776
|
Lee H, Cho DW. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. LAB ON A CHIP 2016; 16:2618-25. [PMID: 27302471 DOI: 10.1039/c6lc00450d] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Although various types of organs-on-chips have been introduced recently as tools for drug discovery, the current studies are limited in terms of fabrication methods. The fabrication methods currently available not only need a secondary cell-seeding process and result in severe protein absorption due to the material used, but also have difficulties in providing various cell types and extracellular matrix (ECM) environments for spatial heterogeneity in the organs-on-chips. Therefore, in this research, we introduce a novel 3D bioprinting method for organ-on-a-chip applications. With our novel 3D bioprinting method, it was possible to prepare an organ-on-a-chip in a simple one-step fabrication process. Furthermore, protein absorption on the printed platform was very low, which will lead to accurate measurement of metabolism and drug sensitivity. Moreover, heterotypic cell types and biomaterials were successfully used and positioned at the desired position for various organ-on-a-chip applications, which will promote full mimicry of the natural conditions of the organs. The liver organ was selected for the evaluation of the developed method, and liver function was shown to be significantly enhanced on the liver-on-a-chip, which was prepared by 3D bioprinting. Consequently, the results demonstrate that the suggested 3D bioprinting method is easier and more versatile for production of organs-on-chips.
Collapse
Affiliation(s)
- Hyungseok Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Gyungbuk 790-784, South Korea.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Gyungbuk 790-784, South Korea.
| |
Collapse
|
1777
|
Francipane MG, Lagasse E. Towards Organs on Demand: Breakthroughs and Challenges in Models of Organogenesis. CURRENT PATHOBIOLOGY REPORTS 2016; 4:77-85. [PMID: 28979828 DOI: 10.1007/s40139-016-0111-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, functional three-dimensional (3D) tissue generation in vitro has been significantly advanced by tissue-engineering methods, achieving better reproduction of complex native organs compared to conventional culture systems. This review will discuss traditional 3D cell culture techniques as well as newly developed technology platforms. These recent techniques provide new possibilities in the creation of human body parts and provide more accurate predictions of tissue response to drug and chemical challenges. Given the rapid advancement in the human induced pluripotent stem cell (iPSC) field, these platforms also hold great promise in the development of patient-specific, transplantable tissues and organs on demand.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
- Ri.MED Foundation, 90133 Palermo, Italy
| | - Eric Lagasse
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
1778
|
Raasch M, Rennert K, Jahn T, Gärtner C, Schönfelder G, Huber O, Seiler AEM, Mosig AS. An integrative microfluidically supported in vitro model of an endothelial barrier combined with cortical spheroids simulates effects of neuroinflammation in neocortex development. BIOMICROFLUIDICS 2016; 10:044102. [PMID: 27478526 PMCID: PMC4947035 DOI: 10.1063/1.4955184] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
The development of therapeutic substances to treat diseases of the central nervous system is hampered by the tightness and selectivity of the blood-brain barrier. Moreover, testing of potential drugs is time-consuming and cost-intensive. Here, we established a new microfluidically supported, biochip-based model of the brain endothelial barrier in combination with brain cortical spheroids suitable to detect effects of neuroinflammation upon disruption of the endothelial layer in response to inflammatory signals. Unilateral perfusion of the endothelial cell layer with a cytokine mix comprising tumor necrosis factor, IL-1β, IFNγ, and lipopolysaccharide resulted in a loss of endothelial von Willebrand factor and VE-cadherin expression accompanied with an increased leakage of the endothelial layer and diminished endothelial cell viability. In addition, cytokine treatment caused a loss of neocortex differentiation markers Tbr1, Tbr2, and Pax6 in the cortical spheroids concomitant with reduced cell viability and spheroid integrity. From these observations, we conclude that our endothelial barrier/cortex model is suitable to specifically reflect cytokine-induced effects on barrier integrity and to uncover damage and impairment of cortical tissue development and viability. With all its limitations, the model represents a novel tool to study cross-communication between the brain endothelial barrier and underlying cortical tissue that can be utilized for toxicity and drug screening studies focusing on inflammation and neocortex formation.
Collapse
Affiliation(s)
- Martin Raasch
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany and Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Knut Rennert
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany and Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | | | - Gilbert Schönfelder
- Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany and Department of Clinical Pharmacology and Toxicology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Otmar Huber
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | - Andrea E M Seiler
- Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R) , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany and Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
1779
|
Mousavi Shaegh SA, De Ferrari F, Zhang YS, Nabavinia M, Binth Mohammad N, Ryan J, Pourmand A, Laukaitis E, Banan Sadeghian R, Nadhman A, Shin SR, Nezhad AS, Khademhosseini A, Dokmeci MR. A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. BIOMICROFLUIDICS 2016; 10:044111. [PMID: 27648113 PMCID: PMC5001973 DOI: 10.1063/1.4955155] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/17/2016] [Indexed: 05/05/2023]
Abstract
There is a growing interest to develop microfluidic bioreactors and organ-on-chip platforms with integrated sensors to monitor their physicochemical properties and to maintain a well-controlled microenvironment for cultured organoids. Conventional sensing devices cannot be easily integrated with microfluidic organ-on-chip systems with low-volume bioreactors for continual monitoring. This paper reports on the development of a multi-analyte optical sensing module for dynamic measurements of pH and dissolved oxygen levels in the culture medium. The sensing system was constructed using low-cost electro-optics including light-emitting diodes and silicon photodiodes. The sensing module includes an optically transparent window for measuring light intensity, and the module could be connected directly to a perfusion bioreactor without any specific modifications to the microfluidic device design. A compact, user-friendly, and low-cost electronic interface was developed to control the optical transducer and signal acquisition from photodiodes. The platform enabled convenient integration of the optical sensing module with a microfluidic bioreactor. Human dermal fibroblasts were cultivated in the bioreactor, and the values of pH and dissolved oxygen levels in the flowing culture medium were measured continuously for up to 3 days. Our integrated microfluidic system provides a new analytical platform with ease of fabrication and operation, which can be adapted for applications in various microfluidic cell culture and organ-on-chip devices.
Collapse
|
1780
|
Stern AM, Schurdak ME, Bahar I, Berg JM, Taylor DL. A Perspective on Implementing a Quantitative Systems Pharmacology Platform for Drug Discovery and the Advancement of Personalized Medicine. JOURNAL OF BIOMOLECULAR SCREENING 2016; 21:521-34. [PMID: 26962875 PMCID: PMC4917453 DOI: 10.1177/1087057116635818] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Drug candidates exhibiting well-defined pharmacokinetic and pharmacodynamic profiles that are otherwise safe often fail to demonstrate proof-of-concept in phase II and III trials. Innovation in drug discovery and development has been identified as a critical need for improving the efficiency of drug discovery, especially through collaborations between academia, government agencies, and industry. To address the innovation challenge, we describe a comprehensive, unbiased, integrated, and iterative quantitative systems pharmacology (QSP)-driven drug discovery and development strategy and platform that we have implemented at the University of Pittsburgh Drug Discovery Institute. Intrinsic to QSP is its integrated use of multiscale experimental and computational methods to identify mechanisms of disease progression and to test predicted therapeutic strategies likely to achieve clinical validation for appropriate subpopulations of patients. The QSP platform can address biological heterogeneity and anticipate the evolution of resistance mechanisms, which are major challenges for drug development. The implementation of this platform is dedicated to gaining an understanding of mechanism(s) of disease progression to enable the identification of novel therapeutic strategies as well as repurposing drugs. The QSP platform will help promote the paradigm shift from reactive population-based medicine to proactive personalized medicine by focusing on the patient as the starting and the end point.
Collapse
Affiliation(s)
- Andrew M. Stern
- Department of Computational and Systems Biology, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Mark E. Schurdak
- Department of Computational and Systems Biology, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Jeremy M. Berg
- Department of Computational and Systems Biology, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- University of Pittsburgh Institute for Personalized Medicine, Pittsburgh, PA, USA
| | - D. Lansing Taylor
- Department of Computational and Systems Biology, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
1781
|
Hu C, Sun H, Liu Z, Chen Y, Chen Y, Wu H, Ren K. Freestanding 3-D microvascular networks made of alginate hydrogel as a universal tool to create microchannels inside hydrogels. BIOMICROFLUIDICS 2016; 10:044112. [PMID: 27679676 PMCID: PMC5010556 DOI: 10.1063/1.4961969] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
The diffusion of molecules such as nutrients and oxygen through densely packed cells is impeded by blockage and consumption by cells, resulting in a limited depth of penetration. This has been a major hurdle to a bulk (3-D) culture. Great efforts have been made to develop methods for generating branched microchannels inside hydrogels to support mass exchange inside a bulk culture. These previous attempts faced a common obstacle: researchers tried to fabricate microchannels with gels already loaded with cells, but the fabrication procedures are often harmful to the embedded cells. Herein, we present a universal strategy to create microchannels in different types of hydrogels, which effectively avoids cell damage. This strategy is based on a freestanding alginate 3-D microvascular network prepared by in-situ generation of copper ions from a sacrificial copper template. This alginate network could be used as implants to create microchannels inside different types of hydrogels. This approach effectively addresses the issue of cell damage during microfabrication and made it possible to create microchannels inside different types of gels. The microvascular network produced with this method is (1) strong enough to allow handling, (2) biocompatible to allow cell culturing, and (3) appropriately permeable to allow diffusion of small molecules, while sufficiently dense to prevent blocking of channels when embedded in different types of gels. In addition, composite microtubules could be prepared by simply pre-loading other materials, e.g., particles and large biomolecules, in the hydrogel. Compared with other potential strategies to fabricate freestanding gel channel networks, our method is more rapid, low-cost and scalable due to parallel processing using an industrially mass-producible template. We demonstrated the use of such vascular networks in creating microchannels in different hydrogels and composite gels, as well as with a cell culture in a nutrition gradient based on microfluidic diffusion. In this way, the freestanding hydrogel vascular network we produced is a universal functional unit that can be embedded in different types of hydrogel; users will be able to adopt this strategy to achieve vascular mass exchange in the bulk culture without changing their current protocol. The method is readily implementable to applications in vascular tissue regeneration, drug discovery, 3-D culture, etc.
Collapse
Affiliation(s)
- Chong Hu
- Department of Chemistry, The Hong Kong Baptist University , Waterloo Rd, Kowloon, Hong Kong, China
| | - Han Sun
- Department of Chemistry, The Hong Kong Baptist University , Waterloo Rd, Kowloon, Hong Kong, China
| | - Zhengzhi Liu
- Department of Chemistry, The Hong Kong Baptist University , Waterloo Rd, Kowloon, Hong Kong, China
| | - Yin Chen
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Yangfan Chen
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
1782
|
Fröhlich E, Roblegg E. Oral uptake of nanoparticles: human relevance and the role of in vitro systems. Arch Toxicol 2016; 90:2297-314. [PMID: 27342244 DOI: 10.1007/s00204-016-1765-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 06/14/2016] [Indexed: 01/03/2023]
Abstract
Nanoparticles (NPs) present in environment, consumer and health products, food and medical applications lead to a high degree of human exposure and concerns about potential adverse effects on human health. For the general population, the exposure through contact with the skin, inhalation and oral uptake are most relevant. Since in vivo testing is only partly able to study the effects of human oral exposure, physiologically relevant in vitro systems are being developed. This review compared the three routes taking into account the estimated concentration, size of the exposed area, morphology of the involved barrier and translocation rate. The high amounts of NPs in food, the large absorption area and the relatively high translocation rate identified oral uptake as most important portal of entry for NPs into the body. Changes of NP properties in the physiological fluids, mechanisms to cross mucus and epithelial barrier, and important issues in the use of laboratory animals for oral exposure are mentioned. The ability of in vitro models to address the varying conditions along the oro-gastrointestinal tract is discussed, and requirements for physiologically relevant in vitro testing of orally ingested NPs are listed.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010, Graz, Austria.
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of Graz, Graz, Austria
| |
Collapse
|
1783
|
Tunesi M, Fusco F, Fiordaliso F, Corbelli A, Biella G, Raimondi MT. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features. Front Aging Neurosci 2016; 8:146. [PMID: 27445790 PMCID: PMC4916174 DOI: 10.3389/fnagi.2016.00146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/07/2016] [Indexed: 12/23/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer’s disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may be useful for monitoring disease progression over time or evaluating therapeutic interventions.
Collapse
Affiliation(s)
- Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di MilanoMilan, Italy; Unità di Ricerca Consorzio INSTM, Politecnico di MilanoMilan, Italy
| | - Federica Fusco
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" Milan, Italy
| | - Fabio Fiordaliso
- Unit of Bio-imaging, Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" Milan, Italy
| | - Alessandro Corbelli
- Unit of Bio-imaging, Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" Milan, Italy
| | - Gloria Biella
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" Milan, Italy
| | - Manuela T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano Milan, Italy
| |
Collapse
|
1784
|
Satoh T, Narazaki G, Sugita R, Kobayashi H, Sugiura S, Kanamori T. A pneumatic pressure-driven multi-throughput microfluidic circulation culture system. LAB ON A CHIP 2016; 16:2339-48. [PMID: 27229626 DOI: 10.1039/c6lc00361c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here, we report a pneumatic pressure-driven microfluidic device capable of multi-throughput medium circulation culture. The circulation culture system has the following advantages for application in drug discovery: (i) simultaneous operation of multiple circulation units, (ii) use of a small amount of circulating medium (3.5 mL), (iii) pipette-friendly liquid handling, and (iv) a detachable interface with pneumatic pressure lines via sterile air-vent filters. The microfluidic device contains three independent circulation culture units, in which human umbilical vein endothelial cells (HUVECs) were cultured under physiological shear stress induced by circulation of the medium. Circulation of the medium in the three culture units was generated by programmed sequentially applied pressure from two pressure-control lines. HUVECs cultured in the microfluidic device were aligned under a one-way circulating flow with a shear stress of 10 dyn cm(-2); they exhibited a randomly ordered alignment under no shear stress and under reciprocating flow with a shear stress of 10 dyn cm(-2). We also observed 2.8- to 4.9-fold increases in expression of the mRNAs of endothelial nitric oxide synthase and thrombomodulin under one-way circulating flow with a shear stress of 10 dyn cm(-2) compared with conditions of no shear stress or reciprocating flow.
Collapse
Affiliation(s)
- T Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | | | | | | | |
Collapse
|
1785
|
Chandrasekaran A, Abduljawad M, Moraes C. Have microfluidics delivered for drug discovery? Expert Opin Drug Discov 2016; 11:745-8. [DOI: 10.1080/17460441.2016.1193485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
1786
|
van der Helm MW, Odijk M, Frimat JP, van der Meer AD, Eijkel JCT, van den Berg A, Segerink LI. Direct quantification of transendothelial electrical resistance in organs-on-chips. Biosens Bioelectron 2016; 85:924-929. [PMID: 27315517 DOI: 10.1016/j.bios.2016.06.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/25/2016] [Accepted: 06/07/2016] [Indexed: 01/17/2023]
Abstract
Measuring transendothelial or transepithelial electrical resistance (TEER) is a widely used method to monitor cellular barrier tightness in organs-on-chips. Unfortunately, integrated electrodes close to the cellular barrier hamper visual inspection of the cells or require specialized cleanroom processes to fabricate see-through electrodes. Out-of-view electrodes inserted into the chip's outlets are influenced by the fluid-filled microchannels with relatively high resistance. In this case, small changes in temperature or medium composition strongly affect the apparent TEER. To solve this, we propose a simple and universally applicable method to directly determine the TEER in microfluidic organs-on-chips without the need for integrated electrodes close to the cellular barrier. Using four electrodes inserted into two channels - two on each side of the porous membrane - and six different measurement configurations we can directly derive the isolated TEER independent of channel properties. We show that this method removes large variation of non-biological origin in chips filled with culture medium. Furthermore, we demonstrate the use of our method by quantifying the TEER of a monolayer of human hCMEC/D3 cerebral endothelial cells, mimicking the blood-brain barrier inside our microfluidic organ-on-chip device. We found stable TEER values of 22 Ω cm(2)±1.3 Ω cm(2) (average ± standard error of the mean of 4 chips), comparable to other TEER values reported for hCMEC/D3 cells in well-established Transwell systems. In conclusion, we demonstrate a simple and robust way to directly determine TEER that is applicable to any organ-on-chip device with two channels separated by a membrane. This enables stable and easily applicable TEER measurements without the need for specialized cleanroom processes and with visibility on the measured cell layer.
Collapse
Affiliation(s)
- Marinke W van der Helm
- BIOS Lab on a Chip group, MIRA Institute for Biomedical Technology and Technical Medicine & MESA, Institute for Nanotechnology, University of Twente, P.O. box 217, 7500 AE Enschede, The Netherlands.
| | - Mathieu Odijk
- BIOS Lab on a Chip group, MIRA Institute for Biomedical Technology and Technical Medicine & MESA, Institute for Nanotechnology, University of Twente, P.O. box 217, 7500 AE Enschede, The Netherlands
| | - Jean-Philippe Frimat
- Microsystems, Eindhoven University of Technology, P.O. box 513, 5600 MB Eindhoven, The Netherlands
| | - Andries D van der Meer
- Applied Stem Cell Technologies, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. box 217, 7500 AE Enschede, The Netherlands
| | - Jan C T Eijkel
- BIOS Lab on a Chip group, MIRA Institute for Biomedical Technology and Technical Medicine & MESA, Institute for Nanotechnology, University of Twente, P.O. box 217, 7500 AE Enschede, The Netherlands
| | - Albert van den Berg
- BIOS Lab on a Chip group, MIRA Institute for Biomedical Technology and Technical Medicine & MESA, Institute for Nanotechnology, University of Twente, P.O. box 217, 7500 AE Enschede, The Netherlands
| | - Loes I Segerink
- BIOS Lab on a Chip group, MIRA Institute for Biomedical Technology and Technical Medicine & MESA, Institute for Nanotechnology, University of Twente, P.O. box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
1787
|
Modeling of Magnetite Nanoparticles Behavior under Conditions of Microcirculation and Analysis of In Vivo Toxicity. Bull Exp Biol Med 2016; 161:116-9. [PMID: 27265127 DOI: 10.1007/s10517-016-3359-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 10/21/2022]
Abstract
The behavior of magnetite nanoparticles was studied in the cell chip microcapillaries. No aggregation of magnetite nanoparticles under conditions of long-term circulation was noted. Biodistribution and toxicity of magnetite nanoparticles (14 nm) and aminated magnetite after their intragastric administration to mice were studied in vivo. According to mass spectrometry and microscopy data, accumulation of nanoparticles occurred mainly in the liver cells.
Collapse
|
1788
|
Bergers LIJC, Reijnders CMA, van den Broek LJ, Spiekstra SW, de Gruijl TD, Weijers EM, Gibbs S. Immune-competent human skin disease models. Drug Discov Today 2016; 21:1479-1488. [PMID: 27265772 DOI: 10.1016/j.drudis.2016.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/13/2016] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
Abstract
All skin diseases have an underlying immune component. Owing to differences in animal and human immunology, the majority of drugs fail in the preclinical or clinical testing phases. Therefore animal alternative methods that incorporate human immunology into in vitro skin disease models are required to move the field forward. This review summarizes the progress, using examples from fibrosis, autoimmune diseases, psoriasis, cancer and contact allergy. The emphasis is on co-cultures and 3D organotypic models. Our conclusion is that current models are inadequate and future developments with immune-competent skin-on-chip models based on induced pluripotent stem cells could provide a next generation of skin models for drug discovery and testing.
Collapse
Affiliation(s)
| | | | | | - Sander W Spiekstra
- Department of Dermatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ester M Weijers
- Department of Dermatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Dermatology, VU University Medical Center, Amsterdam, The Netherlands; Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands.
| |
Collapse
|
1789
|
Ribas J, Sadeghi H, Manbachi A, Leijten J, Brinegar K, Zhang YS, Ferreira L, Khademhosseini A. Cardiovascular Organ-on-a-Chip Platforms for Drug Discovery and Development. APPLIED IN VITRO TOXICOLOGY 2016; 2:82-96. [PMID: 28971113 PMCID: PMC5044977 DOI: 10.1089/aivt.2016.0002] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases are prevalent worldwide and are the most frequent causes of death in the United States. Although spending in drug discovery/development has increased, the amount of drug approvals has seen a progressive decline. Particularly, adverse side effects to the heart and general vasculature have become common causes for preclinical project closures, and preclinical models do not fully recapitulate human in vivo dynamics. Recently, organs-on-a-chip technologies have been proposed to mimic the dynamic conditions of the cardiovascular system-in particular, heart and general vasculature. These systems pay particular attention to mimicking structural organization, shear stress, transmural pressure, mechanical stretching, and electrical stimulation. Heart- and vasculature-on-a-chip platforms have been successfully generated to study a variety of physiological phenomena, model diseases, and probe the effects of drugs. Here, we review and discuss recent breakthroughs in the development of cardiovascular organs-on-a-chip platforms, and their current and future applications in the area of drug discovery and development.
Collapse
Affiliation(s)
- João Ribas
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Doctoral Program in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Hossein Sadeghi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Amir Manbachi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jeroen Leijten
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Katelyn Brinegar
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Lino Ferreira
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
1790
|
Richmond CA, Shah MS, Carlone DL, Breault DT. An enduring role for quiescent stem cells. Dev Dyn 2016; 245:718-26. [PMID: 27153394 DOI: 10.1002/dvdy.24416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/22/2016] [Accepted: 04/30/2016] [Indexed: 12/12/2022] Open
Abstract
The intestine's ability to recover from catastrophic injury requires quiescent intestinal stem cells (q-ISCs). While rapidly cycling (Lgr5+) crypt base columnar (CBC) ISCs normally maintain the intestine, they are highly sensitive to pathological injuries (irradiation, inflammation) and must be restored by q-ISCs to sustain intestinal homeostasis. Despite clear relevance to human health, virtually nothing is known regarding the factors that regulate q-ISCs. A comprehensive understanding of these mechanisms would likely lead to targeted new therapies with profound therapeutic implications for patients with gastrointestinal conditions. We briefly review the current state of the literature, highlighting homeostatic mechanisms important for q-ISC regulation, listing key questions in the field, and offer strategies to address them. Developmental Dynamics 245:718-726, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Camilla A Richmond
- Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Manasvi S Shah
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts
| | - Diana L Carlone
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - David T Breault
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
1791
|
Middelkamp HH, van der Meer AD, Hummel JM, Stamatialis DF, Mummery CL, Passier R, IJzerman MJ. Organs-on-Chips in Drug Development: The Importance of Involving Stakeholders in Early Health Technology Assessment. ACTA ACUST UNITED AC 2016. [DOI: 10.1089/aivt.2015.0029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Heleen H.T. Middelkamp
- Department of Applied Stem Cell Technologies, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Andries D. van der Meer
- Department of Applied Stem Cell Technologies, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - J. Marjan Hummel
- Department of Health Technology and Services Research, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Dimitrios F. Stamatialis
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Christine L. Mummery
- Department of Applied Stem Cell Technologies, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Maarten J. IJzerman
- Department of Health Technology and Services Research, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
1792
|
Gough A, Vernetti L, Bergenthal L, Shun TY, Taylor DL. The Microphysiology Systems Database for Analyzing and Modeling Compound Interactions with Human and Animal Organ Models. ACTA ACUST UNITED AC 2016; 2:103-117. [PMID: 28781990 DOI: 10.1089/aivt.2016.0011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microfluidic human organ models, microphysiology systems (MPS), are currently being developed as predictive models of drug safety and efficacy in humans. To design and validate MPS as predictive of human safety liabilities requires safety data for a reference set of compounds, combined with in vitro data from the human organ models. To address this need, we have developed an internet database, the MPS database (MPS-Db), as a powerful platform for experimental design, data management, and analysis, and to combine experimental data with reference data, to enable computational modeling. The present study demonstrates the capability of the MPS-Db in early safety testing using a human liver MPS to relate the effects of tolcapone and entacapone in the in vitro model to human in vivo effects. These two compounds were chosen to be evaluated as a representative pair of marketed drugs because they are structurally similar, have the same target, and were found safe or had an acceptable risk in preclinical and clinical trials, yet tolcapone induced unacceptable levels of hepatotoxicity while entacapone was found to be safe. Results demonstrate the utility of the MPS-Db as an essential resource for relating in vitro organ model data to the multiple biochemical, preclinical, and clinical data sources on in vivo drug effects.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, Pennsylvania.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, Pennsylvania.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Luke Bergenthal
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, Pennsylvania
| | - Tong Ying Shun
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, Pennsylvania
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, Pennsylvania.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
1793
|
A Reversibly Sealed, Easy Access, Modular (SEAM) Microfluidic Architecture to Establish In Vitro Tissue Interfaces. PLoS One 2016; 11:e0156341. [PMID: 27227828 PMCID: PMC4881956 DOI: 10.1371/journal.pone.0156341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/12/2016] [Indexed: 11/19/2022] Open
Abstract
Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allows several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young’s modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. We anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.
Collapse
|
1794
|
Cordero OX, Datta MS. Microbial interactions and community assembly at microscales. Curr Opin Microbiol 2016; 31:227-234. [PMID: 27232202 DOI: 10.1016/j.mib.2016.03.015] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 11/16/2022]
Abstract
In most environments, microbial interactions take place within microscale cell aggregates. At the scale of these aggregates (∼100μm), interactions are likely to be the dominant driver of population structure and dynamics. In particular, organisms that exploit interspecific interactions to increase ecological performance often co-aggregate. Conversely, organisms that antagonize each other will tend to spatially segregate, creating distinct micro-communities and increased diversity at larger length scales. We argue that, in order to understand the role that biological interactions play in microbial community function, it is necessary to study microscale spatial organization with enough throughput to measure statistical associations between taxa and possible alternative community states. We conclude by proposing strategies to tackle this challenge.
Collapse
Affiliation(s)
- Otto X Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Manoshi S Datta
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
1795
|
Verma R, Adhikary RR, Banerjee R. Smart material platforms for miniaturized devices: implications in disease models and diagnostics. LAB ON A CHIP 2016; 16:1978-1992. [PMID: 27108534 DOI: 10.1039/c6lc00173d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Smart materials are responsive to multiple stimuli like light, temperature, pH and redox reactions with specific changes in state. Various functionalities in miniaturised devices can be achieved through the application of "smart materials" that respond to changes in their surroundings. The change in state of the materials in the presence of a stimulus may be used for on demand alteration of flow patterns in devices, acting as microvalves, as scaffolds for cellular aggregation or as modalities for signal amplification. In this review, we discuss the concepts of smart trigger responsive materials and their applications in miniaturized devices both for organ-on-a-chip disease models and for point-of-care diagnostics. The emphasis is on leveraging the smartness of these materials for example, to allow on demand sample actuation, ion dependent spheroid models for cancer or light dependent contractility of muscle films for organ-on-a-chip applications. The review throws light on the current status, scope for technological enhancements, challenges for translation and future prospects of increased incorporation of smart materials as integral parts of miniaturized devices.
Collapse
Affiliation(s)
- Ritika Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | - Rishi Rajat Adhikary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
1796
|
Li C, Chaung W, Mozayan C, Chabra R, Wang P, Narayan RK. A New Approach for On-Demand Generation of Various Oxygen Tensions for In Vitro Hypoxia Models. PLoS One 2016; 11:e0155921. [PMID: 27219067 PMCID: PMC4878792 DOI: 10.1371/journal.pone.0155921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
The development of in vitro disease models closely mimicking the functions of human disease has captured increasing attention in recent years. Oxygen tensions and gradients play essential roles in modulating biological systems in both physiologic and pathologic events. Thus, controlling oxygen tension is critical for mimicking physiologically relevant in vivo environments for cell, tissue and organ research. We present a new approach for on-demand generation of various oxygen tensions for in vitro hypoxia models. Proof-of-concept prototypes have been developed for conventional cell culture microplate by immobilizing a novel oxygen-consuming biomaterial on the 3D-printed insert. For the first time, rapid (~3.8 minutes to reach 0.5% O2 from 20.9% O2) and precisely controlled oxygen tensions/gradients (2.68 mmHg per 50 μm distance) were generated by exposing the biocompatible biomaterial to the different depth of cell culture media. In addition, changing the position of 3D-printed inserts with immobilized biomaterials relative to the cultured cells resulted in controllable and rapid changes in oxygen tensions (<130 seconds). Compared to the current technologies, our approach allows enhanced spatiotemporal resolution and accuracy of the oxygen tensions. Additionally, it does not interfere with the testing environment while maintaining ease of use. The elegance of oxygen tension manipulation introduced by our new approach will drastically improve control and lower the technological barrier of entry for hypoxia studies. Since the biomaterials can be immobilized in any devices, including microfluidic devices and 3D-printed tissues or organs, it will serve as the basis for a new generation of experimental models previously impossible or very difficult to implement.
Collapse
Affiliation(s)
- Chunyan Li
- Cushing Neuromonitoring Laboratory, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, New York, United States of America
- * E-mail:
| | - Wayne Chaung
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Cameron Mozayan
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, New York, United States of America
| | - Ranjeev Chabra
- Cushing Neuromonitoring Laboratory, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ping Wang
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Raj K. Narayan
- Cushing Neuromonitoring Laboratory, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, New York, United States of America
| |
Collapse
|
1797
|
Kinstlinger IS, Miller JS. 3D-printed fluidic networks as vasculature for engineered tissue. LAB ON A CHIP 2016; 16:2025-43. [PMID: 27173478 DOI: 10.1039/c6lc00193a] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Fabrication of vascular networks within engineered tissue remains one of the greatest challenges facing the fields of biomaterials and tissue engineering. Historically, the structural complexity of vascular networks has limited their fabrication in tissues engineered in vitro. Recently, however, key advances have been made in constructing fluidic networks within biomaterials, suggesting a strategy for fabricating the architecture of the vasculature. These techniques build on emerging technologies within the microfluidics community as well as on 3D printing. The freeform fabrication capabilities of 3D printing are allowing investigators to fabricate fluidic networks with complex architecture inside biomaterial matrices. In this review, we examine the most exciting 3D printing-based techniques in this area. We also discuss opportunities for using these techniques to address open questions in vascular biology and biophysics, as well as for engineering therapeutic tissue substitutes in vitro.
Collapse
Affiliation(s)
| | - Jordan S Miller
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
1798
|
Marx U, Andersson TB, Bahinski A, Beilmann M, Beken S, Cassee FR, Cirit M, Daneshian M, Fitzpatrick S, Frey O, Gaertner C, Giese C, Griffith L, Hartung T, Heringa MB, Hoeng J, de Jong WH, Kojima H, Kuehnl J, Luch A, Maschmeyer I, Sakharov D, Sips AJAM, Steger-Hartmann T, Tagle DA, Tonevitsky A, Tralau T, Tsyb S, van de Stolpe A, Vandebriel R, Vulto P, Wang J, Wiest J, Rodenburg M, Roth A. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 2016; 33:272-321. [PMID: 27180100 PMCID: PMC5396467 DOI: 10.14573/altex.1603161] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/11/2016] [Indexed: 01/09/2023]
Abstract
The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-six experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale.
Collapse
|
1799
|
Lu Q, Al-Sheikh O, Elisseeff JH, Grant MP. Biomaterials and Tissue Engineering Strategies for Conjunctival Reconstruction and Dry Eye Treatment. Middle East Afr J Ophthalmol 2016; 22:428-34. [PMID: 26692712 PMCID: PMC4660527 DOI: 10.4103/0974-9233.167818] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The ocular surface is a component of the anterior segment of the eye and is covered by the tear film. Together, they protect the vital external components of the eye from the environment. Injuries, surgical trauma, and autoimmune diseases can damage this system, and in severe cases, tissue engineering strategies are necessary to ensure proper wound healing and recovery. Dry eye is another major concern and a complicated disease affecting the ocular surface. More effective and innovative therapies are required for better outcomes in treating dry eye. This review focuses on the regenerative medicine of the conjunctiva, which is an essential part of the ocular surface system. Features and advances of different types of biomolecular materials, and autologous and allogeneic tissue grafts are summarized and compared. Specifically, vitrigel, a collagen membrane and novel material for use on the ocular surface, offers significant advantages over other biomaterials. This review also discusses a breakthrough microfluidic technology, “organ-on-a-chip” and its potential application in investigating new therapies for dry eye.
Collapse
Affiliation(s)
- Qiaozhi Lu
- Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA ; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Osama Al-Sheikh
- Oculoplastics and Orbit Division, King Khaled Eye Specialist Hospital, P.O. Box 7191, Riyadh 11462, Saudi Arabia
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA ; Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael P Grant
- Oculoplastics Division, Ocular and Orbital Trauma Center, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
1800
|
Livingston CA, Fabre KM, Tagle DA. Facilitating the commercialization and use of organ platforms generated by the microphysiological systems (Tissue Chip) program through public-private partnerships. Comput Struct Biotechnol J 2016; 14:207-210. [PMID: 27904714 PMCID: PMC5122750 DOI: 10.1016/j.csbj.2016.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 12/02/2022] Open
Abstract
Microphysiological systems (organs-on-chips, tissue chips) are devices designed to recapitulate human physiology that could be used to better understand drug responses not easily addressed using other in vivo systems or in vitro animal models. Although still in development, initial results seem promising as tissue chips exhibit in vivo systems-like functional responses. The National Center for Advancing Translation Science (NCATS) identifies this technology as a potential tool that could improve the process of getting safer, more effective treatments to patients, and has led to the Tissue Chip Program, which aims to develop, integrate and validate major organ systems for testing. In addition to organ chip development, NCATS emphasizes disseminating the technology to researchers. Commercialization has become an important issue, reflecting the difficulty of translation from discovery to adoption and wide availability. Therefore, NCATS issued a Request for Information (RFI) targeted to existing partnerships for commercializing tissue chips. The goal was to identify successes, failures and the best practices that could provide useful guidance for future partnerships aiming to make tissue chip technology widely available.
Collapse
Affiliation(s)
- Christine A Livingston
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| | - Kristin M Fabre
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|