1901
|
Clearance of adenovirus by Kupffer cells is mediated by scavenger receptors, natural antibodies, and complement. J Virol 2008; 82:11705-13. [PMID: 18815305 DOI: 10.1128/jvi.01320-08] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kupffer cells (KCs) rapidly remove intravenously injected adenovirus (Ad) vectors from the circulation. A better understanding of the mechanisms involved could suggest strategies to improve Ad gene delivery by suppressing or evading KC uptake. We recently showed that clearance of Ad type 5 vectors by KCs does not involve the interaction of Ad with the well-established Ad receptors, namely, integrins or the coxsackievirus and Ad receptor (J. S. Smith, Z. Xu, J. Tian, S. C. Stevenson, and A. P. Byrnes, Hum. Gene Ther. 19:547-554, 2008). In the current study, we systematically quantified the contributions of various receptors and plasma proteins to the clearance of Ad by KCs. We found that scavenger receptors are a predominant mechanism for the clearance of Ad by KCs. In addition, we found that Ad is opsonized by natural immunoglobulin M antibodies and complement and that these opsonins play a contributory role in the clearance of Ad by KCs. We also examined additional mechanisms that have been postulated to be involved in the clearance of Ad, including the binding of Ad to platelets and vitamin K-dependent coagulation factors, but we found that neither of these were required for the clearance of Ad by KCs.
Collapse
|
1902
|
Kurnik D, Friedman EA, Muszkat M, Sofowora GG, Xie HG, Dupont WD, Wood AJJ, Stein CM. Genetic variants in the alpha2C-adrenoceptor and G-protein contribute to ethnic differences in cardiovascular stress responses. Pharmacogenet Genomics 2008; 18:743-50. [PMID: 18698227 PMCID: PMC2689621 DOI: 10.1097/fpc.0b013e3282fee5a1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Cardiovascular responses to stressors are regulated by sympathetic activity, increased in black Americans, and associated with future cardiovascular morbidity. Our aim was to determine whether two functional variants in genes regulating sympathetic activity, a deletion in the alpha2C-adrenergic receptor (ADRA2C del322-325) and a G-protein beta3-subunit variant (GNB3 G825T), affect cardiovascular responses to physiologic stressors and contribute to their ethnic differences. METHODS We measured heart rate and blood pressure responses to a cold pressor test (CPT) in 79 healthy participants (40 blacks, 39 whites), aged 25.7+/-5.3 years, and determined genotypes for the ADRA2C and GNB3 variants. We examined the response variables (increase in heart rate and blood pressure) in multiple linear regression analyses adjusting first for baseline measures, ethnicity, and other covariates, and then additionally for genotypes. RESULTS Black participants had a greater heart rate response to CPT than whites [mean difference, 9.9 bpm; 95% confidence interval (CI), 4.1 to 15.6; P=0.001]. Both the ADRA2C del/del (15.8 bpm; 95% CI, 8.0-23.7; P<0.001) and GNB3 T/T genotypes (6.8 bpm; 95% CI, 0.9-12.7; P=0.026) were associated with greater heart rate response. After adjusting for genotypes, the ethnic difference was abrogated (1.3 bpm; 95% CI, -5.4-8.0; P=0.70), suggesting that the genetic variants contributed substantially to ethnic differences. CONCLUSION Variation in genes that regulate sympathetic activity affects hemodynamic stress responses and contributes to their ethnic differences. This study elucidates how genetic factors may in part explain ethnic differences in cardiovascular regulation.
Collapse
Affiliation(s)
- Daniel Kurnik
- Departments of Medicine and Pharmacology, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eitan A. Friedman
- Departments of Medicine and Pharmacology, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mordechai Muszkat
- Departments of Medicine and Pharmacology, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Gbenga G. Sofowora
- Departments of Medicine and Pharmacology, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Hong-Guang Xie
- Departments of Medicine and Pharmacology, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - William D. Dupont
- Department of Biomedical Statistics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alastair J. J. Wood
- Departments of Medicine and Pharmacology, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - C. Michael Stein
- Departments of Medicine and Pharmacology, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
1903
|
Su NY, Tsai PS, Huang CJ. Clonidine-Induced Enhancement of iNOS Expression Involves NF-κB. J Surg Res 2008; 149:131-7. [DOI: 10.1016/j.jss.2007.11.725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 10/15/2007] [Accepted: 11/12/2007] [Indexed: 11/25/2022]
|
1904
|
Yanagihara N, Toyohira Y, Ueno S, Tsutsui M, Shinohara Y, Liu M. Effects of phytoestrogens on catecholamine synthesis and secretion. Nihon Yakurigaku Zasshi 2008; 132:150-4. [PMID: 18787296 DOI: 10.1254/fpj.132.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
1905
|
Bruzzone A, Piñero CP, Castillo LF, Sarappa MG, Rojas P, Lanari C, Lüthy IA. Alpha2-adrenoceptor action on cell proliferation and mammary tumour growth in mice. Br J Pharmacol 2008; 155:494-504. [PMID: 18604234 DOI: 10.1038/bjp.2008.278] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Breast cancer, the most common cancer in women in most countries, is a highly stressful disease. Catecholamines released during stress bind to adrenoceptors and we have recently described alpha(2)-adrenoceptors in human breast cell lines, linked to enhanced cell proliferation. The purpose was to assess the in vivo effects of compounds acting on alpha(2)-adrenoceptors in a reliable model of breast cancer. EXPERIMENTAL APPROACH The expression of alpha(2)-adrenoceptors was confirmed by immunocytochemistry, immunofluorescence and reverse transcription-PCR in the mouse mammary tumour cell line MC4-L5. Proliferation was assessed by [(3)H]thymidine incorporation and tumours were measured daily. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP digoxigenin nick-end labelling. KEY RESULTS Incubation for 2 days with alpha(2)-adrenoceptor agonists (clonidine and dexmedetomidine) significantly enhanced proliferation of the mouse mammary tumour cell line MC4-L5. These agonists also significantly stimulated tumour growth of the progestin-dependent tumour C4-HD even in the presence of medroxyprogesterone acetate (MPA). In every tumour tested (C4-HD, CC4-2-HD and CC4-3-HI), regardless of MPA sensitivity, clonidine significantly enhanced tumour growth in the absence of MPA. The alpha(2)-adrenoceptor antagonists, yohimbine and rauwolscine, completely reversed the effects of clonidine. However, the group receiving yohimbine alone showed a nonsignificant but constant increase in tumour growth, whereas rauwolscine alone diminished tumour growth significantly, behaving as a reverse agonist. In CC4-3-HI tumours, rauwolscine treatment enhanced apoptosis and diminished the mitotic index, whereas clonidine had the inverse effect. CONCLUSIONS AND IMPLICATIONS Alpha(2)-adrenoceptor agonists enhanced tumour growth and rauwolscine behaved in vivo as a reverse agonist, suggesting that it may be tested for adjuvant treatment.
Collapse
Affiliation(s)
- A Bruzzone
- Hormones and Cancer Laboratory, Instituto de Biología y Medicina Experimental CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
1906
|
Yu BS, Ko WS, Lim DY. Inhibitory Mechanism of Polyphenol Compounds Isolated from Red Wine on Catecholamine Release in the Perfused Rat Adrenal Medulla. Biomol Ther (Seoul) 2008. [DOI: 10.4062/biomolther.2008.16.2.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
1907
|
Smrcka AV, Lehmann DM, Dessal AL. G protein betagamma subunits as targets for small molecule therapeutic development. Comb Chem High Throughput Screen 2008; 11:382-95. [PMID: 18537559 PMCID: PMC2688719 DOI: 10.2174/138620708784534761] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
G proteins mediate the action of G protein coupled receptors (GPCRs), a major target of current pharmaceuticals and a major target of interest in future drug development. Most pharmaceutical interest has been in the development of selective GPCR agonists and antagonists that activate or inhibit specific GPCRs. Some recent thinking has focused on the idea that some pathologies are the result of the actions of an array of GPCRs suggesting that targeting single receptors may have limited efficacy. Thus, targeting pathways common to multiple GPCRs that control critical pathways involved in disease has potential therapeutic relevance. G protein betagamma subunits released from some GPCRs upon receptor activation regulate a variety of downstream pathways to control various aspects of mammalian physiology. There is evidence from cell- based and animal models that excess Gbetagamma signaling can be detrimental and blocking Gbetagamma signaling has salutary effects in a number of pathological models. Gbetagamma regulates downstream pathways through modulation of enzymes that produce cellular second messengers or through regulation of ion channels by direct protein-protein interactions. Thus, blocking Gbetagamma functions requires development of small molecule agents that disrupt Gbetagamma protein interactions with downstream partners. Here we discuss evidence that small molecule targeting Gbetagamma could be of therapeutic value. The concept of disruption of protein-protein interactions by targeting a "hot spot" on Gbetagamma is delineated and the biochemical and virtual screening strategies for identification of small molecules that selectively target Gbetagamma functions are outlined. Evaluation of the effectiveness of virtual screening indicates that computational screening enhanced identification of true Gbetagamma binding molecules. However, further refinement of the approach could significantly improve the yield of Gbetagamma binding molecules from this screen that could result in multiple candidate leads for future drug development.
Collapse
Affiliation(s)
- Alan V Smrcka
- Department of Pharmacology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
1908
|
Eid AH, Chotani MA, Mitra S, Miller TJ, Flavahan NA. Cyclic AMP acts through Rap1 and JNK signaling to increase expression of cutaneous smooth muscle alpha2C-adrenoceptors. Am J Physiol Heart Circ Physiol 2008; 295:H266-72. [PMID: 18487435 DOI: 10.1152/ajpheart.00084.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cold increases cutaneous vasoconstriction by unmasking the contractile activity of alpha(2C)-adrenoceptors (alpha(2C)-ARs) in vascular smooth muscle cells (VSMCs), which is mediated by the cold-induced mobilization of alpha(2C)-ARs from the transGolgi to the cell surface. The expression of alpha(2C)-ARs in human cutaneous VSMCs is under dual regulation by cyclic AMP: gene transcription is inhibited by cyclic AMP acting through protein kinase A but is increased by cyclic AMP acting through the exchange protein directly activated by cyclic AMP (EPAC) and the GTP-binding protein Rap1. Experiments were performed to further characterize the Rap1 signaling pathway. Forskolin (10 muM), the selective EPAC activator, 8-pCPT-2'-O-Me-cyclic AMP (CMC; 100 microM), or a constitutively active mutant of Rap1 (Rap1CA) increased the activity of c-Jun NH(2)-terminal kinase (JNK) in human cutaneous VSMCs. This was associated with the increased phosphorylation of c-Jun and activation of an activator protein (AP)-1 reporter construct, which were inhibited by the JNK inhibitor SP600125 (3 microM). Rap1CA increased the activity of an alpha(2C)-AR promoter-reporter construct, which was inhibited by SP600125 (3 microM) or by the mutation of an AP-1 binding site in the alpha(2C)-AR promoter. Furthermore, forskolin (10 microM) or CMC (100 microM) increased the expression of the alpha(2C)-AR protein, and these effects were inhibited by SP600125 (3 microM). Therefore, cyclic AMP increases the expression of alpha(2C)-ARs in cutaneous VSMCs by activating a novel Rap1 signaling pathway, mediated by the activation of JNK, AP-1, and the subsequent transcriptional activation of the alpha(2C)-AR gene. By increasing the expression of cold-responsive alpha(2C)-ARs, this pathway may contribute to enhanced cold-induced vasoconstriction in the cutaneous circulation, including Raynaud's phenomenon.
Collapse
Affiliation(s)
- A H Eid
- Lebanese International University, Beirut, Lebanon
| | | | | | | | | |
Collapse
|
1909
|
Yanagihara N, Toyohira Y, Shinohara Y. Insights into the Pharmacological Potential of Estrogens and Phytoestrogens on Catecholamine Signaling. Ann N Y Acad Sci 2008; 1129:96-104. [DOI: 10.1196/annals.1417.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
1910
|
Han S, Ritzenthaler JD, Zheng Y, Roman J. PPARbeta/delta agonist stimulates human lung carcinoma cell growth through inhibition of PTEN expression: the involvement of PI3K and NF-kappaB signals. Am J Physiol Lung Cell Mol Physiol 2008; 294:L1238-49. [PMID: 18390835 DOI: 10.1152/ajplung.00017.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent studies suggest that activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) promotes cancer cell survival. We previously demonstrated that a selective PPARbeta/delta agonist, GW501516, stimulated human non-small cell lung carcinoma (NSCLC) cell growth. Here, we explore the mechanisms responsible for this effect. We show that GW501516 decreased phosphate and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor known to decrease cell growth and induce apoptosis. Activation of PPARbeta/delta and phosphatidylinositol 3-kinase (PI3K)/Akt signaling was associated with inhibition of PTEN. GW501516 increased NF-kappaB DNA binding activity and p65 protein expression through activation of PPARbeta/delta and PI3K/Akt signals and enhanced the physical interactions between PPARbeta/delta and p65 protein. Conversely, inhibition of PI3K and silencing of p65 by small RNA interference (siRNA) blocked the effect of GW501516 on PTEN expression and on NSCLC cell proliferation. GW501516 also inhibited IKBalpha protein expression. Silencing of IKBalpha enhanced the effect of GW501516 on PTEN protein expression and on cell proliferation. It also augmented the GW501516-induced complex formation of PPARbeta/delta and p65 proteins. Overexpression of PTEN suppressed NSCLC cell growth and eliminated the effect of GW501516 on phosphorylation of Akt. Together, our observations suggest that GW501516 induces the proliferation of NSCLC cells by inhibiting the expression of PTEN through activation of PPARbeta/delta, which stimulates PI3K/Akt and NF-kappaB signaling. Overexpression of PTEN overcomes this effect and unveils PPARbeta/delta and PTEN as potential therapeutic targets in NSCLC.
Collapse
Affiliation(s)
- ShouWei Han
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Whitehead Bioresearch Bldg., 615 Michael St., Suite 205-M, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
1911
|
Fogel GB, Cheung M, Pittman E, Hecht D. In silico screening against wild-type and mutant Plasmodium falciparum dihydrofolate reductase. J Mol Graph Model 2008; 26:1145-52. [DOI: 10.1016/j.jmgm.2007.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 10/11/2007] [Accepted: 10/11/2007] [Indexed: 12/21/2022]
|
1912
|
Mayer G, Wulffen B, Huber C, Brockmann J, Flicke B, Neumann L, Hafenbradl D, Klebl BM, Lohse MJ, Krasel C, Blind M. An RNA molecule that specifically inhibits G-protein-coupled receptor kinase 2 in vitro. RNA (NEW YORK, N.Y.) 2008; 14:524-534. [PMID: 18230760 PMCID: PMC2248252 DOI: 10.1261/rna.821908] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 12/07/2007] [Indexed: 05/25/2023]
Abstract
G-protein-coupled receptors are desensitized by a two-step process. In a first step, G-protein-coupled receptor kinases (GRKs) phosphorylate agonist-activated receptors that subsequently bind to a second class of proteins, the arrestins. GRKs can be classified into three subfamilies, which have been implicated in various diseases. The physiological role(s) of GRKs have been difficult to study as selective inhibitors are not available. We have used SELEX (systematic evolution of ligands by exponential enrichment) to develop RNA aptamers that potently and selectively inhibit GRK2. This process has yielded an aptamer, C13, which bound to GRK2 with a high affinity and inhibited GRK2-catalyzed rhodopsin phosphorylation with an IC50 of 4.1 nM. Phosphorylation of rhodopsin catalyzed by GRK5 was also inhibited, albeit with 20-fold lower potency (IC50 of 79 nM). Furthermore, C13 reveals significant specificity, since almost no inhibitory activity was detectable testing it against a panel of 14 other kinases. The aptamer is two orders of magnitude more potent than the best GRK2 inhibitors described previously and shows high selectivity for the GRK family of protein kinases.
Collapse
Affiliation(s)
- Günter Mayer
- Life and Medical Sciences Bonn, Program Unit Chemical Biology, c/o Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1913
|
Tie L, Zhang JZ, Lin YH, Su TH, Li YH, Wu HL, Zhang YY, Yu HM, Li XJ. Epinephrine Increases Phosphorylation of MAP-2c in Rat Pheochromocytoma Cells (PC12 Cells) via a Protein Kinase C- and Mitogen Activated Protein Kinase-Dependent Mechanism. J Proteome Res 2008; 7:1704-11. [DOI: 10.1021/pr700711s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Jian-Zhao Zhang
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Yan-Hua Lin
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Tian-Hao Su
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Yu-Hua Li
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Hong-Li Wu
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - You-Yi Zhang
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - He-Ming Yu
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Xue-Jun Li
- Department of Pharmacology, School of Basic Medical Sciences and State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100083, China, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, P.R. China, and National Research Institute for Family Planning, Beijing 100081, P.R. China
| |
Collapse
|
1914
|
Lymperopoulos A, Rengo G, Zincarelli C, Soltys S, Koch WJ. Modulation of adrenal catecholamine secretion by in vivo gene transfer and manipulation of G protein-coupled receptor kinase-2 activity. Mol Ther 2008; 16:302-307. [PMID: 18223549 DOI: 10.1038/sj.mt.6300371] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We recently reported that the upregulation of adrenal G protein-coupled receptor kinase-2 (GRK2) causes enhanced catecholamine (CA) secretion by desensitizing sympatho-inhibitory alpha (2)-adrenergic receptors (alpha (2)ARs) of chromaffin cells, and thereby aggravating heart failure (HF). In this study, we sought to develop an efficient and reproducible in vivo adrenal gene transfer method to determine whether manipulation of adrenal GRK2 levels/activity regulates physiological CA secretion in rats. We specifically investigated two different in vivo gene delivery methods: direct injection into the suprarenal glands, and retrograde delivery through the suprarenal veins. We delivered adenoviral (Ad) vectors containing either GRK2 or an inhibitor of GRK2 activity, the beta ARKct. We found both delivery approaches equally effective at supporting robust (>80% of the whole organ) and adrenal-restricted transgene expression, in the cortical region as well as in the medullar region. Additionally, rats with AdGRK2-infected adrenals exhibit enhanced plasma CA levels when compared with control rats (AdGFP-injected adrenals), whereas plasma CA levels after Ad beta ARKct infection were significantly lower. Finally, in isolated chromaffin cells, alpha (2)ARs of AdGRK2-infected cells failed to inhibit CA secretion whereas Ad beta ARKct-infected cells showed normal alpha (2)AR responsiveness. These results not only indicate that in vivo adrenal gene transfer is an effective way of manipulating adrenal gland signalling, but also identify GRK2 as a critically important molecule involved in CA secretion.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Center for Translational Medicine and George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
1915
|
Padeletti M, Jelic S, LeJemtel TH. Coexistent chronic obstructive pulmonary disease and heart failure in the elderly. Int J Cardiol 2008; 125:209-15. [PMID: 18221802 DOI: 10.1016/j.ijcard.2007.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The prevalence of chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF) increases substantially with age. The coexistence of COPD and CHF is common but often unrecognized in elderly patients. To avoid overlooking COPD in elderly patients with known CHF pulmonary function tests should be routinely obtained. Likewise, to avoid overlooking CHF in elderly patients with known COPD left ventricular (LV) function should be routinely assessed. Plasma brain natriuretic peptide levels are useful to differentiate COPD exacerbation from CHF decompensation in patients presenting with acute dyspnea. Aging exacerbates skeletal muscle alterations that occur in patients with CHF and COPD. Skeletal muscle metabolic alterations and atrophy and the resulting deterioration of functional capacity progress rapidly in elderly patients with COPD and CHF. Physical conditioning reverses rapidly progressing skeletal muscle metabolic alterations and atrophy and promotes independence and life quality in the elderly. Physical conditioning is clearly an essential component of the management of elderly patients with COPD and CHF. The pharmacological management of patients with coexistent COPD and CHF should focus on not depriving these patients from long-term beta adrenergic blockade. Long-term beta adrenergic blockade has been repeatedly shown to improve survival in elderly patients with CHF due to LV systolic dysfunction and, contrary to conventional belief, is well tolerated by patients with COPD.
Collapse
Affiliation(s)
- Margherita Padeletti
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | | | | |
Collapse
|
1916
|
Buraei Z, Elmslie KS. The separation of antagonist from agonist effects of trisubstituted purines on CaV2.2 (N-type) channels. J Neurochem 2008; 105:1450-61. [PMID: 18221369 DOI: 10.1111/j.1471-4159.2008.05248.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dihydropyridines can affect L-type calcium channels (CaV1) as either agonists or antagonists. Seliciclib or R-roscovitine, a 2,6,9-trisubstituted purine, is a potent cyclin-dependent kinase inhibitor that induces both agonist and antagonist effects on CaV2 channels (N-, P/Q- and R-type). We studied the effects induced by various trisubstituted purines on CaV2.2 (N-type) channels to learn about chemical structure-function relationships. We found that S-roscovitine and R-roscovitine showed similar potency to inhibit, but agonist activity of S-roscovitine required at least a 20-fold higher concentration, suggesting stereospecificity of the agonist-binding site. The testing of other trisubstituted purines showed a correlation between CaV2.2 inhibition and cyclin-dependent kinase affinity that broke down after determining that a chemically unrelated inhibitor, kenpaullone, was a poor CaV2.2 inhibitor, and a kinase inactive analog (dimethylamino-olomoucine; DMAO) was a strong inhibitor, which together support a kinase independent effect. In fact, like dihydropyridine-induced L-channel inhibition, R-roscovitine left-shifted the closed-state inactivation versus voltage relationship, which suggests that inhibition results from CaV2 channels moving into the inactivated state. Trisubstituted purine antagonists could become clinically important drugs to treat diseases, such as heart failure and neuropathic pain that result from elevated CaV2 channel activity.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | | |
Collapse
|
1917
|
Khalaila JM, Elami A, Caraco Y. Interaction between beta2 adrenergic receptor polymorphisms determines the extent of isoproterenol-induced vasodilatation ex vivo. Pharmacogenet Genomics 2007; 17:803-11. [PMID: 17885618 DOI: 10.1097/fpc.0b013e3281eb8f07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Single nucleotide polymorphisms at nucleotides 46, 79 and 491 of the beta2 adrenergic receptor (beta2AR) gene modify its pharmacological properties and may alter the response to agonists. The purpose of this study was to evaluate the role played by beta2AR polymorphisms on isoproterenol-induced relaxation of internal mammary arteries ex vivo. METHODS Internal mammary leftover segments were collected from 96 patients undergoing coronary artery bypass operation. Vascular rings were allowed to reach equilibrium with physiological Krebs solution before precontraction with U46619. Using the organ bath technique, cumulative dose-response curve of isoproterenol was constructed and average EC50 calculated. beta2AR genotyping was performed using a PCR-RFLP analysis. RESULTS Arterial segments obtained from Gly16 homozygotes displayed reduced sensitivity to isoproterenol compared with carriers of Arg16 allele(s) [Mean (-log) EC50+/-SD, 6.42+/-0.24, 95% confidence interval (CI) 6.32-6.53 vs. 6.67+/-0.25, 95% CI 6.62-6.73, P<0.001]. Among Gly16 homozygotes, the presence of two Glu27 alleles restored vascular response to the level noted among Arg16 carriers (6.58+/-0.17, 95% CI 6.41-6.76). The least response to isoproterenol was noted in a single patient carrying the Gly16Gly-Gln27Glu-Thr164Ile combined genotype requiring almost six-fold higher isoproterenol concentration than carriers of the wild-type genotype to achieve half the maximal arterial dilatation (17.78 x 10(-7) vs. 3.01 x 10(-7) +/- 2.62 x 10(-7) mol/l). CONCLUSIONS Vascular dilatation by isoproterenol is determined by a complex interaction between polymorphisms at nucleotides 46, 79 and 491 of the beta2AR gene. Further studies are warranted to evaluate the effect of additional polymorphisms in the coding and noncoding regions on vascular reactivity.
Collapse
Affiliation(s)
- Jawad M Khalaila
- Clinical Pharmacology Unit, Division of Medicine, Hadassah University Hospital, Jerusalem, Israel
| | | | | |
Collapse
|
1918
|
Lymperopoulos A, Rengo G, Koch WJ. Adrenal adrenoceptors in heart failure: fine-tuning cardiac stimulation. Trends Mol Med 2007; 13:503-511. [PMID: 17981507 DOI: 10.1016/j.molmed.2007.10.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 09/27/2007] [Accepted: 10/01/2007] [Indexed: 12/20/2022]
Abstract
Chronic heart failure (HF) is characterized by sympathetic hyperactivity reflected by increased circulating catecholamines (CAs), which contributes significantly to its morbidity and mortality. Therefore, sympatholytic treatments, that is, treatments that reduce sympathetic hyperactivity, are being pursued currently for the treatment of HF. Secretion of CAs from the adrenal gland, which is a major source of CAs, is regulated by alpha(2)-adrenoceptors (alpha(2)ARs), which inhibit, and by beta-adrenoceptors (betaARs), which enhance CA secretion. All ARs are G-protein-coupled receptors (GPCRs), whose signaling and function are regulated tightly by the family of GPCR kinases (GRKs). Despite the enormous potential of adrenal ARs for the regulation of sympathetic outflow, elucidation of their properties has only begun recently. Here, recent advances regarding the roles of adrenal ARs in the regulation of sympathetic outflow in HF and the regulatory properties of ARs are discussed, along with the potential benefits and challenges of harnessing their function for HF therapy.
Collapse
|
1919
|
Tang WW, Francis GS. The Year in Heart Failure. J Am Coll Cardiol 2007; 50:2344-51. [DOI: 10.1016/j.jacc.2007.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 08/31/2007] [Accepted: 09/07/2007] [Indexed: 12/24/2022]
|
1920
|
Shinohara Y, Toyohira Y, Ueno S, Liu M, Tsutsui M, Yanagihara N. Effects of resveratrol, a grape polyphenol, on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. Biochem Pharmacol 2007; 74:1608-18. [PMID: 17888406 DOI: 10.1016/j.bcp.2007.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 07/26/2007] [Accepted: 08/14/2007] [Indexed: 11/22/2022]
Abstract
We report the effects of resveratrol, a polyphenol found in the skins of red grapes, on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. Resveratrol suppressed catecholamine secretion and (22)Na(+) and (45)Ca(2+) influx induced by acetylcholine, an agonist of nicotinic acetylcholine receptors, in a concentration-dependent manner (IC(50)=20.4, 11.0, and 62.8 microM, respectively). Resveratrol also inhibited catecholamine secretion induced by veratridine, an activator of voltage-dependent Na(+) channels, and 56 mM K(+), an activator of voltage-dependent Ca(2+) channels, at concentrations similar to those for (45)Ca(2+) influx. Resveratrol directly inhibited the current evoked by acetylcholine in Xenopus oocytes expressing alpha3beta4 neuronal nicotinic acetylcholine receptors (IC(50)=25.9 microM). Furthermore, resveratrol (IC(50)=5.32 microM) attenuated (14)C-catecholamine synthesis induced by acetylcholine. The present findings suggest that resveratrol inhibits acetylcholine-induced catecholamine secretion and synthesis through suppressing ion influx in cultured bovine adrenal medullary cells.
Collapse
Affiliation(s)
- Yuko Shinohara
- Department of Pharmacology, University of Occupational and Environmental Health, School of Medicine, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | |
Collapse
|
1921
|
Karkoulias G, Mastrogianni O, Papathanasopoulos P, Paris H, Flordellis C. α2-Adrenergic receptors activate cyclic AMP-response element-binding protein through arachidonic acid metabolism and protein kinase A in a subtype-specific manner. J Neurochem 2007; 103:882-95. [PMID: 17680988 DOI: 10.1111/j.1471-4159.2007.04852.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
On incubation with epinephrine, PC12 cells stably expressing alpha2-adrenergic receptor (alpha2-AR) undergo morphological and biochemical changes characteristic of neuron-like differentiation. The present study shows that alpha2-AR stimulation increases the phosphorylation of the transcription factor cAMP-response element-binding protein (CREB), the activity of a CRE-reporter plasmid and the expression of cyclin D1 with subtype-dependent efficiency (alpha2A approximately alpha2C >> alpha2B). The effects of epinephrine were mimicked by cell exposure to forskolin or to exogenous arachidonic acid (AA) and they were abrogated by prior treatment with the inhibitor of phospholipase C (PLC) (U73122) or the inhibitor of cytochrome P450-dependent epoxygenase, ketoconazole. On the other hand, treatment of the cells with epinephrine caused activation of protein kinase A (PKA), which was fully abolished by ketoconazole. Inhibition of PKA activity with H89 or ketoconazole abolished the effects of epinephrine on CREB, suggesting that activation of the cAMP/PKA pathway by AA epoxy-derivatives is responsible for CREB activation by alpha2-ARs. The effects of epinephrine were unaffected by LY294002. Furthermore, treatment with staurosporine, tyrphostin AG1478, PP1 or PD98059 did not change the extent of CREB phosphorylation but enhanced its transcriptional activity. Altogether, our results demonstrate that, in PC12 cells, the alpha2-AR subtypes cause phosphorylation and activation of CREB through a pathway involving stimulation of PLC, AA release, generation of epoxygenase derivative and increase of PKA activity. They also suggest attenuation of CREB transcriptional activity by mitogen-activated protein kinase, protein kinase C and Src kinases.
Collapse
Affiliation(s)
- Georgios Karkoulias
- Department of Pharmacology, School of Medicine, University of Patras, Rio Patras, Greece
| | | | | | | | | |
Collapse
|
1922
|
Liu M, Yanagihara N, Toyohira Y, Tsutsui M, Ueno S, Shinohara Y. Dual effects of daidzein, a soy isoflavone, on catecholamine synthesis and secretion in cultured bovine adrenal medullary cells. Endocrinology 2007; 148:5348-54. [PMID: 17717056 DOI: 10.1210/en.2007-0073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently demonstrated the occurrence and functional roles of plasma membrane estrogen receptors in cultured bovine adrenal medullary cells. Here we report the effects of daidzein, a phytoestrogen of soybeans, on catecholamine synthesis and secretion in the cells. Incubation of cells with daidzein for 20 min increased the synthesis of (14)C-catecholamines from [(14)C]tyrosine but not [(14)C]dihydroxyphenylalanine, in a concentration-dependent manner (10-1000 nm). The stimulatory effect of daidzein on (14)C-catecholamine synthesis was not inhibited by ICI182,780, a classical estrogen receptor inhibitor. Acetylcholine, a physiological secretagogue, stimulated the synthesis of (14)C-catecholamines, which was suppressed by daidzein at 1 mum. Daidzein at high concentrations (1-100 microm) suppressed catecholamine secretion induced by acetylcholine. Furthermore, daidzein (10-1000 nm) inhibited the specific binding of [(3)H]17beta-estradiol to plasma membranes isolated from bovine adrenal medulla. The present findings suggest that daidzein at low concentrations stimulates catecholamine synthesis through plasma membrane estrogen receptors but at high concentrations inhibits catecholamine synthesis and secretion induced by acetylcholine in bovine adrenal medulla. The latter effect of daidzein may be a beneficial action on the cardiovascular system.
Collapse
Affiliation(s)
- Minhui Liu
- Department of Pharmacology, University of Occupational and Environmental Health, School of Medicine, 1-1, Iseigaoka, Kitakyushu, Japan
| | | | | | | | | | | |
Collapse
|
1923
|
Tummalapalli P, Gondi CS, Dinh DH, Gujrati M, Rao JS. RNA interference-mediated targeting of urokinase plasminogen activator receptor and matrix metalloproteinase-9 gene expression in the IOMM-lee malignant meningioma cell line inhibits tumor growth, tumor cell invasion and angiogenesis. Int J Oncol 2007. [PMID: 17549400 DOI: 10.3892/ijo.31.1.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Meningiomas are the most commonly occurring tumors of the central nervous system including the brain and spinal cord. Malignant meningiomas are highly aggressive and frequently recur after surgical resection of the tumor. Our previous studies have reported that urokinase plasminogen activator receptor (uPAR) and matrix metalloproteinase-9 (MMP-9) play important roles in tumor progression. In the present study, we have attempted to evaluate the roles of these molecules in the malignant meningioma tumor microenvironment and to determine the effectiveness of using single or bicistronic small interfering RNA constructs for uPAR and MMP-9 on tumor cell proliferation, migration, invasion, angiogenesis and regression of pre-established orthotopic tumors. Transfection of single or bicistronic constructs downregulated uPAR and MMP-9 in meningioma cells compared to controls. A significant reduction in tumor invasion was determined with matrigel gel and spheroid invasion assays in meningioma cells after transfection of these plasmids. Furthermore, downregulation of uPAR and MMP-9 reduced migration of tumor spheroids on vitronectin-coated plates. uPAR and MMP-9 downregulation suppressed capillary network formation, in both in vitro and in vivo models. Also, it is well known that tumor cells manipulate intracellular signaling pathways to aid in various processes involved in tumor progression. Our study revealed that downregulation of uPAR and MMP-9 leads to a decrease in the activation of some of the important enzymes participating in the MAPK and PI3 kinase pathways, which in turn, might decrease cell survival and proliferation. In addition, we analyzed the efficiency of RNAi-mediated targeting of uPAR and MMP-9 in pre-established tumor growth in vivo. We observed a significant regression of pre-established orthotopic tumors upon RNAi-mediated targeting of uPAR and MMP-9. In addition, the present study indicated that targeting both the proteins simultaneously augmented the therapeutic treatment of human meningiomas.
Collapse
Affiliation(s)
- Padmaja Tummalapalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | | | | | | | | |
Collapse
|
1924
|
Kempf T, Drexler H, Wollert KC. [Pathophysiology of heart failure]. Internist (Berl) 2007; 48:899-908. [PMID: 17712536 DOI: 10.1007/s00108-007-1929-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chronic heart failure is a clinical syndrome and the final common pathway of different cardiac diseases. Heart failure is accompanied by activation of the renin-angiotensin-aldosterone-system and the adrenergic nervous system. In addition, recent data emphasize important roles of maladaptive intracellular signaling pathways, decreased capillary density, altered calcium handling, metabolic changes, genetic polymorphisms, and programmed cell death in the failing heart. In this context, traditional pathophysiological concepts, e. g. concerning the role of cardiac hypertrophy, had to be given up. Thus, an increasingly complex scenario emerges with interdependent changes on the biochemical, molecular, metabolic, and cellular level. Novel therapeutic strategies may soon be based on these new pathophysiological concepts.
Collapse
Affiliation(s)
- T Kempf
- Abteilung Kardiologie und Angiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625, Hannover, Deutschland
| | | | | |
Collapse
|
1925
|
Abstract
Although neurohumoral antagonism has successfully reduced heart failure morbidity and mortality, the residual disability and death rate remains unacceptably high. Though abnormalities of myocardial metabolism are associated with heart failure, recent data suggest that heart failure may itself promote metabolic changes such as insulin resistance, in part through neurohumoral activation. A detrimental self-perpetuating cycle (heart failure --> altered metabolism --> heart failure) that promotes the progression of heart failure may thus be postulated. Accordingly, we review the cellular mechanisms and pathophysiology of altered metabolism and insulin resistance in heart failure. It is hypothesized that the ensuing detrimental myocardial energetic perturbations result from neurohumoral activation, increased adverse free fatty acid metabolism, decreased protective glucose metabolism, and in some cases insulin resistance. The result is depletion of myocardial ATP, phosphocreatine, and creatine kinase with decreased efficiency of mechanical work. On the basis of the mechanisms outlined, appropriate therapies to mitigate aberrant metabolism include intense neurohumoral antagonism, limitation of diuretics, correction of hypokalemia, exercise, and diet. We also discuss more novel mechanistic-based therapies to ameliorate metabolism and insulin resistance in heart failure. For example, metabolic modulators may optimize myocardial substrate utilization to improve cardiac function and exercise performance beyond standard care. The ultimate success of metabolic-based therapy will be manifest by its capacity further to lessen the residual mortality in heart failure.
Collapse
Affiliation(s)
- Houman Ashrafian
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | | | | |
Collapse
|
1926
|
Buffin-Meyer B, Crassous PA, Delage C, Denis C, Schaak S, Paris H. EGF receptor transactivation and PI3-kinase mediate stimulation of ERK by alpha(2A)-adrenoreceptor in intestinal epithelial cells: a role in wound healing. Eur J Pharmacol 2007; 574:85-93. [PMID: 17655843 DOI: 10.1016/j.ejphar.2007.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 07/02/2007] [Accepted: 07/05/2007] [Indexed: 12/11/2022]
Abstract
Intestinal cells express alpha(2A)-adrenoreceptors that stimulate sodium and peptide absorption and promote cell proliferation. Involved mechanisms are poorly understood and are not fully related to inhibition of cAMP production. Previous study using a clone of CaCo2 cells expressing the human alpha(2A)-adrenoreceptor (CaCo2-3B) showed that alpha(2)-adrenoreceptor agonists cause extracellular signal-regulated kinase (ERK) phosphorylation. Present work examines the signaling pathway triggering ERK activation and investigates the consequence of alpha(2A)-adrenoreceptor stimulation on cell migration. Treatment of CaCo2-3B with the alpha(2)-adrenoreceptor agonist 5-bromo-6-(2-imidazolin-2-ylamino) quinoxaline (UK14304) induces not only ERK, but also Akt phosphorylation. Both effects are strongly attenuated by inhibition or desensitization of epidermal growth factor (EGF) receptor, matrix metalloproteinase (MMP) blockade, heparin-binding-EGF neutralization or phosphatidylinositol 3-kinase (PI3-kinase) inhibitors. Conditioned medium from UK14304-treated CaCo2-3B stimulates ERK in parental CaCo2 by a mechanism sensitive to EGF receptor and PI3-kinase inhibitors. Exposure of CaCo2-3B to UK14304 accelerates the wound healing. This effect is abolished by heparin-binding-EGF neutralization but not by mitomycin C, indicating that it results probably from increased cell spreading and/or migration. In conclusion, alpha(2A)-adrenoreceptor activates ERK and Akt in intestinal cells by a common pathway which depends on PI3-kinase activation and results from EGF receptor transactivation, via an autocrine/paracrine pathway implying MMP activation and heparin-binding-EGF shedding. Therefore, alpha(2A)-adrenoreceptor could have a positive role in intestinal regeneration in vivo.
Collapse
Affiliation(s)
- Bénédicte Buffin-Meyer
- INSERM, U858/I2MR, Department of Renal and Cardiac remodelling, team #5, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France.
| | | | | | | | | | | |
Collapse
|
1927
|
|
1928
|
Harrison C. Unmasking molecular mechanisms. Nat Rev Drug Discov 2007. [DOI: 10.1038/nrd2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1929
|
Karkoulias G, Mastrogianni O, Ilias I, Lymperopoulos A, Taraviras S, Tsopanoglou N, Sitaras N, Flordellis CS. Alpha 2-adrenergic receptors decrease DNA replication and cell proliferation and induce neurite outgrowth in transfected rat pheochromocytoma cells. Ann N Y Acad Sci 2007; 1088:335-45. [PMID: 17192578 DOI: 10.1196/annals.1366.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alpha 2-adrenergic receptors (alpha(2)-ARs) have a widespread distribution in the central nervous system (CNS) and affect a number of biochemical and behavioral functions, including stimulation of prefrontal cortex (PFC) and cognitive function. In addition to its role as a classical neurotransmitter, norepinephrine (NE) has been recently shown to exert an important influence on the plasticity in areas of the brain where neurogenesis persists in the adult, notably the subgranular zone (SGZ) within the dentate gyrus of the hippocampus and the olfactory bulb (OB). In regulating adult neurogenesis, the noradrenergic system is functionally integrated with chronic stress and depression. Chronic stress, depression, or depletion of NE in vivo suppress, and antidepressant treatments induce hippocampal neurogenesis by down- or upregulating, respectively, cell proliferation. In the present study we show that alpha(2)-AR subtypes promote the differentiation rather than cell proliferation of PC12 cells. It is conceivable that alpha(2)-ARs might contribute neurotrophic actions in vivo synergistically or in permutation with other neurotrophic factors.
Collapse
Affiliation(s)
- G Karkoulias
- Department of Pharmacology, School of Medicine, University of Patras-Rion, GR-26504, Greece
| | | | | | | | | | | | | | | |
Collapse
|
1930
|
Freestone PPE, Haigh RD, Lyte M. Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiol 2007; 7:8. [PMID: 17263883 PMCID: PMC1800854 DOI: 10.1186/1471-2180-7-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 01/30/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability of catecholamines to stimulate bacterial growth was first demonstrated just over a decade ago. Little is still known however, concerning the nature of the putative bacterial adrenergic and/or dopaminergic receptor(s) to which catecholamines (norepinephrine, epinephrine and dopamine) may bind and exert their effects, or even whether the binding properties of such a receptor are similar between different species. RESULTS Use of specific catecholamine receptor antagonists revealed that only alpha, and not beta, adrenergic antagonists were capable of blocking norepinephrine and epinephrine-induced growth, while antagonism of dopamine-mediated growth was achieved with the use of a dopaminergic antagonist. Both adrenergic and dopaminergic antagonists were highly specific in their mechanism of action, which did not involve blockade of catecholamine-facilitated iron-acquisition. Use of radiolabeled norepinephrine suggested that the adrenergic antagonists could be acting by inhibiting catecholamine uptake. CONCLUSION The present data demonstrates that the ability of a specific pathogen to respond to a particular hormone is dependent upon the host anatomical region in which the pathogen causes disease as well as the neuroanatomical specificity to which production of the particular hormone is restricted; and that both are anatomically coincidental to each other. As such, the present report suggests that pathogens with a high degree of exclusivity to the gastrointestinal tract have evolved response systems to neuroendocrine hormones such as norepinephrine and dopamine, but not epinephrine, which are found with the enteric nervous system.
Collapse
Affiliation(s)
- Primrose PE Freestone
- Department of Infection, Immunity and Inflammation, University of Leicester School of Medicine, Leicester, UK
| | - Richard D Haigh
- Department of Infection, Immunity and Inflammation, University of Leicester School of Medicine, Leicester, UK
| | - Mark Lyte
- Department of Pharmacy Practice, School of Pharmacy, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
1931
|
Alonso E, Garrido E, Díez-Fernández C, Pérez-García C, Herradón G, Ezquerra L, Deuel TF, Alguacil LF. Yohimbine prevents morphine-induced changes of glial fibrillary acidic protein in brainstem and α2-adrenoceptor gene expression in hippocampus. Neurosci Lett 2007; 412:163-7. [PMID: 17123717 DOI: 10.1016/j.neulet.2006.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/01/2006] [Accepted: 11/01/2006] [Indexed: 11/20/2022]
Abstract
The alpha(2)-adrenoceptor antagonist yohimbine is known to oppose to several pharmacological effects of opioid drugs, but the consequences and the mechanisms involved remain to be clearly established. In the present study we have checked the effects of yohimbine on morphine-induced alterations of the expression of key proteins (glial fibrillary acidic protein, GFAP) and genes (alpha(2)-adrenoceptors) in rat brain areas known to be relevant in opioid dependence, addiction and individual vulnerability to drug abuse. Rats were treated with morphine in the presence or absence of yohimbine. The effects of the treatments on GFAP expression were studied by immunohistochemical staining in Locus Coeruleus (LC) and Nucleus of the Solitary Tract (NST), two important noradrenergic nuclei. In addition, drug effects on alpha(2)-adrenoceptor gene expression were determined by real time RT-PCR in the hippocampus, a brain area that receives noradrenergic input from the brainstem. Morphine administration increased GFAP expression both in LC and NST as it was previously reported in other brain areas. Yohimbine was found to efficiently prevent morphine-induced GFAP upregulation. Chronic (but not acute) morphine downregulated mRNA levels of alpha(2A)- and alpha(2C)-adrenoceptors in the hippocampus, while simultaneously increased the expression of the alpha(2B)-adrenoceptor gene. Again, yohimbine was able to prevent morphine-induced changes in the levels of expression of the three alpha(2)-adrenoceptor genes. These results correlate the well-established reduction of opioid dependence and addiction by yohimbine and suggest that this drug could interfere with the neural plasticity induced by chronic morphine in central noradrenergic pathways.
Collapse
Affiliation(s)
- Elba Alonso
- Lab. Pharmacology and Toxicology, Universidad San Pablo CEU, 28668 Boadilla del Monte, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
1932
|
Karkoulias G, Flordellis C. Delayed transactivation of the receptor for nerve growth factor is required for sustained signaling and differentiation by alpha2-adrenergic receptors in transfected PC12 cells. Cell Signal 2006; 19:945-57. [PMID: 17215105 DOI: 10.1016/j.cellsig.2006.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 11/06/2006] [Accepted: 11/06/2006] [Indexed: 11/26/2022]
Abstract
Alpha2-adrenergic receptors have been reported to induce subtype-specific neuronal differentiation in vitro, but the signaling mechanisms that mediate this effect have not been characterized. In the present study we found that stimulated alpha2-ARs induce delayed transactivation of TrkA in PC12 cells. The transactivation of TrkA was sensitive to the PP1 inhibitor of the Src family kinases and required prior transactivation of the EGF receptor. Moreover, alpha2-adrenergic receptors induced sustained activation of MAPK and Akt. The sustained activation of Akt, but not of MAPK, was subtype-specific and correlated with the neuronal differentiation of PC12 cells, with the order alpha2A<alpha2B<alpha2C. Furthermore, stimulated alpha2-ARs induced an increased over time expression of the cell cycle associated proteins, p21WAF1 and Cyclin D1 and led to cell cycle arrest in a similar subtype-specific manner. Contrary to sustained activation of MAPK, the persistent activation of Akt and of p21WAF1 and Cyclin D1 as well as neurite outgrowth and expression of the neuronal marker peripherin, were all blocked by K252a an inhibitor of TrkA activity. Together these results demonstrate a novel outcome following alpha2-AR-mediated EGFR transactivation, being the consecutive transactivation of TrkA, and that this event may mediate the subtype-specific differentiation of alpha2-AR-expressing PC12 cells.
Collapse
Affiliation(s)
- Georgios Karkoulias
- Department of Pharmacology, School of Medicine, University of Patras, 26110 Rio Patras, Greece
| | | |
Collapse
|
1933
|
Gu D, Ge D, Snieder H, He J, Chen S, Huang J, Li B, Chen R, Qiang B. Association of alpha1A adrenergic receptor gene variants on chromosome 8p21 with human stage 2 hypertension. J Hypertens 2006; 24:1049-56. [PMID: 16685204 DOI: 10.1097/01.hjh.0000226194.21311.2f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE AND DESIGN We previously reported a significant linkage between human chromosome 8p22 with essential hypertension and systolic blood pressure levels. On the basis of this, we used an efficient age, sex and area-matched case-control scheme to test the association of the polymorphisms in the human alpha1A adrenergic receptor (ADRA1A) gene, located on chromosome 8p21-p11.2, with essential hypertension in a northern Han Chinese population. METHODS Seven polymorphisms were identified by direct sequencing of genomic DNA derived from 48 randomly recruited hypertensive and 48 healthy subjects. They were also examined for association with essential hypertension in 480 stage 2 hypertensive individuals and their individually matched controls. RESULTS We observed significantly higher frequencies of the 347Arg allele and 2547G alleles in the cases compared with their controls (P = 0.04 and 0.007, respectively). McNemar's test revealed that carriers of 2547G alleles were at a greater risk of essential hypertension with an odds ratio of 3.00 [95% confidence interval (CI) 1.23-8.35]. We then performed a conditional logistic regression to adjust the effects of conventional risk factors, revealing an odds ratio of 2.84 for carriers of the 2547G allele (95% CI 1.15-6.99). With the haplotypic probabilities estimated using PHASE software, we performed haplotype trend regression analysis, showing a significant association between haplotype 7 and essential hypertension (P = 0.02), after adjustment for conventional risk factors. CONCLUSIONS Our findings suggest that the genetic variations in the ADRA1A gene are significantly associated with essential hypertension, and may play an important role in the development of essential hypertension in this Chinese population.
Collapse
Affiliation(s)
- Dongfeng Gu
- Division of Population Genetics and Prevention, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
1934
|
Lymperopoulos A, Karkoulias G, Koch WJ, Flordellis CS. Alpha2-adrenergic receptor subtype-specific activation of NF-kappaB in PC12 cells. Neurosci Lett 2006; 402:210-215. [PMID: 16730120 DOI: 10.1016/j.neulet.2006.03.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 03/16/2006] [Accepted: 03/30/2006] [Indexed: 11/21/2022]
Abstract
In the present study we sought to investigate the signal transduction mechanisms that underlie the alpha2-adrenergic receptor (AR)-induced, subtype-specific neuronal differentiation of PC12 cells. Alpha2-ARs induced NF-kappaB transcriptional activity and p21(waf-1) gene transcription in the same subtype-specific manner (alpha2A
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
1935
|
Karkoulias G, Mastrogianni O, Lymperopoulos A, Paris H, Flordellis C. alpha(2)-Adrenergic receptors activate MAPK and Akt through a pathway involving arachidonic acid metabolism by cytochrome P450-dependent epoxygenase, matrix metalloproteinase activation and subtype-specific transactivation of EGFR. Cell Signal 2006; 18:729-739. [PMID: 16098714 DOI: 10.1016/j.cellsig.2005.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 06/29/2005] [Accepted: 06/29/2005] [Indexed: 12/11/2022]
Abstract
Previous study carried out on PC12 cells expressing each alpha(2)-adrenergic receptor subtype individually (PC12/alpha(2A), /alpha(2B) or /alpha(2C)) have shown that epinephrine causes activation of PI3K and phosphorylation of Erk 1/2. The signal transduction mechanisms whereby each alpha(2)-AR subtype triggers these actions were investigated in the present study. In all three clones, epinephrine-induced phosphorylation of MAPK or Akt was abolished by prior treatment with ketoconazole, but not with indomethacin or nordihydroguaiaretic acid. On the other hand, treatment of the clones with epinephrine caused a rapid increase of AA release, which was fully abolished by the PLC inhibitor U73122, but was unaffected by the PLA(2) inhibitor quinacrine. The effects of epinephrine on MAPK and Akt were mimicked by cell exposure to exogenous AA. Furthermore, whereas U73122 abolished the effects of epinephrine, quinacrine only prevented the effects of epinephrine, suggesting that AA release through PLC and its metabolites are responsible for MAPK and Akt activation by alpha(2)-ARs. Treatment with 1,10-phenanthroline, CRM197, or tyrphostin AG1478 suppressed MAPK and Akt phosphorylation by epinephrine or AA, in a subtype-specific manner. Furthermore, conditioned culture medium from epinephrine-treated PC12/alpha(2) induced MAPK and Akt phosphorylation in wild-type PC12. Inhibition of NGFR tyrosine phosphorylation had no effect but the src inhibitor PP1 abolished MAPK and Akt phosphorylation in all three clones. Our results provide evidence for a putative pathway by which alpha(2)-ARs activate MAPK and Akt in PC12 cells, involving stimulation of PLC, AA release, AA metabolism by cytochrome P450-dependent epoxygenase, stimulation of matrix metalloproteinases and subtype-specific transactivation of EGFR through src activation and heparin-binding EGF-like growth factor release.
Collapse
Affiliation(s)
- Georgios Karkoulias
- Department of Pharmacology, School of Medicine, University of Patras, 26504 Rio Patras, Greece
| | | | | | | | | |
Collapse
|
1936
|
Whitebread S, Hamon J, Bojanic D, Urban L. Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov Today 2006; 10:1421-33. [PMID: 16243262 DOI: 10.1016/s1359-6446(05)03632-9] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Broad-scale in vitro pharmacology profiling of new chemical entities during early phases of drug discovery has recently become an essential tool to predict clinical adverse effects. Modern, relatively inexpensive assay technologies and rapidly expanding knowledge about G-protein coupled receptors, nuclear receptors, ion channels and enzymes have made it possible to implement a large number of assays addressing possible clinical liabilities. Together with other in vitro assays focusing on toxicology and bioavailability, they provide a powerful tool to aid drug development. In this article, we review the development of this tool for drug discovery, its appropriate use and predictive value.
Collapse
Affiliation(s)
- Steven Whitebread
- PreClinical Profiling, Lead Discovery Center, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
1937
|
Desai AN, Standifer KM, Eikenburg DC. Cellular G protein-coupled receptor kinase levels regulate sensitivity of the {alpha}2b-adrenergic receptor to undergo agonist-induced down-regulation. J Pharmacol Exp Ther 2005; 312:767-73. [PMID: 15456839 DOI: 10.1124/jpet.104.076042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chronic coactivation of alpha(2B)- and beta(2)-adrenoceptors (AR) was recently reported to down-regulate the alpha(2B)-AR at a lower threshold epinephrine (EPI) concentration compared with the activation of alpha(2B)-AR alone. This is the result of a modest beta(2)-AR-dependent up-regulation of G protein-coupled receptor kinase 3 (GRK3). In the present study, we determined that increasing GRK2 or GRK3 levels, independent of beta(2)-AR activation, decreases the EC(50) concentration for agonist-induced down-regulation of the alpha(2B)-AR using NG108 cells with or without overexpression (2- to 10-fold) of GRK2 or GRK3. In parental NG108 cells, the EC(50) concentration of EPI required for down-regulation of the alpha(2B)-AR is 30 microM. A 2- to 3-fold overexpression of GRK3 in NG108 cells, however, reduces the EC(50) to 0.2 microM (a 150-fold decrease), whereas a comparable overexpression of GRK2 reduces it to 1 microM (a 30-fold decrease). However, when GRK3 or GRK2 in NG108 cells are overexpressed 8- to 10-fold, the EC(50) concentration (0.02 microM EPI) for alpha(2B)-AR down-regulation is reduced 1000-fold. These data clearly suggest that a modest (2- to 3-fold) up-regulation of GRK3 is more effective at enhancing the sensitivity of alpha(2B)-AR to down-regulation after exposure to EPI than a modest up-regulation of GRK2, but that both GRK2 and GRK3 are equally effective at inducing alpha(2B)-AR down-regulation when up-regulated 8- to 10-fold. To our knowledge, this is the first report to systematically demonstrate that GRKs, particularly GRK3, play a pivotal role in modulating the agonist EC(50) concentration that down-regulates the alpha(2B)-AR and thus adds a new dimension to an already intricate signaling network.
Collapse
Affiliation(s)
- Aarti N Desai
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5037, USA
| | | | | |
Collapse
|
1938
|
Heilbronner U, van Kampen M, Flügge G. The alpha-2B adrenoceptor in the paraventricular thalamic nucleus is persistently upregulated by chronic psychosocial stress. Cell Mol Neurobiol 2004; 24:815-31. [PMID: 15672682 PMCID: PMC11529960 DOI: 10.1007/s10571-004-6921-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Stress has been reported to regulate adrenergic receptors but it is not known whether it has an impact on the alpha-2 adrenoceptor subtype B that is strongly expressed in distinct nuclei of the thalamus. So far little is known about effects of stress on the thalamus. Using the chronic psychosocial stress paradigm in male tree shrews, we analyzed alpha-2B adrenoceptor expression in the paraventricular and the anteroventral nucleus of the thalamus after a six-week period of daily social stress and after a 10-day post-stress recovery period. In situ hybridization with a specific alpha-2B adrenoceptor probe was performed to quantify receptor gene expression in single neurons, and receptor binding was determined by in vitro receptor autoradiography using the radioligand [3H]RX821002. To determine the stress level in the animals, we measured urinary cortisol excretion and body weight. In the neurons of the paraventricular thalamic nucleus, expression of the alpha-2B adrenoceptor transcript was increased after both the six-week chronic-stress period and the post-stress recovery period. Combination of in situ hybridization and immunocytochemistry revealed expression of alpha-2B adrenoceptor transcript in neurons that were stained with an antibody against glutamate but not in neurons immunoreactive for GABA. Alpha-2 adrenoceptor radioligand binding was also increased after both time periods in the paraventricular thalamic nucleus. No significant effects of stress and recovery were observed in the anteroventral thalamic nucleus. Urinary cortisol excretion was increased during the stress period but normalized thereafter. Body weight was reduced during weeks 1 to 3 of stress and then normalized. These data show that long-term chronic psychosocial stress has an impact on alpha-2B adrenoceptor expression in the thalamus and that the effect persists throughout a post-stress recovery period though activity of the hypothalamic pituitary adrenal axis normalizes after stress. Upregulation of the receptor probably alters neurotransmission in the paraventricular thalamic nucleus and may thus influence information transfer to limbic and cortical brain areas.
Collapse
Affiliation(s)
- U. Heilbronner
- Clinical Neurobiology Laboratory German Primate Center, Kellnerweg 4, 37077 Göttingen Germany
| | - M. van Kampen
- Clinical Neurobiology Laboratory German Primate Center, Kellnerweg 4, 37077 Göttingen Germany
| | - G. Flügge
- Clinical Neurobiology Laboratory German Primate Center, Kellnerweg 4, 37077 Göttingen Germany
| |
Collapse
|
1939
|
Gentili F, Ghelfi F, Giannella M, Piergentili A, Pigini M, Quaglia W, Vesprini C, Crassous PA, Paris H, Carrieri A. α2-Adrenoreceptors Profile Modulation. 2. Biphenyline Analogues as Tools for Selective Activation of the α2C-Subtype. J Med Chem 2004; 47:6160-73. [PMID: 15566287 DOI: 10.1021/jm0408215] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of derivatives structurally related to biphenyline (3) was designed with the aim to modulate selectivity toward the alpha(2)-AR subtypes. The results obtained demonstrated that the presence of a correctly oriented function with positive electronic effect (+sigma) in portion X of the ligands is an important factor for significant alpha(2C)-subtype selectivity (imidazolines 5, 13, 16, and 19). Homology modeling and docking studies support experimental data and highlight the crucial role for the hydrogen bond between the pyridine nitrogen in position 3 of 5 and the NH-indole ring of Trp6.48, which is favorably oriented in the alpha(2C)-subtype, only.
Collapse
Affiliation(s)
- Francesco Gentili
- Dipartimento di Scienze Chimiche, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1940
|
Chotani MA, Mitra S, Eid AH, Han SA, Flavahan NA. Distinct cAMP signaling pathways differentially regulate alpha2C-adrenoceptor expression: role in serum induction in human arteriolar smooth muscle cells. Am J Physiol Heart Circ Physiol 2004; 288:H69-76. [PMID: 15345481 DOI: 10.1152/ajpheart.01223.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physiological role of alpha(2)-adrenoceptors (alpha(2)-ARs) in cutaneous, arteriolar, vascular smooth muscle cells (VSMs) is to mediate cold-induced constriction. In VSMs cultured from human cutaneous arterioles, there is a selective increase in alpha(2C)-AR expression after serum stimulation. In the present study, we examined the cellular mechanisms contributing to this response. Serum induction of alpha(2C)-ARs was paralleled by increased expression of cyclooxygenase-2 (COX-2), increased release of prostaglandins, and increased intracellular concentration of cAMP. Inhibition of COX-2 by acetyl salicylic acid (1 mM), NS-398 (5 microM), or celecoxib (3 microM) abolished the increase in cAMP and markedly reduced alpha(2C)-AR induction in response to serum stimulation. The cAMP agonists, forskolin (10 microM), isoproterenol (10 microM), and cholera toxin (0.1 microg/ml) each dramatically increased expression of alpha(2C)-ARs in human cutaneous VSMs. The A-kinase inhibitor H-89 (2 microM) inhibited phosphorylation of cAMP response element binding protein, but not the increase in alpha(2C)-AR expression in response to these agonists. cAMP-dependent but A-kinase independent signaling can involve activation of guanine nucleotide exchange factors for the GTP-binding protein, Rap. Indeed, pull-down assays demonstrated Rap1 activation by serum and forskolin in VSM. Transient transfections using alpha(2C)-AR promoter-luciferase reporter construct demonstrated that Rap1 increased reporter activity, whereas the A-kinase catalytic subunit decreased reporter activity. These results indicate that cAMP signaling can have dual effects in cutaneous VSMs:activation of alpha(2C)-AR transcription mediated by Rap1 GTPase and suppression mediated by A-kinase. The former effect predominates in serum-stimulated VSMs leading to a COX-2, cAMP, and Rap 1-dependent increase in alpha(2C)-AR expression. Such increased expression of alpha(2C)-ARs may contribute to enhanced cold-induced vasoconstriction and Raynaud's phenomenon.
Collapse
Affiliation(s)
- Maqsood A Chotani
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | |
Collapse
|
1941
|
Abstract
G protein-coupled receptors (GPCRs) modulate diverse physiological and behavioral signaling pathways by virtue of changes in receptor activation and inactivation states. Functional changes in receptor properties include dynamic interactions with regulatory molecules and trafficking to various cellular compartments at various stages of the life cycle of a GPCR. This review focuses on trafficking of GPCRs to the cell surface, stabilization there, and agonist-regulated turnover. GPCR interactions with a variety of newly revealed partners also are reviewed with the intention of provoking further analysis of the relevance of these interactions in GPCR trafficking, signaling, or both. The disease consequences of mislocalization of GPCRs also are described.
Collapse
Affiliation(s)
- Christopher M Tan
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
1942
|
Chotani MA, Mitra S, Su BY, Flavahan S, Eid AH, Clark KR, Montague CR, Paris H, Handy DE, Flavahan NA. Regulation of alpha(2)-adrenoceptors in human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2004; 286:H59-67. [PMID: 12946937 DOI: 10.1152/ajpheart.00268.2003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study analyzed the regulation of alpha2-adrenoceptors (alpha2-ARs) in human vascular smooth muscle cells (VSMs). Saphenous veins and dermal arterioles or VSMs cultured from them expressed high levels of alpha2-ARs (alpha2C > alpha2A, via RNase protection assay) and responded to alpha2-AR stimulation [5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK-14,304, 1 microM)] with constriction or calcium mobilization. In contrast, VSMs cultured from aorta did not express alpha2-ARs and neither cultured cells nor intact aorta responded to UK-14,304. Although alpha2-ARs (alpha2C >> alpha2A) were detected in aortas, alpha2C-ARs were localized by immunohistochemistry to VSMs of adventitial arterioles and not aortic media. In contrast with aortas, aortic arterioles constricted in response to alpha2-AR stimulation. Reporter constructs demonstrated higher activities for alpha2A- and alpha2C-AR gene promoters in arteriolar compared with aortic VSMs. In arteriolar VSMs, serum increased expression of alpha2C-AR mRNA and protein but decreased expression of alpha2A-ARs. Serum induction of alpha2C-ARs was reduced by inhibition of p38 mitogen-activated protein kinase (MAPK) with 2 microM SB-202190 or dominant-negative p38 MAPK. UK-14,304 (1 microM) caused calcium mobilization in control and serum-stimulated cells: in control VSMs, the response was inhibited by the alpha2A-AR antagonist BRL-44408 (100 nM) but not by the alpha2C-AR antagonist MK-912 (1 nM), whereas after serum stimulation, MK-912 (1 nM) but not BRL-44408 (100 nM) inhibited the response. These results demonstrate site-specific expression of alpha2-ARs in human VSMs that reflects differential activity of alpha2-AR gene promoters; namely, high expression and function in venous and arteriolar VSMs but no detectable expression or function in aortic VSMs. We found that alpha2C-ARs can be dramatically and selectively induced via a p38 MAPK-dependent pathway. Therefore, altered expression of alpha2C-ARs may contribute to pathological changes in vascular function.
Collapse
MESH Headings
- Adolescent
- Adult
- Arterioles/cytology
- Arterioles/metabolism
- Blood Physiological Phenomena
- Female
- Humans
- Male
- Middle Aged
- Mitogen-Activated Protein Kinases/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Promoter Regions, Genetic/physiology
- Protein Isoforms/metabolism
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Adrenergic, alpha-2/metabolism
- p38 Mitogen-Activated Protein Kinases
Collapse
Affiliation(s)
- Maqsood A Chotani
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1943
|
Olli-Lähdesmäki T, Scheinin M, Pohjanoksa K, Kallio J. Agonist-dependent trafficking of alpha2-adrenoceptor subtypes: dependence on receptor subtype and employed agonist. Eur J Cell Biol 2003; 82:231-9. [PMID: 12800978 DOI: 10.1078/0171-9335-00311] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many G protein-coupled receptors (GPCRs) are internalized from the plasma membrane after agonist exposure. Previously, marked agonist-induced internalization of human alpha2A- and alpha2B-adrenergic receptors (AR) was observed in transfected neuronal rat pheochromocytoma (PC12) cells; alpha2A- and alpha2B-AR were internalized into partly distinct intracellular vesicles (Olli-Lähdesmäki et al., J. Neurosci. 19, 9281-9288, 1999). In this paper, the extent of alpha2-AR internalization was quantitated in human embryonic kidney (HEK-293) and PC12 cells by combined application of cell surface biotinylation and ELISA methods, which allow measurement of protein trafficking in intact, differentiated and undifferentiated cells. Significant subtype-specific (but not cell type-dependent) trafficking of human alpha2-AR was observed by quantitation and immunocytochemistry. Agonist-induced sequestration of alpha2B-AR was markedly reduced after blocking the formation of clathrin-coated vesicles by hyperosmotic sucrose pretreatment. The sequestration of alpha2A-AR was partly inhibited after sucrose pretreatment but could be further reduced after inhibiting the formation of both clathrin-coated and caveolin vesicles by combined pretreatment with hyperosmotic sucrose and filipin. Differences were also observed in the recycling of alpha2A- and alpha2B-AR. The extent of maximal agonist-induced sequestration in PC12 cells was not directly dependent on relative agonist efficacy.
Collapse
Affiliation(s)
- Tuire Olli-Lähdesmäki
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Turku, Finland
| | | | | | | |
Collapse
|