1901
|
Exosomes: novel implications in diagnosis and treatment of gastrointestinal cancer. Langenbecks Arch Surg 2016; 401:1097-1110. [PMID: 27342853 DOI: 10.1007/s00423-016-1468-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/16/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Amongst all cancer subtypes, gastrointestinal tumours are responsible for most cancer-related deaths. In most of the cases, the limitation of the prognosis of patients with malignant gastrointestinal tumours can be attributed to delayed diagnosis of the disease. In the last decade, secondary prevention strategies, in particular tumour screenings, have been identified to significantly improve the identification of patients with early-stage disease, leading to more effective therapeutic interventions. Therefore, new screening methods and further innovative treatment approaches may lead to an increase in progression-free and overall survival rates. PURPOSE Exosomes are small microvesicles with a size of 50-150 nm. They are formed in the endosomal system of many different cell types, where they are packed with nucleotides and proteins from the parental cell. After their release into the extracellular space, exosomes can deliver their cargo into recipient cells. By this mechanism, tumour cells can recruit and manipulate the adjacent and systemic microenvironment in order to support invasion and dissemination. Cancer-derived exosomes in the blood may provide detailed information about the tumour biology of each individual patient. Moreover, tumour-derived exosomes can be used as targetable factors and drug delivery agents in clinical practice. CONCLUSION In this review, we summarise new aspects about novel implications in the diagnosis and treatment of gastrointestinal cancer and show how circulating exosomes have come into the spotlight of research as a high potential source of 'liquid biopsies'.
Collapse
|
1902
|
Robinson BK, Cortes E, Rice AJ, Sarper M, Del Río Hernández A. Quantitative analysis of 3D extracellular matrix remodelling by pancreatic stellate cells. Biol Open 2016; 5:875-82. [PMID: 27170254 PMCID: PMC4920190 DOI: 10.1242/bio.017632] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Extracellular matrix (ECM) remodelling is integral to numerous physiological and pathological processes in biology, such as embryogenesis, wound healing, fibrosis and cancer. Until recently, most cellular studies have been conducted on 2D environments where mechanical cues significantly differ from physiologically relevant 3D environments, impacting cellular behaviour and masking the interpretation of cellular function in health and disease. We present an integrated methodology where cell-ECM interactions can be investigated in 3D environments via ECM remodelling. Monitoring and quantification of collagen-I structure in remodelled matrices, through designated algorithms, show that 3D matrices can be used to correlate remodelling with increased ECM stiffness observed in fibrosis. Pancreatic stellate cells (PSCs) are the key effectors of the stromal fibrosis associated to pancreatic cancer. We use PSCs to implement our methodology and demonstrate that PSC matrix remodelling capabilities depend on their contractile machinery and β1 integrin-mediated cell-ECM attachment.
Collapse
Affiliation(s)
- Benjamin K Robinson
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ernesto Cortes
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Alistair J Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Muge Sarper
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Armando Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
1903
|
Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun 2016; 7:11958. [PMID: 27302045 PMCID: PMC4912619 DOI: 10.1038/ncomms11958] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022] Open
Abstract
Communication between the inner cell mass (ICM) and the trophoblast layer of the blastocyst is known to occur, but its functional consequences on early developmental events is unclear. Here we demonstrate that embryonic stem (ES) cells derived from the ICM generate and shed microvesicles (MVs), a major class of extracellular vesicles (EVs), which influence trophoblast behaviour during the implantation process. The MV cargo proteins laminin and fibronectin interact with integrins along the surfaces of the trophoblasts, triggering the activation of two signalling kinases, JNK and FAK, and stimulating trophoblast migration. We further show that injecting MVs isolated from ES cells into blastocysts results in an increase in their implantation efficiency. Thus, these findings highlight a unique mechanism by which ES cells communicate with trophoblasts within the blastocyst to increase their ability to migrate into the uterus, thereby promoting one of the earliest and most important steps during pregnancy. It is unclear how embryonic stem cells (ESC) communicate with surrounding cells during implantation. Here, the authors show that microvesicles (MV) are shed from ESCs, activating integrin and JNK/FAK kinases in trophoblasts, stimulating migration in vitro, and injecting MVs enhances blastocyst implantation.
Collapse
|
1904
|
Williams KC, Wong E, Leong HS, Jackson DN, Allan AL, Chambers AF. Cancer dissemination from a physical sciences perspective. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2016. [DOI: 10.1088/2057-1739/2/2/023001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
1905
|
Dhondt B, Rousseau Q, De Wever O, Hendrix A. Function of extracellular vesicle-associated miRNAs in metastasis. Cell Tissue Res 2016; 365:621-41. [DOI: 10.1007/s00441-016-2430-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/07/2016] [Indexed: 01/08/2023]
|
1906
|
Clinical Trial Watch: Reports from the Liver Meeting®, AASLD, San Francisco, November 2015. J Hepatol 2016; 64:1428-45. [PMID: 26902945 DOI: 10.1016/j.jhep.2016.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/07/2016] [Accepted: 02/10/2016] [Indexed: 01/14/2023]
|
1907
|
Lee JW, Komar CA, Bengsch F, Graham K, Beatty GL. Genetically Engineered Mouse Models of Pancreatic Cancer: The KPC Model (LSL-Kras(G12D/+) ;LSL-Trp53(R172H/+) ;Pdx-1-Cre), Its Variants, and Their Application in Immuno-oncology Drug Discovery. CURRENT PROTOCOLS IN PHARMACOLOGY 2016; 73:14.39.1-14.39.20. [PMID: 27248578 PMCID: PMC4915217 DOI: 10.1002/cpph.2] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) ranks fourth among cancer-related deaths in the United States. For patients with unresectable disease, treatment options are limited and lack curative potential. Preclinical mouse models of PDAC that recapitulate the biology of human pancreatic cancer offer an opportunity for the rational development of novel treatment approaches that may improve patient outcomes. With the recent success of immunotherapy for subsets of patients with solid malignancies, interest is mounting in the possible use of immunotherapy for the treatment of PDAC. Considered in this unit is the value of genetic mouse models for characterizing the immunobiology of PDAC and for investigating novel immunotherapeutics. Several variants of these models are described, all of which may be used in drug development and for providing information on unique aspects of disease biology and therapeutic responsiveness. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jae W. Lee
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Chad A. Komar
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Fee Bengsch
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kathleen Graham
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gregory L. Beatty
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
1908
|
van Dongen HM, Masoumi N, Witwer KW, Pegtel DM. Extracellular Vesicles Exploit Viral Entry Routes for Cargo Delivery. Microbiol Mol Biol Rev 2016; 80:369-86. [PMID: 26935137 PMCID: PMC4867369 DOI: 10.1128/mmbr.00063-15] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as crucial mediators of intercellular communication, being involved in a wide array of key biological processes. Eukaryotic cells, and also bacteria, actively release heterogeneous subtypes of EVs into the extracellular space, where their contents reflect their (sub)cellular origin and the physiologic state of the parent cell. Within the past 20 years, presumed subtypes of EVs have been given a rather confusing diversity of names, including exosomes, microvesicles, ectosomes, microparticles, virosomes, virus-like particles, and oncosomes, and these names are variously defined by biogenesis, physical characteristics, or function. The latter category, functions, in particular the transmission of biological signals between cells in vivo and how EVs control biological processes, has garnered much interest. EVs have pathophysiological properties in cancer, neurodegenerative disorders, infectious disease, and cardiovascular disease, highlighting possibilities not only for minimally invasive diagnostic applications but also for therapeutic interventions, like macromolecular drug delivery. Yet, in order to pursue therapies involving EVs and delivering their cargo, a better grasp of EV targeting is needed. Here, we review recent progress in understanding the molecular mechanisms underpinning EV uptake by receptor-ligand interactions with recipient cells, highlighting once again the overlap of EVs and viruses. Despite their highly heterogeneous nature, EVs require common viral entry pathways, and an unanticipated specificity for cargo delivery is being revealed. We discuss the challenges ahead in delineating specific roles for EV-associated ligands and cellular receptors.
Collapse
Affiliation(s)
- Helena M van Dongen
- Department of Pathology, Exosomes Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Niala Masoumi
- Department of Pathology, Exosomes Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Michiel Pegtel
- Department of Pathology, Exosomes Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
1909
|
Erb U, Zöller M. Progress and potential of exosome analysis for early pancreatic cancer detection. Expert Rev Mol Diagn 2016; 16:757-67. [PMID: 27206554 DOI: 10.1080/14737159.2016.1187563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Pancreatic cancer (PaCa) is the most deadly malignancy, due to late diagnosis prohibiting surgery. Thus, strong efforts are taken improving early diagnosis via biomarkers recovered in the serum of PaCa patients. AREAS COVERED One promising option are PaCa-derived exosomes in patients' sera. Exosomes, small vesicles delivered by live cells and recovered in all body fluids, are a powerful diagnostic tool due to relative stability and composition covering the whole range of cancer-related biomarkers including proteins, metabolites, DNA, DNA modifications, coding and noncoding RNA. We discuss the mechanisms accounting for the condensed packaging of biomarkers, refer to studies using PaCa serum-exosomes for diagnosis. Based on an extensive literature search, we outline questions that answers may help establishing a serum-exosome-based screening for early PaCa detection. Expert commentary: Improved proteomic and genomic characterization and progress in the biogenesis of exosomes will allow for optimized and unified screening panels for PaCa diagnosis via TEX in body fluids.
Collapse
Affiliation(s)
- Ulrike Erb
- a Department of Tumor Cell Biology , University Hospital of Surgery , Heidelberg , Germany
| | - Margot Zöller
- a Department of Tumor Cell Biology , University Hospital of Surgery , Heidelberg , Germany
| |
Collapse
|
1910
|
Chin AR, Wang SE. Cancer Tills the Premetastatic Field: Mechanistic Basis and Clinical Implications. Clin Cancer Res 2016; 22:3725-33. [PMID: 27252414 DOI: 10.1158/1078-0432.ccr-16-0028] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/24/2016] [Indexed: 02/07/2023]
Abstract
A growing body of work has shown that cancer metastasis is not a random spontaneous event; rather, it is the culmination of a cascade of priming steps through which a subpopulation of the tumor cells acquires invasive traits while readying a permissive environment, termed the "premetastatic niche," in which distant metastases can occur. Signals from the primary tumor mobilize and adapt immune cells as well as directly communicating with distant niche cells to induce a broad spectrum of adaptations in target organs, including the induction of angiogenesis, inflammation, extracellular matrix remodeling, and metabolic reprogramming. Together, these interactions facilitate the formation of a premetastatic niche composed of a variable mix of resident and recruited immune cells, endothelial cells, and stromal cells connected through a complex signaling network that we are only beginning to understand. Here, we summarize the latest findings on how cancer induces and guides the formation of this premetastatic niche as well as potential prognostic markers and therapeutic targets that may lead to a better understanding and effective treatment of metastatic disease. Clin Cancer Res; 22(15); 3725-33. ©2016 AACR.
Collapse
Affiliation(s)
- Andrew R Chin
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, California. City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, California
| | - Shizhen Emily Wang
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, California.
| |
Collapse
|
1911
|
Bordeleau F, Chan B, Antonyak MA, Lampi MC, Cerione RA, Reinhart-King CA. Microvesicles released from tumor cells disrupt epithelial cell morphology and contractility. J Biomech 2016; 49:1272-1279. [PMID: 26477404 PMCID: PMC4826648 DOI: 10.1016/j.jbiomech.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022]
Abstract
During tumor progression, cancer cells interact and communicate with non-malignant cells within their local microenvironment. Microvesicles (MV) derived from human cancer cells play an important role in mediating this communication. Another critical aspect of cancer progression involves widespread ECM remodeling, which occur both at the primary and metastatic sites. ECM remodeling and reorganization within the tumor microenvironment is generally attributed to fibroblasts. Here, using MCF10a cells, a well-characterized breast epithelial cell line that exhibits a non-malignant epithelial phenotype, and MVs shed by aggressive MDA-MB-231 carcinoma cells, we show that non-malignant epithelial cells can participate in ECM reorganization of 3D collagen matrices following their treatment with cancer cell-derived MVs. In addition, MVs trigger several changes in epithelial cells under 3D culture conditions. Furthermore, we show that this ECM reorganization is associated with an increase in cellular traction force following MV treatment, higher acto-myosin contractility, and higher FAK activity. Overall, our findings suggest that MVs derived from tumor cells can contribute to ECM reorganization occurring within the tumor microenvironment by enhancing the contractility of non-malignant epithelial cells.
Collapse
Affiliation(s)
- Francois Bordeleau
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Bryan Chan
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Marc A Antonyak
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Marsha C Lampi
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Richard A Cerione
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, United States; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | | |
Collapse
|
1912
|
Villasante A, Marturano-Kruik A, Ambati SR, Liu Z, Godier-Furnemont A, Parsa H, Lee BW, Moore MA, Vunjak-Novakovic G. Recapitulating the Size and Cargo of Tumor Exosomes in a Tissue-Engineered Model. Theranostics 2016; 6:1119-30. [PMID: 27279906 PMCID: PMC4893640 DOI: 10.7150/thno.13944] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/20/2015] [Indexed: 12/20/2022] Open
Abstract
There is a growing interest in the pivotal role of exosomes in cancer and in their use as biomarkers. However, despite the importance of the microenvironment for cancer initiation and progression, monolayer cultures of tumor cells still represent the main in vitro source of exosomes. As a result, their environmental regulation remains largely unknown. Here, we report a three-dimensional tumor model for studying exosomes, using Ewing's sarcoma type 1 as a clinically relevant example. The bioengineered model was designed based on the hypothesis that the 3-dimensionality, composition and stiffness of the tumor matrix are the critical determinants of the size and cargo of exosomes released by the cancer cells. We analyzed the effects of the tumor microenvironment on exosomes, and the effects of exosomes on the non-cancer cells from the bone niche. Exosomes from the tissue-engineered tumor had similar size distribution as those in the patients' plasma, and were markedly smaller than those in monolayer cultures. Bioengineered tumors and the patients' plasma contained high levels of the Polycomb histone methyltransferase EZH2 mRNA relatively to their monolayer counterparts. Notably, EZH2 mRNA, a potential tumor biomarker detectable in blood plasma, could be transferred to the surrounding mesenchymal stem cells. This study provides the first evidence that an in vitro culture environment can recapitulate some properties of tumor exosomes.
Collapse
|
1913
|
Vennin C, Herrmann D, Lucas MC, Timpson P. Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression. F1000Res 2016; 5. [PMID: 27239290 PMCID: PMC4870995 DOI: 10.12688/f1000research.8090.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 12/15/2022] Open
Abstract
Intravital imaging is providing new insights into the dynamics of tumor progression in native tissues and has started to reveal the layers of complexity found in cancer. Recent advances in intravital imaging have allowed us to look deeper into cancer behavior and to dissect the interactions between tumor cells and the ancillary host niche that promote cancer development. In this review, we provide an insight into the latest advances in cancer biology achieved by intravital imaging, focusing on recently discovered mechanisms by which tumor cells manipulate normal tissue to facilitate disease progression.
Collapse
Affiliation(s)
- Claire Vennin
- The Kinghorn Cancer Centre, Cancer Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - David Herrmann
- The Kinghorn Cancer Centre, Cancer Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Morghan C Lucas
- The Kinghorn Cancer Centre, Cancer Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Cancer Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
1914
|
Syn N, Wang L, Sethi G, Thiery JP, Goh BC. Exosome-Mediated Metastasis: From Epithelial-Mesenchymal Transition to Escape from Immunosurveillance. Trends Pharmacol Sci 2016; 37:606-617. [PMID: 27157716 DOI: 10.1016/j.tips.2016.04.006] [Citation(s) in RCA: 371] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 01/02/2023]
Abstract
Exosomes are extracellular signalosomes that facilitate eukaryotic intercellular communication under a wide range of normal physiological contexts. In malignancies, this regulatory circuit is co-opted to promote cancer cell survival and outgrowth. Tumour-derived exosomes (TDEs) carry a pro-EMT (epithelial-mesenchymal transition) programme including transforming growth factor beta (TGFβ), caveolin-1, hypoxia-inducible factor 1 alpha (HIF1α), and β-catenin that enhances the invasive and migratory capabilities of recipient cells, and contributes to stromal remodelling and premetastatic niche formation. The integrin expression patterns on TDEs appear to dictate their preferential uptake by organ-specific cells, implying a crucial role of this pathway in organotropic metastasis. Through the expression of immunomodulatory molecules such as CD39 and CD73, TDEs modify the immune contexture of the tumour microenvironment, which could have implications for immunotherapy. Hence, targeting TDE dysregulation pathways, such as the heparanase/syndecan-1 axis, could represent novel therapeutic strategies in the quest to conquer cancer.
Collapse
Affiliation(s)
- Nicholas Syn
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, 1E Kent Ridge Road, NUHS Tower Block, Level 7, Singapore 119228, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jean-Paul Thiery
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; UMR 7057 Matter and Complex Systems University Paris Denis Diderot, Paris, France; Comprehensive Cancer Center Institut Gustave Roussy, Villejuif, France
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, 1E Kent Ridge Road, NUHS Tower Block, Level 7, Singapore 119228, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
1915
|
Nielsen SR, Quaranta V, Linford A, Emeagi P, Rainer C, Santos A, Ireland L, Sakai T, Sakai K, Kim YS, Engle D, Campbell F, Palmer D, Ko JH, Tuveson DA, Hirsch E, Mielgo A, Schmid MC. Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat Cell Biol 2016; 18:549-60. [PMID: 27088855 PMCID: PMC4894551 DOI: 10.1038/ncb3340] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/11/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating metastatic disease for which better therapies are urgently needed. Macrophages enhance metastasis in many cancer types; however, the role of macrophages in PDAC liver metastasis remains poorly understood. Here we found that PDAC liver metastasis critically depends on the early recruitment of granulin-secreting inflammatory monocytes to the liver. Mechanistically, we demonstrate that granulin secretion by metastasis-associated macrophages (MAMs) activates resident hepatic stellate cells (hStCs) into myofibroblasts that secrete periostin, resulting in a fibrotic microenvironment that sustains metastatic tumour growth. Disruption of MAM recruitment or genetic depletion of granulin reduced hStC activation and liver metastasis. Interestingly, we found that circulating monocytes and hepatic MAMs in PDAC patients express high levels of granulin. These findings suggest that recruitment of granulin-expressing inflammatory monocytes plays a key role in PDAC metastasis and may serve as a potential therapeutic target for PDAC liver metastasis.
Collapse
Affiliation(s)
- Sebastian R Nielsen
- Department of Molecular and Clinical Cancer Medicine,
University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| | - Valeria Quaranta
- Department of Molecular and Clinical Cancer Medicine,
University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| | - Andrea Linford
- Department of Molecular and Clinical Cancer Medicine,
University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| | - Perpetua Emeagi
- Department of Molecular and Clinical Cancer Medicine,
University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| | - Carolyn Rainer
- Department of Molecular and Clinical Cancer Medicine,
University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| | - Almudena Santos
- Department of Molecular and Clinical Cancer Medicine,
University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| | - Lucy Ireland
- Department of Molecular and Clinical Cancer Medicine,
University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| | - Takao Sakai
- Department of Molecular and Clinical Pharmacology,
University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Keiko Sakai
- Department of Molecular and Clinical Pharmacology,
University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Yong-Sam Kim
- Aging Intervention Research Center, KRIBB, 125 Gwahak-ro,
Yuseong-gu, Deajeon 305-806, Korea
- Korea University of Science and Technology, 217 Gajeong-ro,
Yuseong-gu, Daejeon 305-350, Korea
| | - Dannielle Engle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
11724, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Cold
Spring Harbor, NY 11724, USA
| | - Fiona Campbell
- Department of Molecular and Clinical Cancer Medicine,
University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| | - Daniel Palmer
- Department of Molecular and Clinical Cancer Medicine,
University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| | - Jeong Heon Ko
- Aging Intervention Research Center, KRIBB, 125 Gwahak-ro,
Yuseong-gu, Deajeon 305-806, Korea
- Korea University of Science and Technology, 217 Gajeong-ro,
Yuseong-gu, Daejeon 305-350, Korea
| | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
11724, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Cold
Spring Harbor, NY 11724, USA
- Rubenstein Center for Pancreatic Cancer Research, Memorial
Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences,
Center for Molecular Biotechnology, University of Torino, Via Nizza 52, 10126 Turin,
Italy
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine,
University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| | - Michael C Schmid
- Department of Molecular and Clinical Cancer Medicine,
University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| |
Collapse
|
1916
|
Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature 2016; 529:298-306. [PMID: 26791720 DOI: 10.1038/nature17038] [Citation(s) in RCA: 1391] [Impact Index Per Article: 154.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022]
Abstract
Metastasis is the main cause of death in people with cancer. To colonize distant organs, circulating tumour cells must overcome many obstacles through mechanisms that we are only now starting to understand. These include infiltrating distant tissue, evading immune defences, adapting to supportive niches, surviving as latent tumour-initiating seeds and eventually breaking out to replace the host tissue. They make metastasis a highly inefficient process. However, once metastases have been established, current treatments frequently fail to provide durable responses. An improved understanding of the mechanistic determinants of such colonization is needed to better prevent and treat metastatic cancer.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York 10065, USA
| | - Anna C Obenauf
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York 10065, USA.,Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
1917
|
Yang S, He P, Wang J, Schetter A, Tang W, Funamizu N, Yanaga K, Uwagawa T, Satoskar AR, Gaedcke J, Bernhardt M, Ghadimi BM, Gaida MM, Bergmann F, Werner J, Ried T, Hanna N, Alexander HR, Hussain SP. A Novel MIF Signaling Pathway Drives the Malignant Character of Pancreatic Cancer by Targeting NR3C2. Cancer Res 2016; 76:3838-50. [PMID: 27197190 DOI: 10.1158/0008-5472.can-15-2841] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/07/2016] [Indexed: 12/31/2022]
Abstract
Pancreatic cancers with aberrant expression of macrophage migration inhibitory factor (MIF) are particularly aggressive. To identify key signaling pathways that drive disease aggressiveness in tumors with high MIF expression, we analyzed the expression of coding and noncoding genes in high and low MIF-expressing tumors in multiple cohorts of pancreatic ductal adenocarcinoma (PDAC) patients. The key genes and pathways identified were linked to patient survival and were mechanistically, functionally, and clinically characterized using cell lines, a genetically engineered mouse model, and PDAC patient cohorts. Here, we report evidence of a novel MIF-driven signaling pathway that inhibits the orphan nuclear receptor NR3C2, a previously undescribed tumor suppressor that impacts aggressiveness and survival in PDAC. Mechanistically, MIF upregulated miR-301b that targeted NR3C2 and suppressed its expression. PDAC tumors expressing high levels of MIF displayed elevated levels of miR-301b and reduced levels of NR3C2. In addition, reduced levels of NR3C2 expression correlated with poorer survival in multiple independent cohorts of PDAC patients. Functional analysis showed that NR3C2 inhibited epithelial-to-mesenchymal transition and enhanced sensitivity to the gemcitabine, a chemotherapeutic drug used in PDAC standard of care. Furthermore, genetic deletion of MIF disrupted a MIF-mir-301b-NR3C2 signaling axis, reducing metastasis and prolonging survival in a genetically engineered mouse model of PDAC. Taken together, our results offer a preclinical proof of principle for candidate therapies to target a newly described MIF-miR-301b-NR3C2 signaling axis for PDAC management. Cancer Res; 76(13); 3838-50. ©2016 AACR.
Collapse
Affiliation(s)
- Shouhui Yang
- Pancreatic Cancer Unit, National Cancer Institute, Bethesda, Maryland. Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Peijun He
- Pancreatic Cancer Unit, National Cancer Institute, Bethesda, Maryland. Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jian Wang
- Pancreatic Cancer Unit, National Cancer Institute, Bethesda, Maryland. Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Aaron Schetter
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Naotake Funamizu
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Uwagawa
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Abhay R Satoskar
- Department Pathology and Microbiology, Ohio State University, Columbus, Ohio
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medicine, Göttingen, Germany
| | - Markus Bernhardt
- Department of General, Visceral and Pediatric Surgery, University Medicine, Göttingen, Germany
| | - B Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medicine, Göttingen, Germany
| | - Matthias M Gaida
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Frank Bergmann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Jens Werner
- Department of Surgery, Ludwig-Maximillians University, Munich, Germany
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Nader Hanna
- Division of Surgical Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - H Richard Alexander
- Division of Surgical Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - S Perwez Hussain
- Pancreatic Cancer Unit, National Cancer Institute, Bethesda, Maryland. Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
1918
|
Isola AL, Chen S. Exosomes: The Link between GPCR Activation and Metastatic Potential? Front Genet 2016; 7:56. [PMID: 27092178 PMCID: PMC4824768 DOI: 10.3389/fgene.2016.00056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022] Open
Abstract
The activation of G-Protein Coupled Receptors (GPCRs) by their respective ligands initiates a cascade of multiple signaling processes within the cell, regulating growth, metabolism and other essential cellular functions. Dysregulation and aberrant expression of these GPCRs and their subsequent signaling cascades are associated with many different types of pathologies, including cancer. The main life threatening complication in patients diagnosed with cancer is the dissemination of cells from the primary tumor to distant vital organs within the body, metastasis. Communication between the primary tumor, immune system, and the site of future metastasis are some of the key events in the early stages of metastasis. It has been postulated that the communication is mediated by nanovesicles that, under non-pathological conditions, are released by normal cells to relay signals to other cells in the body. These nanovesicles are called exosomes, and are utilized by the tumor cell to influence changes within the recipient cell, such as bone marrow progenitor cells, and cells within the site of future metastatic growth, in order to prepare the site for colonization. Tumor cells have been shown to release an increased number of exosomes when compared to their normal cell counterpart. Exosome production and release are regulated by proteins involved in localization, degradation and size of the multivesicular body, whose function may be altered within cancer cells, resulting in the release of an increased number of these vesicles. This review investigates the possibility of GPCR signaling cascades acting as the upstream activator of proteins involved in exosome production and release, linking a commonly targeted trans-membrane protein class with cellular communication utilized by tumor cells in early stages of metastasis.
Collapse
Affiliation(s)
- Allison L Isola
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers the State UniversityPiscataway, NJ, USA; Joint Graduate Program in Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers the State UniversityPiscataway, NJ, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers the State UniversityPiscataway, NJ, USA; Joint Graduate Program in Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers the State UniversityPiscataway, NJ, USA; Rutgers Cancer Institute of New JerseyNew Brunswick, NJ, USA
| |
Collapse
|
1919
|
Abstract
Metastatic disease is the leading cause of cancer-related deaths and involves critical interactions between tumor cells and the microenvironment. Hypoxia is a potent microenvironmental factor promoting metastatic progression. Clinically, hypoxia and the expression of the hypoxia-inducible transcription factors HIF-1 and HIF-2 are associated with increased distant metastasis and poor survival in a variety of tumor types. Moreover, HIF signaling in malignant cells influences multiple steps within the metastatic cascade. Here we review research focused on elucidating the mechanisms by which the hypoxic tumor microenvironment promotes metastatic progression. These studies have identified potential biomarkers and therapeutic targets regulated by hypoxia that could be incorporated into strategies aimed at preventing and treating metastatic disease.
Collapse
Affiliation(s)
- Erinn B Rankin
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA 94305-5152, USA. Department of Obstetrics and Gynecology, Stanford University Medical Center, Stanford, CA 94305-5152, USA
| | - Amato J Giaccia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA 94305-5152, USA.
| |
Collapse
|
1920
|
Abstract
Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation.
Collapse
Affiliation(s)
- Theresa L Whiteside
- University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States.
| |
Collapse
|
1921
|
Høye AM, Erler JT. Structural ECM components in the premetastatic and metastatic niche. Am J Physiol Cell Physiol 2016; 310:C955-67. [PMID: 27053524 DOI: 10.1152/ajpcell.00326.2015] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this review is to give an overview of the extracellular matrix (ECM) components that are important for creating structural changes in the premetastatic and metastatic niche. The successful arrival and survival of cancer cells that have left the primary tumor and colonized distant sites depends on the new microenvironment they encounter. The primary tumor itself releases factors into the circulation that travel to distant organs and then initiate structural changes, both non-enzymatic and enzymatic, to create a favorable niche for the disseminating tumor cells. Therapeutic strategies aimed at targeting cell-ECM interactions may well be one of the best viable approaches to combat metastasis and thus improve patient care.
Collapse
Affiliation(s)
- Anette M Høye
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Janine T Erler
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
1922
|
Harnessing the Angiogenic Potential of Stem Cell-Derived Exosomes for Vascular Regeneration. Stem Cells Int 2016; 2016:3409169. [PMID: 27127516 PMCID: PMC4834153 DOI: 10.1155/2016/3409169] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/13/2016] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are known to display important regenerative properties through the secretion of proangiogenic factors. Recent evidence pointed at the key role played by exosomes released from MSCs in this paracrine mechanism. Exosomes are key mediators of intercellular communication and contain a cargo that includes a modifiable content of microRNA (miRNA), mRNA, and proteins. Since the biogenesis of the MSCs-derived exosomes is regulated by the cross talk between MSCs and their niche, the content of the exosomes and consequently their biological function are dependent on the cell of origin and the physiologic or pathologic status of their microenvironment. Recent preclinical studies revealed that MSCs-derived exosomes have a critical implication in the angiogenic process since the use of exosomes-depleted conditioned medium impaired the MSCs angiogenesis response. In this review, we discuss the current knowledge related to the angiogenic potential of MSCs-exosomes and methods to enhance their biological activities for improved vascular regeneration. The current gain of insight in exosomes studies highlights the power of combining cell based therapies and their secreted products in therapeutic angiogenesis.
Collapse
|
1923
|
Abstract
Humans circulate quadrillions of exosomes at all times. Exosomes are a class of extracellular vesicles released by all cells, with a size range of 40-150 nm and a lipid bilayer membrane. Exosomes contain DNA, RNA, and proteins. Exosomes likely remove excess and/or unnecessary constituents from the cells, functioning like garbage bags, although their precise physiological role remains unknown. Additionally, exosomes may mediate specific cell-to-cell communication and activate signaling pathways in cells they fuse or interact with. Exosomes are detected in the tumor microenvironment, and emerging evidence suggests that they play a role in facilitating tumorigenesis by regulating angiogenesis, immunity, and metastasis. Circulating exosomes can be used as liquid biopsies and noninvasive biomarkers for early detection, diagnosis, and treatment of cancer patients.
Collapse
|
1924
|
Robbins PD, Dorronsoro A, Booker CN. Regulation of chronic inflammatory and immune processes by extracellular vesicles. J Clin Invest 2016; 126:1173-80. [PMID: 27035808 DOI: 10.1172/jci81131] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Almost all cell types release extracellular vesicles (EVs), which are derived either from multivesicular bodies or from the plasma membrane. EVs contain a subset of proteins, lipids, and nucleic acids from the cell from which they are derived. EV factors, particularly small RNAs such as miRNAs, likely play important roles in cell-to-cell communication both locally and systemically. Most of the functions associated with EVs are in the regulation of immune responses to pathogens and cancer, as well as in regulating autoimmunity. This Review will focus on the different modes of immune regulation, both direct and indirect, by EVs. The therapeutic utility of EVs for the regulation of immune responses will also be discussed.
Collapse
|
1925
|
Hall J, Prabhakar S, Balaj L, Lai CP, Cerione RA, Breakefield XO. Delivery of Therapeutic Proteins via Extracellular Vesicles: Review and Potential Treatments for Parkinson's Disease, Glioma, and Schwannoma. Cell Mol Neurobiol 2016; 36:417-27. [PMID: 27017608 PMCID: PMC4860146 DOI: 10.1007/s10571-015-0309-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles present an attractive delivery vehicle for therapeutic proteins. They intrinsically contain many proteins which can provide information to other cells. Advantages include reduced immune reactivity, especially if derived from the same host, stability in biologic fluids, and ability to target uptake. Those from mesenchymal stem cells appear to be intrinsically therapeutic, while those from cancer cells promote tumor progression. Therapeutic proteins can be loaded into vesicles by overexpression in the donor cell, with oligomerization and membrane sequences increasing their loading. Examples of protein delivery for therapeutic benefit in pre-clinical models include delivery of: catalase for Parkinson's disease to reduce oxidative stress and thus help neurons to survive; prodrug activating enzymes which can convert a prodrug which crosses the blood-brain barrier into a toxic chemotherapeutic drug for schwannomas and gliomas; and the apoptosis-inducing enzyme, caspase-1 under a Schwann cell specific promoter for schwannoma. This therapeutic delivery strategy is novel and being explored for a number of diseases.
Collapse
Affiliation(s)
- Justin Hall
- Departments of Chemistry and Chemical Biology and Molecular Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Shilpa Prabhakar
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Leonora Balaj
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Charles P Lai
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Richard A Cerione
- Departments of Chemistry and Chemical Biology and Molecular Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Xandra O Breakefield
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA.
- Molecular Neurogenetics Unit, Massachusetts General Hospital-East, 13th Street, Building 149, Charlestown, MA, 02129, USA.
| |
Collapse
|
1926
|
Nagarajah S. Exosome Secretion - More Than Simple Waste Disposal? Implications for Physiology, Diagnostics and Therapeutics. J Circ Biomark 2016; 5:7. [PMID: 28936255 PMCID: PMC5548323 DOI: 10.5772/62975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/09/2016] [Indexed: 12/13/2022] Open
Abstract
Less than 100 nm in size and spherical in form - exosomes – vesicles expelled and taken up by cells, have ignited a new-found fascination. One which is derived from the sheer variety of exosomal content, ranging from microRNAs to transcription factors, capable of affecting a multitude of processes and pathways simultaneously within a target cell. Initially dismissed in 1983 as a waste disposal mechanism, today they form an entire field of research, being documented thus far in invertebrates, mammals, pathogens and potentially some plants. Many studies have suggested these spherical enigmas may possess a function, being implicated in processes ranging from animal behaviour to viral infection. This review will evaluate the evidence for the role of exosomes in physiology and pathophysiology, as well as their potential for application in the diagnosis and treatment of disease.
Collapse
|
1927
|
Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ. Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest 2016; 126:1152-62. [PMID: 27035807 DOI: 10.1172/jci81129] [Citation(s) in RCA: 633] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Two broad categories of extracellular vesicles (EVs), exosomes and shed microvesicles (sMVs), which differ in size distribution as well as protein and RNA profiles, have been described. EVs are known to play key roles in cell-cell communication, acting proximally as well as systemically. This Review discusses the nature of EV subtypes, strategies for isolating EVs from both cell-culture media and body fluids, and procedures for quantifying EVs. We also discuss proteins selectively enriched in exosomes and sMVs that have the potential for use as markers to discriminate between EV subtypes, as well as various applications of EVs in clinical diagnosis.
Collapse
|
1928
|
Abstract
Tumour metastasis, the movement of tumour cells from a primary site to progressively colonize distant organs, is a major contributor to the deaths of cancer patients. Therapeutic goals are the prevention of an initial metastasis in high-risk patients, shrinkage of established lesions and prevention of additional metastases in patients with limited disease. Instead of being autonomous, tumour cells engage in bidirectional interactions with metastatic microenvironments to alter antitumour immunity, the extracellular milieu, genomic stability, survival signalling, chemotherapeutic resistance and proliferative cycles. Can targeting of these interactions significantly improve patient outcomes? In this Review preclinical research, combination therapies and clinical trial designs are re-examined.
Collapse
Affiliation(s)
- Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
1929
|
D'Asti E, Chennakrishnaiah S, Lee TH, Rak J. Extracellular Vesicles in Brain Tumor Progression. Cell Mol Neurobiol 2016; 36:383-407. [PMID: 26993504 DOI: 10.1007/s10571-015-0296-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/24/2015] [Indexed: 12/18/2022]
Abstract
Brain tumors can be viewed as multicellular 'ecosystems' with increasingly recognized cellular complexity and systemic impact. While the emerging diversity of malignant disease entities affecting brain tissues is often described in reference to their signature alterations within the cellular genome and epigenome, arguably these cell-intrinsic changes can be regarded as hardwired adaptations to a variety of cell-extrinsic microenvironmental circumstances. Conversely, oncogenic events influence the microenvironment through their impact on the cellular secretome, including emission of membranous structures known as extracellular vesicles (EVs). EVs serve as unique carriers of bioactive lipids, secretable and non-secretable proteins, mRNA, non-coding RNA, and DNA and constitute pathway(s) of extracellular exit of molecules into the intercellular space, biofluids, and blood. EVs are also highly heterogeneous as reflected in their nomenclature (exosomes, microvesicles, microparticles) attempting to capture their diverse origin, as well as structural, molecular, and functional properties. While EVs may act as a mechanism of molecular expulsion, their non-random uptake by heterologous cellular recipients defines their unique roles in the intercellular communication, horizontal molecular transfer, and biological activity. In the central nervous system, EVs have been implicated as mediators of homeostasis and repair, while in cancer they may act as regulators of cell growth, clonogenicity, angiogenesis, thrombosis, and reciprocal tumor-stromal interactions. EVs produced by specific brain tumor cell types may contain the corresponding oncogenic drivers, such as epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma (and hence are often referred to as 'oncosomes'). Through this mechanism, mutant oncoproteins and nucleic acids may be transferred horizontally between cellular populations altering their individual and collective phenotypes. Oncogenic pathways also impact the emission rates, types, cargo, and biogenesis of EVs, as reflected by preliminary analyses pointing to differences in profiles of EV-regulating genes (vesiculome) between molecular subtypes of glioblastoma, and in other brain tumors. Molecular regulators of vesiculation can also act as oncogenes. These intimate connections suggest the context-specific roles of different EV subsets in the progression of specific brain tumors. Advanced efforts are underway to capture these events through the use of EVs circulating in biofluids as biomarker reservoirs and to guide diagnostic and therapeutic decisions.
Collapse
Affiliation(s)
- Esterina D'Asti
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Shilpa Chennakrishnaiah
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Tae Hoon Lee
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Janusz Rak
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
1930
|
Zomer A, van Rheenen J. Implications of Extracellular Vesicle Transfer on Cellular Heterogeneity in Cancer: What Are the Potential Clinical Ramifications? Cancer Res 2016; 76:2071-5. [PMID: 27032418 DOI: 10.1158/0008-5472.can-15-2804] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/11/2015] [Indexed: 11/16/2022]
Abstract
The functional and phenotypic heterogeneity of tumor cells represents one of the greatest challenges in the successful treatment of cancer patients, because it increases the risk that certain individual tumor cells possess the ability to, for example, metastasize or to tolerate cytotoxic drugs. This heterogeneity in cellular behavior is driven by genetic and epigenetic changes and environmental differences. Recent studies suggest that an additional layer of complexity of tumor heterogeneity exists, based on the ability of cells to share functional biomolecules through local and systemic transfer of extracellular vesicles (EV), with profound effects on cellular behavior. The transfer of functional biomolecules between various populations of tumor cells and between tumor cells and nontumor cells has large consequences for both the tumor cells and the microenvironment that support the cellular behavior of tumor cells, and therefore for the clinical outcome of cancer. Here, we discuss the latest findings on EV transfer and the potential implications of EV-mediated local and systemic transmission of phenotypic behavior, particularly in the context of tumor heterogeneity, metastatic disease, and treatment response. Cancer Res; 76(8); 2071-5. ©2016 AACR.
Collapse
Affiliation(s)
- Anoek Zomer
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jacco van Rheenen
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
1931
|
Robinson SM, Fan L, White SA, Charnley RM, Mann J. The role of exosomes in the pathogenesis of pancreatic ductal adenocarcinoma. Int J Biochem Cell Biol 2016; 75:131-9. [PMID: 27017975 DOI: 10.1016/j.biocel.2016.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 02/07/2023]
Abstract
Exosomes are small membrane bound vesicles secreted by cancer cells that have a cytosol rich in proteins and nucleic acids which are capable of modulating the phenotype of neighbouring cells which take them up. In this review we explore the mechanisms through which exosomes are able to impact on the pathogenesis of pancreatic ductal cancer through the modulation of tumour formation and development and exploitation of the tumour microenvironment to modulate both the adaptive and innate immune response. In addition we highlight the potential utility of exosomes not only as biomarkers of disease but also as tools to be used in the therapeutic armamentarium against this disease.
Collapse
Affiliation(s)
- Stuart M Robinson
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom; Department of HPB Surgery, Freeman Hospital, Freeman Road, High Heaton, Newcastle upon Tyne, NE7 7DN, United Kingdom.
| | - Lavender Fan
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Steven A White
- Department of HPB Surgery, Freeman Hospital, Freeman Road, High Heaton, Newcastle upon Tyne, NE7 7DN, United Kingdom
| | - Richard M Charnley
- Department of HPB Surgery, Freeman Hospital, Freeman Road, High Heaton, Newcastle upon Tyne, NE7 7DN, United Kingdom
| | - Jelena Mann
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
1932
|
Lee J, Lee H, Goh U, Kim J, Jeong M, Lee J, Park JH. Cellular Engineering with Membrane Fusogenic Liposomes to Produce Functionalized Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6790-6795. [PMID: 26954538 DOI: 10.1021/acsami.6b01315] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Engineering of extracellular vesicles (EVs) without affecting biological functions remains a challenge, limiting the broad applications of EVs in biomedicine. Here, we report a method to equip EVs with various functional agents, including fluorophores, drugs, lipids, and bio-orthogonal chemicals, in an efficient and controlled manner by engineering parental cells with membrane fusogenic liposomes, while keeping the EVs intact. As a demonstration of how this method can be applied, we prepared EVs containing azide-lipids, and conjugated them with targeting peptides using copper-free click chemistry to enhance targeting efficacy to cancer cells. We believe that this liposome-based cellular engineering method will find utility in studying the biological roles of EVs and delivering therapeutic agents through their innate pathway.
Collapse
Affiliation(s)
- Junsung Lee
- Department of Bio and Brain Engineering, §Graduate School of Medical Science and Engineering, ⊥Institute for Health Science and Technology, and ∥Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Hyoungjin Lee
- Department of Bio and Brain Engineering, §Graduate School of Medical Science and Engineering, ⊥Institute for Health Science and Technology, and ∥Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Unbyeol Goh
- Department of Bio and Brain Engineering, §Graduate School of Medical Science and Engineering, ⊥Institute for Health Science and Technology, and ∥Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Jiyoung Kim
- Department of Bio and Brain Engineering, §Graduate School of Medical Science and Engineering, ⊥Institute for Health Science and Technology, and ∥Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Moonkyoung Jeong
- Department of Bio and Brain Engineering, §Graduate School of Medical Science and Engineering, ⊥Institute for Health Science and Technology, and ∥Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Jean Lee
- Department of Bio and Brain Engineering, §Graduate School of Medical Science and Engineering, ⊥Institute for Health Science and Technology, and ∥Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, §Graduate School of Medical Science and Engineering, ⊥Institute for Health Science and Technology, and ∥Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| |
Collapse
|
1933
|
Wang X, Ren H, Zhao T, Ma W, Dong J, Zhang S, Xin W, Yang S, Jia L, Hao J. Single nucleotide polymorphism in the microRNA-199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes. Oncotarget 2016; 7:13717-29. [PMID: 26872370 PMCID: PMC4924673 DOI: 10.18632/oncotarget.7263] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/29/2016] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is over-expressed in many cancers including pancreatic ductal adenocarcinoma (PDAC) and correlated with poor prognosis. We aim to determine the effect of germline genetic variants on the regulation of the homeostasis of the miRNA-gene regulatory loop in HIF1A gene and PDAC risk. HIF1A rs2057482 single nucleotide polymorphism (SNP) was genotyped in 410 PDAC cases and 490 healthy controls. The CC genotype SNP HIF1A is significantly correlated with PDAC risk (OR = 1.719, 95% CI: 1.293-2.286) and shorter overall survival (OS, P<0.0001) compared with the CT/TT alleles group. The C/T variants of rs2057482, a SNP located near the miR-199a binding site in HIF1A, could lead to differential regulation of HIF1A by miR-199a. Specifically, the C allele of rs2057482 weakened miR-199a-induced repression of HIF-1α expression on both mRNA and protein levels. In the PDAC tissue, individuals with the rs2057482-CC genotype expressed significantly higher levels of HIF-1α protein than those with the rs2057482-CT/TT genotype (P<0.0001). Both the CC genotype of SNP HIF1A and increased HIF-1α expression are significantly associated with shorter OS of patients with PDAC. After adjusted by TNM staging, differentiation grade, and the levels of CA19-9, both SNP HIF1A and HIF-1α expression retained highly significance on OS (P<0.0001). Taken together, our study demonstrates that host genetic variants could disturb the regulation of the miR-199a/HIF1A regulatory loop and alter PDAC risk and poor prognosis. In conclusion, the rs2057482-CC genotype increases the susceptibility to PDAC and associated with cancer progression.
Collapse
Affiliation(s)
- Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - He Ren
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weidong Ma
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jie Dong
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shengjie Zhang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wen Xin
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shengyu Yang
- Department of Tumor Biology and Comprehensive Melanoma Research Center, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Li Jia
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
1934
|
Vorvis C, Koutsioumpa M, Iliopoulos D. Developments in miRNA gene signaling pathways in pancreatic cancer. Future Oncol 2016; 12:1135-50. [PMID: 26984178 DOI: 10.2217/fon-2015-0050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a devastating malignancy that ranks as the fourth leading cause of cancer-related deaths worldwide. Dismal prognosis is mainly attributable to limited knowledge of the molecular pathogenesis of the disease. miRNAs have been found to be deregulated in pancreatic cancer, affecting several steps of initiation and aggressiveness of the disease by regulating important signaling pathways, such as the KRAS and Notch pathways. Moreover, the effect of miRNAs on regulating cell cycle events and expression of transcription factors has gained a lot of attention. Recent studies have highlighted the application of miRNAs as biomarkers and therapeutic tools. The current review focuses on latest advances with respect to the roles of miRNAs in pancreatic ductal adenocarcinoma associated signaling pathways and miRNA-based therapeutics.
Collapse
Affiliation(s)
- Christina Vorvis
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Marina Koutsioumpa
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
1935
|
Extracellular Vesicles: A New Frontier in Biomarker Discovery for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2016; 17:376. [PMID: 26985892 PMCID: PMC4813235 DOI: 10.3390/ijms17030376] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
In recent years, the global burden of obesity and diabetes has seen a parallel rise in other metabolic complications, such as non-alcoholic fatty liver disease (NAFLD). This condition, once thought to be a benign accumulation of hepatic fat, is now recognized as a serious and prevalent disorder that is conducive to inflammation and fibrosis. Despite the rising incidence of NAFLD, there is currently no reliable method for its diagnosis or staging besides the highly invasive tissue biopsy. This limitation has resulted in the study of novel circulating markers as potential candidates, one of the most popular being extracellular vesicles (EVs). These submicron membrane-bound structures are secreted from stressed and activated cells, or are formed during apoptosis, and are known to be involved in intercellular communication. The cargo of EVs depends upon the parent cell and has been shown to be changed in disease, as is their abundance in the circulation. The role of EVs in immunity and epigenetic regulation is widely attested, and studies showing a correlation with disease severity have made these structures a favorable target for diagnostic as well as therapeutic purposes. This review will highlight the research that is available on EVs in the context of NAFLD, the current limitations, and projections for their future utility in a clinical setting.
Collapse
|
1936
|
New Insights into the Crossroads between EMT and Stemness in the Context of Cancer. J Clin Med 2016; 5:jcm5030037. [PMID: 26985909 PMCID: PMC4810108 DOI: 10.3390/jcm5030037] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is an example of cellular plasticity, where an epithelial cell acquires a mesenchymal-like phenotype that increases its migratory and invasive properties. Stemness is the ability of stem cells to proliferate in an asymmetric way that allows them to maintain the reservoir of undifferentiated cells with stem cell identity, but also to produce new differentiated cells. Initial works revealed that activation of the EMT program in epithelial cells induces the acquisition of stem cell properties, which in the context of cancer may contribute to the appearance of tumor initiating cells (TIC). However, a number of groups have recently reported that mesenchymal-epithelial transition (MET) is required for efficient metastatic colonization and that EMT may be not necessarily associated with stemness. In this review, we summarize recent findings that extend our knowledge about the crossroads between EMT and stemness and their relevance under physiological or pathological conditions.
Collapse
|
1937
|
Tkach M, Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell 2016; 164:1226-1232. [DOI: 10.1016/j.cell.2016.01.043] [Citation(s) in RCA: 1940] [Impact Index Per Article: 215.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 02/07/2023]
|
1938
|
Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T, Marini JC, Tudawe T, Seviour EG, San Lucas FA, Alvarez H, Gupta S, Maiti SN, Cooper L, Peehl D, Ram PT, Maitra A, Nagrath D. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife 2016; 5:e10250. [PMID: 26920219 PMCID: PMC4841778 DOI: 10.7554/elife.10250] [Citation(s) in RCA: 696] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/26/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions. DOI:http://dx.doi.org/10.7554/eLife.10250.001 Cancer cells behave differently from healthy cells in many ways. Healthy cells rely on structures called mitochondria to provide them with energy via a process that requires oxygen. However cancer cells don’t rely on this process, and instead release energy by breaking down sugars outside of the mitochondria. This may explain why cancer cells are able to thrive even when little oxygen is available. Cancer cells also interact with neighboring cells called fibroblasts, which are a major part of a tumor’s microenvironment, and recruit them into the tumors. The fibroblasts communicate with cancer cells, in part, by releasing chemical messengers packaged into tiny bubble-like structures called exosomes. Recent studies have suggested that these exosomes may help cancer cells to thrive, but there are many questions remaining about how they might do this. Now, Zhao et al. show that the fibroblasts smuggle essential nutrients to cancer cells via the exosomes and disable oxygen-based energy production in cancer cells. First, exosomes released by cancer-associated fibroblasts from people with prostate cancer were collected and marked with a green dye. Next, the green-labeled exosomes were mixed with prostate cancer cells, and shown to be absorbed by the cells. Oxygen-based energy release was dramatically reduced in the exosome-absorbing cells, and sugar-based energy release increased. Next, Zhao et al examined the contents of the exosomes, and found that they contain the building blocks of proteins, fats, and other important molecules. Next, the experiments revealed that both prostate cancer and pancreatic cancer cells deprived of nutrients can use these smuggled resources to continue to grow. Importantly, this process did not involve the protein Kras, which previous studies had show helps cancer cells absorb nutrients. These findings suggest that preventing exosomes from smuggling resources to starving cancer cells might be an effective strategy to treat cancers. DOI:http://dx.doi.org/10.7554/eLife.10250.002
Collapse
Affiliation(s)
- Hongyun Zhao
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, United States
| | - Lifeng Yang
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, United States
| | - Joelle Baddour
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, United States
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, United States
| | - Vincent Bernard
- Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Tyler Moss
- Department of Systems Biology, University of Texas, MD Anderson, Houston, United States
| | | | - Thavisha Tudawe
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, United States
| | - Elena G Seviour
- Department of Systems Biology, University of Texas, MD Anderson, Houston, United States
| | - F Anthony San Lucas
- Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Hector Alvarez
- Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Sonal Gupta
- Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Sourindra N Maiti
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Laurence Cooper
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Donna Peehl
- Department of Urology, School of Medicine, Stanford University, Stanford, United States
| | - Prahlad T Ram
- Department of Systems Biology, University of Texas, MD Anderson, Houston, United States
| | - Anirban Maitra
- Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, United States.,Department of Bioengineering, Rice University, Houston, United States
| |
Collapse
|
1939
|
Hood JL. Melanoma exosomes enable tumor tolerance in lymph nodes. Med Hypotheses 2016; 90:11-3. [PMID: 27063077 DOI: 10.1016/j.mehy.2016.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/20/2016] [Indexed: 12/21/2022]
Abstract
Melanoma preferentially spreads via lymph nodes. Melanoma exosomes can induce angiogenesis and immune suppression. However, a role for melanoma exosomes in facilitating tumor tolerance in lymph nodes has not been considered. Herein, the hypothesis that melanoma exosome mediated induction of vascular endothelial cell (VEC) derived tumor necrosis factor alpha (TNF-α) results in lymphatic endothelial cell (LEC) mediated tumor tolerance is explored. To support this hypothesis, experiments involving ex vivo lymph node associated VECs, LECs, dendritic cells and T lymphocytes are proposed based upon a previously established fluorescent exosome lymph node trafficking model. The implication of the hypothesis in the context of melanoma exosome mediated induction of tumor tolerance in lymph nodes is then discussed.
Collapse
Affiliation(s)
- Joshua L Hood
- University of Louisville, Department of Pharmacology and Toxicology and the James Graham Brown Cancer Center, Clinical and Translational Research Building, 505 South Hancock Street, Louisville, KY 40202, United States.
| |
Collapse
|
1940
|
Jeong S, Park J, Pathania D, Castro CM, Weissleder R, Lee H. Integrated Magneto-Electrochemical Sensor for Exosome Analysis. ACS NANO 2016; 10:1802-9. [PMID: 26808216 PMCID: PMC4802494 DOI: 10.1021/acsnano.5b07584] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Extracellular vesicles, including exosomes, are nanoscale membrane particles that carry molecular information on parental cells. They are being pursued as biomarkers of cancers that are difficult to detect or serially follow. Here we present a compact sensor technology for rapid, on-site exosome screening. The sensor is based on an integrated magneto-electrochemical assay: exosomes are immunomagnetically captured from patient samples and profiled through electrochemical reaction. By combining magnetic enrichment and enzymatic amplification, the approach enables (i) highly sensitive, cell-specific exosome detection and (ii) sensor miniaturization and scale-up for high-throughput measurements. As a proof-of-concept, we implemented a portable, eight-channel device and applied it to screen extracellular vesicles in plasma samples from ovarian cancer patients. The sensor allowed for the simultaneous profiling of multiple protein markers within an hour, outperforming conventional methods in assay sensitivity and speed.
Collapse
Affiliation(s)
- Sangmoo Jeong
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
| | - Jongmin Park
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
| | - Divya Pathania
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
| | - Cesar M. Castro
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
- Massachusetts General Hospital Cancer Center, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
- Massachusetts General Hospital Cancer Center, Boston, MA 02114
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
- Corresponding author: H. Lee, PhD, Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, 617-726-8226,
| |
Collapse
|
1941
|
Cancer Stem Cells and Macrophages: Implications in Tumor Biology and Therapeutic Strategies. Mediators Inflamm 2016; 2016:9012369. [PMID: 26980947 PMCID: PMC4769767 DOI: 10.1155/2016/9012369] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/31/2015] [Indexed: 12/28/2022] Open
Abstract
Cancer stem cells (CSCs) are a unique subset of cells within tumors with stemlike properties that have been proposed to be key drivers of tumor initiation and progression. CSCs are functionally defined by their unlimited self-renewal capacity and their ability to initiate tumor formation in vivo. Like normal stem cells, CSCs exist in a cellular niche comprised of numerous cell types including tumor-associated macrophages (TAMs) which provides a unique microenvironment to protect and promote CSC functions. TAMs provide pivotal signals to promote CSC survival, self-renewal, maintenance, and migratory ability, and in turn, CSCs deliver tumor-promoting cues to TAMs that further enhance tumorigenesis. Studies in the last decade have aimed to understand the molecular mediators of CSCs and TAMs, and recent advances have begun to elucidate the complex cross talk that occurs between these two cell types. In this review, we discuss the molecular interactions that define CSC-TAM cross talk at each stage of tumor progression and examine the clinical implications of targeting these interactions.
Collapse
|
1942
|
Lu L, Risch HA. Exosomes: potential for early detection in pancreatic cancer. Future Oncol 2016; 12:1081-90. [PMID: 26860951 DOI: 10.2217/fon-2015-0005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Progress in the treatment of patients with pancreatic cancer at earlier stages has motivated research in identifying novel noninvasive or minimally invasive biomarkers for early detection. Exosomes, which contain bioactive molecules (such as proteins, RNAs and lipids), are membrane-structured nanovesicles that are secreted from living cells and are found in human body fluids. As functional mediators, exosomes play key roles in cell-cell communications, regulating diverse biological processes. Here we aim to examine recent findings in the potential diagnostic value of serum exosomes in pancreatic cancer.
Collapse
Affiliation(s)
- Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale School of Medicine, Yale Cancer Center, New Haven, CT 06520-8034, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale School of Medicine, Yale Cancer Center, New Haven, CT 06520-8034, USA
| |
Collapse
|
1943
|
Royo F, Zuñiga-Garcia P, Torrano V, Loizaga A, Sanchez-Mosquera P, Ugalde-Olano A, González E, Cortazar AR, Palomo L, Fernández-Ruiz S, Lacasa-Viscasillas I, Berdasco M, Sutherland JD, Barrio R, Zabala-Letona A, Martín-Martín N, Arruabarrena-Aristorena A, Valcarcel-Jimenez L, Caro-Maldonado A, Gonzalez-Tampan J, Cachi-Fuentes G, Esteller M, Aransay AM, Unda M, Falcón-Pérez JM, Carracedo A. Transcriptomic profiling of urine extracellular vesicles reveals alterations of CDH3 in prostate cancer. Oncotarget 2016; 7:6835-46. [PMID: 26771841 PMCID: PMC4872752 DOI: 10.18632/oncotarget.6899] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/26/2015] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EV) are emerging structures with promising properties for intercellular communication. In addition, the characterization of EV in biofluids is an attractive source of non-invasive diagnostic, prognostic and predictive biomarkers. Here we show that urinary EV (uEV) from prostate cancer (PCa) patients exhibit genuine and differential physical and biological properties compared to benign prostate hyperplasia (BPH). Importantly, transcriptomics characterization of uEVs led us to define the decreased abundance of Cadherin 3, type 1 (CDH3) transcript in uEV from PCa patients. Tissue and cell line analysis strongly suggested that the status of CDH3 in uEVs is a distal reflection of changes in the expression of this cadherin in the prostate tumor. CDH3 was negatively regulated at the genomic, transcriptional, and epigenetic level in PCa. Our results reveal that uEVs could represent a non-invasive tool to inform about the molecular alterations in PCa.
Collapse
Affiliation(s)
- Felix Royo
- CIC bioGUNE, Bizkaia Technology Park, Biscay, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain
| | | | | | - Ana Loizaga
- Department of Urology, Basurto University Hospital, Bilbao, Spain
| | | | | | | | | | - Laura Palomo
- CIC bioGUNE, Bizkaia Technology Park, Biscay, Spain
| | | | | | - Maria Berdasco
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | | | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, Biscay, Spain
| | | | | | | | | | | | | | | | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Ana M. Aransay
- CIC bioGUNE, Bizkaia Technology Park, Biscay, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain
| | - Miguel Unda
- Department of Urology, Basurto University Hospital, Bilbao, Spain
| | - Juan M. Falcón-Pérez
- CIC bioGUNE, Bizkaia Technology Park, Biscay, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain
- Ikerbasque, Basque Foundation for Science, Bizkaia, Spain
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, Biscay, Spain
- Ikerbasque, Basque Foundation for Science, Bizkaia, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bizkaia, Spain
| |
Collapse
|
1944
|
Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles. Int J Mol Sci 2016; 17:171. [PMID: 26861302 PMCID: PMC4783905 DOI: 10.3390/ijms17020171] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.
Collapse
Affiliation(s)
- Nunzio Iraci
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
| | - Tommaso Leonardi
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK.
| | - Florian Gessler
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
| | - Beatriz Vega
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
| | - Stefano Pluchino
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
| |
Collapse
|
1945
|
Tissot T, Arnal A, Jacqueline C, Poulin R, Lefèvre T, Mery F, Renaud F, Roche B, Massol F, Salzet M, Ewald P, Tasiemski A, Ujvari B, Thomas F. Host manipulation by cancer cells: Expectations, facts, and therapeutic implications. Bioessays 2016; 38:276-85. [PMID: 26849295 DOI: 10.1002/bies.201500163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research.
Collapse
Affiliation(s)
- Tazzio Tissot
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier, France
| | - Audrey Arnal
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier, France
| | | | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Frédéric Mery
- Evolution, Génomes, Comportement and Ecologie, CNRS, IRD, University of Paris-Sud, Université Paris Saclay, Gif-sur-Yvette, France
| | | | - Benjamin Roche
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier, France.,Unité mixte internationale de Modélisation Mathématique et Informatique des Systèmes Complexes, (UMI IRD/UPMC UMMISCO), BondyCedex, France
| | - François Massol
- Université de Lille, UMR 8198, Unité EEP, Ecoimmunology Group, Lille, France
| | - Michel Salzet
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM) INSERM U1192, Université Lille, Lille, France
| | - Paul Ewald
- Department of Biology and the Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | - Aurélie Tasiemski
- Université de Lille, UMR 8198, Unité EEP, Ecoimmunology Group, Lille, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
1946
|
Kanada M, Bachmann MH, Contag CH. Signaling by Extracellular Vesicles Advances Cancer Hallmarks. Trends Cancer 2016; 2:84-94. [DOI: 10.1016/j.trecan.2015.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022]
|
1947
|
Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 2016; 26:217-28. [PMID: 26794868 DOI: 10.1038/cr.2016.13] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/10/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression, and exert extensive impacts on development, physiology, and disease of eukaryotes. A high degree of parallelism is found in the molecular basis of miRNA biogenesis and action in plants and animals. Recent studies interestingly suggest a potential cross-kingdom action of plant-derived miRNAs, through dietary intake, in regulating mammalian gene expression. Although the source and scope of plant miRNAs detected in mammalian specimens remain controversial, these initial studies inspired us to determine whether plant miRNAs can be detected in Western human sera and whether these plant miRNAs are able to influence gene expression and cellular processes related to human diseases such as cancer. Here we found that Western donor sera contained the plant miRNA miR159, whose abundance in the serum was inversely correlated with breast cancer incidence and progression in patients. In human sera, miR159 was predominantly detected in the extracellular vesicles, and was resistant to sodium periodate oxidation suggesting the plant-originated 2'-O-methylation on the 3' terminal ribose. In breast cancer cells but not non-cancerous mammary epithelial cells, a synthetic mimic of miR159 was capable of inhibiting proliferation by targeting TCF7 that encodes a Wnt signaling transcription factor, leading to a decrease in MYC protein levels. Oral administration of miR159 mimic significantly suppressed the growth of xenograft breast tumors in mice. These results demonstrate for the first time that a plant miRNA can inhibit cancer growth in mammals.
Collapse
|
1948
|
Ko J, Carpenter E, Issadore D. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst 2016; 141:450-460. [PMID: 26378496 PMCID: PMC4881422 DOI: 10.1039/c5an01610j] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last several years, nanoscale vesicles that originate from tumor cells and which can be found circulating in the blood (i.e. exosomes and microvesicles) have been discovered to contain a wealth of proteomic and genetic information to monitor cancer progression, metastasis, and drug efficacy. However, the use of exosomes and microvesicles as biomarkers to improve patient care has been limited by their small size (30 nm-1 μm) and the extensive sample preparation required for their isolation and measurement. In this Critical Review, we explore the emerging use of micro and nano-technology to isolate and detect exosomes and microvesicles in clinical samples and the application of this technology to the monitoring and diagnosis of cancer.
Collapse
Affiliation(s)
- Jina Ko
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erica Carpenter
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Electrical and Systems engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
1949
|
Koay EJ, Amer AM, Baio FE, Ondari AO, Fleming JB. Toward stratification of patients with pancreatic cancer: Past lessons from traditional approaches and future applications with physical biomarkers. Cancer Lett 2016; 381:237-43. [PMID: 26806807 DOI: 10.1016/j.canlet.2015.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a high mortality rate and outcomes have not improved substantially for decades. Significant attention has focused on the biological drivers of the disease, and preclinical work has pointed to multiple biomarker candidates and therapeutic avenues. However, translation of these promising biomarkers and treatment strategies to patients has not been overwhelmingly successful. New strategies to account for the significant heterogeneity of the disease are needed so that rational treatments can be administered. Here, we focus on how physical sciences-based approaches may play a role in stratifying patients for clinical trials, and how this view of PDAC may reinvigorate treatment strategies that have been abandoned after "failing" to fulfill their potential in unselected patient populations. By complementing biological approaches, the development of physical biomarkers of PDAC may help deliver on the promise of personalized medicine for this devastating disease.
Collapse
Affiliation(s)
- Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmed M Amer
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Flavio E Baio
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander O Ondari
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
1950
|
Bátiz LF, Castro MA, Burgos PV, Velásquez ZD, Muñoz RI, Lafourcade CA, Troncoso-Escudero P, Wyneken U. Exosomes as Novel Regulators of Adult Neurogenic Niches. Front Cell Neurosci 2016; 9:501. [PMID: 26834560 PMCID: PMC4717294 DOI: 10.3389/fncel.2015.00501] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/14/2015] [Indexed: 01/09/2023] Open
Abstract
Adult neurogenesis has been convincingly demonstrated in two regions of the mammalian brain: the sub-granular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the sub-ventricular zone (SVZ) of the lateral ventricles (LV). SGZ newborn neurons are destined to the granular cell layer (GCL) of the DG, while new neurons from the SVZ neurons migrate rostrally into the olfactory bulb (OB). The process of adult neurogenesis persists throughout life and is supported by a pool of neural stem cells (NSCs), which reside in a unique and specialized microenvironment known as "neurogenic niche". Neurogenic niches are structured by a complex organization of different cell types, including the NSC-neuron lineage, glial cells and vascular cells. Thus, cell-to-cell communication plays a key role in the dynamic modulation of homeostasis and plasticity of the adult neurogenic process. Specific cell-cell contacts and extracellular signals originated locally provide the necessary support and regulate the balance between self-renewal and differentiation of NSCs. Furthermore, extracellular signals originated at distant locations, including other brain regions or systemic organs, may reach the niche through the cerebrospinal fluid (CSF) or the vasculature and influence its nature. The role of several secreted molecules, such as cytokines, growth factors, neurotransmitters, and hormones, in the biology of adult NSCs, has been systematically addressed. Interestingly, in addition to these well-recognized signals, a novel type of intercellular messengers has been identified recently: the extracellular vesicles (EVs). EVs, and particularly exosomes, are implicated in the transfer of mRNAs, microRNAs (miRNAs), proteins and lipids between cells and thus are able to modify the function of recipient cells. Exosomes appear to play a significant role in different stem cell niches such as the mesenchymal stem cell niche, cancer stem cell niche and pre-metastatic niche; however, their roles in adult neurogenic niches remain virtually unexplored. This review focuses on the current knowledge regarding the functional relationship between cellular and extracellular components of the adult SVZ and SGZ neurogenic niches, and the growing evidence that supports the potential role of exosomes in the physiology and pathology of adult neurogenesis.
Collapse
Affiliation(s)
- Luis Federico Bátiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Maite A Castro
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de ChileValdivia, Chile
| | - Patricia V Burgos
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Fisiología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Zahady D Velásquez
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Rosa I Muñoz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Carlos A Lafourcade
- Laboratorio de Neurociencias, Facultad de Medicina, Universidad de Los Andes Santiago, Chile
| | - Paulina Troncoso-Escudero
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de ChileValdivia, Chile
| | - Ursula Wyneken
- Laboratorio de Neurociencias, Facultad de Medicina, Universidad de Los Andes Santiago, Chile
| |
Collapse
|