151
|
An Z, Tian J, Zhao X, Liu L, Yang X, Zhang M, Zhang L, Song X. Regulation of cardiovascular and cardiac functions by caveolins. FEBS J 2024; 291:3753-3761. [PMID: 37060249 DOI: 10.1111/febs.16798] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/16/2023]
Abstract
Caveolae are intracellular vesicles with diameters ranging from 50 to 100 nm. The role of caveolins in mediating oxidative stress, autophagy, apoptosis, fibrosis, and vascular remodeling has attracted increasing attention in cardiovascular therapy. Several studies have suggested that caveolin could be a therapeutic target for the treatment of cardiac and/or vascular injury via several pathophysiological mechanisms. Despite substantial advances in our understanding of the basic biology of vesicles over the past decade, the relevance and specific role of these mechanisms in cardiovascular homeostasis remains ambiguous. Here, we review the macroscopic role of caveolins in protecting cardiac function and, at the microscopic level, examine possible cardioprotective caveolar mechanisms, including their antioxidative stress, antiapoptosis, autophagy-regulatory, antifibrosis, and angiogenesis-promoting properties. We believe that the role of caveolins in cardiac functioning has not been fully elucidated and is an important line of future research with several cardioprotective implications.
Collapse
Affiliation(s)
- Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Xueyao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mingduo Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lijun Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
152
|
Beylerli O, Ilyasova T, Shi H, Sufianov A. MicroRNAs in meningiomas: Potential biomarkers and therapeutic targets. Noncoding RNA Res 2024; 9:641-648. [PMID: 38577017 PMCID: PMC10987300 DOI: 10.1016/j.ncrna.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 04/06/2024] Open
Abstract
Meningiomas, characterized primarily as benign intracranial or spinal tumors, present distinctive challenges due to their variable clinical behavior, with certain cases exhibiting aggressive features linked to elevated morbidity and mortality. Despite their prevalence, the underlying molecular mechanisms governing the initiation and progression of meningiomas remain insufficiently understood. MicroRNAs (miRNAs), small endogenous non-coding RNAs orchestrating post-transcriptional gene expression, have garnered substantial attention in this context. They emerge as pivotal biomarkers and potential therapeutic targets, offering innovative avenues for managing meningiomas. Recent research delves into the intricate mechanisms by which miRNAs contribute to meningioma pathogenesis, unraveling the molecular complexities of this enigmatic tumor. Meningiomas, originating from arachnoid meningothelial cells and known for their gradual growth, constitute a significant portion of intracranial tumors. The clinical challenge lies in comprehending their progression, particularly factors associated with brain invasion and heightened recurrence rates, which remain elusive. This comprehensive review underscores the pivotal role of miRNAs, accentuating their potential to advance our comprehension of meningioma biology. Furthermore, it suggests promising directions for developing diagnostic biomarkers and therapeutic interventions, holding the promise of markedly improved patient outcomes in the face of this intricate and variable disease.
Collapse
Affiliation(s)
- Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Republic of Bashkortostan, 3 Lenin Street, Ufa, 450008, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Republic of Bashkortostan 450008, Ufa, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
153
|
Zhao M, Cao N, Gu H, Xu J, Xu W, Zhang D, Wei TYW, Wang K, Guo R, Cui H, Wang X, Guo X, Li Z, He K, Li Z, Zhang Y, Shyy JYJ, Dong E, Xiao H. AMPK Attenuation of β-Adrenergic Receptor-Induced Cardiac Injury via Phosphorylation of β-Arrestin-1-ser330. Circ Res 2024; 135:651-667. [PMID: 39082138 DOI: 10.1161/circresaha.124.324762] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND β-adrenergic receptor (β-AR) overactivation is a major pathological cue associated with cardiac injury and diseases. AMPK (AMP-activated protein kinase), a conserved energy sensor, regulates energy metabolism and is cardioprotective. However, whether AMPK exerts cardioprotective effects via regulating the signaling pathway downstream of β-AR remains unclear. METHODS Using immunoprecipitation, mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we determined whether AMPK phosphorylates β-arrestin-1 at serine (Ser) 330. Wild-type mice and mice with site-specific mutagenesis (S330A knock-in [KI]/S330D KI) were subcutaneously injected with the β-AR agonist isoproterenol (5 mg/kg) to evaluate the causality between β-adrenergic insult and β-arrestin-1 Ser330 phosphorylation. Cardiac transcriptomics was used to identify changes in gene expression from β-arrestin-1-S330A/S330D mutation and β-adrenergic insult. RESULTS Metformin could decrease cAMP/PKA (protein kinase A) signaling induced by isoproterenol. AMPK bound to β-arrestin-1 and phosphorylated Ser330 with the highest phosphorylated mass spectrometry score. AMPK activation promoted β-arrestin-1 Ser330 phosphorylation in vitro and in vivo. Neonatal mouse cardiomyocytes overexpressing β-arrestin-1-S330D (active form) inhibited the β-AR/cAMP/PKA axis by increasing PDE (phosphodiesterase) 4 expression and activity. Cardiac transcriptomics revealed that the differentially expressed genes between isoproterenol-treated S330A KI and S330D KI mice were mainly involved in immune processes and inflammatory response. β-arrestin-1 Ser330 phosphorylation inhibited isoproterenol-induced reactive oxygen species production and NLRP3 (NOD-like receptor protein 3) inflammasome activation in neonatal mouse cardiomyocytes. In S330D KI mice, the β-AR-activated cAMP/PKA pathways were attenuated, leading to repressed inflammasome activation, reduced expression of proinflammatory cytokines, and mitigated macrophage infiltration. Compared with S330A KI mice, S330D KI mice showed diminished cardiac fibrosis and improved cardiac function upon isoproterenol exposure. However, the cardiac protection exerted by AMPK was abolished in S330A KI mice. CONCLUSIONS AMPK phosphorylation of β-arrestin-1 Ser330 potentiated PDE4 expression and activity, thereby inhibiting β-AR/cAMP/PKA activation. Subsequently, β-arrestin-1 Ser330 phosphorylation blocks β-AR-induced cardiac inflammasome activation and remodeling.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Ning Cao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital (N.C.), Capital Medical University, Beijing, China
| | - Huijun Gu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Jiachao Xu
- Laboratory for Clinical Medicine (N.C.), Capital Medical University, Beijing, China
| | - Wenli Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China (W.X., E.D., H.X.)
| | - Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies (D.Z., Zhiyuan Li), Peking University, Beijing, China
| | - Tong-You Wade Wei
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-Y.W.W., J.Y.-J.S.)
| | - Kang Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Ruiping Guo
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Hongtu Cui
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Xiaofeng Wang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China (X.W.)
| | - Xin Guo
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Zhiyuan Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies (D.Z., Zhiyuan Li), Peking University, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China (J.X., K.H.)
- University of Chinese Academy of Sciences, Beijing, China (K.H.)
| | - Zijian Li
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-Y.W.W., J.Y.-J.S.)
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- Institute of Cardiovascular Sciences (E.D.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China (W.X., E.D., H.X.)
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China (W.X., E.D., H.X.)
| |
Collapse
|
154
|
Silva-Neto J, Koch WJ. A New Piece to the AMPK Puzzle in Heart Repair: Phosphorylation of β-Arrestin-1. Circ Res 2024; 135:668-670. [PMID: 39208127 PMCID: PMC11407748 DOI: 10.1161/circresaha.124.325195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
- Julio Silva-Neto
- Departments of Surgery and Medicine and Cardiovascular Research Center, Duke University School of Medicine, Durham, NC
| | - Walter J Koch
- Departments of Surgery and Medicine and Cardiovascular Research Center, Duke University School of Medicine, Durham, NC
| |
Collapse
|
155
|
Rivas V, González-Muñoz T, Albitre Á, Lafarga V, Delgado-Arévalo C, Mayor F, Penela P. GRK2-mediated AKT activation controls cell cycle progression and G2 checkpoint in a p53-dependent manner. Cell Death Discov 2024; 10:385. [PMID: 39198399 PMCID: PMC11358448 DOI: 10.1038/s41420-024-02143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Cell cycle checkpoints, activated by stressful events, halt the cell cycle progression, and prevent the transmission of damaged DNA. These checkpoints prompt cell repair but also trigger cell death if damage persists. Decision-making between these responses is multifactorial and context-dependent, with the tumor suppressor p53 playing a central role. In many tumor cells, p53 alterations lead to G1/S checkpoint loss and the weakening of the G2 checkpoint, rendering cell viability dependent on the strength of the latter through mechanisms not fully characterized. Cells with a strong pro-survival drive can evade cell death despite substantial DNA lesions. Deciphering the integration of survival pathways with p53-dependent and -independent mechanisms governing the G2/M transition is crucial for understanding G2 arrest functionality and predicting tumor cell response to chemotherapy. The serine/threonine kinase GRK2 emerges as a signaling node in cell cycle modulation. In cycling cells, but not in G2 checkpoint-arrested cells, GRK2 protein levels decline during G2/M transition through a process triggered by CDK2-dependent phosphorylation of GRK2 at the S670 residue and Mdm2 ubiquitination. We report now that this downmodulation in G2 prevents the unscheduled activation of the PI3K/AKT pathway, allowing cells to progress into mitosis. Conversely, higher GRK2 levels lead to tyrosine phosphorylation by the kinase c-Abl, promoting the direct association of GRK2 with the p85 regulatory subunit of PI3K and AKT activation in a GRK2 catalytic-independent manner. Hyperactivation of AKT is conditioned by p53's scaffolding function, triggering FOXO3a phosphorylation, impaired Cyclin B1 accumulation, and CDK1 activation, causing a G2/M transition delay. Upon G2 checkpoint activation, GRK2 potentiates early arrest independently of p53 through AKT activation. However, its ability to overcome the G2 checkpoint in viable conditions depends on p53. Our results suggest that integrating the GRK2/PI3K/AKT axis with non-canonical functions of p53 might confer a survival advantage to tumor cells.
Collapse
Affiliation(s)
- Verónica Rivas
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Teresa González-Muñoz
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Ángela Albitre
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Vanesa Lafarga
- Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Delgado-Arévalo
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain
| | - Petronila Penela
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain.
| |
Collapse
|
156
|
Rihan M, Sharma SS. Compound 3K attenuates isoproterenol-induced cardiac hypertrophy by inhibiting pyruvate kinase M2 (PKM2) pathway. Life Sci 2024; 351:122837. [PMID: 38879156 DOI: 10.1016/j.lfs.2024.122837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
AIM Chronic sympathetic stimulation has been identified as a primary factor in the pathogenesis of cardiac hypertrophy (CH). However, there is no appropriate treatment available for the management of CH. Recently, it has been revealed that pyruvate kinase M2 (PKM2) plays a significant role in cardiac remodeling, fibrosis, and hypertrophy. However, the therapeutic potential of selective PKM2 inhibitor has not yet been explored in cardiac hypertrophy. Thus, in the current study, we have studied the cardioprotective potential of Compound 3K, a selective PKM2 inhibitor in isoproterenol-induced CH model. METHODS To induce cardiac hypertrophy, male Wistar rats were subcutaneously administered isoproterenol (ISO, 5 mg/kg/day) for 14 days. Compound 3K at dosages of 2 and 4 mg/kg orally was administered to ISO-treated rats for 14 days to explore its effects on various parameters like ECG, ventricular functions, hypertrophic markers, histology, inflammation, and protein expression were performed. RESULTS Fourteen days administration of ISO resulted in the induction of CH, which was evidenced by alterations in ECG, ventricular dysfunctions, increase in hypertrophy markers, and fibrosis. The immunoblotting of hypertrophy heart revealed the significant rise in PKM2 and reduction in PKM1 protein expression. Treatment with Compound 3K led to downregulation of PKM2 and upregulation of PKM1 protein expression. Compound 3K showed cardioprotective effects by improving ECG, cardiac functions, hypertrophy markers, inflammation, and fibrosis. Further, it also reduced cardiac expression of PKM2-associated splicing protein, HIF-1α, and caspase-3. CONCLUSION Our findings suggest that Compound 3K has a potential cardioprotective effect via PKM2 inhibition in isoproterenol-induced CH.
Collapse
Affiliation(s)
- Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar (Mohali) 160062, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar (Mohali) 160062, Punjab, India.
| |
Collapse
|
157
|
Saha PP, Gogonea V, Sweet W, Mohan ML, Singh KD, Anderson JT, Mallela D, Witherow C, Kar N, Stenson K, Harford T, Fischbach MA, Brown JM, Karnik SS, Moravec CS, DiDonato JA, Naga Prasad SV, Hazen SL. Gut microbe-generated phenylacetylglutamine is an endogenous allosteric modulator of β2-adrenergic receptors. Nat Commun 2024; 15:6696. [PMID: 39107277 PMCID: PMC11303761 DOI: 10.1038/s41467-024-50855-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/16/2024] [Indexed: 08/09/2024] Open
Abstract
Allosteric modulation is a central mechanism for metabolic regulation but has yet to be described for a gut microbiota-host interaction. Phenylacetylglutamine (PAGln), a gut microbiota-derived metabolite, has previously been clinically associated with and mechanistically linked to cardiovascular disease (CVD) and heart failure (HF). Here, using cells expressing β1- versus β2-adrenergic receptors (β1AR and β2AR), PAGln is shown to act as a negative allosteric modulator (NAM) of β2AR, but not β1AR. In functional studies, PAGln is further shown to promote NAM effects in both isolated male mouse cardiomyocytes and failing human heart left ventricle muscle (contracting trabeculae). Finally, using in silico docking studies coupled with site-directed mutagenesis and functional analyses, we identified sites on β2AR (residues E122 and V206) that when mutated still confer responsiveness to canonical β2AR agonists but no longer show PAGln-elicited NAM activity. The present studies reveal the gut microbiota-obligate metabolite PAGln as an endogenous NAM of a host GPCR.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Allosteric Regulation
- Gastrointestinal Microbiome
- Glutamine/metabolism
- Heart Failure/metabolism
- Heart Failure/microbiology
- HEK293 Cells
- Mice, Inbred C57BL
- Molecular Docking Simulation
- Mutagenesis, Site-Directed
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/genetics
Collapse
Affiliation(s)
- Prasenjit Prasad Saha
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Valentin Gogonea
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Chemistry Department, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, USA
| | - Wendy Sweet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Maradumane L Mohan
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Khuraijam Dhanachandra Singh
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - James T Anderson
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Deepthi Mallela
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Conner Witherow
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Niladri Kar
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Kate Stenson
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Terri Harford
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA, USA
| | - J Mark Brown
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Sadashiva S Karnik
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Christine S Moravec
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Sathyamangla Venkata Naga Prasad
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA.
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA.
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
158
|
Salvail W, Salvail D, Chagnon F, Lesur O. Apelin-13 administration allows for norepinephrine sparing in a rat model of cecal ligation and puncture-induced septic shock. Intensive Care Med Exp 2024; 12:68. [PMID: 39103658 DOI: 10.1186/s40635-024-00650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 07/21/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Infusion of exogenous catecholamines (i.e., norepinephrine [NE] and dobutamine) is a recommended treatment for septic shock with myocardial dysfunction. However, sustained catecholamine infusion is linked to cardiac toxicity and impaired responsiveness. Several pre-clinical and clinical studies have investigated the use of alternative vasopressors in the treatment of septic shock, with limited benefits and generally no effect on mortality. Apelin-13 (APL-13) is an endogenous positive inotrope and vasoactive peptide and has been demonstrated cardioprotective with vasomodulator and sparing life effects in animal models of septic shock. A primary objective of this study was to evaluate the NE-sparing effect of APL-13 infusion in an experimental sepsis-induced hypotension. METHODS For this goal, sepsis was induced by cecal ligation and puncture (CLP) in male rats and the arterial blood pressure (BP) monitored continuously via a carotid catheter. Monitoring, fluid resuscitation and experimental treatments were performed on conscious animals. Based on pilot assays, normal saline fluid resuscitation (2.5 mL/Kg/h) was initiated 3 h post-CLP and maintained up to the endpoint. Thus, titrated doses of NE, with or without fixed-doses of APL-13 or the apelin receptor antagonist F13A co-infusion were started when 20% decrease of systolic BP (SBP) from baseline was achieved, to restore SBP values ≥ 115 ± 1.5 mmHg (baseline average ± SEM). RESULTS A reduction in mean NE dose was observed with APL-13 but not F13A co-infusion at pre-determined treatment time of 4.5 ± 0.5 h (17.37 ± 1.74 µg/Kg/h [APL-13] vs. 25.64 ± 2.61 µg/Kg/h [Control NE] vs. 28.60 ± 4.79 µg/Kg/min [F13A], P = 0.0491). A 60% decrease in NE infusion rate over time was observed with APL-13 co-infusion, (p = 0.008 vs NE alone), while F13A co-infusion increased the NE infusion rate over time by 218% (p = 0.003 vs NE + APL-13). Associated improvements in cardiac function are likely mediated by (i) enhanced left ventricular end-diastolic volume (0.18 ± 0.02 mL [Control NE] vs. 0.30 ± 0.03 mL [APL-13], P = 0.0051), stroke volume (0.11 ± 0.01 mL [Control NE] vs. 0.21 ± 0.01 mL [APL-13], P < 0.001) and cardiac output (67.57 ± 8.63 mL/min [Control NE] vs. 112.20 ± 8.53 mL/min [APL-13], P = 0.0036), and (ii) a reduced effective arterial elastance (920.6 ± 81.4 mmHg/mL/min [Control NE] vs. 497.633.44 mmHg/mL/min. [APL-13], P = 0.0002). APL-13 administration was also associated with a decrease in lactate levels compared to animals only receiving NE (7.08 ± 0.40 [Control NE] vs. 4.78 ± 0.60 [APL-13], P < 0.01). CONCLUSION APL-13 exhibits NE-sparing benefits in the treatment of sepsis-induced shock, potentially reducing deleterious effects of prolonged exogenous catecholamine administration.
Collapse
Affiliation(s)
- William Salvail
- Centre de Recherche Clinique du CHU Sherbrooke (CRCHUS), CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- IPS Therapeutique Inc., Sherbrooke, QC, Canada
| | | | - Frédéric Chagnon
- Centre de Recherche Clinique du CHU Sherbrooke (CRCHUS), CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olivier Lesur
- Centre de Recherche Clinique du CHU Sherbrooke (CRCHUS), CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Département de Soins Intensifs et Service de PneumologieCHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12th Avenue Nord, SherbrookeSherbrooke, QC, J1H 5N4, Canada.
- Département de Médecine, CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
159
|
Chen Q, Huang Z, Chen J, Tian X, Zhang R, Liang Q, Liu Z, Cheng Y. Notoginsenoside R1 attenuates ischemic heart failure by modulating MDM2/β arrestin2-mediated β2-adrenergic receptor ubiquitination. Biomed Pharmacother 2024; 177:117004. [PMID: 38955084 DOI: 10.1016/j.biopha.2024.117004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
β2 adrenergic receptor (β2AR) is a G-protein-coupled receptor involved in cardiac protection. In chronic heart failure (CHF), persistent sympathetic nervous system activation occurs, resulting in prolonged β2AR activation and subsequent receptor desensitization and downregulation. Notoginsenoside R1 (NGR1) has the functions of enhancing myocardial energy metabolism and mitigating myocardial fibrosis. The mechanisms of NGR1 against ischemic heart failure are unclear. A left anterior descending (LAD) artery ligation procedure was performed on C57BL/6 J mice for four weeks. From the 4th week onwards, they were treated with various doses (3, 10, 30 mg/kg/day) of NGR1. Subsequently, the impacts of NGR1 on ischemic heart failure were evaluated by assessing cardiac function, morphological changes in cardiac tissue, and the expression of atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). H9c2 cells were protected by NGR1 when exposed to OGD/R conditions. H9c2 cells were likewise protected from OGD/R damage by NGR1. Furthermore, NGR1 increased β2AR levels and decreased β2AR ubiquitination. Mechanistic studies revealed that NGR1 enhanced MDM2 protein stability and increased the expression of MDM2 and β-arrestin2 while inhibiting their interaction. Additionally, under conditions produced by OGD/R, the protective benefits of NGR1 on H9c2 cells were attenuated upon administration of the MDM2 inhibitor SP141. According to these findings, NGR1 impedes the interplay between β-arrestin2 and MDM2, thereby preventing the ubiquitination and degradation of β2AR to improve CHF.
Collapse
Affiliation(s)
- Qi Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziwei Huang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jing Chen
- Department of Cardiovascular Disease, The First Afliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoyu Tian
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qi Liang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen 518000, China.
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Yuanyuan Cheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
160
|
Simon LH, Garritson J, Pullen N, Hayward R. Exercise Preconditioning Preserves Cardiac Function and Enhances Cardiac Recovery Following Dobutamine Stimulation in Doxorubicin-Treated Rat Hearts. J Cardiovasc Pharmacol 2024; 84:188-198. [PMID: 38814887 DOI: 10.1097/fjc.0000000000001583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/08/2024] [Indexed: 06/01/2024]
Abstract
ABSTRACT Exercise preconditioning has been shown to protect against doxorubicin (DOX)-induced cardiac dysfunction when hearts are maintained under resting conditions. However, it is unclear whether this exercise-induced protective effect is maintained when the heart is challenged with the β 1 -adrenergic receptor agonist dobutamine (DOB), which mimics acute exercise stress. Fischer 344 rats were randomly assigned to sedentary (SED) or voluntary wheel running (WR) groups for 10 weeks. At week 11, rats were treated with either 15 mg/kg DOX or saline. Five days later, ex vivo cardiac function was assessed using an isolated working heart model at baseline, during the infusion of 7.5 μg·kg -1 ·min -1 DOB, and during recovery. DOB infusion significantly increased left ventricular developed pressure (LVDP), maximal (dP/dt max ) and minimal (dP/dt min ) rate of left ventricular pressure development, and heart rate in all groups ( P < 0.05). SED + DOX also showed a lower baseline and recovery LVDP than WR + DOX (83 ± 12 vs. 109 ± 6 mm Hg baseline, 76 ± 11 vs. 100 ± 10 mm Hg recovery, P < 0.05). WR + DOX showed higher dP/dt max and lower dP/dt min when compared with SED + DOX during DOB infusion (7311 ± 1481 vs. 5167 ± 1436 mm Hg/s and -4059 ± 1114 vs.-3158 ± 1176 mm Hg/s, respectively). SED + DOX dP/dt max was significantly lower during baseline and during recovery when compared with all other groups ( P < 0.05). These data suggest that exercise preconditioning preserved cardiac function after DOX exposure even when the heart is challenged with DOB, and it appeared to preserve the heart's ability to recover from this functional challenge.
Collapse
Affiliation(s)
- Lea Haverbeck Simon
- Department of Kinesiology, Nutrition, and Dietetics, and the University of Northern Colorado Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, CO; and
| | - Jacob Garritson
- Department of Kinesiology, Nutrition, and Dietetics, and the University of Northern Colorado Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, CO; and
| | - Nicholas Pullen
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO
| | - Reid Hayward
- Department of Kinesiology, Nutrition, and Dietetics, and the University of Northern Colorado Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, CO; and
| |
Collapse
|
161
|
Underwood L, Jiang CS, Oh JY, Sato PY. Unheralded Adrenergic Receptor Signaling in Cellular Oxidative Stress and Death. CURRENT OPINION IN PHYSIOLOGY 2024; 40:100766. [PMID: 39070968 PMCID: PMC11271747 DOI: 10.1016/j.cophys.2024.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Catecholamines (CAs) bind and activate adrenergic receptors (ARs), thus exuding a key role in cardiac adaptations to global physiological queues. Prolonged exposure to high levels of CAs promotes deleterious effects on the cardiovascular system, leading to organ dysfunction and heart failure (HF). In addition to the prominent role of ARs in inotropic and chronotropic responses, recent studies have delved into elucidating mechanisms contributing to CA toxicity and cell death. Central to this process is understanding the involvement of α1AR and βAR in cardiac remodeling and mechanisms of cellular survival. Here, we highlight the complexity of AR signaling and the fundamental need for a better understanding of its contribution to oxidative stress and cell death. This crucial informational nexus remains a barrier to the development of new therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Lilly Underwood
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Chun-Sun Jiang
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Joo-Yeun Oh
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Priscila Y Sato
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
162
|
Gergs U, Wackerhagen S, Fuhrmann T, Schäfer I, Neumann J. Further investigations on the influence of protein phosphatases on the signaling of muscarinic receptors in the atria of mouse hearts. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5731-5743. [PMID: 38308688 PMCID: PMC11329414 DOI: 10.1007/s00210-024-02973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
The vagal regulation of cardiac function involves acetylcholine (ACh) receptor activation followed by negative chronotropic and negative as well as positive inotropic effects. The resulting signaling pathways may include Gi/o protein-coupled reduction in adenylyl cyclase (AC) activity, direct Gi/o protein-coupled activation of ACh-activated potassium current (IKACh), inhibition of L-type calcium ion channels, and/or the activation of protein phosphatases. Here, we studied the role of the protein phosphatases 1 (PP1) and 2A (PP2A) for muscarinic receptor signaling in isolated atrial preparations of transgenic mice with cardiomyocyte-specific overexpression of either the catalytic subunit of PP2A (PP2A-TG) or the inhibitor-2 (I2) of PP1 (I2-TG) or in double transgenic mice overexpressing both PP2A and I2 (DT). In mouse left atrial preparations, carbachol (CCh), cumulatively applied (1 nM-10 µM), exerted at low concentrations a negative inotropic effect followed by a positive inotropic effect at higher concentrations. This biphasic effect was noted with CCh alone as well as when CCh was added after β-adrenergic pre-stimulation with isoprenaline (1 µM). Whereas the response to stimulation of β-adrenoceptors or adenosine receptors (used as controls) was changed in PP2A-TG, the response to CCh was unaffected in atrial preparations from all transgenic models studied here. Therefore, the present data tentatively indicate that neither PP2A nor PP1, but possibly other protein phosphatases, is involved in the muscarinic receptor-induced inotropic and chronotropic effects in the mouse heart.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany.
| | - Silke Wackerhagen
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany
| | - Tobias Fuhrmann
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany
| | - Inka Schäfer
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany
| | - Joachim Neumann
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany
| |
Collapse
|
163
|
Maslov LN, Naryzhnaya NV, Voronkov NS, Kurbatov BK, Derkachev IA, Ryabov VV, Vyshlov EV, Kolpakov VV, Tomilova EA, Sapozhenkova EV, Singh N, Fu F, Pei J. The role of β-adrenergic receptors in the regulation of cardiac tolerance to ischemia/reperfusion. Why do β-adrenergic receptor agonists and antagonists protect the heart? Fundam Clin Pharmacol 2024; 38:658-673. [PMID: 38423796 DOI: 10.1111/fcp.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Catecholamines and β-adrenergic receptors (β-ARs) play an important role in the regulation of cardiac tolerance to the impact of ischemia and reperfusion. This systematic review analyzed the molecular mechanisms of the cardioprotective activity of β-AR ligands. METHODS We performed an electronic search of topical articles using PubMed databases from 1966 to 2023. We cited original in vitro and in vivo studies and review articles that documented the cardioprotective properties of β-AR agonists and antagonists. RESULTS The infarct-reducing effect of β-AR antagonists did not depend on a decrease in the heart rate. The target for β-blockers is not only cardiomyocytes but also neutrophils. β1-blockers (metoprolol, propranolol, timolol) and the selective β2-AR agonist arformoterol have an infarct-reducing effect in coronary artery occlusion (CAO) in animals. Antagonists of β1- and β2-АR (metoprolol, propranolol, nadolol, carvedilol, bisoprolol, esmolol) are able to prevent reperfusion cardiac injury. All β-AR ligands that reduced infarct size are the selective or nonselective β1-blockers. It was hypothesized that β1-AR blocking promotes an increase in cardiac tolerance to I/R. The activation of β1-AR, β2-AR, and β3-AR can increase cardiac tolerance to I/R. The cardioprotective effect of β-AR agonists is mediated via the activation of kinases and reactive oxygen species production. CONCLUSIONS It is unclear why β-blockers with the similar receptor selectivity have the infarct-sparing effect while other β-blockers with the same selectivity do not affect infarct size. What is the molecular mechanism of the infarct-reducing effect of β-blockers in reperfusion? Why did in early studies β-blockers decrease the mortality rate in patients with acute myocardial infarction (AMI) and without reperfusion and in more recent studies β-blockers had no effect on the mortality rate in patients with AMI and reperfusion? The creation of more effective β-AR ligands depends on the answers to these questions.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Nikita S Voronkov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Vyacheslav V Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Evgeny V Vyshlov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | | | | | | | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
164
|
Song Q, Zhang N, Zhang Y, Zhang A, Li H, Bai S, Shang L, Du J, Hou Y. Multiomics analysis of canine myocardium after circumferential pulmonary vein ablation: Effect of neuropeptide Y on long-term reinduction of atrial fibrillation. J Cell Mol Med 2024; 28:e18582. [PMID: 39107876 PMCID: PMC11303123 DOI: 10.1111/jcmm.18582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Catheter ablation (CA) is an essential method for the interventional treatment of atrial fibrillation (AF), and it is very important to reduce long-term recurrence after CA. The mechanism of recurrence after CA is still unclear. We established a long-term model of beagle canines after circumferential pulmonary vein ablation (CPVA). The transcriptome and proteome were obtained using high-throughput sequencing and TMT-tagged LC-MS/LC analysis, respectively. Differentially expressed genes and proteins were screened and enriched, and the effect of fibrosis was found and verified in tissues. A downregulated protein, neuropeptide Y (NPY), was selected for validation and the results suggest that NPY may play a role in the long-term reinduction of AF after CPVA. Then, the molecular mechanism of NPY was further investigated. The results showed that the atrial effective refractory period (AERP) was shortened and fibrosis was increased after CPVA. Atrial myocyte apoptosis was alleviated by NPY intervention, and Akt activation was inhibited in cardiac fibroblasts. These results suggest that long-term suppression of NPY after CPVA may lead to induction of AF through promoting cardiomyocyte apoptosis and activating the Akt pathway in cardiac fibroblasts, which may make AF more likely to reinduce.
Collapse
Affiliation(s)
- Qiyuan Song
- Department of CardiologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Shandong First Medical UniversityJinanChina
| | - Ning Zhang
- Medical Integration and Practice Center, Shandong UniversityJinanChina
| | - Yujiao Zhang
- Department of CardiologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Shandong First Medical UniversityJinanChina
| | | | - Huilin Li
- Department of Emergency MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Emergency MedicineJinanChina
| | - Shuting Bai
- Department of CardiologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Shandong First Medical UniversityJinanChina
- Medical Integration and Practice Center, Shandong UniversityJinanChina
| | - Luxiang Shang
- Department of CardiologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Shandong First Medical UniversityJinanChina
| | - Juanjuan Du
- Department of CardiologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Shandong First Medical UniversityJinanChina
| | - Yinglong Hou
- Department of CardiologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Shandong First Medical UniversityJinanChina
| |
Collapse
|
165
|
Alibhai FJ, Li RK. Rejuvenation of the Aging Heart: Molecular Determinants and Applications. Can J Cardiol 2024; 40:1394-1411. [PMID: 38460612 DOI: 10.1016/j.cjca.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
In Canada and worldwide, the elderly population (ie, individuals > 65 years of age) is increasing disproportionately relative to the total population. This is expected to have a substantial impact on the health care system, as increased aged is associated with a greater incidence of chronic noncommunicable diseases. Within the elderly population, cardiovascular disease is a leading cause of death, therefore developing therapies that can prevent or slow disease progression in this group is highly desirable. Historically, aging research has focused on the development of anti-aging therapies that are implemented early in life and slow the age-dependent decline in cell and organ function. However, accumulating evidence supports that late-in-life therapies can also benefit the aged cardiovascular system by limiting age-dependent functional decline. Moreover, recent studies have demonstrated that rejuvenation (ie, reverting cellular function to that of a younger phenotype) of the already aged cardiovascular system is possible, opening new avenues to develop therapies for older individuals. In this review, we first provide an overview of the functional changes that occur in the cardiomyocyte with aging and how this contributes to the age-dependent decline in heart function. We then discuss the various anti-aging and rejuvenation strategies that have been pursued to improve the function of the aged cardiomyocyte, with a focus on therapies implemented late in life. These strategies include 1) established systemic approaches (caloric restriction, exercise), 2) pharmacologic approaches (mTOR, AMPK, SIRT1, and autophagy-targeting molecules), and 3) emerging rejuvenation approaches (partial reprogramming, parabiosis/modulation of circulating factors, targeting endogenous stem cell populations, and senotherapeutics). Collectively, these studies demonstrate the exciting potential and limitations of current rejuvenation strategies and highlight future areas of investigation that will contribute to the development of rejuvenation therapies for the aged heart.
Collapse
Affiliation(s)
- Faisal J Alibhai
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Division of Cardiovascular Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
166
|
Lu F, Li E, Yang X. Proprotein convertase subtilisin/kexin type 9 deficiency in extrahepatic tissues: emerging considerations. Front Pharmacol 2024; 15:1413123. [PMID: 39139638 PMCID: PMC11319175 DOI: 10.3389/fphar.2024.1413123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily secreted by hepatocytes. PCSK9 is critical in liver low-density lipoprotein receptors (LDLRs) metabolism. In addition to its hepatocellular presence, PCSK9 has also been detected in cardiac, cerebral, islet, renal, adipose, and other tissues. Once perceived primarily as a "harmful factor," PCSK9 has been a focal point for the targeted inhibition of both systemic circulation and localized tissues to treat diseases. However, PCSK9 also contributes to the maintenance of normal physiological functions in numerous extrahepatic tissues, encompassing both LDLR-dependent and -independent pathways. Consequently, PCSK9 deficiency may harm extrahepatic tissues in close association with several pathophysiological processes, such as lipid accumulation, mitochondrial impairment, insulin resistance, and abnormal neural differentiation. This review encapsulates the beneficial effects of PCSK9 on the physiological processes and potential disorders arising from PCSK9 deficiency in extrahepatic tissues. This review also provides a comprehensive analysis of the disparities between experimental and clinical research findings regarding the potential harm associated with PCSK9 deficiency. The aim is to improve the current understanding of the diverse effects of PCSK9 inhibition.
Collapse
Affiliation(s)
- Fengyuan Lu
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - En Li
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Yang
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
167
|
Kuprytė M, Lesauskaitė V, Siratavičiūtė V, Utkienė L, Jusienė L, Pangonytė D. Expression of Osteopontin and Gremlin 1 Proteins in Cardiomyocytes in Ischemic Heart Failure. Int J Mol Sci 2024; 25:8240. [PMID: 39125809 PMCID: PMC11311846 DOI: 10.3390/ijms25158240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
A relevant role of osteopontin (OPN) and gremlin 1 (Grem1) in regulating cardiac tissue remodeling and formation of heart failure (HF) are documented, with the changes of OPN and Grem1 levels in blood plasma due to acute ischemia, ischemic heart disease-induced advanced HF or dilatative cardiomyopathy being the primary focus in most of these studies. However, knowledge on the early OPN and Grem1 proteins expression changes within cardiomyocytes during remodeling due to chronic ischemia remains insufficient. The aim of this study was to determine the OPN and Grem1 proteins expression changes in human cardiomyocytes at different stages of ischemic HF. A semi-quantitative immunohistochemical analysis was performed in 105 myocardial tissue samples obtained from the left cardiac ventricles. Increased OPN immunostaining intensity was already detected in the stage A HF group, compared to the control group (p < 0.001), and continued to increase in the stage B HF (p < 0.001), achieving the peak of immunostaining in the stages C/D HF group (p < 0.001). Similar data of Grem1 immunostaining intensity changes in cardiomyocytes were documented. Significantly positive correlations were detected between OPN, Grem1 expression in cardiomyocytes and their diameter as well as the length, in addition to positive correlation between OPN and Grem1 expression changes within cardiomyocytes. These novel findings suggest that OPN and Grem1 contribute significantly to reorganization of cellular geometry from the earliest stage of cardiomyocyte remodeling, providing new insights into the ischemic HF pathogenesis.
Collapse
Affiliation(s)
- Milda Kuprytė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.K.); (V.S.); (L.U.); (L.J.)
| | - Vaiva Lesauskaitė
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Vitalija Siratavičiūtė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.K.); (V.S.); (L.U.); (L.J.)
| | - Lina Utkienė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.K.); (V.S.); (L.U.); (L.J.)
| | - Lina Jusienė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.K.); (V.S.); (L.U.); (L.J.)
| | - Dalia Pangonytė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.K.); (V.S.); (L.U.); (L.J.)
| |
Collapse
|
168
|
Akhavan M, Esam Z, Mirshafa A, Lotfi M, Pourmand S, Ashori F, Rabani M, Ekbatani G, Tourani S, Beheshti R, Keshavarzian Z, Ghanbarimasir Z, Bekhradnia A. Green synthesis, in silico modeling, and biological evaluation of N-substituted ( Z)-5-arylidene imidazolidine/thiazolidine-2,4-dione/4-thione derivatives catalyzed by Bu SO 3H core-shell nanostructures. RSC Adv 2024; 14:22916-22938. [PMID: 39035715 PMCID: PMC11259107 DOI: 10.1039/d4ra03881a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024] Open
Abstract
In this effort, the immobilization of guanidine-sulfonate on the surface of Fe3O4 MNPs (magnetic nanoparticles) as a novel acid nanocatalyst has been successfully reported for the synthesis of N-substituted (Z)-5-arylidene thiazolidine-2,4-dione and related cyclic derivatives, including rhodanine (RHD) and hydantoin (HYD) via a one-pot multiple-component reaction under green conditions. The products were characterized by SEM, TEM, TGA, EDS, BET techniques, VSM, and FTIR. The novel compounds synthesized using this methodology, designated as series La (1-9), Lb (1-8), and Lc (1-8), were subjected to anticancer screening against A549 and MCF7cell lines via MTT assays. Notably, several compounds (L1a, L2a, L3a, L1b, L2b, L3b, and L4b) exhibited potent antiproliferative activities, with observed IC50 values as low as 1.23 μM and 1.02 μM against MCF-7 cells, thereby outperforming the established anticancer drugs doxorubicin and cisplatin. Molecular docking and dynamics simulations revealed that ligands L1a, L2a, and L3a strongly interact with the protein target 3CD8, with L1a displaying significant hydrophobic and hydrogen bonding interactions and L2a engaging in unique pi-pi stacking with key residues. For protein 2WGJ, ligand L4b exhibited exceptional binding affinity, characterized by robust hydrogen bonding, hydrophobic interactions, and additional stabilizing mechanisms such as water bridges and pi interactions. Hence, N-substituted (Z)-5-arylidene thiazolidine-2,4-dione and its cyclic derivatives may serve as promising candidates for further exploration in the development of new multi-target cancer chemotherapy agents. These findings introduce promising anticancer agents and establish Fe3O4 MNPs as a versatile and environmentally sustainable catalytic platform in drug discovery.
Collapse
Affiliation(s)
- Malihe Akhavan
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences Sari Iran
| | - Zohreh Esam
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences Sari Iran
- Department of Medicinal Chemistry, School of Pharmacy, Babol University of Medical Sciences Babol Iran
| | - Atefeh Mirshafa
- Ramsar Campus, Mazandaran University of Medical Sciences Ramsar Iran
| | - Maryam Lotfi
- Department of Chemistry, NOVA, School of Science and Technology, Universidade NOVA de Lisboa Portugal
| | - Saeed Pourmand
- Department of Chemical Engineering, Tabriz University of Chemical Engineering Tabriz Iran
| | - Froug Ashori
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences Sari Iran
| | - Motahare Rabani
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences Sari Iran
| | - Golbahar Ekbatani
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences Sari Iran
| | - Saeed Tourani
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences Sari Iran
| | - Reza Beheshti
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences Sari Iran
| | - Zahra Keshavarzian
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences Sari Iran
| | - Zahra Ghanbarimasir
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar Iran
| | - Ahmadreza Bekhradnia
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences Sari Iran
| |
Collapse
|
169
|
Yu F, Zong B, Ji L, Sun P, Jia D, Wang R. Free Fatty Acids and Free Fatty Acid Receptors: Role in Regulating Arterial Function. Int J Mol Sci 2024; 25:7853. [PMID: 39063095 PMCID: PMC11277118 DOI: 10.3390/ijms25147853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The metabolic network's primary sources of free fatty acids (FFAs) are long- and medium-chain fatty acids of triglyceride origin and short-chain fatty acids produced by intestinal microorganisms through dietary fibre fermentation. Recent studies have demonstrated that FFAs not only serve as an energy source for the body's metabolism but also participate in regulating arterial function. Excess FFAs have been shown to lead to endothelial dysfunction, vascular hypertrophy, and vessel wall stiffness, which are important triggers of arterial hypertension and atherosclerosis. Nevertheless, free fatty acid receptors (FFARs) are involved in the regulation of arterial functions, including the proliferation, differentiation, migration, apoptosis, inflammation, and angiogenesis of vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). They actively regulate hypertension, endothelial dysfunction, and atherosclerosis. The objective of this review is to examine the roles and heterogeneity of FFAs and FFARs in the regulation of arterial function, with a view to identifying the points of intersection between their actions and providing new insights into the prevention and treatment of diseases associated with arterial dysfunction, as well as the development of targeted drugs.
Collapse
Affiliation(s)
- Fengzhi Yu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| | - Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; (B.Z.); (P.S.)
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lili Ji
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; (B.Z.); (P.S.)
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| |
Collapse
|
170
|
López Quiñones AJ, Vieira LS, Wang J. Cardiac Uptake of the Adrenergic Imaging Agent meta-Iodobenzylguanidine (mIBG) Is Mediated by Organic Cation Transporter 3 (Oct3). Drug Metab Dispos 2024; 52:899-905. [PMID: 38811159 PMCID: PMC11257688 DOI: 10.1124/dmd.124.001709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
Heart failure (HF) is a chronic disease affecting 1%-2% of the global population.123I-labeled meta-iodobenzylguanidine (mIBG) is US Food and Drug Administration-approved for cardiac imaging and prognosis risk assessment in patients with HF. As a norepinephrine analog, mIBG is believed to be transported into adrenergic nerve terminals by the neuronal norepinephrine transporter (NET) and hence image sympathetic innervation of the myocardium. We previously showed that mIBG is an excellent substrate of organic cation transporter 3 (OCT3), an extraneuronal transporter expressed in cardiomyocytes. Here, we evaluated the in vivo impact of Oct3 on mIBG disposition and tissue distribution using Oct3 knockout mice. Oct3 +/+ and Oct3 -/- mice were administered with mIBG intravenously, and mIBG plasma pharmacokinetics and tissue exposures were determined. In Oct3 +/+ mice, mIBG exhibited extensive accumulation in multiple tissues (heart, salivary gland, liver, and adrenal gland). No difference was observed in overall plasma exposure between Oct3 +/+ and Oct3 -/- mice. Strikingly, cardiac mIBG was depleted in Oct3 -/- mice, resulting in 83% reduction in overall cardiac exposure (AUC0-24 h: 12.7 vs. 2.1 μg × h/g). mIBG tissue exposure (AUC0-24 h) was also reduced by 66%, 36%, and 31% in skeletal muscle, salivary gland, and lung, respectively, in Oct3 -/- mice. Our data demonstrated that Oct3 is the primary transporter responsible for cardiac mIBG uptake in vivo and suggested that cardiac mIBG imaging mainly measures OCT3 activity in cardiomyocytes but not NET-mediated uptake in adrenergic nerve endings. Our findings challenge the current paradigm in interpreting cardiac mIBG imaging results and suggest OCT3 as a potential genetic risk marker for HF prognosis. SIGNIFICANCE STATEMENT: 123I-labeled meta-iodobenzylguanidine is used for cardiac imaging and risk assessment in heart failure patients. Contrary to the current belief that meta-iodobenzylguanidine (mIBG) tracks cardiac sympathetic innervation due to its uptake by the neuronal norepinephrine transporter, the authors demonstrated that cardiac mIBG uptake is mediated by the extraneuronal transporter Oct3. Their findings warrant a re-evaluation of the scientific rationale behind cardiac mIBG scan and further suggest organic cation transporter 3 as a risk factor for disease progression in heart failure patients.
Collapse
Affiliation(s)
| | | | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
171
|
Yin Y, Zeng Z, Wei S, Shen Z, Cong Z, Zhu X. Using the sympathetic system, beta blockers and alpha-2 agonists, to address acute respiratory distress syndrome. Int Immunopharmacol 2024; 139:112670. [PMID: 39018694 DOI: 10.1016/j.intimp.2024.112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
Acute Respiratory Distress Syndrome (ARDS) manifests as an acute inflammatory lung injury characterized by persistent hypoxemia, featuring a swift onset, high mortality, and predominantly supportive care as the current therapeutic approach, while effective treatments remain an area of active investigation. Adrenergic receptors (AR) play a pivotal role as stress hormone receptors, extensively participating in various inflammatory processes by initiating downstream signaling pathways. Advancements in molecular biology and pharmacology continually unveil the physiological significance of distinct AR subtypes. Interventions targeting these subtypes have the potential to induce specific alterations in cellular and organismal functions, presenting a promising avenue as a therapeutic target for managing ARDS. This article elucidates the pathogenesis of ARDS and the basic structure and function of AR. It also explores the relationship between AR and ARDS from the perspective of different AR subtypes, aiming to provide new insights for the improvement of ARDS.
Collapse
Affiliation(s)
- Yiyuan Yin
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Zhaojin Zeng
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Senhao Wei
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Ziyuan Shen
- Department of Anaesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhukai Cong
- Department of Anaesthesiology, Peking University Third Hospital, Beijing, China.
| | - Xi Zhu
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
172
|
Ionică LN, Lința AV, Bătrîn AD, Hâncu IM, Lolescu BM, Dănilă MD, Petrescu L, Mozoș IM, Sturza A, Muntean DM. The Off-Target Cardioprotective Mechanisms of Sodium-Glucose Cotransporter 2 Inhibitors: An Overview. Int J Mol Sci 2024; 25:7711. [PMID: 39062954 PMCID: PMC11277154 DOI: 10.3390/ijms25147711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a novel class of glucose-lowering drugs, have revolutionized the management of heart failure with reduced and preserved ejection fraction, regardless of the presence of diabetes, and are currently incorporated in the heart failure guidelines. While these drugs have consistently demonstrated their ability to decrease heart failure hospitalizations in several landmark clinical trials, their cardioprotective effects are far from having been completely elucidated. In the past decade, a growing body of experimental research has sought to address the molecular and cellular mechanisms of SGLT2i in order to provide a better understanding of the off-target acute and chronic cardiac benefits, beyond the on-target renal effect responsible for blood glucose reduction. The present narrative review addresses the direct cardioprotective effects of SGLT2i, delving into the off-target mechanisms of the drugs currently approved for heart failure therapy, and provides insights into future perspectives.
Collapse
Affiliation(s)
- Loredana N. Ionică
- Department of Internal Medicine-Medical Semiotics, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Adina V. Lința
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Alina D. Bătrîn
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Iasmina M. Hâncu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Bogdan M. Lolescu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Maria D. Dănilă
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lucian Petrescu
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Ioana M. Mozoș
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Adrian Sturza
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Danina M. Muntean
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
173
|
Hu H, Xu Z, Zhang Z, Song P, Stull F, Xu P, Tang H. Rational Design of a Flavoenzyme for Aerobic Nicotine Catabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603087. [PMID: 39026806 PMCID: PMC11257531 DOI: 10.1101/2024.07.11.603087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Enzymatic therapy with nicotine-degrading enzyme is a new strategy in treating nicotine addiction, which can reduce nicotine concentrations and weaken withdrawal in the rat model. However, when O2 is used as the electron acceptor, no satisfactory performance has been achieved with one of the most commonly studied and efficient nicotine-catabolizing enzymes, NicA2. To obtain more efficient nicotine-degrading enzyme, we rationally designed and engineered a flavoenzyme Pnao, which shares high structural similarity with NicA2 (RMSD = 1.143 Å) and efficiently catalyze pseudooxynicotine into 3-succinoyl-semialdehyde pyridine using O2. Through amino acid alterations with NicA2, five Pnao mutants were generated, which can degrade nicotine in Tris-HCl buffer and retained catabolic activity on its natural substrate. Nicotine-1'-N-oxide was identified as one of the reaction products. Four of the derivative mutants showed activity in rat serum and Trp220 and Asn224 were found critical for enzyme specificity. Our findings offer a novel avenue for research into aerobic nicotine catabolism and provides a promising method of generating additional nicotine-catalytic enzymes.
Collapse
Affiliation(s)
- Haiyang Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhaoyong Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhiyao Zhang
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Peizhi Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
174
|
Liu SH, Lin FJ, Kao YH, Chen PH, Lin YK, Lu YY, Chen YC, Chen YJ. Chronic Partial Sleep Deprivation Increased the Incidence of Atrial Fibrillation by Promoting Pulmonary Vein and Atrial Arrhythmogenesis in a Rodent Model. Int J Mol Sci 2024; 25:7619. [PMID: 39062858 PMCID: PMC11277294 DOI: 10.3390/ijms25147619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Sleep deprivation (SD) is a recognized risk factor for atrial fibrillation (AF), yet the precise molecular and electrophysiological mechanisms behind SD-induced AF are unclear. This study explores the electrical and structural changes that contribute to AF in chronic partial SD. We induced chronic partial SD in Wistar rats using a modified multiple-platform method. Echocardiography demonstrated impaired systolic and diastolic function in the left ventricle (LV) of the SD rats. The SD rats exhibited an elevated heart rate and a higher low-frequency to high-frequency ratio in a heart-rate variability analysis. Rapid transesophageal atrial pacing led to a higher incidence of AF and longer mean AF durations in the SD rats. Conventional microelectrode recordings showed accelerated pulmonary vein (PV) spontaneous activity in SD rats, along with a heightened occurrence of delayed after-depolarizations in the PV and left atrium (LA) induced by tachypacing and isoproterenol. A Western blot analysis showed reduced expression of G protein-coupled receptor kinase 2 (GRK2) in the LA of the SD rats. Chronic partial SD impairs LV function, promotes AF genesis, and increases PV and LA arrhythmogenesis, potentially attributed to sympathetic overactivity and reduced GRK2 expression. Targeting GRK2 signaling may offer promising therapeutic avenues for managing chronic partial SD-induced AF. Future investigations are mandatory to investigate the dose-response relationship between SD and AF genesis.
Collapse
Affiliation(s)
- Shuen-Hsin Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-H.L.)
- Division of Cardiology, Department of Internal Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan
| | - Fong-Jhih Lin
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-H.L.)
- Cardiovascular Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Pao-Huan Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-H.L.)
- Department of Psychiatry, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Kuo Lin
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan
- Cardiovascular Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Yen-Yu Lu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City 221, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-H.L.)
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan
- Cardiovascular Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| |
Collapse
|
175
|
Liu X, Yu Y, Zhang H, Zhang M, Liu Y. The Role of Muscarinic Acetylcholine Receptor M 3 in Cardiovascular Diseases. Int J Mol Sci 2024; 25:7560. [PMID: 39062802 PMCID: PMC11277046 DOI: 10.3390/ijms25147560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The muscarinic acetylcholine receptor M3 (M3-mAChR) is involved in various physiological and pathological processes. Owing to specific cardioprotective effects, M3-mAChR is an ideal diagnostic and therapeutic biomarker for cardiovascular diseases (CVDs). Growing evidence has linked M3-mAChR to the development of multiple CVDs, in which it plays a role in cardiac protection such as anti-arrhythmia, anti-hypertrophy, and anti-fibrosis. This review summarizes M3-mAChR's expression patterns, functions, and underlying mechanisms of action in CVDs, especially in ischemia/reperfusion injury, cardiac hypertrophy, and heart failure, opening up a new research direction for the treatment of CVDs.
Collapse
Affiliation(s)
- Xinxing Liu
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
| | - Yi Yu
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
| | - Haiying Zhang
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
| | - Min Zhang
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
| | - Yan Liu
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
- International Joint Research Center of Human–Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
- Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
176
|
Jiang M, Wang J, Li Z, Xu D, Jing J, Li F, Ding J, Li Q. Dietary Fiber-Derived Microbial Butyrate Suppresses ILC2-Dependent Airway Inflammation in COPD. Mediators Inflamm 2024; 2024:6263447. [PMID: 39015676 PMCID: PMC11251798 DOI: 10.1155/2024/6263447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 07/18/2024] Open
Abstract
Group 2 innate lymphoid cells (ILC2) strongly modulate COPD pathogenesis. However, the significance of microbiota in ILC2s remains unelucidated. Herein, we investigated the immunomodulatory role of short-chain fatty acids (SCFAs) in regulating ILC2-associated airway inflammation and explores its associated mechanism in COPD. In particular, we assessed the SCFA-mediated regulation of survival, proliferation, and cytokine production in lung sorted ILC2s. To elucidate butyrate action in ILC2-driven inflammatory response in COPD models, we administered butyrate to BALB/c mice via drinking water. We revealed that SCFAs, especially butyrate, derived from dietary fiber fermentation by gut microbiota inhibited pulmonary ILC2 functions and suppressed both IL-13 and IL-5 synthesis by murine ILC2s. Using in vivo and in vitro experimentation, we validated that butyrate significantly ameliorated ILC2-induced inflammation. We further demonstrated that butyrate suppressed ILC2 proliferation and GATA3 expression. Additionally, butyrate potentially utilized histone deacetylase (HDAC) inhibition to enhance NFIL3 promoter acetylation, thereby augmenting its expression, which eventually inhibited cytokine production in ILC2s. Taken together, the aforementioned evidences demonstrated a previously unrecognized role of microbial-derived SCFAs on pulmonary ILC2s in COPD. Moreover, our evidences suggest that metabolomics and gut microbiota modulation may prevent lung inflammation of COPD.
Collapse
Affiliation(s)
- Min Jiang
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Jing Wang
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Zheng Li
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Dan Xu
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Jing Jing
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Fengsen Li
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Jianbing Ding
- Department of ImmunologyCollege of Basic MedicineXinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Qifeng Li
- Xinjiang Institute of PediatricsXinjiang Hospital of Beijing Children's HospitalChildren's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| |
Collapse
|
177
|
Kim HJ, Jo SH. Effect of low blood pressure on prognosis of acute heart failure. Sci Rep 2024; 14:15605. [PMID: 38971850 PMCID: PMC11227539 DOI: 10.1038/s41598-024-66219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/28/2024] [Indexed: 07/08/2024] Open
Abstract
Low blood pressure (BP) is associated with poor outcomes in patients with heart failure (HF). We investigated the influence of initial BP on the prognosis of HF patients at admission, and prescribing patterns of HF medications, such as angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARB), and beta-blockers (BB). Data were sourced from a multicentre cohort of patients admitted for acute HF. Patients were grouped into heart failure reduced ejection fraction (HFrEF) and HF mildly reduced/preserved ejection fraction (HFmrEF/HFpEF) groups. Initial systolic and diastolic BPs were categorized into specific ranges. Among 2778 patients, those with HFrEF were prescribed ACEi, ARB, or BB at discharge, regardless of their initial BP. However, medication use in HFmrEF/HFpEF patients tended to decrease as BP decreased. Lower initial BP in HFrEF patients correlated with an increased incidence of all-cause death and composite clinical events, including HF readmission or all-cause death. However, no significant differences in clinical outcomes were observed in HFmrEF/HFpEF patients according to BP. Initial systolic (< 120 mmHg) and diastolic (< 80 mmHg) BPs were independently associated with a 1.81-fold (odds ratio [OR] 1.81, 95% confidence interval [CI] 1.349-2.417, p < 0.001) and 2.24-fold (OR 2.24, 95% CI 1.645-3.053, p < 0.001) increased risk of long-term mortality in HFrEF patients, respectively. In conclusion, low initial BP in HFrEF patients correlated with adverse clinical outcomes, and BP < 120/80 mmHg independently increased mortality. However, this relationship was not observed in HFmrEF/HFpEF patients.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Sang-Ho Jo
- Cardiovascular Center, Hallym University Sacred Heart Hospital, Anyang-si, Korea.
- Division of Cardiology, Department of Internal Medicine, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
178
|
Szczepanska-Sadowska E, Czarzasta K, Bogacki-Rychlik W, Kowara M. The Interaction of Vasopressin with Hormones of the Hypothalamo-Pituitary-Adrenal Axis: The Significance for Therapeutic Strategies in Cardiovascular and Metabolic Diseases. Int J Mol Sci 2024; 25:7394. [PMID: 39000501 PMCID: PMC11242374 DOI: 10.3390/ijms25137394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
A large body of evidence indicates that vasopressin (AVP) and steroid hormones are frequently secreted together and closely cooperate in the regulation of blood pressure, metabolism, water-electrolyte balance, and behavior, thereby securing survival and the comfort of life. Vasopressin cooperates with hormones of the hypothalamo-pituitary-adrenal axis (HPA) at several levels through regulation of the release of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and multiple steroid hormones, as well as through interactions with steroids in the target organs. These interactions are facilitated by positive and negative feedback between specific components of the HPA. Altogether, AVP and the HPA cooperate closely as a coordinated functional AVP-HPA system. It has been shown that cooperation between AVP and steroid hormones may be affected by cellular stress combined with hypoxia, and by metabolic, cardiovascular, and respiratory disorders; neurogenic stress; and inflammation. Growing evidence indicates that central and peripheral interactions between AVP and steroid hormones are reprogrammed in cardiovascular and metabolic diseases and that these rearrangements exert either beneficial or harmful effects. The present review highlights specific mechanisms of the interactions between AVP and steroids at cellular and systemic levels and analyses the consequences of the inappropriate cooperation of various components of the AVP-HPA system for the pathogenesis of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | | | | |
Collapse
|
179
|
Wei W, Smrcka AV. Internalized β2-Adrenergic Receptors Oppose PLC-Dependent Hypertrophic Signaling. Circ Res 2024; 135:e24-e38. [PMID: 38813686 PMCID: PMC11223973 DOI: 10.1161/circresaha.123.323201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Chronically elevated neurohumoral drive, and particularly elevated adrenergic tone leading to β-adrenergic receptor (β-AR) overstimulation in cardiac myocytes, is a key mechanism involved in the progression of heart failure. β1-AR (β1-adrenergic receptor) and β2-ARs (β2-adrenergic receptor) are the 2 major subtypes of β-ARs present in the human heart; however, they elicit different or even opposite effects on cardiac function and hypertrophy. For example, chronic activation of β1-ARs drives detrimental cardiac remodeling while β2-AR signaling is protective. The underlying molecular mechanisms for cardiac protection through β2-ARs remain unclear. METHODS β2-AR signaling mechanisms were studied in isolated neonatal rat ventricular myocytes and adult mouse ventricular myocytes using live cell imaging and Western blotting methods. Isolated myocytes and mice were used to examine the roles of β2-AR signaling mechanisms in the regulation of cardiac hypertrophy. RESULTS Here, we show that β2-AR activation protects against hypertrophy through inhibition of phospholipaseCε signaling at the Golgi apparatus. The mechanism for β2-AR-mediated phospholipase C inhibition requires internalization of β2-AR, activation of Gi and Gβγ subunit signaling at endosome and ERK (extracellular regulated kinase) activation. This pathway inhibits both angiotensin II and Golgi-β1-AR-mediated stimulation of phosphoinositide hydrolysis at the Golgi apparatus ultimately resulting in decreased PKD (protein kinase D) and histone deacetylase 5 phosphorylation and protection against cardiac hypertrophy. CONCLUSIONS This reveals a mechanism for β2-AR antagonism of the phospholipase Cε pathway that may contribute to the known protective effects of β2-AR signaling on the development of heart failure.
Collapse
Affiliation(s)
- Wenhui Wei
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, United States
| |
Collapse
|
180
|
Adu-Amankwaah J, Adekunle AO, Tang Z, Bushi A, Tan R, Fu L, Gong Z, Ma Z, Mprah R, Ndzie Noah ML, Wowui PI, Ong'achwa Machuki J, Pan X, Li T, Sun H. Estradiol contributes to sex differences in resilience to sepsis-induced metabolic dysregulation and dysfunction in the heart via GPER-1-mediated PPARδ/NLRP3 signaling. Metabolism 2024; 156:155934. [PMID: 38762141 DOI: 10.1016/j.metabol.2024.155934] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND AND AIM Clinically, septic males tend to have higher mortality rates, but it is unclear if this is due to sex differences in cardiac dysfunction, possibly influenced by hormonal variations. Cardiac dysfunction significantly contributes to sepsis-related mortality, primarily influenced by metabolic imbalances. Peroxisome proliferator-activated receptor delta (PPARδ) is a key player in cardiac metabolism and its activation has been demonstrated to favor sepsis outcomes. While estradiol (E2) is abundant and beneficial in females, its impact on PPARδ-mediated metabolism in the heart with regards to sex during sepsis remains unknown. METHODS AND RESULTS Here, we unveil that while sepsis diminishes PPARδ nuclear translocation and induces metabolic dysregulation, oxidative stress, apoptosis and dysfunction in the heart thereby enhancing mortality, these effects are notably more pronounced in males than females. Mechanistic experiments employing ovariectomized(OVX) mice, E2 administration, and G protein-coupled estrogen receptor 1(GPER-1) knockout (KO) mice revealed that under lipopolysaccharide (LPS)-induced sepsis, E2 acting via GPER-1 enhances cardiac electrical activity and function, promotes PPARδ nuclear translocation, and subsequently ameliorates cardiac metabolism while mitigating oxidative stress and apoptosis in females. Furthermore, PPARδ specific activation using GW501516 in female GPER-1-/- mice reduced oxidative stress, ultimately decreasing NLRP3 expression in the heart. Remarkably, targeted GPER-1 activation using G1 in males mirrors these benefits, improving cardiac electrical activity and function, and ultimately enhancing survival rates during LPS challenge. By employing NLRP3 KO mice, we demonstrated that the targeted GPER-1 activation mitigated injury, enhanced metabolism, and reduced apoptosis in the heart of male mice via the downregulation of NLRP3. CONCLUSION Our findings collectively illuminate the sex-specific cardiac mechanisms influencing sepsis mortality, offering insights into physiological and pathological dimensions. From a pharmacological standpoint, this study introduces specific GPER-1 activation as a promising therapeutic intervention for males under septic conditions. These discoveries advance our understanding of the sex differences in sepsis-induced cardiac dysfunction and also present a novel avenue for targeted interventions with potential translational impact.
Collapse
Affiliation(s)
- Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | | | - Ziqing Tang
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Aisha Bushi
- School of International Education, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Rubin Tan
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zheng Gong
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ziyu Ma
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | | | | | | | - Xiuhua Pan
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Tao Li
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
181
|
Thai BS, Chia LY, Nguyen ATN, Qin C, Ritchie RH, Hutchinson DS, Kompa A, White PJ, May LT. Targeting G protein-coupled receptors for heart failure treatment. Br J Pharmacol 2024; 181:2270-2286. [PMID: 37095602 DOI: 10.1111/bph.16099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
Heart failure remains a leading cause of morbidity and mortality worldwide. Current treatment for patients with heart failure include drugs targeting G protein-coupled receptors such as β-adrenoceptor antagonists (β-blockers) and angiotensin II type 1 receptor antagonists (or angiotensin II receptor blockers). However, many patients progress to advanced heart failure with persistent symptoms, despite treatment with available therapeutics that have been shown to reduce mortality and mortality. GPCR targets currently being explored for the development of novel heart failure therapeutics include adenosine receptor, formyl peptide receptor, relaxin/insulin-like family peptide receptor, vasopressin receptor, endothelin receptor and the glucagon-like peptide 1 receptor. Many GPCR drug candidates are limited by insufficient efficacy and/or dose-limiting unwanted effects. Understanding the current challenges hindering successful clinical translation and the potential to overcome existing limitations will facilitate the future development of novel heart failure therapeutics. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Bui San Thai
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ling Yeong Chia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Anh T N Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Chengxue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Andrew Kompa
- Department Medicine and Radiology, University of Melbourne, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
182
|
Mazibuko M, Ghazi T, Chuturgoon A. Patulin alters alpha-adrenergic receptor signalling and induces epigenetic modifications in the kidneys of C57BL/6 mice. Arch Toxicol 2024; 98:2143-2152. [PMID: 38806716 PMCID: PMC11168996 DOI: 10.1007/s00204-024-03728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/07/2024] [Indexed: 05/30/2024]
Abstract
Patulin (PAT) is a food-borne mycotoxin produced by Penicillium and Byssochlamys species. It is widely known for its mutagenic, carcinogenic, and genotoxic effects and has been associated with kidney injury; however, the mechanism of toxicity remains unclear. To address this gap, we conducted a study to explore the changes in α-adrenergic receptor signalling pathways and epigenetic modifications induced by PAT in the kidneys of C57BL/6 mice during acute (1 day) and prolonged (10 days) exposure. The mice (20-22 g) were orally administered PAT (2.5 mg/kg; at 1 and 10 days), and post-treatment, the kidneys were harvested, homogenised and extracted for RNA, DNA, and protein. The relative gene expression of the α-adrenergic receptors (ADRA1, ADRA2A, ADRA2B) and associated signalling pathways (MAPK, MAPK14, ERK, PI3K, and AKT) was assessed by qPCR. The protein expression of ERK1/2 and MAPK was determined by western blot. The impact of PAT on DNA methylation was evaluated by quantifying global DNA methylation; qPCR was used to determine gene expression levels of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) and demethylase (MBD2). PAT downregulated the expression of ADRA1, ADRA2A, ADRA2B, PI3K, and AKT and upregulated ERK1/2 and MAPK protein expression. Furthermore, PAT induced alterations in DNA methylation patterns by upregulating DNMT1 and MBD2 expressions and downregulating DNMT3A and DNMT3B expressions, resulting in global DNA hypomethylation. In conclusion, PAT disrupts α-1 and α-2 adrenergic receptor signalling pathways and induces epigenetic modifications, that can lead to kidney injury.
Collapse
Affiliation(s)
- Makabongwe Mazibuko
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
183
|
Etebar N, Naderpour S, Akbari S, Zali A, Akhlaghdoust M, Daghighi SM, Baghani M, Sefat F, Hamidi SH, Rahimzadegan M. Impacts of SARS-CoV-2 on brain renin angiotensin system related signaling and its subsequent complications on brain: A theoretical perspective. J Chem Neuroanat 2024; 138:102423. [PMID: 38705215 DOI: 10.1016/j.jchemneu.2024.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Cellular ACE2 (cACE2), a vital component of the renin-angiotensin system (RAS), possesses catalytic activity to maintain AngII and Ang 1-7 balance, which is necessary to prevent harmful effects of AngII/AT2R and promote protective pathways of Ang (1-7)/MasR and Ang (1-7)/AT2R. Hemostasis of the brain-RAS is essential for maintaining normal central nervous system (CNS) function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral disease that causes multi-organ dysfunction. SARS-CoV-2 mainly uses cACE2 to enter the cells and cause its downregulation. This, in turn, prevents the conversion of Ang II to Ang (1-7) and disrupts the normal balance of brain-RAS. Brain-RAS disturbances give rise to one of the pathological pathways in which SARS-CoV-2 suppresses neuroprotective pathways and induces inflammatory cytokines and reactive oxygen species. Finally, these impairments lead to neuroinflammation, neuronal injury, and neurological complications. In conclusion, the influence of RAS on various processes within the brain has significant implications for the neurological manifestations associated with COVID-19. These effects include sensory disturbances, such as olfactory and gustatory dysfunctions, as well as cerebrovascular and brain stem-related disorders, all of which are intertwined with disruptions in the RAS homeostasis of the brain.
Collapse
Affiliation(s)
- Negar Etebar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy - Eastern Mediterranean University Famagusta, North Cyprus via Mersin 10, Turkey
| | - Saghi Naderpour
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy - Eastern Mediterranean University Famagusta, North Cyprus via Mersin 10, Turkey
| | - Setareh Akbari
- Neuroscience and Research Committee, School of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Akhlaghdoust
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; USERN Office, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Daghighi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Matin Baghani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Seyed Hootan Hamidi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Acharya BM Reddy College of Pharmacy, Rajiv Gandhi University of Health Sciences, Bangalore, India
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
184
|
Ma X, Lin Y, Zhang L, Miao S, Zhang H, Li H, Fu X, Han L, Li P. GSDMD in regulated cell death: A novel therapeutic target for sepsis. Int Immunopharmacol 2024; 135:112321. [PMID: 38795599 DOI: 10.1016/j.intimp.2024.112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Sepsis is a life-threatening multi-organ dysfunction syndrome caused by an abnormal host response to infection. Regulated cell death is essential for maintaining tissue homeostasis and eliminating damaged, infected, or aging cells in multicellular organisms. Gasdermin D, as a member of the gasdermin family, plays a crucial role in the formation of cytoplasmic membrane pores. Research has found that GSDMD plays important roles in various forms of regulated cell death such as pyroptosis, NETosis, and necroptosis. Therefore, through mediating regulated cell death, GSDMD regulates different stages of disease pathophysiology. This article mainly summarizes the concept of GSDMD, its role in regulated cell death, its involvement in organ damage associated with sepsis-related injuries mediated by regulated cell death via GSDMD activation and introduces potential drugs targeting GSDMD that may provide more effective treatment options for sepsis patients through drug modification.
Collapse
Affiliation(s)
- Xiangli Ma
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China.
| | - Yujie Lin
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Ling Zhang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Shaoyi Miao
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Haidan Zhang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Hongyao Li
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Xu Fu
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Li Han
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Peiwu Li
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
185
|
Kim TJ, MacElroy AS, Defreitas A, Shenker BJ, Boesze-Battaglia K. A Synthetic Small Molecule, LGM2605: A Promising Modulator of Increased Pro-Inflammatory Cytokine and Osteoclast Differentiation by Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin. Dent J (Basel) 2024; 12:195. [PMID: 39056982 PMCID: PMC11276599 DOI: 10.3390/dj12070195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Our research explores the interplay between Aggregatibacter actinomycetemcomitans (Aa) cytolethal distending toxin (Cdt) and the host's inflammatory response in molar/incisor pattern periodontitis (MIPP). Cdt disrupts phosphatidylinositol-3,4,5-triphosphate (PIP3) signaling, influencing cytokine expression through canonical and non-canonical inflammasome activation as well as nuclear factor-κB (NF-κB) activation, leading to inflammation in MIPP. THP-1 differentiated macrophages (TDMs) exposed to Cdt exhibited an upregulation of pro-inflammatory genes and subsequent cytokine release. We analyzed the ability of a small molecule therapeutic, LGM2605, known for its anti-inflammatory properties, to reduce pro-inflammatory gene expression and cytokine release in Cdt-exposed and Aa-inoculated TDMs. LGM2605's mechanism of action involves inhibiting NF-κB while activating the Nrf2-transcription factor and antioxidants. Herein, we show that this small molecule therapeutic mitigates Cdt-induced pro-inflammatory cytokine expression and secretion. Our study also further defines Cdt's impact on osteoclast differentiation and maturation in MIPP. Cdt promotes increased TRAP+ cells, indicating heightened osteoclast differentiation, specific to Cdt's phosphatase activity. Cathepsin K levels rise during this process, reflecting changes in TRAP distribution between control and Cdt-treated cells. Exploring LGM2605's effect on Cdt-induced osteoclast differentiation and maturation, we found TRAP+ cells significantly reduced with LGM2605 treatment compared to Cdt alone. Upon LGM2605 treatment, immunocytochemistry revealed a decreased TRAP intensity and number of multinucleated cells. Moreover, immunoblotting showed reduced TRAP and cathepsin K levels, suggesting LGM2605's potential to curb osteoclast differentiation and maturation by modulating inflammatory cytokines, possibly involving Nrf2 activation. In summary, our research reveals the intricate connections between Cdt, pro-inflammatory cytokines, and osteoclast differentiation, offering novel therapeutic possibilities for managing these conditions.
Collapse
Affiliation(s)
- Taewan J. Kim
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.S.M.); (A.D.); (B.J.S.)
| | - Andrew S. MacElroy
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.S.M.); (A.D.); (B.J.S.)
| | - Aleena Defreitas
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.S.M.); (A.D.); (B.J.S.)
| | - Bruce J. Shenker
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.S.M.); (A.D.); (B.J.S.)
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.S.M.); (A.D.); (B.J.S.)
| |
Collapse
|
186
|
Lock RI, Graney PL, Tavakol DN, Nash TR, Kim Y, Sanchez E, Morsink M, Ning D, Chen C, Fleischer S, Baldassarri I, Vunjak-Novakovic G. Macrophages enhance contractile force in iPSC-derived human engineered cardiac tissue. Cell Rep 2024; 43:114302. [PMID: 38824644 PMCID: PMC11254687 DOI: 10.1016/j.celrep.2024.114302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024] Open
Abstract
Resident cardiac macrophages are critical mediators of cardiac function. Despite their known importance to cardiac electrophysiology and tissue maintenance, there are currently no stem-cell-derived models of human engineered cardiac tissues (hECTs) that include resident macrophages. In this study, we made an induced pluripotent stem cell (iPSC)-derived hECT model with a resident population of macrophages (iM0) to better recapitulate the native myocardium and characterized their impact on tissue function. Macrophage retention within the hECTs was confirmed via immunofluorescence after 28 days of cultivation. The inclusion of iM0s significantly impacted hECT function, increasing contractile force production. A potential mechanism underlying these changes was revealed by the interrogation of calcium signaling, which demonstrated the modulation of β-adrenergic signaling in +iM0 hECTs. Collectively, these findings demonstrate that macrophages significantly enhance cardiac function in iPSC-derived hECT models, emphasizing the need to further explore their contributions not only in healthy hECT models but also in the contexts of disease and injury.
Collapse
Affiliation(s)
- Roberta I Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Eloy Sanchez
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Derek Ning
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Connie Chen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Ilaria Baldassarri
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; College of Dental Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
187
|
Abstract
GPCRs (G protein-coupled receptors), also known as 7 transmembrane domain receptors, are the largest receptor family in the human genome, with ≈800 members. GPCRs regulate nearly every aspect of human physiology and disease, thus serving as important drug targets in cardiovascular disease. Sharing a conserved structure comprised of 7 transmembrane α-helices, GPCRs couple to heterotrimeric G-proteins, GPCR kinases, and β-arrestins, promoting downstream signaling through second messengers and other intracellular signaling pathways. GPCR drug development has led to important cardiovascular therapies, such as antagonists of β-adrenergic and angiotensin II receptors for heart failure and hypertension, and agonists of the glucagon-like peptide-1 receptor for reducing adverse cardiovascular events and other emerging indications. There continues to be a major interest in GPCR drug development in cardiovascular and cardiometabolic disease, driven by advances in GPCR mechanistic studies and structure-based drug design. This review recounts the rich history of GPCR research, including the current state of clinically used GPCR drugs, and highlights newly discovered aspects of GPCR biology and promising directions for future investigation. As additional mechanisms for regulating GPCR signaling are uncovered, new strategies for targeting these ubiquitous receptors hold tremendous promise for the field of cardiovascular medicine.
Collapse
Affiliation(s)
- Samuel Liu
- Department of Medicine, Duke University Medical
Center
| | - Preston J. Anderson
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
- Duke Medical Scientist Training Program, Duke University,
Durham, NC, 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical
Center
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
- Deparment of Biochemistry Duke University, Durham, NC,
27710, USA
| | - Robert J. Lefkowitz
- Department of Medicine, Duke University Medical
Center
- Deparment of Biochemistry Duke University, Durham, NC,
27710, USA
- Howard Hughes Medical Institute, Duke University Medical
Center, Durham, North Carolina 27710, USA
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical
Center
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
| |
Collapse
|
188
|
Eibensteiner F, Mosor E, Tihanyi D, Anders S, Kornfehl A, Neymayer M, Oppenauer J, Veigl C, Al Jalali V, Domanovits H, Sulzgruber P, Schnaubelt S. The Impact of Chronic Oral Beta-Blocker Intake on Intravenous Bolus Landiolol Response in Hospitalized Intensive Care Patients with Sudden-Onset Supraventricular Tachycardia-A Post Hoc Analysis of a Cross-Sectional Trial. Pharmaceutics 2024; 16:839. [PMID: 38931959 PMCID: PMC11207374 DOI: 10.3390/pharmaceutics16060839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Landiolol, a highly cardioselective agent with a short half-life (2.4-4 min), is commonly used as a perfusor or bolus application to treat tachycardic arrhythmia. Some small studies suggest that prior oral β-blocker use results in a less effective response to intravenous β-blockers. Methods: This study investigated whether prior chronic oral β-blocker (Lβ) or no prior chronic oral β-blocker (L-) intake influences the response to intravenous push-dose Landiolol in intensive care patients with acute tachycardic arrhythmia. Results: The effects in 30 patients (67 [55-72] years) were analyzed, 10 (33.3%) with and 20 (66.7%) without prior oral β-blocker therapy. Arrhythmias were diagnosed as tachycardic atrial fibrillation in 14 patients and regular, non-fluid-dependent, supraventricular tachycardia in 16 cases. Successful heart rate control (Lβ 4 vs. L- 7, p = 1.00) and rhythm control (Lβ 3 vs. L- 6, p = 1.00) did not significantly differ between the two groups. Both groups showed a significant decrease in heart rate when comparing before and after the bolus administration, without significant differences between the two groups (Lβ -26/min vs. L- -33/min, p = 0.528). Oral β-blocker therapy also did not influence the change in mean arterial blood pressure after Landiolol bolus administration (Lβ -5 mmHg vs. L- -4 mmHg, p = 0.761). Conclusions: A prior chronic intake of β-blockers neither affected the effectiveness of push-dose Landiolol in heart rate or rhythm control nor impacted the difference in heart rate or mean arterial blood pressure before and after the Landiolol boli.
Collapse
Affiliation(s)
- Felix Eibensteiner
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria; (F.E.)
| | - Emmilie Mosor
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria; (F.E.)
| | - Daniel Tihanyi
- Department of Pulmonology, Clinic Ottakring, Vienna Healthcare Group, 1160 Vienna, Austria
| | - Sonja Anders
- Department of Pulmonology, Clinic Penzing, Vienna Healthcare Group, 1140 Vienna, Austria
| | - Andrea Kornfehl
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria; (F.E.)
| | - Marco Neymayer
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria; (F.E.)
| | - Julia Oppenauer
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria; (F.E.)
| | - Christoph Veigl
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria; (F.E.)
| | - Valentin Al Jalali
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hans Domanovits
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria; (F.E.)
| | - Patrick Sulzgruber
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Sebastian Schnaubelt
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria; (F.E.)
| |
Collapse
|
189
|
Wu Z, Tang C, Wang D. Bidirectional two-sample Mendelian randomization study of association between smoking initiation and atrial fibrillation. Tob Induc Dis 2024; 22:TID-22-113. [PMID: 38899119 PMCID: PMC11186308 DOI: 10.18332/tid/189380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION The relationship between smoking and heart disease has been frequently reported. Therefore, we aimed to explore the association between smoking initiation and atrial fibrillation. METHODS Genetic association data pertaining to smoking initiation and atrial fibrillation were obtained from genome-wide association studies (GWAS). Phenotypically related single nucleotide polymorphisms (SNPs) were selected as instrumental variables. Inverse-variance weighted (IVW), weighted median, Mendelian randomization (MR), Egger regression, simple mode, and weighted mode methods were employed to perform the MR study. The association between smoking initiation and atrial fibrillation was evaluated using odds ratios (OR) and 95% confidence intervals (CI). Cochran's Q test was employed to assess heterogeneity among instrumental variables, utilizing the IVW and MR-Egger methods. The Egger-intercept method was employed to test for horizontal pleiotropy, and the 'leave-one-out' method was utilized for sensitivity analysis. RESULTS The MR results for the effect of smoking initiation on atrial fibrillation (IVW, OR=1.11; 95% CI: 1.02-1.20, p=0.013) supported an association between smoking initiation and an increased likelihood of atrial fibrillation. In total, 85 SNPs were extracted from the GWAS pooled data as instrumental variables. The MR-Egger method indicated an intercept close to 0 (Egger intercept= -0.005, p=0.371), suggesting no horizontal pleiotropy in the selected instrumental variables. The 'leave-one-out' sensitivity analysis demonstrated that the results were robust and that no instrumental variables significantly influenced the results. Reverse MR analysis indicated no effect of atrial fibrillation on smoking initiation (IVW, OR=1.00; 95% CI: 0.99-1.02, p=0.684). CONCLUSIONS Smoking initiation has a significant impact on atrial fibrillation. However, atrial fibrillation did not influence smoking initiation. This study provides novel insights into the genetic relationships between smoking initiation and atrial fibrillation.
Collapse
Affiliation(s)
- Ziyang Wu
- School of Medicine, Southeast University, Nanjing, China
| | - Chengchun Tang
- Department of Cardiology, School of Medicine, Southeast University, Zhongda Hospital, Nanjing, China
| | - Dong Wang
- Department of Cardiology, School of Medicine, Southeast University, Zhongda Hospital, Nanjing, China
| |
Collapse
|
190
|
Qi H, Xie YY, Yang XJ, Xia J, Liu K, Zhang FX, Peng WJ, Wen FY, Li BX, Zhang BW, Yao XY, Li BY, Meng HD, Shi ZM, Wang Y, Zhang L. Susceptibility gene identification and risk evaluation model construction by transcriptome-wide association analysis for salt sensitivity of blood pressure. BMC Genomics 2024; 25:612. [PMID: 38890564 PMCID: PMC11184770 DOI: 10.1186/s12864-024-10409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Salt sensitivity of blood pressure (SSBP) is an intermediate phenotype of hypertension and is a predictor of long-term cardiovascular events and death. However, the genetic structures of SSBP are uncertain, and it is difficult to precisely diagnose SSBP in population. So, we aimed to identify genes related to susceptibility to the SSBP, construct a risk evaluation model, and explore the potential functions of these genes. METHODS AND RESULTS A genome-wide association study of the systemic epidemiology of salt sensitivity (EpiSS) cohort was performed to obtain summary statistics for SSBP. Then, we conducted a transcriptome-wide association study (TWAS) of 12 tissues using FUSION software to predict the genes associated with SSBP and verified the genes with an mRNA microarray. The potential roles of the genes were explored. Risk evaluation models of SSBP were constructed based on the serial P value thresholds of polygenetic risk scores (PRSs), polygenic transcriptome risk scores (PTRSs) and their combinations of the identified genes and genetic variants from the TWAS. The TWAS revealed that 2605 genes were significantly associated with SSBP. Among these genes, 69 were differentially expressed according to the microarray analysis. The functional analysis showed that the genes identified in the TWAS were enriched in metabolic process pathways. The PRSs were correlated with PTRSs in the heart atrial appendage, adrenal gland, EBV-transformed lymphocytes, pituitary, artery coronary, artery tibial and whole blood. Multiple logistic regression models revealed that a PRS of P < 0.05 had the best predictive ability compared with other PRSs and PTRSs. The combinations of PRSs and PTRSs did not significantly increase the prediction accuracy of SSBP in the training and validation datasets. CONCLUSIONS Several known and novel susceptibility genes for SSBP were identified via multitissue TWAS analysis. The risk evaluation model constructed with the PRS of susceptibility genes showed better diagnostic performance than the transcript levels, which could be applied to screen for SSBP high-risk individuals.
Collapse
Affiliation(s)
- Han Qi
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Capital Medical University, Beijing, 100088, China
| | - Yun-Yi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Xiao-Jun Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Juan Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Feng-Xu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Wen-Juan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Fu-Yuan Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Bing-Xiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Bo-Wen Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Xin-Yue Yao
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Bo-Ya Li
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China
| | - Hong-Dao Meng
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Zu-Min Shi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Yang Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Youanmenwai, Beijing, 100069, China.
| |
Collapse
|
191
|
Popa-Ion DA, Boldeanu L, Gheonea DI, Denicu MM, Boldeanu MV, Chiuțu LC. Anesthesia Medication's Impacts on Inflammatory and Neuroendocrine Immune Response in Patients Undergoing Digestive Endoscopy. Clin Pract 2024; 14:1171-1184. [PMID: 38921271 PMCID: PMC11203055 DOI: 10.3390/clinpract14030093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/25/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of this study was to explore the impact of anesthetic drugs currently used to perform lower digestive endoscopy on serum concentrations of inflammation markers and catecholamines. We selected 120 patients and divided them into three lots of 40 patients each: L1, in which no anesthetics were used; L2, in which propofol was used; and L3, in which propofol combined with fentanyl was used. All patients had serum concentrations of adrenaline/epinephrine (EPI), noradrenaline/norepinephrine (NE), tumor necrosis factor alpha (TNF-α), interleukin-4 (IL-4), IL-6, IL-8, and IL-10, taken at three time points: at the beginning of the endoscopic procedure (T0), 15 min after (T1), and 2 h after the end of the endoscopic procedure (T2). The results of the research showed changes in the levels of catecholamines and interleukins (ILs) at T0, with an increased response in L1 above the mean recorded in L2 and L3 (p < 0.001). At T1, increased values were recorded in all lots; values were significantly higher in L1. At T2, the values recorded in L3 were significantly lower than the values in L2 (student T, p < 0.001) and L1, in which the level of these markers continued to increase, reaching double values compared to T0 (student T, p < 0.001). In L2 at T1, the dose of propofol correlated much better with NE, EPI, and well-known cytokines. Our results show that propofol combined with fentanyl can significantly inhibit the activation of systemic immune and neuroendocrine response during painless lower digestive endoscopy.
Collapse
Affiliation(s)
- Denisa-Ancuța Popa-Ion
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.-A.P.-I.); (M.M.D.); (L.C.C.)
| | - Lidia Boldeanu
- Department of Microbiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dan-Ionuț Gheonea
- Department of Gastroenterology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Madalina Maria Denicu
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.-A.P.-I.); (M.M.D.); (L.C.C.)
| | - Mihail Virgil Boldeanu
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Luminița Cristina Chiuțu
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.-A.P.-I.); (M.M.D.); (L.C.C.)
| |
Collapse
|
192
|
Pan L, Xu Z, Wen M, Li M, Lyu D, Xiao H, Li Z, Xiao J, Cheng Y, Huang H. Xinbao Pill ameliorates heart failure via regulating the SGLT1/AMPK/PPARα axis to improve myocardial fatty acid energy metabolism. Chin Med 2024; 19:82. [PMID: 38862959 PMCID: PMC11165817 DOI: 10.1186/s13020-024-00959-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Heart failure (HF) is characterized by a disorder of cardiomyocyte energy metabolism. Xinbao Pill (XBW), a traditional Chinese medicine formulation integrating "Liushen Pill" and "Shenfu Decoction," has been approved by China Food and Drug Administration for the treatment of HF for many years. The present study reveals a novel mechanism of XBW in HF through modulation of cardiac energy metabolism. METHODS In vivo, XBW (60, 90, 120 mg/kg/d) and fenofibrate (100 mg/kg/d) were treated for six weeks in Sprague-Dawley rats that were stimulated by isoproterenol to induce HF. Cardiac function parameters were measured by echocardiography, and cardiac pathological changes were assessed using H&E, Masson, and WGA staining. In vitro, primary cultured neonatal rat cardiomyocytes (NRCMs) were induced by isoproterenol to investigate the effects of XBW on myocardial cell damage, mitochondrial function and fatty acid energy metabolism. The involvement of the SGLT1/AMPK/PPARα signalling axis was investigated. RESULTS In both in vitro and in vivo models of ISO-induced HF, XBW significantly ameliorated cardiac hypertrophy cardiac fibrosis, and improved cardiac function. Significantly, XBW improved cardiac fatty acid metabolism and mitigated mitochondrial damage. Mechanistically, XBW effectively suppressed the expression of SGLT1 protein while upregulating the phosphorylation level of AMPK, ultimately facilitating the nuclear translocation of PPARα and enhancing its transcriptional activity. Knockdown of SGLT1 further enhanced cardiac energy metabolism by XBW, while overexpression of SGLT1 reversed the cardio-protective effect of XBW, highlighting that SGLT1 is probably a critical target of XBW in the regulation of cardiac fatty acid metabolism. CONCLUSIONS XBW improves cardiac fatty acid energy metabolism to alleviate HF via SGLT1/AMPK/PPARα signalling axis.
Collapse
Affiliation(s)
- Linjie Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhanchi Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Minghui Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dongxin Lyu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Haiming Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuoming Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Junhui Xiao
- Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Guangzhou, 510801, China.
| | - Yuanyuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Heqing Huang
- Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Guangzhou, 510801, China.
| |
Collapse
|
193
|
Nguyen H, Glaaser IW, Slesinger PA. Direct modulation of G protein-gated inwardly rectifying potassium (GIRK) channels. Front Physiol 2024; 15:1386645. [PMID: 38903913 PMCID: PMC11187414 DOI: 10.3389/fphys.2024.1386645] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 06/22/2024] Open
Abstract
Ion channels play a pivotal role in regulating cellular excitability and signal transduction processes. Among the various ion channels, G-protein-coupled inwardly rectifying potassium (GIRK) channels serve as key mediators of neurotransmission and cellular responses to extracellular signals. GIRK channels are members of the larger family of inwardly-rectifying potassium (Kir) channels. Typically, GIRK channels are activated via the direct binding of G-protein βγ subunits upon the activation of G-protein-coupled receptors (GPCRs). GIRK channel activation requires the presence of the lipid signaling molecule, phosphatidylinositol 4,5-bisphosphate (PIP2). GIRK channels are also modulated by endogenous proteins and other molecules, including RGS proteins, cholesterol, and SNX27 as well as exogenous compounds, such as alcohol. In the last decade or so, several groups have developed novel drugs and small molecules, such as ML297, GAT1508 and GiGA1, that activate GIRK channels in a G-protein independent manner. Here, we aim to provide a comprehensive overview focusing on the direct modulation of GIRK channels by G-proteins, PIP2, cholesterol, and novel modulatory compounds. These studies offer valuable insights into the underlying molecular mechanisms of channel function, and have potential implications for both basic research and therapeutic development.
Collapse
Affiliation(s)
| | | | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
194
|
Zhu M, Huang Z, Qin J, Jiang J, Fan M. Loss of β-arrestin2 aggravated condylar cartilage degeneration at the early stage of temporomandibular joint osteoarthritis. BMC Musculoskelet Disord 2024; 25:451. [PMID: 38844905 PMCID: PMC11154996 DOI: 10.1186/s12891-024-07558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
OBJECTIVE Temporomandibular joint osteoarthritis (TMJOA) is a chronic degenerative joint disorder characterized by extracellular matrix degeneration and inflammatory response of condylar cartilage. β-arrestin2 is an important regulator of inflammation response, while its role in TMJOA remains unknown. The objective of this study was to investigate the role of β-arrestin2 in the development of TMJOA at the early stage and the underlying mechanism. METHODS A unilateral anterior crossbite (UAC) model was established on eight-week-old wild-type (WT) and β-arrestin2 deficiency mice to simulate the progression of TMJOA. Hematoxylin-eosin (HE) staining and microcomputed tomography (micro-CT) analysis were used for histological and radiographic assessment. Immunohistochemistry was performed to detect the expression of inflammatory and degradative cytokines, as well as autophagy related factors. Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) assay was carried out to assess chondrocyte apoptosis. RESULTS The loss of β-arrestin2 aggravated cartilage degeneration and subchondral bone destruction in the model of TMJOA at the early stage. Furthermore, in UAC groups, the expressions of degradative (Col-X) and inflammatory (TNF-α and IL-1β) factors in condylar cartilage were increased in β-arrestin2 null mice compared with WT mice. Moreover, the loss of β-arrestin2 promoted apoptosis and autophagic process of chondrocytes at the early stage of TMJOA. CONCLUSION In conclusion, we demonstrated for the first time that β-arrestin2 plays a protective role in the development of TMJOA at the early stage, probably by inhibiting apoptosis and autophagic process of chondrocytes. Therefore, β-arrestin2 might be a potential therapeutic target for TMJOA, providing a new insight for the treatment of TMJOA at the early stage.
Collapse
Affiliation(s)
- Mengjiao Zhu
- Department of Orthodontics, Shanghai Xuhui District Dental Center, 500 Fenglin Road, Shanghai, China
| | - Ziwei Huang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Central Road, Nanjing, China
| | - Jing Qin
- Department of Orthodontics, Shanghai Xuhui District Dental Center, 500 Fenglin Road, Shanghai, China
| | - Jiafeng Jiang
- Department of Pediatric Dentistry, Shanghai Xuhui District Dental Center, 500 Fenglin Road, Shanghai, China.
| | - Mingyue Fan
- Department of Orthodontics, Shanghai Xuhui District Dental Center, 500 Fenglin Road, Shanghai, China.
| |
Collapse
|
195
|
Ruhnke N, Beyer ASL, Kaemmerer D, Sänger J, Schulz S, Lupp A. Expression of free fatty acid receptor 2 in normal and neoplastic tissues. Exp Mol Pathol 2024; 137:104902. [PMID: 38788249 DOI: 10.1016/j.yexmp.2024.104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE Little information is available concerning protein expression of the free fatty acid receptor 2 (FFAR2), especially in tumours. Therefore, the aim of the present study was to comprehensively characterise the expression profile of FFAR2 in a large series of human normal and neoplastic tissues using immunohistochemistry thus providing a basis for further in-depth investigations into its potential diagnostic or therapeutic importance. METHODS We developed a novel rabbit polyclonal anti-FFAR2 antibody, 0524, directed against the C-terminal region of human FFAR2. Antibody specificity was confirmed via Western blot analyses and immunocytochemistry using the FFAR2-expressing cell line BON-1 and FFAR2-specific small interfering RNA as well as native and FFAR2-transfected HEK-293 cells. The antibody was then used for immunohistochemical analyses of various formalin-fixed, paraffin-embedded specimens of normal and neoplastic human tissues. RESULTS In normal tissues, FFAR2 was mainly present in distinct cell populations of the cerebral cortex, follicular cells and C cells of the thyroid, cardiomyocytes of the heart, bronchial epithelia and glands, hepatocytes and bile duct epithelia of the liver, gall bladder epithelium, exocrine and β-cells of the endocrine pancreas, glomerular mesangial cells and podocytes as well as collecting ducts of the kidney, intestinal mucosa (particularly enteroendocrine cells), prostate epithelium, seminiferous tubules of the testicles, and placental syncytiotrophoblasts. In neoplastic tissues, FFAR2 was particularly prevalent in papillary thyroid carcinomas, parathyroid adenomas, and gastric, colon, pancreatic, hepatocellular, cholangiocellular, urinary bladder, breast, cervical, and ovarian carcinomas. CONCLUSIONS We generated and characterised a novel rabbit polyclonal anti-human FFAR2 antibody that is well-suited for visualising FFAR2 expression in human routine pathology tissues. This antibody is also suitable for Western blot and immunocytochemistry experiments. To our knowledge, this antibody enabled the first broad FFAR2 protein expression profile in various normal and neoplastic human tissues.
Collapse
Affiliation(s)
- Niklas Ruhnke
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | | | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, Bad Berka, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany.
| |
Collapse
|
196
|
Corbi G, Comegna M, Vinciguerra C, Capasso A, Onorato L, Salucci AM, Rapacciuolo A, Cannavo A. Age and sex mediated effects of estrogen and Β3-adrenergic receptor on cardiovascular pathophysiology. Exp Gerontol 2024; 190:112420. [PMID: 38588751 DOI: 10.1016/j.exger.2024.112420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Sex differences are consistently identified in determining the prevalence, manifestation, and response to therapies in several systemic disorders, including those affecting the cardiovascular (CV), skeletal muscle, and nervous system. Interestingly, such differences are often more noticeable as we age. For example, premenopausal women experience a lower risk of CV disease than men of the same age. While at an advanced age, with menopause, the risk of cardiovascular diseases and adverse outcomes increases exponentially in women, exceeding that of men. However, this effect appears to be reversed in diseases such as pulmonary hypertension, where women are up to seven times more likely than men to develop an idiopathic form of the disease with symptoms developing ten years earlier than their male counterparts. Explaining this is a complex question. However, several factors and mechanisms have been identified in recent decades, including a role for sex hormones, particularly estrogens and their related receptors. Furthermore, an emerging role in these sex differences has also been suggested for β-adrenergic receptors (βARs), which are essential regulators of mammalian physiology. It has in fact been shown that βARs interact with estrogen receptors (ER), providing further demonstration of their involvement in determining sexual differences. Based on these premises, this review article focused on the β3AR subtype, which shows important activities in adipose tissue but with new and interesting roles in regulating the function of cardiomyocytes and vascular cells. In detail, we examined how β3AR and ER signaling are intertwined and whether there would be sex- and age-dependent specific effects of these receptor systems.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Marika Comegna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE-Advanced Biotechnologies - Franco Salvatore, Naples, Italy
| | - Caterina Vinciguerra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessio Capasso
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Luigi Onorato
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Antonio Rapacciuolo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
197
|
Puig N, Rives J, Gil-Millan P, Miñambres I, Ginel A, Tauron M, Bonaterra-Pastra A, Hernández-Guillamon M, Pérez A, Sánchez-Quesada JL, Benitez S. Apolipoprotein J protects cardiomyocytes from lipid-mediated inflammation and cytotoxicity induced by the epicardial adipose tissue of diabetic patients. Biomed Pharmacother 2024; 175:116779. [PMID: 38776681 DOI: 10.1016/j.biopha.2024.116779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic patients present increased volume and functional alterations in epicardial adipose tissue (EAT). We aimed to analyze EAT from type 2 diabetic patients and the inflammatory and cytotoxic effects induced on cardiomyocytes. Furthermore, we analyzed the cardioprotective role of apolipoprotein J (apoJ). EAT explants were obtained from nondiabetic patients (ND), diabetic patients without coronary disease (DM), and DM patients with coronary disease (DM-C) after heart surgery. Morphological characteristics and gene expression were evaluated. Explants were cultured for 24 h and the content of nonesterified fatty acids (NEFA) and sphingolipid species in secretomes was evaluated by lipidomic analysis. Afterwards, secretomes were added to AC16 human cardiomyocytes for 24 h in the presence or absence of cardioprotective molecules (apoJ and HDL). Cytokine release and apoptosis/necrosis were assessed by ELISA and flow cytometry. The EAT from the diabetic samples showed altered expression of genes related to lipid accumulation, insulin resistance, and inflammation. The secretomes from the DM samples presented an increased ratio of pro/antiatherogenic ceramide (Cer) species, while those from DM-C contained the highest concentration of saturated NEFA. DM and DM-C secretomes promoted inflammation and cytotoxicity on AC16 cardiomyocytes. Exogenous Cer16:0, Cer24:1, and palmitic acid reproduced deleterious effects in AC16 cells. These effects were attenuated by exogenous apoJ. Diabetic secretomes promoted inflammation and cytotoxicity in cardiomyocytes. This effect was exacerbated in the secretomes of the DM-C samples. The increased content of specific NEFA and ceramide species seems to play a key role in inducing such deleterious effects, which are attenuated by apoJ.
Collapse
Affiliation(s)
- Núria Puig
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - José Rives
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Pedro Gil-Millan
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, and IR-Sant Pau, Barcelona, Spain
| | - Inka Miñambres
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, and IR-Sant Pau, Barcelona, Spain
| | - Antonino Ginel
- Cardiology Department, Hospital de la Santa Creu i Sant Pau, and IR-Sant Pau, Barcelona, Spain
| | - Manel Tauron
- Cardiology Department, Hospital de la Santa Creu i Sant Pau, and IR-Sant Pau, Barcelona, Spain
| | - Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Pérez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - José Luís Sánchez-Quesada
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain.
| | - Sonia Benitez
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain.
| |
Collapse
|
198
|
Hattori Y, Hattori K, Ishii K, Kobayashi M. Challenging and target-based shifting strategies for heart failure treatment: An update from the last decades. Biochem Pharmacol 2024; 224:116232. [PMID: 38648905 DOI: 10.1016/j.bcp.2024.116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Heart failure (HF) is a major global health problem afflicting millions worldwide. Despite the significant advances in therapies and prevention, HF still carries very high morbidity and mortality, requiring enormous healthcare-related expenditure, and the search for new weapons goes on. Following initial treatment strategies targeting inotropism and congestion, attention has focused on offsetting the neurohormonal overactivation and three main therapies, including angiotensin-converting enzyme inhibitors or angiotensin II type 1 receptor antagonists, β-adrenoceptor antagonists, and mineralocorticoid receptor antagonists, have been the foundation of standard treatment for patients with HF. Recently, a paradigm shift, including angiotensin receptor-neprilysin inhibitor, sodium glucose co-transporter 2 inhibitor, and ivabradine, has been added. Moreover, soluble guanylate cyclase stimulator, elamipretide, and omecamtiv mecarbil have come out as a next-generation therapeutic agent for patients with HF. Although these pharmacologic therapies have been significantly successful in relieving symptoms, there is still no complete cure for HF. We may be currently entering a new era of treatment for HF with animal experiments and human clinical trials assessing the value of antibody-based immunotherapy and gene therapy as a novel therapeutic strategy. Such tempting therapies still have some challenges to be addressed but may become a weighty option for treatment of HF. This review article will compile the paradigm shifts in HF treatment over the past dozen years or so and illustrate current landscape of antibody-based immunotherapy and gene therapy as a new therapeutic algorithm for patients with HF.
Collapse
Affiliation(s)
- Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan; Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Kuniaki Ishii
- Department of Pharmacology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masanobu Kobayashi
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan
| |
Collapse
|
199
|
Kranrod J, Konkel A, Valencia R, Darwesh AM, Fischer R, Schunck WH, Seubert JM. Cardioprotective properties of OMT-28, a synthetic analog of omega-3 epoxyeicosanoids. J Biol Chem 2024; 300:107372. [PMID: 38754781 PMCID: PMC11214398 DOI: 10.1016/j.jbc.2024.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
OMT-28 is a metabolically robust small molecule developed to mimic the structure and function of omega-3 epoxyeicosanoids. However, it remained unknown to what extent OMT-28 also shares the cardioprotective and anti-inflammatory properties of its natural counterparts. To address this question, we analyzed the ability of OMT-28 to ameliorate hypoxia/reoxygenation (HR)-injury and lipopolysaccharide (LPS)-induced endotoxemia in cultured cardiomyocytes. Moreover, we investigated the potential of OMT-28 to limit functional damage and inflammasome activation in isolated perfused mouse hearts subjected to ischemia/reperfusion (IR) injury. In the HR model, OMT-28 (1 μM) treatment largely preserved cell viability (about 75 versus 40% with the vehicle) and mitochondrial function as indicated by the maintenance of NAD+/NADH-, ADP/ATP-, and respiratory control ratios. Moreover, OMT-28 blocked the HR-induced production of mitochondrial reactive oxygen species. Pharmacological inhibition experiments suggested that Gαi, PI3K, PPARα, and Sirt1 are essential components of the OMT-28-mediated pro-survival pathway. Counteracting inflammatory injury of cardiomyocytes, OMT-28 (1 μM) reduced LPS-induced increases in TNFα protein (by about 85% versus vehicle) and NF-κB DNA binding (by about 70% versus vehicle). In the ex vivo model, OMT-28 improved post-IR myocardial function recovery to reach about 40% of the baseline value compared to less than 20% with the vehicle. Furthermore, OMT-28 (1 μM) limited IR-induced NLRP3 inflammasome activation similarly to a direct NLRP3 inhibitor (MCC950). Overall, this study demonstrates that OMT-28 possesses potent cardio-protective and anti-inflammatory properties supporting the hypothesis that extending the bioavailability of omega-3 epoxyeicosanoids may improve their prospects as therapeutic agents.
Collapse
Affiliation(s)
- Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Robert Valencia
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
200
|
Casper E, El Wakeel L, Sabri N, Khorshid R, Fahmy SF. Melatonin: A potential protective multifaceted force for sepsis-induced cardiomyopathy. Life Sci 2024; 346:122611. [PMID: 38580195 DOI: 10.1016/j.lfs.2024.122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Sepsis is a life-threatening condition manifested by organ dysfunction caused by a dysregulated host response to infection. Lung, brain, liver, kidney, and heart are among the affected organs. Sepsis-induced cardiomyopathy is a common cause of death among septic patients. Sepsis-induced cardiomyopathy is characterized by an acute and reversible significant decline in biventricular both systolic and diastolic function. This is accompanied by left ventricular dilatation. The pathogenesis underlying sepsis-induced cardiomyopathy is multifactorial. Hence, targeting an individual pathway may not be effective in halting the extensive dysregulated immune response. Despite major advances in sepsis management strategies, no effective pharmacological strategies have been shown to treat or even reverse sepsis-induced cardiomyopathy. Melatonin, namely, N-acetyl-5-methoxytryptamine, is synthesized in the pineal gland of mammals and can also be produced in many cells and tissues. Melatonin has cardioprotective, neuroprotective, and anti-tumor activity. Several literature reviews have explored the role of melatonin in preventing sepsis-induced organ failure. Melatonin was found to act on different pathways that are involved in the pathogenesis of sepsis-induced cardiomyopathy. Through its antimicrobial, anti-inflammatory, and antioxidant activity, it offers a potential role in sepsis-induced cardiomyopathy. Its antioxidant activity is through free radical scavenging against reactive oxygen and nitrogen species and modulating the expression and activity of antioxidant enzymes. Melatonin anti-inflammatory activities control the overactive immune system and mitigate cytokine storm. Also, it mitigates mitochondrial dysfunction, a major mechanism involved in sepsis-induced cardiomyopathy, and thus controls apoptosis. Therefore, this review discusses melatonin as a promising drug for the management of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Eman Casper
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Lamia El Wakeel
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Nagwa Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Ramy Khorshid
- Department of Cardiovascular and Thoracic Surgery, Ain Shams University Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Sarah F Fahmy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|