151
|
Hube D, van Meegen C, Herbrandt S, Kemper N, Fels M. Hair corticosterone concentration as a potential stress marker in pet rabbits. Vet Rec 2023; 193:e3464. [PMID: 37806955 DOI: 10.1002/vetr.3464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND As a prey species, rabbits tend to hide their illnesses and injuries. Consequently, pet rabbit owners often do not notice that their pet may be suffering. METHODS Data on the housing and health of 34 dwarf rabbits were collected from a total of 22 rabbit owners. A score from 0 (not stressed) to 3 (highly stressed) was assigned to each rabbit based on the owners' reports. Afterwards, the hair corticosterone concentration (HCC) of the rabbits was analysed as an indicator of long-term stress. RESULTS The mean HCC of all rabbits was 1.54 ± 0.64 pg/mg. Animals with a stress score of 3 had a higher HCC (2.17 pg/mg) than those with a score of 0 (1.09 pg/mg) or 1 (1.44 pg/mg) (p < 0.05). HCC was not significantly affected by sex or age (p > 0.05). LIMITATION Only a small number of rabbits were included in the study. Therefore, the findings need to be confirmed in a larger cohort of animals. CONCLUSION HCC seems to be a promising stress marker in pet rabbits.
Collapse
Affiliation(s)
- Dana Hube
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Carmen van Meegen
- Statistical Consulting and Analysis, Center for Higher Education, TU Dortmund University, Dortmund, Germany
| | - Swetlana Herbrandt
- Statistical Consulting and Analysis, Center for Higher Education, TU Dortmund University, Dortmund, Germany
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michaela Fels
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
152
|
Martinez-Madrid B, Martínez-Cáceres C, Pequeño B, Castaño C, Toledano-Díaz A, Bóveda P, Prieto P, Alvarez-Rodriguez M, Rodriguez-Martinez H, Santiago-Moreno J. Immunolocalisation of aquaporins 3, 7, 9 and 10 in the epididymis of three wild ruminant species (Iberian ibex, mouflon and chamois) and sperm cryoresistance. Reprod Fertil Dev 2023; 35:708-721. [PMID: 37968880 DOI: 10.1071/rd23091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
CONTEXT In the epididymis, epithelial cells manage changes in the luminal environment for proper sperm maturation. Moreover, aquaglyceroporins, a subgroup of aquaporins (AQP), modulate the transport of water, glycerol and other small molecules in epithelial cells. AIMS We aim to characterise the lining epithelium, quantify its cell composition and immunolocalise the aquaglyceroporins AQP3, AQP7, AQP9 and AQP10 alongside the epididymal ductus of three wild ruminant species, and to determine if species-specific differences could be associated with cauda sperm cryoresistance variations. METHODS Epididymides from Iberian ibex (n =5), mouflon (n =5) and chamois (n =6) were obtained. Cauda spermatozoa were collected and sperm parameters were analysed before and after freezing. Histology and immunohistochemistry of AQP3, 7, 9, 10 and T-CD3 were performed in the caput, corpus and cauda epididymal regions. KEY RESULTS This work first describes the lining epithelium in Iberian ibex, mouflon and chamois epididymis along the three anatomical regions, consisting of principal, basal, apical, clear and halo cells. However, the percentage of each cell type differed in ibex compared to mouflon and chamois. The positive T-CD3 immunolabeling of all the halo cells confirmed their T-lymphocyte nature. Aquaglyceroporin expression patterns were similar among species, except for differences in AQP7 and AQP10 immunolocalisation in ibex. Species-specific differences in epididymal sperm cryoresistance were confirmed. CONCLUSIONS The epididymal epithelium of the three wild ruminants differ in their relative number of cell types and AQP immunolocalisation, which ultimately appears to affect cauda epidydimal spermatozoa cryoresistance. IMPLICATIONS Our study provides information on the relevance of the quantitative composition and AQP pattern expression in epididymal lining epithelium on sperm cryoresistance.
Collapse
Affiliation(s)
- Belen Martinez-Madrid
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid 28040, Spain
| | - Carlos Martínez-Cáceres
- Pathology core, Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Ctra. Buenavista s/n, El Palmar, Murcia 30120, Spain
| | - Belén Pequeño
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish Scientific Research Council (INIA-CSIC), Avda. Puerta de Hierro km 5.9, Madrid 28040, Spain
| | - Cristina Castaño
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish Scientific Research Council (INIA-CSIC), Avda. Puerta de Hierro km 5.9, Madrid 28040, Spain
| | - Adolfo Toledano-Díaz
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish Scientific Research Council (INIA-CSIC), Avda. Puerta de Hierro km 5.9, Madrid 28040, Spain
| | - Paula Bóveda
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish Scientific Research Council (INIA-CSIC), Avda. Puerta de Hierro km 5.9, Madrid 28040, Spain
| | - Paloma Prieto
- Consejería de Sostenibilidad, Medio Ambiente y Economía Azul, Junta de Andalucía, Jaén, Spain
| | - Manuel Alvarez-Rodriguez
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish Scientific Research Council (INIA-CSIC), Avda. Puerta de Hierro km 5.9, Madrid 28040, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical and Clinical Sciences (BKV), Obstetrics and Gynecology, Linköping University, Linköping, Sweden
| | - Julián Santiago-Moreno
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish Scientific Research Council (INIA-CSIC), Avda. Puerta de Hierro km 5.9, Madrid 28040, Spain
| |
Collapse
|
153
|
Reimann MJ, Faisst DN, Knold M, Meurs KM, Stern JA, Cremer SE, Møller JE, Ljungvall I, Häggström J, Olsen LH. No impact of polymorphism in the phosphodiesterase 5A gene in Cavalier King Charles Spaniels on pimobendan-induced inhibition of platelet aggregation response. J Vet Intern Med 2023; 37:2145-2156. [PMID: 37743723 PMCID: PMC10658480 DOI: 10.1111/jvim.16871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND A variant in the canine phosphodiesterase (PDE) 5A gene (PDE5A:E90K) is associated with decreased concentrations of circulating cyclic guanosine monophosphate (cGMP) and response to PDE5 inhibitor treatment. Pimobendan is a PDE inhibitor recommended for medical treatment of certain stages of myxomatous mitral valve disease (MMVD) in dogs. HYPOTHESIS PDE5A:E90K polymorphism attenuates the inhibitory effect of pimobendan on in vitro platelet aggregation and increases basal platelet aggregation in Cavalier King Charles Spaniels (CKCS). Selected clinical variables (MMVD severity, sex, age, hematocrit, platelet count in platelet-rich plasma [PRP], and echocardiographic left ventricular fractional shortening [LV FS]) will not show an association with results. ANIMALS Fifty-two privately owned CKCS with no or preclinical MMVD. METHODS Using blood samples, we prospectively assessed PDE5A genotype using Sanger sequencing and adenosine diphosphate-induced platelet aggregation response (area under the curve [AUC], maximal aggregation [MaxA], and velocity [Vel]) with and without pimobendan using light transmission aggregometry. Dogs also underwent echocardiography. RESULTS Pimobendan inhibited platelet function as measured by AUC, MaxA, and Vel at a concentration of 10 μM (P < .0001) and Vel at 0.03 μM (P < .001). PDE5A:E90K polymorphism did not influence the inhibitory effect of pimobendan or basal platelet aggregation response. CONCLUSIONS AND CLINICAL IMPORTANCE The PDE5A:E90K polymorphism did not influence in vitro basal platelet aggregation response or the inhibitory effect of pimobendan on platelet aggregation in CKCS. Dogs with the PDE5A:E90K polymorphism did not appear to have altered platelet function or response to pimobendan treatment.
Collapse
Affiliation(s)
- Maria J. Reimann
- Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Daniel N. Faisst
- Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Mads Knold
- Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Kathryn M. Meurs
- Department of Clinical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Joshua A. Stern
- Department of Medicine and Epidemiology, School of Veterinary MedicineUniversity of California‐DavisDavisCaliforniaUSA
| | - Signe E. Cremer
- Department of Veterinary Clinical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Jacob E. Møller
- Department of CardiologyCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| | - Ingrid Ljungvall
- Department of Clinical SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Jens Häggström
- Department of Clinical SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Lisbeth H. Olsen
- Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
154
|
Mahanti K, Bhattacharyya S. Rough neighborhood: Intricacies of cancer stem cells and infiltrating immune cell interaction in tumor microenvironment and potential in therapeutic targeting. Transl Res 2023; 265:S1931-5244(23)00176-7. [PMID: 39491179 DOI: 10.1016/j.trsl.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Ongoing research on cellular heterogeneity of Cancer stem cells (CSCs) and its synergistic involvement with tumor milieu reveals enormous complexity, resulting in diverse hindrance in immune therapy. CSCs has captured attention for their contribution in shaping of tumor microenvironment and as target for therapeutic intervention. Recent studies have highlighted cell-extrinsic and intrinsic mechanisms of reciprocal interaction between tumor stroma constituents and CSCs. Therapeutic targeting requires an in-depth understanding of the underlying mechanisms involved with the rate limiting factors in tumor aggressiveness and pinpoint role of CSCs. Some of the major constituents of tumor microenvironment includes resident and infiltrating immune cell, both innate and adaptive. Some of these immune cells play crucial role as adjustors of tumor immune response. Tumor-adjustor immune cell interaction confer plasticity and features enabling tumor growth and metastasis in one hand and on the other hand blunts anti-tumor immunity. Detail understanding of CSC and TME resident immune cells interaction can shape new avenues for cancer immune therapy. In this review, we have tried to summarize the development of knowledge on cellular, molecular and functional interaction between CSCs and tumor microenvironment immune cells, highlighting immune-mediated therapeutic strategies aimed at CSCs. We also discussed developing a potential CSC and TME targeted therapeutic avenue.
Collapse
Affiliation(s)
- Krishna Mahanti
- Immunobiology and Translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal India
| | - Sankar Bhattacharyya
- Immunobiology and Translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal India.
| |
Collapse
|
155
|
Costa EDO, Gordiano LA, Ferreira FG, Santos SA, de Carvalho GGP, de Araújo MLGML, Tosto MSL. Thermography as an indicator of goat welfare in an intensive production system. Trop Anim Health Prod 2023; 55:373. [PMID: 37874396 DOI: 10.1007/s11250-023-03791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
This study evaluated the welfare of Saanen, Moxoto, and Anglo-Nubian goats kept in collective or individual pens for a feedlot system, evaluated with infrared thermography. A total of twenty-four goats were used, eight for each breed. Animals were distributed in a completely randomized design, with a 2 × 3 factorial with two fixed effects: housing type (collective or individual pens) and breed (Moxoto, Saanen, and Anglo-Nubian). The surface temperature was evaluated using an infrared thermographic camera, and behavioral analysis was based on the qualitative behavior assessment using a fixed list of descriptors. The breed was not different for all behavior evaluations and surface temperature (p>0.05). There was a difference between the housing types, where the collective pens showed goats more agitated, frustrated, and sociable (p<0.05). There was an influence of agitated, apathetic, frustrated, attentive, and curious behaviors on surface temperatures, in which feet and body temperatures decreased in these goats. (p<0.05). Moxoto, Anglo-Nubian, and Saanen goats showed similar behavior even when kept in collective or individual pens. Individual pens can restrict the goats' social relationships but reduce negative behaviors such as irritation and frustration. The lower foot temperatures of feedlot goats are related to the attention behavior in 86.75% of the observations.
Collapse
Affiliation(s)
- Eduardo de O Costa
- School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Layse A Gordiano
- School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Fernanda G Ferreira
- School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Stefanie A Santos
- School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, Brazil
| | | | | | - Manuela S L Tosto
- School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, Brazil.
- Department of Animal Science, School of Veterinary Medicine and Animal Science/Federal University of Bahia, Salvador, Bahia, 40.170-110, Brazil.
| |
Collapse
|
156
|
Vaz TP, Quaresma PF, Rêgo FD, Souza CB, Fontes G, Gontijo CMF. Clinical and Laboratory Response of Domiciled Dogs with Visceral Leishmaniasis Treated with Miltefosine and Allopurinol. Trop Med Infect Dis 2023; 8:472. [PMID: 37888600 PMCID: PMC10610677 DOI: 10.3390/tropicalmed8100472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Canine visceral leishmaniasis (CVL) remains a significant disease worldwide. In Brazil, its treatment is performed using miltefosine, which has demonstrated promising outcomes in dogs. This study represents the first attempt to treat and monitor dogs with CVL in natural conditions over the course of one year. The dogs were divided into two groups: G1 received miltefosine and allopurinol for 28 days, while G2 received miltefosine for 28 days, followed by allopurinol for one year. The follow-up involved clinical, hematological, and biochemical evaluations, as well as the detection of Leishmania DNA in skin and bone marrow samples. By the end of the follow-up, dogs in G2 exhibited improved staging compared to their initial conditions, whereas those in G1 showed worsened staging. Leishmania DNA in skin and bone marrow decreased between 6 and 12 months after treatment. Our observations indicate that the treatment using miltefosine reduces the detection of the parasite in the skin and bone marrow for up to one year following its administration. The continuous use of allopurinol contributes to control of the disease in dogs. These findings provide valuable insights into the response of dogs treated in natural conditions, offering essential information for veterinarians and public health authorities.
Collapse
Affiliation(s)
- Talita Pereira Vaz
- René Rachou Institute (FIOCRUZ/MG), Av. Augusto de Lima, 1715, Barro Preto, Belo Horizonte 30190-009, MG, Brazil; (T.P.V.); (F.D.R.); (C.B.S.)
| | - Patrícia Flávia Quaresma
- Campus Reitor João Davi Ferreira Lima, Federal University of Santa Catarina, Trindade, Florianópolis 88040-900, SC, Brazil;
| | - Felipe Dutra Rêgo
- René Rachou Institute (FIOCRUZ/MG), Av. Augusto de Lima, 1715, Barro Preto, Belo Horizonte 30190-009, MG, Brazil; (T.P.V.); (F.D.R.); (C.B.S.)
| | - Camila Binder Souza
- René Rachou Institute (FIOCRUZ/MG), Av. Augusto de Lima, 1715, Barro Preto, Belo Horizonte 30190-009, MG, Brazil; (T.P.V.); (F.D.R.); (C.B.S.)
| | - Gilberto Fontes
- Campus Centro Oeste, Federal University of São João del Rei (UFSJ), Sebastião Gonçalves Coelho, 400, Divinópolis 35501-296, MG, Brazil;
| | - Célia Maria Ferreira Gontijo
- René Rachou Institute (FIOCRUZ/MG), Av. Augusto de Lima, 1715, Barro Preto, Belo Horizonte 30190-009, MG, Brazil; (T.P.V.); (F.D.R.); (C.B.S.)
| |
Collapse
|
157
|
Napolitano F, De Rosa G, Chay-Canul A, Álvarez-Macías A, Pereira AMF, Bragaglio A, Mora-Medina P, Rodríguez-González D, García-Herrera R, Hernández-Ávalos I, Domínguez-Oliva A, Pacelli C, Sabia E, Casas-Alvarado A, Reyes-Sotelo B, Braghieri A. The Challenge of Global Warming in Water Buffalo Farming: Physiological and Behavioral Aspects and Strategies to Face Heat Stress. Animals (Basel) 2023; 13:3103. [PMID: 37835709 PMCID: PMC10571975 DOI: 10.3390/ani13193103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Water buffaloes have morphological and behavioral characteristics for efficient thermoregulation. However, their health, welfare, and productive performance can be affected by GW. The objective of this review was to analyze the adverse effects of GW on the productive behavior and health of water buffaloes. The physiological, morphological, and behavioral characteristics of the species were discussed to understand the impact of climate change and extreme meteorological events on buffaloes' thermoregulation. In addition, management strategies in buffalo farms, as well as the use of infrared thermography as a method to recognize heat stress in water buffaloes, were addressed. We concluded that heat stress causes a change in energy mobilization to restore animal homeostasis. Preventing hyperthermia limits the physiological, endocrine, and behavioral changes so that they return to thermoneutrality. The use of fans, sprinklers, foggers, and natural sources of water are appropriate additions to current buffalo facilities, and infrared thermography could be used to monitor the thermal states of water buffaloes.
Collapse
Affiliation(s)
- Fabio Napolitano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università Degli Studi della Basilicata, 85100 Potenza, Italy (C.P.)
| | - Giuseppe De Rosa
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Alfonso Chay-Canul
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa 86025, Mexico
| | - Adolfo Álvarez-Macías
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.Á.-M.)
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, 7006-554 Évora, Portugal;
| | - Andrea Bragaglio
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria (CREA), Research Centre for Engineering and Food Processing, Via Milano 43, 24047 Treviglio, Italy;
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), FESC, Ciudad de México 04510, Mexico
| | - Daniela Rodríguez-González
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.Á.-M.)
| | - Ricardo García-Herrera
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa 86025, Mexico
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), FESC, Ciudad de México 04510, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.Á.-M.)
| | - Corrado Pacelli
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università Degli Studi della Basilicata, 85100 Potenza, Italy (C.P.)
| | - Emilio Sabia
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università Degli Studi della Basilicata, 85100 Potenza, Italy (C.P.)
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.Á.-M.)
| | - Brenda Reyes-Sotelo
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.Á.-M.)
| | - Ada Braghieri
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università Degli Studi della Basilicata, 85100 Potenza, Italy (C.P.)
| |
Collapse
|
158
|
Marciniak M, Wagner M. Innate lymphoid cells and tumor-derived lactic acid: novel contenders in an enduring game. Front Immunol 2023; 14:1236301. [PMID: 37868977 PMCID: PMC10585168 DOI: 10.3389/fimmu.2023.1236301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Aerobic glycolysis, also known as the Warburg effect, has for a prolonged period of time been perceived as a defining feature of tumor metabolism. The redirection of glucose utilization towards increased production of lactate by cancer cells enables their rapid proliferation, unceasing growth, and longevity. At the same time, it serves as a significant contributor to acidification of the tumor microenvironment, which, in turn, imposes substantial constraints on infiltrating immune cells. Here, we delve into the influence of tumor-derived lactic acid on innate lymphoid cells (ILCs) and discuss potential therapeutic approaches. Given the abundance of ILCs in barrier tissues such as the skin, we provide insights aimed at translating this knowledge into therapies that may specifically target skin cancer.
Collapse
Affiliation(s)
- Mateusz Marciniak
- Cancer Biomarkers Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Marek Wagner
- Cancer Biomarkers Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
159
|
Chen M, Peng Q, Tan Z, Xu S, Wang Y, Wu A, Xiao W, Wang Q, Xie H, Li J, Shi W, Deng Z. Targeting Aquaporin-3 Attenuates Skin Inflammation in Rosacea. Int J Biol Sci 2023; 19:5160-5173. [PMID: 37928265 PMCID: PMC10620828 DOI: 10.7150/ijbs.86207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
Rosacea is a common inflammatory skin disorder mediated by the dysregulation of both keratinocytes and T cells. Here, we report that aquaporin 3 (AQP3), a channel protein that mediates the transport of water/glycerol, was highly expressed in the epidermis and CD4+ T cells of both rosacea patients and experimental mice. Specifically, AQP3 deletion blocked the development of rosacea-like skin inflammation in model mice with LL37-induced rosacea-like disease. We also present mechanistic evidence showing that AQP3 was essential to the activation of NF-κB signaling and subsequent production of disease-characteristic chemokines in keratinocytes. Moreover, we show that AQP3 was upregulated during T cell differentiation and promotes helper T (Th) 17 differentiation possibly via the activation of STAT3 signaling. Our findings reveal that AQP3-mediated activation of NF-κB in keratinocytes and activation of STAT3 in CD4+ T cells acted synergistically and contributed to the inflammation in rosacea.
Collapse
Affiliation(s)
- Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qinqin Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zixin Tan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunying Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Aike Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Wang
- Hunan Binsis Biotechnology Co., Ltd, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
160
|
Chandra R, Kumari S, Bhatla N, Kumar R, Tiwari A, Sachani H, Kumar L. Role of Positron Emission Tomography/Computed Tomography in Epithelial Ovarian Cancer. Indian J Nucl Med 2023; 38:366-375. [PMID: 38390547 PMCID: PMC10880854 DOI: 10.4103/ijnm.ijnm_42_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 02/24/2024] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy with majority of cases diagnosed in advanced stages and associated with high morbidity and mortality. Positron emission tomography/computed tomography (PET/CT) has emerged as an integral part of the management of several nongynecological cancers. We used PubMed search engine using MeSH words "ovarian cancer" and "PET/CT" and reviewed the current status of PET/CT in epithelial OC. Its application related to ovarian tumor including adnexal mass evaluation, baseline staging, as a triaging tool for upfront surgery or neoadjuvant chemotherapy, for response assessment and prognostication, and for relapse detection and treatment planning has been highlighted. we highlight the current guidelines and newer upcoming PET modalities and radiotracers.
Collapse
Affiliation(s)
- Rudrika Chandra
- Department of Obstetrics and Gynaecology, Division of Gynaecologic Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Sarita Kumari
- Department of Obstetrics and Gynaecology, Division of Gynaecologic Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Bhatla
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Kumar
- Department of Nuclear Medicine, Division of Diagnostic Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Abhinav Tiwari
- Department of Medicine, Base Hospital, Delhi Cantt, India
| | - Hemant Sachani
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Kumar
- Department of Medical Oncology, BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
161
|
Eichberger J, Froschhammer D, Schulz D, Scholz KJ, Federlin M, Ebensberger H, Reichert TE, Ettl T, Bauer RJ. BMSC-HNC Interaction: Exploring Effects on Bone Integrity and Head and Neck Cancer Progression. Int J Mol Sci 2023; 24:14417. [PMID: 37833873 PMCID: PMC10573008 DOI: 10.3390/ijms241914417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
In recent research, the tumor microenvironment has been shown to attract mesenchymal stromal cells (MSCs), which is of particular interest due to its implications for cancer progression. The study focused on understanding the interaction between bone marrow-derived MSCs (BMSCs) and head and neck cancer (HNC) cells. This interaction was found to activate specific markers, notably the osteogenic marker alkaline phosphatase and the oncogene Runx2. These activations corresponded with the release of collagenase enzymes, MMP9 and MMP2. To gain insights into bone resorption related to this interaction, bovine bone slices were used, supporting the growth of "heterogeneous spheroids" that contained both BMSCs and HNC cells. Through scanning electron microscopy and energy-dispersive X-ray (EDX) analysis, it was observed that these mixed spheroids were linked to a notable increase in bone degradation and collagen fiber exposure, more so than spheroids of just BMSCs or HNC cells. Furthermore, the EDX results highlighted increased nitrogen content on bone surfaces with these mixed clusters. Overall, the findings underscore the significant role of BMSCs in tumor growth, emphasizing the need for further exploration in potential cancer treatment strategies.
Collapse
Affiliation(s)
- Jonas Eichberger
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.E.); (D.F.); (D.S.); (T.E.R.); (T.E.)
| | - Daniel Froschhammer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.E.); (D.F.); (D.S.); (T.E.R.); (T.E.)
- Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.E.); (D.F.); (D.S.); (T.E.R.); (T.E.)
- Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Konstantin J. Scholz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (K.J.S.); (M.F.); (H.E.)
| | - Marianne Federlin
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (K.J.S.); (M.F.); (H.E.)
| | - Helga Ebensberger
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (K.J.S.); (M.F.); (H.E.)
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.E.); (D.F.); (D.S.); (T.E.R.); (T.E.)
| | - Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.E.); (D.F.); (D.S.); (T.E.R.); (T.E.)
| | - Richard J. Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.E.); (D.F.); (D.S.); (T.E.R.); (T.E.)
- Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
162
|
Toader C, Tataru CP, Florian IA, Covache-Busuioc RA, Dumitrascu DI, Glavan LA, Costin HP, Bratu BG, Ciurea AV. From Homeostasis to Pathology: Decoding the Multifaceted Impact of Aquaporins in the Central Nervous System. Int J Mol Sci 2023; 24:14340. [PMID: 37762642 PMCID: PMC10531540 DOI: 10.3390/ijms241814340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaporins (AQPs), integral membrane proteins facilitating selective water and solute transport across cell membranes, have been the focus of extensive research over the past few decades. Particularly noteworthy is their role in maintaining cellular homeostasis and fluid balance in neural compartments, as dysregulated AQP expression is implicated in various degenerative and acute brain pathologies. This article provides an exhaustive review on the evolutionary history, molecular classification, and physiological relevance of aquaporins, emphasizing their significance in the central nervous system (CNS). The paper journeys through the early studies of water transport to the groundbreaking discovery of Aquaporin 1, charting the molecular intricacies that make AQPs unique. It delves into AQP distribution in mammalian systems, detailing their selective permeability through permeability assays. The article provides an in-depth exploration of AQP4 and AQP1 in the brain, examining their contribution to fluid homeostasis. Furthermore, it elucidates the interplay between AQPs and the glymphatic system, a critical framework for waste clearance and fluid balance in the brain. The dysregulation of AQP-mediated processes in this system hints at a strong association with neurodegenerative disorders such as Parkinson's Disease, idiopathic normal pressure hydrocephalus, and Alzheimer's Disease. This relationship is further explored in the context of acute cerebral events such as stroke and autoimmune conditions such as neuromyelitis optica (NMO). Moreover, the article scrutinizes AQPs at the intersection of oncology and neurology, exploring their role in tumorigenesis, cell migration, invasiveness, and angiogenesis. Lastly, the article outlines emerging aquaporin-targeted therapies, offering a glimpse into future directions in combatting CNS malignancies and neurodegenerative diseases.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
163
|
Foda BM, Neubig RR. Role of Rho/MRTF in Aggressive Vemurafenib-Resistant Murine Melanomas and Immune Checkpoint Upregulation. Int J Mol Sci 2023; 24:13785. [PMID: 37762086 PMCID: PMC10531039 DOI: 10.3390/ijms241813785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Cutaneous melanoma is the deadliest skin cancer. Most have Ras-MAPK pathway (BRAFV600E or NRAS) mutations and highly effective targeted therapies exist; however, they and immune therapies are limited by resistance, in part driven by small GTPase (Rho and Rac) activation. To facilitate preclinical studies of combination therapies to provide durable responses, we describe the first mouse melanoma lines resistant to BRAF inhibitors. Treatment of mouse lines, YUMM1.7 and YUMMER, with vemurafenib (Vem), the BRAFV600E-selective inhibitor, resulted in high-level resistance (IC50 shifts 20-30-fold). Resistant cells showed enhanced activation of Rho and the downstream transcriptional coactivator, myocardin-related transcription factor (MRTF). Resistant cells exhibited increased stress fibers, nuclear translocation of MRTF-A, and an increased MRTF-A gene signature. Pharmacological inhibition of the Rho/MRTF pathway using CCG-257081 reduced viability of resistant lines and enhanced sensitivity to Vem. Remarkably, co-treatment of parental lines with Vem and CCG-257081 eliminated resistant colony development. Resistant cells grew more slowly in vitro, but they developed highly aggressive tumors with a shortened survival of tumor-bearing mice. Increased expression of immune checkpoint inhibitor proteins (ICIs) in resistant lines may contribute to aggressive in vivo behavior. Here, we introduce the first drug-resistant mouse melanoma models for assessing combinations of targeted and immune therapies.
Collapse
Affiliation(s)
- Bardees M. Foda
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA;
- Molecular Genetics and Enzymology Department, National Research Centre, Dokki 12622, Egypt
| | - Richard R. Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA;
- Nicholas V. Perricone, M.D. Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
164
|
Liu N, Yan M, Tao Q, Wu J, Chen J, Chen X, Peng C. Inhibition of TCA cycle improves the anti-PD-1 immunotherapy efficacy in melanoma cells via ATF3-mediated PD-L1 expression and glycolysis. J Immunother Cancer 2023; 11:e007146. [PMID: 37678921 PMCID: PMC10496672 DOI: 10.1136/jitc-2023-007146] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND anti-Programmed Death-1 (anti-PD-1) immunotherapy has shown promising manifestation in improving the survival rate of patients with advanced melanoma, with its efficacy closely linked to Programmed cell death-Ligand 1 (PD-L1) expression. However, low clinical efficacy and drug resistance remain major challenges. Although the metabolic alterations from tricarboxylic acid (TCA) cycle to glycolysis is a hallmark in cancer cells, accumulating evidence demonstrating TCA cycle plays critical roles in both tumorigenesis and treatment. METHODS The plasma levels of metabolites in patients with melanoma were measured by nuclear magnetic resonance (NMR) spectroscopy. The effect of pyruvate dehydrogenase subunit 1 (PDHA1) and oxoglutarate dehydrogenase (OGDH) on immunotherapy was performed by B16F10 tumor-bearing mice. Flow cytometry analyzed the immune microenvironment. RNA sequencing analyzed the global transcriptome alterations in CPI613-treated melanoma cells. The regulation of PD-L1 and glycolysis by PDHA1/OGDH-ATF3 signaling were confirmed by Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, dual-luciferase reporter gene, Chromatin immunoprecipitation (ChIP)-quantitative PCR and Seahorse assay. The relationship between PDHA1/OGDH-ATF3-glycolysis and the efficacy of melanoma anti-PD-1 immunotherapy was verified in the clinical database and single-cell RNA-seq (ScRNA-Seq). RESULTS In our study, the results showed that significant alterations in metabolites associated with glycolysis and the TCA cycle in plasma of patients with melanoma through NMR technique, and then, PDHA1 and OGDH, key enzymes for regulation TCA cycle, were remarkable raised in melanoma and negatively related to anti-PD-1 efficacy through clinical database analysis as well as ScRNA-Seq. Inhibition of PDHA1 and OGDH by either shRNA or pharmacological inhibitor by CPI613 dramatically attenuated melanoma progression as well as improved the therapeutic efficacy of anti-PD-1 against melanoma. Most importantly, suppression of TCA cycle remarkably raises PD-L1 expression and glycolysis flux through AMPK-CREB-ATF3 signaling. CONCLUSIONS Taken together, our results demonstrated the role of TCA cycle in immune checkpoint blockade and provided a novel combination strategy for anti-PD-1 immunotherapy in melanoma treatment.
Collapse
Affiliation(s)
- Nian Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingjie Yan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Tao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
165
|
Slama Y, Ah-Pine F, Khettab M, Arcambal A, Begue M, Dutheil F, Gasque P. The Dual Role of Mesenchymal Stem Cells in Cancer Pathophysiology: Pro-Tumorigenic Effects versus Therapeutic Potential. Int J Mol Sci 2023; 24:13511. [PMID: 37686315 PMCID: PMC10488262 DOI: 10.3390/ijms241713511] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells involved in numerous physiological events, including organogenesis, the maintenance of tissue homeostasis, regeneration, or tissue repair. MSCs are increasingly recognized as playing a major, dual, and complex role in cancer pathophysiology through their ability to limit or promote tumor progression. Indeed, these cells are known to interact with the tumor microenvironment, modulate the behavior of tumor cells, influence their functions, and promote distant metastasis formation through the secretion of mediators, the regulation of cell-cell interactions, and the modulation of the immune response. This dynamic network can lead to the establishment of immunoprivileged tissue niches or the formation of new tumors through the proliferation/differentiation of MSCs into cancer-associated fibroblasts as well as cancer stem cells. However, MSCs exhibit also therapeutic effects including anti-tumor, anti-proliferative, anti-inflammatory, or anti-oxidative effects. The therapeutic interest in MSCs is currently growing, mainly due to their ability to selectively migrate and penetrate tumor sites, which would make them relevant as vectors for advanced therapies. Therefore, this review aims to provide an overview of the double-edged sword implications of MSCs in tumor processes. The therapeutic potential of MSCs will be reviewed in melanoma and lung cancers.
Collapse
Affiliation(s)
- Youssef Slama
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Franck Ah-Pine
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Mohamed Khettab
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Angelique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Mickael Begue
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Fabien Dutheil
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
| |
Collapse
|
166
|
Tamarindo GH, Novais AA, Chuffa LGA, Zuccari DAPC. Metabolic Alterations in Canine Mammary Tumors. Animals (Basel) 2023; 13:2757. [PMID: 37685021 PMCID: PMC10487042 DOI: 10.3390/ani13172757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Canine mammary tumors (CMTs) are among the most common diseases in female dogs and share similarities with human breast cancer, which makes these animals a model for comparative oncology studies. In these tumors, metabolic reprogramming is known as a hallmark of carcinogenesis whereby cells undergo adjustments to meet the high bioenergetic and biosynthetic demands of rapidly proliferating cells. However, such alterations are also vulnerabilities that may serve as a therapeutic strategy, which has mostly been tested in human clinical trials but is poorly explored in CMTs. In this dedicated review, we compiled the metabolic changes described for CMTs, emphasizing the metabolism of carbohydrates, amino acids, lipids, and mitochondrial functions. We observed key factors associated with the presence and aggressiveness of CMTs, such as an increase in glucose uptake followed by enhanced anaerobic glycolysis via the upregulation of glycolytic enzymes, changes in glutamine catabolism due to the overexpression of glutaminases, increased fatty acid oxidation, and distinct effects depending on lipid saturation, in addition to mitochondrial DNA, which is a hotspot for mutations. Therefore, more attention should be paid to this topic given that targeting metabolic fragilities could improve the outcome of CMTs.
Collapse
Affiliation(s)
- Guilherme Henrique Tamarindo
- Department of Molecular Biology, São José do Rio Preto Faculty of Medicine, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| | - Adriana Alonso Novais
- Health Sciences Institute (ICS), Mato Grosso Federal University (UFMT), Sinop 78550-728, MT, Brazil
| | - Luiz Gustavo Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | | |
Collapse
|
167
|
Meenakshi M, Kannan A, Jothimani M, Selvi T, Karthikeyan M, Prahalathan C, Srinivasan K. Evaluation of dual potentiality of 2,4,5-trisubstituted oxazole derivatives as aquaporin-4 inhibitors and anti-inflammatory agents in lung cells. RSC Adv 2023; 13:26111-26120. [PMID: 37664213 PMCID: PMC10472800 DOI: 10.1039/d3ra03989g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Inflammation is a multifaceted "second-line" adaptive defense mechanism triggered by exo/endogenous threating stimuli and inter-communicated by various inflammatory key players. Unresolved or dysregulated inflammation in lungs results in manifestation of diseases and leads to irreparable damage. Aquaporins (AQPs) are a ubiquitously expressed superfamily of intrinsic transmembrane water channel proteins that modulate the fluid homeostasis. In addition to their conventional functions, AQPs have clinical relevance to inflammation prevailing under the infectious conditions of various lung diseases and this proclaims them as appropriate biomarkers to be targeted. Hence an endeavor was undertaken to identify potential ligands to target AQP4 for the treatment of lung diseases. Oxazole being a versatile bio-potent core, a series of 2,4,5-trisubstituted oxazoles 3a-j were synthesized by a Lewis acid mediated reaction of aroylmethylidene malonates with nitriles. In silico studies conducted using the protein data bank (PDB) structure 3gd8 for AQP4 revealed that compound 3a would serve as a suitable candidate to inhibit AQP4 in human lung cells (NCI-H460). Further, in vitro studies demonstrated that compound 3a could effectively inhibit AQP4 and inflammatory cytokines in lung cells and hence it may be considered as a viable drug candidate for the treatment of various lung diseases.
Collapse
Affiliation(s)
- Maniarasu Meenakshi
- School of Chemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India
| | - Arun Kannan
- Department of Biochemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India
| | | | - Thangavel Selvi
- School of Chemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India
| | | | - Chidambaram Prahalathan
- Department of Biochemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India
| |
Collapse
|
168
|
Huang F, He Y, Zhang M, Luo K, Li J, Li J, Zhang X, Dong X, Tang J. Progress in Research on Stem Cells in Neonatal Refractory Diseases. J Pers Med 2023; 13:1281. [PMID: 37623531 PMCID: PMC10455340 DOI: 10.3390/jpm13081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
With the development and progress of medical technology, the survival rate of premature and low-birth-weight infants has increased, as has the incidence of a variety of neonatal diseases, such as hypoxic-ischemic encephalopathy, intraventricular hemorrhage, bronchopulmonary dysplasia, necrotizing enterocolitis, and retinopathy of prematurity. These diseases cause severe health conditions with poor prognoses, and existing control methods are ineffective for such diseases. Stem cells are a special type of cells with self-renewal and differentiation potential, and their mechanisms mainly include anti-inflammatory and anti-apoptotic properties, reducing oxidative stress, and boosting regeneration. Their paracrine effects can affect the microenvironment in which they survive, thereby affecting the biological characteristics of other cells. Due to their unique abilities, stem cells have been used in treating various diseases. Therefore, stem cell therapy may open up the possibility of treating such neonatal diseases. This review summarizes the research progress on stem cells and exosomes derived from stem cells in neonatal refractory diseases to provide new insights for most researchers and clinicians regarding future treatments. In addition, the current challenges and perspectives in stem cell therapy are discussed.
Collapse
Affiliation(s)
- Fangjun Huang
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yang He
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Meng Zhang
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Keren Luo
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Jiawen Li
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Jiali Li
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xinyu Zhang
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xiaoyan Dong
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Jun Tang
- Department of Neonatology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| |
Collapse
|
169
|
Zicarelli F, Tudisco R, Lotito D, Musco N, Iommelli P, Ferrara M, Calabrò S, Infascelli F, Lombardi P. Forage:Concentrate Ratio Effects on In Vivo Digestibility and In Vitro Degradability of Horse's Diet. Animals (Basel) 2023; 13:2589. [PMID: 37627380 PMCID: PMC10452004 DOI: 10.3390/ani13162589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Determination of digestibility represents the first step for the evaluation of the net energy content of feed for livestock animals. The aim of this study was to evaluate the in vivo digestibility and in vitro degradability of five diets characterized by different forage/concentrate ratios (F:C) in horses. The in vitro degradability was determined by the Gas Production Technique (GPT), using as an inoculum source the feces of the same subjects used for the in vivo test. Five diets consisting of poliphyte hay, straw and grains of barley and oats with a different F:C ratio [90/10 (Diet 1); 78/22 (Diet 2); 68/32 (Diet 3); 60/40 (Diet 4); 50/50 (Diet 5) were formulated and administered in succession, starting with Diet 1. In the in vivo results, no significant differences emerged, despite the different F:C content. In in vitro fermentation, four diets out of the five (2, 3, 4, 5) presented a similar trend of the curve of gas production, showing good activity of the fecal micro population during the first hours of incubation. An important correlation between gas and Volatile Fatty Acid (VFA) were found, suggesting that the processes linked to the micro population deriving from the horse's caecum follow metabolic pathways whose products can be modeled in the same way as for the rumen. The GPT could represent the correct method for studying the nutritional characteristics of feed for horses, using feces as the source of inoculum, even if further investigations must be performed to improve the technique.
Collapse
Affiliation(s)
| | | | | | - Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Napoli, Italy; (F.Z.); (P.I.); (M.F.); (F.I.); (P.L.)
| | | | | | | | | | | |
Collapse
|
170
|
Castellani G, Buccarelli M, Arasi MB, Rossi S, Pisanu ME, Bellenghi M, Lintas C, Tabolacci C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2023; 15:4026. [PMID: 37627054 PMCID: PMC10452867 DOI: 10.3390/cancers15164026] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer resulting from the malignant transformation of melanocytes. Recent therapeutic approaches, including targeted therapy and immunotherapy, have improved the prognosis and outcome of melanoma patients. BRAF is one of the most frequently mutated oncogenes recognised in melanoma. The most frequent oncogenic BRAF mutations consist of a single point mutation at codon 600 (mostly V600E) that leads to constitutive activation of the BRAF/MEK/ERK (MAPK) signalling pathway. Therefore, mutated BRAF has become a useful target for molecular therapy and the use of BRAF kinase inhibitors has shown promising results. However, several resistance mechanisms invariably develop leading to therapeutic failure. The aim of this manuscript is to review the role of BRAF mutational status in the pathogenesis of melanoma and its impact on differentiation and inflammation. Moreover, this review focuses on the mechanisms responsible for resistance to targeted therapies in BRAF-mutated melanoma and provides an overview of circulating biomarkers including circulating tumour cells, circulating tumour DNA, and non-coding RNAs.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Bellenghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| |
Collapse
|
171
|
Pirozzi C, Coretti L, Opallo N, Bove M, Annunziata C, Comella F, Turco L, Lama A, Trabace L, Meli R, Lembo F, Mattace Raso G. Palmitoylethanolamide counteracts high-fat diet-induced gut dysfunction by reprogramming microbiota composition and affecting tryptophan metabolism. Front Nutr 2023; 10:1143004. [PMID: 37599675 PMCID: PMC10434518 DOI: 10.3389/fnut.2023.1143004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Obesity is associated with gastrointestinal (GI) tract and central nervous system (CNS) disorders. High-fat diet (HFD) feeding-induced obesity in mice induces dysbiosis, causing a shift toward bacteria-derived metabolites with detrimental effects on metabolism and inflammation: events often contributing to the onset and progression of both GI and CNS disorders. Palmitoylethanolamide (PEA) is an endogenous lipid mediator with beneficial effects in mouse models of GI and CNS disorders. However, the mechanisms underlining its enteroprotective and neuroprotective effects still need to be fully understood. Here, we aimed to study the effects of PEA on intestinal inflammation and microbiota alterations resulting from lipid overnutrition. Ultramicronized PEA (30 mg/kg/die per os) was administered to HFD-fed mice for 7 weeks starting at the 12th week of HFD regimen. At the termination of the study, the effects of PEA on inflammatory factors and cells, gut microbial features and tryptophan (TRP)-kynurenine metabolism were evaluated. PEA regulates the crosstalk between the host immune system and gut microbiota via rebalancing colonic TRP metabolites. PEA treatment reduced intestinal immune cell recruitment, inflammatory response triggered by HFD feeding, and corticotropin-releasing hormone levels. In particular, PEA modulated HFD-altered TRP metabolism in the colon, rebalancing serotonin (5-HT) turnover and reducing kynurenine levels. These effects were associated with a reshaping of gut microbiota composition through increased butyrate-promoting/producing bacteria, such as Bifidobacterium, Oscillospiraceae and Turicibacter sanguinis, with the latter also described as 5-HT sensor. These data indicate that the rebuilding of gut microbiota following PEA supplementation promotes host 5-HT biosynthesis, which is crucial in regulating intestinal function.
Collapse
Affiliation(s)
- Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Lorena Coretti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Nicola Opallo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Chiara Annunziata
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Federica Comella
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Luigia Turco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Giuseppina Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
172
|
Lin C, He H, Kim JJ, Zheng X, Huang Z, Dai N. Osmotic pressure induces translocation of aquaporin-8 by P38 and JNK MAPK signaling pathways in patients with functional constipation. Dig Liver Dis 2023; 55:1049-1059. [PMID: 36792433 DOI: 10.1016/j.dld.2023.01.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Aquaporins (AQPs) maintain fluid homeostasis in the colon. The role of colonic AQPs in the pathophysiology of functional constipation (FC) remains largely unknown. AIM To explore variations in aquaporins and investigate their underlying mechanisms. METHODS Colonic biopsies were collected from patients with FC and healthy controls. The expression and localization of AQPs were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR), western blot analysis, and immunofluorescence assays. Furthermore, osmotic pressure-induced cell model was used in vitro to investigate the potential relationship between AQP8 and osmotic pressure, and to reveal the underlying mechanisms. RESULTS Upregulation of AQP3 and AQP8, and downregulation of AQP1, AQP7, AQP9, AQP10, and AQP11 were observed in the patients with functional constipation. Furthermore, cellular translocation of AQP8 from the cytoplasm to the plasma membrane was observed in patients with FC. Mechanistically, the increase in osmotic pressure could activate the Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) signaling pathways, and subsequently promote the upregulation and translocation of AQP8. CONCLUSION Upregulation of AQP8 and AQP3, and translocation of AQP8 were observed in colon biopsies from patients with FC. The p38 and JNK MAPK signaling pathways are involved in the regulation of osmotic pressure-induced AQP8 variation.
Collapse
Affiliation(s)
- Chenhong Lin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huiqin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - John J Kim
- Division of Gastroenterology & Hepatology, Loma Linda University Health, Loma Linda, CA, United States
| | - Xia Zheng
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhihui Huang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Ning Dai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
173
|
Grafanaki K, Grammatikakis I, Ghosh A, Gopalan V, Olgun G, Liu H, Kyriakopoulos GC, Skeparnias I, Georgiou S, Stathopoulos C, Hannenhalli S, Merlino G, Marie KL, Day CP. Noncoding RNA circuitry in melanoma onset, plasticity, and therapeutic response. Pharmacol Ther 2023; 248:108466. [PMID: 37301330 PMCID: PMC10527631 DOI: 10.1016/j.pharmthera.2023.108466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Melanoma, the cancer of the melanocyte, is the deadliest form of skin cancer with an aggressive nature, propensity to metastasize and tendency to resist therapeutic intervention. Studies have identified that the re-emergence of developmental pathways in melanoma contributes to melanoma onset, plasticity, and therapeutic response. Notably, it is well known that noncoding RNAs play a critical role in the development and stress response of tissues. In this review, we focus on the noncoding RNAs, including microRNAs, long non-coding RNAs, circular RNAs, and other small RNAs, for their functions in developmental mechanisms and plasticity, which drive onset, progression, therapeutic response and resistance in melanoma. Going forward, elucidation of noncoding RNA-mediated mechanisms may provide insights that accelerate development of novel melanoma therapies.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ioannis Grammatikakis
- Cancer Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arin Ghosh
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gulden Olgun
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George C Kyriakopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ilias Skeparnias
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kerrie L Marie
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
174
|
Malyarenko OS, Usoltseva RV, Silchenko AS, Zueva AO, Ermakova SP. The Combined Metabolically Oriented Effect of Fucoidan from the Brown Alga Saccharina cichorioides and Its Carboxymethylated Derivative with 2-Deoxy-D-Glucose on Human Melanoma Cells. Int J Mol Sci 2023; 24:12050. [PMID: 37569428 PMCID: PMC10418387 DOI: 10.3390/ijms241512050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Melanoma is the most aggressive and treatment-resistant form of skin cancer. It is phenotypically characterized by aerobic glycolysis that provides higher proliferative rates and resistance to cell death. The glycolysis regulation in melanoma cells by means of effective metabolic modifiers represents a promising therapeutic opportunity. This work aimed to assess the metabolically oriented effect and mechanism of action of fucoidan from the brown alga Saccharina cichorioides (ScF) and its carboxymethylated derivative (ScFCM) in combination with 2-deoxy-D-glucose (2-DG) on the proliferation and colony formation of human melanoma cell lines SK-MEL-28, SK-MEL-5, and RPMI-7951. The metabolic profile of melanoma cells was determined by the glucose uptake and Lactate-GloTM assays. The effect of 2-DG, ScF, ScFCM, and their combination on the proliferation, colony formation, and activity of glycolytic enzymes was assessed by the MTS, soft agar, and Western blot methods, respectively. When applied separately, 2-DG (IC50 at 72 h = 8.7 mM), ScF (IC50 at 72 h > 800 µg/mL), and ScFCM (IC50 at 72 h = 573.9 μg/mL) inhibited the proliferation and colony formation of SK-MEL-28 cells to varying degrees. ScF or ScFCM enhanced the inhibiting effect of 2-DG at low, non-toxic concentrations via the downregulation of Glut 1, Hexokinase II, PKM2, LDHA, and pyruvate dehydrogenase activities. The obtained results emphasize the potential of the use of 2-DG in combination with algal fucoidan or its derivative as metabolic modifiers for inhibition of melanoma SK-MEL-28 cell proliferation.
Collapse
Affiliation(s)
| | | | | | | | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-Letiya Vladivostoka 159, 690022 Vladivostok, Russia
| |
Collapse
|
175
|
Maliszewska K, Miniewska K, Godlewski A, Gosk W, Mojsak M, Kretowski A, Ciborowski M. Changes in plasma endocannabinoids concentrations correlate with 18F-FDG PET/MR uptake in brown adipocytes in humans. Front Mol Biosci 2023; 10:1073683. [PMID: 37564131 PMCID: PMC10411954 DOI: 10.3389/fmolb.2023.1073683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction: Recent data suggest a possible role of endocannabinoids in the regulation of brown adipose tissue (BAT) activity. Those findings indicate potential treatment options for obesity. The aim of this study was to evaluate the relationship between plasma endocannabinoids concentrations and the presence of BAT in humans. Methods: The study group consisted of 25 subjects divided into two groups: BAT positive BAT(+), (n = 17, median age = 25 years) and BAT negative BAT(-), (n = 8, median age = 28 years). BAT was estimated using 18F-FDG PET/MR after 2 h of cold exposure. The level of plasma endocannabinoids was assessed at baseline, 60 min and 120 min of cold exposure. Results: In both groups, BAT(+) and BAT(-), during the cooling, we observed a decrease of the same endocannabinoids: arachidonoylethanolamide (AEA), eicosapentaenoyl ethanolamide (EPEA) and oleoyl ethanolamide (OEA) with a much more profound decline in BAT(+) subjects. Statistically significant fall of PEA (palmitoylethanolamide) and SEA (stearoylethanolamide) concentrations after 60 min (FC = 0.7, p = 0.007 and FC = 0.8, p = 0.03, respectively) and 120 min (FC = 0.81, p = 0.004, and FC = 0.9, p = 0.01, respectively) of cooling was observed only in individuals with BAT. Conclusion: We noticed the profound decline of endocannabinoids concentrations in subjects with increased 18F-FDG PET/MR uptake in BAT. Identification of a new molecules related to BAT activity may create a new target for obesity treatment.
Collapse
Affiliation(s)
- Katarzyna Maliszewska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Miniewska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Godlewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Wioleta Gosk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Malgorzata Mojsak
- Independent Laboratory of Molecular Imaging, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
176
|
Bonosi L, Benigno UE, Musso S, Giardina K, Gerardi RM, Brunasso L, Costanzo R, Paolini F, Buscemi F, Avallone C, Gulino V, Iacopino DG, Maugeri R. The Role of Aquaporins in Epileptogenesis-A Systematic Review. Int J Mol Sci 2023; 24:11923. [PMID: 37569297 PMCID: PMC10418736 DOI: 10.3390/ijms241511923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Aquaporins (AQPs) are a family of membrane proteins involved in the transport of water and ions across cell membranes. AQPs have been shown to be implicated in various physiological and pathological processes in the brain, including water homeostasis, cell migration, and inflammation, among others. Epileptogenesis is a complex and multifactorial process that involves alterations in the structure and function of neuronal networks. Recent evidence suggests that AQPs may also play a role in the pathogenesis of epilepsy. In animal models of epilepsy, AQPs have been shown to be upregulated in regions of the brain that are involved in seizure generation, suggesting that they may contribute to the hyperexcitability of neuronal networks. Moreover, genetic studies have identified mutations in AQP genes associated with an increased risk of developing epilepsy. Our review aims to investigate the role of AQPs in epilepsy and seizure onset from a pathophysiological point of view, pointing out the potential molecular mechanism and their clinical implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (U.E.B.); (S.M.); (K.G.); (R.M.G.); (L.B.); (R.C.); (F.P.); (F.B.); (C.A.); (V.G.); (D.G.I.)
| |
Collapse
|
177
|
Garbarino O, Valenti GE, Monteleone L, Pietra G, Mingari MC, Benzi A, Bruzzone S, Ravera S, Leardi R, Farinini E, Vernazza S, Grottoli M, Marengo B, Domenicotti C. PLX4032 resistance of patient-derived melanoma cells: crucial role of oxidative metabolism. Front Oncol 2023; 13:1210130. [PMID: 37534247 PMCID: PMC10391174 DOI: 10.3389/fonc.2023.1210130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Background Malignant melanoma is the most lethal form of skin cancer which shows BRAF mutation in 50% of patients. In this context, the identification of BRAFV600E mutation led to the development of specific inhibitors like PLX4032. Nevertheless, although its initial success, its clinical efficacy is reduced after six-months of therapy leading to cancer relapse due to the onset of drug resistance. Therefore, investigating the mechanisms underlying PLX4032 resistance is fundamental to improve therapy efficacy. In this context, several models of PLX4032 resistance have been developed, but the discrepancy between in vitro and in vivo results often limits their clinical translation. Methods The herein reported model has been realized by treating with PLX4032, for six months, patient-derived BRAF-mutated melanoma cells in order to obtain a reliable model of acquired PLX4032 resistance that could be predictive of patient's treatment responses. Metabolic analyses were performed by evaluating glucose consumption, ATP synthesis, oxygen consumption rate, P/O ratio, ATP/AMP ratio, lactate release, lactate dehydrogenase activity, NAD+/NADH ratio and pyruvate dehydrogenase activity in parental and drug resistant melanoma cells. The intracellular oxidative state was analyzed in terms of reactive oxygen species production, glutathione levels and NADPH/NADP+ ratio. In addition, a principal component analysis was conducted in order to identify the variables responsible for the acquisition of targeted therapy resistance. Results Collectively, our results demonstrate, for the first time in patient-derived melanoma cells, that the rewiring of oxidative phosphorylation and the maintenance of pyruvate dehydrogenase activity and of high glutathione levels contribute to trigger the onset of PLX4032 resistance. Conclusion Therefore, it is possible to hypothesize that inhibitors of glutathione biosynthesis and/or pyruvate dehydrogenase activity could be used in combination with PLX4032 to overcome drug resistance of BRAF-mutated melanoma patients. However, the identification of new adjuvant targets related to drug-induced metabolic reprogramming could be crucial to counteract the failure of targeted therapy in metastatic melanoma.
Collapse
Affiliation(s)
- Ombretta Garbarino
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Giulia Elda Valenti
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Lorenzo Monteleone
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Andrea Benzi
- Department of Experimental Medicine, Biochemistry Section, University of Genoa, Genoa, Italy
| | - Santina Bruzzone
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Experimental Medicine, Biochemistry Section, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, Human Anatomy Section, University of Genoa, Genoa, Italy
| | | | | | - Stefania Vernazza
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Melania Grottoli
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| |
Collapse
|
178
|
Peng J, Lin Z, Chen W, Ruan J, Deng F, Yao L, Rao M, Xiong X, Xu S, Zhang X, Liu X, Sun X. Vemurafenib induces a noncanonical senescence-associated secretory phenotype in melanoma cells which promotes vemurafenib resistance. Heliyon 2023; 9:e17714. [PMID: 37456058 PMCID: PMC10345356 DOI: 10.1016/j.heliyon.2023.e17714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
More than one half melanoma patients have BRAF gene mutation. BRAF inhibitor vemurafenib is an effective medication for these patients. However, acquired resistance is generally inevitable, the mechanisms of which are not fully understood. Cell senescence and senescence-associated secretory phenotype (SASP) are involved in extensive biological functions. This study was designed to explore the possible role of senescent cells in vemurafenib resistance. The results showed that vemurafenib treatment induced BRAF-mutant but not wild-type melanoma cells into senescence, as manifested by positive β-galactosidase staining, cell cycle arrest, enlarged cellular morphology, and cyclin D1/p-Rb pathway inhibition. However, the senescent cells induced by vemurafenib (SenV) did not display DNA damage response, p53/p21 pathway activation, reactive oxygen species accumulation, decline of mitochondrial membrane potential, or secretion of canonical SASP cytokines. Instead, SenV released other cytokines, including CCL2, TIMP2, and NGFR, to protect normal melanoma cells from growth inhibition upon vemurafenib treatment. Xenograft experiments further confirmed that vemurafenib induced melanoma cells into senescence in vivo. The results suggest that vemurafenib can induce robust senescence in BRAFV600E melanoma cells, leading to the release of resistance-conferring cytokines. Both the senescent cells and the resistant cytokines could be potential targets for tackling vemurafenib resistance.
Collapse
Affiliation(s)
- Jianyu Peng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
- Department of Laboratory Medicine, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, China
| | - Zijun Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Weichun Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Jie Ruan
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Minla Rao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Xingdong Xiong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Shun Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Xiangning Zhang
- Department of Pathophysiology, Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Xuerong Sun
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| |
Collapse
|
179
|
Bienboire-Frosini C, Wang D, Marcet-Rius M, Villanueva-García D, Gazzano A, Domínguez-Oliva A, Olmos-Hernández A, Hernández-Ávalos I, Lezama-García K, Verduzco-Mendoza A, Gómez-Prado J, Mota-Rojas D. The Role of Brown Adipose Tissue and Energy Metabolism in Mammalian Thermoregulation during the Perinatal Period. Animals (Basel) 2023; 13:2173. [PMID: 37443971 DOI: 10.3390/ani13132173] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Hypothermia is one of the most common causes of mortality in neonates, and it could be developed after birth because the uterus temperature is more elevated than the extrauterine temperature. Neonates use diverse mechanisms to thermoregulate, such as shivering and non-shivering thermogenesis. These strategies can be more efficient in some species, but not in others, i.e., altricials, which have the greatest difficulty with achieving thermoneutrality. In addition, there are anatomical and neurological differences in mammals, which may present different distributions and amounts of brown fat. This article aims to discuss the neuromodulation mechanisms of thermoregulation and the importance of brown fat in the thermogenesis of newborn mammals, emphasizing the analysis of the biochemical, physiological, and genetic factors that determine the distribution, amount, and efficiency of this energy resource in newborns of different species. It has been concluded that is vital to understand and minimize hypothermia causes in newborns, which is one of the main causes of mortality in neonates. This would be beneficial for both animals and producers.
Collapse
Affiliation(s)
- Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Míriam Marcet-Rius
- Animal Behaviour and Welfare Department, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Dina Villanueva-García
- Division of Neonatology, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Angelo Gazzano
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Jocelyn Gómez-Prado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| |
Collapse
|
180
|
Smith IM, Stroka KM. The multifaceted role of aquaporins in physiological cell migration. Am J Physiol Cell Physiol 2023; 325:C208-C223. [PMID: 37246634 PMCID: PMC10312321 DOI: 10.1152/ajpcell.00502.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Cell migration is an essential process that underlies many physiological processes, including the immune response, organogenesis in the embryo, and angiogenesis, as well as pathological processes such as cancer metastasis. Cells have at their disposal a variety of migratory behaviors and mechanisms that seem to be specific to cell type and the microenvironment. Research over the past two decades has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. There does not seem to be a universal role that AQPs play in cell migration; the complex interplay between AQPs and cell volume management, signaling pathway activation, and in a few identified circumstances, gene expression regulation, has shown the intricate, and perhaps paradoxical, role of AQPs in cell migration. The objective of this review is to provide an organized and integrated collection of recent work that has elucidated the many mechanisms by which AQPs regulate cell migration.NEW & NOTEWORTHY Research has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. This review compiles insights into the recent findings linking AQPs to physiological cell migration.
Collapse
Affiliation(s)
- Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States
- Biophysics Program, University of Maryland, College Park, Maryland, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland, United States
| |
Collapse
|
181
|
Mota-Rojas D, Braghieri A, Ghezzi M, Ceriani MC, Martínez-Burnes J, Lendez PA, Pereira AMF, Lezama-García K, Domínguez-Oliva A, Casas-Alvarado A, Sabia E, Pacelli C, Napolitano F. Strategies and Mechanisms of Thermal Compensation in Newborn Water Buffaloes. Animals (Basel) 2023; 13:2161. [PMID: 37443964 PMCID: PMC10340076 DOI: 10.3390/ani13132161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Hypothermia is one of the principal causes of perinatal mortality in water buffaloes and can range from 3% to 17.9%. In ruminants, factors affecting hypothermia in newborns may be of intrinsic (e.g., level of neurodevelopment, birth weight, vitality score, amount of brown fat, skin features) or extrinsic origin (e.g., maternal care, environmental conditions, colostrum consumption). When newborn buffaloes are exposed to cold stress, thermoregulatory mechanisms such as peripheral vasoconstriction and shivering and non-shivering thermogenesis are activated to prevent hypothermia. Due to the properties of infrared thermography (IRT), as a technique that detects vasomotor changes triggered by a reduction in body temperature, evaluating the central and peripheral regions in newborn buffaloes is possible. This review aims to analyze behavioral, physiological, and morphological strategies and colostrum consumption as thermal compensation mechanisms in newborn water buffalo to cope with environmental changes affecting thermoneutrality. In addition, the importance of monitoring by IRT to identify hypothermia states will be highlighted. Going deeper into these topics related to the water buffalo is essential because, in recent years, this species has become more popular and is being bred in more geographic areas.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Ada Braghieri
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Marcelo Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), University Campus, Tandil 7000, Argentina
| | - María Carolina Ceriani
- Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil 7000, Argentina
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Pamela Anahí Lendez
- Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil 7000, Argentina
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Emilio Sabia
- School of Agricultural, Forest, Food, and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Corrado Pacelli
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Fabio Napolitano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| |
Collapse
|
182
|
Si H, Esquivel M, Mendoza Mendoza E, Roarty K. The covert symphony: cellular and molecular accomplices in breast cancer metastasis. Front Cell Dev Biol 2023; 11:1221784. [PMID: 37440925 PMCID: PMC10333702 DOI: 10.3389/fcell.2023.1221784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer has emerged as the most commonly diagnosed cancer and primary cause of cancer-related deaths among women worldwide. Although significant progress has been made in targeting the primary tumor, the effectiveness of systemic treatments to prevent metastasis remains limited. Metastatic disease continues to be the predominant factor leading to fatality in the majority of breast cancer patients. The existence of a prolonged latency period between initial treatment and eventual recurrence in certain patients indicates that tumors can both adapt to and interact with the systemic environment of the host, facilitating and sustaining the progression of the disease. In order to identify potential therapeutic interventions for metastasis, it will be crucial to gain a comprehensive framework surrounding the mechanisms driving the growth, survival, and spread of tumor cells, as well as their interaction with supporting cells of the microenvironment. This review aims to consolidate recent discoveries concerning critical aspects of breast cancer metastasis, encompassing the intricate network of cells, molecules, and physical factors that contribute to metastasis, as well as the molecular mechanisms governing cancer dormancy.
Collapse
Affiliation(s)
- Hongjiang Si
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Madelyn Esquivel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Erika Mendoza Mendoza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| |
Collapse
|
183
|
Silva DTD, Alves ML, Spada JCP, Leonel JAF, Vioti G, Benassi JC, Carregaro VML, Alves-Martin MF, Starke-Buzetti WA, Oliveira TMFDS. Feline leishmaniosis: hematological and biochemical analysis. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2023; 32:e003823. [PMID: 37377321 DOI: 10.1590/s1984-29612023035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
One hundred and sixty-six cats from two animal shelters were subjected to enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence antibody test (IFAT), conventional polymerase chain reaction (cPCR), quantitative PCR (qPCR) and parasitological tests (PA) for the diagnosis of Leishmania spp. Among them, 15% (25/166), 53.6% (89/166), 3.6% (06/166) and 1.8% (03/166) were positive by ELISA, IFAT, both PCRs and PA, respectively. The sequencing of ITS-1 PCR amplicons revealed a 100% match with Leishmania infantum. After the Leishmania spp. survey, 12 cats were selected and divided into two groups for clinical, hematological, and biochemical analysis: six L. infantum positive cats (G1) and six Leishmania spp. negative cats (G2). All the cats were negative for feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV). A statistical analysis indicated significantly low platelet counts and significant hyperproteinemia associated with hypoalbuminemia in positive cats (p<0.05). Our results suggest that in endemic areas, cats with clinical signs of feline leishmaniosis (such as skin lesions, weight loss and/or enlarged lymph nodes) and that exhibit hematological and biochemical changes, such as low platelet counts and hyperproteinemia with hypoalbuminemia, should be tested for Leishmania spp. infection.
Collapse
Affiliation(s)
- Diogo Tiago da Silva
- Laboratório de Medicina Veterinária Preventiva Aplicada, Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo - USP, Pirassununga, SP, Brasil
- Programa de Pós-Graduação em Epidemiologia Experimental Aplicada às Zoonoses, Departamento de Medicina Veterinária Preventiva e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, Pirassununga, SP, Brasil
| | - Maria Luana Alves
- Laboratório de Medicina Veterinária Preventiva Aplicada, Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo - USP, Pirassununga, SP, Brasil
- Programa de Pós-Graduação em Epidemiologia Experimental Aplicada às Zoonoses, Departamento de Medicina Veterinária Preventiva e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, Pirassununga, SP, Brasil
| | - Júlio Cesar Pereira Spada
- Laboratório de Medicina Veterinária Preventiva Aplicada, Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo - USP, Pirassununga, SP, Brasil
- Programa de Pós-Graduação em Epidemiologia Experimental Aplicada às Zoonoses, Departamento de Medicina Veterinária Preventiva e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, Pirassununga, SP, Brasil
| | - João Augusto Franco Leonel
- Laboratório de Medicina Veterinária Preventiva Aplicada, Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo - USP, Pirassununga, SP, Brasil
- Programa de Pós-Graduação em Epidemiologia Experimental Aplicada às Zoonoses, Departamento de Medicina Veterinária Preventiva e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, Pirassununga, SP, Brasil
| | - Geovanna Vioti
- Programa de Pós-Graduação em Epidemiologia Experimental Aplicada às Zoonoses, Departamento de Medicina Veterinária Preventiva e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, Pirassununga, SP, Brasil
| | - Julia Cristina Benassi
- Laboratório de Medicina Veterinária Preventiva Aplicada, Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo - USP, Pirassununga, SP, Brasil
| | - Valéria Maria Lara Carregaro
- Laboratório de Medicina Veterinária Preventiva Aplicada, Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo - USP, Pirassununga, SP, Brasil
| | - Maria Fernanda Alves-Martin
- Departamento de Biologia e Zootecnia, Escola de Engenharia, Universidade Estadual Paulista - UNESP, Ilha Solteira, SP, Brasil
| | - Wilma Aparecida Starke-Buzetti
- Departamento de Biologia e Zootecnia, Escola de Engenharia, Universidade Estadual Paulista - UNESP, Ilha Solteira, SP, Brasil
| | - Trícia Maria Ferreira de Sousa Oliveira
- Laboratório de Medicina Veterinária Preventiva Aplicada, Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo - USP, Pirassununga, SP, Brasil
- Programa de Pós-Graduação em Epidemiologia Experimental Aplicada às Zoonoses, Departamento de Medicina Veterinária Preventiva e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, Pirassununga, SP, Brasil
| |
Collapse
|
184
|
Kharouf N, Flanagan TW, Hassan SY, Shalaby H, Khabaz M, Hassan SL, Megahed M, Haikel Y, Santourlidis S, Hassan M. Tumor Microenvironment as a Therapeutic Target in Melanoma Treatment. Cancers (Basel) 2023; 15:3147. [PMID: 37370757 DOI: 10.3390/cancers15123147] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The role of the tumor microenvironment in tumor growth and therapy has recently attracted more attention in research and drug development. The ability of the microenvironment to trigger tumor maintenance, progression, and resistance is the main cause for treatment failure and tumor relapse. Accumulated evidence indicates that the maintenance and progression of tumor cells is determined by components of the microenvironment, which include stromal cells (endothelial cells, fibroblasts, mesenchymal stem cells, and immune cells), extracellular matrix (ECM), and soluble molecules (chemokines, cytokines, growth factors, and extracellular vesicles). As a solid tumor, melanoma is not only a tumor mass of monolithic tumor cells, but it also contains supporting stroma, ECM, and soluble molecules. Melanoma cells are continuously in interaction with the components of the microenvironment. In the present review, we focus on the role of the tumor microenvironment components in the modulation of tumor progression and treatment resistance as well as the impact of the tumor microenvironment as a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Naji Kharouf
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Sofie-Yasmin Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Marla Khabaz
- Department of Production, Beta Factory for Veterinary Pharmaceutical Industries, Damascus 0100, Syria
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany
| | - Youssef Haikel
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Mohamed Hassan
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
185
|
Turco L, Opallo N, Buommino E, De Caro C, Pirozzi C, Mattace Raso G, Lembo F, Coretti L. Zooming into Gut Dysbiosis in Parkinson's Disease: New Insights from Functional Mapping. Int J Mol Sci 2023; 24:ijms24119777. [PMID: 37298727 DOI: 10.3390/ijms24119777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Gut dysbiosis has been involved in the pathogenesis and progression of Parkinson's disease (PD), but the mechanisms through which gut microbiota (GM) exerts its influences deserve further study. Recently, we proposed a two-hit mouse model of PD in which ceftriaxone (CFX)-induced dysbiosis amplifies the neurodegenerative phenotype generated by striatal 6-hydroxydopamine (6-OHDA) injection in mice. Low GM diversity and the depletion of key gut colonizers and butyrate producers were the main signatures of GM alteration in this model. Here, we used the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) to unravel candidate pathways of cell-to-cell communication associated with dual-hit mice and potentially involved in PD progression. We focused our analysis on short-chain fatty acids (SCFAs) metabolism and quorum sensing (QS) signaling. Based on linear discriminant analysis, combined with the effect size results, we found increased functions linked to pyruvate utilization and a depletion of acetate and butyrate production in 6-OHDA+CFX mice. The specific arrangement of QS signaling as a possible result of the disrupted GM structure was also observed. With this exploratory study, we suggested a scenario in which SCFAs metabolism and QS signaling might represent the effectors of gut dysbiosis potentially involved in the designation of the functional outcomes that contribute to the exacerbation of the neurodegenerative phenotype in the dual-hit animal model of PD.
Collapse
Affiliation(s)
- Luigia Turco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Nicola Opallo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Elisabetta Buommino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Carmen De Caro
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Giuseppina Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Lorena Coretti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| |
Collapse
|
186
|
Zhang G, Hao Y, Chen L, Li Z, Gao L, Tian J, Qiao Q, Zhang J. Expression of aquaporin 1, 3 and 5 in colorectal carcinoma: correlation with clinicopathological characteristics and prognosis. Pathol Oncol Res 2023; 29:1611179. [PMID: 37334171 PMCID: PMC10272351 DOI: 10.3389/pore.2023.1611179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023]
Abstract
Background: Prognostic biomarkers in colorectal carcinoma (CRC) have an important role in therapeutic strategy. Studies have shown that high expression of Aquaporin (AQP) is associated with poor prognosis in a variety of human tumors. AQP is involved in the initiation and development of CRC. The present study aimed to investigate the correlation between the expression of AQP1, 3 and 5 and clinicopathological features or prognosis in CRC. Methods: The AQP1, 3 and 5 expressions were analyzed based on the immunohistochemical staining of tissue microarray specimens including 112 patients with CRC between June 2006 and November 2008. The expression score of AQP (Allred_score and H_score) was digitally obtained with Qupath software. Patients were divided into high or low expression subgroups based on the optimal cut-off values. The relationship between expression of AQP and clinicopathological characteristics were evaluated using chi-square test, t-test, or one-way ANOVA, when appropriate. Survival analysis of 5-year progression free survival (PFS) and overall survival (OS) was performed with time-dependent ROC, Kaplan-Meier curves, univariate and multivariate COX analysis. Results: The AQP1, 3 and 5 expressions were associated with regional lymph node metastasis, histological grading, and tumor location in CRC, respectively (p < 0.05). Kaplan-Meier curves showed that patients with high AQP1 expression had worse 5-year PFS than those with low AQP1 expression (Allred_score: 47% vs. 72%, p = 0.015; H_score: 52% vs. 78% p = 0.006), as well as 5-year OS (Allred_score: 51% vs. 75%, p = 0.005; H_score: 56% vs. 80%, p = 0.002). Multivariate Cox regression analysis indicated that AQP1 expression was an independent risk prognostic factor (p = 0.033, HR = 2.274, HR95% CI: 1.069-4.836). There was no significant correlation between the expression of AQP3 and 5 and the prognosis. Conclusion: The AQP1, 3 and 5 expressions correlate with different clinicopathological characteristics and the AQP1 expression may be a potential biomarker of prognosis in CRC.
Collapse
Affiliation(s)
- Guangwen Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongfei Hao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- School of Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Ling Chen
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zengshan Li
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Langlang Gao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jian Tian
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qing Qiao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jinsong Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
187
|
Ball EE, Weiss CM, Liu H, Jackson K, Keel MK, Miller CJ, Van Rompay KKA, Coffey LL, Pesavento PA. Severe Acute Respiratory Syndrome Coronavirus 2 Vasculopathy in a Syrian Golden Hamster Model. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:690-701. [PMID: 36906263 PMCID: PMC9998130 DOI: 10.1016/j.ajpath.2023.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
Clinical evidence of vascular dysfunction and hypercoagulability as well as pulmonary vascular damage and microthrombosis are frequently reported in severe cases of human coronavirus disease 2019 (COVID-19). Syrian golden hamsters recapitulate histopathologic pulmonary vascular lesions reported in patients with COVID-19. Herein, special staining techniques and transmission electron microscopy further define vascular pathologies in a Syrian golden hamster model of human COVID-19. The results show that regions of active pulmonary inflammation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are characterized by ultrastructural evidence of endothelial damage with platelet marginalization and both perivascular and subendothelial macrophage infiltration. SARS-CoV-2 antigen/RNA was not detectable within affected blood vessels. Taken together, these findings suggest that the prominent microscopic vascular lesions in SARS-CoV-2-inoculated hamsters likely occur due to endothelial damage followed by platelet and macrophage infiltration.
Collapse
Affiliation(s)
- Erin E Ball
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California; US Army Veterinary Corps, Washington, District of Columbia
| | - Christopher M Weiss
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| | - Hongwei Liu
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| | - Kenneth Jackson
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| | - M Kevin Keel
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| | - Christopher J Miller
- California National Primate Center, University of California, Davis, California; Center for Immunology and Infectious Diseases, University of California, Davis, California
| | - Koen K A Van Rompay
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California; California National Primate Center, University of California, Davis, California
| | - Lark L Coffey
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California.
| | - Patricia A Pesavento
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| |
Collapse
|
188
|
Nicosia M, Lee J, Beavers A, Kish D, Farr GW, McGuirk PR, Pelletier MF, Lathia JD, Fairchild RL, Valujskikh A. Water channel aquaporin 4 is required for T cell receptor mediated lymphocyte activation. J Leukoc Biol 2023; 113:544-554. [PMID: 36805947 PMCID: PMC10848298 DOI: 10.1093/jleuko/qiad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Aquaporins are a family of ubiquitously expressed transmembrane water channels implicated in a broad range of physiological functions. We have previously reported that aquaporin 4 (AQP4) is expressed on T cells and that treatment with a small molecule AQP4 inhibitor significantly delays T cell mediated heart allograft rejection. Using either genetic deletion or small molecule inhibitor, we show that AQP4 supports T cell receptor mediated activation of both mouse and human T cells. Intact AQP4 is required for optimal T cell receptor (TCR)-related signaling events, including nuclear translocation of transcription factors and phosphorylation of proximal TCR signaling molecules. AQP4 deficiency or inhibition impairs actin cytoskeleton rearrangements following TCR crosslinking, causing inferior TCR polarization and a loss of TCR signaling. Our findings reveal a novel function of AQP4 in T lymphocytes and identify AQP4 as a potential therapeutic target for preventing TCR-mediated T cell activation.
Collapse
Affiliation(s)
- Michael Nicosia
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Ashley Beavers
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Danielle Kish
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - George W. Farr
- Aeromics Inc., 470 James Street Suite 007, New Haven, CT 06513, United States
| | - Paul R. McGuirk
- Aeromics Inc., 470 James Street Suite 007, New Haven, CT 06513, United States
| | - Marc F. Pelletier
- Aeromics Inc., 470 James Street Suite 007, New Haven, CT 06513, United States
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Robert L. Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| |
Collapse
|
189
|
Patel M, Jamiolkowski MA, Vejendla A, Bentley V, Malinauskas RA, Lu Q. Effect of Temperature on Thrombogenicity Testing of Biomaterials in an In Vitro Dynamic Flow Loop System. ASAIO J 2023; 69:576-582. [PMID: 36848878 PMCID: PMC10368176 DOI: 10.1097/mat.0000000000001897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
To develop and standardize a reliable in vitro dynamic thrombogenicity test protocol, the key test parameters that could impact thrombus formation need to be investigated and understood. In this study, we evaluated the effect of temperature on the thrombogenic responses (thrombus surface coverage, thrombus weight, and platelet count reduction) of various materials using an in vitro blood flow loop test system. Whole blood from live sheep and cow donors was used to assess four materials with varying thrombogenic potentials: negative-control polytetrafluoroethylene (PTFE), positive-control latex, silicone, and high-density polyethylene (HDPE). Blood, heparinized to a donor-specific concentration, was recirculated through a polyvinyl chloride tubing loop containing the test material at room temperature (22-24°C) for 1 hour, or at 37°C for 1 or 2 hours. The flow loop system could effectively differentiate a thrombogenic material (latex) from the other materials for both test temperatures and blood species ( p < 0.05). However, compared with 37°C, testing at room temperature appeared to have slightly better sensitivity in differentiating silicone (intermediate thrombogenic potential) from the relatively thromboresistant materials (PTFE and HDPE, p < 0.05). These data suggest that testing at room temperature may be a viable option for dynamic thrombogenicity assessment of biomaterials and medical devices.
Collapse
Affiliation(s)
- Mehulkumar Patel
- From the Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | | | | | | | | | | |
Collapse
|
190
|
Su M, Nizamutdinov D, Liu H, Huang JH. Recent Mechanisms of Neurodegeneration and Photobiomodulation in the Context of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24119272. [PMID: 37298224 DOI: 10.3390/ijms24119272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the world's primary cause of dementia, a condition characterized by significant progressive declines in memory and intellectual capacities. While dementia is the main symptom of Alzheimer's, the disease presents with many other debilitating symptoms, and currently, there is no known treatment exists to stop its irreversible progression or cure the disease. Photobiomodulation has emerged as a very promising treatment for improving brain function, using light in the range from red to the near-infrared spectrum depending on the application, tissue penetration, and density of the target area. The goal of this comprehensive review is to discuss the most recent achievements in and mechanisms of AD pathogenesis with respect to neurodegeneration. It also provides an overview of the mechanisms of photobiomodulation associated with AD pathology and the benefits of transcranial near-infrared light treatment as a potential therapeutic solution. This review also discusses the older reports and hypotheses associated with the development of AD, as well as some other approved AD drugs.
Collapse
Affiliation(s)
- Matthew Su
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Damir Nizamutdinov
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| | - Hanli Liu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jason H Huang
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| |
Collapse
|
191
|
Du F, Yang LH, Liu J, Wang J, Fan L, Duangmano S, Liu H, Liu M, Wang J, Zhong X, Zhang Z, Wang F. The role of mitochondria in the resistance of melanoma to PD-1 inhibitors. J Transl Med 2023; 21:345. [PMID: 37221594 DOI: 10.1186/s12967-023-04200-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immunotherapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for melanoma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as PD-1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mitochondrial function may affect the development of melanoma and the efficacy of PD-1 inhibitors. To elucidate the role of mitochondria in the resistance of melanoma to PD-1 inhibitors, this review comprehensively summarises the role of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD-1 inhibitors. This review may help to develop therapeutic strategies for improving the clinical response rate of PD-1 inhibitors and prolonging the survival of patients by activating mitochondrial function in tumour and T cells.
Collapse
Affiliation(s)
- Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lu-Han Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lianpeng Fan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaolin Zhong
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
192
|
Ivanisova D, Bohac M, Culenova M, Smolinska V, Danisovic L. Mesenchymal-Stromal-Cell-Conditioned Media and Their Implication for Osteochondral Regeneration. Int J Mol Sci 2023; 24:9054. [PMID: 37240400 PMCID: PMC10218888 DOI: 10.3390/ijms24109054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Despite significant advances in biomedical research, osteochondral defects resulting from injury, an autoimmune condition, cancer, or other pathological conditions still represent a significant medical problem. Even though there are several conservative and surgical treatment approaches, in many cases, they do not bring the expected results and further permanent damage to the cartilage and bones occurs. Recently, cell-based therapies and tissue engineering have gradually become promising alternatives. They combine the use of different types of cells and biomaterials to induce regeneration processes or replace damaged osteochondral tissue. One of the main challenges of this approach before clinical translation is the large-scale in vitro expansion of cells without changing their biological properties, while the use of conditioned media which contains various bioactive molecules appears to be very important. The presented manuscript provides a review of the experiments focused on osteochondral regeneration by using conditioned media. In particular, the effect on angiogenesis, tissue healing, paracrine signaling, and enhancing the properties of advanced materials are pointed out.
Collapse
Affiliation(s)
- Dana Ivanisova
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia; (D.I.); (M.B.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (V.S.)
| | - Martin Bohac
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia; (D.I.); (M.B.)
- Centre for Tissue Engineering and Regenerative Medicine–Translational Research Unit in the Branch of Regenerative Medicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martina Culenova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (V.S.)
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
| | - Veronika Smolinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (V.S.)
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (V.S.)
- Centre for Tissue Engineering and Regenerative Medicine–Translational Research Unit in the Branch of Regenerative Medicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
| |
Collapse
|
193
|
Sones J, Balogh O. Body Condition and Fertility in Dogs. Vet Clin North Am Small Anim Pract 2023:S0195-5616(23)00067-0. [PMID: 37211441 DOI: 10.1016/j.cvsm.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ideal body condition and nutritional status in dogs is essential for quality of life, including reproductive health. Herein, we review the implications body condition, particularly fat, has on puberty, fertility, pregnancy, and parturition in dogs. Ideal body condition at puberty is necessary for dogs to achieve sexual maturity and reproduce. Moreover, over and under conditioned female dogs have increased risk of adverse pregnancy, parturition, and neonatal outcomes. Less is known about body condition and male dog fertility but some evidence is provided in this article. Finally, recommendations for maintaining an ideal body condition in intact adult dogs for optimal fertility are provided.
Collapse
Affiliation(s)
- Jennifer Sones
- Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA 70803, USA.
| | - Orsolya Balogh
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, 215 Duck Pond Drive, Blacksburg, VA 24061, USA.
| |
Collapse
|
194
|
Lotito D, Pacifico E, Matuozzo S, Musco N, Iommelli P, Zicarelli F, Tudisco R, Infascelli F, Lombardi P. Colostrum Composition, Characteristics and Management for Buffalo Calves: A Review. Vet Sci 2023; 10:vetsci10050358. [PMID: 37235441 DOI: 10.3390/vetsci10050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In this review, the composition, characteristics, and management of dairy buffalo calves were examined and compared with bovines. The neonatal period is critical for buffalo calves and is characterized by a high mortality rate (more than 40%). The early intake of high-quality colostrum (IgG > 50 mg/mL) is the one way to improve the immune system of calves (serum IgG > 10 mg/mL after 12 h), thus increasing their chances of survival. Mainly in intensive farms, the availability of high-quality colostrum is necessary; thus, good quality colostrum is often stored to provide newborn calves which cannot be fed by their mothers. Also, the manipulation of the immunological status of animals through vaccination has been depicted since the quality of colostrum tended to be influenced by vaccination against pathogens. Buffalo breeding is constantly expanding in Italy, mainly thanks to the Mozzarella cheese production that represents the excellence of the "Made in Italy" and is exported worldwide. Indeed, high calf mortality rates directly affect the profitability of the business. For these reasons, the aim of this review was to examine specific research on buffalo colostrum that, compared with other species, are scarce. Improving the knowledge of buffalo colostrum, in terms of characteristics and management, is critical to guarantee buffalo newborns' health in order to reduce their mortality rate. Importantly, considering the knowledge on cattle valid also for buffalo is a widespread, and often erroneous, habit in several fields, including colostrum feeding. Therefore, the two species were compared in this review.
Collapse
Affiliation(s)
- Daria Lotito
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Eleonora Pacifico
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Sara Matuozzo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Piera Iommelli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Fabio Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Raffaella Tudisco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Federico Infascelli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Pietro Lombardi
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| |
Collapse
|
195
|
Baxarias M, Jornet-Rius O, Donato G, Mateu C, Alcover MM, Pennisi MG, Solano-Gallego L. Signalment, Immunological and Parasitological Status and Clinicopathological Findings of Leishmania-Seropositive Apparently Healthy Dogs. Animals (Basel) 2023; 13:ani13101649. [PMID: 37238079 DOI: 10.3390/ani13101649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Canine leishmaniosis caused by Leishmania infantum is a disease with a wide range of clinical manifestations. Epidemiological serosurveys performed in Europe often lack a thorough assessment of clinical health status of studied dogs. The aim of this study was to evaluate signalment, immunological and parasitological status and clinicopathological findings of L. infantum-seropositive apparently healthy dogs (n = 212) living in endemic areas. Routine laboratory tests, endpoint in-house ELISA to quantify the anti-Leishmania antibodies, blood Leishmania qPCR and IFN-γ ELISA were performed. All dogs enrolled were L. infantum-seropositive and were classified as healthy (n = 105) or sick (n = 107) according to LeishVet guidelines. The sick group presented a higher proportion of medium to high antibody levels and positive qPCR and lower IFN-γ concentration compared to the healthy group. Sick dogs were mostly classified in LeishVet stage IIa. Biochemical alterations (98%) were the most common clinicopathological findings, with fewer urinary tract (46%) and hematological (40%) alterations. Apparently healthy L. infantum-seropositive dogs can be classified between truly healthy dogs and sick dogs with clinicopathological findings. Sick dogs presented medium to high seropositivity and parasitemia and low IFN-γ concentrations, and their most common clinicopathological abnormalities were serum protein alterations followed by proteinuria and lymphopenia.
Collapse
Affiliation(s)
- Marta Baxarias
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Oriol Jornet-Rius
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Giulia Donato
- Dipartimento di Scienze Veterinarie, Università di Messina-Polo Universitario Annunziata, 98168 Messina, Italy
| | | | - Mª Magdalena Alcover
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmacia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina-Polo Universitario Annunziata, 98168 Messina, Italy
| | - Laia Solano-Gallego
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
196
|
Ramser A, Hawken R, Greene E, Okimoto R, Flack B, Christopher CJ, Campagna SR, Dridi S. Bone Metabolite Profile Differs between Normal and Femur Head Necrosis (FHN/BCO)-Affected Broilers: Implications for Dysregulated Metabolic Cascades in FHN Pathophysiology. Metabolites 2023; 13:metabo13050662. [PMID: 37233703 DOI: 10.3390/metabo13050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023] Open
Abstract
Femur head necrosis (FHN), also known as bacterial chondronecrosis with osteomyelitis (BCO), has remained an animal welfare and production concern for modern broilers regardless of efforts to select against it in primary breeder flocks. Characterized by the bacterial infection of weak bone, FHN has been found in birds without clinical lameness and remains only detectable via necropsy. This presents an opportunity to utilize untargeted metabolomics to elucidate potential non-invasive biomarkers and key causative pathways involved in FHN pathology. The current study used ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS) and identified a total of 152 metabolites. Mean intensity differences at p < 0.05 were found in 44 metabolites, with 3 significantly down-regulated and 41 up-regulated in FHN-affected bone. Multivariate analysis and a partial least squares discriminant analysis (PLS-DA) scores plot showed the distinct clustering of metabolite profiles from FHN-affected vs. normal bone. Biologically related molecular networks were predicted using an ingenuity pathway analysis (IPA) knowledge base. Using a fold-change cut off of -1.5 and 1.5, top canonical pathways, networks, diseases, molecular functions, and upstream regulators were generated using the 44 differentially abundant metabolites. The results showed the metabolites NAD+, NADP+, and NADH to be downregulated, while 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) and histamine were significantly increased in FHN. Ascorbate recycling and purine nucleotides degradation were the top canonical pathways, indicating the potential dysregulation of redox homeostasis and osteogenesis. Lipid metabolism and cellular growth and proliferation were some of the top molecular functions predicted based on the metabolite profile in FHN-affected bone. Network analysis showed significant overlap across metabolites and predicted upstream and downstream complexes, including AMP-activated protein kinase (AMPK), insulin, collagen type IV, mitochondrial complex, c-Jun N-terminal kinase (Jnk), extracellular signal-regulated kinase (ERK), and 3β-hydroxysteroid dehydrogenase (3β HSD). The qPCR analysis of relevant factors showed a significant decrease in AMPKα2 mRNA expression in FHN-affected bone, supporting the predicted downregulation found in the IPA network analysis. Taken as a whole, these results demonstrate a shift in energy production, bone homeostasis, and bone cell differentiation that is distinct in FHN-affected bone, with implications for how metabolites drive the pathology of FHN.
Collapse
Affiliation(s)
- Alison Ramser
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ron Okimoto
- Cobb-Vantress, Siloam Springs, AR 72761, USA
| | | | | | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
197
|
Pirozzi C, Opallo N, Coretti L, Lama A, Annunziata C, Comella F, Melini S, Buommino E, Mollica MP, Aviello G, Mattace Raso G, Lembo F, Meli R. Alkalihalobacillus clausii (formerly Bacillus clausii) spores lessen antibiotic-induced intestinal injury and reshape gut microbiota composition in mice. Biomed Pharmacother 2023; 163:114860. [PMID: 37196540 DOI: 10.1016/j.biopha.2023.114860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023] Open
Abstract
The antibiotic-induced intestinal injury (AIJ) is associated with diarrhoea and gastrointestinal discomfort. However, the pathological intestinal mechanisms and related side effects associated with antibiotic use/misuse may be counteracted by probiotics. This study aims to evaluate the effect and the protective mechanisms of a probiotic formulation containing Alkalihalobacillus clausii (formerly Bacillus clausii; BC) spores in an experimental model of AIJ. C57/Bl6J mice were orally challenged with a high dose of ceftriaxone for five days along with BC treatment which lasted up to the 15th day. Our results showed the beneficial effect of the probiotic in preserving colonic integrity and limiting tissue inflammation and immune cell infiltration in AIJ mice. BC increased tight junction expression and regulated the unbalanced production of colonic pro- and anti-inflammatory cytokines, converging toward the full resolution of the intestinal damage. These findings were supported by the histological evaluation of the intestinal mucosa, suggesting a potential restoration of mucus production. Notably, BC treatment increased gene transcription of the secretory products responsible for epithelium repair and mucus synthesis and normalized the expression of antimicrobial peptides involved in immune activation. Reconstruction of complex and diverse gut microbiota in antibiotic-induced dysbiosis was recorded upon BC supplementation. Specifically, the expansion of A. clausii, Prevotella rara and Eubacterium ruminatium drove intestinal microbiota rebalance by primarily impacting Bacteroidota members. Taken together, our data indicate that BC administration alleviates AIJ by multiple converging mechanisms leading to restoring gut integrity and homeostasis and reshaping microbiota composition.
Collapse
Affiliation(s)
- C Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - N Opallo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - L Coretti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - A Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - C Annunziata
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - F Comella
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - S Melini
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - E Buommino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - M P Mollica
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - G Aviello
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - G Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy.
| | - F Lembo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - R Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
198
|
Parascandolo A, Di Tolla MF, Liguoro D, Lecce M, Misso S, Micieli F, Ambrosio MR, Cabaro S, Beguinot F, Pelagalli A, D'Esposito V, Formisano P. Human Platelet-Rich Plasma Regulates Canine Mesenchymal Stem Cell Migration through Aquaporins. Stem Cells Int 2023; 2023:8344259. [PMID: 37223543 PMCID: PMC10202607 DOI: 10.1155/2023/8344259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
Platelet products are commonly used in regenerative medicine due to their effects on the acceleration and promotion of wound healing, reduction of bleeding, synthesis of new connective tissue, and revascularization. Furthermore, a novel approach for the treatment of damaged tissues, following trauma or other pathological damages, is represented by the use of mesenchymal stem cells (MSCs). In dogs, both platelet-rich plasma (PRP) and MSCs have been suggested to be promising options for subacute skin wounds. However, the collection of canine PRP is not always feasible. In this study, we investigated the effect of human PRP (hPRP) on canine MSCs (cMSCs). We isolated cMSCs and observed that hPRP did not modify the expression levels of the primary class of major histocompatibility complex genes. However, hPRP was able to increase cMSC viability and migration by at least 1.5-fold. hPRP treatment enhanced both Aquaporin (AQP) 1 and AQP5 protein levels, and their inhibition by tetraethylammonium chloride led to a reduction of PRP-induced migration of cMSCs. In conclusion, we have provided evidence that hPRP supports cMSC survival and may promote cell migration, at least through AQP activation. Thus, hPRP may be useful in canine tissue regeneration and repair, placing as a promising tool for veterinary therapeutic approaches.
Collapse
Affiliation(s)
- Alessia Parascandolo
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Michele Francesco Di Tolla
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Domenico Liguoro
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Manuela Lecce
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Saverio Misso
- Unit of Transfusion Medicine, Azienda Sanitaria Locale Caserta, Caserta, Italy
| | - Fabiana Micieli
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, 80137 Naples, Italy
| | - Maria Rosaria Ambrosio
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Serena Cabaro
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Napoli Federico II, 80131 Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, 80145 Naples, Italy
| | - Vittoria D'Esposito
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
199
|
Rodríguez-González D, Guerrero Legarreta I, Cruz-Monterrosa RG, Napolitano F, Titto CG, Abd El-Aziz AH, Hernández-Avalos I, Casas-Alvarado A, Domínguez-Oliva A, Mota-Rojas D. Assessment of thermal changes in water buffalo mobilized from the paddock and transported by short journeys. Front Vet Sci 2023; 10:1184577. [PMID: 37252398 PMCID: PMC10217363 DOI: 10.3389/fvets.2023.1184577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Evaluating the welfare of buffaloes during transport is key to obtaining and commercializing high-quality meat products; however, effective assessments require recognizing several stressors that activate physiological mechanisms that can have repercussions on the health and productive performance of species. The aim of this study was to evaluate the surface temperatures of different body and head regions in this species during events prior, and posterior, to transport for short periods; that is, from paddock to loading. The second goal was to determine the level of correlation between thermal windows. This study used infrared thermography (IRT) to evaluate the surface temperature of 624 water buffaloes (Buffalypso breed) during 12 short trips (average duration = 2 h ± 20 min) by focusing on 11 regions of the body (Regio corporis), in the head regions (Regiones capitis) the face regions (Regiones faciei), Orbital region (Regio orbitalis) with special attention to structures such as the lacrimal caruncle, periocular area and lower eyelid (Regio palpebralis inferior); nasal region (Regio nasalis) with special attention to nostril thermal window; and regions of the skull (Regiones cranii) such as auricular region (Regio auricularis) with special attention to auditory canal and frontal-parietal region (Regio frontalis-parietalis) and trunk region (Truncus regionis) such as thoracic and abdominal regions, regions of the vertebral column (Columna vertebralis) with the thoracic vertebral region (Regio vertebralis thoracis) and lumbar region (Regio lumbalis); and regions of the pelvis limb (Regiones membri pelvini). Recordings were made during seven phases: paddock (P1), herding (P2), corral (P3), chute handling (P4), shipping (P5), pre- (P6), and post-transport (P7). A total of 48,048 readings were obtained from 11 thermal windows. The results showed that the surface temperatures of the windows increased by as much as 5°C during P2, P3, P5, P6, and P7 compared to P1 and P4 (p < 0.0001). Differences of at least 1°C were also observed between thermal windows in the craniofacial, lateral corporal, and peripheral zones (p < 0.0001). Finally, a strong positive correlation (r = 0.9, p < 0.0001) was found between the thermal windows. These findings lead to the conclusion that the surface temperature of the craniofacial and corporal regions of buffaloes transported for short periods varied in relation to the phase of mobilization (from paddock to post-transport), likely as a response to stressful factors, since herding and loading increased the thermal values in each window. The second conclusion is that there are strong positive correlations between central and peripheral thermal windows.
Collapse
Affiliation(s)
- Daniela Rodríguez-González
- Master’s Program in Agricultural and Livestock Sciences [Maestría en Ciencias Agropecuarias], Universidad Autónoma Metropolitana (UAM), Xochimilco Campus, Mexico City, Mexico
| | - Isabel Guerrero Legarreta
- Department of Biotechnology: Food Science, Universidad Autónoma Metropolitana, Iztapalapa Campus (UAM-I), Mexico City, Mexico
| | - Rosy G. Cruz-Monterrosa
- Department of Food Science, Universidad Autónoma Metropolitana (UAM-L), Campus Lerma, Lerma City, Mexico
| | - Fabio Napolitano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Cristiane Gonçalves Titto
- Laboratório de Biometeorologia e Etologia, Faculdade de Zootecnia e Engenharia de Alimentos, FZEA-USP, Universidade de São Paulo, Pirassununga, Brazil
| | - Ayman H. Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ismael Hernández-Avalos
- Department of Biological Science, FESC, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Xochimilco Campus, Mexico City, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Xochimilco Campus, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Xochimilco Campus, Mexico City, Mexico
| |
Collapse
|
200
|
González-Vergara A, Benavides B, Julio-Pieper M. Mapping and quantifying neuropeptides in the enteric nervous system. J Neurosci Methods 2023; 393:109882. [PMID: 37172914 DOI: 10.1016/j.jneumeth.2023.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Neuropeptides are a highly diverse group of signaling molecules found in the central nervous system (CNS) and peripheral organs, including the enteric nervous system (ENS). Increasing efforts have been focused on dissecting the role of neuropeptides in both neural- and non-neural-related diseases, as well as their potential therapeutic value. In parallel, accurate knowledge on their source of production and pleiotropic functions is still needed to fully understand their implications in biological processes. This review will focus on the analytical challenges involved in studying neuropeptides, particularly in the ENS, a tissue where their abundance is low, together with opportunities for further technical development.
Collapse
Affiliation(s)
- Alex González-Vergara
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Benjamín Benavides
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marcela Julio-Pieper
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|