151
|
Liu PQ, Miao X, Datta S. Recent Advances in Liquid Metal Photonics: Technologies and Applications. OPTICAL MATERIALS EXPRESS 2023; 13:699-727. [PMID: 38249122 PMCID: PMC10798671 DOI: 10.1364/ome.484236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 01/23/2024]
Abstract
Near-room-temperature liquid metals offer unique and crucial advantages over solid metals for a broad range of applications which require soft, stretchable and/or reconfigurable structures and devices. In particular, gallium-based liquid metals are the most suitable for a wide range of applications, not only owing to their low melting points, but also thanks to their low toxicity and negligible vapor pressure. In addition, gallium-based liquid metals exhibit attractive optical properties which make them highly suitable for a variety of photonics applications. This review summarizes the material properties of gallium-based liquid metals, highlights several effective techniques for fabricating liquid-metal-based structures and devices, and then focuses on the various photonics applications of these liquid metals in different spectral regions, following with a discussion on the challenges and opportunities for future research in this relatively nascent field.
Collapse
Affiliation(s)
- Peter Q. Liu
- Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA
| | - Xianglong Miao
- Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA
| | - Shreyan Datta
- Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
152
|
Han S, Kim K, Lee SY, Moon S, Lee JY. Stretchable Electrodes Based on Over-Layered Liquid Metal Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210112. [PMID: 36623476 DOI: 10.1002/adma.202210112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Liquid metals are attractive materials for stretchable electronics owing to their high electrical conductivity and near-zero Young's modulus. However, the high surface tension of liquid metals makes it difficult to form films. A novel stretchable film is proposed based on an over-layered liquid-metal network. An intentionally oxidized interfacial layer helps to construct uninterrupted indium and gallium nanoclusters and produces additional electrical pathways between the two metal networks under mechanical deformation. The films exhibit gigantic negative piezoresistivity (G-NPR), which decreased the resistance up to 85% during the first 50% stretching. This G-NPR property is due to the rupture of the metal oxides, which allows the formation of liquid eutectic gallium-indium (EGaIn) and the connection of the over-layered networks to build new electrical paths. The electrodes exhibiting G-NPR are complementarily combined with conventional electrodes to amplify their performance or achieve some unique operations.
Collapse
Affiliation(s)
- Seungseok Han
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyungmin Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang Yeon Lee
- Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seongjun Moon
- Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung-Yong Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
153
|
Corrigan N, Shi X, Boyer C. Diblock Copolymer Stabilized Liquid Metal Nanoparticles: Particle Settling Behavior and Application to 3D Printing. ACS Macro Lett 2023; 12:241-247. [PMID: 36715433 DOI: 10.1021/acsmacrolett.2c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Eutectic gallium indium (EGaIn) is a liquid metal with promising applications due to its favorable thermal and electrical conductivity, low viscosity, and metallic nature. For applications, including imaging, catalysis, and nanomedicine, stable EGaIn particles with submicron diameters are required. However, the low viscosity and high density of EGaIn have typically precluded the formation of stable submicron particles due to rapid EGaIn droplet coalescence. In this work, we show that poly(acrylic acid)-block-poly(N,N'-dimethylacrylamide) copolymers are able to effectively stabilize EGaIn nanodroplets formed upon ultrasonication, where the poly(acrylic acid) block anchors the polymer to the EGaIn surface and the poly(N,N'-dimethylacrylamide) block provides colloidal stability to the particles in solution. Although the high density of EGaIn causes rapid particle settling, the behavior is predictable, which allows the average particle size to be controlled through centrifugation. We demonstrate that stable EGaIn particles with sizes on the order of 50-100 nm and narrow particle size distributions can be easily obtained using this method and further used in photopolymer resins to prepare 3D printed EGaIn-polymer hybrid materials. The predictable sizes and high stability of these EGaIn nanoparticles should allow further applications in soft-electronics, nanomedicine, catalysis, and other nanotechnology.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design and School of Chemical Engineering, UNSW Sydney, Kensington, NSW2052, Australia.,Australian Centre for Nanomedicine, UNSW Sydney, Kensington, NSW2052, Australia
| | - Xiaobing Shi
- Cluster for Advanced Macromolecular Design and School of Chemical Engineering, UNSW Sydney, Kensington, NSW2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and School of Chemical Engineering, UNSW Sydney, Kensington, NSW2052, Australia.,Australian Centre for Nanomedicine, UNSW Sydney, Kensington, NSW2052, Australia
| |
Collapse
|
154
|
Shen Q, Jiang M, Wang R, Song K, Vong MH, Jung W, Krisnadi F, Kan R, Zheng F, Fu B, Tao P, Song C, Weng G, Peng B, Wang J, Shang W, Dickey MD, Deng T. Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science 2023; 379:488-493. [PMID: 36730410 DOI: 10.1126/science.ade7341] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Soft materials tend to be highly permeable to gases, making it difficult to create stretchable hermetic seals. With the integration of spacers, we demonstrate the use of liquid metals, which show both metallic and fluidic properties, as stretchable hermetic seals. Such soft seals are used in both a stretchable battery and a stretchable heat transfer system that involve volatile fluids, including water and organic fluids. The capacity retention of the battery was ~72.5% after 500 cycles, and the sealed heat transfer system showed an increased thermal conductivity of approximately 309 watts per meter-kelvin while strained and heated. Furthermore, with the incorporation of a signal transmission window, we demonstrated wireless communication through such seals. This work provides a route to create stretchable yet hermetic packaging design solutions for soft devices.
Collapse
Affiliation(s)
- Qingchen Shen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Modi Jiang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ruitong Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kexian Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Man Hou Vong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Woojin Jung
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Febby Krisnadi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Ruyu Kan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Feiyu Zheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Benwei Fu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guoming Weng
- Shanghai Key Laboratory of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University; Shanghai 200240, P. R. China
| | - Bo Peng
- Wanxiang A123-Global Headquarters, A123 Systems, Hangzhou 311215, P. R. China
| | - Jun Wang
- Research and Development Center, A123 Systems, Waltham, MA 02451, USA
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,Shanghai Key Laboratory of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University; Shanghai 200240, P. R. China
| |
Collapse
|
155
|
Erlenbach S, Mondal K, Ma J, Neumann TV, Ma S, Holbery JD, Dickey MD. Flexible-to-Stretchable Mechanical and Electrical Interconnects. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6005-6012. [PMID: 36599089 DOI: 10.1021/acsami.2c14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Stretchable electronic devices that maintain electrical function when subjected to stress or strain are useful for enabling new applications for electronics, such as wearable devices, human-machine interfaces, and components for soft robotics. Powering and communicating with these devices is a challenge. NFC (near-field communication) coils solve this challenge but only work efficiently when they are in close proximity to the device. Alternatively, electrical signals and power can arrive via physical connections between the stretchable device and an external source, such as a battery. The ability to create a robust physical and electrical connection between mechanically disparate components may enable new types of hybrid devices in which at least a portion is stretchable or deformable, such as hinges. This paper presents a simple method to make mechanical and electrical connections between elastomeric conductors and flexible (or rigid) conductors. The adhesion at the interface between these disparate materials arises from surface chemistry that forms strong covalent bonds. The utilization of liquid metals as the conductor provides stretchable interconnects between stretchable and non-stretchable electrical traces. The liquid metal can be printed or injected into vias to create interconnects. We characterized the mechanical and electrical properties of these hybrid devices to demonstrate the concept and identify geometric design criteria to maximize mechanical strength. The work here provides a simple and general strategy for creating mechanical and electrical connections that may find use in a variety of stretchable and soft electronic devices.
Collapse
Affiliation(s)
- Steven Erlenbach
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Kunal Mondal
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Jinwoo Ma
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Taylor V Neumann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Siyuan Ma
- Applied Sciences Group, Microsoft Corporation, Redmond, Washington 98052, United States
| | - James D Holbery
- Applied Sciences Group, Microsoft Corporation, Redmond, Washington 98052, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| |
Collapse
|
156
|
Kim M, Lim H, Ko SH. Liquid Metal Patterning and Unique Properties for Next-Generation Soft Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205795. [PMID: 36642850 PMCID: PMC9951389 DOI: 10.1002/advs.202205795] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/27/2022] [Indexed: 05/28/2023]
Abstract
Room-temperature liquid metal (LM)-based electronics is expected to bring advancements in future soft electronics owing to its conductivity, conformability, stretchability, and biocompatibility. However, various difficulties arise when patterning LM because of its rheological features such as fluidity and surface tension. Numerous attempts are made to overcome these difficulties, resulting in various LM-patterning methods. An appropriate choice of patterning method based on comprehensive understanding is necessary to fully utilize the unique properties. Therefore, the authors aim to provide thorough knowledge about patterning methods and unique properties for LM-based future soft electronics. First, essential considerations for LM-patterning are investigated. Then, LM-patterning methods-serial-patterning, parallel-patterning, intermetallic bond-assisted patterning, and molding/microfluidic injection-are categorized and investigated. Finally, perspectives on LM-based soft electronics with unique properties are provided. They include outstanding features of LM such as conformability, biocompatibility, permeability, restorability, and recyclability. Also, they include perspectives on future LM-based soft electronics in various areas such as radio frequency electronics, soft robots, and heterogeneous catalyst. LM-based soft devices are expected to permeate the daily lives if patterning methods and the aforementioned features are analyzed and utilized.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| | - Hyungjun Lim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Department of Mechanical EngineeringPohang University of Science and Technology77 Chungam‐ro, Nam‐guPohang37673South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Institute of Advanced Machinery and Design/Institute of Engineering ResearchSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| |
Collapse
|
157
|
Fang P, Ji X, Zhao X, Yan-Do R, Wan Y, Wang Y, Zhang Y, Shi P. Self-Healing Electronics for Prognostic Monitoring of Methylated Circulating Tumor DNAs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207282. [PMID: 36412926 DOI: 10.1002/adma.202207282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Methylated circulating DNAs (ctDNAs) have recently been reported as a promising biomarker for early cancer diagnostics, but limited tools are currently available for continuous and dynamic profiling of ctDNAs and their methylation levels, especially when such assays need to be conducted in point-of-care (POC) scenarios. Here, a self-healing bioelectronic patch (iMethy) is developed that combines transdermal interstitial fluid (ISF) extraction and field effect transistor-based (FET-based) biosensing for dynamic monitoring of methylated ctDNAs as a prognostic approach for cancer risk management. The projection micro-stereolithography-based 3D patterning of an Eutectic Gallium-Indium (EGaIn) circuit with an unprecedented 10 µm resolution enables the construction of self-healing EGaIn microfluidic circuits that remain conductive under 100% strain and self-healing under severe destruction. In combination with continuous transdermal ISF sampling of methylated ctDNAs, iMethy can detect ctDNAs as low as 10-16 m in cellular models and is capable of phenotypic analysis of tumor growth in rodent animals. As the first demonstration of a wearable device for real-time in vivo analysis of disease-indicative biomarkers, this proof-of-concept study well demonstrated the potential of the iMethy platform for cancer risk management based on dynamic transdermal surveillance of methylated ctDNAs via a painless and self-administrable procedure.
Collapse
Affiliation(s)
- Peilin Fang
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Department of Otolaryngology Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, Beijing, 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Xianglin Ji
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Shatin, Hong Kong SAR, 999077, China
| | - Xi Zhao
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Shatin, Hong Kong SAR, 999077, China
| | - Richard Yan-Do
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Shatin, Hong Kong SAR, 999077, China
| | - Youyang Wan
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Ying Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuanting Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Shatin, Hong Kong SAR, 999077, China
| | - Peng Shi
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Shatin, Hong Kong SAR, 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Shenzhen Research Institute, The City University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
158
|
Lei Z, Xu W, Zhang G. Bio-inspired ionic skins for smart medicine. SMART MEDICINE 2023; 2:e20220026. [PMID: 39188555 PMCID: PMC11235715 DOI: 10.1002/smmd.20220026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 08/28/2024]
Abstract
Ionic skins are developed to mimic the mechanical properties and functions of natural skins. They have demonstrated substantial advantages to serve as the crucial interface to bridge the gap between humans and machines. The first-generation ionic skin is a stretchable capacitor comprising hydrogels as the ionic conductors and elastomers as the dielectrics, and realizes pressure and strain sensing through the measurement of the capacitance. Subsequent advances have been made to improve the mechanical properties of ionic skins and import diverse functions. For example, ultrahigh stretchability, strong interfacial adhesion, self-healing, moisturizing ability, and various sensing capabilities have been achieved separately or simultaneously. Most ionic skins are attached to natural skins to monitor bio-electrical signals continuously. Ionic skins have also been found with significant potential to serve as a smart drug-containing reservoir, which can release drugs spatially, temporally, and in a controllable way. Herein, this review focuses on the design and fabrication of ionic skins, and their applications related to smart medicine. Moreover, challenges and opportunities are also discussed. It is hoped that the development of bio-inspired ionic skins will provide a paradigm shift for self-diagnosis and healthcare.
Collapse
Affiliation(s)
- Zhouyue Lei
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Wentao Xu
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Guogao Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
159
|
Wang R, Zhang C, Tan W, Yang J, Lin D, Liu L. Electroactive Polymer-Based Soft Actuator with Integrated Functions of Multi-Degree-of-Freedom Motion and Perception. Soft Robot 2023; 10:119-128. [PMID: 35482290 DOI: 10.1089/soro.2021.0104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Soft actuators have received extensive attention in the fields of soft robotics, biomedicine, and intelligence systems owing to their advantages of pliancy, silence, and essential safety. However, most existing soft actuators have only single actuation elements and lack sensing. Therefore, it is difficult for them to perform complex motions with multiple degrees of freedom (multi-DOFs) and high precision. This article reports a miniature columnar dielectric elastomer actuator (DEA) with multi-DOF actuation and sensing, which was fabricated with an electroactive polymer acrylic film (Very High Bond [VHB] acrylic film by 3M Company) and carbon black grease electrodes. The arrangement of the simulation electrodes on the VHB was optimized to realize multi-DOF actuation, and the sensing electrodes were configured on the outer part of the DEA to realize real-time sensing. The results showed that the soft actuator can achieve all-round actuation through the selective power of the stimulation electrodes with a controllable voltage. The maximum bending angle and axial strain of the actuator reached 50° and 13%, respectively. Moreover, the deformation modes, direction, and quantity could be precisely measured using the integrative sensing function. In addition, to demonstrate the advantages of the proposed actuator, a manipulator with multiple actuators was designed and controlled to realize different actions of screwing and grasping with sensing. This research is useful not only for the design of multifunctional soft actuators but also for the development of soft robots with flexible, complex, and precisely controllable motions.
Collapse
Affiliation(s)
- Ruiqian Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - Wenjun Tan
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jia Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Daojing Lin
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
160
|
Rusu DM, Mândru SD, Biriș CM, Petrașcu OL, Morariu F, Ianosi-Andreeva-Dimitrova A. Soft Robotics: A Systematic Review and Bibliometric Analysis. MICROMACHINES 2023; 14:mi14020359. [PMID: 36838059 PMCID: PMC9961507 DOI: 10.3390/mi14020359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 05/14/2023]
Abstract
In recent years, soft robotics has developed considerably, especially since the year 2018 when it became a hot field among current research topics. The attention that this field receives from researchers and the public is marked by the substantial increase in both the quantity and the quality of scientific publications. In this review, in order to create a relevant and comprehensive picture of this field both quantitatively and qualitatively, the paper approaches two directions. The first direction is centered on a bibliometric analysis focused on the period 2008-2022 with the exact expression that best characterizes this field, which is "Soft Robotics", and the data were taken from a series of multidisciplinary databases and a specialized journal. The second direction focuses on the analysis of bibliographic references that were rigorously selected following a clear methodology based on a series of inclusion and exclusion criteria. After the selection of bibliographic sources, 111 papers were part of the final analysis, which have been analyzed in detail considering three different perspectives: one related to the design principle (biologically inspired soft robotics), one related to functionality (closed/open-loop control), and one from a biomedical applications perspective.
Collapse
Affiliation(s)
- Dan-Mihai Rusu
- Mechatronics and Machine Dynamics Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
- Correspondence:
| | - Silviu-Dan Mândru
- Mechatronics and Machine Dynamics Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Cristina-Maria Biriș
- Department of Industrial Machines and Equipment, Engineering Faculty, Lucian Blaga University of Sibiu, Victoriei 10, 550024 Sibiu, Romania
| | - Olivia-Laura Petrașcu
- Department of Industrial Machines and Equipment, Engineering Faculty, Lucian Blaga University of Sibiu, Victoriei 10, 550024 Sibiu, Romania
| | - Fineas Morariu
- Department of Industrial Machines and Equipment, Engineering Faculty, Lucian Blaga University of Sibiu, Victoriei 10, 550024 Sibiu, Romania
| | | |
Collapse
|
161
|
Zhang H, Teoh JC, Wu J, Yu L, Lim CT. Dynamic Zero Current Method to Reduce Measurement Error in Low Value Resistive Sensor Array for Wearable Electronics. SENSORS (BASEL, SWITZERLAND) 2023; 23:1406. [PMID: 36772446 PMCID: PMC9921154 DOI: 10.3390/s23031406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
One advantage of a resistive sensor array (RSA) with shared rows (M) and shared columns (N) is the reduced number of wires from M × N + 1 to M + N which can greatly lessen the complexity and burden on wearable electronic systems. However, the drawback is the crosstalk current effect between adjacent elements, which will lead to high measurement error. Although several solutions have been reported, they mainly focus on RSAs with high resistance (≥100 Ω). There is a lack of research that addresses RSAs with resistor values below 100 Ω. Here, we introduce a new circuit design named the dynamic zero current method (DZCM) to further decrease the measurement error. From the low value RSA test with ideal resistors, the DZCM exhibits lower error than the zero potential method (ZPM). In the case of the error variation ratio of amplifier offset voltage, the DZCM has a 4%/mV (row) to 7%/mV (column) ratio, while the ZPM has an almost 25%/mV (row) to 45%/mV (column) ratio and it increases with array size.
Collapse
Affiliation(s)
- Huanqian Zhang
- BME, National University of Singapore, Singapore 119077, Singapore
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- China Nanhu Academy of Electronics and Information Technology, Jiaxing 314001, China
| | - Jee Chin Teoh
- BME, National University of Singapore, Singapore 119077, Singapore
| | - Jianfeng Wu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Longteng Yu
- BME, National University of Singapore, Singapore 119077, Singapore
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311121, China
| | - Chwee Teck Lim
- BME, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
162
|
Wang Z, Wu Y, Zhu B, Chen Q, Zhang Y, Xu Z, Sun D, Lin L, Wu D. Self-Patterning of Highly Stretchable and Electrically Conductive Liquid Metal Conductors by Direct-Write Super-Hydrophilic Laser-Induced Graphene and Electroless Copper Plating. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4713-4723. [PMID: 36623166 DOI: 10.1021/acsami.2c18814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Stretchable electrodes are desirable in flexible electronics for the transmission and acquisition of electrical signals, but their fabrication process remains challenging. Herein, we report an approach based on patterned liquid metals (LMs) as stretchable electrodes using a super-hydrophilic laser-induced graphene (SHL-LIG) process with electroless plating copper on a polyimide (PI) film. The LMs/SHL-LIG structures are then transferred from the PI film to an Ecoflex substrate as stretchable electrodes with an ultralow sheet resistance of 3.54 mΩ per square and excellent stretchability up to 480% in elongation. Furthermore, these electrodes show outstanding performances of only 8% electrical resistance changes under a tensile strain of 300%, and strong immunity to temperature and pressure changes. As demonstration examples, these electrodes are integrated with a stretchable strain sensing system and a smart magnetic soft robot toward practical applications.
Collapse
Affiliation(s)
- Zhongbao Wang
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Yigen Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Bin Zhu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Qixiang Chen
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Yang Zhang
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Zhenjin Xu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Daoheng Sun
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
| | - Liwei Lin
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California94720, United States
| | - Dezhi Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| |
Collapse
|
163
|
Wang L, Yi Z, Zhao Y, Liu Y, Wang S. Stretchable conductors for stretchable field-effect transistors and functional circuits. Chem Soc Rev 2023; 52:795-835. [PMID: 36562312 DOI: 10.1039/d2cs00837h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stretchable electronics have received intense attention due to their broad application prospects in many areas, and can withstand large deformations and form close contact with curved surfaces. Stretchable conductors are vital components of stretchable electronic devices used in wearables, soft robots, and human-machine interactions. Recent advances in stretchable conductors have motivated basic scientific and technological research efforts. Here, we outline and analyse the development of stretchable conductors in transistors and circuits, and examine advances in materials, device engineering, and preparation technologies. We divide the existing approaches to constructing stretchable transistors with stretchable conductors into the following two types: geometric engineering and intrinsic stretchability engineering. Finally, we consider the challenges and outlook in this field for delivering stretchable electronics.
Collapse
Affiliation(s)
- Liangjie Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Zhengran Yi
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Yan Zhao
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Yunqi Liu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Shuai Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China. .,School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| |
Collapse
|
164
|
Lv J, Thangavel G, Lee PS. Reliability of printed stretchable electronics based on nano/micro materials for practical applications. NANOSCALE 2023; 15:434-449. [PMID: 36515001 DOI: 10.1039/d2nr04464a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent decades have witnessed the booming development of stretchable electronics based on nano/micro composite inks. Printing is a scalable, low-cost, and high-efficiency fabrication tool to realize stretchable electronics through additive processes. However, compared with conventional flexible electronics, stretchable electronics need to experience more severe mechanical deformation which may cause destructive damage. Most of the reported works in this field mainly focus on how to achieve a high stretchability of nano/micro composite conductors or single working modules/devices, with limited attention given to the reliability for practical applications. In this minireview, we summarized the failure modes when printing stretchable electronics using nano/micro composite ink, including dysfunction of the stretchable interconnects, the stress-concentrated rigid-soft interfaces for hybrid electronics, the vulnerable vias upon stretching, thermal accumulation, and environmental instability of stretchable materials. Strategies for tackling these challenges to realize reliable performances are proposed and discussed. Our review provides an overview on the importance of reliable, printable, and stretchable electronics, which are the key enablers in propelling stretchable electronics from fancy demos to practical applications.
Collapse
Affiliation(s)
- Jian Lv
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Gurunathan Thangavel
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| |
Collapse
|
165
|
Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart Eutectic Gallium-Indium: From Properties to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203391. [PMID: 36036771 DOI: 10.1002/adma.202203391] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/30/2022] [Indexed: 05/27/2023]
Abstract
Eutectic gallium-indium (EGaIn), a liquid metal with a melting point close to or below room temperature, has attracted extensive attention in recent years due to its excellent properties such as fluidity, high conductivity, thermal conductivity, stretchability, self-healing capability, biocompatibility, and recyclability. These features of EGaIn can be adjusted by changing the experimental condition, and various composite materials with extended properties can be further obtained by mixing EGaIn with other materials. In this review, not only the are unique properties of EGaIn introduced, but also the working principles for the EGaIn-based devices are illustrated and the developments of EGaIn-related techniques are summarized. The applications of EGaIn in various fields, such as flexible electronics (sensors, antennas, electronic circuits), molecular electronics (molecular memory, opto-electronic switches, or reconfigurable junctions), energy catalysis (heat management, motors, generators, batteries), biomedical science (drug delivery, tumor therapy, bioimaging and neural interfaces) are reviewed. Finally, a critical discussion of the main challenges for the development of EGaIn-based techniques are discussed, and the potential applications in new fields are prospected.
Collapse
Affiliation(s)
- Zhibin Zhao
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| | - Saurabh Soni
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Takhee Lee
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Christian A Nijhuis
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| |
Collapse
|
166
|
Yang B, Yang Z, Tang L. Recent progress in fiber-based soft electronics enabled by liquid metal. Front Bioeng Biotechnol 2023; 11:1178995. [PMID: 37187888 PMCID: PMC10175636 DOI: 10.3389/fbioe.2023.1178995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Soft electronics can seamlessly integrate with the human skin which will greatly improve the quality of life in the fields of healthcare monitoring, disease treatment, virtual reality, and human-machine interfaces. Currently, the stretchability of most soft electronics is achieved by incorporating stretchable conductors with elastic substrates. Among stretchable conductors, liquid metals stand out for their metal-grade conductivity, liquid-grade deformability, and relatively low cost. However, the elastic substrates usually composed of silicone rubber, polyurethane, and hydrogels have poor air permeability, and long-term exposure can cause skin redness and irritation. The substrates composed of fibers usually have excellent air permeability due to their high porosity, making them ideal substrates for soft electronics in long-term applications. Fibers can be woven directly into various shapes, or formed into various shapes on the mold by spinning techniques such as electrospinning. Here, we provide an overview of fiber-based soft electronics enabled by liquid metals. An introduction to the spinning technology is provided. Typical applications and patterning strategies of liquid metal are presented. We review the latest progress in the design and fabrication of representative liquid metal fibers and their application in soft electronics such as conductors, sensors, and energy harvesting. Finally, we discuss the challenges of fiber-based soft electronics and provide an outlook on future prospects.
Collapse
Affiliation(s)
- Bowen Yang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Zihan Yang
- Fashion Accessory Art and Engineering College, Beijing Institute of Fashion Technology, Beijing, China
- *Correspondence: Zihan Yang, ; Lixue Tang,
| | - Lixue Tang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
- *Correspondence: Zihan Yang, ; Lixue Tang,
| |
Collapse
|
167
|
Babatain W, Buttner U, El-Atab N, Hussain MM. Graphene and Liquid Metal Integrated Multifunctional Wearable Platform for Monitoring Motion and Human-Machine Interfacing. ACS NANO 2022; 16:20305-20317. [PMID: 36201180 DOI: 10.1021/acsnano.2c06180] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Motion sensors are an essential component of many electronic systems. However, the development of inertial motion sensors based on fatigue-free soft proof mass has not been explored extensively in the field of soft electronics. Nontoxic gallium-based liquid metals are an emerging class of material that exhibit attractive electromechanical properties, making them excellent proof mass materials for inertial sensors. Here, we propose and demonstrate a fully soft laser-induced graphene (LIG) and liquid metal-based inertial sensor integrated with temperature, humidity, and breathing sensors. The inertial sensor design confines a graphene-coated liquid metal droplet inside a fluidic channel, rolling over LIG resistive electrode. The proposed sensor architecture and material realize a highly mobile proof mass and a vibrational space for its oscillation. The inertial sensor exhibits a high sensitivity of 6.52% m-1 s2 and excellent repeatability (over 12 500 cycles). The platform is fabricated using a scalable, rapid laser writing technique and integrated with a programmable system on a chip (PSoC) to function as a stand-alone system for real-time wireless monitoring of movement patterns and the control of a robotic arm. The developed printed inertial platform is an excellent candidate for the next-generation of wearables motion tracking platforms and soft human-machine interfaces.
Collapse
Affiliation(s)
- Wedyan Babatain
- Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Ulrich Buttner
- Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Nazek El-Atab
- Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Muhammad Mustafa Hussain
- Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
- Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana47907, United States
| |
Collapse
|
168
|
Nie M, Li B, Hsieh YL, Fu KK, Zhou J. Stretchable One-Dimensional Conductors for Wearable Applications. ACS NANO 2022; 16:19810-19839. [PMID: 36475644 DOI: 10.1021/acsnano.2c08166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Continuous, one-dimensional (1D) stretchable conductors have attracted significant attention for the development of wearables and soft-matter electronics. Through the use of advanced spinning, printing, and textile technologies, 1D stretchable conductors in the forms of fibers, wires, and yarns can be designed and engineered to meet the demanding requirements for different wearable applications. Several crucial parameters, such as microarchitecture, conductivity, stretchability, and scalability, play essential roles in designing and developing wearable devices and intelligent textiles. Methodologies and fabrication processes have successfully realized 1D conductors that are highly conductive, strong, lightweight, stretchable, and conformable and can be readily integrated with common fabrics and soft matter. This review summarizes the latest advances in continuous, 1D stretchable conductors and emphasizes recent developments in materials, methodologies, fabrication processes, and strategies geared toward applications in electrical interconnects, mechanical sensors, actuators, and heaters. This review classifies 1D conductors into three categories on the basis of their electrical responses: (1) rigid 1D conductors, (2) piezoresistive 1D conductors, and (3) resistance-stable 1D conductors. This review also evaluates the present challenges in these areas and presents perspectives for improving the performance of stretchable 1D conductors for wearable textile and flexible electronic applications.
Collapse
Affiliation(s)
- Mingyu Nie
- School of Material Science and Engineering Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University Guangzhou, Guangdong510275, China
| | - Boxiao Li
- School of Material Science and Engineering Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University Guangzhou, Guangdong510275, China
| | - You-Lo Hsieh
- Biological and Agricultural Engineering, University of California at Davis, California95616, United States
| | - Kun Kelvin Fu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Jian Zhou
- School of Material Science and Engineering Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University Guangzhou, Guangdong510275, China
| |
Collapse
|
169
|
Jung W, Koirala GR, Lee JS, Kim JU, Park B, Jo YJ, Jeong C, Hong H, Kwon K, Ye YS, Kim J, Lee K, Kim TI. Solvent-Assisted Filling of Liquid Metal and Its Selective Dewetting for the Multilayered 3D Interconnect in Stretchable Electronics. ACS NANO 2022; 16:21471-21481. [PMID: 36453938 DOI: 10.1021/acsnano.2c09994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As stretchable electronics are rapidly developing and becoming complex, the requirement for stretchable, multilayered, and large-area printed circuit boards (PCBs) is emerging. This demands a stretchable electrode and its vertical interconnect access (via) for 3-dimensional (3D) connectivity between layers. Here, we demonstrate solvent-assisted liquid metal (LM) filling into the submicrometer channel (∼400 nm), including via-hole filling and selective dewetting of LM. We provide the theoretical background of solvent-assisted LM filling and selective dewetting and reveal the osmotic pressure arising from anomalous mass transport phenomena, case II diffusion, which drives negative pressure, the spontaneous pulling of LM into the open channel. Also, we suggest design criteria for the geometry and dimension of LM interconnects to obtain structural stability without dewetting, based on the theoretical and computational background. We demonstrate a simple stretchable near-field communication (NFC) device including transferred micrometer-size light-emitting diodes (LEDs) with only 230 μm to the stretchable liquid metal PCB, without any soldering process. The device operates stably under repetitive stretching and releasing (∼50% uniaxial strain) due to the stable connection through the LM via between the upper and lower layers. Finally, we propose a concept for modular-type stretchable electronics, based on the cohesive liquid nature of LM. As a building block, the functional module can be easily removed from a mainframe, and replaced by another functional module, to suit user demand.
Collapse
Affiliation(s)
- Woojin Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gyan Raj Koirala
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ju Seung Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Uk Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Young Jin Jo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Chanho Jeong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Haeleen Hong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Kiyoon Kwon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Yeong-Sinn Ye
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jiwon Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Kanghyuk Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
170
|
Niu Y, Tian G, Liang C, Wang T, Ma X, Gong G, Qi D. Thermal-Sinterable EGaIn Nanoparticle Inks for Highly Deformable Bioelectrode Arrays. Adv Healthc Mater 2022; 12:e2202531. [PMID: 36562213 DOI: 10.1002/adhm.202202531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Liquid metal (especially eutectic gallium indium, EGaIn) nanoparticle inks overcome the poor wettability of high surface tension EGaIn to elastomer substrates and show great potential in soft electronics. Normally, a sintering strategy is required to break the oxide shells of the EGaIn nanoparticles (EGaIn NPs) to achieve conductive paths. Herein, for the first time, thermal-sinterable EGaIn NP inks are prepared by introducing thermal expansion microspheres (TEMs) into EGaIn NP solution. Through the mechanical pressure induced by the expansion of the heated TEMs, the printed EGaIn NPs can be sintered into electrically conductive paths to achieve highly stretchable bioelectrode arrays, which exhibit giant electromechanical performance (up to 680% strain), good cyclic stability (over 2 × 104 cycles), and stable conductivity after high-speed rotation (6000 rpm). Simultaneously, the recording sites are hermetically sealed by ionic elastomer layers, ensuring the complete leakage-free property of EGaIn and reducing the electrochemical impedance of the electrodes (891.16 Ω at 1 kHz). The bioelectrode is successfully applied to monitor dynamic electromyographic signals. The sintering strategy overcomes the disadvantages of the traditional sintering strategies, such as leakage of EGaIn, reformation of large EGaIn droplets, and low throughput, which promotes the application of EGaIn in soft electronics.
Collapse
Affiliation(s)
- Yan Niu
- College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Gongwei Tian
- National and Local Joint Engineering Laboratory for Synthesis, Transformation, and Separation of Extreme Environmental Nutrients; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Cuiyuan Liang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation, and Separation of Extreme Environmental Nutrients; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Tianchi Wang
- College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Xu Ma
- College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Guifen Gong
- College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Dianpeng Qi
- National and Local Joint Engineering Laboratory for Synthesis, Transformation, and Separation of Extreme Environmental Nutrients; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
171
|
Li G, Ma X, Xu Z, Shen Y, Yuan M, Huang J, Cole T, Wei J, Liu S, Han F, Li H, Bayinqiaoge, Xu Z, Tang SY, Liu Z. A crack compensation strategy for highly stretchable conductors based on liquid metal inclusions. iScience 2022; 25:105495. [PMID: 36419853 PMCID: PMC9676391 DOI: 10.1016/j.isci.2022.105495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/04/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Crack control strategies have been proven very useful for enhancing the stretchability of metal film-based stretchable conductors. However, existing strategies often suffer from the drawbacks of complicated preparation and predefined effective directions. Here, we propose a crack compensation strategy for preparing conductors featured with high stretchability by using liquid metal microparticles (LMMPs)-embedded polydimethylsiloxane (PDMS) as the substrate with a thin film of gold (Au) sputtered on the surface. LMMPs can be elongated to connect the cracked Au film upon stretching, which can form a conductive "island-tunnel" (IT) architecture to compensate for the cracks and maintain the conductivity. The high performance of the stretchable conductor is demonstrated by using it as electrodes to record surface electromyography of human brachioradialis and monitor electrocorticography signals of a rat in normal and epileptic states. The developed strategy shows the potential to provide a new perspective for the fabrication of flexible electronics.
Collapse
Affiliation(s)
- Guoqiang Li
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Department of Electronic Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Corresponding author
| | - Zirong Xu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Yifeng Shen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Man Yuan
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jianping Huang
- Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tim Cole
- Department of Electronic Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jingjing Wei
- Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Sanhu Liu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Fei Han
- Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hanfei Li
- Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bayinqiaoge
- Department of Electronic Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zhiwu Xu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Shi-Yang Tang
- Department of Electronic Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Corresponding author
| | - Zhiyuan Liu
- Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author
| |
Collapse
|
172
|
Vallem V, Roosa E, Ledinh T, Rashid Nadimi S, Kiani A, Dickey MD. Soft electrochemical bubble actuator with liquid metal electrode using an embodied hydrogel pneumatic source. SOFT MATTER 2022; 18:9291-9298. [PMID: 36458858 DOI: 10.1039/d2sm00874b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soft pneumatic actuators-such as those used for soft robotics-achieve actuation by inflation of pneumatic chambers. Here, we report the use of the electrochemical reduction of water to generate gaseous products that inflate pneumatic chambers. Whereas conventional pneumatic actuators typically utilize bulky mechanical pumps, the approach here utilizes only electricity. In contrast to dielectric actuators, which require ∼kV to actuate, the electrochemical approach uses a potential of a few volts. The applied potential converts liquid water-a safe, abundant, and cheap fuel-into hydrogen gas. Since the chambers are constructed of hydrogel, the body of the actuator provides an abundant supply of water that ultimately converts to gas. The use of liquid metal for the electrode makes the entire device soft and ensures intimate contact between the chamber walls and the electrode during inflation. The device can inflate in tens of seconds, which is slower than other pneumatic approaches, but much faster than actuating hydrogels via principles of swelling. The actuation volume can be predicted and controlled based on the input parameters such as time and voltage. The actuation shape and position can also be controlled by the position of the electrodes and the geometry of the device. Such actuators have the potential to make tether-less (pump-free), electrically-controlled soft devices that can even operate underwater.
Collapse
Affiliation(s)
- Veenasri Vallem
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Erin Roosa
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Tyler Ledinh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Sahar Rashid Nadimi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Chemistry and Biochemistry, California State University, Bakersfield, Bakersfield, CA, 93311, USA
| | - Abolfazl Kiani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Chemistry and Biochemistry, California State University, Bakersfield, Bakersfield, CA, 93311, USA
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
173
|
Kageyama I, Kurata K, Miyashita S, Lim Y, Sengoku S, Kodama K. A Bibliometric Analysis of Wearable Device Research Trends 2001-2022-A Study on the Reversal of Number of Publications and Research Trends in China and the USA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192416427. [PMID: 36554307 PMCID: PMC9778864 DOI: 10.3390/ijerph192416427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 05/09/2023]
Abstract
In recent years, Wearable Devices have been used in a wide variety of applications and fields, but because they span so many different disciplines, it is difficult to ascertain the intellectual structure of this entire research domain. No review encompasses the whole research domain related to Wearable Devices. In this study, we collected articles on wearable devices from 2001 to 2022 and quantitatively organized them by bibliometric analysis to clarify the intellectual structure of this research domain as a whole. The cluster analysis, co-occurrence analysis, and network centrality analysis were conducted on articles collected from the Web of Science. As a result, we identified one cluster that represents applied research and two clusters that represent basic research in this research domain. Furthermore, focusing on the top two countries contributing to this research domain, China and the USA., it was confirmed that China is extremely inclined toward basic research and the USA. toward applied research, indicating that applied and basic research are in balance. The basic intellectual structure of this cross-sectional research domain was identified. The results summarize the current state of research related to Wearable Devices and provide insight into trends.
Collapse
Affiliation(s)
- Itsuki Kageyama
- Graduate School of Technology Management, Ritsumeikan University, 2-150 Iwakuracho, Ibaraki 567-8570, Japan
| | - Karin Kurata
- Graduate School of Technology Management, Ritsumeikan University, 2-150 Iwakuracho, Ibaraki 567-8570, Japan
| | - Shuto Miyashita
- School of Environment and Society, Tokyo Institute of Technology, Tokyo 108-0023, Japan
| | - Yeongjoo Lim
- Graduate School of Technology Management, Ritsumeikan University, 2-150 Iwakuracho, Ibaraki 567-8570, Japan
| | - Shintaro Sengoku
- School of Environment and Society, Tokyo Institute of Technology, Tokyo 108-0023, Japan
| | - Kota Kodama
- Graduate School of Technology Management, Ritsumeikan University, 2-150 Iwakuracho, Ibaraki 567-8570, Japan
- Center for Research and Education on Drug Discovery, The Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Correspondence: ; Tel.: +81-0726652448
| |
Collapse
|
174
|
Hu G, Wang S, Yu J, Zhang J, Sun Y, Kong D. A facile and scalable patterning approach for ultrastretchable liquid metal features. LAB ON A CHIP 2022; 22:4933-4940. [PMID: 36408775 DOI: 10.1039/d2lc00872f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liquid metals represent an attractive class of compliant conductors featuring metallic conductivity and inherent deformability. The widespread implementation of liquid metal conductors in stretchable electronics is currently hindered by the lack of a facile patterning approach. In this study, we introduce a facile and scalable patterning approach to create liquid metal features on an elastomer substrate. A screen-printed Ag nanoflake pattern is employed as a template for the subsequent selective coating of a liquid metal layer. The as-prepared liquid metal conductors show a bulk-level conductivity of ∼2.7 × 104 S cm-1, an ultrahigh stretchability of up to 700% tensile strain, and excellent electromechanical durability. The practical suitability is demonstrated by the successful fabrication of an ultradeformable ribbon cable and a smart sensing glove. The efficient and economical access to ultrastretchable liquid metal features may open up a broad range of emerging applications in soft electronic devices and systems.
Collapse
Affiliation(s)
- Gaohua Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China.
| | - Shaolei Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China.
| | - Jiyuan Yu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China.
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China.
| | - Yuping Sun
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China.
| | - Desheng Kong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China.
- National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
175
|
The monitoring of plant physiology and ecology:from materials to flexible devices. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
176
|
Zhang S, Ke X, Jiang Q, Chai Z, Wu Z, Ding H. Fabrication and Functionality Integration Technologies for Small-Scale Soft Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200671. [PMID: 35732070 DOI: 10.1002/adma.202200671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Small-scale soft robots are attracting increasing interest for visible and potential applications owing to their safety and tolerance resulting from their intrinsic soft bodies or compliant structures. However, it is not sufficient that the soft bodies merely provide support or system protection. More importantly, to meet the increasing demands of controllable operation and real-time feedback in unstructured/complicated scenarios, these robots are required to perform simplex and multimodal functionalities for sensing, communicating, and interacting with external environments during large or dynamic deformation with the risk of mismatch or delamination. Challenges are encountered during fabrication and integration, including the selection and fabrication of composite/materials and structures, integration of active/passive functional modules with robust interfaces, particularly with highly deformable soft/stretchable bodies. Here, methods and strategies of fabricating structural soft bodies and integrating them with functional modules for developing small-scale soft robots are investigated. Utilizing templating, 3D printing, transfer printing, and swelling, small-scale soft robots can be endowed with several perceptual capabilities corresponding to diverse stimulus, such as light, heat, magnetism, and force. The integration of sensing and functionalities effectively enhances the agility, adaptability, and universality of soft robots when applied in various fields, including smart manufacturing, medical surgery, biomimetics, and other interdisciplinary sciences.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xingxing Ke
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qin Jiang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhiping Chai
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Han Ding
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
177
|
He J, Pang W, Gu B, Lin X, Ye J. The stiffness-dependent tumor cell internalization of liquid metal nanoparticles. NANOSCALE 2022; 14:16902-16917. [PMID: 36342434 DOI: 10.1039/d2nr04293b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The properties of nanoparticle (NP) carriers, such as size, shape and surface state, have been proven to dramatically affect their uptake by tumor cells, thereby influencing and determining the effect of nanomedicine on tumor theranostics. However, the effect of the stiffness of NPs on their cellular internalization remains unclear, especially for circumstances involving active or passive NP targeting. In this work, we constructed eutectic gallium indium liquid metal NPs with the same particle size, shape and surface charge properties but distinct stiffness via tailoring the surface oxidation and silica coating. It has been found that the softer NPs would be endocytosed much slower than their stiffer counterparts in the presence of specific ligand-receptor interaction. Interestingly, once the interaction is eliminated, softer NPs are internalized faster than the stiffer ones. Based on experimental observations and theoretical verification, we demonstrate that this phenomenon is mainly caused by varying degrees of deformation of soft NPs induced by ligand-receptor interactions. Such a finding of the stiffness effect of NPs implies great potential for fundamental biomedical applications, such as the rational design of nanomedicines.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Wen Pang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Bobo Gu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Xubo Lin
- Institute of Single Cell Engineering, Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, P. R. China
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
178
|
Parvini E, Hajalilou A, Lopes PA, Tiago MSM, de Almeida AT, Tavakoli M. Triple crosslinking conductive hydrogels with digitally printable and outstanding mechanical stability for high-resolution conformable bioelectronics. SOFT MATTER 2022; 18:8486-8503. [PMID: 36321471 DOI: 10.1039/d2sm01103d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Soft, conductive, and stretchable hydrogels offer a broad variety of applications, including skin-interfacing electrodes, biomonitoring patches, and electrostimulation. Despite rapid developments over the last decades, a combination of good electrical and mechanical properties, low-cost fabrication, and biocompatibility is yet to be demonstrated. Also, the current methods for deposition and patterning of these hydrogels are manual, and there is a need toward autonomous and digital fabrication techniques. In this work, we demonstrate a novel Gallium (Ga) embedded sodium-alginate-polyacrylamide-LAPONITE® (Ga-SA-PAAM-La) hydrogel, that is ultra-stretchable (Maximum strain tolerance of∼985%), tough (toughness ∼30 kJ m-3), bio-adhesive (adhesion energy ∼216 J m-2), conductive, and digitally printable. Ga nanoparticles are used as radical initiators. By adjusting the sonication parameters, we control the solution viscosity and curing time, thus allowing us to prepare pre-polymers with the desired properties for casting, or digital printing. These hydrogels benefit from a triple-network structure due to the role of Ga droplets as crosslinkers besides BIS (N,N'-methylene-bis-acrylamide) and LAPONITE®, thus resulting in tough composite hydrogels. The inclusion of LAPONITE® into the hydrogel network improved its electrical conductivity, adhesion, digital printability, and its mechanical properties, (>6× compared to the same hydrogel without LAPONITE®). As electrodes in the electrocardiogram, the signal-to-noise ratio was surprisingly higher than the medical-grade Ag/AgCl electrodes, which are applied for monitoring muscles, heart, respiration, and body joint angle through EMG, ECG, and bioimpedance measurements. The results obtained prove that such digitally printed conductive and tough hydrogels can be used as potential electrodes and sensors in practical applications in the next generation of printed wearable computing devices.
Collapse
Affiliation(s)
- Elahe Parvini
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Abdollah Hajalilou
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Pedro Alhais Lopes
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Miguel Soares Maranha Tiago
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Anibal T de Almeida
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| |
Collapse
|
179
|
Lee S, Byun SH, Kim CY, Cho S, Park S, Sim JY, Jeong JW. Beyond Human Touch Perception: An Adaptive Robotic Skin Based on Gallium Microgranules for Pressure Sensory Augmentation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204805. [PMID: 36190163 DOI: 10.1002/adma.202204805] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Robotic skin with human-skin-like sensing ability holds immense potential in various fields such as robotics, prosthetics, healthcare, and industries. To catch up with human skin, numerous studies are underway on pressure sensors integrated on robotic skin to improve the sensitivity and detection range. However, due to the trade-off between them, existing pressure sensors have achieved only a single aspect, either high sensitivity or wide bandwidth. Here, an adaptive robotic skin is proposed that has both high sensitivity and broad bandwidth with an augmented pressure sensing ability beyond the human skin. A key for the adaptive robotic skin is a tunable pressure sensor built with uniform gallium microgranules embedded in an elastomer, which provides large tuning of the sensitivity and the bandwidth, excellent sensor-to-sensor uniformity, and high reliability. Through the mode conversion based on the solid-liquid phase transition of gallium microgranules, the sensor provides 97% higher sensitivity (16.97 kPa-1 ) in the soft mode and 262.5% wider bandwidth (≈1.45 MPa) in the rigid mode compared to the human skin. Successful demonstration of the adaptive robotic skin verifies its capabilities in sensing a wide spectrum of pressures ranging from subtle blood pulsation to body weight, suggesting broad use for various applications.
Collapse
Affiliation(s)
- Simok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang-Hyuk Byun
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Cho
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Joo Yong Sim
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for Health Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
180
|
Liquid metals: Preparation, surface engineering, and biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
181
|
Yu L, Qi X, Liu Y, Chen L, Li X, Xia Y. Transportable, Endurable, and Recoverable Liquid Metal Powders with Mechanical Sintering Conductivity for Flexible Electronics and Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48150-48160. [PMID: 36222480 DOI: 10.1021/acsami.2c14837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liquid metals (LMs, e.g., EGaIn) promise a vast potential in accelerating the development of flexible electronics, smart robots, and wearable and biomedical devices. Although a variety of emerging processing methods are reported, they suffer several risks (e.g., leakage, weak adhesion, and low colloidal and chemical stability) because of their excellent fluidity, high surface tension, and rapid oxidation. Herein, liquid metal powders (LMPs) are fabricated based on a versatile method by vigorously stirring EGaIn with nonmetallic or organic particles through interfacial interactions. During the mixing process, EGaIn microdroplets are wrapped with a nonmetallic or an organic shell by electrostatic adsorption, and a more sticky oxide layer is constantly generated and then broken owing to the shearing friction. These transportable powders exhibit superior stability under extreme conditions (e.g., water and high temperature), being capable of recovering electrical conductivity and strong adhesion on different substrates upon mechanical sintering. A flexible, robust, and conductive coating can be constructed via swabbing with an integrated Joule heating effect and excellent electromagnetic interference shielding performances, and it is applicable in flexible wearable electronics, microcircuits, and wireless power transmission systems.
Collapse
Affiliation(s)
- Lei Yu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P.R. China
| | - Xiulei Qi
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P.R. China
| | - Yide Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P.R. China
| | - Long Chen
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P.R. China
| | - Xiankai Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P.R. China
| | - Yanzhi Xia
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P.R. China
| |
Collapse
|
182
|
Bioinspired Strategies for Stretchable Conductors. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
183
|
Pozarycki TA, Hwang D, Barron EJ, Wilcox BT, Tutika R, Bartlett MD. Tough Bonding of Liquid Metal-Elastomer Composites for Multifunctional Adhesives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203700. [PMID: 36098240 DOI: 10.1002/smll.202203700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Liquid metal (LM) composites, which consist of LM droplets dispersed in highly deformable elastomers, have recently gained interest as a multifunctional material for soft robotics and electronics. The incorporation of LM into elastic solids allows for unique combinations of material properties such as high stretchability with thermal and electrical conductivity comparable to metals. However, it is currently a challenge to incorporate LM composites into integrated systems consisting of diverse materials and components due to a lack of adhesion control. Here, a chemical anchoring methodology to increase adhesion of LM composites to diverse substrates is presented. The fracture energy increases up to 100× relative to untreated surfaces, with values reaching up to 7800 J m-2 . Furthermore, the fracture energy, tensile modulus, and thermal conductivity can be tuned together by controlling the microstructure of LM composites. Finally, the bonding technique is used to integrate LM composites with functional electronic components without encapsulation or clamping, allowing for extreme deformations while maintaining exceptional thermal and electrical conductivity. These findings can accelerate the adoption of LM composites into complex soft robotic and electronic systems where strong, reliable bonding between diverse materials and components is required.
Collapse
Affiliation(s)
- Tyler A Pozarycki
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Dohgyu Hwang
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Edward J Barron
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Brittan T Wilcox
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ravi Tutika
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michael D Bartlett
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
184
|
Ren N, Hang C, Liu X, Jiang X. Printable Metal-Polymer Conductors for Local Drug Delivery. NANO LETTERS 2022; 22:7554-7562. [PMID: 36122317 DOI: 10.1021/acs.nanolett.2c02548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Safe and effective local drug delivery is challenging due to complex physiological barriers that limit the entry of drugs. Here, we report the metal-polymer conductors (MPCs) for local drug delivery via iontophoresis or electroporation. The MPCs are stretchable, conductive, and biocompatible. The flexible MPCs of different geometries are used both on a dry, flat surface (skin) and a moist, curved surface (cornea) with conformability. Conformal integration with the tissues enables good mechanical/electrical properties and realizes application of electrical voltage to the target areas for local drug delivery. By iontophoresis and electroporation, the MPCs achieve efficient delivery of doxorubicin and siRNA, leading to tumor regression and inhibition of corneal neovascularization, respectively. Our work presents an efficient strategy to harness the power of the MPCs to broaden the scope of local drug delivery to dry and wet organs with different surface topography.
Collapse
Affiliation(s)
- Ning Ren
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P.R. China
| | - Chen Hang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P.R. China
| | - Xiaoyan Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P.R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
185
|
Nan K, Feig VR, Ying B, Howarth JG, Kang Z, Yang Y, Traverso G. Mucosa-interfacing electronics. NATURE REVIEWS. MATERIALS 2022; 7:908-925. [PMID: 36124042 PMCID: PMC9472746 DOI: 10.1038/s41578-022-00477-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The surface mucosa that lines many of our organs houses myriad biometric signals and, therefore, has great potential as a sensor-tissue interface for high-fidelity and long-term biosensing. However, progress is still nascent for mucosa-interfacing electronics owing to challenges with establishing robust sensor-tissue interfaces; device localization, retention and removal; and power and data transfer. This is in sharp contrast to the rapidly advancing field of skin-interfacing electronics, which are replacing traditional hospital visits with minimally invasive, real-time, continuous and untethered biosensing. This Review aims to bridge the gap between skin-interfacing electronics and mucosa-interfacing electronics systems through a comparison of the properties and functions of the skin and internal mucosal surfaces. The major physiological signals accessible through mucosa-lined organs are surveyed and design considerations for the next generation of mucosa-interfacing electronics are outlined based on state-of-the-art developments in bio-integrated electronics. With this Review, we aim to inspire hardware solutions that can serve as a foundation for developing personalized biosensing from the mucosa, a relatively uncharted field with great scientific and clinical potential.
Collapse
Affiliation(s)
- Kewang Nan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Vivian R. Feig
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Binbin Ying
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Julia G. Howarth
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Ziliang Kang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Yiyuan Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
186
|
Chen H, Hu S, Jin Y, Zhang A, Hua L, Du J, Li G. Robust Impact Effect and Super-Lyophobic Reduced Galinstan on Polymers Applied for Energy Harvester. Polymers (Basel) 2022; 14:polym14173633. [PMID: 36080708 PMCID: PMC9460817 DOI: 10.3390/polym14173633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, we present a novel reduced Galinstan-based microfluidic energy harvester, which can converse kinetic energy to electricity from an arbitrary vibration source. Firstly, the wetting behaviors of reduced Galinstan are performed, which shows a robust impact effect on polymer substrates. Moreover, the electric circuit model of the reduced Galinstan-based energy harvester is made and discussed by the use of the EDLCs (electrical double layer capacitors). After modeling, the microfluidic energy harvester with coplanar microfluidic channels is designed and fabricated. Finally, the performance of the microfluidic energy harvester is investigated, which can harvest multi-direction vibration energy. The experiment results demonstrate that the novel reduced Galinstan-based microfluidic energy harvester is suitably and uniquely applied in a complex vibration environment.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianke Du
- Correspondence: (A.Z.); (J.D.); (G.L.)
| | | |
Collapse
|
187
|
Li W, Xu M, Xu HX, Wang X, Huang W. Metamaterial Absorbers: From Tunable Surface to Structural Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202509. [PMID: 35604541 DOI: 10.1002/adma.202202509] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Since the first demonstration, remarkable progress has been made in the theoretical analysis, structural design, numerical simulation, and potential applications of metamaterial absorbers (MAs). With the continuous advancement of novel materials and creative designs, the absorption of MAs is significantly improved over a wide frequency spectrum from microwaves to the optical regime. Further, the integration of active elements into the MA design allows the dynamical manipulation of electromagnetic waves, opening a new platform to push breakthroughs in metadevices. In the last several years, numerous efforts have been devoted to exploring innovative approaches for incorporating tunability to MAs, which is highly desirable because of the progressively increasing demand on designing versatile metadevices. Here, a comprehensive and systematical overview of active MAs with adaptive and on-demand manner is presented, highlighting innovative materials and unique strategies to precisely control the electromagnetic response. In addition to the mainstream method by manipulating periodic patterns, two additional approaches, including tailoring dielectric spacer and transforming overall structure are called back. Following this, key parameters, such as operating frequency, relative tuning range, and switching speed are summarized and compared to guide for optimum design. Finally, potential opportunities in the development of active MAs are discussed.
Collapse
Affiliation(s)
- Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Manzhang Xu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - He-Xiu Xu
- Air and Missile Defense College, Air Force Engineering University, Xi'an, 710051, P. R. China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Key Laboratory of Flexible Electronics(KLoFE)and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China
| |
Collapse
|
188
|
Ryu G, Park K, Kim H. Interfacial properties of liquid metal immersed in various liquids. J Colloid Interface Sci 2022; 621:285-294. [DOI: 10.1016/j.jcis.2022.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/15/2022]
|
189
|
Liao J, Majidi C. Muscle-Inspired Linear Actuators by Electrochemical Oxidation of Liquid Metal Bridges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201963. [PMID: 35863909 PMCID: PMC9475532 DOI: 10.1002/advs.202201963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/24/2022] [Indexed: 05/29/2023]
Abstract
Progress in artificial muscles relies on new architectures that combine soft matter with transduction mechanisms for converting controlled stimuli into mechanical work. Liquid metal, in particular eutectic gallium-indium (EGaIn), is promising for creating an artificial muscle since it is intrinsically deformable and capable of generating significant force and shape change through low voltage stimulation. In this work, a muscle-inspired structure for designing liquid metal actuators is presented, where EGaIn droplets are configured with copper pads to linearly contract. By theory and experiments, it is demonstrated that this design enables higher work densities and stress, making it a favorable actuator at smaller length scales. Furthermore, higher frequency (up to 5 Hz) operation is achieved by prestretching an antagonistic pair of actuators, where energy bistability enables fast-switching actuation. Overall, this muscle-inspired architecture shows a unique combination of low voltage operation, higher energy density at smaller scales, structural scalability, and higher frequency actuation.
Collapse
Affiliation(s)
- Jiahe Liao
- Robotics InstituteCarnegie Mellon University5000 Forbes AvePittsburghPA15213USA
| | - Carmel Majidi
- Robotics InstituteCarnegie Mellon University5000 Forbes AvePittsburghPA15213USA
- Mechanical EngineeringCarnegie Mellon University5000 Forbes AvePittsburghPA15213USA
| |
Collapse
|
190
|
Li BM, Reese BL, Ingram K, Huddleston ME, Jenkins M, Zaets A, Reuter M, Grogg MW, Nelson MT, Zhou Y, Ju B, Sennik B, Farrell ZJ, Jur JS, Tabor CE. Textile-Integrated Liquid Metal Electrodes for Electrophysiological Monitoring. Adv Healthc Mater 2022; 11:e2200745. [PMID: 35734914 DOI: 10.1002/adhm.202200745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/12/2022] [Indexed: 01/27/2023]
Abstract
Next generation textile-based wearable sensing systems will require flexibility and strength to maintain capabilities over a wide range of deformations. However, current material sets used for textile-based skin contacting electrodes lack these key properties, which hinder applications such as electrophysiological sensing. In this work, a facile spray coating approach to integrate liquid metal nanoparticle systems into textile form factors for conformal, flexible, and robust electrodes is presented. The liquid metal system employs functionalized liquid metal nanoparticles that provide a simple "peel-off to activate" means of imparting conductivity. The spray coating approach combined with the functionalized liquid metal system enables the creation of long-term reusable textile-integrated liquid metal electrodes (TILEs). Although the TILEs are dry electrodes by nature, they show equal skin-electrode impedances and sensing capabilities with improved wearability compared to commercial wet electrodes. Biocompatibility of TILEs in an in vivo skin environment is demonstrated, while providing improved sensing performance compared to previously reported textile-based dry electrodes. The "spray on dry-behave like wet" characteristics of TILEs opens opportunities for textile-based wearable health monitoring, haptics, and augmented/virtual reality applications that require the use of flexible and conformable dry electrodes.
Collapse
Affiliation(s)
- Braden M Li
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA.,Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA.,Air Force Life Cycle Management Center, Human Systems Division, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Brandon L Reese
- Department of Physics, Miami University, Oxford, OH, 45056, USA.,UES Inc, Dayton, OH, 45432, USA
| | - Katherine Ingram
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Mary E Huddleston
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Meghan Jenkins
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Allison Zaets
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Matthew Reuter
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Matthew W Grogg
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - M Tyler Nelson
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Ying Zhou
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Beomjun Ju
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Busra Sennik
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Zachary J Farrell
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA.,UES Inc, Dayton, OH, 45432, USA
| | - Jesse S Jur
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Christopher E Tabor
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, 45433, USA
| |
Collapse
|
191
|
Zhang C, Li Z, Li H, Yang Q, Wang H, Shan C, Zhang J, Hou X, Chen F. Femtosecond Laser-Induced Supermetalphobicity for Design and Fabrication of Flexible Tactile Electronic Skin Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38328-38338. [PMID: 35951360 DOI: 10.1021/acsami.2c08835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pursuing flexible tactile electronic skin sensors with superior comprehensive performances is highly desired in practical applications. However, current flexible tactile electronic skin sensors suffer insufficient flexibility and sensitivity, as well as high-cost and low-efficiency in fabrication, and are susceptible to contamination in sensing performances. Here, a highly sensitive all-flexible tactile sensor (AFTS) is presented with capacitive sensing that combines a double-side micropyramids dielectric layer and a liquid metal (LM) electrode. The design and fabrication of LM-based AFTS are based on supermetalphobicity induced by femtosecond laser. The supermetalphobic micropyramids lead to a high sensitivity up to 2.78 kPa-1, an ultralow limit of detection of ∼3 Pa, a fast response time of 80 ms, and an excellent durability of cyclic load over 10 000 times. The used femtosecond laser enables programmable, high-efficiency, low-cost, and large-scale fabrication of supermetalphobic double-side micropyramids, which is difficult to implement using conventional techniques. Furthermore, the outer substrates are treated by a femtosecond laser, endowing the AFTS with excellent antifouling performance and stable sensing signals in the highly humid environment. Successful monitoring of human physiological and motion signals demonstrates the potential of our developed AFTS for wearable biomonitoring applications.
Collapse
Affiliation(s)
- Chengjun Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhikang Li
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Haoyu Li
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Qing Yang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hao Wang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Chao Shan
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jingzhou Zhang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
192
|
Zhang X, Lu L, Wang W, Zhao N, He P, Liu J, Yang B. Flexible Pressure Sensors with Combined Spraying and Self-Diffusion of Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38409-38420. [PMID: 35950563 DOI: 10.1021/acsami.2c12240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-performance wearable sensors are required for applications in medical health and human-machine interaction, but their application has limited owing to the trade-off between sensitivity, pressure range, and durability. Herein, we propose the combined spraying and self-diffusion process of carbon nanotubes (CNTs) to balance and improve these parameters with the CNTs spontaneously diffusing into the film surface before the film curing. The obtained sensor not only achieves high sensitivity (155.54 kPa-1) and ultrawide pressure detection range (0.1-500 kPa) but also exhibits exceptional durability (over 12,000 pressure cycles at a high pressure of 300 kPa). In addition, the sensor exhibits a fast response (25 ms), good stability, and full flexibility. This process is a general approach that may improve the performance of various types of thin film piezoresistive sensors. Besides, the fabricated sensors can be flexibly scaled into sensor arrays and communicate with smart devices to achieve wireless smart monitoring. At present, the sensor shows broad application prospects in the fields of intelligent medical health and motion sensing.
Collapse
Affiliation(s)
- Xin Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijun Lu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenduo Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning Zhao
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Peng He
- Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
193
|
Han Y, Thebault PM, Audes C, Wang X, Park H, Jiang JZ, Caron A. Temperature and chemical effects on the interfacial energy between a Ga-In-Sn eutectic liquid alloy and nanoscopic asperities. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:817-827. [PMID: 36105687 PMCID: PMC9443308 DOI: 10.3762/bjnano.13.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The interfacial energies between a eutectic Ga-In-Sn liquid alloy and single nanoscopic asperities of SiO x , Au, and PtSi have been determined in the temperature range between room temperature and 90 °C by atomic force spectroscopy. For all asperities used here, we find that the interfacial tension of the eutectic Ga-In-Sn liquid alloy is smaller than its free surface energy by a factor of two (for SiO x ) to eight (for PtSi). Any significant oxide growth upon heating studied was not detected here, and the measured interfacial energies strongly depend on the chemistry of the asperities. We also observe a weak increase of the interfacial energy as a function of the temperature, which can be explained by the reactivity between SiO x and Ga and the occurrence of chemical segregation at the liquid alloy surface.
Collapse
Affiliation(s)
- Yujin Han
- KOREATECH – Korea University of Technology and Education, School of Energy, Material and Chemical Engineering, Cheonan, 31253 Republic of Korea
| | - Pierre-Marie Thebault
- KOREATECH – Korea University of Technology and Education, School of Energy, Material and Chemical Engineering, Cheonan, 31253 Republic of Korea
- UTT – University of Technology Troyes, 1004 Troyes, France,
| | - Corentin Audes
- KOREATECH – Korea University of Technology and Education, School of Energy, Material and Chemical Engineering, Cheonan, 31253 Republic of Korea
- UTT – University of Technology Troyes, 1004 Troyes, France,
| | - Xuelin Wang
- International Center of New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People’s Republic of China
| | - Haiwoong Park
- KOREATECH – Korea University of Technology and Education, School of Energy, Material and Chemical Engineering, Cheonan, 31253 Republic of Korea
| | - Jian-Zhong Jiang
- International Center of New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People’s Republic of China
| | - Arnaud Caron
- KOREATECH – Korea University of Technology and Education, School of Energy, Material and Chemical Engineering, Cheonan, 31253 Republic of Korea
| |
Collapse
|
194
|
Wang Q, Ji X, Liu X, Liu Y, Liang J. Viscoelastic Metal-in-Water Emulsion Gel via Host-Guest Bridging for Printed and Strain-Activated Stretchable Electrodes. ACS NANO 2022; 16:12677-12685. [PMID: 35926219 PMCID: PMC9413406 DOI: 10.1021/acsnano.2c04299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/28/2022] [Indexed: 05/28/2023]
Abstract
Stretchable conductive electrodes that can be made by printing technology with high resolution is desired for preparing wearable electronics. Printable inks composed of liquid metals are ideal candidates for these applications, but their practical applications are limited by their low stability, poor printability, and low conductivity. Here, thixotropic metal-in-water (M/W) emulsion gels (MWEGs) were designed and developed by stabilizing and bridging liquid metal droplets (LMDs) via a host-guest polymer. In the MWEGs, the hydrophilic main chain of the host-guest polymers emulsified and stabilized LMDs via coordination bonds. The grafted cyclodextrin and adamantane groups formed dynamic inclusion complexes to bridge two neighboring LMDs, leading to the formation of a dynamically cross-linked network of LMDs in the aqueous phase. The MWEGs exhibited viscoelastic and shear-thinning behavior, making them ideal for direct three-dimensional (3D) and screen printing with a high resolution (∼65 μm) to assemble complex patterns consisting of ∼95 wt % liquid metal. When stretching the printed patterns, strong host-guest interactions guaranteed that the entire droplet network was cross-linked, while the brittle oxide shell of the droplets ruptured, releasing the liquid metal core and allowing it to fuse into continuous conductive pathways under an ultralow critical strain (<1.5%). This strain-activated conductivity exceeded 15800 S/cm under a large strain of 800% and exhibited long-term cyclic stability and robustness.
Collapse
Affiliation(s)
- Qi Wang
- School
of Materials Science and Engineering, National Institute for Advanced
Materials, Nankai University, Tianjin 300350, P.R. China
| | - Xinyi Ji
- School
of Materials Science and Engineering, National Institute for Advanced
Materials, Nankai University, Tianjin 300350, P.R. China
| | - Xue Liu
- School
of Materials Science and Engineering, National Institute for Advanced
Materials, Nankai University, Tianjin 300350, P.R. China
| | - Yang Liu
- School
of Materials Science and Engineering, National Institute for Advanced
Materials, Nankai University, Tianjin 300350, P.R. China
- College
of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Jiajie Liang
- School
of Materials Science and Engineering, National Institute for Advanced
Materials, Nankai University, Tianjin 300350, P.R. China
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
College of Chemistry, Nankai University, Tianjin 300350, P.R. China
- Tianjin
Key Laboratory of Metal and Molecule-Based Material Chemistry and
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300350, P.R. China
| |
Collapse
|
195
|
Shastri V, Talukder S, Roy K, Kumar P, Pratap R. Manipulating liquid metal flow for creating standalone structures with micro-and nano-scale features in a single step. NANOTECHNOLOGY 2022; 33:455301. [PMID: 35878592 DOI: 10.1088/1361-6528/ac83cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Standalone structures with periodic surface undulations or ripples can be spontaneously created upon flowing a liquid metal, e.g. Ga, over a metallic film, e.g. Pt, Au, etc, through a complex 'wetting-reaction'-driven process. Due to the ability of 3-dimensional patterning at the small length scale in a single step, the liquid metal 'ripple' flow is a promising non-conventional patterning technique. Herein, we examine the effect of a few process parameters, such as distance away from the liquid reservoir, size of the liquid reservoir, and the geometry, thickness, and width of substrate metal film, on the nature of the ripple flow to produce finer patterns with feature sizes of ≤ 2μm. The height and the pitch of the pattern decrease with distance from the liquid reservoir and decrease in the reservoir volume. Furthermore, a decrease in the thickness and width of the substrate film also leads to a decrease in the height and pitch of the ripples. Finally, the application of an external electric field also controls the ripple patterns. By optimizing various parameters, standalone ripple structures of Ga with the height and pitch of ≤ 500 nm are created. As potential applications, the ripple patterns with micro-and nano-scopic features are demonstrated to produce a diffraction grating and a die for micro-stamping.
Collapse
Affiliation(s)
- Vijayendra Shastri
- Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Talukder
- Department of Computer Science and Electrical Engineering, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Kaustav Roy
- Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Praveen Kumar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rudra Pratap
- Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
196
|
Gong W, Guo Y, Yang W, Wu Z, Xing R, Liu J, Wei W, Zhou J, Guo Y, Li K, Hou C, Li Y, Zhang Q, Dickey MD, Wang H. Scalable and Reconfigurable Green Electronic Textiles with Personalized Comfort Management. ACS NANO 2022; 16:12635-12644. [PMID: 35930746 DOI: 10.1021/acsnano.2c04252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electronic textiles, inherited with the wearability of conventional clothes, are deemed fundamental for emerging wearable electronics, particularly in the Internet of Things era. However, the electronic waste produced by electronic textiles will further exacerbate the severe pollution in traditional textiles. Here, we develop a large-scale green electronic textile using renewable bio-based polylactic acid and sustainable eutectic gallium-indium alloys. The green electronic textile is extremely abrasion resistant and can degrade naturally in the environment even if abrasion produces infinitesimal amounts of microplastics. The mass loss and performance change rates of the reconstituted green electronic textiles are all below 5.4% after going through the full-cycle recycling procedure. This green electronic textile delivers high physiological comfort (including electronic comfort and thermal-moisture comfort), enables wireless power supply (without constraints by, e.g., wires and ports), has 2 orders of magnitude better air and moisture permeability than the body requires, and can lower skin temperature by 5.2 °C.
Collapse
Affiliation(s)
- Wei Gong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Yang Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
- Shanghai Wearalab Co., Ltd., Shanghai 201612, P.R. China
| | - Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Zhihua Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P.R. China
| | - Ruizhe Xing
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - Jin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Wei Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Jie Zhou
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Yinben Guo
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| |
Collapse
|
197
|
Zhang L, Forgham H, Shen A, Wang J, Zhu J, Huang X, Tang SY, Xu C, Davis TP, Qiao R. Nanomaterial integrated 3D printing for biomedical applications. J Mater Chem B 2022; 10:7473-7490. [PMID: 35993266 DOI: 10.1039/d2tb00931e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3D printing technology, otherwise known as additive manufacturing, has provided a promising tool for manufacturing customized biomaterials for tissue engineering and regenerative medicine applications. A vast variety of biomaterials including metals, ceramics, polymers, and composites are currently being used as base materials in 3D printing. In recent years, nanomaterials have been incorporated into 3D printing polymers to fabricate innovative, versatile, multifunctional hybrid materials that can be used in many different applications within the biomedical field. This review focuses on recent advances in novel hybrid biomaterials composed of nanomaterials and 3D printing technologies for biomedical applications. Various nanomaterials including metal-based nanomaterials, metal-organic frameworks, upconversion nanoparticles, and lipid-based nanoparticles used for 3D printing are presented, with a summary of the mechanisms, functional properties, advantages, disadvantages, and applications in biomedical 3D printing. To finish, this review offers a perspective and discusses the challenges facing the further development of nanomaterials in biomedical 3D printing.
Collapse
Affiliation(s)
- Liwen Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Helen Forgham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Ao Shen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jiafan Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jiayuan Zhu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xumin Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia.,Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
198
|
Influence of microstructural alterations of liquid metal and its interfacial interactions with rubber on multifunctional properties of soft composite materials. Adv Colloid Interface Sci 2022; 308:102752. [PMID: 36007286 DOI: 10.1016/j.cis.2022.102752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
Abstract
Liquid metal (LM)-based polymer composites are currently new breakthrough and emerging classes of soft multifunctional materials (SMMs) having immense transformative potential for soft technological applications. Currently, room-temperature LMs, mostly eutectic gallium‑indium and Galinstan alloys are used to integrate with soft polymer due to their outstanding properties such as high conductivity, fluidity, low adhesion, high surface tension, low cytotoxicity, etc. The microstructural alterations and interfacial interactions controlling the efficient integration of LMs with rubber are the most critical aspects for successful implementation of multifunctionality in the resulting material. In this review article, a fundamental understanding of microstructural alterations of LMs to the formation of well-defined percolating networks inside an insulating rubber matrix has been established by exploiting several existing theoretical and experimental studies. Furthermore, effects of the chemical modifications of an LM surface and its interfacial interactions on the compatibility between solid rubber and fluid filler phase have been discussed. The presence of thin oxide layer on the LM surface and the effects and challenges it poses to the adequate functionalization of these materials have been discussed. Plausible applications of SMMs in different soft matter technologies, like soft robotics, flexible electronics, soft actuators, sensors, etc. have been provided. Finally, the current technical challenges and further prospective to the development of SMMs using non‑silicone rubbers have been critically discussed. This review is anticipated to infuse a new impetus to the associated research communities for the development of next generation SMMs.
Collapse
|
199
|
Kim S, Kim S, Hong K, Dickey MD, Park S. Liquid-Metal-Coated Magnetic Particles toward Writable, Nonwettable, Stretchable Circuit Boards, and Directly Assembled Liquid Metal-Elastomer Conductors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37110-37119. [PMID: 35930688 DOI: 10.1021/acsami.2c07618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid metal is a promising conductor material for producing soft and stretchable circuit "boards" that can enable next-generation electronics by electrically connecting and mechanically supporting electronic components. While liquid metal in general can be used to fabricate soft and stretchable circuits, magnetic liquid metal is appealing because it can be used for self-healing electronics and actuators by external magnetic fields. Liquid metal can be rendered into particles that can then be used for sensors and catalysts through sonication. We used this feature to produce "novel" conductive and magnetic particles. Mixing ferromagnetic iron particles into the liquid metal (gallium) produces conductive ferrofluids that can be rendered into gallium-coated iron particles by sonication. The gallium shell of the particles is extremely soft, while the rigid iron core can induce high friction in response to mechanical pressure; thus, hand-sintering of the particles can be used to directly write the conductive traces when the particles are cast as a film on elastic substrates. The surface topography of the particles can be manipulated by forming GaOOH crystals through sonication in DI water, thus resulting in nonwettable circuit boards. These gallium-coated iron particles dispersed in uncured elastomer can be assembled to form conductive microwires with the application of magnetic fields.
Collapse
Affiliation(s)
- Seoyeon Kim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Sihyun Kim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Kyeongmin Hong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Michael D Dickey
- Department of Chemical Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Sungjune Park
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
200
|
Aksoy B, Hao Y, Grasso G, Digumarti KM, Cacucciolo V, Shea H. Shielded soft force sensors. Nat Commun 2022; 13:4649. [PMID: 35945227 PMCID: PMC9363457 DOI: 10.1038/s41467-022-32391-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Force and strain sensors made of soft materials enable robots to interact intelligently with their surroundings. Capacitive sensing is widely adopted thanks to its low power consumption, fast response, and facile fabrication. Capacitive sensors are, however, susceptible to electromagnetic interference and proximity effects and thus require electrical shielding. Shielding has not been previously implemented in soft capacitive sensors due to the parasitic capacitance between the shield and sensing electrodes, which changes when the sensor is deformed. We address this crucial challenge by patterning the central sensing elastomer layer to control its compressibility. One design uses an ultrasoft silicone foam, and the other includes microchannels filled with liquid metal and air. The force resolution is sub-mN both in normal and shear directions, yet the sensor withstands large forces (>20 N), demonstrating a wide dynamic range. Performance is unaffected by nearby high DC and AC electric fields and even electric sparks. Capacitive soft force sensors require electrical shielding from electromagnetic interference, but this shielding can mess with the effectiveness of the sensing electrodes. Here, Aksoy et al. solve this problem by patterning the central sensing elastomer layer to control its compressibility.
Collapse
Affiliation(s)
- Bekir Aksoy
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland
| | - Yufei Hao
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland
| | - Giulio Grasso
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland
| | - Krishna Manaswi Digumarti
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland
| | - Vito Cacucciolo
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland
| | - Herbert Shea
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland.
| |
Collapse
|