151
|
Chen H, Kwong JC, Copes R, Hystad P, van Donkelaar A, Tu K, Brook JR, Goldberg MS, Martin RV, Murray BJ, Wilton AS, Kopp A, Burnett RT. Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study. ENVIRONMENT INTERNATIONAL 2017; 108:271-277. [PMID: 28917207 DOI: 10.1016/j.envint.2017.08.020] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Emerging studies have implicated air pollution in the neurodegenerative processes. Less is known about the influence of air pollution, especially at the relatively low levels, on developing dementia. We conducted a population-based cohort study in Ontario, Canada, where the concentrations of pollutants are among the lowest in the world, to assess whether air pollution exposure is associated with incident dementia. METHODS The study population comprised all Ontario residents who, on 1 April 2001, were 55-85years old, Canadian-born, and free of physician-diagnosed dementia (~2.1 million individuals). Follow-up extended until 2013. We used population-based health administrative databases with a validated algorithm to ascertain incident diagnosis of dementia as well as prevalent cases. Using satellite observations, land-use regression model, and an optimal interpolation method, we derived long-term average exposure to fine particulate matter (≤2.5μm in diameter) (PM2.5), nitrogen dioxide (NO2), and ozone (O3), respectively at the subjects' historical residences based on a population-based registry. We used multilevel spatial random-effects Cox proportional hazards models, adjusting for individual and contextual factors, such as diabetes, brain injury, and neighborhood income. We conducted various sensitivity analyses, such as lagging exposure up to 10years and considering a negative control outcome for which no (or weaker) association with air pollution is expected. RESULTS We identified 257,816 incident cases of dementia in 2001-2013. We found a positive association between PM2.5 and dementia incidence, with a hazard ratio (HR) of 1.04 (95% confidence interval (CI): 1.03-1.05) for every interquartile-range increase in exposure to PM2.5. Similarly, NO2 was associated with increased incidence of dementia (HR=1.10; 95% CI: 1.08-1.12). No association was found for O3. These associations were robust to all sensitivity analyses examined. These estimates translate to 6.1% of dementia cases (or 15,813 cases) attributable to PM2.5 and NO2, based on the observed distribution of exposure relative to the lowest quartile in concentrations in this cohort. DISCUSSION In this large cohort, exposure to air pollution, even at the relative low levels, was associated with higher dementia incidence.
Collapse
Affiliation(s)
- Hong Chen
- Public Health Ontario, Toronto, ON, Canada; Institute for Clinical Evaluative Sciences, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| | - Jeffrey C Kwong
- Public Health Ontario, Toronto, ON, Canada; Institute for Clinical Evaluative Sciences, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Ray Copes
- Public Health Ontario, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, USA
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| | - Karen Tu
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada; Toronto Western Hospital Family Health Team, University Health Network, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada; Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Randall V Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada; Harvard-Smithsonian Centre for Astrophysics, Cambridge, MA, USA
| | - Brian J Murray
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Andrew S Wilton
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
| | - Alexander Kopp
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
| | | |
Collapse
|
152
|
Cognitive Effects of Air Pollution Exposures and Potential Mechanistic Underpinnings. Curr Environ Health Rep 2017; 4:180-191. [PMID: 28435996 DOI: 10.1007/s40572-017-0134-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review sought to address the potential for air pollutants to impair cognition and mechanisms by which that might occur. RECENT FINDINGS Air pollution has been associated with deficits in cognitive functions across a wide range of epidemiological studies, both with developmental and adult exposures. Studies in animal models are significantly more limited in number, with somewhat inconsistent findings to date for measures of learning, but show more consistent impairments for short-term memory. Potential contributory mechanisms include oxidative stress/inflammation, altered levels of dopamine and/or glutamate, and changes in synaptic plasticity/structure. Epidemiological studies are consistent with adverse effects of air pollutants on cognition, but additional studies and better phenotypic characterization are needed for animal models, including more precise delineation of specific components of cognition that are affected, as well as definitions of critical exposure periods for such effects and the components of air pollution responsible. This would permit development of more circumscribed hypotheses as to potential behavioral and neurobiological mechanisms.
Collapse
|
153
|
Jayaraj RL, Rodriguez EA, Wang Y, Block ML. Outdoor Ambient Air Pollution and Neurodegenerative Diseases: the Neuroinflammation Hypothesis. Curr Environ Health Rep 2017; 4:166-179. [PMID: 28444645 DOI: 10.1007/s40572-017-0142-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Accumulating research indicates that ambient outdoor air pollution impacts the brain and may affect neurodegenerative diseases, yet the potential underlying mechanisms are poorly understood. RECENT FINDINGS The neuroinflammation hypothesis holds that elevation of cytokines and reactive oxygen species in the brain mediates the deleterious effects of urban air pollution on the central nervous system (CNS). Studies in human and animal research document that neuroinflammation occurs in response to several inhaled pollutants. Microglia are a prominent source of cytokines and reactive oxygen species in the brain, implicated in the progressive neuron damage in diverse neurodegenerative diseases, and activated by inhaled components of urban air pollution through both direct and indirect pathways. The MAC1-NOX2 pathway has been identified as a mechanism through which microglia respond to different forms of air pollution, suggesting a potential common deleterious pathway. Multiple direct and indirect pathways in response to air pollution exposure likely interact in concert to exert CNS effects.
Collapse
Affiliation(s)
- Richard L Jayaraj
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Eric A Rodriguez
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yi Wang
- Department of Environmental Health, Indiana University Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Michelle L Block
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
154
|
Oudin A, Forsberg B, Lind N, Nordin S, Oudin Åström D, Sundström A, Nordin M. Is Long-term Exposure to Air Pollution Associated with Episodic Memory? A Longitudinal Study from Northern Sweden. Sci Rep 2017; 7:12789. [PMID: 28986549 PMCID: PMC5630578 DOI: 10.1038/s41598-017-13048-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/14/2017] [Indexed: 11/09/2022] Open
Abstract
Associations between long-term exposure to ambient air pollution and cognitive function have been observed in a few longitudinal studies. Our aim was to investigate the association between long-term exposure to air pollution and episodic memory, a marker of early cognitive decline. We used data from the Betula study in Northern Sweden, and included participants 60 to 85 of age at inclusion, 1,469 persons in total. The participants were followed for up to 22 years, five years apart between 1988 and 2010. A composite of five tasks was used as a measure of episodic memory measure (EMM), and the five-year change in EMM score (ΔEMM) was calculated such that a participant could contribute with up to four measurement pairs. A Land Use Regression Model was used to estimate cumulative annual mean of NOx at the residential address of the participants (a marker for long-term exposure to traffic-related air pollution). There did not seem to be any association between exposure to traffic air pollution and episodic memory change, with a ΔEMM estimate of per 1 µg/m3 increase in NOx of 0.01 (95% Confidence Interval: -0.02,0.03). This is in contrast to a growing body of evidence suggesting associations between air pollution and cognitive function.
Collapse
Affiliation(s)
- Anna Oudin
- Occupational and Environmental Medicine, Public Health and Clinical Medicine, Umeå University, 901 87, Umeå, Sweden.
| | - Bertil Forsberg
- Occupational and Environmental Medicine, Public Health and Clinical Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Nina Lind
- Department of Psychology, Umeå University, 901 87, Umeå, Sweden
| | - Steven Nordin
- Department of Psychology, Umeå University, 901 87, Umeå, Sweden
| | - Daniel Oudin Åström
- Family medicine, cardiovascular epidemiology and lifestyle, Lund University, 205 02, Malmö, Sweden
| | - Anna Sundström
- Department of Psychology, Umeå University, 901 87, Umeå, Sweden.,Centre of Demographic and Ageing Research (CEDAR), Umeå University, Umeå, Sweden
| | - Maria Nordin
- Department of Psychology, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
155
|
Chen JC, Wang X, Serre M, Cen S, Franklin M, Espeland M. Particulate Air Pollutants, Brain Structure, and Neurocognitive Disorders in Older Women. Res Rep Health Eff Inst 2017; 2017:1-65. [PMID: 31898881 PMCID: PMC7266369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Introduction An increasing number of studies have suggested that exposure to particulate matter (PM) may represent a novel - and potentially amendable - environmental determinant of brain aging. The current longitudinal environmental epidemiological study addressed some important knowledge gaps in this emerging field, which combines the study of air pollution and neuroepidemiology. The investigators hypothesized that long-term PM exposure adversely influences global brain volume and brain regions (e.g., frontal lobe or hippocampus) that are critical to memory and complex cognitive processing or that are affected by neuropathological changes in dementia. It was also hypothesized that long-term PM exposure results in neurovascular damage and may increase the risk of mild cognitive impairment (MCI) and -dementia. Methods The investigators selected a well-characterized and geographically diverse population of older women (N = 7,479; average age = 71.0 ± 3.8 years at baseline) in the Women's Health Initiative (WHI) Memory Study (WHIMS) cohort (1996-2007), which included a subcohort (n = 1,403) enrolled in the WHIMS-Magnetic Resonance Imaging (WHIMS-MRI) study (2005-2006). Residence-specific yearly exposures to PM ≤ 2.5 µm in aerodynamic diameter (PM₂.₅) were estimated using a Bayesian maximum entropy spatiotemporal model of annual monitoring data (1999-2007) recorded in the U.S. Environmental Protection Agency (U.S. EPA) Air Quality System (AQS). Annual exposures (1996-2005) to diesel PM (DPM) were assigned to each residential census tract in a nationwide spatiotemporal mapping, based on a generalized additive model (GAM), to conduct census tract-specific temporal interpolation of DPM on-road estimates given by the U.S. EPA National-Scale Air Toxics Assessment Program. Multiple linear regression and multicovariate-adjusted Cox models were used to examine the associations, with statistical adjustment for multiple potential confounders. Results The investigators found that participants had smaller brain volumes, especially in the normal-appearing white matter (WM), if they lived in locations with higher levels of cumulative exposure (1999-2006) to PM ₂.₅ before the brain MRI scans were performed. The associations were not explained by sociodemographic factors, socioeconomic status, lifestyle factors, or other clinical characteristics. Analyses showed that the adverse effect on brain structure in the participants was driven primarily by the smaller WM volumes associated with cumulative PM₂.₅ exposures, which were present in the WM divisions of the association brain area (frontal, parietal, and temporal lobes) and corpus callosum. Increased DPM exposures were associated with larger ventricular volume, suggesting an overall atrophic effect on the aging brains. The participants tended to have smaller gray matter (GM) volumes if they lived in areas with the highest (i.e., fourth quartile) estimated cumulative DPM exposure in the 10 years before the brain MRI scans, compared with women in the first to third quartiles. This observed association was present in the total brain GM and in the association brain cortices. The associations with normal-appearing WM varied by DPM exposure range. For women with estimated cumulative exposure below that of the fourth quartile, increased DPM estimates were associated with smaller WM volumes. However, for women with increased cumulative DPM exposures estimates in the fourth quartile, WM volumes were larger. This pattern of association was found consistently in the association brain area; no measurable difference was found in the volume of the corpus callosum. These observed adverse effects of cumulative exposure to PM₂.₅ (linking exposure with smaller WM volumes) and to DPM (linking exposure in the highest quartile with smaller GM volumes) were not significantly modified by existing cardiovascular diseases, diabetes mellitus, obesity, or measured white blood cell (WBC) count. MRI measurements of the structural brain showed no differences in small-vessel ischemic diseases (SVID) in participants with varying levels of cumulative exposure to PM₂.₅ (1999-2006) or DPM (1996-2005), and no associations between PM exposures and SVID volumes were noted for total brain, association brain area, GM, or WM. For neurocognitive outcomes followed until 2007, the investigators found no evidence for increased risk of MCI/dementia associated with long-term PM exposures. Although exploratory secondary analyses showed different patterns of associations linking PM exposures separately with MCI and dementia, none of the -results was statistically significant. A similar lack of associations between PM exposures and MCI/dementia was found across the subgroups, with no strong indications for effect modification by cardiovascular diseases, diabetes mellitus, obesity, or WBC count. Conclusions The investigators concluded that their study findings support the hypothesized brain-structure neurotoxicity associated with PM exposures, a result that is in line with emerging neurotoxicological data. However, the investigators found no evidence of increased risk of MCI/dementia associated with long-term PM exposures. To better test the neurovascular effect hypothesis in PM-associated neurotoxic effects on the aging brain, the investigators recommend that future studies pay greater attention to selecting optimal populations with repeated measurements of cerebrovascular damage and address the possibility of selection biases accordingly. To further investigate the long-term consequence of brain-structure neurotoxicity on pathological brain aging, future researchers should take the pathobiologically heterogeneous neurocognitive outcomes into account and design adequately powered prospective cohort studies with improved exposure estimation and valid outcome ascertainment to assess whether PM-associated neurotoxicity increases the risks of pathological brain aging, including MCI and dementia.
Collapse
Affiliation(s)
- J-C Chen
- Keck School of Medicine, University of Southern California, Los Angeles
| | - X Wang
- Keck School of Medicine, University of Southern California, Los Angeles
| | - M Serre
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - S Cen
- Keck School of Medicine, University of Southern California, Los Angeles
| | - M Franklin
- Keck School of Medicine, University of Southern California, Los Angeles
| | - M Espeland
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
156
|
Babadjouni RM, Hodis DM, Radwanski R, Durazo R, Patel A, Liu Q, Mack WJ. Clinical effects of air pollution on the central nervous system; a review. J Clin Neurosci 2017; 43:16-24. [PMID: 28528896 PMCID: PMC5544553 DOI: 10.1016/j.jocn.2017.04.028] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/22/2017] [Indexed: 12/20/2022]
Abstract
The purpose of this review is to describe recent clinical and epidemiological studies examining the adverse effects of urban air pollution on the central nervous system (CNS). Air pollution and particulate matter (PM) are associated with neuroinflammation and reactive oxygen species (ROS). These processes affect multiple CNS pathways. The conceptual framework of this review focuses on adverse effects of air pollution with respect to neurocognition, white matter disease, stroke, and carotid artery disease. Both children and older individuals exposed to air pollution exhibit signs of cognitive dysfunction. However, evidence on middle-aged cohorts is lacking. White matter injury secondary to air pollution exposure is a putative mechanism for neurocognitive decline. Air pollution is associated with exacerbations of neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. Increases in stroke incidences and mortalities are seen in the setting of air pollution exposure and CNS pathology is robust. Large populations living in highly polluted environments are at risk. This review aims to outline current knowledge of air pollution exposure effects on neurological health.
Collapse
Affiliation(s)
- Robin M Babadjouni
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Drew M Hodis
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ryan Radwanski
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ramon Durazo
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Arati Patel
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Qinghai Liu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - William J Mack
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
157
|
Ku T, Li B, Gao R, Zhang Y, Yan W, Ji X, Li G, Sang N. NF-κB-regulated microRNA-574-5p underlies synaptic and cognitive impairment in response to atmospheric PM 2.5 aspiration. Part Fibre Toxicol 2017; 14:34. [PMID: 28851397 PMCID: PMC5575838 DOI: 10.1186/s12989-017-0215-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022] Open
Abstract
Background PM2.5 (particulate matter ≤ 2.5 μm) is one of the leading environmental risk factors for the global burden of disease. Whereas increasing evidence has linked the adverse roles of PM2.5 with cardiovascular and respiratory diseases, limited but growing emerging evidence suggests that PM2.5 exposure can affect the nervous system, causing neuroinflammation, synaptic dysfunction and cognitive deterioration. However, the molecular mechanisms underlying the synaptic and cognitive deficits elicited by PM2.5 exposure are largely unknown. Methods C57BL/6 mice received oropharyngeal aspiration of PM2.5 (1 and 5 mg/kg bw) every other day for 4 weeks. The mice were also stereotaxically injected with β-site amyloid precursor protein cleaving enzyme 1 (β-secretase, BACE1) shRNA or LV-miR-574-5p lentiviral constructs in the absence or presence of PM2.5 aspiration at 5 mg/kg bw every other day for 4 weeks. Spatial learning and memory were assessed with the Morris water maze test, and synaptic function integrity was evaluated with electrophysiological recordings of long-term potentiation (LTP) and immunoblot analyses of glutamate receptor subunit expression. The expression of α-secretase (ADAM10), BACE1, and γ-secretase (nicastrin) and the synthesis and accumulation of amyloid β (Aβ) were measured by immunoblot and enzyme-linked immunosorbent assay (ELISA). MicroRNA (miRNA) expression was screened with a microRNA microarray analysis and confirmed by real-time quantitative reverse transcription PCR (qRT-PCR) analysis. Dual-luciferase reporter gene and chromatin immunoprecipitation (ChIP) analyses were used to detect the binding of miR-574-5p in the 3’UTR of BACE1 and NF-κB p65 in the promoter of miR-574-5p, respectively. Results PM2.5 aspiration caused neuroinflammation and deteriorated synaptic function integrity and spatial learning and memory, and the effects were associated with the induction of BACE1. The action was mediated by NF-κB p65-regulated downregulation of miR-574-5p, which targets BACE1. Overexpression of miR-574-5p in the hippocampal region decreased BACE1 expression, restored synaptic function, and improved spatial memory and learning following PM2.5 exposure. Conclusions Taken together, our findings reveal a novel molecular mechanism underlying impaired synaptic and cognitive function following exposure to PM2.5, suggesting that miR-574-5p is a potential intervention target for the prevention and treatment of PM2.5-induced neurological disorders. Electronic supplementary material The online version of this article (10.1186/s12989-017-0215-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Ben Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yingying Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Wei Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
158
|
Duan J, Hu H, Zhang Y, Feng L, Shi Y, Miller MR, Sun Z. Multi-organ toxicity induced by fine particulate matter PM 2.5 in zebrafish (Danio rerio) model. CHEMOSPHERE 2017; 180:24-32. [PMID: 28391149 DOI: 10.1016/j.chemosphere.2017.04.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
The fine particulate matter (PM2.5) in air pollution is a major public health concern and now known to contribute to severe diseases, therefore, a comprehensive understanding of PM2.5-induced adverse effects in living organisms is needed urgently. This study was aimed to evaluate the toxicity of PM2.5 on multi-organ systems in a zebrafish (Danio rerio) model. The embryonic toxicity induced by PM2.5 was demonstrated by an increase in mortality and inhibition of hatching rate, in a dose- and time-dependent manner. PM2.5 caused the pericardial edema, as well as reducing heart rate and cardiac output. The area of sub-intestinal vessels (SIVs) was significant reduced in Tg(fli-1:EGFP) transgenic zebrafish lines. Morphological defects and yolk sac retention were associated with hepatocyte injury. In addition, PM2.5 disrupted the axonal integrity, altering of axon length and pattern in Tg(NBT:EGFP) transgenic lines. Genes involved in cardiac function (spaw, supt6h, cmlc1), angiogenesis (vegfr2a, vegfr2b), and neural function (gabrd, chrna3, npy8br) were markedly down-regulated; while genes linked to hepatic metabolism (cyp1a, cyp1b1, cyp1c1) were significantly up-regulated by PM2.5. In summary, our data showed that PM2.5 induced the cardiovascular toxicity, hepatotoxicity and neurotoxicity in zebrafish, suggested that PM2.5 could cause multi-organ toxicity in aquatic organism.
Collapse
Affiliation(s)
- Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yannan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
159
|
Costa LG, Chang YC, Cole TB. Developmental Neurotoxicity of Traffic-Related Air Pollution: Focus on Autism. Curr Environ Health Rep 2017; 4:156-165. [PMID: 28417440 PMCID: PMC5952375 DOI: 10.1007/s40572-017-0135-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Epidemiological and animal studies suggest that air pollution may negatively affect the central nervous system (CNS) and contribute to CNS diseases. Traffic-related air pollution is a major contributor to global air pollution, and diesel exhaust (DE) is its most important component. RECENT FINDINGS Several studies suggest that young individuals may be particularly susceptible to air pollution-induced neurotoxicity and that perinatal exposure may cause or contribute to developmental disabilities and behavioral abnormalities. In particular, a number of recent studies have found associations between exposures to traffic-related air pollution and autism spectrum disorders (ASD), which are characterized by impairment in socialization and in communication and by the presence of repetitive and unusual behaviors. The cause(s) of ASD are unknown, and while it may have a hereditary component, environmental factors are increasingly suspected as playing a pivotal role in its etiology, particularly in genetically susceptible individuals. Autistic children present higher levels of neuroinflammation and systemic inflammation, which are also hallmarks of exposure to traffic-related air pollution. Gene-environment interactions may play a relevant role in determining individual susceptibility to air pollution developmental neurotoxicity. Given the worldwide presence of elevated air pollution, studies on its effects and mechanisms on the developing brain, genetic susceptibility, role in neurodevelopmental disorders, and possible therapeutic interventions are certainly warranted.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA, 98105, USA.
- Department of Neuroscience, University of Parma, Parma, Italy.
| | - Yu-Chi Chang
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA, 98105, USA
| | - Toby B Cole
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA, 98105, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| |
Collapse
|
160
|
Woodward NC, Pakbin P, Saffari A, Shirmohammadi F, Haghani A, Sioutas C, Cacciottolo M, Morgan TE, Finch CE. Traffic-related air pollution impact on mouse brain accelerates myelin and neuritic aging changes with specificity for CA1 neurons. Neurobiol Aging 2017; 53:48-58. [PMID: 28212893 PMCID: PMC5388507 DOI: 10.1016/j.neurobiolaging.2017.01.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/16/2016] [Accepted: 01/05/2017] [Indexed: 12/28/2022]
Abstract
Traffic-related air pollution (TRAP) is associated with lower cognition and reduced white matter volume in older adults, specifically for particulate matter <2.5-μm diameter (PM2.5). Rodents exposed to TRAP have shown microglial activation and neuronal atrophy. We further investigated age differences of TRAP exposure, with focus on hippocampus for neuritic atrophy, white matter degeneration, and microglial activation. Young- and middle-aged mice (3 and 18 months female C57BL/6J) were exposed to nanoscale-PM (nPM, <0.2 μm diameter). Young mice showed selective changes in the hippocampal CA1 region, with neurite atrophy (-25%), decreased MBP (-50%), and increased Iba1 (+50%), with dentate gyrus relatively unaffected. Exposure to nPM of young mice decreased GluA1 protein (-40%) and increased TNFa mRNA (10×). Older controls had age changes approximating nPM effects on young, with no response to nPM, suggesting an age-ceiling effect. The CA1 selective vulnerability in young mice parallels CA1 vulnerability in Alzheimer's disease. We propose that TRAP-associated human cognitive and white matter changes involve hippocampal responses to nPM that begin at younger ages.
Collapse
Affiliation(s)
- Nicholas C Woodward
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Payam Pakbin
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Arian Saffari
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Farimah Shirmohammadi
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Mafalda Cacciottolo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Department of Molecular and Computational Biology, Dornsife College, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
161
|
Kulick ER, Wellenius GA, Kaufman JD, DeRosa JT, Kinney PL, Cheung YK, Wright CB, Sacco RL, Elkind MS. Long-Term Exposure to Ambient Air Pollution and Subclinical Cerebrovascular Disease in NOMAS (the Northern Manhattan Study). Stroke 2017; 48:1966-1968. [PMID: 28455324 DOI: 10.1161/strokeaha.117.016672] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/16/2017] [Accepted: 03/29/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Long-term exposure to ambient air pollution is associated with higher risk of cardiovascular disease and stroke. We hypothesized that long-term exposure to air pollution would be associated with magnetic resonance imaging markers of subclinical cerebrovascular disease. METHODS Participants were 1075 stroke-free individuals aged ≥50 years drawn from the magnetic resonance imaging subcohort of the Northern Manhattan Study who had lived at the same residence for at least 2 years before magnetic resonance imaging. Cross-sectional associations between ambient air pollution and subclinical cerebrovascular disease were analyzed. RESULTS We found an association between distance to roadway, a proxy for residential exposure to traffic pollution, and white matter hyperintensity volume; however, after adjusting for risk factors, this relationship was no longer present. All other associations between pollutant measures and white matter hyperintensity volume were null. There was no clear association between exposure to air pollutants and subclinical brain infarcts or total cerebral brain volume. CONCLUSIONS We found no evidence that long-term exposure to ambient air pollution is independently associated with subclinical cerebrovascular disease in an urban population-based cohort.
Collapse
Affiliation(s)
- Erin R Kulick
- From the Department of Epidemiology, Mailman School of Public Health (E.R.K., M.S.E.), Department of Neurology, College of Physicians and Surgeons (E.R.K., J.T.D., M.S.E.), and Department of Biostatistics, Mailman School of Public Health (Y.K.C.), Columbia University, New York, NY; Department of Epidemiology, Brown University School of Public Health, Providence, RI (G.A.W.); Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle (J.D.K.); Department of Environmental Health, Boston University School of Public Health, MA (P.L.K.); and Departments of Neurology, Public Health Sciences, and Human Genetics, Miller School of Medicine, University of Miami, FL (C.B.W., R.L.S.).
| | - Gregory A Wellenius
- From the Department of Epidemiology, Mailman School of Public Health (E.R.K., M.S.E.), Department of Neurology, College of Physicians and Surgeons (E.R.K., J.T.D., M.S.E.), and Department of Biostatistics, Mailman School of Public Health (Y.K.C.), Columbia University, New York, NY; Department of Epidemiology, Brown University School of Public Health, Providence, RI (G.A.W.); Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle (J.D.K.); Department of Environmental Health, Boston University School of Public Health, MA (P.L.K.); and Departments of Neurology, Public Health Sciences, and Human Genetics, Miller School of Medicine, University of Miami, FL (C.B.W., R.L.S.)
| | - Joel D Kaufman
- From the Department of Epidemiology, Mailman School of Public Health (E.R.K., M.S.E.), Department of Neurology, College of Physicians and Surgeons (E.R.K., J.T.D., M.S.E.), and Department of Biostatistics, Mailman School of Public Health (Y.K.C.), Columbia University, New York, NY; Department of Epidemiology, Brown University School of Public Health, Providence, RI (G.A.W.); Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle (J.D.K.); Department of Environmental Health, Boston University School of Public Health, MA (P.L.K.); and Departments of Neurology, Public Health Sciences, and Human Genetics, Miller School of Medicine, University of Miami, FL (C.B.W., R.L.S.)
| | - Janet T DeRosa
- From the Department of Epidemiology, Mailman School of Public Health (E.R.K., M.S.E.), Department of Neurology, College of Physicians and Surgeons (E.R.K., J.T.D., M.S.E.), and Department of Biostatistics, Mailman School of Public Health (Y.K.C.), Columbia University, New York, NY; Department of Epidemiology, Brown University School of Public Health, Providence, RI (G.A.W.); Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle (J.D.K.); Department of Environmental Health, Boston University School of Public Health, MA (P.L.K.); and Departments of Neurology, Public Health Sciences, and Human Genetics, Miller School of Medicine, University of Miami, FL (C.B.W., R.L.S.)
| | - Patrick L Kinney
- From the Department of Epidemiology, Mailman School of Public Health (E.R.K., M.S.E.), Department of Neurology, College of Physicians and Surgeons (E.R.K., J.T.D., M.S.E.), and Department of Biostatistics, Mailman School of Public Health (Y.K.C.), Columbia University, New York, NY; Department of Epidemiology, Brown University School of Public Health, Providence, RI (G.A.W.); Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle (J.D.K.); Department of Environmental Health, Boston University School of Public Health, MA (P.L.K.); and Departments of Neurology, Public Health Sciences, and Human Genetics, Miller School of Medicine, University of Miami, FL (C.B.W., R.L.S.)
| | - Ying Kuen Cheung
- From the Department of Epidemiology, Mailman School of Public Health (E.R.K., M.S.E.), Department of Neurology, College of Physicians and Surgeons (E.R.K., J.T.D., M.S.E.), and Department of Biostatistics, Mailman School of Public Health (Y.K.C.), Columbia University, New York, NY; Department of Epidemiology, Brown University School of Public Health, Providence, RI (G.A.W.); Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle (J.D.K.); Department of Environmental Health, Boston University School of Public Health, MA (P.L.K.); and Departments of Neurology, Public Health Sciences, and Human Genetics, Miller School of Medicine, University of Miami, FL (C.B.W., R.L.S.)
| | - Clinton B Wright
- From the Department of Epidemiology, Mailman School of Public Health (E.R.K., M.S.E.), Department of Neurology, College of Physicians and Surgeons (E.R.K., J.T.D., M.S.E.), and Department of Biostatistics, Mailman School of Public Health (Y.K.C.), Columbia University, New York, NY; Department of Epidemiology, Brown University School of Public Health, Providence, RI (G.A.W.); Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle (J.D.K.); Department of Environmental Health, Boston University School of Public Health, MA (P.L.K.); and Departments of Neurology, Public Health Sciences, and Human Genetics, Miller School of Medicine, University of Miami, FL (C.B.W., R.L.S.)
| | - Ralph L Sacco
- From the Department of Epidemiology, Mailman School of Public Health (E.R.K., M.S.E.), Department of Neurology, College of Physicians and Surgeons (E.R.K., J.T.D., M.S.E.), and Department of Biostatistics, Mailman School of Public Health (Y.K.C.), Columbia University, New York, NY; Department of Epidemiology, Brown University School of Public Health, Providence, RI (G.A.W.); Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle (J.D.K.); Department of Environmental Health, Boston University School of Public Health, MA (P.L.K.); and Departments of Neurology, Public Health Sciences, and Human Genetics, Miller School of Medicine, University of Miami, FL (C.B.W., R.L.S.)
| | - Mitchell S Elkind
- From the Department of Epidemiology, Mailman School of Public Health (E.R.K., M.S.E.), Department of Neurology, College of Physicians and Surgeons (E.R.K., J.T.D., M.S.E.), and Department of Biostatistics, Mailman School of Public Health (Y.K.C.), Columbia University, New York, NY; Department of Epidemiology, Brown University School of Public Health, Providence, RI (G.A.W.); Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle (J.D.K.); Department of Environmental Health, Boston University School of Public Health, MA (P.L.K.); and Departments of Neurology, Public Health Sciences, and Human Genetics, Miller School of Medicine, University of Miami, FL (C.B.W., R.L.S.)
| |
Collapse
|
162
|
Woodward NC, Levine MC, Haghani A, Shirmohammadi F, Saffari A, Sioutas C, Morgan TE, Finch CE. Toll-like receptor 4 in glial inflammatory responses to air pollution in vitro and in vivo. J Neuroinflammation 2017; 14:84. [PMID: 28410596 PMCID: PMC5391610 DOI: 10.1186/s12974-017-0858-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/29/2017] [Indexed: 12/05/2022] Open
Abstract
Background Exposure to traffic-related air pollution (TRAP) is associated with accelerated cognitive aging and higher dementia risk in human populations. Rodent brains respond to TRAP with activation of astrocytes and microglia, increased inflammatory cytokines, and neurite atrophy. A role for Toll-like receptor 4 (TLR4) was suggested in mouse TLR4-knockouts, which had attenuated lung macrophage responses to air pollution. Methods To further analyze these mechanisms, we examined mixed glial cultures (astrocytes and microglia) for RNA responses to nanoscale particulate matter (nPM; diameter <0.2 μm), a well-characterized nanoscale particulate matter subfraction of TRAP collected from a local freeway (Morgan et al. Environ Health Perspect 2011; 119,1003–1009, 2011). The nPM was compared with responses to the endotoxin lipopolysaccharide (LPS), a classic TLR4 ligand, using Affymetrix whole genome microarray in rats. Expression patterns were analyzed by significance analysis of microarrays (SAM) for fold change and by weighted gene co-expression network analysis (WGCNA) to identify modules of shared responses between nPM and LPS. Finally, we examined TLR4 activation in hippocampal tissue from mice chronically exposed to nPM. Results SAM and WGCNA analyses showed strong activation of TLR4 and NF-κB by both nPM and LPS. TLR4 siRNA attenuated TNFα and other inflammatory responses to nPM in vitro, via the MyD88-dependent pathway. In vivo, mice chronically exposed to nPM showed increased TLR4, MyD88, TNFα, and TNFR2 RNA, and decreased NF-κB and TRAF6 RNA TLR4 and NF-κB responses in the hippocampus. Conclusions These results show TLR4 activation is integral in brain inflammatory responses to air pollution, and warrant further study of TLR4 in accelerated cognitive aging by air pollution. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0858-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas C Woodward
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Morgan C Levine
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Farimah Shirmohammadi
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Arian Saffari
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA. .,Dornsife College, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
163
|
Affiliation(s)
- Jonathan M Samet
- From the Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles (J.M.S.); the Department of Health Policy and Management and the Risk Sciences and Public Policy Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore (T.A.B.); and the Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh (B.D.G.)
| | - Thomas A Burke
- From the Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles (J.M.S.); the Department of Health Policy and Management and the Risk Sciences and Public Policy Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore (T.A.B.); and the Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh (B.D.G.)
| | - Bernard D Goldstein
- From the Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles (J.M.S.); the Department of Health Policy and Management and the Risk Sciences and Public Policy Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore (T.A.B.); and the Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh (B.D.G.)
| |
Collapse
|
164
|
Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roqué PJ. Neurotoxicity of traffic-related air pollution. Neurotoxicology 2017; 59:133-139. [PMID: 26610921 PMCID: PMC4875879 DOI: 10.1016/j.neuro.2015.11.008] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/10/2015] [Accepted: 11/15/2015] [Indexed: 12/31/2022]
Abstract
The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer's disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300μg/m3 for 6h) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Neuroscience, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Jacki Coburn
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Pamela J Roqué
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
165
|
Onoda A, Takeda K, Umezawa M. Dose-dependent induction of astrocyte activation and reactive astrogliosis in mouse brain following maternal exposure to carbon black nanoparticle. Part Fibre Toxicol 2017; 14:4. [PMID: 28148272 PMCID: PMC5289048 DOI: 10.1186/s12989-017-0184-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/20/2017] [Indexed: 11/24/2022] Open
Abstract
Background Recent studies indicate that maternal exposure to ambient ultrafine particles and nanoparticles has adverse effects of on the central nervous system. Quantitative dose–response data is required to better understand the developmental neurotoxicity of nanoparticles. The present study investigated dose-dependent effects of maternal exposure to carbon black nanoparticle (CB-NP) on astrocyte in the brains of mouse offspring. Methods A CB-NP suspension (2.9, 15, or 73 μg/kg) was intranasally administered to pregnant ICR mice on gestational days 5 and 9. Cerebral cortex samples were collected from 6-week-old offspring and examined by Western blotting, immunostaining, microarray analysis, and quantitative reverse transcriptase-polymerase chain reaction. Placentae were collected from pregnant dams on gestational day 13 and examined by microarray analysis. Results Maternal exposure to CB-NP induced a dose-dependent increase in glial fibrillary acidic protein (GFAP) expression in the cerebral cortex; this increase was particularly observed in astrocytic end-feet attached to denatured perivascular macrophages. Moreover, maternal CB-NP exposure dose-dependently increased aquaporin-4 expression in the brain parenchyma region around blood vessels. The changes in the expression profiles of GFAP and Aqp4 in offspring after maternal CB-NP exposure were similar to those observed in mice of a more advanced age. The expression levels of mRNAs associated with angiogenesis, cell migration, proliferation, chemotaxis, and growth factor production were also altered in the cerebral cortex of offspring after maternal CB-NP exposure. Differentially expressed genes in placental tissues after CB-NP exposure did not populate any specific gene ontology category. Conclusions Maternal CB-NP exposure induced long-term activation of astrocytes resulting in reactive astrogliosis in the brains of young mice. Our observations suggest a potentially increased risk of the onset of age-related neurodegenerative diseases by maternal NP exposure. In this study, we report for the first time a quantitative dose–response relationship between maternal NP exposure and phenotypic changes in the central nervous system of the offspring. Moreover, our findings indicate that cortical GFAP and Aqp4 are useful biomarkers that can be employed in further studies aiming to elucidate the underlying mechanism of nanoparticle-mediated developmental neurotoxicity.
Collapse
Affiliation(s)
- Atsuto Onoda
- Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan. .,The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan. .,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kouji-machi, Chiyoda-ku, Tokyo, 102-0083, Japan.
| | - Ken Takeda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Masakazu Umezawa
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan
| |
Collapse
|
166
|
Cacciottolo M, Wang X, Driscoll I, Woodward N, Saffari A, Reyes J, Serre ML, Vizuete W, Sioutas C, Morgan TE, Gatz M, Chui HC, Shumaker SA, Resnick SM, Espeland MA, Finch CE, Chen JC. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl Psychiatry 2017; 7:e1022. [PMID: 28140404 PMCID: PMC5299391 DOI: 10.1038/tp.2016.280] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/27/2016] [Indexed: 12/13/2022] Open
Abstract
Exposure to particulate matter (PM) in the ambient air and its interactions with APOE alleles may contribute to the acceleration of brain aging and the pathogenesis of Alzheimer's disease (AD). Neurodegenerative effects of particulate air pollutants were examined in a US-wide cohort of older women from the Women's Health Initiative Memory Study (WHIMS) and in experimental mouse models. Residing in places with fine PM exceeding EPA standards increased the risks for global cognitive decline and all-cause dementia respectively by 81 and 92%, with stronger adverse effects in APOE ɛ4/4 carriers. Female EFAD transgenic mice (5xFAD+/-/human APOE ɛ3 or ɛ4+/+) with 225 h exposure to urban nanosized PM (nPM) over 15 weeks showed increased cerebral β-amyloid by thioflavin S for fibrillary amyloid and by immunocytochemistry for Aβ deposits, both exacerbated by APOE ɛ4. Moreover, nPM exposure increased Aβ oligomers, caused selective atrophy of hippocampal CA1 neurites, and decreased the glutamate GluR1 subunit. Wildtype C57BL/6 female mice also showed nPM-induced CA1 atrophy and GluR1 decrease. In vitro nPM exposure of neuroblastoma cells (N2a-APP/swe) increased the pro-amyloidogenic processing of the amyloid precursor protein (APP). We suggest that airborne PM exposure promotes pathological brain aging in older women, with potentially a greater impact in ɛ4 carriers. The underlying mechanisms may involve increased cerebral Aβ production and selective changes in hippocampal CA1 neurons and glutamate receptor subunits.
Collapse
Affiliation(s)
- M Cacciottolo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - X Wang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - I Driscoll
- Department of Psychology, University of Wisconsin, Milwaukee, WI, USA
| | - N Woodward
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - A Saffari
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - J Reyes
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M L Serre
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - W Vizuete
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C Sioutas
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - T E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - M Gatz
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - H C Chui
- Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California,, Los Angeles, CA, USA
| | - S A Shumaker
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - S M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - M A Espeland
- Division of Public Health Services, Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - C E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J C Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
167
|
Traffic-Related Air Pollution and Neurodegenerative Diseases: Epidemiological and Experimental Evidence, and Potential Underlying Mechanisms. ADVANCES IN NEUROTOXICOLOGY 2017. [DOI: 10.1016/bs.ant.2017.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
168
|
Reyes JM, Xu Y, Vizuete W, Serre ML. Regionalized PM2.5 Community Multiscale Air Quality model performance evaluation across a continuous spatiotemporal domain. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2017; 148:258-265. [PMID: 28848374 PMCID: PMC5571875 DOI: 10.1016/j.atmosenv.2016.10.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The regulatory Community Multiscale Air Quality (CMAQ) model is a means to understanding the sources, concentrations and regulatory attainment of air pollutants within a model's domain. Substantial resources are allocated to the evaluation of model performance. The Regionalized Air quality Model Performance (RAMP) method introduced here explores novel ways of visualizing and evaluating CMAQ model performance and errors for daily Particulate Matter ≤ 2.5 micrometers (PM2.5) concentrations across the continental United States. The RAMP method performs a non-homogenous, non-linear, non-homoscedastic model performance evaluation at each CMAQ grid. This work demonstrates that CMAQ model performance, for a well-documented 2001 regulatory episode, is non-homogeneous across space/time. The RAMP correction of systematic errors outperforms other model evaluation methods as demonstrated by a 22.1% reduction in Mean Square Error compared to a constant domain wide correction. The RAMP method is able to accurately reproduce simulated performance with a correlation of r = 76.1%. Most of the error coming from CMAQ is random error with only a minority of error being systematic. Areas of high systematic error are collocated with areas of high random error, implying both error types originate from similar sources. Therefore, addressing underlying causes of systematic error will have the added benefit of also addressing underlying causes of random error.
Collapse
Affiliation(s)
- Jeanette M. Reyes
- Department of Environmental Sciences and Engineering, UNC,
135 Dauer Drive, Chapel Hill, NC 27599-7431
| | - Yadong Xu
- Department of Environmental Sciences and Engineering, UNC,
135 Dauer Drive, Chapel Hill, NC 27599-7431
| | - William Vizuete
- Department of Environmental Sciences and Engineering, UNC,
135 Dauer Drive, Chapel Hill, NC 27599-7431
| | - Marc L. Serre
- Department of Environmental Sciences and Engineering, UNC,
135 Dauer Drive, Chapel Hill, NC 27599-7431
| |
Collapse
|
169
|
Ailshire J, Karraker A, Clarke P. Neighborhood social stressors, fine particulate matter air pollution, and cognitive function among older U.S. adults. Soc Sci Med 2017; 172:56-63. [PMID: 27886528 PMCID: PMC5388445 DOI: 10.1016/j.socscimed.2016.11.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/02/2016] [Accepted: 11/12/2016] [Indexed: 11/26/2022]
Abstract
A growing number of studies have found a link between outdoor air pollution and cognitive function among older adults. Psychosocial stress is considered an important factor determining differential susceptibility to environmental hazards and older adults living in stressful neighborhoods may be particularly vulnerable to the adverse health effects of exposure to hazards such as air pollution. The objective of this study is to determine if neighborhood social stress amplifies the association between fine particulate matter air pollution (PM2.5) and poor cognitive function in older, community-dwelling adults. We use data on 779 U.S. adults ages 55 and older from the 2001/2002 wave of the Americans' Changing Lives study. We determined annual average PM2.5 concentration in 2001 in the area of residence by linking respondents with EPA air monitoring data using census tract identifiers. Cognitive function was measured using the number of errors on the Short Portable Mental Status Questionnaire (SPMSQ). Exposure to neighborhood social stressors was measured using perceptions of disorder and decay and included subjective evaluations of neighborhood upkeep and the presence of deteriorating/abandoned buildings, trash, and empty lots. We used negative binomial regression to examine the interaction of neighborhood perceived stress and PM2.5 on the count of errors on the cognitive function assessment. We found that the association between PM2.5 and cognitive errors was stronger among older adults living in high stress neighborhoods. These findings support recent theoretical developments in environmental health and health disparities research emphasizing the synergistic effects of neighborhood social stressors and environmental hazards on residents' health. Those living in socioeconomically disadvantaged neighborhoods, where social stressors and environmental hazards are more common, may be particularly susceptible to adverse health effects of social and physical environmental exposures.
Collapse
Affiliation(s)
- Jennifer Ailshire
- USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Amelia Karraker
- Human Development and Family Studies, Iowa State University, Ames, IA, USA
| | - Philippa Clarke
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
170
|
Casanova R, Wang X, Reyes J, Akita Y, Serre ML, Vizuete W, Chui HC, Driscoll I, Resnick SM, Espeland MA, Chen JC. A Voxel-Based Morphometry Study Reveals Local Brain Structural Alterations Associated with Ambient Fine Particles in Older Women. Front Hum Neurosci 2016; 10:495. [PMID: 27790103 PMCID: PMC5061768 DOI: 10.3389/fnhum.2016.00495] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022] Open
Abstract
Objective: Exposure to ambient fine particulate matter (PM2.5: PM with aerodynamic diameters < 2.5 μm) has been linked with cognitive deficits in older adults. Using fine-grained voxel-wise analyses, we examined whether PM2.5 exposure also affects brain structure. Methods: Brain MRI data were obtained from 1365 women (aged 71–89) in the Women's Health Initiative Memory Study and local brain volumes were estimated using RAVENS (regional analysis of volumes in normalized space). Based on geocoded residential locations and air monitoring data from the U.S. Environmental Protection Agency, we employed a spatiotemporal model to estimate long-term (3-year average) exposure to ambient PM2.5 preceding MRI scans. Voxel-wise linear regression models were fit separately to gray matter (GM) and white matter (WM) maps to analyze associations between brain structure and PM2.5 exposure, with adjustment for potential confounders. Results: Increased PM2.5 exposure was associated with smaller volumes in both cortical GM and subcortical WM areas. For GM, associations were clustered in the bilateral superior, middle, and medial frontal gyri. For WM, the largest clusters were in the frontal lobe, with smaller clusters in the temporal, parietal, and occipital lobes. No statistically significant associations were observed between PM2.5 exposure and hippocampal volumes. Conclusions: Long-term PM2.5 exposures may accelerate loss of both GM and WM in older women. While our previous work linked smaller WM volumes to PM2.5, this is the first neuroimaging study reporting associations between air pollution exposure and smaller volumes of cortical GM. Our data support the hypothesized synaptic neurotoxicity of airborne particles.
Collapse
Affiliation(s)
- Ramon Casanova
- Department of Biostatistical Sciences, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Xinhui Wang
- Department of Preventive Medicine, University of Southern California Los Angeles, CA, USA
| | | | | | - Marc L Serre
- University of North Carolina Chapel Hill, NC, USA
| | | | - Helena C Chui
- Department of Neurology, University of Southern California Los Angeles, CA, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Mark A Espeland
- Department of Biostatistical Sciences, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
171
|
Killin LOJ, Starr JM, Shiue IJ, Russ TC. Environmental risk factors for dementia: a systematic review. BMC Geriatr 2016; 16:175. [PMID: 27729011 PMCID: PMC5059894 DOI: 10.1186/s12877-016-0342-y] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/19/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Dementia risk reduction is a major and growing public health priority. While certain modifiable risk factors for dementia have been identified, there remains a substantial proportion of unexplained risk. There is evidence that environmental risk factors may explain some of this risk. Thus, we present the first comprehensive systematic review of environmental risk factors for dementia. METHODS We searched the PubMed and Web of Science databases from their inception to January 2016, bibliographies of review articles, and articles related to publically available environmental data. Articles were included if they examined the association between an environmental risk factor and dementia. Studies with another outcome (for example, cognition), a physiological measure of the exposure, case studies, animal studies, and studies of nutrition were excluded. Data were extracted from individual studies which were, in turn, appraised for methodological quality. The strength and consistency of the overall evidence for each risk factor identified was assessed. RESULTS We screened 4784 studies and included 60 in the review. Risk factors were considered in six categories: air quality, toxic heavy metals, other metals, other trace elements, occupational-related exposures, and miscellaneous environmental factors. Few studies took a life course approach. There is at least moderate evidence implicating the following risk factors: air pollution; aluminium; silicon; selenium; pesticides; vitamin D deficiency; and electric and magnetic fields. CONCLUSIONS Studies varied widely in size and quality and therefore we must be circumspect in our conclusions. Nevertheless, this extensive review suggests that future research could focus on a short list of environmental risk factors for dementia. Furthermore, further robust, longitudinal studies with repeated measures of environmental exposures are required to confirm these associations.
Collapse
Affiliation(s)
- Lewis O. J. Killin
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing & Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Scottish Dementia Clinical Research Network, NHS Scotland, Perth, UK
| | - John M. Starr
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing & Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Ivy J. Shiue
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - Tom C. Russ
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing & Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
172
|
Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. Nanoscale Particulate Matter from Urban Traffic Rapidly Induces Oxidative Stress and Inflammation in Olfactory Epithelium with Concomitant Effects on Brain. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1537-1546. [PMID: 27187980 PMCID: PMC5047762 DOI: 10.1289/ehp134] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/29/2016] [Accepted: 05/02/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Rodent models for urban air pollution show consistent induction of inflammatory responses in major brain regions. However, the initial impact of air pollution particulate material on olfactory gateways has not been reported. OBJECTIVE We evaluated the olfactory neuroepithelium (OE) and brain regional responses to a nanosized subfraction of urban traffic ultrafine particulate matter (nPM, < 200 nm) in vivo, ex vivo, and in vitro. METHODS Adult mice were exposed to reaerosolized nPM for 5, 20, and 45 cumulative hours over 3 weeks. The OE, the olfactory bulb (OB), the cerebral cortex, and the cerebellum were analyzed for oxidative stress and inflammatory responses. Acute responses of the OE to liquid nPM suspensions were studied with ex vivo and primary OE cultures. RESULTS After exposure to nPM, the OE and OB had rapid increases of 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosine (3-NT) protein adducts, whereas the cerebral cortex and cerebellum did not respond at any time. All brain regions showed increased levels of tumor necrosis factor-α (TNFα) protein by 45 hr, with earlier induction of TNFα mRNA in OE and OB. These responses corresponded to in vitro OE and mixed glial responses, with rapid induction of nitrite and inducible nitric oxide synthase (iNOS), followed by induction of TNFα. CONCLUSIONS These findings show the differential time course of oxidative stress and inflammatory responses to nPM between the OE and the brain. Slow cumulative transport of inhaled nPM into the brain may contribute to delayed responses of proximal and distal brain regions, with potential input from systemic factors. CITATION Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. 2016. Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ Health Perspect 124:1537-1546; http://dx.doi.org/10.1289/EHP134.
Collapse
Affiliation(s)
- Hank Cheng
- Leonard Davis School of Gerontology,
- USC Dornsife College,
| | - Arian Saffari
- Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | | | | - Caleb E. Finch
- Leonard Davis School of Gerontology,
- USC Dornsife College,
| |
Collapse
|
173
|
Power MC, Adar SD, Yanosky JD, Weuve J. Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: A systematic review of epidemiologic research. Neurotoxicology 2016; 56:235-253. [PMID: 27328897 PMCID: PMC5048530 DOI: 10.1016/j.neuro.2016.06.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dementia is a devastating condition typically preceded by a long prodromal phase characterized by accumulation of neuropathology and accelerated cognitive decline. A growing number of epidemiologic studies have explored the relation between air pollution exposure and dementia-related outcomes. METHODS We undertook a systematic review, including quality assessment, to interpret the collective findings and describe methodological challenges that may limit study validity. Articles, which were identified according to a registered protocol, had to quantify the association of an air pollution exposure with cognitive function, cognitive decline, a dementia-related neuroimaging feature, or dementia. RESULTS We identified 18 eligible published articles. The quality of most studies was adequate to exemplary. Almost all reported an adverse association between at least one pollutant and one dementia-related outcome. However, relatively few studies considered outcomes that provide the strongest evidence for a causal effect, such as within-person cognitive or pathologic changes. Reassuringly, differential selection would likely bias toward a protective association in most studies, making it unlikely to account for observed adverse associations. Likewise, using a formal sensitivity analysis, we found that unmeasured confounding is also unlikely to explain reported adverse associations. DISCUSSION We also identified several common challenges. First, most studies of incident dementia identified cases from health system records. As dementia in the community is underdiagnosed, this could generate either non-differential or differential misclassification bias. Second, almost all studies used recent air pollution exposures as surrogate measures of long-term exposure. Although this approach may be reasonable if the measured and etiologic exposure windows are separated by a few years, its validity is unknown over longer intervals. Third, comparing the magnitude of associations may not clearly pinpoint which, if any, pollutants are the probable causal agents, because the degree of exposure misclassification differs across pollutants. The epidemiologic evidence, alongside evidence from other lines of research, provides support for a relation of air pollution exposure to dementia. Future studies with improved design, analysis and reporting would fill key evidentiary gaps and provide a solid foundation for recommendations and possible interventions.
Collapse
Affiliation(s)
- Melinda C Power
- Department of Epidemiology and Biostatistics, George Washington University Milken Institute School of Public Health, 950 New Hampshire Avenue NW, Washington, DC 20052, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Sara D Adar
- Department of Epidemiology, University of Michigan School of Public Health, 1420 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Jeff D Yanosky
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, 90 Hope Drive, Hershey, PA, 17033, USA.
| | - Jennifer Weuve
- Rush Institute for Healthy Aging, Rush University Medical Center, 1645 W. Jackson Boulevard, Suite 675, Chicago, IL 60612, USA; Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, USA.
| |
Collapse
|
174
|
Breznan D, Karthikeyan S, Phaneuf M, Kumarathasan P, Cakmak S, Denison MS, Brook JR, Vincent R. Development of an integrated approach for comparison of in vitro and in vivo responses to particulate matter. Part Fibre Toxicol 2016; 13:41. [PMID: 27520027 PMCID: PMC4983025 DOI: 10.1186/s12989-016-0152-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 07/26/2016] [Indexed: 12/13/2022] Open
Abstract
Background Association of particulate matter with adverse health effects has been established in epidemiological studies and animal experiments. Epidemiological studies are difficult to undertake while animal studies are impractical for high-throughput toxicity testing. The ease and rapidity of in vitro tests emphasizes their potential for use in risk assessment of chemicals and particles. We examined the association between in vitro and in vivo responses to ambient particles, to determine the potential of cell-based assays as standalone toxicity screening tools. Methods Assays of cytotoxicity and key inflammatory mediators were applied to determine the in vitro biological potency of a panel of urban and mineral particles in J774A.1 macrophages and A549 lung epithelial cells. The particles were also screened for the presence of AhR agonists using the Ah receptor-dependent gene induction assay and for endotoxin using the Limulus amebocyte lysate assay. A subset of the particles with a contrasting in vitro toxicity profile was delivered intratracheally in BALB/c mice to assess their in vivo biological potency. Results from various bioassays were combined within the in vitro and in vivo models. The combined potency measures were examined for associations. Results Overall, J774A.1 cells were more sensitive to particle effects than A549 cells. Whereas the combined cytotoxicity estimates were highly correlated between the two cell lines, the combined in vitro inflammatory potency estimates were not, emphasizing functional differences of the two cell types. Secretion of inflammatory markers by J774A.1 cells was correlated with AhR ligand binding profile and endotoxin levels of particles. Particle instillation led to an acute toxicity response in BALB/c mice, with neutrophilia and release of inflammatory mediators. While the combined toxicity estimates were not correlated between in vitro and in vivo models, the combined inflammatory and integrated potency estimates (toxicity and inflammation) approached the threshold for significance (p = 0.052) in a correlation within in vitro and in vivo models, with a ranking of fine particle (DWR1), minerals (TiO2, CRI) and coarse particles (SRM-, EHC-type) from low to high potency. Conclusion Integration of in vitro endpoints shows promise in determining adverse outcomes of particle exposures in vivo. The devised data reduction and computational approach will prove useful in the development of models for assessment of hazard potential of particles; however, distinct models may be needed for particles of different type, such as urban particles vs. mineral particles, nanomaterials. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0152-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dalibor Breznan
- Inhalation Toxicology Laboratory, Hazard Identification Division, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Subramanian Karthikeyan
- Inhalation Toxicology Laboratory, Hazard Identification Division, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Marcelle Phaneuf
- Inhalation Toxicology Laboratory, Hazard Identification Division, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Prem Kumarathasan
- Analytical Biochemistry and Proteomics Laboratory, Mechanistic Studies Division, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Sabit Cakmak
- Air Health Effects Research, Population Studies Division, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Jeffrey R Brook
- Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Renaud Vincent
- Inhalation Toxicology Laboratory, Hazard Identification Division, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
175
|
Pujol J, Fenoll R, Macià D, Martínez-Vilavella G, Alvarez-Pedrerol M, Rivas I, Forns J, Deus J, Blanco-Hinojo L, Querol X, Sunyer J. Airborne copper exposure in school environments associated with poorer motor performance and altered basal ganglia. Brain Behav 2016; 6:e00467. [PMID: 27134768 PMCID: PMC4842931 DOI: 10.1002/brb3.467] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 03/02/2016] [Accepted: 03/09/2016] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Children are more vulnerable to the effects of environmental elements. A variety of air pollutants are among the identified factors causing neural damage at toxic concentrations. It is not obvious, however, to what extent the tolerated high levels of air pollutants are able to alter brain development. We have specifically investigated the neurotoxic effects of airborne copper exposure in school environments. METHODS Speed and consistency of motor response were assessed in 2836 children aged from 8 to 12 years. Anatomical MRI, diffusion tensor imaging, and functional MRI were used to directly test the brain repercussions in a subgroup of 263 children. RESULTS Higher copper exposure was associated with poorer motor performance and altered structure of the basal ganglia. Specifically, the architecture of the caudate nucleus region was less complete in terms of both tissue composition and neural track water diffusion. Functional MRI consistently showed a reciprocal connectivity reduction between the caudate nucleus and the frontal cortex. CONCLUSIONS The results establish an association between environmental copper exposure in children and alterations of basal ganglia structure and function.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit Hospital del Mar Barcelona Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21 Barcelona Spain
| | | | - Dídac Macià
- MRI Research Unit Hospital del Mar Barcelona Spain
| | | | - Mar Alvarez-Pedrerol
- Centre for Research in Environmental Epidemiology (CREAL) Barcelona Catalonia Spain; Pompeu Fabra University Barcelona Catalonia Spain; Ciber on Epidemiology and Public Health (CIBERESP) Barcelona Spain
| | - Ioar Rivas
- Centre for Research in Environmental Epidemiology (CREAL) Barcelona Catalonia Spain; Pompeu Fabra University Barcelona Catalonia Spain; Ciber on Epidemiology and Public Health (CIBERESP) Barcelona Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Barcelona Catalonia Spain
| | - Joan Forns
- Centre for Research in Environmental Epidemiology (CREAL) Barcelona Catalonia Spain; Pompeu Fabra University Barcelona Catalonia Spain; Ciber on Epidemiology and Public Health (CIBERESP) Barcelona Spain
| | - Joan Deus
- MRI Research Unit Hospital del Mar Barcelona Spain; Department of Clinical and Health Psychology Autonomous University of Barcelona Barcelona Spain
| | | | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Barcelona Catalonia Spain
| | - Jordi Sunyer
- Centre for Research in Environmental Epidemiology (CREAL) Barcelona Catalonia Spain; Pompeu Fabra University Barcelona Catalonia Spain; Ciber on Epidemiology and Public Health (CIBERESP) Barcelona Spain; IMIM (Hospital del Mar Medical Research Institute) Barcelona Catalonia Spain
| |
Collapse
|
176
|
Pujol J, Martínez-Vilavella G, Macià D, Fenoll R, Alvarez-Pedrerol M, Rivas I, Forns J, Blanco-Hinojo L, Capellades J, Querol X, Deus J, Sunyer J. Traffic pollution exposure is associated with altered brain connectivity in school children. Neuroimage 2016; 129:175-184. [DOI: 10.1016/j.neuroimage.2016.01.036] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022] Open
|
177
|
Cheng H, Davis DA, Hasheminassab S, Sioutas C, Morgan TE, Finch CE. Urban traffic-derived nanoparticulate matter reduces neurite outgrowth via TNFα in vitro. J Neuroinflammation 2016; 13:19. [PMID: 26810976 PMCID: PMC4727336 DOI: 10.1186/s12974-016-0480-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/11/2016] [Indexed: 12/05/2022] Open
Abstract
Background The basis for air pollution-associated neurodegenerative changes in humans is being studied in rodent models. We and others find that the ultrafine particulate matter (PM) derived from vehicular exhaust can induce synaptic dysfunction and inflammatory responses in vivo and in vitro. In particular, a nano-sized subfraction of particulate matter (nPM, PM0.2) from a local urban traffic corridor can induce glial TNFα production in mixed glia (astrocytes and microglia) derived from neonatal rat cerebral cortex. Methods Here, we examine the role of TNFα in neurite dysfunctions induced by nPM in aqueous suspensions at 12 μg/ml. First, we show that the proximal brain gateway to nPM, the olfactory neuroepithelium (OE), rapidly responds to nPM ex vivo, with induction of TNFα, activation of macrophages, and dendritic shrinkage. Cell interactions were further analyzed with mixed glia and neurons from neonatal rat cerebral cortex. Results Microglia contributed more than astrocytes to TNFα induction by nPM. We then showed that the threefold higher TNFα in conditioned media (nPM-CM) from mixed glia was responsible for the inhibition of neurite outgrowth by small interfering RNA (siRNA) TNFα knockdown and by TNFα immunoneutralization. Despite lack of TNFR1 induction by nPM in the OE, experimental blocking of TNFR1 by TNFα receptor blockers restored total neurite length. Conclusions These findings implicate microglia-derived TNFα as a mediator of nPM in air pollution-associated neurodegenerative changes which alter synaptic functions and neuronal growth.
Collapse
Affiliation(s)
- Hank Cheng
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA. .,USC Dornsife College, University of Southern California, Los Angeles, CA, 90089, USA.
| | - David A Davis
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Sina Hasheminassab
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Todd E Morgan
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Caleb E Finch
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA. .,USC Dornsife College, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|