151
|
IutB participates in the ferric-vulnibactin utilization system in Vibrio vulnificus M2799. Biometals 2017; 30:203-216. [PMID: 28150143 DOI: 10.1007/s10534-017-9994-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022]
Abstract
Vibrio vulnificus, an opportunistic pathogen that causes a serious, often fatal, infection in humans, requires iron for its growth. This bacterium utilizes iron from the environment via the vulnibactin-mediated iron uptake system. The mechanisms of vulnibactin biosynthesis, vulnibactin export, and ferric-vulnibactin uptake systems have been reported, whereas the ferric-vulnibactin reduction mechanism in the cell remains unclear. The results of our previous study showed that VuuB, a member of the flavin adenine dinucleotide-containing siderophore-interacting protein family, is a ferric-vulnibactin reductase, but there are other reductases that can complement for the defective vuuB. The aim of this study was to identify these proteins that can complement the loss of function of VuuB. We constructed mutants of genes encoding putative reductases in V. vulnificus M2799, and analyzed their growth under low-iron conditions. Complementation analyses confirmed that IutB, which functions as a ferric-aerobactin reductase, participates in ferric-vulnibactin reduction in the absence of VuuB. This is the first genetic evidence that ferric-vulnibactin is reduced by a member of the ferric-siderophore reductase protein family. In the aerobactin-utilization system, IutB plays a major role in ferric-aerobactin reduction in V. vulnificus M2799, and VuuB and DesB can compensate for the defect of IutB. Furthermore, the expression of iutB and desB was found to be regulated by iron and a ferric uptake regulator.
Collapse
|
152
|
Diverse structural approaches to haem appropriation by pathogenic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:422-433. [PMID: 28130069 DOI: 10.1016/j.bbapap.2017.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 11/24/2022]
Abstract
The critical need for iron presents a challenge for pathogenic bacteria that must survive in an environment bereft of accessible iron due to a natural low bioavailability and their host's nutritional immunity. Appropriating haem, either direct from host haemoproteins or by secreting haem-scavenging haemophores, is one way pathogenic bacteria can overcome this challenge. After capturing their target, haem appropriation systems must remove haem from a high-affinity binding site (on the host haemoprotein or bacterial haemophore) and transfer it to a binding site of lower affinity on a bacterial receptor. Structural information is now available to show how, using a combination of induced structural changes and steric clashes, bacteria are able to extract haem from haemophores, haemopexin and haemoglobin. This review focuses on structural descriptions of these bacterial haem acquisition systems, summarising how they bind haem and their target haemoproteins with particularly emphasis on the mechanism of haem extraction.
Collapse
|
153
|
Liu SH, Zeng GM, Niu QY, Liu Y, Zhou L, Jiang LH, Tan XF, Xu P, Zhang C, Cheng M. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. BIORESOURCE TECHNOLOGY 2017; 224:25-33. [PMID: 27916498 DOI: 10.1016/j.biortech.2016.11.095] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 05/22/2023]
Abstract
In recent years, knowledge in regard to bioremediation of combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by bacteria and fungi has been widely developed. This paper reviews the species of bacteria and fungi which can tackle with various types of PAHs and heavy metals entering into environment simultaneously or successively. Microbial activity, pollutants bioavailability and environmental factors (e.g. pH, temperature, low molecular weight organic acids and humic acids) can all affect the bioremediation of PAHs and heavy metals. Moreover, this paper summarizes the remediation mechanisms of PAHs and heavy metals by microbes via elucidating the interaction mechanisms of heavy metals with heavy metals, PAHs/PAHs metabolites with PAHs and PAHs with heavy metals. Based on the above reviews, this paper also discusses the potential research needs for this field.
Collapse
Affiliation(s)
- Shao-Heng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guang-Ming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qiu-Ya Niu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lu Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lu-Hua Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiao-Fei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
154
|
Chitambar CR. The therapeutic potential of iron-targeting gallium compounds in human disease: From basic research to clinical application. Pharmacol Res 2016; 115:56-64. [PMID: 27856328 DOI: 10.1016/j.phrs.2016.11.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/28/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
Gallium, group IIIa metal, shares certain chemical characteristics with iron which enable it to function as an iron mimetic that can disrupt iron-dependent tumor cell growth. Gallium may also display antimicrobial activity by disrupting iron homeostasis in certain bacteria and fungi. Gallium's action on iron homeostasis leads to inhibition of ribonucleotide reductase, mitochondrial function, and changes in proteins of iron transport and storage. In addition, gallium induces an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Early clinical trials evaluated the efficacy of the simple gallium salts, gallium nitrate and gallium chloride. However, newer gallium-ligands such as Tris(8-quinolinolato)gallium(III) (KP46) and gallium maltolate have been developed and are undergoing clinical evaluation. Additional gallium-ligands that demonstrate antitumor activity in preclinical studies have emerged. Their mechanisms of action and their spectrum of antitumor activity may extend beyond the earlier generations of gallium compounds and warrant further investigation. This review will focus on the evolution and potential of gallium-based therapeutics.
Collapse
Affiliation(s)
- Christopher R Chitambar
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226, USA.
| |
Collapse
|
155
|
Rolhion N, Chassaing B. When pathogenic bacteria meet the intestinal microbiota. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150504. [PMID: 27672153 PMCID: PMC5052746 DOI: 10.1098/rstb.2015.0504] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 12/25/2022] Open
Abstract
The intestinal microbiota is a large and diverse microbial community that inhabits the intestinal tract, containing about 100 trillion bacteria from 500-1000 distinct species that, collectively, provide multiple benefits to the host. The gut microbiota contributes to nutrient absorption and maturation of the immune system, and also plays a central role in protection of the host from enteric bacterial infection. On the other hand, many enteric pathogens have developed strategies in order to be able to outcompete the intestinal community, leading to infection and/or chronic diseases. This review will summarize findings describing the complex relationship occurring between the intestinal microbiota and enteric pathogens, as well as how future therapies can ultimately benefit from such discoveries.This article is part of the themed issue 'The new bacteriology'.
Collapse
Affiliation(s)
- Nathalie Rolhion
- Institut Pasteur, Unité des interactions Bactéries-Cellules, 75015 Paris, France Inserm, U604, 75015 Paris, France INRA, Unité sous contrat 2020, 75015 Paris, France
| | - Benoit Chassaing
- Institute for Biomedical Sciences, Center for Inflammation, Immunity, and Infection, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
156
|
Bethke J, Poblete-Morales M, Irgang R, Yáñez A, Avendaño-Herrera R. Iron acquisition and siderophore production in the fish pathogen Renibacterium salmoninarum. JOURNAL OF FISH DISEASES 2016; 39:1275-1283. [PMID: 27696458 DOI: 10.1111/jfd.12456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/04/2015] [Accepted: 12/06/2015] [Indexed: 06/06/2023]
Abstract
Renibacterium salmoninarum is the causative agent of bacterial kidney disease, which significantly affects salmonid farming worldwide. Despite this impact, there is scarce data on its iron uptake ability, a factor of pathogenesis. This study investigated the iron acquisition mechanisms of R. salmoninarum and its capacity to uptake iron from different sources. Thirty-two Chilean isolates and the DSM20767T type strain grew in the presence of 2,2'-Dipyridyl at varying concentrations (250-330 μm), and all isolates positively reacted on chrome azurol S agar. Subsequently, inocula of four Chilean isolates and the type strain were prepared with or without 200 μm of 2,2'-Dipyridyl for uptake assays. Assay results revealed differences between the isolates in terms of iron acquisition. While a prior iron-limited environment was, for most isolates, not required to activate the uptake of iron (II) sulphate, ammonium iron (III) citrate or iron (III) chloride at higher concentrations (100 μm), it did facilitate growth at lower iron concentrations (10 μm and 1 μm). An exception was the H-2 isolate, which only grew with 100 μm of iron sulphide. In turn, 100 μm of haemin was toxic when isolates were grown in normal KDM-2. In silico R. salmoninarumATCC 33209T genome analysis detected various genes coding iron uptake-related proteins. This is the first study indicating two iron acquisition systems in R. salmoninarum: one involving siderophores and another involving haem group utilization. These data represent a first step towards fully elucidating this virulence factor in the pathogenic R. salmoninarum.
Collapse
Affiliation(s)
- J Bethke
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - M Poblete-Morales
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - R Irgang
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - A Yáñez
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - R Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña del Mar, Chile.
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile.
| |
Collapse
|
157
|
Szebesczyk A, Olshvang E, Shanzer A, Carver PL, Gumienna-Kontecka E. Harnessing the power of fungal siderophores for the imaging and treatment of human diseases. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
158
|
Henry PM, Gebben SJ, Tech JJ, Yip JL, Leveau JHJ. Inhibition of Xanthomonas fragariae, Causative Agent of Angular Leaf Spot of Strawberry, through Iron Deprivation. Front Microbiol 2016; 7:1589. [PMID: 27790193 PMCID: PMC5062028 DOI: 10.3389/fmicb.2016.01589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022] Open
Abstract
In commercial production settings, few options exist to prevent or treat angular leaf spot (ALS) of strawberry, a disease of economic importance and caused by the bacterial pathogen Xanthomonas fragariae. In the process of isolating and identifying X. fragariae bacteria from symptomatic plants, we observed growth inhibition of X. fragariae by bacterial isolates from the same leaf macerates. Identified as species of Pseudomonas and Rhizobium, these isolates were confirmed to suppress growth of X. fragariae in agar overlay plates and in microtiter plate cultures, as did our reference strain Pseudomonas putida KT2440. Screening of a transposon mutant library of KT2440 revealed that disruption of the biosynthetic pathway for the siderophore pyoverdine resulted in complete loss of X. fragariae antagonism, suggesting iron competition as a mode of action. Antagonism could be replicated on plate and in culture by addition of purified pyoverdine or by addition of the chelating agents tannic acid and dipyridyl, while supplementing the medium with iron negated the inhibitory effects of pyoverdine, tannic acid and dipyridyl. When co-inoculated with tannic acid onto strawberry plants, X. fragariae's ability to cause foliar symptoms was greatly reduced, suggesting a possible opportunity for iron-based management of ALS. We discuss our findings in the context of 'nutritional immunity,' the idea that plant hosts restrict pathogen access to iron, either directly, or indirectly through their associated microbiota.
Collapse
Affiliation(s)
| | | | | | | | - Johan H. J. Leveau
- Department of Plant Pathology, University of California at Davis, DavisCA, USA
| |
Collapse
|
159
|
Scagliola M, Pii Y, Mimmo T, Cesco S, Ricciuti P, Crecchio C. Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:187-196. [PMID: 27295343 DOI: 10.1016/j.plaphy.2016.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 05/18/2023]
Abstract
Plant Growth Promoting Bacteria (PGPB) are considered a promising approach to replace the conventional agricultural practices, since they have been shown to affect plant nutrient-acquisition processes by influencing nutrient availability in the rhizosphere and/or those biochemical processes determining the uptake at root level of nitrogen (N), phosphorus (P), and iron (Fe), that represent the major constraints for crop productivity worldwide. We have isolated novel bacterial strains from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) plants, previously grown in hydroponic solution (either Fe deficient or Fe sufficient) and subsequently transferred onto an agricultural calcareous soil. PGPB have been identified by molecular tools and characterized for their capacity to produce siderophores and indole-3-acetic acid (IAA), and to solubilize phosphate. Selected bacterial isolates, showing contemporarily high levels of the three activities investigated, were finally tested for their capacity to induce Fe reduction in cucumber roots two isolates, from barley and tomato plants under Fe deficiency, significantly increased the root Fe-chelate reductase activity; interestingly, another isolate enhanced the reduction of Fe-chelate reductase activity in cucumber plant roots, although grown under Fe sufficiency.
Collapse
Affiliation(s)
- M Scagliola
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 164/a, 70125 Bari, Italy
| | - Y Pii
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - T Mimmo
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - S Cesco
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - P Ricciuti
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 164/a, 70125 Bari, Italy
| | - C Crecchio
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 164/a, 70125 Bari, Italy.
| |
Collapse
|
160
|
Tran TK, Han QQ, Shi Y, Guo L. A comparative proteomic analysis of Salmonella typhimurium under the regulation of the RstA/RstB and PhoP/PhoQ systems. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1686-1695. [PMID: 27618760 DOI: 10.1016/j.bbapap.2016.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/23/2016] [Accepted: 09/08/2016] [Indexed: 11/17/2022]
Abstract
In pathogenic bacteria, the two-component regulatory systems (TCSs) play important roles in signal transduction and regulation of their pathogenesis. Here, we used quantitative proteomic methods to comparatively analyze functional networks under the control of the RstA/RstB system versus the PhoP/PhoQ system in Salmonella typhimurium. By comparing the proteomic profile from a wild-type strain to that from a ΔrstB strain or a ΔphoPQ strain under a condition known to activate these TCSs, we found that the levels of 159 proteins representing 6.92% of the 2297 proteins identified from the ΔrstB strain and 341 proteins representing 14.9% of the 2288 proteins identified from the ΔphoPQ strain were significantly changed, respectively. Bioinformatics analysis revealed that the RstA/RstB system and the PhoP/PhoQ system coordinated with regard to the regulation of specific proteins as well as metabolic processes. Our observations suggested that the regulatory networks controlled by the PhoP/PhoQ system were much more extensive than those by the RstA/RstB system, whereas the RstA/RstB system specifically regulated expression of the constituents participating in pyrimidine metabolism and iron acquisition. Additional results also suggested that the RstA/RstB system was required for regulation of Salmonella motility and invasion.
Collapse
Affiliation(s)
- Trung-Kien Tran
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China; Hung Vuong University, Phu Tho, Vietnam
| | - Qiang-Qiang Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yixin Shi
- The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; The Center for Infectious Diseases and Vaccinology at the Biodesign Institute, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Lin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
161
|
Production of Siderophores by Serratia marcescens and the Role of MacAB Efflux Pump in Siderophores Secretion. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0264-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
162
|
Hagan AK, Carlson PE, Hanna PC. Flying under the radar: The non-canonical biochemistry and molecular biology of petrobactin from Bacillus anthracis. Mol Microbiol 2016; 102:196-206. [PMID: 27425635 DOI: 10.1111/mmi.13465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/01/2023]
Abstract
The dramatic, rapid growth of Bacillus anthracis that occurs during systemic anthrax implies a crucial requirement for the efficient acquisition of iron. While recent advances in our understanding of B. anthracis iron acquisition systems indicate the use of strategies similar to other pathogens, this review focuses on unique features of the major siderophore system, petrobactin. Ways that petrobactin differs from other siderophores include: A. unique ferric iron binding moieties that allow petrobactin to evade host immune proteins; B. a biosynthetic operon that encodes enzymes from both major siderophore biosynthesis classes; C. redundancy in membrane transport systems for acquisition of Fe-petrobactin holo-complexes; and, D. regulation that appears to be controlled predominately by sensing the host-like environmental signals of temperature, CO2 levels and oxidative stress, as opposed to canonical sensing of intracellular iron levels. We argue that these differences contribute in meaningful ways to B. anthracis pathogenesis. This review will also outline current major gaps in our understanding of the petrobactin iron acquisition system, some projected means for exploiting current knowledge, and potential future research directions.
Collapse
Affiliation(s)
- A K Hagan
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W. Medical Center Drive, 6703 Medical Science Building II, Ann Arbor, MI, 48109
| | - P E Carlson
- Laboratory of Mucosal Pathogens and Cellular Immunity, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72; Rm 3306, Silver Spring, MD, 20993
| | - P C Hanna
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W. Medical Center Drive, 6703 Medical Science Building II, Ann Arbor, MI, 48109.
| |
Collapse
|
163
|
Tobias NJ, Mishra B, Gupta DK, Sharma R, Thines M, Stinear TP, Bode HB. Genome comparisons provide insights into the role of secondary metabolites in the pathogenic phase of the Photorhabdus life cycle. BMC Genomics 2016; 17:537. [PMID: 27488257 PMCID: PMC4971723 DOI: 10.1186/s12864-016-2862-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/29/2016] [Indexed: 01/28/2023] Open
Abstract
Background Bacteria within the genus Photorhabdus maintain mutualistic symbioses with nematodes in complicated lifecycles that also involves insect pathogenic phases. Intriguingly, these bacteria are rich in biosynthetic gene clusters that produce compounds with diverse biological activities. As a basis to better understand the life cycles of Photorhabdus we sequenced the genomes of two recently discovered representative species and performed detailed genomic comparisons with five publically available genomes. Results Here we report the genomic details of two new reference Photorhabdus species. By then conducting genomic comparisons across the genus, we show that there are several highly conserved biosynthetic gene clusters. These clusters produce a range of bioactive small molecules that support the pathogenic phase of the integral relationship that Photorhabdus maintain with nematodes. Conclusions Photorhabdus contain several genetic loci that allow them to become specialist insect pathogens by efficiently evading insect immune responses and killing the insect host. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2862-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas J Tobias
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Bagdevi Mishra
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Fachbereich Biowissenschaften, Institut für Ökologie, Evolution und Diversität, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Deepak K Gupta
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Fachbereich Biowissenschaften, Institut für Ökologie, Evolution und Diversität, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Rahul Sharma
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Marco Thines
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Fachbereich Biowissenschaften, Institut für Ökologie, Evolution und Diversität, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne, at the Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Helge B Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe Universität Frankfurt, Frankfurt am Main, Germany. .,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
164
|
Złoch M, Thiem D, Gadzała-Kopciuch R, Hrynkiewicz K. Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd(2.). CHEMOSPHERE 2016; 156:312-325. [PMID: 27183333 DOI: 10.1016/j.chemosphere.2016.04.130] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/23/2016] [Accepted: 04/30/2016] [Indexed: 05/21/2023]
Abstract
Rhizosphere and endophytic bacteria are well known producers of siderophores, organic compounds that chelate ferric iron (Fe(3+)), and therefore play an important role in plant growth promotion in metalliferous areas, thereby improving bioremediation processes. However, in addition to their primary function in iron mobilization, siderophores also have the capacity to chelate other heavy metals, such as Al(3+), Zn(2+), Cu(2+), Pb(2+) and Cd(2+), that can affect homeostasis and the heavy metal tolerance of microorganisms. The main goal of our study was to select the most efficient siderophore-producing bacterial strains isolated from the roots (endophytes) and rhizosphere of Betula pendula L. and Alnus glutinosa L. growing at two heavy metal contaminated sites in southern Poland. Siderophore biosynthesis of these strains in the presence of increasing concentrations of Cd(2+) (0, 0.5, 1, 2 and 3 mM) under iron-deficiency conditions was analysed using spectrophotometric chemical tests for hydroxamates, catecholates and phenolates, as well as the separation of bacterial siderophores by HPLC and characterization of their structure by UHPLC-QTOF/MS. We proved that (i) siderophore-producing bacterial strains seems to be more abundant in the rhizosphere (47%) than in root endophytes (18%); (ii) the strains most effective at siderophore synthesis belonged to the genus Streptomyces and were able to secrete three types of siderophores under Cd(2+) stress: hydroxamates, catecholates and phenolates; (iii) in general, the addition of Cd(2+) enhanced siderophore synthesis, particularly ferrioxamine B synthesis, which may indicate that siderophores play a significant role in tolerance to Cd(2+) in Streptomyces sp.
Collapse
Affiliation(s)
- Michał Złoch
- Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Dominika Thiem
- Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
| | - Renata Gadzała-Kopciuch
- Department of Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, PL-87-100 Torun, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland.
| |
Collapse
|
165
|
Gallium and its competing roles with iron in biological systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2044-53. [DOI: 10.1016/j.bbamcr.2016.04.027] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/27/2016] [Accepted: 04/30/2016] [Indexed: 12/12/2022]
|
166
|
Ito F, Nishiyama T, Shi L, Mori M, Hirayama T, Nagasawa H, Yasui H, Toyokuni S. Contrasting intra- and extracellular distribution of catalytic ferrous iron in ovalbumin-induced peritonitis. Biochem Biophys Res Commun 2016; 476:600-606. [DOI: 10.1016/j.bbrc.2016.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
|
167
|
Lindahl PA, Moore MJ. Labile Low-Molecular-Mass Metal Complexes in Mitochondria: Trials and Tribulations of a Burgeoning Field. Biochemistry 2016; 55:4140-53. [PMID: 27433847 DOI: 10.1021/acs.biochem.6b00216] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron, copper, zinc, manganese, cobalt, and molybdenum play important roles in mitochondrial biochemistry, serving to help catalyze reactions in numerous metalloenzymes. These metals are also found in labile "pools" within mitochondria. Although the composition and cellular function of these pools are largely unknown, they are thought to be comprised of nonproteinaceous low-molecular-mass (LMM) metal complexes. Many problems must be solved before these pools can be fully defined, especially problems stemming from the lability of such complexes. This lability arises from inherently weak coordinate bonds between ligands and metals. This is an advantage for catalysis and trafficking, but it makes characterization difficult. The most popular strategy for investigating such pools is to detect them using chelator probes with fluorescent properties that change upon metal coordination. Characterization is limited because of the inevitable destruction of the complexes during their detection. Moreover, probes likely react with more than one type of metal complex, confusing analyses. An alternative approach is to use liquid chromatography (LC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). With help from a previous lab member, the authors recently developed an LC-ICP-MS approach to analyze LMM extracts from yeast and mammalian mitochondria. They detected several metal complexes, including Fe580, Fe1100, Fe1500, Cu5000, Zn1200, Zn1500, Mn1100, Mn2000, Co1200, Co1500, and Mo780 (numbers refer to approximate masses in daltons). Many of these may be used to metalate apo-metalloproteins as they fold inside the organelle. The LC-based approach also has challenges, e.g., in distinguishing artifactual metal complexes from endogenous ones, due to the fact that cells must be disrupted to form extracts before they are passed through chromatography columns prior to analysis. Ultimately, both approaches will be needed to characterize these intriguing complexes and to elucidate their roles in mitochondrial biochemistry.
Collapse
Affiliation(s)
- Paul A Lindahl
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States.,Department of Biochemistry and Biophysics, Texas A&M University , College Station, Texas 77843-2128, United States
| | - Michael J Moore
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States
| |
Collapse
|
168
|
Kielak AM, Cipriano MAP, Kuramae EE. Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch Microbiol 2016; 198:987-993. [PMID: 27339258 PMCID: PMC5080364 DOI: 10.1007/s00203-016-1260-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 11/26/2022]
Abstract
Acidobacteria is one of the most abundant phyla in soils and has been detected in rhizosphere mainly based on cultivation-independent approaches such as 16S rRNA gene survey. Although putative interaction of Acidobacteria with plants was suggested, so far no plant–bacterial interactions were shown. Therefore, we performed several in vitro tests to evaluate Acidobacteria–plant interactions and the possible mechanisms involved in such interaction. We observed that Arabidopsis thaliana inoculated with three strains belonging to Acidobacteria subdivision 1 showed increase in biomass of roots and shoots as well as morphological changes in root system. Our results indicate that the plant hormone indole-3-acetic acid production and iron acquisition are plausibly involved in the plant and Acidobacteria interactions. Here, we confirm for the first time that Acidobacteria can actively interact with plants and act as plant growth-promoting bacteria. In addition, we show that Acidobacteria strains produce exopolysaccharide which supports the adhesion of bacteria to the root surfaces.
Collapse
Affiliation(s)
- Anna M Kielak
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Matheus A P Cipriano
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
169
|
A survey of biofilms on wastewater aeration diffusers suggests bacterial community composition and function vary by substrate type and time. Appl Microbiol Biotechnol 2016; 100:6361-6373. [DOI: 10.1007/s00253-016-7604-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023]
|
170
|
Ziemert N, Alanjary M, Weber T. The evolution of genome mining in microbes - a review. Nat Prod Rep 2016; 33:988-1005. [PMID: 27272205 DOI: 10.1039/c6np00025h] [Citation(s) in RCA: 415] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: 2006 to 2016The computational mining of genomes has become an important part in the discovery of novel natural products as drug leads. Thousands of bacterial genome sequences are publically available these days containing an even larger number and diversity of secondary metabolite gene clusters that await linkage to their encoded natural products. With the development of high-throughput sequencing methods and the wealth of DNA data available, a variety of genome mining methods and tools have been developed to guide discovery and characterisation of these compounds. This article reviews the development of these computational approaches during the last decade and shows how the revolution of next generation sequencing methods has led to an evolution of various genome mining approaches, techniques and tools. After a short introduction and brief overview of important milestones, this article will focus on the different approaches of mining genomes for secondary metabolites, from detecting biosynthetic genes to resistance based methods and "evo-mining" strategies including a short evaluation of the impact of the development of genome mining methods and tools on the field of natural products and microbial ecology.
Collapse
Affiliation(s)
- Nadine Ziemert
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology and Biotechnology, University of Tuebingen, Germany.
| | | | | |
Collapse
|
171
|
Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre. mSystems 2016; 1:mSystems00024-16. [PMID: 27822538 PMCID: PMC5069773 DOI: 10.1128/msystems.00024-16] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/12/2016] [Indexed: 01/08/2023] Open
Abstract
Marine plastic debris has become a significant concern in ocean ecosystems worldwide. Little is known, however, about its influence on microbial community structure and function. In 2008, we surveyed microbial communities and metabolic activities in seawater and on plastic on an oceanographic expedition through the "great Pacific garbage patch." The concentration of plastic particles in surface seawater within different size classes (2 to 5 mm and >5 mm) ranged from 0.35 to 3.7 particles m-3 across sampling stations. These densities and the particle size distribution were consistent with previous values reported in the North Pacific Ocean. Net community oxygen production (NCP = gross primary production - community respiration) on plastic debris was positive and so net autotrophic, whereas NCP in bulk seawater was close to zero. Scanning electron microscopy and metagenomic sequencing of plastic-attached communities revealed the dominance of a few metazoan taxa and a diverse assemblage of photoautotrophic and heterotrophic protists and bacteria. Bryozoa, Cyanobacteria, Alphaproteobacteria, and Bacteroidetes dominated all plastic particles, regardless of particle size. Bacteria inhabiting plastic were taxonomically distinct from the surrounding picoplankton and appeared well adapted to a surface-associated lifestyle. Genes with significantly higher abundances among plastic-attached bacteria included che genes, secretion system genes, and nifH genes, suggesting enrichment for chemotaxis, frequent cell-to-cell interactions, and nitrogen fixation. In aggregate, our findings suggest that plastic debris forms a habitat for complex microbial assemblages that have lifestyles, metabolic pathways, and biogeochemical activities that are distinct from those of free-living planktonic microbial communities. IMPORTANCE Marine plastic debris is a growing concern that has captured the general public's attention. While the negative impacts of plastic debris on oceanic macrobiota, including mammals and birds, are well documented, little is known about its influence on smaller marine residents, including microbes that have key roles in ocean biogeochemistry. Our work provides a new perspective on microbial communities inhabiting microplastics that includes its effect on microbial biogeochemical activities and a description of the cross-domain communities inhabiting plastic particles. This study is among the first molecular ecology, plastic debris biota surveys in the North Pacific Subtropical Gyre. It has identified fundamental differences in the functional potential and taxonomic composition of plastic-associated microbes versus planktonic microbes found in the surrounding open-ocean habitat. Author Video: An author video summary of this article is available.
Collapse
|
172
|
Microbial siderophore-based iron assimilation and therapeutic applications. Biometals 2016; 29:377-88. [PMID: 27146331 DOI: 10.1007/s10534-016-9935-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
Abstract
Siderophores are structurally diverse, complex natural products that bind metals with extraordinary specificity and affinity. The acquisition of iron is critical for the survival and virulence of many pathogenic microbes and diverse strategies have evolved to synthesize, import and utilize iron. There has been a substantial increase of known siderophore scaffolds isolated and characterized in the past decade and the corresponding biosynthetic gene clusters have provided insight into the varied pathways involved in siderophore biosynthesis, delivery and utilization. Additionally, therapeutic applications of siderophores and related compounds are actively being developed. The study of biosynthetic pathways to natural siderophores augments the understanding of the complex mechanisms of bacterial iron acquisition, and enables a complimentary approach to address virulence through the interruption of siderophore biosynthesis or utilization by targeting the key enzymes to the siderophore pathways.
Collapse
|
173
|
Carvalho TLG, Ballesteros HGF, Thiebaut F, Ferreira PCG, Hemerly AS. Nice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants. PLANT MOLECULAR BIOLOGY 2016; 90:561-74. [PMID: 26821805 DOI: 10.1007/s11103-016-0435-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/07/2016] [Indexed: 05/02/2023]
Abstract
A wide range of rhizosphere diazotrophic bacteria are able to establish beneficial associations with plants, being able to associate to root surfaces or even endophytically colonize plant tissues. In common, both associative and endophytic types of colonization can result in beneficial outcomes to the plant leading to plant growth promotion, as well as increase in tolerance against biotic and abiotic stresses. An intriguing question in such associations is how plant cell surface perceives signals from other living organisms, thus sorting pathogens from beneficial ones, to transduce this information and activate proper responses that will finally culminate in plant adaptations to optimize their growth rates. This review focuses on the recent advances in the understanding of genetic and epigenetic controls of plant-bacteria signaling and recognition during beneficial associations with associative and endophytic diazotrophic bacteria. Finally, we propose that "soil-rhizosphere-rhizoplane-endophytes-plant" could be considered as a single coordinated unit with dynamic components that integrate the plant with the environment to generate adaptive responses in plants to improve growth. The homeostasis of the whole system should recruit different levels of regulation, and recognition between the parties in a given environment might be one of the crucial factors coordinating these adaptive plant responses.
Collapse
Affiliation(s)
- T L G Carvalho
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil
| | - H G F Ballesteros
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil
| | - F Thiebaut
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil
| | - P C G Ferreira
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil
| | - A S Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil.
| |
Collapse
|
174
|
Parrello D, Zegeye A, Mustin C, Billard P. Siderophore-Mediated Iron Dissolution from Nontronites Is Controlled by Mineral Cristallochemistry. Front Microbiol 2016; 7:423. [PMID: 27064911 PMCID: PMC4814481 DOI: 10.3389/fmicb.2016.00423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/16/2016] [Indexed: 11/22/2022] Open
Abstract
Bacteria living in oxic environments experience iron deficiency due to limited solubility and slow dissolution kinetics of iron-bearing minerals. To cope with iron deprivation, aerobic bacteria have evolved various strategies, including release of siderophores or other organic acids that scavenge external Fe(III) and deliver it to the cells. This research investigated the role of siderophores produced by Pseudomonas aeruginosa in the acquisition of Fe(III) from two iron-bearing colloidal nontronites (NAu-1 and NAu-2), comparing differences in bioavailability related with site occupancy and distribution of Fe(III) in the two lattices. To avoid both the direct contact of the mineral colloids with the bacterial cells and the uncontrolled particle aggregation, nontronite suspensions were homogenously dispersed in a porous silica gel before the dissolution experiments. A multiparametric approach coupling UV-vis spectroscopy and spectral decomposition algorithm was implemented to monitor simultaneously the solubilisation of Fe and the production of pyoverdine in microplate-based batch experiments. Both nontronites released Fe in a particle concentration-dependent manner when incubated with the wild-type P. aeruginosa strain, however iron released from NAu-2 was substantially greater than from NAu-1. The profile of organic acids produced in both cases was similar and may not account for the difference in the iron dissolution efficiency. In contrast, a pyoverdine-deficient mutant was unable to mobilize Fe(III) from either nontronite, whereas iron dissolution occurred in abiotic experiments conducted with purified pyoverdine. Overall, our data provide evidence that P. aeruginosa indirectly mobilize Fe from nontronites primarily through the production of pyoverdine. The structural Fe present on the edges of NAu-2 rather than NAu-1 particles appears to be more bio-accessible, indicating that the distribution of Fe, in the tetrahedron and/or in the octahedron sites, governs the solubilisation process. Furthermore, we also revealed that P. aeruginosa could acquire iron when in direct contact with mineral particles in a siderophore-independent manner.
Collapse
Affiliation(s)
- Damien Parrello
- Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360 Centre National de la Recherche Scientifique - Université de LorraineVandœuvre-lès-Nancy, France; Civil and Environmental Engineering, University of MissouriColumbia, MO, USA
| | - Asfaw Zegeye
- Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360 Centre National de la Recherche Scientifique - Université de Lorraine Vandœuvre-lès-Nancy, France
| | - Christian Mustin
- Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360 Centre National de la Recherche Scientifique - Université de Lorraine Vandœuvre-lès-Nancy, France
| | - Patrick Billard
- Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360 Centre National de la Recherche Scientifique - Université de Lorraine Vandœuvre-lès-Nancy, France
| |
Collapse
|
175
|
Dilks RT, Monette F, Glaus M. The major parameters on biomass pyrolysis for hyperaccumulative plants--A review. CHEMOSPHERE 2016; 146:385-95. [PMID: 26741543 DOI: 10.1016/j.chemosphere.2015.12.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/11/2015] [Accepted: 12/17/2015] [Indexed: 05/24/2023]
Abstract
Phytoextraction is one of the main phytoremediation techniques and it has often been described as a potentially feasible in situ soil decontamination method of large amounts of heavy metals, organic pollutants and explosive compounds. As this remediation technique is approaching extensive on-field experimentation and commercialization, research focus is on investigating new ways to achieve the valorisation of its by-products. Biomass pyrolysis represents a key step to numerous valorisation options and it is characterized by differential output products that are determined by the operating conditions of the process and the characteristics of the input. However, when used to valorise plants that have undergone significant metal uptake, this strategy involves some new aspects related to harvest, procedure and final product reutilization. This paper reviews the studies made on biomass pyrolysis of plants with emphasis on the differential quality and distribution of pyrolysis products in relation with the variables of the process and the metal-rich phytoextraction feedstock properties. By investigating these parameters, this survey provides indications on ways to optimize the valorisation of phytoremediation by-products through biomass pyrolysis.
Collapse
Affiliation(s)
- R T Dilks
- École de technologie supérieure - Université du Québec, Construction Engineering Department, 1100 Notre-Dame Street West, Montreal, Quebec, H3C 1K3, Canada.
| | - F Monette
- École de technologie supérieure - Université du Québec, Construction Engineering Department, 1100 Notre-Dame Street West, Montreal, Quebec, H3C 1K3, Canada.
| | - M Glaus
- École de technologie supérieure - Université du Québec, Construction Engineering Department, 1100 Notre-Dame Street West, Montreal, Quebec, H3C 1K3, Canada.
| |
Collapse
|
176
|
Hai J, Serradji N, Mouton L, Redeker V, Cornu D, El Hage Chahine JM, Verbeke P, Hémadi M. Targeted Delivery of Amoxicillin to C. trachomatis by the Transferrin Iron Acquisition Pathway. PLoS One 2016; 11:e0150031. [PMID: 26919720 PMCID: PMC4768884 DOI: 10.1371/journal.pone.0150031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/08/2016] [Indexed: 01/13/2023] Open
Abstract
Weak intracellular penetration of antibiotics makes some infections difficult to treat. The Trojan horse strategy for targeted drug delivery is among the interesting routes being explored to overcome this therapeutic difficulty. Chlamydia trachomatis, as an obligate intracellular human pathogen, is responsible for both trachoma and sexually transmitted diseases. Chlamydia develops in a vacuole and is therefore protected by four membranes (plasma membrane, bacterial inclusion membrane, and bacterial membranes). In this work, the iron-transport protein, human serum-transferrin, was used as a Trojan horse for antibiotic delivery into the bacterial vacuole. Amoxicillin was grafted onto transferrin. The transferrin-amoxicillin construct was characterized by mass spectrometry and absorption spectroscopy. Its affinity for transferrin receptor 1, determined by fluorescence emission titration [KaffTf-amox = (1.3 ± 1.0) x 108], is very close to that of transferrin [4.3 x 108]. Transmission electron and confocal microscopies showed a co-localization of transferrin with the bacteria in the vacuole and were also used to evaluate the antibiotic capability of the construct. It is significantly more effective than amoxicillin alone. These promising results demonstrate targeted delivery of amoxicillin to suppress Chlamydia and are of interest for Chlamydiaceae and maybe other intracellular bacteria therapies.
Collapse
Affiliation(s)
- Jun Hai
- ITODYS, Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Nawal Serradji
- ITODYS, Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Ludovic Mouton
- ITODYS, Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Virginie Redeker
- Paris-Saclay Institute of Neuroscience, CNRS-UMR 9197, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - David Cornu
- Service d’Identification et de Caractérisation des Protéines, CNRS-UMR 9198, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Jean-Michel El Hage Chahine
- ITODYS, Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
- * E-mail: (MH); (JEHC); (PV)
| | - Philippe Verbeke
- UMR 1149 Inserm, Université Paris Diderot, Sorbonne Paris Cité, ERL-CNRS 8252, Faculté de Médecine, site Bichat, 16 rue Henri Huchard, 75018 Paris, France
- * E-mail: (MH); (JEHC); (PV)
| | - Miryana Hémadi
- ITODYS, Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
- * E-mail: (MH); (JEHC); (PV)
| |
Collapse
|
177
|
Zhang W, Liang W, Li C. Inhibition of marine Vibrio sp. by pyoverdine from Pseudomonas aeruginosa PA1. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:217-224. [PMID: 26476308 DOI: 10.1016/j.jhazmat.2015.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/20/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Siderophores are low-molecular-weight chemicals that are secreted by many microorganisms to chelate iron from the external environment in order to facilitate their growth and diverse metabolisms. In this study, a fluorescent siderophore, pyoverdine, secreted by Pseudomonas aeruginosa PA1 was purified by affinity chromatography using Cu-sepharose. Pyoverdine was determined to have a molecular mass of 1333.54 Da, as determined by MALDI-TOF/TOF, and belong to type I pyoverdine, as determined by PCR analysis of its corresponding outer membrane ferri-pyoverdine receptor. Pyoverdine showed different degrees of inhibitory effects on the growth of marine Vibrio sp. strains. It was also shown that the biofilm developed by Vibrio parahaemolyticus WzW1 and Wz2121 and Vibrio cyclitrophicus HS12 was significantly reduced, alone with the repressed growth in the presence of pyoverdine. Siderophore production was determined in the strains of Vibrio sp. in response to the pyoverdine-induced iron-limited conditions. The siderophore production of most Vibrio sp. was up-regulated, with the exception of the bacteria that produced little siderophore. Furthermore, Apostichopus japonicus cultured in pyoverdine pretreated seawater showed a relative percent of survival of 89% when they were challenged by Vibrio splendidus. Our results demonstrated that pyoverdine may be a promising agent that could be potentially applied to treat vibriosis.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China.
| | - Weikang Liang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China.
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China.
| |
Collapse
|
178
|
Pahlow S, Stöckel S, Pollok S, Cialla-May D, Rösch P, Weber K, Popp J. Rapid Identification of Pseudomonas spp. via Raman Spectroscopy Using Pyoverdine as Capture Probe. Anal Chem 2016; 88:1570-7. [PMID: 26705822 DOI: 10.1021/acs.analchem.5b02829] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pyoverdine is a substance which is excreted by fluorescent pseudomonads in order to scavenge iron from their environment. Due to specific receptors of the bacterial cell wall, the iron loaded pyoverdine molecules are recognized and transported into the cell. This process can be exploited for developing efficient isolation and enrichment strategies for members of the Pseudomonas genus, which are capable of colonizing various environments and also include human pathogens like P. aeruginosa and the less virulent P. fluorescens. A significant advantage over antibody based systems is the fact that siderophores like pyoverdine can be considered as "immutable ligands," since the probability for mutations within the siderophore uptake systems of bacteria is very low. While each species of Pseudomonas usually produces structurally unique pyoverdines, which can be utilized only by the producer strain, cross reactivity does occur. In order to achieve a reliable identification of the captured pathogens, further investigations of the isolated cells are necessary. In this proof of concept study, we combine the advantages of an isolation strategy relying on "immutable ligands" with the high specificity and speed of Raman microspectroscopy. In order to isolate the bacterial cells, pyoverdine was immobilized covalently on planar aluminum chip substrates. After capturing, single cell Raman spectra of the isolated species were acquired. Due to the specific spectroscopic fingerprint of each species, the bacteria can be identified. This approach allows a very rapid detection of potential pathogens, since time-consuming culturing steps are unnecessary. We could prove that pyoverdine based isolation of bacteria is fully Raman compatible and further investigated the capability of this approach by isolating and identifying P. aeruginosa and P. fluorescens from tap water samples, which are both opportunistic pathogens and can pose a threat for immunocompromised patients.
Collapse
Affiliation(s)
- Susanne Pahlow
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany.,InfectoGnostics Research Campus Jena , Center for Applied Research, Philosophenweg 7, Jena, 07743, Germany
| | - Stephan Stöckel
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany.,InfectoGnostics Research Campus Jena , Center for Applied Research, Philosophenweg 7, Jena, 07743, Germany
| | - Sibyll Pollok
- Ernst-Abbe-Hochschule , Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Dana Cialla-May
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany.,InfectoGnostics Research Campus Jena , Center for Applied Research, Philosophenweg 7, Jena, 07743, Germany.,Leibniz Institute of Photonic Technology , Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany.,InfectoGnostics Research Campus Jena , Center for Applied Research, Philosophenweg 7, Jena, 07743, Germany
| | - Karina Weber
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany.,InfectoGnostics Research Campus Jena , Center for Applied Research, Philosophenweg 7, Jena, 07743, Germany.,Leibniz Institute of Photonic Technology , Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany.,InfectoGnostics Research Campus Jena , Center for Applied Research, Philosophenweg 7, Jena, 07743, Germany.,Leibniz Institute of Photonic Technology , Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
179
|
Klahn P, Brönstrup M. New Structural Templates for Clinically Validated and Novel Targets in Antimicrobial Drug Research and Development. Curr Top Microbiol Immunol 2016; 398:365-417. [PMID: 27704270 DOI: 10.1007/82_2016_501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of bacterial resistance against current antibiotic drugs necessitates a continuous renewal of the arsenal of efficacious drugs. This imperative has not been met by the output of antibiotic research and development of the past decades for various reasons, including the declining efforts of large pharma companies in this area. Moreover, the majority of novel antibiotics are chemical derivatives of existing structures that represent mostly step innovations, implying that the available chemical space may be exhausted. This review negates this impression by showcasing recent achievements in lead finding and optimization of antibiotics that have novel or unexplored chemical structures. Not surprisingly, many of the novel structural templates like teixobactins, lysocin, griselimycin, or the albicidin/cystobactamid pair were discovered from natural sources. Additional compounds were obtained from the screening of synthetic libraries and chemical synthesis, including the gyrase-inhibiting NTBI's and spiropyrimidinetrione, the tarocin and targocil inhibitors of wall teichoic acid synthesis, or the boronates and diazabicyclo[3.2.1]octane as novel β-lactamase inhibitors. A motif that is common to most clinically validated antibiotics is that they address hotspots in complex biosynthetic machineries, whose functioning is essential for the bacterial cell. Therefore, an introduction to the biological targets-cell wall synthesis, topoisomerases, the DNA sliding clamp, and membrane-bound electron transport-is given for each of the leads presented here.
Collapse
Affiliation(s)
- Philipp Klahn
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| |
Collapse
|
180
|
Pérez AJ, Wesche F, Adihou H, Bode HB. Solid-Phase Enrichment and Analysis of Azide-Labeled Natural Products: Fishing Downstream of Biochemical Pathways. Chemistry 2015; 22:639-45. [DOI: 10.1002/chem.201503781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 12/14/2022]
|
181
|
Schütze E, Ahmed E, Voit A, Klose M, Greyer M, Svatoš A, Merten D, Roth M, Holmström SJM, Kothe E. Siderophore production by streptomycetes-stability and alteration of ferrihydroxamates in heavy metal-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19376-19383. [PMID: 25414032 DOI: 10.1007/s11356-014-3842-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
Heavy metal-contaminated soil derived from a former uranium mining site in Ronneburg, Germany, was used for sterile mesocosms inoculated with the extremely metal-resistant Streptomyces mirabilis P16B-1 or the sensitive control strain Streptomyces lividans TK24. The production and fate of bacterial hydroxamate siderophores in soil was analyzed, and the presence of ferrioxamines E, B, D, and G was shown. While total ferrioxamine concentrations decreased in water-treated controls after 30 days of incubation, the sustained production by the bacteria was seen. For the individual molecules, alteration between neutral and cationic forms and linearization of hydroxamates was observed for the first time. Mesocosms inoculated with biomass of either strain showed changes of siderophore contents compared with the non-treated control indicating for auto-alteration and consumption, respectively, depending on the vital bacteria present. Heat stability and structural consistency of siderophores obtained from sterile culture filtrate were shown. In addition, low recovery (32 %) from soil was shown, indicating adsorption to soil particles or soil organic matter. Fate and behavior of hydroxamate siderophores in metal-contaminated soils may affect soil properties as well as conditions for its inhabiting (micro)organisms.
Collapse
Affiliation(s)
- Eileen Schütze
- Microbial Communication, Institute of Microbiology, Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Neugasse 25, 07745, Jena, Germany
| | - Engy Ahmed
- Department of Geological Sciences, Stockholm University, Svante Arrhenius väg 8, 10691, Stockholm, Sweden
| | - Annekatrin Voit
- Microbial Communication, Institute of Microbiology, Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Neugasse 25, 07745, Jena, Germany
| | - Michael Klose
- Microbial Communication, Institute of Microbiology, Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Neugasse 25, 07745, Jena, Germany
| | - Matthias Greyer
- Microbial Communication, Institute of Microbiology, Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Neugasse 25, 07745, Jena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Dirk Merten
- Hydrogeology, Institute for Geosciences, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Martin Roth
- Bio Pilot Plant, Leibniz-Institute for Natural Product Research and Infection Biology-Hans Knöll Institute HKI, Jena, Germany
| | - Sara J M Holmström
- Department of Geological Sciences, Stockholm University, Svante Arrhenius väg 8, 10691, Stockholm, Sweden
| | - Erika Kothe
- Microbial Communication, Institute of Microbiology, Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Neugasse 25, 07745, Jena, Germany.
| |
Collapse
|
182
|
Neyrolles O, Wolschendorf F, Mitra A, Niederweis M. Mycobacteria, metals, and the macrophage. Immunol Rev 2015; 264:249-63. [PMID: 25703564 DOI: 10.1111/imr.12265] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen that thrives inside host macrophages. A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking inside infected macrophages to ensure survival and replication inside the phagosome. Here, we describe the recent fascinating discoveries that the mammalian immune system responds to infections with M. tuberculosis by overloading the phagosome with copper and zinc, two metals which are essential nutrients in small quantities but are toxic in excess. M. tuberculosis has developed multi-faceted resistance mechanisms to protect itself from metal toxicity including control of uptake, sequestration inside the cell, oxidation, and efflux. The host response to infections combines this metal poisoning strategy with nutritional immunity mechanisms that deprive M. tuberculosis from metals such as iron and manganese to prevent bacterial replication. Both immune mechanisms rely on the translocation of metal transporter proteins to the phagosomal membrane during the maturation process of the phagosome. This review summarizes these recent findings and discusses how metal-targeted approaches might complement existing TB chemotherapeutic regimens with novel anti-infective therapies.
Collapse
Affiliation(s)
- Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, Univer-sité Paul Sabatier, Université de Toulouse, Toulouse, France
| | | | | | | |
Collapse
|
183
|
Piperazine derivatives as iron chelators: a potential application in neurobiology. Biometals 2015; 28:1043-61. [DOI: 10.1007/s10534-015-9889-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/16/2015] [Indexed: 11/26/2022]
|
184
|
Contact-Dependent Growth Inhibition (CDI) and CdiB/CdiA Two-Partner Secretion Proteins. J Mol Biol 2015; 427:3754-65. [PMID: 26388411 DOI: 10.1016/j.jmb.2015.09.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022]
Abstract
Bacteria have developed several strategies to communicate and compete with one another in complex environments. One important mechanism of inter-bacterial competition is contact-dependent growth inhibition (CDI), in which Gram-negative bacteria use CdiB/CdiA two-partner secretion proteins to suppress the growth of neighboring target cells. CdiB is an Omp85 outer-membrane protein that exports and assembles CdiA exoproteins onto the inhibitor cell surface. CdiA binds to receptors on susceptible bacteria and subsequently delivers its C-terminal toxin domain (CdiA-CT) into the target cell. CDI systems also encode CdiI immunity proteins, which specifically bind to the CdiA-CT and neutralize its toxin activity, thereby protecting CDI(+) cells from auto-inhibition. Remarkably, CdiA-CT sequences are highly variable between bacteria, as are the corresponding CdiI immunity proteins. Variations in CDI toxin/immunity proteins suggest that these systems function in bacterial self/non-self recognition and thereby play an important role in microbial communities. In this review, we discuss recent advances in the biochemistry, structural biology and physiology of CDI.
Collapse
|
185
|
Vaulont S, Schalk I. [Roles of bacterial and mammalian siderophores in host-pathogen interactions]. Med Sci (Paris) 2015; 31:756-63. [PMID: 26340835 DOI: 10.1051/medsci/20153108014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Iron is an essential nutriment for almost all forms of life, from bacteria to humans. Despite its key role in living organisms, iron becomes toxic at high concentrations. In the body, to circumvent this toxicity, almost all the intracellular iron is bound to proteins (especially to ferritin, a protein able to bind up to 4000 atoms of iron) and a small proportion (0.2% to 3%) to low molecular weight ligands (less than 2 kDa) constituting a free iron pool able to ensure the traffic of intracellular iron. A number of small molecules (citrate, phosphate, phospholipid, polypeptide) able to chelate iron, with variable affinities, have been known for a long time. In 2010, two teams have identified new mammal endogen chelators able to bind iron with similar chemical properties as bacterial siderophores. Recently, a few publications emphasized that most of the free iron present in the body cells is indeed linked to these siderophores, which play a key role in infected-host protection mechanisms during bacterial infections, through iron homeostasis and oxidative stress regulation.
Collapse
Affiliation(s)
- Sophie Vaulont
- Inserm U1016, institut Cochin, 24, rue du Faubourg Saint-Jacques, 75014 Paris, France - CNRS, UMR8104, Paris, France - Université Paris Descartes, Sorbonne Paris Cité, Paris, France - Laboratory of excellence GR-Ex
| | - Isabelle Schalk
- UMR 7242, université de Strasbourg-CNRS, ESBS, Strasbourg, France - CNRS, UMR 7242, ESBS, Illkirch, France
| |
Collapse
|
186
|
Zhang Y, McPhedran KN, Gamal El-Din M. Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 521-522:59-67. [PMID: 25828413 DOI: 10.1016/j.scitotenv.2015.03.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
Aromatic naphthenic acids (NAs) have been shown to be more toxic than the classical NAs found in oil sands process-affected water (OSPW). To reduce this toxicity, Pseudomonas fluorescens and Pseudomonas putida were used to determine their ability to biodegrade aromatic compounds including treatments considering the impacts of external carbon and iron addition. Results showed that with added carbon P. fluorescens and P. putida have the capability of biodegrading these aromatics. In the presence of external carbon, gene expression of a functional PAH-ring hydroxylating dioxygenase (PAH-RHDα) was determined through reverse transcription real-time PCR, suggesting active degradation of OSPW aromatic compounds. Although no significant classical NAs removal was observed during this process, toxicity was reduced by 49.3% under optimal conditions. OSPW toxicity was eliminated with the combination of ozonation at a dose of 80 mg/L followed by biodegradation, indicating that it is a promising combined OSPW treatment approach for the safe discharge to the aquatic environment.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Kerry N McPhedran
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada.
| |
Collapse
|
187
|
León-Sicairos N, Angulo-Zamudio UA, de la Garza M, Velázquez-Román J, Flores-Villaseñor HM, Canizalez-Román A. Strategies of Vibrio parahaemolyticus to acquire nutritional iron during host colonization. Front Microbiol 2015. [PMID: 26217331 PMCID: PMC4496571 DOI: 10.3389/fmicb.2015.00702] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential element for the growth and development of virtually all living organisms. As iron acquisition is critical for the pathogenesis, a host defense strategy during infection is to sequester iron to restrict the growth of invading pathogens. To counteract this strategy, bacteria such as Vibrio parahaemolyticus have adapted to such an environment by developing mechanisms to obtain iron from human hosts. This review focuses on the multiple strategies employed by V. parahaemolyticus to obtain nutritional iron from host sources. In these strategies are included the use of siderophores and xenosiderophores, proteases and iron-protein receptor. The host sources used by V. parahaemolyticus are the iron-containing proteins transferrin, hemoglobin, and hemin. The implications of iron acquisition systems in the virulence of V. parahaemolyticus are also discussed.
Collapse
Affiliation(s)
- Nidia León-Sicairos
- Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa Culiacán, Mexico ; Departamento de Investigación, Hospital Pediátrico de Sinaloa "Dr. Rigoberto Aguilar Pico" Culiacán, Mexico
| | - Uriel A Angulo-Zamudio
- Maestría en Ciencias de la Salud, Facultad de Medicina, Universidad Autónoma de Sinaloa Culiacán, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Mexico, Mexico
| | - Jorge Velázquez-Román
- Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa Culiacán, Mexico
| | | | - Adrian Canizalez-Román
- Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa Culiacán, Mexico
| |
Collapse
|
188
|
Bergeron RJ, Bharti N, McManis JS, Wiegand J. Metabolically programmed iron chelators. Bioorg Med Chem 2015; 23:5954-71. [PMID: 26231739 DOI: 10.1016/j.bmc.2015.06.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 01/19/2023]
Abstract
Extensive structure activity relationship (SAR) studies focused on the desferrithiocin [DFT, (S)-4,5-dihydro-2-(3-hydroxy-2-pyridinyl)-4-methyl-4-thiazolecarboxylic acid] pharmacophore have led to three different DFT analogs being evaluated clinically for the treatment of iron overload diseases, for example, thalassemia. The SAR work revealed that the lipophilicity of a ligand, as determined by its partition between octanol and water, logP(app), could have a profound effect on the drug's iron clearing efficiency (ICE), organ distribution, and toxicity profile. While within a given structural family the more lipophilic a chelator the better the ICE, unfortunately, the more lipophilic ligands are often more toxic. Thus, a balance between lipophilicity, ICE, and toxicity must be achieved. In the current study, we introduce the concept of 'metabolically programmed' iron chelators, that is, highly lipophilic, orally absorbable, effective deferration agents which, once absorbed, are quickly converted to their nontoxic, hydrophilic counterparts.
Collapse
Affiliation(s)
- Raymond J Bergeron
- JHMHC, Department of Medicinal Chemistry, University of Florida, Box 100485, Gainesville, FL 32610-0485, United States.
| | - Neelam Bharti
- JHMHC, Department of Medicinal Chemistry, University of Florida, Box 100485, Gainesville, FL 32610-0485, United States
| | - James S McManis
- JHMHC, Department of Medicinal Chemistry, University of Florida, Box 100485, Gainesville, FL 32610-0485, United States
| | - Jan Wiegand
- JHMHC, Department of Medicinal Chemistry, University of Florida, Box 100485, Gainesville, FL 32610-0485, United States
| |
Collapse
|
189
|
Bansal S, Harjai K, Chhibber S. Aeromonas punctata derived depolymerase improves susceptibility of Klebsiella pneumoniae biofilm to gentamicin. BMC Microbiol 2015; 15:119. [PMID: 26063052 PMCID: PMC4461996 DOI: 10.1186/s12866-015-0455-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 05/28/2015] [Indexed: 01/28/2023] Open
Abstract
Background To overcome antibiotic resistance in biofilms, enzymes aimed at biofilm dispersal are under investigation. In the present study, applicability of an Aeromonas punctata derived depolymerase capable of degrading the capsular polysaccharide (CPS) of Klebsiella pneumoniae, in disrupting its biofilm and increasing gentamicin efficacy against biofilm was investigated. Results Intact biofilm of K. pneumoniae was recalcitrant to gentamicin due to lack of antibiotic penetration. On the other hand, gentamicin could not act on disrupted biofilm cells due to their presence in clusters. However, when depolymerase (20 units/ml) was used in combination with gentamicin (10 μg/ml), dispersal of CPS matrix by enzyme facilitated gentamicin penetration across biofilm. This resulted in significant reduction (p < 0.05) in bacterial count in intact and disrupted biofilms. Reduction in CPS after treatment with depolymerase was confirmed by confocal microscopy and enzyme linked lectinosorbent assay. Furthermore, to substantiate our study, the efficacy of bacterial depolymerase was compared with a phage borne depolymerase possessing similar application against K. pneumoniae. Although both were used at same concentration i.e. 20 units/ml, but a higher efficacy of bacterial depolymerase particularly against older biofilms was visibly clear over its phage counterpart. This could be explained due to high substrate affinity (indicated by Km value) and high turnover number (indicated by Kcat value) of the bacterial depolymerase (Km = 89.88 μM, Kcat = 285 s−1) over the phage derived one (Km = 150 μM, Kcat = 107 s−1). Conclusion Overall the study indicated that, the A. punctata derived depolymerase possesses antibiofilm potential and improves gentamicin efficacy against K. pneumoniae. Moreover, it can serve as a potential substitute to phage borne depolymerases for treating biofilms formed by K. pneumoniae. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0455-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shruti Bansal
- Department of Microbiology, Panjab University, Sector-14, Chandigarh, 160014, India.
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Sector-14, Chandigarh, 160014, India.
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Sector-14, Chandigarh, 160014, India.
| |
Collapse
|
190
|
Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench). J Microbiol Methods 2015; 112:104-17. [DOI: 10.1016/j.mimet.2015.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 01/08/2023]
|
191
|
Grizard S, Versteegh MA, Ndithia HK, Salles JF, Tieleman BI. Shifts in bacterial communities of eggshells and antimicrobial activities in eggs during incubation in a ground-nesting passerine. PLoS One 2015; 10:e0121716. [PMID: 25880684 PMCID: PMC4400097 DOI: 10.1371/journal.pone.0121716] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/14/2015] [Indexed: 01/26/2023] Open
Abstract
Microbial invasion of egg contents is a cause of embryonic death. To counter infection risks, the embryo is protected physically by the eggshell and chemically by antimicrobial proteins. If microbial pressure drives embryo mortality, then females may have evolved, through natural selection, to adapt their immune investment into eggs. Although frequently hypothesized, this match between immune allocation and microorganisms has not been explored yet. To examine if correlations between microbes on eggs and immunity in eggs exist, we collected eggs from red-capped larks (Calandrella cinerea) and simultaneously examined their bacterial communities and antimicrobial components—pH, lysozyme and ovotransferrin—during natural incubation. Using molecular techniques, we find that bacterial communities are highly dynamic: bacterial abundance increases from the onset to late incubation, Shannon’s α-diversity index increases during early incubation stages, and β-diversity analysis shows that communities from 1 day-old clutches are phylogenetically more similar to each other than the older ones. Regarding the antimicrobials, we notice a decrease of pH and lysozyme concentration, while ovotransferrin concentration increases during incubation. Interestingly, we show that two eggs of the same clutch share equivalent immune protection, independent of clutch age. Lastly, our results provide limited evidence of significant correlation between antimicrobial compounds and bacterial communities. Our study examined simultaneously, for the first time in a wild bird, the dynamics of bacterial communities present on eggshells and of albumen-associated antimicrobial components during incubation and investigated their relationship. However, the link between microorganisms and immunity of eggs remains to be elucidated further. Identifying invading microbes and their roles in embryo mortality, as well as understanding the role of the eggshell microbiome, might be key to better understand avian strategies of immune maternal investment.
Collapse
Affiliation(s)
- Stéphanie Grizard
- Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Maaike A. Versteegh
- Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| | - Henry K. Ndithia
- Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
- Department of Zoology, Ornithology section, National Museums of Kenya, Nairobi, Kenya
| | - Joana F. Salles
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| | - B. Irene Tieleman
- Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
192
|
Hannauer M, Arifin AJ, Heinrichs DE. Involvement of reductases IruO and NtrA in iron acquisition byStaphylococcus aureus. Mol Microbiol 2015; 96:1192-210. [DOI: 10.1111/mmi.13000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Mélissa Hannauer
- Department of Microbiology and Immunology; University of Western Ontario; London ON Canada N6A 5C1
| | - Andrew J. Arifin
- Department of Microbiology and Immunology; University of Western Ontario; London ON Canada N6A 5C1
| | - David E. Heinrichs
- Department of Microbiology and Immunology; University of Western Ontario; London ON Canada N6A 5C1
- Centre for Human Immunology; University of Western Ontario; London ON Canada N6A 5C1
| |
Collapse
|
193
|
Early gene expression in Pseudomonas fluorescens exposed to a polymetallic solution. Cell Biol Toxicol 2015; 31:39-81. [DOI: 10.1007/s10565-015-9294-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/23/2015] [Indexed: 11/27/2022]
|
194
|
Pii Y, Penn A, Terzano R, Crecchio C, Mimmo T, Cesco S. Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 87:45-52. [PMID: 25544744 DOI: 10.1016/j.plaphy.2014.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/18/2014] [Indexed: 05/22/2023]
Abstract
Iron (Fe) is a very important element for plants, since it is involved in many biochemical processes and, often, for the low solubility of the natural Fe sources in soil, plants suffer from Fe - deficiency, especially when grown on calcareous soils. Among the numerous plant growth-promoting rhizobacteria (PGPR) that colonize the rhizosphere of agronomically important crops, Azospirillum brasilense has been shown to exert strong stimulating activities on plants, by inducing alterations of the root architecture and an improvement of mineral nutrition, which could result from an enhancement of ion uptake mechanisms as well as by increased bioavailability of nutrients. Some studies have also established that A. brasilense can act as biocontrol agent, by preventing the growth and/or virulence of phytopathogens, most likely through the production of microbial siderophores that sequester Fe from the soil. Despite microbial siderophores complexed with Fe could be an easily accessible Fe source for plants, the possible involvement of A. brasilense in improving Fe nutrition in plants suffering from the micronutrient deficiency has not been investigated yet. Within the present research, the characterization of the physiological and biochemical effects induced by Fe starvation and PGPR inoculation in cucumber plants (Cucumis sativus L. cv. Chinese Long) was carried out. The analyses of root exudates released by hydroponically grown plants highlighted that cucumber plants respond differently depending on the nutritional status. In addition, following the cultivation period on calcareous soil, also the root exudates found in the extracts suggested a peculiar behaviour of plants as a function of the treatment. Interestingly, the presence of the inoculum in soil allowed a faster recovery of cucumber plants from Fe-deficiency symptoms, i.e. increase in the chlorophyll content, in the biomass and in the Fe content of leaves. These observations might suggest a feasible application of A. brasilense in alleviating symptoms generated by Fe-limiting growth condition in cucumber plants.
Collapse
Affiliation(s)
- Youry Pii
- Faculty of Science and Technology, Free University of Bolzano, I-39100 Bolzano, Italy
| | - Alexander Penn
- Faculty of Science and Technology, Free University of Bolzano, I-39100 Bolzano, Italy
| | - Roberto Terzano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari "Aldo Moro", I-70126 Bari, Italy
| | - Carmine Crecchio
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari "Aldo Moro", I-70126 Bari, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, I-39100 Bolzano, Italy.
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, I-39100 Bolzano, Italy
| |
Collapse
|
195
|
Xie F, Dai S, Shen J, Ren B, Huang P, Wang Q, Liu X, Zhang B, Dai H, Zhang L. A new salicylate synthase AmS is identified for siderophores biosynthesis in Amycolatopsis methanolica 239(T). Appl Microbiol Biotechnol 2015; 99:5895-905. [PMID: 25586582 DOI: 10.1007/s00253-014-6370-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/17/2014] [Accepted: 12/26/2014] [Indexed: 12/14/2022]
Abstract
Siderophores are important for the growth of bacteria or the applications in treatment of iron overload-associated diseases due to the iron-chelating property. Salicylate synthase played a key role in the biosynthesis of some NRPS-derived siderophores by the providing of an iron coordination moiety as the initial building block. A new salicylate synthase, namely AmS, was identified in the biosynthesis pathway of siderophore amychelin in Amycolatopsis methanolica 239(T), since it shunt chorismate, an integrant precursor, from primary to secondary metabolite flow. The amino acid sequence alignment and phylogenetic analysis showed that AmS grouped into a new cluster. In vitro assays of AmS revealed its wide temperature tolerance ranged from 0 to 40 °C and narrow pH tolerant ranged from 7.0 to 9.0. AmS was resistant to organic solvents and non-ionic detergents. Moreover, AmS converted chorismate to salicylate with K m of 129.05 μM, k cat of 2.20 min(-1) at optimal conditions, indicating its low substrate specificity and comparable velocity to reported counterparts (Irp9 and MbtI). These properties of AmS may improve the iron-seizing ability of A. methanolica to compete with its neighbors growing in natural environments. Most importantly, serine and cysteine residues were found to be important for the catalytic activity of AmS. This study presented AmS as a new cluster of salicylate synthase and the reaction mechanism and potential applications of salicylate synthase were highlighted as well.
Collapse
Affiliation(s)
- Feng Xie
- School of Life Sciences, University of Science and Technology of China, No. 443 HuangShan Road, Hefei, 230061, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Sano S, Nakao M, Fukayama S, Kitaike S. Synthesis of Rhodotorulic Acid and Its 1,4-Dimethylated Derivative. HETEROCYCLES 2015. [DOI: 10.3987/com-14-s(k)67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
197
|
|
198
|
Vermassen A, de la Foye A, Loux V, Talon R, Leroy S. Transcriptomic analysis of Staphylococcus xylosus in the presence of nitrate and nitrite in meat reveals its response to nitrosative stress. Front Microbiol 2014; 5:691. [PMID: 25566208 PMCID: PMC4266091 DOI: 10.3389/fmicb.2014.00691] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/22/2014] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus xylosus is one of the major starter cultures used for meat fermentation because of its crucial role in the reduction of nitrate to nitrite which contributes to color and flavor development. Despite longstanding use of these additives, their impact on the physiology of S. xylosus has not yet been explored. We present the first in situ global gene expression profile of S. xylosus in meat supplemented with nitrate and nitrite at the levels used in the meat industry. More than 600 genes of S. xylosus were differentially expressed at 24 or 72 h of incubation. They represent more than 20% of the total genes and let us to suppose that addition of nitrate and nitrite to meat leads to a global change in gene expression. This profile revealed that S. xylosus is subject to nitrosative stress caused by reactive nitrogen species (RNS) generated from nitrate and nitrite. To overcome this stress, S. xylosus has developed several oxidative stress resistance mechanisms, such as modulation of the expression of several genes involved in iron homeostasis and in antioxidant defense. Most of which belong to the Fur and PerR regulons, respectively. S. xylosus has also counteracted this stress by developing DNA and protein repair. Furthermore, it has adapted its metabolic response—carbon and nitrogen metabolism, energy production and cell wall biogenesis—to the alterations produced by nitrosative stress.
Collapse
Affiliation(s)
- Aurore Vermassen
- Institut National de la Recherche Agronomique, UR454 Microbiologie Saint-Genès-Champanelle, France
| | - Anne de la Foye
- Institut National de la Recherche Agronomique, Plateforme d'Exploration du Métabolisme Saint-Genès-Champanelle, France
| | - Valentin Loux
- Institut National de la Recherche Agronomique, UR1077 Mathématique, Informatique et Génome Jouy-en-Josas, France
| | - Régine Talon
- Institut National de la Recherche Agronomique, UR454 Microbiologie Saint-Genès-Champanelle, France
| | - Sabine Leroy
- Institut National de la Recherche Agronomique, UR454 Microbiologie Saint-Genès-Champanelle, France
| |
Collapse
|
199
|
Bergeron RJ, Wiegand J, McManis JS, Bharti N. Desferrithiocin: a search for clinically effective iron chelators. J Med Chem 2014; 57:9259-91. [PMID: 25207964 PMCID: PMC4255733 DOI: 10.1021/jm500828f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Indexed: 01/19/2023]
Abstract
The successful search for orally active iron chelators to treat transfusional iron-overload diseases, e.g., thalassemia, is overviewed. The critical role of iron in nature as a redox engine is first described, as well as how primitive life forms and humans manage the metal. The problems that derive when iron homeostasis in humans is disrupted and the mechanism of the ensuing damage, uncontrolled Fenton chemistry, are discussed. The solution to the problem, chelator-mediated iron removal, is clear. Design options for the assembly of ligands that sequester and decorporate iron are reviewed, along with the shortcomings of the currently available therapeutics. The rationale for choosing desferrithiocin, a natural product iron chelator (a siderophore), as a platform for structure-activity relationship studies in the search for an orally active iron chelator is thoroughly developed. The study provides an excellent example of how to systematically reengineer a pharmacophore in order to overcome toxicological problems while maintaining iron clearing efficacy and has led to three ligands being evaluated in human clinical trials.
Collapse
Affiliation(s)
- Raymond J. Bergeron
- Department of Medicinal Chemistry, University of Florida, Box 100485 JHMHC, Gainesville, Florida 32610-0485, United States
| | - Jan Wiegand
- Department of Medicinal Chemistry, University of Florida, Box 100485 JHMHC, Gainesville, Florida 32610-0485, United States
| | - James S. McManis
- Department of Medicinal Chemistry, University of Florida, Box 100485 JHMHC, Gainesville, Florida 32610-0485, United States
| | - Neelam Bharti
- Department of Medicinal Chemistry, University of Florida, Box 100485 JHMHC, Gainesville, Florida 32610-0485, United States
| |
Collapse
|
200
|
Haugum K, Johansen J, Gabrielsen C, Brandal LT, Bergh K, Ussery DW, Drabløs F, Afset JE. Comparative genomics to delineate pathogenic potential in non-O157 Shiga toxin-producing Escherichia coli (STEC) from patients with and without haemolytic uremic syndrome (HUS) in Norway. PLoS One 2014; 9:e111788. [PMID: 25360710 PMCID: PMC4216125 DOI: 10.1371/journal.pone.0111788] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/30/2014] [Indexed: 11/19/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause infections in humans ranging from asymptomatic carriage to bloody diarrhoea and haemolytic uremic syndrome (HUS). Here we present whole genome comparison of Norwegian non-O157 STEC strains with the aim to distinguish between strains with the potential to cause HUS and less virulent strains. Whole genome sequencing and comparisons were performed across 95 non-O157 STEC strains. Twenty-three of these were classified as HUS-associated, including strains from patients with HUS (n = 19) and persons with an epidemiological link to a HUS-case (n = 4). Genomic comparison revealed considerable heterogeneity in gene content across the 95 STEC strains. A clear difference in gene profile was observed between strains with and without the Locus of Enterocyte Effacement (LEE) pathogenicity island. Phylogenetic analysis of the core genome showed high degree of diversity among the STEC strains, but all HUS-associated STEC strains were distributed in two distinct clusters within phylogroup B1. However, non-HUS strains were also found in these clusters. A number of accessory genes were found to be significantly overrepresented among HUS-associated STEC, but none of them were unique to this group of strains, suggesting that different sets of genes may contribute to the pathogenic potential in different phylogenetic STEC lineages. In this study we were not able to clearly distinguish between HUS-associated and non-HUS non-O157 STEC by extensive genome comparisons. Our results indicate that STECs from different phylogenetic backgrounds have independently acquired virulence genes that determine pathogenic potential, and that the content of such genes is overlapping between HUS-associated and non-HUS strains.
Collapse
Affiliation(s)
- Kjersti Haugum
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| | - Jostein Johansen
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christina Gabrielsen
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lin T. Brandal
- Department of Foodborne Infections, Norwegian Institute of Public Health, Oslo, Norway
| | - Kåre Bergh
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Medical Microbiology, St. Olavs University Hospital, Trondheim, Norway
| | - David W. Ussery
- Biosciences Division, Oak Ridge National Labs, Oak Ridge, Tennessee, United States of America
| | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Egil Afset
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Medical Microbiology, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|