151
|
Huang WW, Yin Y, Bi Q, Chiang TC, Garner N, Vuoristo J, McLachlan JA, Ma L. Developmental diethylstilbestrol exposure alters genetic pathways of uterine cytodifferentiation. Mol Endocrinol 2004; 19:669-82. [PMID: 15591538 DOI: 10.1210/me.2004-0155] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The formation of a simple columnar epithelium in the uterus is essential for implantation. Perturbation of this developmental process by exogenous estrogen, such as diethylstilbestrol (DES), results in uterine metaplasia that contributes to infertility. The cellular and molecular mechanism underlying this transformation event is not well understood. Here we use a combination of global gene expression analysis and a knockout mouse model to delineate genetic pathways affected by DES. Global gene expression profiling experiment revealed that neonatal DES treatment alters uterine cell fate, particularly in the luminal epithelium by inducing abnormal differentiation, characterized by the induction of stratified epithelial markers including members of the small proline-rich protein family and epidermal keratins. We show that Msx2, a homeodomain transcription factor, functions downstream of DES and is required for the proper expression of several genes in the uterine epithelium including Wnt7a, PLAP, and K2.16. Finally, Msx2-/- uteri were found to exhibit abnormal water trafficking upon DES exposure, demonstrating the importance of Msx2 in tissue responsiveness to estrogen exposure. Together, these results indicate that developmental exposure to DES can perturb normal uterine development by affecting genetic pathways governing uterine differentiation.
Collapse
Affiliation(s)
- Wei-Wei Huang
- Tulane/Xavier Center for Bioenvironmental Research, Tulane University Medical Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
HOX genes are a family of regulatory molecules that encode conserved transcription factors controlling aspects of morphogenesis and cell differentiation during normal embryonic development. All metazoans possess a common genetic system for embryonic patterning, and this system is also used in the reproductive tract. Hox genes are also expressed in the adult uterus. Hox genes are essential both for the development of mullerian tract in the embryonic period and adult function. Sex steroids regulate Hox gene expression during embryonic and endometrial development in the menstrual cycle. EMX2 and beta(3)-integrin acting downstream of Hoxa10 gene are likely involved in both these developmental processes. This article reviews the role and molecular regulation of Hox genes in reproductive tract development.
Collapse
Affiliation(s)
- Hongling DU
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 2008063, New Haven, CT 06520, USA
| | | |
Collapse
|
153
|
Abstract
The endometrium undergoes an ordered process of differentiation leading to receptivity to embryonic implantation. HOX genes direct this development in a fashion similar to that in which they direct embryonic development, including development of the reproductive tract. HOXA10 and HOXA11 expression increases during the menstrual cycle, increasing drastically in the midluteal phase, at the time of implantation. This expression is regulated by sex steroid hormones. This expression is necessary for implantation of the blastocyst as demonstrated by the decreased implantation rates in women with altered HOX expression. HOX genes are markers of endometrial receptivity. The possibility of augmenting HOX gene expression with gene therapy to improve implantation has promise for the future.
Collapse
Affiliation(s)
- Hye Eun Kwon
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 2008063, New Haven, CT 06520, USA
| | | |
Collapse
|
154
|
Couse JF, Korach KS. Estrogen receptor-α mediates the detrimental effects of neonatal diethylstilbestrol (DES) exposure in the murine reproductive tract. Toxicology 2004; 205:55-63. [PMID: 15458790 DOI: 10.1016/j.tox.2004.06.046] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is generally believed that estrogen receptor-dependent and -independent pathways are involved in mediating the developmental effects of the synthetic estrogen, diethylstilbestrol (DES). However, the precise role and extent to which each pathway contributes to the resulting pathologies remains unknown. We have employed the estrogen receptor knockout (ERKO) mice, which lack either estrogen receptor-alpha (alphaERKO or estrogen receptor-beta (betaERKO), to gain insight into the contribution of each ER-dependent pathway in mediating the effects of neonatal DES exposure in the female and male reproductive tract tissues of the mouse. Estrogen receptor-alpha female mice exhibited complete resistance to the chronic effects of neonatal DES exposure that were obvious in exposed wild-type animals, including atrophy and epithelial squamous metaplasia in the uterus; proliferative lesions of the oviduct; and persistent cornification of the vaginal epithelium. DES-mediated reduction in uterine Hoxa10, Hoxa11 and Wnt7a expression that occurs wild-type females during the time of exposure was also absent in alphaERKO females. In the male, alphaERKO mice exhibited complete resistance to the chronic effects of neonatal DES exposure on the prostate, including decreased androgen receptor levels, epithelial hyperplasia, and increased basal cell proliferation. Although ERbeta is highly expressed in the prostate epithelium, DES-exposed betaERKO males exhibited all of the effects of neonatal DES exposure that were observed in similarly exposed wild-type males. Therefore, the lack of DES-effects on gene expression and tissue differentiation in the alphaERKO uterus and prostate provides unequivocal evidence of an obligatory role for ERalpha in mediating the detrimental actions of neonatal DES exposure in the murine reproductive tract.
Collapse
Affiliation(s)
- John F Couse
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, PO Box 12233, MD B3-02, NC 27709, USA
| | | |
Collapse
|
155
|
Abstract
Implantation is a complex process that requires synchronization between the embryo and a receptive endometrium. Hormones, such as the female sex steroids, prostaglandins, and peptide hormones, regulate the cellular and molecular mediators of endometrial receptivity, which include pinopodes, cell adhesion molecules, cytokines, homeobox genes, and growth factors. These mediators can be altered, despite the presence of normal hormone levels and endometrial histology; this limits the usefulness of the luteal phase endometrial biopsy. Therefore, analysis of markers of endometrial receptivity may predict successful implantation better. Elevated androgen and estrogen levels, as seen with polycystic ovary syndrome and controlled ovarian hyperstimulation, respectively, also can have detrimental effects on the endometrium, and therefore, implantation.
Collapse
Affiliation(s)
- Pinar H Kodaman
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | |
Collapse
|
156
|
Huang L, Pu Y, Alam S, Birch L, Prins GS. Estrogenic regulation of signaling pathways and homeobox genes during rat prostate development. ACTA ACUST UNITED AC 2004; 25:330-7. [PMID: 15064308 DOI: 10.1002/j.1939-4640.2004.tb02796.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liwei Huang
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | | | |
Collapse
|
157
|
Abstract
Undescended testis is one of the most common congenital defects in the newborn boys and the common cause of cryptorchidism. If left untreated, this condition is strongly associated with infertility and drastically increased risk of testicular cancer in adulthood. Testis position in developing males is defined by sexual dimorphic differentiation of two gonadal ligaments, gubernaculum and cranial suspensory ligament. Recent transgenic mouse studies identified testicular hormone insulin-like 3 (INSL3), and its receptor, GREAT/LGR8, as the critical regulators of the gubernacular differentiation. Mutation analysis of the two genes in patients with undescended testis revealed functionally deleterious mutations, which may be responsible for the abnormal phenotype in some of the patients.
Collapse
Affiliation(s)
- Ibrahim M Adham
- Institute of Human Genetics, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
158
|
Newbold RR. Lessons learned from perinatal exposure to diethylstilbestrol. Toxicol Appl Pharmacol 2004; 199:142-50. [PMID: 15313586 DOI: 10.1016/j.taap.2003.11.033] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 11/20/2003] [Indexed: 10/26/2022]
Abstract
The synthetic estrogen diethylstilbestrol (DES) is well documented to be a perinatal carcinogen in both humans and experimental animals. Exposure to DES during critical periods of differentiation permanently alters the programming of estrogen target tissues resulting in benign and malignant abnormalities in the reproductive tract later in life. Using the perinatal DES-exposed rodent model, cellular and molecular mechanisms have been identified that play a role in these carcinogenic effects. Although DES is a potent estrogenic chemical, effects of low doses of the compound are being used to predict health risks of weaker environmental estrogens. Therefore, it is of particular interest that developmental exposure to very low doses of DES has been found to adversely affect fertility and to increase tumor incidence in murine reproductive tract tissues. These adverse effects are seen at environmentally relevant estrogen dose levels. New studies from our lab verify that DES effects are not unique; when numerous environmental chemicals with weak estrogenic activity are tested in the experimental neonatal mouse model, developmental exposure results in an increased incidence of benign and malignant tumors including uterine leiomyomas and adenocarcinomas that are similar to those shown following DES exposure. Finally, growing evidence in experimental animals suggests that some adverse effects can be passed on to subsequent generations, although the mechanisms involved in these trans-generational events remain unknown. Although the complete spectrum of risks to DES-exposed humans are uncertain at this time, the scientific community continues to learn more about cellular and molecular mechanisms by which perinatal carcinogenesis occurs. These advances in knowledge of both genetic and epigenetic mechanisms will be significant in ultimately predicting risks to other environmental estrogens and understanding more about the role of estrogens in normal and abnormal development.
Collapse
Affiliation(s)
- Retha R Newbold
- Developmental Endocrinology Section, Laboratory of Toxicology, Environmental Toxicology Program, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
159
|
Carta L, Sassoon D. Wnt7a Is a Suppressor of Cell Death in the Female Reproductive Tract and Is Required for Postnatal and Estrogen-Mediated Growth1. Biol Reprod 2004; 71:444-54. [PMID: 15070830 DOI: 10.1095/biolreprod.103.026534] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The murine female reproductive tract is undifferentiated at birth and undergoes pronounced growth and cytodifferentiation during postnatal life. Postnatal reproductive tract development proceeds in the absence of high levels of circulating estrogens and is disrupted by precocious exposure to estrogens. The WNT gene family is critical in guiding the epithelial-mesenchymal interactions that direct postnatal uterine development. We have previously described a role for Wnt7a in controlling morphogenesis in the uterus. In addition to patterning defects, Wnt7a mutant uteri are atrophic in adults and do not show robust postnatal growth. In the present study, we examine immature female Wnt7a mutant and wild-type uteri to assess the cellular processes that underlie this failure in postnatal uterine growth. Levels of proliferation are higher in wild-type versus Wnt7a mutant uteri. Exposure to the potent estrogen-agonist diethylstilbestrol (DES) leads to an increase in cell proliferation in the uterus in wild-type as well as in mutant uteri, indicating that Wnt7a is not required in mediating cell proliferation. In contrast, we observe that Wnt7a mutant uteri display high levels of cell death in response to DES, whereas wild-type uteri display almost no cell death, revealing that Wnt7a plays a key role as a cell death suppressor. The expression pattern of other key regulatory genes that guide uterine development, including estrogen receptor (alpha), Hox, and other WNT genes, reveals either abnormal spatial distribution of transcripts or abnormal regulation in response to DES exposure. Taken together, the results of the present study demonstrate that Wnt7a coordinates a variety of cell and developmental pathways that guide postnatal uterine growth and hormonal responses and that disruption of these pathways leads to aberrant cell death.
Collapse
Affiliation(s)
- Luca Carta
- Brookdale Department of Developmental, Cellular and Molecular Biology, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
160
|
Daftary GS, Taylor HS. Pleiotropic effects of Hoxa10 on the functional development of peri-implantation endometrium. Mol Reprod Dev 2004; 67:8-14. [PMID: 14648870 DOI: 10.1002/mrd.20013] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hoxa10, a homeodomain transcription factor, is dynamically expressed in adult uterine endometrium where it is necessary for embryo implantation. Endometrial Hoxa10 expression is driven by estrogen and progesterone. High levels of endometrial Hoxa10 expression coincide with high progesterone levels and development of endometrial receptivity. Although, progesterone is sufficient for endometrial differentiation and implantation, the molecular mechanisms by which progesterone mediates endometrial receptivity are not known. To determine if Hoxa10 mediates the developmental effects of progesterone in the endometrial cell compartments, we performed in vivo uterine transfection using pcDNA3.1/Hoxa10 in estrogen-primed, ovariectomized mice and compared results to mice treated with progesterone. Additional control mice were treated with either estrogen alone or empty vector pcDNA3.1. By using ovariectomized mice, we were able to determine specific developmental effects resultant from Hoxa10 treatment and distinguish them from those mediated by the regulation of multiple endogenous genes (including Hoxa10) by ovarian progesterone. Treatment with either Hoxa10 or progesterone resulted in diminished uterine weight and increased expression of characteristic cell-type specific differentiation markers such as epithelial calcitonin and stromal prolactin, suggesting that Hoxa10 likely mediates progesterone induced functional differentiation of endometrial epithelium and stroma. However, progesterone treatment suppressed endometrial eosinophil infiltration and degranulation compared to that seen with Hoxa10 treatment. Besides mediating progestational effects, Hoxa10 may activate distinct developmental pathways leading to endometrial differentiation. Functional differentiation in regenerative adult tissues may depend on timed expression of embryonic selector genes. Mol. Reprod. Dev. 67: 8-14, 2004.
Collapse
Affiliation(s)
- Gaurang S Daftary
- Laboratory of Developmental Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
161
|
Affiliation(s)
- Laurence S Baskin
- University of California, San Francisco, San Francisco, CA 94143-0738, USA.
| |
Collapse
|
162
|
Hayashi K, Carpenter KD, Spencer TE. Neonatal estrogen exposure disrupts uterine development in the postnatal sheep. Endocrinology 2004; 145:3247-57. [PMID: 15059950 DOI: 10.1210/en.2004-0178] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Postnatal development of the ovine uterus between birth and postnatal day (PND) 56 involves budding differentiation of the endometrial glandular epithelium from the luminal epithelium (LE) followed by extensive coiling and branching morphogenesis of the tubular glands. To determine the short- and long-term effects of estrogen on neonatal ovine uterine development after PND 14, neonatal sheep were randomly assigned at birth (PND 0) to be treated daily with estradiol-17beta benzoate (EB; 0, 0.01, 0.1, 1, or 10 microg/kg body weight.d) during one of two developmental periods (PND 14-27 or 42-55). All ewes were hemiovariohysterectomized at the end of EB treatment on either PND 28 or 56, and the remaining uterine horn and ovary removed on PND 112. Immediate responses to EB treatment included dose- and age-dependent increases in uterine wet weight, thickness of the endometrium, myometrium, and LE, but decreases in endometrial glands on PND 28 and 56. Transient exposure to EB decreased gland number and thickness of the endometrium and LE on PND 112 but did not affect extrauterine reproductive tract structures. The mechanism of estrogen inhibition of uterine development did not involve effects on cell proliferation. Real-time PCR analyses found that EB exposure disrupted normal patterns of growth factor (IGF-I, IGF-II, fibroblast growth factor-7, fibroblast growth factor-10, and hepatocyte growth factor) and receptor mRNA expression in the uterus. Transient exposure of the neonatal ewe to estrogens during critical periods specifically alters growth factor networks that perturb normal development of the uterus, leading to permanent alterations in uterine structure and function.
Collapse
Affiliation(s)
- Kanako Hayashi
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471, USA
| | | | | |
Collapse
|
163
|
Simmen RCM, Eason RR, McQuown JR, Linz AL, Kang TJ, Chatman L, Till SR, Fujii-Kuriyama Y, Simmen FA, Oh SP. Subfertility, Uterine Hypoplasia, and Partial Progesterone Resistance in Mice Lacking the Krüppel-like Factor 9/Basic Transcription Element-binding Protein-1 (Bteb1) Gene. J Biol Chem 2004; 279:29286-94. [PMID: 15117941 DOI: 10.1074/jbc.m403139200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Progesterone receptor (PR), a ligand-activated transcription factor, is a key regulator of cellular proliferation and differentiation in reproductive tissues. The transcriptional activity of PR is influenced by co-regulatory proteins typically expressed in a tissue- and cell-specific fashion. We previously demonstrated that basic transcription element-binding protein-1 (BTEB1), a member of the Sp/Krüppel-like family of transcription factors, functionally interacts with the two PR isoforms, PR-A and PR-B, to mediate progestin sensitivity of target genes in endometrial epithelial cells in vitro. Here we report that ablation of the Bteb1 gene in female mice results in uterine hypoplasia, reduced litter size, and increased incidence of neonatal deaths in offspring. The reduced litter size is solely a maternal genotype effect and results from fewer numbers of implantation sites, rather than defects in ovulation. In the early pregnant uterus, Bteb1 expression in stromal cells temporally coincides with PR-A isoform-dependent decidual formation at the time of implantation. Expression of two implantation-specific genes, Hoxa10 and cyclin D3, was decreased in uteri of early pregnant Bteb1-null mutants, whereas that of Bteb3, a related family member, was increased, the latter possibly compensating for the loss of Bteb1. Progesterone responsiveness of several uterine genes was altered with Bteb1-null mutation. These results identify Bteb1 as a functionally relevant PR-interacting protein and suggest its selective modulation of cellular processes that are regulated by PR-A in the uterine stroma.
Collapse
Affiliation(s)
- Rosalia C M Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Abstract
Implantation is a phenomenon that involves an interaction between the embryo and maternal endometrium. There is, in the menstrual cycle, a short and precise period of time in which the maternal-embryonic interaction is optimal and culminates with adhesion and invasion of the blastocyst into the progesterone-induced secretory endometrium. This period is called nidation or implantation window. In the implantation window changes occur in endometrial epithelial morphology, characterized by the appearance of membrane projections called pinopodes. Pinopodes are progesterone-dependent organelles, that look like apical cellular protrusions appearing between days 20 and 21 of the natural menstrual cycle. There are many factors that regulate the changes typical of the implantation window and the appearance of the pinopodes. The embryonic and maternal expression of growth factors and cytokines, calcitonin, HOX genes and cell adhesion molecules might all play a major role in the phenomenon of implantation. The cytokines function as chemical messengers and can serve as biomarkers of uterine receptivity. Understanding the function of these biomarkers and their role in determining the implantation window in women, will help us to diagnose and treat infertile couples more efficiently.
Collapse
Affiliation(s)
- M Cavagna
- Department of Gynecology and Obstetrics, Santo Amaro University (UNISA) School of Medicine, Rua Viradouro 58, 04538-110 São Paulo, Brazil.
| | | |
Collapse
|
165
|
Mericskay M, Kitajewski J, Sassoon D. Wnt5a is required for proper epithelial-mesenchymal interactions in the uterus. Development 2004; 131:2061-72. [PMID: 15073149 DOI: 10.1242/dev.01090] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epithelial-mesenchymal interactions play a crucial role in the correct patterning of the mammalian female reproductive tract (FRT). Three members of the Wnt family of growth factors are expressed at high levels in the developing FRT in the mouse embryo. The expression of Wnt genes is maintained in the adult FRT, although levels fluctuate during estrous. Wnt4 is required for Müllerian duct initiation, whereas Wnt7a is required for subsequent differentiation. In this study, we show that Wnt5a is required for posterior growth of the FRT. We further demonstrate that the mutant FRT has the potential to form the posterior compartments of the FRT using grafting techniques. Postnatally, Wnt5aplays a crucial role in the generation of uterine glands and is required for cellular and molecular responses to exogenous estrogens. Finally, we show that Wnt5a participates in a regulatory loop with other FRT patterning genes including Wnt7a, Hoxa10 and Hoxa11. Data presented provide a mechanistic basis for how uterine stroma mediates both developmental and estrogen-mediated changes in the epithelium and demonstrates that Wnt5a is a key component in this process. The similarities of the Wnt5a and Wnt7a mutant FRT phenotypes to those described for the Hoxa11 and Hoxa13 mutant FRT phenotypes reveal a mechanism whereby Wnt and Hox genes cooperate to pattern the FRT along the anteroposterior axis.
Collapse
Affiliation(s)
- Mathias Mericskay
- Brookdale Department Molecular, Cell and Developmental Biology, Mount Sinai Medical School, 1 G Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
166
|
Giavini E, Menegola E. Gene-Teratogen Interactions in Chemically Induced Congenital Malformations. Neonatology 2004; 85:73-81. [PMID: 14631152 DOI: 10.1159/000074962] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Accepted: 09/30/2003] [Indexed: 11/19/2022]
Abstract
Exposure of the embryo to environmental chemicals can result in congenital malformations or abortion. Although experimental teratology data are considered sufficient for risk assessment, only knowledge of their mechanisms of action permits a justifiable extrapolation of animal data to humans. Mechanistic studies of some teratogenic agents such as retinoic acids, valproic acid, diethylstilbestrol, and cyclopamine provided evidence of interference with regulation of genes controlling the embryonic development. The new genomic technologies are important tools in this field and may represent a real improvement in understanding the mechanisms of action of chemical teratogens.
Collapse
|
167
|
Kurita T, Mills AA, Cunha GR. Roles of p63 in the diethylstilbestrol-induced cervicovaginal adenosis. Development 2004; 131:1639-49. [PMID: 14998922 DOI: 10.1242/dev.01038] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Women exposed to diethylstilbestrol (DES) in utero develop abnormalities, including cervicovaginal adenosis that can lead to cancer. We report that transient disruption of developmental signals by DES permanently changes expression of p63, thereby altering the developmental fate of Müllerian duct epithelium. The cell fate of Müllerian epithelium to be columnar (uterine) or squamous (cervicovaginal) is determined by mesenchymal induction during the perinatal period. Cervicovaginal mesenchyme induced p63 in Müllerian duct epithelium and subsequent squamous differentiation. In p63(-/-) mice, cervicovaginal epithelium differentiated into uterine epithelium. Thus, p63 is an identity switch for Müllerian duct epithelium to be cervicovaginal versus uterine. P63 was also essential for uterine squamous metaplasia induced by DES-exposure. DES-exposure from postnatal day 1 to 5 inhibited induction of p63 in cervicovaginal epithelium via epithelial ERalpha. The inhibitory effect of DES was transient, and most cervicovaginal epithelial cells recovered expression of p63 by 2 days after discontinuation of DES-treatment. However, some cervicovaginal epithelial cells failed to express p63, remained columnar and persisted into adulthood as adenosis.
Collapse
Affiliation(s)
- Takeshi Kurita
- Department of Anatomy, University of California, San Francisco, CA 94143-0452, USA.
| | | | | |
Collapse
|
168
|
Kim KS, Torres CR, Yucel S, Raimondo K, Cunha GR, Baskin LS. Induction of hypospadias in a murine model by maternal exposure to synthetic estrogens. ENVIRONMENTAL RESEARCH 2004; 94:267-75. [PMID: 15016594 DOI: 10.1016/s0013-9351(03)00085-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Revised: 04/11/2003] [Accepted: 04/18/2003] [Indexed: 05/08/2023]
Abstract
We tested the hypothesis that maternal exposure to synthetic estrogen can cause hypospadias in male offspring and defined the morphological changes in the disrupted urethral seam. Timed pregnant C57/6 mice were exposed to synthetic estrogens. The genital tubercles were examined for the presence of hypospadias using histology, three-dimensional computer reconstruction, and plastic cast injection molds of the urethra. Microscopic serial analysis confirmed the presence of hypospadias, which occurred in approximately 50% of the synthetic-estrogen-treated male fetuses. No effect was seen in the female embryos. Plastic cast injection showed that affected males had a shorter total urethral length and loss of male anatomic features such as the prostatic utricle. Exposure to synthetic estrogens during pregnancy affects the normal development of the urethra in the mouse. We conclude that endocrine disrupters play an important role in genital tubercle anomalies.
Collapse
Affiliation(s)
- Kun Suk Kim
- UCSF Children's Medical Center, Departments of Urology, Anatomy and Pediatrics, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
169
|
Affiliation(s)
- David T MacLaughlin
- Pediatric Surgical Research Laboratories and the Pediatric Surgical Services, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA.
| | | |
Collapse
|
170
|
Imakawa K, Chang KT, Christenson RK. Pre-Implantation Conceptus and Maternal Uterine Communications: Molecular Events Leading to Successful Implantation. J Reprod Dev 2004; 50:155-69. [PMID: 15118242 DOI: 10.1262/jrd.50.155] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Implantation, a critical step for mammals in establishing pregnancy, requires successful completion of sequential events such as maternal uterine development, conceptus development and attachment, and placental formation. To reach the stage of placental formation, synchronized development of the conceptus and uterus throughout the implantation period is absolutely required. A number of factors expressed at the uterine endometrium and/or conceptus, which are associated with peri-implantation development, have been identified. In addition to a temporal and spatial expression of these factors, their roles in intra- and inter-cellular interactions make it difficult to fully understand physiological roles played during the critical period. This paper focuses on early conceptus development, maternal preparation for implantation and uterine-conceptus communication during the pre-implantation period, rather than the subsequent events such as conceptus attachment to the maternal endometrium. New aspects of pre-implantation processes are evaluated through simultaneous expressions of transcription factors as they possibly regulate the complex processes of implantation events in murine species and ruminant ungulates.
Collapse
Affiliation(s)
- Kazuhiko Imakawa
- Implantation Research Group, Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan.
| | | | | |
Collapse
|
171
|
Kobayashi A, Shawlot W, Kania A, Behringer RR. Requirement of Lim1 for female reproductive tract development. Development 2003; 131:539-49. [PMID: 14695376 DOI: 10.1242/dev.00951] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lim1 encodes a LIM-class homeodomain transcription factor that is essential for head and kidney development. In the developing urogenital system, Lim1 expression has been documented in the Wolffian (mesonephric) duct, the mesonephros, metanephros and fetal gonads. Using, a Lim1 lacZ knock-in allele in mice, we identified a previously unreported urogenital tissue for Lim1 expression, the epithelium of the developing Müllerian duct that gives rise to the oviduct, uterus and upper region of the vagina of the female reproductive tract. Lim1 expression in the Müllerian duct is dynamic, corresponding to its formation and differentiation in females and regression in males. Although female Lim1-null neonates had ovaries they lacked a uterus and oviducts. A novel female mouse chimera assay was developed and revealed that Lim1 is required cell autonomously for Müllerian duct epithelium formation. These studies demonstrate an essential role for Lim1 in female reproductive tract development.
Collapse
Affiliation(s)
- Akio Kobayashi
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
172
|
Cheon YP, Xu X, Bagchi MK, Bagchi IC. Immune-responsive gene 1 is a novel target of progesterone receptor and plays a critical role during implantation in the mouse. Endocrinology 2003; 144:5623-30. [PMID: 14500577 DOI: 10.1210/en.2003-0585] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The steroid hormone progesterone (P) is a critical regulator of uterine receptivity during blastocyst implantation. The hormone acts through nuclear P receptors (PRs) to modulate the expression of specific gene networks in various uterine cell types. To identify the P-regulated pathways underlying uterine receptivity, we previously used oligonucleotide microarrays to analyze uterine mRNA profiles at the time of implantation in response to RU486, a PR antagonist. We reported that the mRNA corresponding to the immune-responsive gene 1 (Irg1), a previously described lipopolysaccharide-inducible gene, is one of the several mRNAs that are markedly down-regulated by RU486 in the preimplantation uterus. In the present study, we performed in situ hybridization to show that P stimulates Irg1 mRNA synthesis in the luminal epithelial cells of uteri of ovariectomized wild-type but not PR knockout mice. We also report that Irg1 mRNA was induced in the luminal epithelium of pregnant uterus between d 3 and 5, overlapping the window of implantation. To investigate the function of Irg1 during implantation, we administered sense or antisense oligodeoxynucleotides into preimplantation mouse uteri. Treatment with antisense oligodeoxynucleotides led to suppression in Irg1 mRNA expression without affecting unrelated mRNAs in the pregnant uterus. This intervention was also accompanied by impairment in embryo implantation, indicating that the phenotype is linked to the suppression of Irg1 mRNA. Collectively, our studies identified Irg1 as a novel target of PR in the pregnant uterus and also revealed that it is a critical regulator of the early events leading to implantation.
Collapse
Affiliation(s)
- Yong-Pil Cheon
- Department of Veterinary Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | |
Collapse
|
173
|
Kobayashi A, Behringer RR. Developmental genetics of the female reproductive tract in mammals. Nat Rev Genet 2003; 4:969-80. [PMID: 14631357 DOI: 10.1038/nrg1225] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The female reproductive tract receives the oocytes for fertilization, supports the development of the fetus and provides the passage for birth. Although abnormalities of this organ system can result in infertility and even death, until recently relatively little was known about the genetic processes that underlie its development. By drawing primarily on mouse mutagenesis studies and the analysis of human mutations we review the emerging genetic pathways that regulate female reproductive-tract formation in mammals and that are implicated in congenital abnormalities of this organ system. We also show that these pathways might be conserved between invertebrates and mammals.
Collapse
Affiliation(s)
- Akio Kobayashi
- Program in Developmental Biology, Baylor College of Medicine and Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | |
Collapse
|
174
|
Joachim R, Zenclussen AC, Polgar B, Douglas AJ, Fest S, Knackstedt M, Klapp BF, Arck PC. The progesterone derivative dydrogesterone abrogates murine stress-triggered abortion by inducing a Th2 biased local immune response. Steroids 2003; 68:931-40. [PMID: 14667986 DOI: 10.1016/j.steroids.2003.08.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stress is known to induce abortions in mice and humans, putatively via increased levels of abortogenic Th1 cytokines and a decrease of progesterone. Adequate levels of progesterone exert an antiabortive response through binding to the progesterone-receptor, which induces the release of progesterone-induced blocking factor (PIBF) from lymphocytes. PIBF is highly pregnancy-protective by induction of a Th2 biased immune activity. The aim of this study was to investigate the effect of the progesterone derivative dydrogesterone (6-dehydro-retroprogesterone) in stress-triggered murine abortion. DBA/2J-mated CBA/J female mice were randomized in different groups: two groups were treated with different dydrogesterone dosages in a single injection before exposure to sound stress on Day 5 of pregnancy, one group was exposed to stress without dydrogesterone treatment, the fourth group received no stress and no dydrogesterone. On gestation Day 13, a highly elevated abortion rate was detected in stressed mice compared to control mice. Stressed animals presented lower levels of progesterone and PIBF in plasma and a reduced staining intensity of progesterone receptor at the feto-maternal interface. Injection of dydrogesterone abrogated the effect of stress on the abortion rate. Further, dydrogesterone increased levels of plasma PIBF in stressed mice, but did not affect progesterone levels. Interestingly, dydrogesterone dramatically increased the percentage of IL-4 positive decidual immune cells in stressed mice. Our data suggest that dydrogesterone abrogates stress-triggered abortion by inducing a Th2 biased local immune response.
Collapse
Affiliation(s)
- Ricarda Joachim
- Charité, Department of Internal Medicine, Biomedizinisches Forschungszentrum, Humboldt University of Berlin, Campus Virchow, Raum 2.0549, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Chen B, Zhang D, Pollard JW. Progesterone regulation of the mammalian ortholog of methylcitrate dehydratase (immune response gene 1) in the uterine epithelium during implantation through the protein kinase C pathway. Mol Endocrinol 2003; 17:2340-54. [PMID: 12893884 DOI: 10.1210/me.2003-0207] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Implantation requires coordination between development of the blastocyst and the sex steroid hormone-regulated differentiation of the uterus. Under the influence of these hormones, the uterine luminal epithelium becomes receptive to attachment of the hatched blastocyst. In this study we sought to identify genes regulated by progesterone (P4) in the uterine epithelium. This resulted in the identification of one novel P4-regulated gene that had been previously found in lipopolysaccharide-stimulated macrophages and called immune response gene-1 (Irg1) and which is the mammalian ortholog of the bacterial gene encoding methylcitrate dehydratase. In adult mice Irg1 expression was limited to the uterine luminal epithelium where it is expressed only during pregnancy with a peak coinciding with implantation. Irg1 mRNA expression is regulated synergistically by P4 and estradiol (E2) but not by E2 alone. In macrophages Irg1 is induced by lipopolysaccharide through a protein kinase C (PKC)-regulated pathway. Now we demonstrate that the PKC pathway is induced in the uterine epithelium at implantation by the synergistic action of P4 and E2 and is responsible for the hormone induction of Irg1. These results suggest that the PKC pathway plays an important role in modulating steroid hormone responsiveness in the uterine luminal epithelium during the implantation window and that Irg1 will be an important marker of this window and may play an important role in implantation.
Collapse
Affiliation(s)
- Bo Chen
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York 10461, USA.
| | | | | |
Collapse
|
176
|
Wong KHH, Wintch HD, Capecchi MR. Hoxa11 regulates stromal cell death and proliferation during neonatal uterine development. Mol Endocrinol 2003; 18:184-93. [PMID: 14551265 DOI: 10.1210/me.2003-0222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence indicates that the Hoxa11 gene plays a critical role in the proper development of the uterus. In this report, we describe potential altered cellular processes in the developing uterus of Hoxa11 mutants. Histologic analysis demonstrates normal uterine morphology in Hoxa11 mutants as compared with controls at the newborn stage and d 7 after birth. Stromal tissue was moderately reduced in the Hoxa11 mutant uterus by d 14 after birth and was absent by d 21 after birth. There is decreased cellular proliferation in the Hoxa11 mutant uterus both at 7 and 14 d after birth. Terminal deoxyribonucleotide transferase-mediated deoxyuridine triphosphate nick-end labeling analysis demonstrates that apoptosis was markedly increased in the Hoxa11 mutant uterus at d 14 after birth. p27 is decreased in the Hoxa11 mutant as evidenced by real-time PCR. Epidermal growth factor receptor expression is dramatically decreased as evidenced by both real-time PCR and immunohistochemistry results. These findings suggest that Hoxa11 is required for proper cellular proliferation and apoptotic responses in the developing neonatal uterus and that the regulation of epidermal growth factor receptor is critical to these processes.
Collapse
Affiliation(s)
- Kenneth H H Wong
- Department of Human Genetics and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112-5331, USA
| | | | | |
Collapse
|
177
|
Li S, Hansman R, Newbold R, Davis B, McLachlan JA, Barrett JC. Neonatal diethylstilbestrol exposure induces persistent elevation of c-fos expression and hypomethylation in its exon-4 in mouse uterus. Mol Carcinog 2003; 38:78-84. [PMID: 14502647 DOI: 10.1002/mc.10147] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Perinatal exposure to diethylstilbestrol (DES) induces reproductive tract cancers later in life in both humans and animals. Because there is no clear evidence that perinatal DES exposure induces gene mutation, we proposed that perinatal DES exposure causes epigenetic methylation changes that result in persistent alterations in gene expression, leading to tumorigenesis. The proto-oncogene c-fos is one of the immediately induced genes in uterine epithelium after estrogen simulation and a key player in uterine carcinogenesis. Here, we investigated c-fos expression in mice neonatally exposed to DES (2 microg/pup/day on postnatal days 1-5). The mRNA levels of c-fos in uteri of neonatal DES-treated mice were persistently 1.4-1.9-fold higher than that in the control mice from day 5 to day 60. Overall, the uterine c-fos expression level in the neonatal DES-exposed group was significantly higher than that in the control group. After examination of the methylation status of the c-fos gene, we found that the CpGs in promoter and intron-1 regions were completely unmethylated. In exon-4, from day 17 to day 60, the percentage of unmethylated CpGs was higher in neonatal DES-exposed mice uteri than that in control (42%, 51%, 47%, and 42% in DES-exposed mice vs 33%, 34%, 33%, and 21% in control mice at day 17, 21, 30, and 60, respectively). These results suggest that perinatal DES exposure may permanently alter gene expression and methylation, and the methylation modification may occur in either the promoter regions or other regulatory sites in the gene.
Collapse
Affiliation(s)
- Shuanfang Li
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
178
|
Derfoul A, Lin FJ, Awumey EM, Kolodzeski T, Hall DJ, Tuan RS. Estrogenic endocrine disruptive components interfere with calcium handling and differentiation of human trophoblast cells. J Cell Biochem 2003; 89:755-70. [PMID: 12858341 DOI: 10.1002/jcb.10558] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During development, calcium (Ca) is actively transported by placental trophoblasts to meet fetal nutritional and the skeletal mineralization needs. Maternal exposure to estrogenic pesticides, such as 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT) and methoxychlor (MTC), has been shown to result in reproductive disorders and/or abnormal fetal development. In this study, we have examined the effects of exposure of trophoblastic cells to MTC and DTT, in comparison to 17beta-estradiol (E2) and diethylstilbestrol (DES), to test the hypothesis that cellular Ca handling is a target for these endocrine disruptive components. Treatment with DDT, MTC, DES, or E2 increased cellular Ca uptake, and the expression of trophoblast-specific human Ca binding protein (HCaBP) was down-regulated by both MTC and DDT. Treatment with MTC, DDT, and DES inhibited cell proliferation, induced apoptosis, and suppressed expression of several trophoblast differentiation marker genes. These effects were reversed by overexpression of metallothionein IIa, a gene highly responsive to cadmium and other metals. These results strongly suggest that trophoblast Ca handling functions are endocrinally modulated, and that their alteration by candidate endocrine disruptors, such as MTC and DDT, constitutes a possible pathway of the harmful effects of these components on fetal development.
Collapse
Affiliation(s)
- A Derfoul
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
179
|
Stadler HS. Modelling genitourinary defects in mice: an emerging genetic and developmental system. Nat Rev Genet 2003; 4:478-82. [PMID: 12776217 DOI: 10.1038/nrg1083] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The rising incidence of genitourinary (GU) defects among newborns establishes the need and opportunity to focus research efforts on the amelioration of this growing public-health concern. Sadly, our inability to explain the causes of GU defects can be directly attributed to our lack of understanding of GU gene function. Recently, mouse models have been used to provide new insights into the mechanisms that underlie congenital GU malformations.
Collapse
Affiliation(s)
- H Scott Stadler
- Shriners Hospital for Children and the Oregon Health and Science University, 3101 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| |
Collapse
|
180
|
Yao MWM, Lim H, Schust DJ, Choe SE, Farago A, Ding Y, Michaud S, Church GM, Maas RL. Gene expression profiling reveals progesterone-mediated cell cycle and immunoregulatory roles of Hoxa-10 in the preimplantation uterus. Mol Endocrinol 2003; 17:610-27. [PMID: 12554760 DOI: 10.1210/me.2002-0290] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human infertility and recurrent pregnancy loss caused by implantation defects are poorly understood. Hoxa-10-deficient female mice have severe infertility and recurrent pregnancy loss due to defective uterine implantation. Gene expression profiling experiments reveal that Hoxa-10 is an important regulator of two critical events in implantation: stromal cell proliferation and local immunosuppression. At the time of implantation, Hoxa-10 mediates the progesterone-stimulated proliferation of uterine stromal cells. Hoxa-10 mutants express a stromal cell proliferation defect that is accompanied by quantitative or spatial alterations in the expression of two cyclin-dependent kinase inhibitor genes, p57 and p15. Hoxa-10 deficiency also leads to a severe local immunological disturbance, characterized by a polyclonal proliferation of T cells, that occurs in place of the normal progesterone-mediated immunosuppression in the periimplantation uterus.
Collapse
Affiliation(s)
- Mylene W M Yao
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Thorn Building, Room 1019, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Li S, Hursting SD, Davis BJ, McLachlan JA, Barrett JC. Environmental exposure, DNA methylation, and gene regulation: lessons from diethylstilbesterol-induced cancers. Ann N Y Acad Sci 2003; 983:161-9. [PMID: 12724221 DOI: 10.1111/j.1749-6632.2003.tb05971.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA methylation is an epigenetic mechanism that regulates chromosomal stability and gene expression. Abnormal DNA methylation patterns have been observed in many types of human tumors, including those of the breast, prostate, colon, thyroid, stomach, uterus, and cervix. We and others have shown that exposure to a wide variety of xenobiotics during critical periods of mammalian development can persistently alter the pattern of DNA methylation, resulting in potentially adverse biological effects such as aberrant gene expression. Thus, this epigenetic mechanism may underlie the observed increased risk in adulthood of several chronic diseases, including cancer, in response to xenobiotic exposures early in life. We present here the lessons learned from studies on the effects of perinatal diethylstilbesterol (DES) exposure on the methylation pattern of the promoters of several estrogen-responsive genes associated with the development of reproductive organs. Perinatal DES exposure, which induces epithelial tumors of the uterus in mice and is associated with several reproductive tract abnormalities and increased vaginal and cervical cancer risk in women, provides a clear example of how estrogenic xenobiotic exposure during a critical period of development can abnormally demethylate DNA sequences during organ development and possibly increase cancer risk later in life. In addition, nutritional factors and stress may also alter DNA methylation during early life and modulate the risk of cancer and other chronic diseases in adulthood. We suggest that DNA methylation status may be influenced by environmental exposures in early life, leading to increased risk of cancer in adulthood.
Collapse
Affiliation(s)
- Shuanfang Li
- Laboratory of Biosystems and Cancer, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
182
|
Ma L, Liu J, Wu T, Plikus M, Jiang TX, Bi Q, Liu YH, Müller-Röver S, Peters H, Sundberg JP, Maxson R, Maas RL, Chuong CM. 'Cyclic alopecia' in Msx2 mutants: defects in hair cycling and hair shaft differentiation. Development 2003; 130:379-89. [PMID: 12466204 PMCID: PMC4386654 DOI: 10.1242/dev.00201] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Msx2-deficient mice exhibit progressive hair loss, starting at P14 and followed by successive cycles of wavelike regrowth and loss. During the hair cycle, Msx2 deficiency shortens anagen phase, but prolongs catagen and telogen. Msx2-deficient hair shafts are structurally abnormal. Molecular analyses suggest a Bmp4/Bmp2/Msx2/Foxn1 acidic hair keratin pathway is involved. These structurally abnormal hairs are easily dislodged in catagen implying a precocious exogen. Deficiency in Msx2 helps to reveal the distinctive skin domains on the same mouse. Each domain cycles asynchronously - although hairs within each skin domain cycle in synchronized waves. Thus, the combinatorial defects in hair cycling and differentiation, together with concealed skin domains, account for the cyclic alopecia phenotype.
Collapse
Affiliation(s)
- Liang Ma
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Jian Liu
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| | - Tobey Wu
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| | - Maksim Plikus
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| | - Ting-Xin Jiang
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| | - Qun Bi
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yi-Hsin Liu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Sven Müller-Röver
- Department of Dermatology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Heiko Peters
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Rob Maxson
- Department of Biochemistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Richard L. Maas
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
183
|
Markey CM, Coombs MA, Sonnenschein C, Soto AM. Mammalian development in a changing environment: exposure to endocrine disruptors reveals the developmental plasticity of steroid-hormone target organs. Evol Dev 2003; 5:67-75. [PMID: 12492412 DOI: 10.1046/j.1525-142x.2003.03011.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent findings in the field of environmental endocrine disruption have revealed that developmental exposure to estrogenic chemicals induces morphological, functional, and behavioral anomalies associated with reproduction. The aim of the present study was to determine the effects of in utero exposure to low doses of the estrogenic chemical bisphenol A (BPA) on the development of the female reproductive tissues and mammary glands in CD-1 mice. Humans are exposed to BPA, which leaches from dental materials and plastic food and beverage containers. Here we report that prenatal exposure to BPA induces alterations in tissue organization within the ovaries and mammary glands and disrupts estrous cyclicity in adulthood. Because estrogen receptors are expressed developmentally in these estrogen-target organs, we propose that BPA may directly affect the expression of genes involved in their morphogenesis. In addition, alterations in the sexual differentiation of the brain, and thus the hypothalamic-pituitary-gonadal axis, may further contribute to the observed phenotype. The emerging field of endocrine disruptors promises to provide new insights into the mechanisms underlying the development of hormone-target organs and demonstrates that the environment plays important roles in the making of phenotypes.
Collapse
Affiliation(s)
- Caroline M Markey
- Department of Anatony and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111-1800, USA
| | | | | | | |
Collapse
|
184
|
Markey CM, Rubin BS, Soto AM, Sonnenschein C. Endocrine disruptors: from Wingspread to environmental developmental biology. J Steroid Biochem Mol Biol 2002; 83:235-44. [PMID: 12650721 DOI: 10.1016/s0960-0760(02)00272-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The production and release of synthetic chemicals into the environment has been a hallmark of the "Second Industrial Revolution" and the "Green Revolution." Soon after the inception of these chemicals, anecdotal evidence began to emerge linking environmental contamination of rivers and lakes with a variety of developmental and reproductive abnormalities in wildlife species. The accumulation of evidence suggesting that these synthetic chemicals were detrimental to wildlife, and potentially humans, as a result of their hormonal activity, led to the proposal of the endocrine disruptor hypothesis at the 1991 Wingspread Conference. Since that time, experimental and epidemiological data have shown that exposure of the developing fetus or neonate to environmentally-relevant concentrations of certain synthetic chemicals causes morphological, biochemical, physiological and behavioral anomalies in both vertebrate and invertebrate species. The ubiquitous use, and subsequent human exposure, of one particular chemical, the estrogen mimic bisphenol A (BPA), is the subject of this present review. We have highlighted this chemical since it provides an arresting model of how chemical exposure impacts developmental processes involved in the morphogenesis of tissues and organs, including those of the male and female reproductive systems, the mammary glands and the brain.
Collapse
Affiliation(s)
- Caroline M Markey
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111-1800, USA
| | | | | | | |
Collapse
|
185
|
Cheon YP, Li Q, Xu X, DeMayo FJ, Bagchi IC, Bagchi MK. A genomic approach to identify novel progesterone receptor regulated pathways in the uterus during implantation. Mol Endocrinol 2002; 16:2853-71. [PMID: 12456805 DOI: 10.1210/me.2002-0270] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cellular actions of steroid hormone progesterone (P) are mediated via its nuclear receptors, which regulate the expression of specific target genes. The identity of gene networks that are regulated by the P receptors (PRs) in the uterus at various stages of the reproductive cycle and pregnancy, however, remain largely unknown. In this study, we have used oligonucleotide microarrays to identify mRNAs whose expression in the pregnant mouse uterus is modulated by RU486, a well-characterized PR antagonist, which is also an effective inhibitor of implantation. We found that, in response to RU486, expression of mRNAs corresponding to 78 known genes was down-regulated at least 2-fold in the preimplantation mouse uterus. The PR regulation of several of these genes was ascertained by administering P to ovariectomized wild-type and PR knockout (PRKO) mice. Detailed spatio-temporal analysis of these genes in the pregnant uterus indicated that their expression in the epithelium and stroma could be correlated with the expression of PR in those cell types. Furthermore, time-course studies suggested that many of these genes are likely primary targets of PR regulation. We also identified 70 known genes that were up-regulated at least 2-fold in the pregnant uterus in response to RU486. Interestingly, initial examination of a number of RU486-inducible genes reveals that their uterine expression is also regulated by estrogen. The identification of several novel PR-regulated gene pathways in the reproductive tract is an important step toward understanding how P regulates the physiological events leading to implantation.
Collapse
Affiliation(s)
- Yong-Pil Cheon
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
186
|
Lamm ML, Catbagan WS, Laciak RJ, Barnett DH, Hebner CM, Gaffield W, Walterhouse D, Iannaccone P, Bushman W. Sonic hedgehog activates mesenchymal Gli1 expression during prostate ductal bud formation. Dev Biol 2002; 249:349-66. [PMID: 12221011 DOI: 10.1006/dbio.2002.0774] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ductal budding in the developing prostate is a testosterone-dependent event that involves signaling between the urogenital sinus epithelium (UGE) and urogenital sinus mesenchyme (UGM). We show here that ductal bud formation is associated with focused expression of Sonic hedgehog (Shh) in the epithelium of nascent prostate buds and in the growing tips of elongating prostate ducts. This pattern of localized Shh expression occurs in response to testosterone stimulation. The gene for the Shh receptor, Ptc1, is expressed in the UGM, as are the members of the Gli gene family of transcriptional regulators (Gli1, Gli2, and Gli3). Expression of Ptc1, Gli1, and Gli2 is localized primarily to mesenchyme surrounding prostate buds, whereas Gli3 is expressed diffusely throughout the UGM. A strong dependence of Gli1 (and Ptc1) expression on Shh signaling is demonstrated by induction of expression in both the intact urogenital sinus and the isolated UGM by exogenous SHH peptide. A similar dependence of Gli2 and Gli3 expression on Shh is not observed. Nonetheless, the chemical inhibitor of Shh signaling, cyclopamine, produced a graded inhibition of Gli gene expression (Gli1>Gli2>Gli3) in urogenital sinus explants that was paralleled by a severe inhibition of ductal budding.
Collapse
Affiliation(s)
- Marilyn L Lamm
- Department of Urology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Prins GS, Chang WY, Wang Y, van Breemen RB. Retinoic acid receptors and retinoids are up-regulated in the developing and adult rat prostate by neonatal estrogen exposure. Endocrinology 2002; 143:3628-40. [PMID: 12193579 DOI: 10.1210/en.2002-220184] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure to estrogens during the neonatal period interrupts rat prostatic development by reducing branching morphogenesis and by blocking epithelial cells from entering a normal differentiation pathway. Upon aging, ventral prostates exhibit extensive hyperplasia, dysplasia, and massive lymphocytic infiltrate, suggesting that neonatal estrogens may predispose the prostate gland to precancerous lesions. Vitamin A (retinol) and their derivatives (retinoic acids) are known key developmental regulators that bind and activate retinoic acid receptors (RARs). To evaluate whether neonatal estrogenization alters the sensitivity of the developing rat prostate to retinoids, RARalpha, -beta, and -gamma cellular localization and protein levels were analyzed over the course of development and into adulthood by immunocytochemistry and Western analysis, whereas mRNA levels were measured using RT-PCR. In addition, intraprostatic retinol and retinoic acid levels were quantitated on d 10 and 90 using HPLC-mass spectroscopy. Male rats were given 25 micro g estradiol benzoate or oil on d 1, 3, and 5 of life, and prostatic complexes were removed on d 6, 10, 15, 30, and 90. The RARs localized to distinct cell populations: RARbeta was expressed within basal epithelial cells, RARalpha was localized to differentiated luminal epithelial cells and smooth muscle cells, and RARgamma was expressed within periductal stromal cells. Over the normal course of development, total protein and mRNA levels for the RARs declined, so that the adult prostate possessed the lowest amounts of RAR. Exposure to estrogens during the neonatal period resulted in an immediate and sustained increase in RARalpha levels and in the number of cells that expressed RARbeta, whereas RARgamma levels were unaffected. Western analysis confirmed that total prostatic RAR protein levels were significantly increased, whereas RT-PCR demonstrated that RARalpha and RARbeta mRNA levels were markedly elevated in response to estrogenic exposure. The total prostatic retinol content was tripled by estrogenic exposure on d 10 and 90, indicating that the ability to retain retinoids within the prostate was permanently increased. Intraprostatic levels of 9-cis- and all-trans-retinoic acid levels were reduced on d 10, whereas 13-cis-retinoic acid levels were increased in response to estrogens. In the adult prostates of rats exposed neonatally to estrogen, total retinoic acid levels were doubled due to significant increases in both 9-cis- and 13-cis-retinoic acids compared with those in control prostates. In summary, levels of specific RARs and their activating ligands are increased in the prostate gland after neonatal estrogenic exposure, and this effect is permanent throughout the life of the animal. Thus, we hypothesize that alterations in morphogenesis as well as dysplasia in the adult prostate may be mediated in part through augmentation of transcriptional signals in the retinoid pathway.
Collapse
Affiliation(s)
- Gail S Prins
- Department of Urology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
188
|
Lessey BA, Gui Y, Apparao KBC, Young SL, Mulholland J. Regulated expression of heparin-binding EGF-like growth factor (HB-EGF) in the human endometrium: a potential paracrine role during implantation. Mol Reprod Dev 2002; 62:446-55. [PMID: 12112577 DOI: 10.1002/mrd.10129] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heparin-binding epidermal growth factor (HB-EGF) is a recently identified member of the EGF growth factor family found to be expressed in the uterus of both mouse and human at the time of implantation. In the present study, we investigated the expression patterns of HB-EGF in normal cycling endometrium and compared its expression with the fertility-associated endometrial epithelial biomarkers alpha(v)beta(3) integrin, leukemia inhibitory factor (LIF) and homeobox gene, HOXA-10. RNase protection assay (RPA) using RNA made from endometrium collected from different phases of the menstrual cycle demonstrated increased HB-EGF expression during the mid-secretory phase, a pattern similar to, but slightly preceding the expression of alpha(v)beta(3) integrin and HOXA-10. In vitro studies demonstrated stimulation of HB-EGF expression by estradiol-17beta (E(2)) and progesterone (P(4)) alone or in combination in stromal cells. Combined treatment with E(2) + P(4) was, however, required to stimulate epithelial HB-EGF expression. In vitro experiments demonstrated the ability of HB-EGF to stimulate epithelial expression of the key endometrial proteins including LIF, HOXA-10, and the beta(3) integrin subunit. Each has previously been demonstrated to be an important epithelial biomarker expressed during the implantation window. In addition, conditioned media from endometrial stromal cells treated with E(2) + P(4) + relaxin mimicked the stimulatory effect of HB-EGF on epithelial expression of the beta(3) integrin subunit. The stimulatory effect of the stromal-conditioned medium was blocked by antibodies that neutralize a known receptor for HB-EGF. These data suggest that uterine receptivity may be regulated in part by the stromal-derived HB-EGF.
Collapse
Affiliation(s)
- Bruce A Lessey
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | |
Collapse
|
189
|
Abstract
Implantation involves a series of steps leading to an effective reciprocal signaling between the blastocyst and the uterus. Except for a restricted period when ovarian hormones induce a uterine receptive phase, the uterus is an unfavorable environment for blastocyst implantation. Because species-specific variations in implantation strategies exist, these differences preclude the formulation of a unifying theme for the molecular basis of this event. However, an increased understanding of mammalian implantation has been gained through the use of the mouse model. This review summarizes recognized signaling cascades and new research in mammalian implantation, based primarily on available genetic and molecular evidence from implantation studies in the mouse. Although the identification of new molecules associated with implantation in various species provides valuable insight, important questions remain regarding the common molecular mechanisms that govern this process. Understanding the mechanisms of implantation promises to help alleviate infertility, enhance fetal health, and improve contraceptive design. The success of any species depends on its reproductive efficiency. For sexual reproduction, an egg and sperm must overcome many obstacles to fuse and co-mingle their genetic material at fertilization. The zygote develops into a blastocyst with two cell lineages (the inner cell mass and the trophectoderm), migrates within the reproductive tract, and ultimately implants into a transiently permissive host tissue, the uterus. However, the molecular basis of the road map connecting the blastocyst with the endometrium across species is diverse (1) and not fully understood. Recent advances have identified numerous molecules involved in implantation (1-4), yet new discoveries have not yielded a unifying scheme for the mechanisms of implantation.
Collapse
Affiliation(s)
- B C Paria
- Department of Pediatrics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160-7336, USA
| | | | | | | |
Collapse
|
190
|
Iguchi T, Watanabe H, Katsu Y, Mizutani T, Miyagawa S, Suzuki A, Kohno S, Sone K, Kato H. Developmental toxicity of estrogenic chemicals on rodents and other species. Congenit Anom (Kyoto) 2002; 42:94-105. [PMID: 12196706 DOI: 10.1111/j.1741-4520.2002.tb00858.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antenatal sex-hormone exposure induces lesions in mouse reproductive organs, which are similar to those in humans exposed in utero to a synthetic estrogen, diethylstilbestrol. The developing organisms including rodents, fish and amphibians are particularly sensitive to exposure to estrogenic chemicals during a critical window. Exposure to estrogens during the critical period induces long-term changes in reproductive as well as non-reproductive organs, including persistent molecular alterations. The antenatal mouse model can be utilized as an indicator of possible long-term consequences of exposure to exogenous estrogenic compounds including possible environmental endocrine disruptors. Many chemicals released into the environment potentially disrupt the endocrine system in wildlife and humans, some of which exhibit estrogenic activity by binding to the estrogen receptors. Estrogen responsive genes, therefore, need to be identified to understand the molecular basis of estrogenic actions. In order to understand molecular mechanisms of estrogenic chemicals on developing organisms, we are identifying estrogen responsive genes using cDNA microarray, quantitative RT-PCR, and differential display methods, and genes related to the estrogen-independent vaginal changes in mice induced by estrogens during the critical window. In this review, discussion of our own findings related to endocrine distuptor issue will be provided.
Collapse
Affiliation(s)
- Taisen Iguchi
- Center for Integrative Bioscience, National Institute for Basic Biology, Okazaki National Research Institutes, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Matsumoto H, Zhao X, Das SK, Hogan BLM, Dey SK. Indian hedgehog as a progesterone-responsive factor mediating epithelial-mesenchymal interactions in the mouse uterus. Dev Biol 2002; 245:280-90. [PMID: 11977981 DOI: 10.1006/dbio.2002.0645] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genes encoding components of the hedgehog signaling pathway are dynamically expressed in the mouse uterus preparing for implantation. Indian hedgehog (Ihh), patched (Ptc), and Gli3 are expressed at low levels in the endometrial epithelium on day 1 of pregnancy. Transcription of Ihh increases dramatically in the luminal epithelium and glands from day 3, reaching very high levels on day 4. Over the same period, Ptc, Gli1, Gli2, and noggin are strongly upregulated in the underlying mesenchymal stroma. Transcription of Ihh in ovariectomized mice is induced by progesterone but not by estrogen. Lower induction of Ihh, Ptc, and Hoxa10 is seen in response to progesterone in the uteri of Pgr(-/-) mutant mice lacking progesterone nuclear steroid receptor. This finding suggests that the hormone may regulate Ihh through both nuclear receptor-dependent and -independent pathways. We describe a method for culturing uterine explants in the absence of epithelium. Under these conditions, recombinant N-SHH protein promotes the proliferation of mesenchyme cells and the expression of noggin. We propose that IHH made by the epithelium normally functions as a paracrine growth factor for stromal cells during the early stages of pregnancy.
Collapse
Affiliation(s)
- Hiromichi Matsumoto
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160-7336, USA
| | | | | | | | | |
Collapse
|
192
|
Li S, Ma L, Chiang T, Burow M, Newbold RR, Negishi M, Barrett JC, McLachlan JA. Promoter CpG methylation of Hox-a10 and Hox-a11 in mouse uterus not altered upon neonatal diethylstilbestrol exposure. Mol Carcinog 2001; 32:213-9. [PMID: 11746833 DOI: 10.1002/mc.10015] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mouse abdominal B-like Hoxa genes are expressed and functionally required in the developing reproductive tracts. Mice lacking either Hoxa-10 or Hoxa-11, two of the AbdB Hoxa genes, exhibit abnormal uterine development similar to that induced by in utero diethylstilbestrol (DES) exposure. Indeed, uterine Hoxa-10 and Hoxa-11 expression is potently repressed by perinatal DES exposure, providing a potential molecular mechanism for DES-induced reproductive tract malformations. We have shown previously that DES can permanently alter uterine lactoferrin gene expression through modulation of the lactoferrin promoter methylation pattern. Here we ask whether a similar mechanism also functions to deregulate uterine Hoxa-10 or Hoxa-11 expression during neonatal DES exposure. We mapped the Hoxa-10 promoter by cloning a 1.485 kb DNA fragment 5' of the Hoxa-10 exon1a. A 5' rapid amplification of cDNA ends (RACE) experiment revealed a transcription start site for the a10-1 transcript. Functional analysis of the proximal 200-bp sequences demonstrated significant promoter activity, confirming the location of the Hoxa-10 promoter. Moreover, methylation assays performed on eight CpGs in Hoxa-10 and 19 CpGs in Hoxa-11 proximal promoters demonstrated that all these CpGs were highly unmethylated in both control and DES-dosed mice from postnatal day 5 to day 30. Significant methylation around Hoxa-10 and Hoxa-11 promoters was only observed in DES-induced uterine carcinomas in 18-mo-old mice. Our results suggest that DES-induced downregulations of Hoxa-10 or Hoxa-11 gene expression are not associated with methylation changes in their proximal promoters and that gene imprinting by developmental DES exposure may be a gene-specific phenomenon.
Collapse
Affiliation(s)
- S Li
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Couse JF, Dixon D, Yates M, Moore AB, Ma L, Maas R, Korach KS. Estrogen receptor-alpha knockout mice exhibit resistance to the developmental effects of neonatal diethylstilbestrol exposure on the female reproductive tract. Dev Biol 2001; 238:224-38. [PMID: 11784006 DOI: 10.1006/dbio.2001.0413] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Data indicate that estrogen-dependent and -independent pathways are involved in the teratogenic/carcinogenic syndrome that follows developmental exposure to 17beta-estradiol or diethylstilbestrol (DES), a synthetic estrogen. However, the exact role and extent to which each pathway contributes to the resulting pathology remain unknown. We employed the alphaERKO mouse, which lacks estrogen receptor-alpha (ERalpha), to discern the role of ERalpha and estrogen signaling in mediating the effects of neonatal DES exposure. The alphaERKO provides the potential to expose DES actions mediated by the second known ER, ERbeta, and those that are ER-independent. Wild-type and alphaERKO females were treated with vehicle or DES (2 microg/pup/day for Days 1-5) and terminated after 5 days and 2, 4, 8, 12, and 20 months for biochemical and histomorphological analyses. Assays for uterine expression of the genes Hoxa10, Hoxa11, and Wnt7a shortly after treatment indicated significant decreases in DES-treated wild-type but no effect in the alphaERKO. In contrast, the DES effect on uterine expression of Wnt4 and Wnt5a was preserved in both genotypes, suggesting a developmental role for ERbeta. Adult alphaERKO mice exhibited complete resistance to the chronic effects of neonatal DES exposure exhibited in treated wild-type animals, including atrophy, decreased weight, smooth muscle disorganization, and epithelial squamous metaplasia in the uterus; proliferative lesions of the oviduct; and persistent vaginal cornification. Therefore, the lack of DES effects on gene expression and tissue differentiation in the alphaERKO provides unequivocal evidence of an obligatory role for ERalpha in mediating the detrimental actions of neonatal DES exposure in the murine reproductive tract.
Collapse
Affiliation(s)
- J F Couse
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
194
|
Markey CM, Luque EH, Munoz De Toro M, Sonnenschein C, Soto AM. In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod 2001; 65:1215-23. [PMID: 11566746 DOI: 10.1093/biolreprod/65.4.1215] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Exposure to estrogens throughout a woman's life, including the period of intrauterine development, is a risk factor for the development of breast cancer. The increased incidence of breast cancer noted during the last 50 years may have been caused, in part, by exposure of women to estrogen-mimicking chemicals that are released into the environment. Here, we investigated the effects of fetal exposure to one such chemical, bisphenol A (BPA), on development of the mammary gland. CD-1 mice were exposed in utero to low, presumably environmentally relevant doses of BPA (25 and 250 microg/kg body weight), and their mammary glands were assessed at 10 days, 1 mo, and 6 mo of age. Mammary glands of BPA-exposed mice showed differences in the rate of ductal migration into the stroma at 1 mo of age and a significant increase in the percentage of ducts, terminal ducts, terminal end buds, and alveolar buds at 6 mo of age. The percentage of cells that incorporated BrdU was significantly decreased within the epithelium at 10 days of age and increased within the stroma at 6 mo of age. These changes in histoarchitecture, coupled with an increased presence of secretory product within alveoli, resemble those of early pregnancy, and they suggest a disruption of the hypothalamic-pituitary-ovarian axis and/or misexpression of developmental genes. The altered relationship in DNA synthesis between the epithelium and stroma and the increase in terminal ducts and terminal end buds are striking, because these changes are associated with carcinogenesis in both rodents and humans.
Collapse
Affiliation(s)
- C M Markey
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111-1800, USA.
| | | | | | | | | |
Collapse
|
195
|
Tarleton BJ, Wiley AA, Bartol FF. Neonatal estradiol exposure alters uterine morphology and endometrial transcriptional activity in prepubertal gilts. Domest Anim Endocrinol 2001; 21:111-25. [PMID: 11585701 DOI: 10.1016/s0739-7240(01)00106-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Porcine endometrial development between birth (postnatal day = PND 0) and PND 56 involves differentiation of glandular epithelium (GE) from luminal epithelium (LE) and estrogen receptor-alpha (ER) expression. Juvenile ER architecture evolves after birth, as stroma and nascent GE first express ER. Mature ER architecture is evident after PND 30, when stroma, GE and LE are ER-positive. When administered during discrete periods between PND 0 and 56, effects of estradiol-17beta valerate (EV) on the neonatal porcine uterus relate to endometrial ER architecture. Transient EV exposure from birth reduces embryo survival in pregnant adult gilts. Effects of EV, administered as juvenile endometrial ER architecture develops (P1, PND 0-13), or after mature ER architecture is established (P2, PND 42-55), were evaluated in uteri from gilts treated with corn oil or EV in P1 or P2 and hysterectomized on PND 100 without additional steroids (NSt), on PND 102 after EV on PND100-101 (EV2), or on PND 117 after EV2 followed by progesterone on PND 102-116 (EP). Neonatal EV reduced uterine weight (P < 0.02), size (P < 0.01), luminal protein content (P < 0.07), and percent incorporation of 3H-leucine into nondialyzable endometrial products in vitro (P < 0.01). Group (NSt, EV2, EP) -specific treatment effects detected for endometrial ER, progesterone receptor, uteroferrin, and/or retinol binding protein mRNA levels were frequently related to period (P1,P2). Results support the idea that estrogen-sensitive postnatal organizational events, including those defined, in part, by endometrial ER architecture, are likely components of genetic and epigenetic programs governing uterine morphogenesis and ontogeny of endometrial function in the pig.
Collapse
Affiliation(s)
- B J Tarleton
- Department of Animal and Dairy Sciences, Program in Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849-5415, USA
| | | | | |
Collapse
|
196
|
Abstract
The term "endocrine disrupting chemicals" is commonly used to describe environmental agents that alter the endocrine system. Laboratories working in this emerging field-environmental endocrine research-have looked at chemicals that mimic or block endogenous vertebrate steroid hormones by interacting with the hormone's receptor. Environmental chemicals known to do this do so most often with receptors derived from the steroid/thyroid/retinoid gene family. They include ubiquitous and persistent organochlorines, as well as plasticizers, pharmaceuticals, and natural hormones. These chemicals function as estrogens, antiestrogens, and antiandrogens but have few, if any, structural similarities. Therefore, receptor-based or functional assays have the best chance of detecting putative biological activity of environmental chemicals. Three nuclear estrogen receptor forms-alpha, beta, and gamma-as well as multiple membrane forms and a possible mitochondrial form have been reported, suggesting a previously unknown diversity of signaling pathways available to estrogenic chemicals. Examples of environmental or ambient estrogenization occur in laboratory experiments, zoo animals, domestic animals, wildlife, and humans. Environmentally estrogenized phenotypes may differ depending upon the time of exposure-i.e., whether the exposure occurred at a developmental (organizational and irreversible) or postdevelopmental (activational and reversible) stage. The term "estrogen" must be defined in each case, since steroidal estrogens differ among themselves and from synthetic or plant-derived chemicals. An "estrogen-like function" seems to be an evolutionarily ancient signal that has been retained in a number of chemicals, some of which are vertebrate hormones. Signaling, required for symbiosis between plants and bacteria, may be viewed, therefore, as an early example of hormone cross-talk. Developmental feminization at the structural or functional level is an emerging theme in species exposed, during embryonic or fetal life, to estrogenic compounds. Human experience as well as studies in experimental animals with the potent estrogen diethylstilbestrol provide informative models. Advances in the molecular genetics of sex differentiation in vertebrates facilitate mechanistic understanding. Experiments addressing the concept of gene imprinting or induction of epigenetic memory by estrogen or other hormones suggest a link to persistent, heritable phenotypic changes seen after developmental estrogenization, independent of mutagenesis. Environmental endocrine science provides a new context in which to examine the informational content of ecosystem-wide communication networks. As common features come to light, this research may allow us to predict environmentally induced alterations in internal signaling systems of vertebrates and some invertebrates and eventually to explicate environmental contributions to human reproductive and developmental health.
Collapse
Affiliation(s)
- J A McLachlan
- Department of Pharmacology, Tulane University Health Sciences Center, Environmental Endocrinology Laboratory, Center for Bioenvironmental Research, Tulane and Xavier Universities, New Orleans, Louisiana 70112-2699, USA.
| |
Collapse
|
197
|
Abstract
Implantation is a highly co-ordinated event that involves both embryonic and endometrial participation. The endometrium expresses a sophisticated repertoire of proteins during the menstrual cycle many of which help to define a period of receptivity collectively known as the 'window of implantation'. Many of these factors, which are temporally aligned with this window, are now seen as chemical messengers that are recognized by the embryo and facilitate embryonic growth and differentiation. The use of such proteins as biomarkers has also advanced our understanding of the implantation process and may identify women with implantation failure and infertility. While the study of endometrial receptivity is still evolving, the field is growing rapidly and will probably enhance our ability to diagnose and treat couples with infertility, especially in the arena of assisted reproductive technologies (ART).
Collapse
Affiliation(s)
- B A Lessey
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill 27599, USA
| |
Collapse
|
198
|
Abstract
Reproductive tissues respond to steroid hormones and thus are particularly vulnerable to the effects of exogenous steroid 'mimic' compounds (endocrine disrupters). One such endocrine disrupter, diethylstilbestrol (DES), is linked to gynecological cancers and changes in uterine structure that reduce or completely abrogate reproductive competence. Until recently, little was known about the identity of target genes and signaling pathways involved in pathologies linked to endocrine disrupters such as DES. We outline genetic, cellular and molecular roles for patterning genes, with emphasis on homeobox and Wnt genes. There is evidence that changes in the expression of Wnt and homeogenes underlie many of the defects induced by DES. Data obtained from murine systems will likely apply to a broad spectrum of gynecological pathologies involving abnormal cell behaviors ranging from fibroids to malignant tumors. Knowledge garnered from modern molecular genetics should lead to progress in the emerging field of molecular gynecology.
Collapse
Affiliation(s)
- J Kitajewski
- Department of Pathology and OB/GYN, Columbia University, New York, New York, USA
| | | |
Collapse
|
199
|
Das SK, Tan J, Raja S, Halder J, Paria BC, Dey SK. Estrogen targets genes involved in protein processing, calcium homeostasis, and Wnt signaling in the mouse uterus independent of estrogen receptor-alpha and -beta. J Biol Chem 2000; 275:28834-42. [PMID: 10893236 DOI: 10.1074/jbc.m003827200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogen actions in target organs are normally mediated via activation of nuclear estrogen receptors (ERs). By using mRNA differential display technique, we show, herein, that estradiol-17beta (E(2)) and its catechol metabolite 4-hydroxy-E(2) (4OHE(2)) can modulate uterine gene expression in ERalpha(-/-) mice. Whereas administration of E(2) or 4OHE(2) rapidly up-regulated (4-8-fold) the expression of immunoglobulin heavy chain binding protein (Bip), calpactin I (CalP), calmodulin (CalM), and Sik similar protein (Sik-SP) genes in ovariectomized wild-type or ERalpha(-/-) mice, the expression of secreted frizzled related protein-2 (SFRP-2) gene was down-regulated (4-fold). Bip, CalP, and CalM are calcium-binding proteins and implicated in calcium homeostasis, whereas SFRP-2 is a negative regulator of Wnt signaling. Bip and Sik-SP also possess chaperone-like functions. Administration of ICI-182,780 or cycloheximide failed to influence these estrogenic responses, demonstrating that these effects occur independent of ERalpha, ERbeta, or protein synthesis. In situ hybridization showed differential cell-specific expression of these genes in wild-type and ERalpha(-/-) uteri. Although progesterone can antagonize or synergize estrogen actions, it had minimal effects on these estrogenic responses. Collectively, the results demonstrate that estrogens have a unique ability to influence specific genes in the uterus not involving classical nuclear ERs.
Collapse
Affiliation(s)
- S K Das
- Department of Obstetrics & Gynecology, the Department of Molecular & Integrative Physiology, Ralph L. Smith Research Center, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | | | | | | | |
Collapse
|
200
|
Branford WW, Benson GV, Ma L, Maas RL, Potter SS. Characterization of Hoxa-10/Hoxa-11 transheterozygotes reveals functional redundancy and regulatory interactions. Dev Biol 2000; 224:373-87. [PMID: 10926774 DOI: 10.1006/dbio.2000.9809] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hox genes show related sequences and overlapping expression domains that often reflect functional redundancy as well as a common evolutionary origin. To accurately define their functions, it has become necessary to compare phenotypes of mice with single and multiple Hox gene mutations. Here, we focus on two Abd-B-type genes, Hoxa-10 and Hoxa-11, which are coexpressed in developing vertebrae, limbs, and reproductive tracts. To assess possible functional redundancy between these two genes, Hoxa-10/Hoxa-11 transheterozygotes were produced by genetic intercrosses and analyzed. This compound mutation resulted in synergistic defects in transheterozygous limbs and reproductive tracts, but not in vertebrae. In the forelimb, distal radial/ulnar thickening and pisiform/triangular carpal fusion were observed in 35 and 21% of transheterozygotes, respectively, but were effectively absent in Hoxa-10 and Hoxa-11 +/- forelimbs. In the hindlimb, distal tibial/fibular thickening and loss of tibial/fibular fusion were observed in >80% of transheterozygotes but in no Hoxa-10 or Hoxa-11 +/- hindlimbs, and all transheterozygotes displayed reduced medial patellar sesamoids, compared to modest incidences in Hoxa-10 and Hoxa-11 +/- mutants. Furthermore, while the reproductive tracts of Hoxa-10 and Hoxa-11 single heterozygous mutants of both sexes were primarily unaffected, male transheterozygotes displayed cryptorchidism and abnormal tortuosity of the ductus deferens, and female transheterozygotes exhibited abnormal uterotubal junctions and narrowing of the uterus. In addition we observed that the targeted mutations of Hoxa-10 and Hoxa-11 each affected the expression of the other gene in the developing prevertebra and reproductive tracts. These results provide a measure of the functional redundancy of Hoxa-10 and Hoxa-11 and a deeper understanding of the phenotypes resulting in the single mutants and help elucidate the regulatory interactions between these two genes.
Collapse
Affiliation(s)
- W W Branford
- Developmental Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|