151
|
Hernandez ME, O'Donnell E, Chaparro G, Holtzer R, Izzetoglu M, Sandroff BM, Motl RW. Brain Activation Changes During Balance- and Attention-Demanding Tasks in Middle- and Older-Aged Adults With Multiple Sclerosis. Motor Control 2019; 23:498-517. [PMID: 30987505 DOI: 10.1123/mc.2018-0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2023]
Abstract
Functional near-infrared spectroscopy was used to evaluate prefrontal cortex activation differences between older adults with multiple sclerosis (MS) and healthy older adults (HOA) during the performance of a balance- and attention-demanding motor task. Ten older adults with MS and 12 HOA underwent functional near-infrared spectroscopy recording while talking, virtual beam walking, or virtual beam walking while talking on a self-paced treadmill. The MS group demonstrated smaller increases in prefrontal cortex oxygenation levels than HOA during virtual beam walking while talking than talking tasks. These findings indicate a decreased ability to allocate additional attentional resources in challenging walking conditions among MS compared with HOA. This study is the first to investigate brain activation dynamics during the performance of balance- and attention-demanding motor tasks in persons with MS.
Collapse
|
152
|
Belluscio V, Stuart S, Bergamini E, Vannozzi G, Mancini M. The Association between Prefrontal Cortex Activity and Turning Behavior in People with and without Freezing of Gait. Neuroscience 2019; 416:168-176. [PMID: 31330231 PMCID: PMC7778469 DOI: 10.1016/j.neuroscience.2019.07.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 10/26/2022]
Abstract
Turning elicits Freezing of Gait (FoG) episodes in people with Parkinson's disease (PD) and is thought to require higher cortical control compared to straight ahead gait. Functional near infrared spectroscopy (fNIRS) has been used to examine prefrontal cortex (PFC) activity while walking, but the relationship between PFC activity and turn performance remains unclear. The aim of this pilot study was to examine PFC activity during turning in PD and healthy controls, and to investigate the association between PFC activity and turning. Thirty-two subjects, 15 freezers (PD + FoG) and 17 non-freezers (PD - FoG), and 8 controls were asked to perform a 2-min turning-in-place test under single-task (ST) and dual-task (DT) conditions. Each participant wore an fNIRS system to measure changes in oxyhemoglobin, as measure of PFC activity, and inertial sensors to quantify turning. Our results show a significant group (p = .050), task (p = .039), and interaction (p = .047) for the PFC activity during turning. Specifically, PD + FoG show higher PFC during turning compared to the other groups; PFC activity during DT is overall different compared to ST with an opposite trend in PD + FoG compared to controls and PD - FoG. In addition, higher PFC is associated with worse FoG in PD + FoG (r = 0.57, p = .048) and with lower number of turns in PD - FoG (r = -0.70, p = .002). The increased PFC activity in PD and the association between higher PFC activity and poorer turning performance may be a sign of poor movement automaticity in PD. Although further investigations are required, these pilot findings may guide development of personalized treatments to improve motor automaticity in PD.
Collapse
Affiliation(s)
- Valeria Belluscio
- Universita' degli Studi di Roma Foro Italico, Roma, Italy; Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
| | - Samuel Stuart
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | - Martina Mancini
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
153
|
Deligianni F, Guo Y, Yang GZ. From Emotions to Mood Disorders: A Survey on Gait Analysis Methodology. IEEE J Biomed Health Inform 2019; 23:2302-2316. [PMID: 31502995 DOI: 10.1109/jbhi.2019.2938111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mood disorders affect more than 300 million people worldwide and can cause devastating consequences. Elderly people and patients with neurological conditions are particularly susceptible to depression. Gait and body movements can be affected by mood disorders, and thus they can be used as a surrogate sign, as well as an objective index for pervasive monitoring of emotion and mood disorders in daily life. Here we review evidence that demonstrates the relationship between gait, emotions and mood disorders, highlighting the potential of a multimodal approach that couples gait data with physiological signals and home-based monitoring for early detection and management of mood disorders. This could enhance self-awareness, enable the development of objective biomarkers that identify high risk subjects and promote subject-specific treatment.
Collapse
|
154
|
Miyara K, Kawamura K, Matsumoto S, Ohwatashi A, Itashiki Y, Uema T, Noma T, Ikeda K, Shimodozono M. Acute changes in cortical activation during active ankle movement after whole-body vibration for spasticity in hemiplegic legs of stroke patients: a functional near-infrared spectroscopy study. Top Stroke Rehabil 2019; 27:67-74. [DOI: 10.1080/10749357.2019.1659639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Kodai Miyara
- Department of Rehabilitation, Kagoshima University Hospital, Kagoshima, Japan
| | - Kentaro Kawamura
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shuji Matsumoto
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Rehabilitation and Physical Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Ohwatashi
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Yuki Itashiki
- Department of Rehabilitation, Kagoshima University Hospital, Kagoshima, Japan
| | - Tomohiro Uema
- Department of Rehabilitation, Kagoshima University Hospital, Kagoshima, Japan
| | - Tomokazu Noma
- Department of Rehabilitation, Faculty of Health Science, Nihon Fukushi University, Aichi, Japan
| | - Keiko Ikeda
- Department of Rehabilitation, Kagoshima University Hospital, Kagoshima, Japan
| | - Megumi Shimodozono
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
155
|
Klempir O, Krupicka R, Mehnert J, Cejka V, Polakova K, Brozova H, Szabo Z, Ruzicka E, Jech R. Reshaping cortical activity with subthalamic stimulation in Parkinson's disease during finger tapping and gait mapped by near infrared spectroscopy. J Appl Biomed 2019; 17:157-166. [PMID: 34907697 DOI: 10.32725/jab.2019.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/19/2019] [Indexed: 11/05/2022] Open
Abstract
Exploration of motor cortex activity is essential to understanding the pathophysiology in Parkinson's Disease (PD), but only simple motor tasks can be investigated using a fMRI or PET. We aim to investigate the cortical activity of PD patients during a complex motor task (gait) to verify the impact of deep brain stimulation in the subthalamic nucleus (DBS-STN) by using Near-Infrared-Spectroscopy (NIRS). NIRS is a neuroimaging method of brain cortical activity using low-energy optical radiation to detect local changes in (de)oxyhemoglobin concentration. We used a multichannel portable NIRS during finger tapping (FT) and gait. To determine the signal activity, our methodology consisted of a pre-processing phase for the raw signal, followed by statistical analysis based on a general linear model. Processed recordings from 9 patients were statistically compared between the on and off states of DBS-STN. DBS-STN led to an increased activity in the contralateral motor cortex areas during FT. During gait, we observed a concentration of activity towards the cortex central area in the "stimulation-on" state. Our study shows how NIRS can be used to detect functional changes in the cortex of patients with PD with DBS-STN and indicates its future use for applications unsuited for PET and a fMRI.
Collapse
Affiliation(s)
- Ondrej Klempir
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Department of Biomedical Informatics, Kladno, Czech Republic
| | - Radim Krupicka
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Department of Biomedical Informatics, Kladno, Czech Republic
| | - Jan Mehnert
- University Medical Center Eppendorf, Department of Systems Neuroscience, Hamburg, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Vaclav Cejka
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Department of Biomedical Informatics, Kladno, Czech Republic.,Charles University, First Faculty of Medicine and General University Hospital, Department of Neurology, Prague, Czech Republic
| | - Kamila Polakova
- Charles University, First Faculty of Medicine and General University Hospital, Department of Neurology, Prague, Czech Republic
| | - Hana Brozova
- Charles University, First Faculty of Medicine and General University Hospital, Department of Neurology, Prague, Czech Republic
| | - Zoltan Szabo
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Department of Biomedical Informatics, Kladno, Czech Republic
| | - Evzen Ruzicka
- Charles University, First Faculty of Medicine and General University Hospital, Department of Neurology, Prague, Czech Republic
| | - Robert Jech
- Charles University, First Faculty of Medicine and General University Hospital, Department of Neurology, Prague, Czech Republic
| |
Collapse
|
156
|
Alder G, Signal N, Olsen S, Taylor D. A Systematic Review of Paired Associative Stimulation (PAS) to Modulate Lower Limb Corticomotor Excitability: Implications for Stimulation Parameter Selection and Experimental Design. Front Neurosci 2019; 13:895. [PMID: 31507367 PMCID: PMC6718871 DOI: 10.3389/fnins.2019.00895] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Abstract
Non-invasive neuromodulatory interventions have the potential to influence neural plasticity and augment motor rehabilitation in people with stroke. Paired associative stimulation (PAS) involves the repeated pairing of single pulses of electrical stimulation to a peripheral nerve and single pulses of transcranial magnetic stimulation over the contralateral primary motor cortex. Efficacy of PAS in the lower limb of healthy and stroke populations has not been systematically appraised. Optimal protocols including stimulation parameter settings have yet to be determined. This systematic review (a) examines the efficacy of PAS on lower limb corticomotor excitability in healthy and stroke populations and (b) evaluates the stimulation parameters employed. Five databases were searched for randomized, non-randomized, and pre-post experimental studies evaluating lower limb PAS in healthy and stroke populations. Two independent reviewers identified eligible studies and assessed methodological quality using a modified Downs and Blacks Tool and the TMS Checklist. Intervention stimulation parameters and TMS measurement details were also extracted and compared. Twelve articles, comprising 24 experiments, met the inclusion criteria. Four articles evaluated PAS in people with stroke. Following a single session of PAS, 21 experiments reported modulation of corticomotor excitability, lasting up to 60 min; however, the research lacked methodological rigor. Intervention stimulation parameters were highly variable across experiments, and whilst these appeared to influence efficacy, variations in the intervention and outcome assessment methods hindered the ability to draw conclusions about optimal parameters. Lower limb PAS research requires further investigation before considering its translation into clinical practice. Eight key recommendations serve as guide for enhancing future research in the field.
Collapse
Affiliation(s)
- Gemma Alder
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Nada Signal
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Sharon Olsen
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Denise Taylor
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
157
|
Hinton DC, Thiel A, Soucy JP, Bouyer L, Paquette C. Adjusting gait step-by-step: Brain activation during split-belt treadmill walking. Neuroimage 2019; 202:116095. [PMID: 31430533 DOI: 10.1016/j.neuroimage.2019.116095] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 12/29/2022] Open
Abstract
When walking on a split-belt treadmill, where each leg is driven at a different speed, a temporary change is made to the typical steady-state walking pattern. The exact ways in which the brain controls these temporary changes to walking are still unknown. Ten young adults (23±3y) walked on a split-belt treadmill for 30 min on 2 separate occasions: tied-belt control with both belts at comfortable walking speed, and continuous adjustment where speed ratio between belts changed every 15 seconds. 18F-fluorodeoxyglucose (18FDG) positron emission tomography (PET) imaging measured whole brain glucose metabolism distribution, or activation, during each treadmill walking condition. The continuous adjustment condition, compared to the tied-belt control, was associated with increased activity of supplementary motor areas (SMA), posterior parietal cortex (PPC), anterior cingulate cortex and anterior lateral cerebellum, and decreased activity of posterior cingulate and medial prefrontal cortex. In addition, peak activation of the PPC, SMA and PFC were correlated with cadence and temporal gait variability. We propose that a "fine-tuning" network for human locomotion exists which includes brain areas for sensorimotor integration, motor planning and goal directed attention. These findings suggest that distinct regions govern the inherent flexibility of the human locomotor plan to maintain a successful and adjustable walking pattern.
Collapse
Affiliation(s)
- Dorelle C Hinton
- Department of Kinesiology and Physical Education, McGill University, Montreal, H2W 1S4, Canada; Centre for Interdisciplinary Research in Rehabilitation of Montreal (CRIR), Montreal, H3S 1M9, Canada
| | - Alexander Thiel
- Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, H3T 1E2, Canada
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Laurent Bouyer
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Quebec, G1M 2S8, Canada; Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec, G1V 0A6, Canada
| | - Caroline Paquette
- Department of Kinesiology and Physical Education, McGill University, Montreal, H2W 1S4, Canada; Centre for Interdisciplinary Research in Rehabilitation of Montreal (CRIR), Montreal, H3S 1M9, Canada.
| |
Collapse
|
158
|
Fishell AK, Burns-Yocum TM, Bergonzi KM, Eggebrecht AT, Culver JP. Mapping brain function during naturalistic viewing using high-density diffuse optical tomography. Sci Rep 2019; 9:11115. [PMID: 31366956 PMCID: PMC6668456 DOI: 10.1038/s41598-019-45555-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/05/2019] [Indexed: 01/01/2023] Open
Abstract
Naturalistic stimuli, such as movies, more closely recapitulate "real life" sensory processing and behavioral demands relative to paradigms that rely on highly distilled and repetitive stimulus presentations. The rich complexity inherent in naturalistic stimuli demands an imaging system capable of measuring spatially distributed brain responses, and analysis tools optimized for unmixing responses to concurrently presented features. In this work, the combination of passive movie viewing with high-density diffuse optical tomography (HD-DOT) is developed as a platform for naturalistic brain mapping. We imaged healthy young adults during free viewing of a feature film using HD-DOT and observed reproducible, synchronized cortical responses across a majority of the field-of-view, most prominently in hierarchical cortical areas related to visual and auditory processing, both within and between individuals. In order to more precisely interpret broad patterns of cortical synchronization, we extracted visual and auditory features from the movie stimulus and mapped the cortical responses to the features. The results demonstrate the sensitivity of HD-DOT to evoked responses during naturalistic viewing, and that feature-based decomposition strategies enable functional mapping of naturalistic stimulus processing, including human-generated speech.
Collapse
Affiliation(s)
- Andrew K Fishell
- Washington University School of Medicine, Division of Biology and Biomedical Sciences, St. Louis, USA
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, USA
| | - Tracy M Burns-Yocum
- Indiana University, Department of Psychological and Brain Sciences, Bloomington, USA
| | - Karla M Bergonzi
- University of Pennsylvania, Department of Anesthesia and Critical Care, Philadelphia, USA
- University of Pennsylvania, Department of Physics, Philadelphia, USA
| | - Adam T Eggebrecht
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, USA
| | - Joseph P Culver
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, USA.
- Washington University, Department of Physics, St. Louis, USA.
- Washington University, Department of Biomedical Engineering, St. Louis, USA.
| |
Collapse
|
159
|
Doi T, Tsutsumimoto K, Nakakubo S, Kim MJ, Kurita S, Shimada H. Rethinking the Relationship Between Spatiotemporal Gait Variables and Dementia: A Prospective Study. J Am Med Dir Assoc 2019; 20:899-903. [DOI: 10.1016/j.jamda.2019.01.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
|
160
|
Chatterjee SA, Fox EJ, Daly JJ, Rose DK, Wu SS, Christou EA, Hawkins KA, Otzel DM, Butera KA, Skinner JW, Clark DJ. Interpreting Prefrontal Recruitment During Walking After Stroke: Influence of Individual Differences in Mobility and Cognitive Function. Front Hum Neurosci 2019; 13:194. [PMID: 31316360 PMCID: PMC6611435 DOI: 10.3389/fnhum.2019.00194] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Functional near-infrared spectroscopy (fNIRS) is a valuable neuroimaging approach for studying cortical contributions to walking function. Recruitment of prefrontal cortex during walking has been a particular area of focus in the literature. The present study investigated whether task-related change in prefrontal recruitment measured by fNIRS is affected by individual differences in people post-stroke. The primary hypotheses were that poor mobility function would contribute to prefrontal over-recruitment during typical walking, and that poor cognitive function would contribute to a ceiling in prefrontal recruitment during dual-task walking (i.e., walking with a cognitive task). Methods: Thirty-three adults with chronic post-stroke hemiparesis performed three tasks: typical walking at preferred speed (Walk), serial-7 subtraction (Serial7), and walking combined with serial-7 subtraction (Dual-Task). Prefrontal recruitment was measured with fNIRS and quantified as the change in oxygenated hemoglobin concentration (ΔO2Hb) between resting and active periods for each task. Spatiotemporal gait parameters were measured on an electronic walkway. Stepwise regression was used to assess how prefrontal recruitment was affected by individual differences including age, sex, stroke region, injured hemisphere, stroke chronicity, 10-meter walking speed, balance confidence measured by Activities-specific Balance Confidence (ABC) Scale, sensorimotor impairment measured by Fugl-Meyer Assessment, and cognitive function measured by Mini-Mental State Examination (MMSE). Results: For Walk, poor balance confidence (ABC Scale score) significantly predicted greater prefrontal recruitment (ΔO2Hb; R 2 = 0.25, p = 0.003). For Dual-Task, poor cognitive function (MMSE score) significantly predicted lower prefrontal recruitment (ΔO2Hb; R 2 = 0.25, p = 0.002). Conclusions: Poor mobility function predicted higher prefrontal recruitment during typical walking, consistent with compensatory over-recruitment. Poor cognitive function predicted lower prefrontal recruitment during dual-task walking, consistent with a recruitment ceiling effect. These findings indicate that interpretation of prefrontal recruitment should carefully consider the characteristics of the person and demands of the task.
Collapse
Affiliation(s)
- Sudeshna A. Chatterjee
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Emily J. Fox
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
- Brooks Rehabilitation, Jacksonville, FL, United States
| | - Janis J. Daly
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Dorian K. Rose
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Samuel S. Wu
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Evangelos A. Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Kelly A. Hawkins
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Dana M. Otzel
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States
| | - Katie A. Butera
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Jared W. Skinner
- Geriatric Research, Education and Clinical Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - David J. Clark
- Brain Rehabilitation Research Center (BRRC), Malcom Randall VA Medical Center, Gainesville, FL, United States
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States
| |
Collapse
|
161
|
Berger A, Horst F, Müller S, Steinberg F, Doppelmayr M. Current State and Future Prospects of EEG and fNIRS in Robot-Assisted Gait Rehabilitation: A Brief Review. Front Hum Neurosci 2019; 13:172. [PMID: 31231200 PMCID: PMC6561323 DOI: 10.3389/fnhum.2019.00172] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/13/2019] [Indexed: 01/22/2023] Open
Abstract
Gait and balance impairments are frequently considered as the most significant concerns among individuals suffering from neurological diseases. Robot-assisted gait training (RAGT) has shown to be a promising neurorehabilitation intervention to improve gait recovery in patients following stroke or brain injury by potentially initiating neuroplastic changes. However, the neurophysiological processes underlying gait recovery through RAGT remain poorly understood. As non-invasive, portable neuroimaging techniques, electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) provide new insights regarding the neurophysiological processes occurring during RAGT by measuring different perspectives of brain activity. Due to spatial information about changes in cortical activation patterns and the rapid temporal resolution of bioelectrical changes, more features correlated with brain activation and connectivity can be identified when using fused EEG-fNIRS, thus leading to a detailed understanding of neurophysiological mechanisms underlying motor behavior and impairments due to neurological diseases. Therefore, multi-modal integrations of EEG-fNIRS appear promising for the characterization of neurovascular coupling in brain network dynamics induced by RAGT. In this brief review, we surveyed neuroimaging studies focusing specifically on robotic gait rehabilitation. While previous studies have examined either EEG or fNIRS with respect to RAGT, a multi-modal integration of both approaches is lacking. Based on comparable studies using fused EEG-fNIRS integrations either for guiding non-invasive brain stimulation or as part of brain-machine interface paradigms, the potential of this methodologically combined approach in RAGT is discussed. Future research directions and perspectives for targeted, individualized gait recovery that optimize the outcome and efficiency of RAGT in neurorehabilitation were further derived.
Collapse
Affiliation(s)
- Alisa Berger
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany
| | - Fabian Horst
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany
| | - Sophia Müller
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany
| | - Fabian Steinberg
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany
| | - Michael Doppelmayr
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany.,Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
162
|
Stuart S, Belluscio V, Quinn JF, Mancini M. Pre-frontal Cortical Activity During Walking and Turning Is Reliable and Differentiates Across Young, Older Adults and People With Parkinson's Disease. Front Neurol 2019; 10:536. [PMID: 31191434 PMCID: PMC6540937 DOI: 10.3389/fneur.2019.00536] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction: Mobility declines with age and further with neurodegenerative disorders, such as Parkinson's disease (PD). Walking and turning ability, in particular, are vital aspects of mobility that deteriorate with age and are further impaired in PD. Such deficits have been linked with reduction in automatic control of movement and the need for compensatory cognitive cortical control via the pre-frontal cortex (PFC), however the underlying neural mechanisms remain unclear. Establishing and using a robust methodology to examine PFC activity during continuous walking and turning via mobile functional near infra-red spectroscopy (fNIRS) may aid in the understanding of mobility deficits and help with development of appropriate therapeutics. This study aimed to: (1) examine test re-test reliability of PFC activity during continuous turning and walking via fNIRS measurement; and (2) compare PFC activity during continuous turning and walking in young, old and Parkinson's subjects. Methods: Twenty-five young (32.3 ± 7.5 years), nineteen older (65.4 ± 7.0 years), and twenty-four PD (69.3 ± 4.1 years) participants performed continuous walking and 360° turning-in-place tasks, each lasting 2 min. Young participants repeated the tasks a second time to allow fNIRS measurement reliability assessment. The primary outcome was PFC activity, assessed via measuring changes in oxygenated hemoglobin (HbO2) concentrations. Results: PFC activity during continuous walking and turning was moderately reproducible (Intra-class correlation coefficient = 0.67). The PD group had higher PFC activation than young and older adults during walking and turning, with significant group differences for bilateral PFC activation (p = 0.025), left PFC activation (p = 0.012), and the early period (first 40 s) of walking (p = 0.007), with greater activation required in PD. Interestingly, older adults had similar PFC activation to young adults across conditions, however older adults required greater activation than young adults during continuous turning, specifically the early period of the turning task (Cohens d = 0.86). Conclusions: PFC activity can be measured during continuous walking and turning tasks with acceptable reliability, and can differentiate young, older and PD groups. PFC activation was significantly greater in PD compared to young and older adults during walking, particularly when beginning to walk.
Collapse
Affiliation(s)
- Samuel Stuart
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Valeria Belluscio
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Movement, Human and Health Sciences, Università degli Studi di Roma Foro Italico, Rome, Italy
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Martina Mancini
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
163
|
Kanokwan S, Pramkamol W, Wipatcharee K, Warissara W, Siwarit R, Sompiya S, Onuma B, Mitra S. Age-related differences in brain activity during physical and imagined sit-to-stand in healthy young and older adults. J Phys Ther Sci 2019; 31:440-448. [PMID: 31164782 PMCID: PMC6511512 DOI: 10.1589/jpts.31.440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/19/2019] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of this study was to investigate whether healthy young and older
people differ in self-reported movement time and brain activity pattern as indicated by
electroencephalography during physical and imagined sit-to-stand movements. [Participants
and Methods] Twenty healthy young (aged 20–29 years) and 19 older (aged 60–69)
participants performed physical and imagined sit-to-stand movements while their
self-reported movement times and electroencephalography were recorded. [Results] No
age-related differences were found in self-reported movement time for physical or imagined
sit-to-stand. In the frontal and temporal regions, electroencephalography showed a beta
wave (14–17 Hz) for all conditions in both young and older adults. In the parietal and
occipital regions, during physical sit-to-stand trials, both groups showed a beta wave in
both regions. During imagined sit-to-stand trials, however, young participants showed a
high alpha wave (10.6–13 Hz) in the parietal and a low alpha wave (8–10.5 Hz) in the
occipital region, whereas older participants showed all three (alpha and beta) waves in
the parietal and occipital regions. [Conclusion] Although no age-related differences were
found in the ability to generate motor imagery, brain activity pattern as indicated by
electroencephalography was dissimilar between young and older participants during motor
imagery.
Collapse
Affiliation(s)
- Srisupornkornkool Kanokwan
- Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University: Phitsanulok 65000, Thailand
| | - Wongcheen Pramkamol
- Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University: Phitsanulok 65000, Thailand
| | - Klongkhayan Wipatcharee
- Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University: Phitsanulok 65000, Thailand
| | - Warnjing Warissara
- Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University: Phitsanulok 65000, Thailand
| | | | - Somthavil Sompiya
- Department of Rehabilitation and Movement Sciences, Faculty of Sports Science, Kasetsart University, Thailand
| | - Boonyarom Onuma
- Department of Rehabilitation and Movement Sciences, Faculty of Sports Science, Kasetsart University, Thailand
| | - Suvobrata Mitra
- Division of Psychology, Nottingham Trent University, United Kingdom
| |
Collapse
|
164
|
Weersink JB, Maurits NM, de Jong BM. EEG time-frequency analysis provides arguments for arm swing support in human gait control. Gait Posture 2019; 70:71-78. [PMID: 30826690 DOI: 10.1016/j.gaitpost.2019.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 01/31/2019] [Accepted: 02/22/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Human gait benefits from arm swing, which requires four-limb co-ordination. The Supplementary Motor Area (SMA) is involved in multi-limb coordination. With its location anterior to the leg motor cortex and the pattern of its connections, this suggests a distinct role in gait control. RESEARCH QUESTION Is the SMA functionally implicated in gait-related arm swing? METHODS Ambulant electroencephalography (EEG) was employed during walking with and without arm swing in twenty healthy subjects (mean age: 64.9yrs, SD 7.2). Power changes across the EEG frequency spectrum were assessed by Event Related Spectral Perturbation (ERSP) analysis over both the putative SMA at electrode position Fz and additional sensorimotor regions. RESULTS During walking with arm swing, midline electrodes Fz and Cz showed a step-related pattern of Event Related Desynchronization (ERD) followed by Event Related Synchronization (ERS). Walking without arm swing was associated with significant ERD-ERS power reduction in the high-beta/low-gamma band over Fz and a power increase over Cz. Electrodes C3 and C4 revealed a pattern of ERD during contralateral- and ERS during ipsilateral leg swing. This ERD power decreased in gait without arm swing (low-frequency band). The ERSP pattern during walking with arm swing was similar at CP1 and CP2: ERD was seen during double support and the initial swing phase of the right leg, while a strong ERS emerged during the second half of the left leg's swing. Walking without arm swing showed a significant power reduction of this ERD-ERS pattern over CP2, while over CP1, ERS during left leg's swing turned into ERD. CONCLUSION The relation between arm swing in walking and a step-related ERD-ERS pattern in the high-beta/low-gamma band over the putative SMA, points at an SMA contribution to integrated cyclic anti-phase movements of upper- and lower limbs. This supports a cortical underpinning of arm swing support in gait control.
Collapse
Affiliation(s)
- Joyce B Weersink
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, the Netherlands
| | - Natasha M Maurits
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, the Netherlands
| | - Bauke M de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, the Netherlands.
| |
Collapse
|
165
|
Nakata H, Domoto R, Mizuguchi N, Sakamoto K, Kanosue K. Negative BOLD responses during hand and foot movements: An fMRI study. PLoS One 2019; 14:e0215736. [PMID: 31002697 PMCID: PMC6474656 DOI: 10.1371/journal.pone.0215736] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/08/2019] [Indexed: 11/18/2022] Open
Abstract
The present study employed functional magnetic resonance imaging (fMRI) to examine the characteristics of negative blood oxygen level-dependent (Negative BOLD) signals during motor execution. Subjects repeated extension and flexion of one of the following: the right hand, left hand, right ankle, or left ankle. Negative BOLD responses during hand movements were observed in the ipsilateral hemisphere of the hand primary sensorimotor area (SMI), medial frontal gyrus (MeFG), middle frontal gyrus (MFG), and superior frontal gyrus (SFG). Negative BOLD responses during foot movements were also noted in the bilateral hand SMI, MeFG, MFG, SFG, inferior frontal gyrus, middle temporal gyrus, parahippocampal gyrus, anterior cingulate cortex, cingulate gyrus (CG), fusiform gyrus, and precuneus. A conjunction analysis showed that portions of the MeFG and CG involving similar regions to those of the default mode network were commonly deactivated during voluntary movements of the right/left hand or foot. The present results suggest that three mechanisms are involved in the Negative BOLD responses observed during voluntary movements: (1) transcallosal inhibition from the contralateral to ipsilateral hemisphere in the SMI, (2) the deactivated neural network with several brain regions, and (3) the default mode network in the MeFG and CG.
Collapse
Affiliation(s)
- Hiroki Nakata
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan.,Health Sciences, Faculty of Human Life and Environment, Nara Women's University, Nara City, Japan
| | - Ryo Domoto
- School of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Nobuaki Mizuguchi
- The Japan Society for the Promotion of Science, Tokyo, Japan.,Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kiwako Sakamoto
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | | |
Collapse
|
166
|
Yokoyama H, Kaneko N, Ogawa T, Kawashima N, Watanabe K, Nakazawa K. Cortical Correlates of Locomotor Muscle Synergy Activation in Humans: An Electroencephalographic Decoding Study. iScience 2019; 15:623-639. [PMID: 31054838 PMCID: PMC6547791 DOI: 10.1016/j.isci.2019.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/09/2019] [Accepted: 04/04/2019] [Indexed: 01/17/2023] Open
Abstract
Muscular control during walking is believed to be simplified by the coactivation of muscles called muscle synergies. Although significant corticomuscular connectivity during walking has been reported, the level at which the cortical activity is involved in muscle activity (muscle synergy or individual muscle level) remains unclear. Here we examined cortical correlates of muscle activation during walking by brain decoding of activation of muscle synergies and individual muscles from electroencephalographic signals. We demonstrated that the activation of locomotor muscle synergies was decoded from slow cortical waves. In addition, the decoding accuracy for muscle synergies was greater than that for individual muscles and the decoding of individual muscle activation was based on muscle-synergy-related cortical information. These results indicate the cortical correlates of locomotor muscle synergy activation. These findings expand our understanding of the relationships between brain and locomotor muscle synergies and could accelerate the development of effective brain-machine interfaces for walking rehabilitation.
Collapse
Affiliation(s)
- Hikaru Yokoyama
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan; Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Tetsuya Ogawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for the Movement Functions, Research Institute of National Rehabilitation Center for the Disabled, Tokorozawa-shi, Saitama 359-0042, Japan
| | - Katsumi Watanabe
- Faculty of Science and Engineering, Waseda University, Shinjuku-ku Tokyo 169-8555, Japan; Art & Design, University of New South Wales, Sydney, NSW 2021, Australia; Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
167
|
Goh HT, Ewing S, Marchuk D, Newton A, Nyangani I. Facilitation of supplementary motor area excitability improves dual-task walking in young adults. Neurosci Lett 2019; 698:1-6. [DOI: 10.1016/j.neulet.2019.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/05/2018] [Accepted: 01/02/2019] [Indexed: 11/27/2022]
|
168
|
Boolani A, Martin R, Goodwin A, Avolio A, Sur S, Lee Smith M, Fulk G. Associations for tasks requiring single stimulus and working memory with different aspects of gait and posture: an exploratory study. Int J Rehabil Res 2019; 42:160-167. [PMID: 30882529 DOI: 10.1097/mrr.0000000000000347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Evidence suggests that there is a significant relationship between cognition and gait. However, studies have primarily focused on overall cognition when elucidating the relationship with gait. This study aimed to delineate specific aspects of cognition that are related to gait and postural control parameters. Participants (N = 11, age = 76.55 ± 7.58 years) performed a series of cognitive tasks categorized as either lower-level (serial subtract 3 and continuous performance task) or higher-level (serial subtract 7 and rapid visual input processing task) tasks. Following the completion of the cognitive tasks, participants performed balance and gait activities. This procedure was performed on two separate days with a minimum 48-h rest period between days. A bivariate Pearson correlation analysis was utilized to identify relationships between cognitive task scores and gait speed, step length, gait imbalance as well as the visual, vestibular, and somatosensory aspect of postural control. Lower-level cognitive tasks, specifically the serial subtract 3 was significantly (P < 0.05) associated with gait speed (r = 0.457), step length (r = 0.481), and the ability to maintain postural control with occluded vision and unreliable somatosensory input (r = -0.504). In contrast, higher-level cognitive tasks, specifically serial subtract 7 were associated (P < 0.05) with gait imbalance (r = -0.540), while rapid visual input processing primary reaction time was associated with the ability to maintain postural control in the absence of visual input (r = -0.751). Our findings align with functional magnetic resonance imaging (fMRI) studies that examine gait, postural control, and cognitive task performance and provide a granular insight. These results may help us to better understand the relationship between cognitive deficits, gait, and postural control with aging.
Collapse
Affiliation(s)
| | | | - Aurora Goodwin
- Department of Biology, Clarkson University, Potsdam, New York, USA
| | - Abigail Avolio
- Department of Biology, Clarkson University, Potsdam, New York, USA
| | - Shantanu Sur
- Department of Biology, Clarkson University, Potsdam, New York, USA
| | - Matthew Lee Smith
- Center for Population Health and Aging.,Department of Environmental and Occupational Health, Texas A&M School of Public Health, College Station, Texas, USA.,Department of Health Promotion and Behavior, College of Public Health, The University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
169
|
Nordin AD, Hairston WD, Ferris DP. Human electrocortical dynamics while stepping over obstacles. Sci Rep 2019; 9:4693. [PMID: 30886202 PMCID: PMC6423113 DOI: 10.1038/s41598-019-41131-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/28/2019] [Indexed: 12/21/2022] Open
Abstract
To better understand human brain dynamics during visually guided locomotion, we developed a method of removing motion artifacts from mobile electroencephalography (EEG) and studied human subjects walking and running over obstacles on a treadmill. We constructed a novel dual-layer EEG electrode system to isolate electrocortical signals, and then validated the system using an electrical head phantom and robotic motion platform. We collected data from young healthy subjects walking and running on a treadmill while they encountered unexpected obstacles to step over. Supplementary motor area and premotor cortex had spectral power increases within ~200 ms after object appearance in delta, theta, and alpha frequency bands (3–13 Hz). That activity was followed by similar posterior parietal cortex spectral power increase that decreased in lag time with increasing locomotion speed. The sequence of activation suggests that supplementary motor area and premotor cortex interrupted the gait cycle, while posterior parietal cortex tracked obstacle location for planning foot placement nearly two steps ahead of reaching the obstacle. Together, these results highlight advantages of adopting dual-layer mobile EEG, which should greatly facilitate the study of human brain dynamics in physically active real-world settings and tasks.
Collapse
Affiliation(s)
- Andrew D Nordin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, USA.
| | - W David Hairston
- Human Research and Engineering Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, USA
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, USA
| |
Collapse
|
170
|
Catrambone V, Greco A, Averta G, Bianchi M, Valenza G, Scilingo EP. Predicting Object-Mediated Gestures From Brain Activity: An EEG Study on Gender Differences. IEEE Trans Neural Syst Rehabil Eng 2019; 27:411-418. [DOI: 10.1109/tnsre.2019.2898469] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
171
|
Aguirre-Güemez AV, Pérez-Sanpablo AI, Quinzaños-Fresnedo J, Pérez-Zavala R, Barrera-Ortiz A. Walking speed is not the best outcome to evaluate the effect of robotic assisted gait training in people with motor incomplete Spinal Cord Injury: A Systematic Review with meta-analysis. J Spinal Cord Med 2019; 42:142-154. [PMID: 29065788 PMCID: PMC6419626 DOI: 10.1080/10790268.2017.1390644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CONTEXT While there are previous systematic reviews on the effectiveness of the use of robotic-assisted gait training (RAGT) in people with spinal cord injuries (SCI), as this is a dynamic field, new studies have been produced that are now incorporated on this systematic review (SR) with meta-analysis, updating the available evidence on this area. OBJECTIVE To synthesise the available evidence on the use of RAGT, to improve gait, strength and functioning. METHODS SR and meta-analysis following the Cochrane Handbook for Systematic Reviews of Interventions were implemented. Cochrane Injuries Group Specialized Register, PubMed, MEDLINE, EMBASE, CINAHL, ISIWeb of Science (SCIEXPANDED) databases were reviewed for the period 1990 to December 2016. Three researchers independently identified and categorized trials; 293 studies were identified, 273 eliminated; remaining 15 randomized clinical trials (RCT) and five SR. Six studies had available data for meta-analysis (222 participants). RESULTS The pooled mean demonstrated a beneficial effect of RAGT for WISCI, FIM-L and LEMS (3.01, 2.74 and 1.95 respectively), and no effect for speed. CONCLUSIONS The results show a positive effect in the use of RAGT. However, this should be taken carefully due to heterogeneity of the studies, small samples and identified limitations of some of the included trials. These results highlight the relevance of implementing a well-designed multicenter RCT powered enough to evaluate different RAGT approaches.
Collapse
Affiliation(s)
| | | | - Jimena Quinzaños-Fresnedo
- División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Ramiro Pérez-Zavala
- División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Aída Barrera-Ortiz
- División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| |
Collapse
|
172
|
Lu K, Xu G, Li W, Huo C, Liu Q, Lv Z, Wang Y, Li Z, Fan Y. Frequency-specific functional connectivity related to the rehabilitation task of stroke patients. Med Phys 2019; 46:1545-1560. [PMID: 30675729 DOI: 10.1002/mp.13398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/21/2018] [Accepted: 01/17/2019] [Indexed: 01/15/2023] Open
Abstract
PURPOSES Stroke survivors suffering from deficits in motor control typically show persistent motor symptoms and limited functional abilities, which affect their functional independence in daily life. Active rehabilitation training is commonly applied for stroke patients to recover from motor dysfunction. The global connectivity reflects the synchronization of cardiac and respiratory activities in the cerebral regions. However, the understanding of the patterns of frequency-specific global connectivity (GC) and functional connectivity (FC) when performing active rehabilitation training is still far from comprehensive. This study was conducted to investigate the brain network patterns of stroke patients while performing a four-limb linkage rehabilitation training using the functional near-infrared spectroscopy (fNIRS) method. METHODS Two groups of stroke patients (LH, left hemiplegia; RH, right hemiplegia) and one healthy group were recruited to participate in this study. The wavelet phase coherence (WPCO) method was used to calculate the frequency-specific GC and FC of the brain network in four frequency bands: I, 0.6-2 Hz; II, 0.145-0.6 Hz; III, 0.052-0.145 Hz; and IV, 0.021-0.052 Hz. RESULTS Results showed that the healthy group exhibited lower WPCO in the four frequency bands during the task state than during the resting state (P < 0.05). Interestingly, the stroke groups showed increased WPCO in the frequency band II during the task state than during the resting state (P < 0.05). Moreover, significantly lower WPCO values in the frequency bands III (P < 0.05) were found during task state in the RH and LH groups compared with the healthy group. The RH group showed increased WPCO values in the frequency band II during the task state compared with the healthy group (P < 0.05). In addition, the RH group showed increased WPCO in the frequency bands I (P < 0.05) and II (P < 0.05) than the LH group. Notably, the rehabilitation task did not induce significant changes in stroke groups in the frequency band IV, which implied the neurogenic activity. CONCLUSIONS The reductions in FC suggested that the brain impairments caused a disturbed neurovascular coupling regulation in stroke patients. Results in frequency band IV suggested that the limb movement rehabilitation task intrinsically may not produce remarkable effect on the neurogenic activity of stroke patients. Significant differences in WPCO between the LH and RH groups suggested that the rehabilitation task should be specifically designed for individual rehabilitation. The frequency-specific FC methods based on WPCO would provide a potential approach to quantitatively assess the effect of rehabilitation tasks.
Collapse
Affiliation(s)
- Kuan Lu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China
| | - Gongcheng Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China
| | - Wenhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China
| | - Congcong Huo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids Beijing, Beijing, 100176, China
| | - Qianying Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China
| | - Zeping Lv
- Rehabilitation Hospital, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Yonghui Wang
- Qilu Hospital, ShanDong University, Jinan, 250061, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids Beijing, Beijing, 100176, China.,Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, 100176, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China.,Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids Beijing, Beijing, 100176, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
173
|
Holtzer R, Kraut R, Izzetoglu M, Ye K. The effect of fear of falling on prefrontal cortex activation and efficiency during walking in older adults. GeroScience 2019; 41:89-100. [PMID: 30737727 DOI: 10.1007/s11357-019-00056-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/24/2019] [Indexed: 11/25/2022] Open
Abstract
Neural inefficiency is inferred when higher brain activations are associated with similar or worse performance. Improved neural efficiency is achieved when task-related brain activations are reduced after practice. No information is available on the effect of fear-of-falling (FOF) on brain activation during walking. We hypothesized that the presence of FOF would be associated with neural inefficiency and with a delay in improving neural efficiency during dual-task walking. Task conditions included single-task walk (STW), Alpha (cognitive interference), and dual-task walk (DTW). Functional near-infrared spectroscopy (fNIRS)-derived HbO2 in the prefrontal cortex (PFC) was used to quantify task-related changes in brain activation. Practice included three repeated counterbalanced trials for each task. Participants with FOF (n = 19; mean age = 79.84 ± 6.01 years; %female = 68.42) and without FOF (n = 56; mean age = 76.73 ± 6.39 years; %female = 44.64) were included. The presence of FOF was associated with slower stride velocity (estimate = - 12.354; p = 0.0154) and with greater increases in PFC HbO2 from STW to DTW (estimate = 0.303, p = 0.0009) and from Alpha to DTW (estimate = 0.387, p < 0.0001). Compared to controls, participants reporting FOF demonstrated an attenuated decline in PFC HbO2 from the first to the second DTW trials (estimate = 0.264; p = 0.0173). In contrast, compared to controls, participants with FOF demonstrated greater decline in Alpha PFC HbO2 from trial 1 to trial 2 (estimate = - 0.419, p < 0.0001) and from trial 1 to 3 (estimate = - 0.281, p = 0.0006). The change in PFC HbO2 over repeated STW trials was not significant and was not moderated by FOF status. The presence of FOF was associated with higher and inefficient PFC activation during DTW in older adults.
Collapse
Affiliation(s)
- Roee Holtzer
- Albert Einstein College of Medicine Bronx, 1225 Morris Park Avenue, Van Etten Building, Bronx, NY, 10461, USA.
- Yeshiva University Bronx, New York, NY, USA.
| | | | - Meltem Izzetoglu
- Villanova University Electrical and Computer Engineering, Villanova, PA, USA
| | - Kenny Ye
- Albert Einstein College of Medicine Bronx, 1225 Morris Park Avenue, Van Etten Building, Bronx, NY, 10461, USA
| |
Collapse
|
174
|
Patel PJ, Bhatt T, DelDonno SR, Langenecker SA, Dusane S. Examining Neural Plasticity for Slip-Perturbation Training: An fMRI Study. Front Neurol 2019; 9:1181. [PMID: 30728803 PMCID: PMC6351452 DOI: 10.3389/fneur.2018.01181] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022] Open
Abstract
Perturbation-based balance training has shown to induce adaptation of reactive balance responses that can significantly reduce longer-term fall risk in older adults. While specific cortical and subcortical areas in control of posture and locomotion have been identified, little is known about the training-induced plasticity occurring in neural substrates for challenging tasks involving reactive balance control. The purpose of this study was to use functional neuroimaging to examine and determine the neural substrates, if any, involved in inducing adaptation to slip-like perturbations experienced during walking over 3 consecutive training days. We used a mental imagery task to examine the neural changes accompanied by treadmill-slip perturbation training. Ten healthy young adults were exposed to increasing magnitude of displacements during slip-like perturbations while walking, with an acceleration of 6 m/s2 on a motorized treadmill for 3 consecutive days. Brain activity was recorded through MRI while performing imagined slipping and imagined walking tasks before and after the perturbation training. The number of compensatory steps and center of mass state stability at compensatory step touchdown were recorded. As compared with day 1 (first trial), on day 3 (last trial) there was a significant reduction in number of compensatory steps and increase in stability at compensatory step touchdown on the mid and highest perturbation intensities. Before perturbation training, imagined slipping showed increased activity in the SMA, parietal regions, parahippocampal gyrus, and cingulate gyrus compared with rest. After perturbation training, imagined slipping showed increased activation in DLPFC, superior parietal lobule, inferior occipital gyrus, and lingual gyrus. Perturbation training was not associated with decline in activity in any of the brain regions. This study provides evidence for learning-related changes in cortical structures while adapting to slip-like perturbations while walking. The findings reflect that higher-level processing is required for timing and sequencing of movements to execute an effective balance response to perturbations. Specifically, the CNS relies on DLPFC along with motor, parietal, and occipital cortices for adapting to postural tasks posing a significant threat to balance.
Collapse
Affiliation(s)
- Prakruti J Patel
- Cognitive-Motor and Balance Rehabilitation Laboratory, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Tanvi Bhatt
- Cognitive-Motor and Balance Rehabilitation Laboratory, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Sophie R DelDonno
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Scott A Langenecker
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Shamali Dusane
- Cognitive-Motor and Balance Rehabilitation Laboratory, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
175
|
Herold F, Aye N, Hamacher D, Schega L. Towards the Neuromotor Control Processes of Steady-State and Speed-Matched Treadmill and Overground Walking. Brain Topogr 2019; 32:472-476. [PMID: 30680671 DOI: 10.1007/s10548-019-00699-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
The neuromotor control of walking relies on a network of subcortical and cortical structures. While kinematic differences between treadmill and overground walking are extensively studied, the neuromotor control processes are still relatively unknown. Hence, this study aims to investigate cortical activation during steady-state treadmill and overground walking using functional near-infrared spectroscopy, inertial measurement units and a heart rate monitor. We observed a higher concentration of oxygenated hemoglobin in prefrontal cortices, premotor cortices and supplementary motor areas during treadmill walking. Therefore, our results suggest that treadmill walking requires higher demands on cortical neuromotor control.
Collapse
Affiliation(s)
- Fabian Herold
- German Center for Neurodegenerative Diseases, Neuroprotection Lab, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Norman Aye
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestraße 32, 39104, Magdeburg, Germany
| | - Dennis Hamacher
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestraße 32, 39104, Magdeburg, Germany.
| | - Lutz Schega
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestraße 32, 39104, Magdeburg, Germany
| |
Collapse
|
176
|
Almajid R, Keshner E. Role of Gender in Dual-Tasking Timed Up and Go Tests: A Cross-Sectional Study. J Mot Behav 2019; 51:681-689. [PMID: 30676272 DOI: 10.1080/00222895.2019.1565528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gender plays a role in cognitive performance. Yet the selection of a secondary task, an important paradigm in studies of posture control, has not considered gender as a variable. We explored whether different cognitive tasks differentially influence performance during the Timed Up and Go (TUG) test in men and women. Twenty young adults performed five cognitive tasks while seated and during the TUG test. Men exhibited a slower normalized cadence than women. When seated, women recalled more items than men and men were more accurate in mental calculation task. There were no changes in spatiotemporal measures. We conclude that gender did not play a major role in motor-cognitive interference during dual task TUG test.
Collapse
Affiliation(s)
- Rania Almajid
- Doctorate of Physical Therapy Program, West Coast University , Los Angeles , California
| | - Emily Keshner
- Physical Therapy Department, Temple University , Philadelphia , Pennsylvania
| |
Collapse
|
177
|
Groff BR, Antonellis P, Schmid KK, Knarr BA, Stergiou N. Stride-time variability is related to sensorimotor cortical activation during forward and backward walking. Neurosci Lett 2019; 692:150-158. [PMID: 30367957 PMCID: PMC6351206 DOI: 10.1016/j.neulet.2018.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 11/25/2022]
Abstract
Previous research has used functional near-infrared spectroscopy (fNIRS) to show that motor areas of the cortex are activated more while walking backward compared to walking forward. It is also known that head movement creates motion artifacts in fNIRS data. The aim of this study was to investigate cortical activation during forward and backward walking, while also measuring head movement. We hypothesized that greater activation in motor areas while walking backward would be concurrent with increased head movement. Participants performed forward and backward walking on a treadmill. Participants wore motion capture markers on their head to quantify head movement and pressure sensors on their feet to calculate stride-time. fNIRS was placed over motor areas of the cortex to measure cortical activation. Measurements were compared for forward and backward walking conditions. No significant differences in body movement or head movement were observed between forward and backward walking conditions, suggesting that conditional differences in movement did not influence fNIRS results. Stride-time was significantly shorter during backward walking than during forward walking, but not more variable. There were no differences in activation for motor areas of the cortex when outliers were removed. However, there was a positive correlation between stride-time variability and activation in the primary motor cortex. This positive correlation between motor cortex activation and stride-time variability suggests that forward walking variability may be represented in the primary motor cortex.
Collapse
Affiliation(s)
- Boman R Groff
- Department of Biomechanics and Center for Research in Human Movement Variability, College of Education, University of Nebraska at Omaha, 6160 University Drive South, Omaha, NE, 68182-0860, USA
| | - Prokopios Antonellis
- Department of Biomechanics and Center for Research in Human Movement Variability, College of Education, University of Nebraska at Omaha, 6160 University Drive South, Omaha, NE, 68182-0860, USA
| | - Kendra K Schmid
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, 984375 Nebraska Medical Center, Omaha, NE, 68198-4375, USA
| | - Brian A Knarr
- Department of Biomechanics and Center for Research in Human Movement Variability, College of Education, University of Nebraska at Omaha, 6160 University Drive South, Omaha, NE, 68182-0860, USA
| | - Nicholas Stergiou
- Department of Biomechanics and Center for Research in Human Movement Variability, College of Education, University of Nebraska at Omaha, 6160 University Drive South, Omaha, NE, 68182-0860, USA; Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, 984388 Nebraska Medical Center, Omaha, NE, 68198-4388, USA.
| |
Collapse
|
178
|
Di Scala G, Dupuy M, Guillaud E, Doat E, Barse E, Dillhareguy B, Jean FAM, Audiffren M, Cazalets JR, Chanraud S. Efficiency of Sensorimotor Networks: Posture and Gait in Young and Older Adults. Exp Aging Res 2019; 45:41-56. [PMID: 30633644 DOI: 10.1080/0361073x.2018.1560108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background/Study context: Posture and gait are complex sensorimotor functions affected by age. These difficulties are particularly apparent when performing cognitively demanding tasks. Characterizing the functional organization of brain networks involved in these associations remains a challenge because of the incompatibility of brain imagery techniques with gross body movements. The present study aimed at testing whether resting-state functional connectivity of sensorimotor networks is associated with posture and gait performance recorded offline, in young and older adults. METHODS Young (n = 12, mean = 24.1 y/o) and older (n = 14, mean = 65.6 y/o) healthy adults were tested for stability of their posture and gait. Four hours later, anatomical and functional brain imaging data were collected with Magnetic Resonance Imaging (MRI). Bilateral precentral and postcentral gyri were used as seeds in a graph theory analysis focused on global and local efficiency. The possible association between these data and posture and gait performance was examined. RESULTS Both samples presented similar sensorimotor graphs, but with different global and local efficiencies (small world properties). The association between the networks' graph measures and posture and gait performance also differed across groups: local efficiency was correlated with gait stability in challenging conditions in older adults, but not in young adults. CONCLUSION This exploratory study suggests that combining analyses of functional networks and offline body movement may provide important information about motor function. In older adults, the association between graph properties of the sensorimotor network and gait performance in challenging conditions may be indicative of compensatory processes. Prospective studies involving more subjects with a larger age range are warranted.
Collapse
Affiliation(s)
- G Di Scala
- a Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS-UMR 5287 , Bordeaux , France
| | - M Dupuy
- a Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS-UMR 5287 , Bordeaux , France
| | - E Guillaud
- a Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS-UMR 5287 , Bordeaux , France
| | - E Doat
- a Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS-UMR 5287 , Bordeaux , France
| | - E Barse
- b École Pratique des Hautes Études (EPHE), PSL Research University , Paris , France
| | - B Dillhareguy
- a Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS-UMR 5287 , Bordeaux , France
| | - F A M Jean
- c Centre Hospitalier Charles Perrens , Bordeaux , France
| | - M Audiffren
- d Centre de Recherches sur la Cognition et l'Apprentissage (CeRCA), CNRS-UMR 7295, Université de Poitiers, Université François Rabelais de Tours , Poitiers , France
| | - J R Cazalets
- a Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS-UMR 5287 , Bordeaux , France
| | - S Chanraud
- a Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Université de Bordeaux, CNRS-UMR 5287 , Bordeaux , France.,b École Pratique des Hautes Études (EPHE), PSL Research University , Paris , France
| |
Collapse
|
179
|
Stuart S, Alcock L, Rochester L, Vitorio R, Pantall A. Monitoring multiple cortical regions during walking in young and older adults: Dual-task response and comparison challenges. Int J Psychophysiol 2019; 135:63-72. [DOI: 10.1016/j.ijpsycho.2018.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022]
|
180
|
Oh S, Song M, Kim J. Validating attentive locomotion training using interactive treadmill: an fNIRS study. J Neuroeng Rehabil 2018; 15:122. [PMID: 30572919 PMCID: PMC6302412 DOI: 10.1186/s12984-018-0472-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/07/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Existing treadmill-based locomotion training, which has been used for gait function recovery, still has limitations, such as less attentive training. Interactive treadmills (ITMs) were developed to overcome these limitations, but it has not yet been verified that ITMs can make the user pay closer attention to walk training. METHODS An experimental comparison between ITMs and conventional treadmills was conducted by measuring the level of the user's attention using functional near-infrared spectroscopy (fNIRS). To consider the effect of task complexity on the subject's attention, we provided two (slow and fast) speed conditions for walking on both treadmills. RESULTS Both the cortical activity images and oxygenated hemoglobin (oxyHb) changes showed that the level of attention to walking induced by the ITM was significantly higher than that induced by the conventional treadmill. We found that the walking speed on the ITM also affected the level of attention. CONCLUSION ITM-based locomotion training would be a promising solution to the limitations of existing treadmill-based locomotion training currently used to improve gait function recovery. TRIAL REGISTRATION DGIST-HR-150309-03-02 . Registered 01 March 2015.
Collapse
Affiliation(s)
- Seunghue Oh
- Department of Robotics Engineering, DGIST (Daegu Gyeongbuk Institute of Science and Technology), 333 Techno Jungang-daero, Daegu, 42988 Republic of Korea
| | - Minsu Song
- Department of Robotics Engineering, DGIST (Daegu Gyeongbuk Institute of Science and Technology), 333 Techno Jungang-daero, Daegu, 42988 Republic of Korea
| | - Jonghyun Kim
- Department of Robotics Engineering, DGIST (Daegu Gyeongbuk Institute of Science and Technology), 333 Techno Jungang-daero, Daegu, 42988 Republic of Korea
| |
Collapse
|
181
|
Liu YC, Yang YR, Tsai YA, Wang RY, Lu CF. Brain Activation and Gait Alteration During Cognitive and Motor Dual Task Walking in Stroke—A Functional Near-Infrared Spectroscopy Study. IEEE Trans Neural Syst Rehabil Eng 2018; 26:2416-2423. [DOI: 10.1109/tnsre.2018.2878045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
182
|
Tamashiro H, Kinoshita S, Okamoto T, Urushidani N, Abo M. Effect of baseline brain activity on response to low-frequency rTMS/intensive occupational therapy in poststroke patients with upper limb hemiparesis: a near-infrared spectroscopy study. Int J Neurosci 2018; 129:337-343. [DOI: 10.1080/00207454.2018.1536053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Hiroaki Tamashiro
- Department of Rehabilitation Medicine, Nishi-Hiroshima Rehabilitation Hospital, Hiroshima, Japan
| | - Shoji Kinoshita
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Minato-Ku, Tokyo, Japan
- Department of Rehabilitation Medicine, Aomori Shintoshi Hospital, Aomori, Aomori, Japan
| | - Takatsugu Okamoto
- Department of Rehabilitation Medicine, Nishi-Hiroshima Rehabilitation Hospital, Hiroshima, Japan
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Minato-Ku, Tokyo, Japan
| | - Naoki Urushidani
- Department of Rehabilitation Medicine, Nishi-Hiroshima Rehabilitation Hospital, Hiroshima, Japan
| | - Masahiro Abo
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Minato-Ku, Tokyo, Japan
| |
Collapse
|
183
|
Herold F, Wiegel P, Scholkmann F, Müller NG. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise⁻Cognition Science: A Systematic, Methodology-Focused Review. J Clin Med 2018; 7:E466. [PMID: 30469482 PMCID: PMC6306799 DOI: 10.3390/jcm7120466] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
For cognitive processes to function well, it is essential that the brain is optimally supplied with oxygen and blood. In recent years, evidence has emerged suggesting that cerebral oxygenation and hemodynamics can be modified with physical activity. To better understand the relationship between cerebral oxygenation/hemodynamics, physical activity, and cognition, the application of state-of-the art neuroimaging tools is essential. Functional near-infrared spectroscopy (fNIRS) is such a neuroimaging tool especially suitable to investigate the effects of physical activity/exercises on cerebral oxygenation and hemodynamics due to its capability to quantify changes in the concentration of oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) non-invasively in the human brain. However, currently there is no clear standardized procedure regarding the application, data processing, and data analysis of fNIRS, and there is a large heterogeneity regarding how fNIRS is applied in the field of exercise⁻cognition science. Therefore, this review aims to summarize the current methodological knowledge about fNIRS application in studies measuring the cortical hemodynamic responses during cognitive testing (i) prior and after different physical activities interventions, and (ii) in cross-sectional studies accounting for the physical fitness level of their participants. Based on the review of the methodology of 35 as relevant considered publications, we outline recommendations for future fNIRS studies in the field of exercise⁻cognition science.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
| | - Patrick Wiegel
- Department of Sport Science, University of Freiburg, Freiburg 79117, Germany.
- Bernstein Center Freiburg, University of Freiburg, Freiburg 79104, Germany.
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zürich, Zürich 8091, Switzerland.
| | - Notger G Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg 39118, Germany.
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg 39120, Germany.
| |
Collapse
|
184
|
Vitorio R, Stuart S, Gobbi LTB, Rochester L, Alcock L, Pantall A. Reduced Gait Variability and Enhanced Brain Activity in Older Adults With Auditory Cues: A Functional Near-Infrared Spectroscopy Study. Neurorehabil Neural Repair 2018; 32:976-987. [DOI: 10.1177/1545968318805159] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Rodrigo Vitorio
- Institute of Neuroscience, Newcastle University Institute of Ageing, Newcastle upon Tyne, UK
- Sao Paulo State University (UNESP), Institute of Biosciences, Campus Rio Claro, Brazil
| | - Samuel Stuart
- Institute of Neuroscience, Newcastle University Institute of Ageing, Newcastle upon Tyne, UK
| | - Lilian T. B. Gobbi
- Sao Paulo State University (UNESP), Institute of Biosciences, Campus Rio Claro, Brazil
| | - Lynn Rochester
- Institute of Neuroscience, Newcastle University Institute of Ageing, Newcastle upon Tyne, UK
- The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lisa Alcock
- Institute of Neuroscience, Newcastle University Institute of Ageing, Newcastle upon Tyne, UK
| | - Annette Pantall
- Institute of Neuroscience, Newcastle University Institute of Ageing, Newcastle upon Tyne, UK
| |
Collapse
|
185
|
Krampe C, Gier NR, Kenning P. The Application of Mobile fNIRS in Marketing Research-Detecting the " First-Choice-Brand" Effect. Front Hum Neurosci 2018; 12:433. [PMID: 30443210 PMCID: PMC6222120 DOI: 10.3389/fnhum.2018.00433] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/02/2018] [Indexed: 01/18/2023] Open
Abstract
Recent research in the field of "neuro-marketing" shows promise to substantially increase knowledge on marketing issues for example price-perception, advertising efficiency, branding and shopper behaviour. Recently, an innovative and mobile applicable neuroimaging method has been proposed, namely functional near-infrared spectroscopy (fNIRS). However, this method is, in the research field of marketing, still in its infancy and is, consequently, lacking substantial validity. Against this background, this research work applied a convergent validity approach to challenge the validity of (mobile) fNIRS in the field of "neuro-marketing" and consumer neuroscience. More precisely, we aim to replicate a robust and well-investigated neural effect previously detected with fMRI-namely the "first-choice-brand" effect-by using mobile fNIRS. The research findings show that mobile fNIRS appears to be an appropriate neuroimaging method for research in the field of "neuro-marketing" and consumer neuroscience. Additionally, this research work presents guidelines, enabling marketing scholars to utilise mobile fNIRS in their research work.
Collapse
Affiliation(s)
- Caspar Krampe
- Faculty of Business Administration and Economics, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | |
Collapse
|
186
|
Brain activity in response to the touch of a hand on the center of the back. PLoS One 2018; 13:e0206451. [PMID: 30372462 PMCID: PMC6205618 DOI: 10.1371/journal.pone.0206451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 10/12/2018] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to validate the possibility of using functional Near-Infrared Spectroscopy (fNIRS) to measure changes in cerebral blood flow in response to a hand being placed on a participant's back, and to identify the areas of enhanced activity in the brain. Nineteen female adult volunteers participated in the study. An experienced school nurse touched the center of the participant's back between the shoulder blades with the palm of her hand. Cerebral blood volume dynamics were measured with a 52-channel fNIRS system. Significantly higher oxygenated hemoglobin (oxy-Hb) concentration levels were recorded by channels 11, 14, 21, 22, 24, 32, 35, 45, 46, and 49 during the touching period than during the resting period. These channels indicated enhanced activity in the supramarginal gyrus, the middle frontal gyrus, the superior temporal gyrus, and the inferior frontal gyrus. The ability to detect changes in cerebral blood flow using this method indicates the possibility of measuring changes in cerebral blood flow using fNIRS when a person is touched on the back. fNIRS has been shown to be useful for studying the effects of touch.
Collapse
|
187
|
Li KZH, Bherer L, Mirelman A, Maidan I, Hausdorff JM. Cognitive Involvement in Balance, Gait and Dual-Tasking in Aging: A Focused Review From a Neuroscience of Aging Perspective. Front Neurol 2018; 9:913. [PMID: 30425679 PMCID: PMC6219267 DOI: 10.3389/fneur.2018.00913] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/09/2018] [Indexed: 11/20/2022] Open
Abstract
A substantial corpus of evidence suggests that the cognitive involvement in postural control and gait increases with aging. A large portion of such studies were based on dual-task experimental designs, which typically use the simultaneous performance of a motor task (e.g., static or dynamic balancing, walking) and a continuous cognitive task (e.g., mental arithmetic, tone detection). This focused review takes a cognitive neuroscience of aging perspective in interpreting cognitive motor dual-task findings. Specifically, we consider the importance of identifying the neural circuits that are engaged by the cognitive task in relation to those that are engaged during motor task performance. Following the principle of neural overlap, dual-task interference should be greatest when the cognitive and motor tasks engage the same neural circuits. Moreover, the literature on brain aging in general, and models of dedifferentiation and compensation, in particular, suggest that in cognitive motor dual-task performance, the cognitive task engages different neural substrates in young as compared to older adults. Also considered is the concept of multisensory aging, and the degree to which the age-related decline of other systems (e.g., vision, hearing) contribute to cognitive load. Finally, we discuss recent work on focused cognitive training, exercise and multimodal training of older adults and their effects on postural and gait outcomes. In keeping with the principle of neural overlap, the available cognitive training research suggests that targeting processes such as dividing attention and inhibition lead to improved balance and gait in older adults. However, more studies are needed that include functional neuroimaging during actual, upright performance of gait and balance tasks, in order to directly test the principle of neural overlap, and to better optimize the design of intervention studies to improve gait and posture.
Collapse
Affiliation(s)
- Karen Z. H. Li
- Department of Psychology, Concordia University, Montreal, QC, Canada
- Centre for Research in Human Development, Concordia University, Montreal, QC, Canada
- PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Louis Bherer
- PERFORM Centre, Concordia University, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Anat Mirelman
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Neurology, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Maidan
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Neurology, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
188
|
Karageorghis CI, Bigliassi M, Guérin SMR, Delevoye-Turrell Y. Brain mechanisms that underlie music interventions in the exercise domain. PROGRESS IN BRAIN RESEARCH 2018; 240:109-125. [PMID: 30390826 DOI: 10.1016/bs.pbr.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this chapter we review recent work from the realms of neuroscience and neuropsychology to explore the brain mechanisms that underlie the effects of music on exercise. We begin with an examination of the technique of electroencephalography (EEG), which has proven popular with researchers in this domain. We go on to appraise work conducted with the use of functional magnetic resonance imaging (fMRI) and then, looking more toward the future, we consider the application of functional near-infrared spectroscopy (fNIRS) to study brain hemodynamics. The experimental findings expounded herein indicate that music has the potential to guide attention toward environmental sensory cues and prevent internal, fatigue-related signals from entering focal awareness. The brain mechanisms underlying such effects are primarily associated with the downregulation of theta waves across the cortex surface, reduction of communication among somatosensory regions, and increased activation of the left inferior frontal gyrus. Taken holistically, research in this subfield of exercise psychology demonstrates a vibrant and reflexive matrix of attentional, emotional, behavioral, physiological, and psychophysiological responses to music across a variety of exercise modalities and intensities. The emergent hypotheses that we propose can be used to frame future research efforts.
Collapse
|
189
|
Lee G, Jin SH, An J. Motion Artifact Correction of Multi-Measured Functional Near-Infrared Spectroscopy Signals Based on Signal Reconstruction Using an Artificial Neural Network. SENSORS 2018; 18:s18092957. [PMID: 30189651 PMCID: PMC6164948 DOI: 10.3390/s18092957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/07/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022]
Abstract
In this paper, a new motion artifact correction method is proposed based on multi-channel functional near-infrared spectroscopy (fNIRS) signals. Recently, wavelet transform and hemodynamic response function-based algorithms were proposed as methods of denoising and detrending fNIRS signals. However, these techniques cannot achieve impressive performance in the experimental environment with lots of movement such as gait and rehabilitation tasks because hemodynamic responses have features similar to those of motion artifacts. Moreover, it is difficult to correct motion artifacts in multi-measured fNIRS systems, which have multiple channels and different noise features in each channel. Thus, a new motion artifact correction method for multi-measured fNIRS is proposed in this study, which includes a decision algorithm to determine the most contaminated fNIRS channel based on entropy and a reconstruction algorithm to correct motion artifacts by using a wavelet-decomposed back-propagation neural network. The experimental data was achieved from six subjects and the results were analyzed in comparing conventional algorithms such as HRF smoothing, wavelet denoising, and wavelet MDL. The performance of the proposed method was proven experimentally using the graphical results of the corrected fNIRS signal, CNR that is a performance evaluation index, and the brain activation map.
Collapse
Affiliation(s)
- Gihyoun Lee
- Convergence Research Center for Wellness, DGIST, Daegu 42988, Korea.
| | - Sang Hyeon Jin
- Convergence Research Center for Wellness, DGIST, Daegu 42988, Korea.
| | - Jinung An
- Convergence Research Center for Wellness, DGIST, Daegu 42988, Korea.
| |
Collapse
|
190
|
Postigo-Alonso B, Galvao-Carmona A, Benítez I, Conde-Gavilán C, Jover A, Molina S, Peña-Toledo MA, Agüera E. Cognitive-motor interference during gait in patients with Multiple Sclerosis: a mixed methods Systematic Review. Neurosci Biobehav Rev 2018; 94:126-148. [PMID: 30189226 DOI: 10.1016/j.neubiorev.2018.08.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/28/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Cognitive-motor interference (CMI) has been proposed as a valid marker of daily life impairment in Multiple Sclerosis (MS). The heterogeneity and scarce number of studies regarding CMI in MS has hampered the synthesis of the existing evidence. The present systematic review employed a mixed methods approach with the aim of identifying and describing variables under which CMI is particularly useful to assess patients with MS. RESULTS MS patients showed significant CMI. The motor variables that were most sensitive in detecting significant CMI were velocity (m/s), cadence (steps/min), and double support (% gait cycle), which was also specific for MS. Among the cognitive tasks, Alternate Alphabet and Serial Subtracting 7 s were sensitive, whereas Verbal Fluency were both sensitive and specific to CMI in MS. CONCLUSIONS CMI should be assessed in MS with a standardised dual task such as the Verbal Fluency task while walking, with measurements of the double support time and the effect on the cognitive task. The clinical usefulness of CMI in the assessment of patients with MS is discussed.
Collapse
Affiliation(s)
- B Postigo-Alonso
- Department of Psychology, Universidad Loyola Andalucía, Seville, Spain; Human Neuroscience Lab (HNL), Universidad Loyola Andalucía, Seville, Spain.
| | - A Galvao-Carmona
- Department of Psychology, Universidad Loyola Andalucía, Seville, Spain; Human Neuroscience Lab (HNL), Universidad Loyola Andalucía, Seville, Spain; Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - I Benítez
- Department of Psychology, Universidad Loyola Andalucía, Seville, Spain
| | - C Conde-Gavilán
- Dementia and Multiple Sclerosis Unit, Neurology Service, Reina Sofía University Hospital, Córdoba, Spain
| | - A Jover
- Dementia and Multiple Sclerosis Unit, Neurology Service, Reina Sofía University Hospital, Córdoba, Spain
| | - S Molina
- Dementia and Multiple Sclerosis Unit, Neurology Service, Reina Sofía University Hospital, Córdoba, Spain
| | - M A Peña-Toledo
- Dementia and Multiple Sclerosis Unit, Neurology Service, Reina Sofía University Hospital, Córdoba, Spain
| | - E Agüera
- Dementia and Multiple Sclerosis Unit, Neurology Service, Reina Sofía University Hospital, Córdoba, Spain
| |
Collapse
|
191
|
Goh SK, Abbass HA, Tan KC, Al-Mamun A, Thakor N, Bezerianos A, Li J. Spatio–Spectral Representation Learning for Electroencephalographic Gait-Pattern Classification. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1858-1867. [DOI: 10.1109/tnsre.2018.2864119] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
192
|
Toyomura A, Yokosawa K, Shimojo A, Fujii T, Kuriki S. Turning a cylindrical treadmill with feet: An MR-compatible device for assessment of the neural correlates of lower-limb movement. J Neurosci Methods 2018; 307:14-22. [PMID: 29924979 DOI: 10.1016/j.jneumeth.2018.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/24/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Locomotion, which is one of the most basic motor functions, is critical for performing various daily-life activities. Despite its essential function, assessment of brain activity during lower-limb movement is still limited because of the constraints of existing brain imaging methods. NEW METHOD Here, we describe an MR-compatible, cylindrical treadmill device that allows participants to perform stepping movements on an MRI scanner table. The device was constructed from wood and all of the parts were handmade by the authors. RESULTS We confirmed the MR-compatibility of the device by evaluating the temporal signal-to-noise ratio of 64 voxels of a phantom during scanning. Brain activity was measured while twenty participants turned the treadmill with feet in sync with metronome sounds. The rotary speed of the cylinder was encoded by optical fibers. The post/pre-central gyrus and cerebellum showed significant activity during the movements, which was comparable to the activity patterns reported in previous studies. Head movement on the y- and z-axes was influenced more by lower-limb movement than was head movement on the x-axis. Among the 60 runs (3 runs × 20 participants), head movement during two of the runs (3.3%) was excessive due to the lower-limb movement. COMPARISON WITH EXISTING METHODS Compared to MR-compatible devices proposed in the previous studies, the advantage of this device may be simple structure and replicability to realize stepping movement with a supine position. CONCLUSIONS Collectively, our results suggest that the treadmill device is useful for evaluating lower-limb-related neural activity.
Collapse
Affiliation(s)
- Akira Toyomura
- Graduate School of Health Sciences, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan; Research and Education Center for Brain Science, Hokkaido University, Kita 15, Nishi 7 Kita-ku, Sapporo 060-8638, Japan.
| | - Koichi Yokosawa
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5 Kita-ku, Sapporo 060-0812, Japan
| | - Atsushi Shimojo
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7 Kita-ku, Sapporo 060-8638, Japan
| | - Tetsunoshin Fujii
- Department of Psychology, Graduate School of Letters, Hokkaido University, Kita 10, Nishi 7 Kita-ku, Sapporo 060-0810, Japan
| | - Shinya Kuriki
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5 Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
193
|
Urushidani N, Kinoshita S, Okamoto T, Tamashiro H, Abo M. Low-Frequency rTMS and Intensive Occupational Therapy Improve Upper Limb Motor Function and Cortical Reorganization Assessed by Functional Near-Infrared Spectroscopy in a Subacute Stroke Patient. Case Rep Neurol 2018; 10:223-231. [PMID: 30283320 PMCID: PMC6167707 DOI: 10.1159/000492381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/23/2018] [Indexed: 11/19/2022] Open
Abstract
There is still no agreement on the most suitable time and modality for application of repetitive transcranial magnetic stimulation (rTMS) to improve motor recovery in subacute stroke patients. The underlying mechanism of motor recovery following low-frequency rTMS is considered to be modulation of the interhemispheric asymmetry. On the other hand, the cortical balance of brain activity during the acute to chronic phase of stroke is reported to be unstable. Therefore, we conducted this study to clarify the time course of the interhemispheric asymmetry and the effect of application of low-frequency rTMS combined with occupational therapy on motor recovery and cortical imbalance of brain activity in a subacute stroke patient. The interhemispheric asymmetry in this patient with new-onset subcortical cerebral infarction and upper limb hemiparesis was evaluated longitudinally using functional near-infrared spectroscopy with finger tasks. A nonlesional hemisphere-dominant activation pattern was observed on day 28 after onset. On day 56 after onset, a bilaterally eminent activation pattern was observed. Low-frequency rTMS was applied on day 109 after stroke onset when the cortical activity shifted to the nonlesional hemisphere. The treatment resulted in improvement in motor function of the affected upper limb and a shift in brain activation to the lesional hemisphere. Our report is the first to describe the therapeutic benefits of low-frequency rTMS as assessed by longitudinal neuroimaging for functional recovery and interhemispheric asymmetry in a subacute stroke patient.
Collapse
Affiliation(s)
| | - Shoji Kinoshita
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Department of Rehabilitation Medicine, Aomori Shintoshi Hospital, Aomori, Japan
| | - Takatsugu Okamoto
- Nishi-Hiroshima Rehabilitation Hospital, Hiroshima, Japan.,Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Masahiro Abo
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
194
|
Relationship between sensorimotor cortical activation as assessed by functional near infrared spectroscopy and lower extremity motor coordination in bilateral cerebral palsy. NEUROIMAGE-CLINICAL 2018; 20:275-285. [PMID: 30101059 PMCID: PMC6083901 DOI: 10.1016/j.nicl.2018.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/28/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Background Evaluation of task-evoked cortical responses during movement has been limited in individuals with bilateral cerebral palsy (CP), despite documented alterations in brain structure/function and deficits in motor control. Objective To systematically evaluate cortical activity associated with lower extremity tasks, and relate activation parameters to clinical measures in CP. Methods 28 ambulatory participants (14 with bilateral CP and 14 with typical development) completed five motor tasks (non-dominant ankle dorsiflexion, hip flexion and leg cycling as well as bilateral dorsiflexion and cycling) in a block design while their sensorimotor cortex was monitored using functional near infrared spectroscopy (fNIRS), in addition to laboratory and clinical measures of performance. Results Main effects for group and task were found for extent of fNIRS activation (number of active channels; p < 0.001 and p = 0.010, respectively), magnitude of activation (sum of beta values; p < 0.001 for both), and number of active muscles (p = 0.001 and p < 0.001, respectively), but no group by task interactions. Collectively, subgroups with CP and especially those with greater impairments, showed higher extent and magnitude of cortical sensorimotor activation as well as higher amounts of concurrent activity in muscles not required for task performance. Magnitude of fNIRS activation during non-dominant dorsiflexion correlated with validated measures of selective control (r = −0.60, p = 0.03), as well as mobility and daily activity (r = −0.55, p = 0.04 and r = −0.52, p = 0.05, respectively) and self-reported gait function (r = −0.68, p = 0.01) in those with CP. Conclusions The association between higher activity in the sensorimotor cortex and decreased selectivity in cortical organization suggests a potential neural mechanism of motor deficits and target for intervention. First fNIRS comparison of a range of lower extremity tasks in children with and without bilateral CP. FNIRS showed a greater amount and extent of activation of sensorimotor cortices in CP. Greater activation correlated with a greater number of muscles involved in the task. fNIRS results correlated to clinical measures of motor control and function.
Collapse
|
195
|
Boyne P, Maloney T, DiFrancesco M, Fox MD, Awosika O, Aggarwal P, Woeste J, Jaroch L, Braswell D, Vannest J. Resting-state functional connectivity of subcortical locomotor centers explains variance in walking capacity. Hum Brain Mapp 2018; 39:4831-4843. [PMID: 30052301 DOI: 10.1002/hbm.24326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
Walking capacity influences the quality of life and disability in normal aging and neurological disease, but the neural correlates remain unclear and subcortical locomotor regions identified in animals have been more challenging to assess in humans. Here we test whether resting-state functional MRI connectivity (rsFC) of midbrain and cerebellar locomotor regions (MLR and CLR) is associated with walking capacity among healthy adults. Using phenotypic and MRI data from the Nathan Kline Institute Rockland Sample (n =119, age 18-85), the association between walking capacity (6-min walk test distance) and rsFC was calculated from subcortical locomotor regions to 81 other gait-related regions of interest across the brain. Additional analyses assessed the independence and specificity of the results. Walking capacity was associated with higher rsFC between the MLR and superior frontal gyrus adjacent to the anterior cingulate cortex, higher rsFC between the MLR and paravermal cerebellum, and lower rsFC between the CLR and primary motor cortex foot area. These rsFC correlates were more strongly associated with walking capacity than phenotypic variables such as age, and together explained 25% of the variance in walking capacity. Results were specific to locomotor regions compared with the other brain regions. The rsFC of locomotor centers correlates with walking capacity among healthy adults. These locomotion-related biomarkers may prove useful in future work aimed at helping patients with reduced walking capacity.
Collapse
Affiliation(s)
- Pierce Boyne
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Thomas Maloney
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mark DiFrancesco
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts
| | - Oluwole Awosika
- Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Pushkar Aggarwal
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Jennifer Woeste
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Laurel Jaroch
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Daniel Braswell
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Jennifer Vannest
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
196
|
Brantley JA, Luu TP, Nakagome S, Zhu F, Contreras-Vidal JL. Full body mobile brain-body imaging data during unconstrained locomotion on stairs, ramps, and level ground. Sci Data 2018; 5:180133. [PMID: 29989591 PMCID: PMC6038848 DOI: 10.1038/sdata.2018.133] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 02/03/2023] Open
Abstract
Human locomotion is a complex process that requires the integration of central and peripheral nervous signalling. Understanding the brain's involvement in locomotion is challenging and is traditionally investigated during locomotor imagination or observation. However, stationary imaging methods lack the ability to infer information about the peripheral and central signalling during actual task execution. In this report, we present a dataset containing simultaneously recorded electroencephalography (EEG), lower-limb electromyography (EMG), and full body motion capture recorded from ten able-bodied individuals. The subjects completed an average of twenty trials on an experimental gait course containing level-ground, ramps, and stairs. We recorded 60-channel EEG from the scalp and 4-channel EOG from the face and temples. Surface EMG was recorded from six muscle sites bilaterally on the thigh and shank. The motion capture system consisted of seventeen wireless IMUs, allowing for unconstrained ambulation in the experimental space. In this report, we present the rationale for collecting these data, a detailed explanation of the experimental setup, and a brief validation of the data quality.
Collapse
Affiliation(s)
- Justin A. Brantley
- Laboratory for Non-Invasive Brain Machine Interfaces, Department of Electrical & Computer Engineering, University of Houston, Houston, TX 77056, USA
| | - Trieu Phat Luu
- Laboratory for Non-Invasive Brain Machine Interfaces, Department of Electrical & Computer Engineering, University of Houston, Houston, TX 77056, USA
| | - Sho Nakagome
- Laboratory for Non-Invasive Brain Machine Interfaces, Department of Electrical & Computer Engineering, University of Houston, Houston, TX 77056, USA
| | - Fangshi Zhu
- Laboratory for Non-Invasive Brain Machine Interfaces, Department of Electrical & Computer Engineering, University of Houston, Houston, TX 77056, USA
| | - Jose L. Contreras-Vidal
- Laboratory for Non-Invasive Brain Machine Interfaces, Department of Electrical & Computer Engineering, University of Houston, Houston, TX 77056, USA
| |
Collapse
|
197
|
Lo CC, Lin PY, Hoe ZY, Chen JJJ. Near Infrared Spectroscopy Study of Cortical Excitability During Electrical Stimulation-Assisted Cycling for Neurorehabilitation of Stroke Patients. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1292-1300. [PMID: 29877854 DOI: 10.1109/tnsre.2018.2829804] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In addition to generating functional limb movement via electrical stimulation, other research proposed lower intensity stimulation for stroke patients from proprioceptive and neuro-biofeedback aspects. This paper investigates the effects of different intensity levels of electrical stimulation during passive cycling on cortical activation using multichannel near infrared spectroscopy (NIRS) covering premotor cortex, supplementary motor area, sensorimotor cortex (SMC), and secondary sensory cortex (S2) regions. Sixteen subjects, including nine stroke patients and seven normal subjects, were instructed to perform passive cycling driven by an ergometer at a pace of 50 rpm under conditions without electrical stimulation (NES) and with low-intensity electrical stimulation (LES) at 10 mA and high-intensity electrical stimulation (HES) at 30 mA. Changes in oxyhemoglobin in different brain regions and the derived interhemispheric correlation coefficient (IHCC) representing the symmetry in response of two hemispheres were evaluated to observe cortical activation and cerebral autoregulation. Our results showed that cortical activation of normal subjects exhibited overall deactivations in HES compared with that under LES and NES. In stroke patients, bilateral S2 activated significantly greater under LES compared with those under NES and HES. The IHCC of the normal group displayed a significant higher value in SMC compared with that of the stroke group. This paper utilized noninvasive NIRS to observe hemodynamic changes and bilateral autoregulation symmetry from IHCC suggesting that passive cycling with LES could better facilitate cortical activation compared with that obtained with NES or HES. The results of this paper could provide general guidelines to simplify the settings of electrical stimulation-assisted-passive cycling in clinical use.
Collapse
|
198
|
Roeder L, Boonstra TW, Smith SS, Kerr GK. Dynamics of corticospinal motor control during overground and treadmill walking in humans. J Neurophysiol 2018; 120:1017-1031. [PMID: 29847229 DOI: 10.1152/jn.00613.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence suggests cortical involvement in the control of human gait. However, the nature of corticospinal interactions remains poorly understood. We performed time-frequency analysis of electrophysiological activity acquired during treadmill and overground walking in 22 healthy, young adults. Participants walked at their preferred speed (4.2, SD 0.4 km/h), which was matched across both gait conditions. Event-related power, corticomuscular coherence (CMC), and intertrial coherence (ITC) were assessed for EEG from bilateral sensorimotor cortices and EMG from the bilateral tibialis anterior (TA) muscles. Cortical power, CMC, and ITC at theta, alpha, beta, and gamma frequencies (4-45 Hz) increased during the double support phase of the gait cycle for both overground and treadmill walking. High beta (21-30 Hz) CMC and ITC of EMG was significantly increased during overground compared with treadmill walking, as well as EEG power in theta band (4-7 Hz). The phase spectra revealed positive time lags at alpha, beta, and gamma frequencies, indicating that the EEG response preceded the EMG response. The parallel increases in power, CMC, and ITC during double support suggest evoked responses at spinal and cortical populations rather than a modulation of ongoing corticospinal oscillatory interactions. The evoked responses are not consistent with the idea of synchronization of ongoing corticospinal oscillations but instead suggest coordinated cortical and spinal inputs during the double support phase. Frequency-band dependent differences in power, CMC, and ITC between overground and treadmill walking suggest differing neural control for the two gait modalities, emphasizing the task-dependent nature of neural processes during human walking. NEW & NOTEWORTHY We investigated cortical and spinal activity during overground and treadmill walking in healthy adults. Parallel increases in power, corticomuscular coherence, and intertrial coherence during double support suggest evoked responses at spinal and cortical populations rather than a modulation of ongoing corticospinal oscillatory interactions. These findings identify neurophysiological mechanisms that are important for understanding cortical control of human gait in health and disease.
Collapse
Affiliation(s)
- Luisa Roeder
- Movement Neuroscience Group, Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane , Australia.,School of Exercise and Nutrition Sciences, Queensland University of Technology , Brisbane , Australia
| | - Tjeerd W Boonstra
- Black Dog Institute, University of New South Wales , Sydney , Australia.,Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane , Australia
| | - Simon S Smith
- Institute of Social Science Research, University of Queensland , Brisbane , Australia
| | - Graham K Kerr
- Movement Neuroscience Group, Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane , Australia.,School of Exercise and Nutrition Sciences, Queensland University of Technology , Brisbane , Australia
| |
Collapse
|
199
|
|
200
|
Abstract
Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650-900 nm) to measure changes in cerebral blood volume and oxygenation. Over the last several decades, this technique has been utilized in a growing number of functional and resting-state brain studies. The lower operation cost, portability, and versatility of this method make it an alternative to methods such as functional magnetic resonance imaging for studies in pediatric and special populations and for studies without the confining limitations of a supine and motionless acquisition setup. However, the analysis of fNIRS data poses several challenges stemming from the unique physics of the technique, the unique statistical properties of data, and the growing diversity of non-traditional experimental designs being utilized in studies due to the flexibility of this technology. For these reasons, specific analysis methods for this technology must be developed. In this paper, we introduce the NIRS Brain AnalyzIR toolbox as an open-source Matlab-based analysis package for fNIRS data management, pre-processing, and first- and second-level (i.e., single subject and group-level) statistical analysis. Here, we describe the basic architectural format of this toolbox, which is based on the object-oriented programming paradigm. We also detail the algorithms for several of the major components of the toolbox including statistical analysis, probe registration, image reconstruction, and region-of-interest based statistics.
Collapse
Affiliation(s)
- Hendrik Santosa
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA
| | - Xuetong Zhai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA
| | - Frank Fishburn
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213-2536, USA
| | - Theodore Huppert
- Departments of Radiology and Bioengineering, University of Pittsburgh, Clinical Science Translational Institute, and Center for the Neural Basis of Cognition, Pittsburgh, PA 15213-2536, USA
| |
Collapse
|