151
|
Mir D, Romero H, Fagundes de Carvalho LM, Bello G. Spatiotemporal dynamics of DENV-2 Asian-American genotype lineages in the Americas. PLoS One 2014; 9:e98519. [PMID: 24897118 PMCID: PMC4045713 DOI: 10.1371/journal.pone.0098519] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/03/2014] [Indexed: 12/30/2022] Open
Abstract
The Asian/American (AS/AM) genotype of dengue virus type 2 (DENV-2) has been evolving in the Americas over the last 30 years, leading to several waves of dengue epidemics and to the emergence of different viral lineages in the region. In this study, we investigate the spatiotemporal dissemination pattern of the DENV-2 lineages at a regional level. We applied phylogenetic and phylogeographic analytical methods to a comprehensive data set of 582 DENV-2 E gene sequences of the AS/AM genotype isolated from 29 different American countries over a period of 30 years (1983 to 2012). Our study reveals that genetic diversity of DENV-2 AS/AM genotype circulating in the Americas mainly resulted from one single founder event and can be organized in at least four major lineages (I to IV), which emerged in the Caribbean region at the early 1980s and then spread and die out with different dynamics. Lineages I and II dominate the epidemics in the Caribbean region during the 1980s and early 1990s, lineage III becomes the prevalent DENV-2 one in the Caribbean and South America during the 1990s, whereas lineage IV dominates the epidemics in South and Central America during the 2000s. Suriname and Guyana seem to represent important entry points for DENV-2 from the Lesser Antilles to South America, whereas Venezuela, Brazil and Nicaragua were pointed as the main secondary hubs of dissemination to other mainland countries. Our study also indicates that DENV-2 AS/AM genotype was disseminated within South America following two main routes. The first route hits Venezuela and the western side of the Andes, while the second route mainly hits Brazil and the eastern side of the Andes. The phenomenon of DENV-2 lineage replacement across successive epidemic outbreaks was a common characteristic in all American countries, although the timing of lineage replacements greatly vary across locations.
Collapse
Affiliation(s)
- Daiana Mir
- Laboratorio de Organización y Evolución del Genoma, Dpto. Ecología y Evolución, Facultad de Ciencias CURE, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| | - Hector Romero
- Laboratorio de Organización y Evolución del Genoma, Dpto. Ecología y Evolución, Facultad de Ciencias CURE, Universidad de la República, Montevideo, Uruguay
| | | | - Gonzalo Bello
- Laboratorio de AIDS & Imunologia Molecular. Instituto Oswaldo Cruz - FIOCRUZ. Rio de Janeiro, Brazil
| |
Collapse
|
152
|
Mishra G, Jain A, Prakash O, Prakash S, Kumar R, Garg RK, Pandey N, Singh M. Molecular characterization of dengue viruses circulating during 2009-2012 in Uttar Pradesh, India. J Med Virol 2014; 87:68-75. [PMID: 24889214 DOI: 10.1002/jmv.23981] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2014] [Indexed: 11/08/2022]
Abstract
Dengue is the most rapidly spreading mosquito-borne viral disease in the world; in India it has taken endemic proportion implicating all the four known dengue virus serotypes. Dengue infection is caused by a small, single stranded RNA virus comprising of four antigenically distinct virus serotypes designated as dengue virus type 1-4 (DENV-1-4). On the basis of genomic variations, each serotype is classified further into its genotypes. Epidemiological studies have shown that the emergence of a newer dengue serotype/genotype after an interval always leads to a major outbreak; therefore a continuous epidemiological surveillance is needed to monitor the epidemiology of dengue viruses. The present study was planned to identify the serotype/genotype of dengue viruses circulating in Uttar Pradesh, India. Of 433 dengue suspected patients, tested by reverse transcriptase PCR (RT-PCR), 136 were positive for dengue virus RNA. Of these, DENV-1, 2, and 3 were detected in 26 (19.1%), 77 (56.6%), and 33 (24.3%) patients, respectively. Of 136 RT-PCR positive samples, 24 samples were sequenced to identify their genotypes. For sequencing C-prM gene junction of dengue virus genome was chosen. Phylogenetic analysis of sequenced dengue strains revealed that all the 12 DENV-1 strains were genotype III, all the eight DENV-2 strains were genotype IV (Cosmopolitan genotype) and among four DENV-3 strains, three were genotype III and one was genotype I. In conclusion, the co-circulation of multiple dengue virus serotypes and genotypes is alarming in U.P., India.
Collapse
Affiliation(s)
- Gitika Mishra
- Department of Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Ocwieja KE, Fernando AN, Sherrill-Mix S, Sundararaman SA, Tennekoon RN, Tippalagama R, Krishnananthasivam S, Premawansa G, Premawansa S, De Silva AD. Phylogeography and molecular epidemiology of an epidemic strain of dengue virus type 1 in Sri Lanka. Am J Trop Med Hyg 2014; 91:225-34. [PMID: 24799375 DOI: 10.4269/ajtmh.13-0523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In 2009, a severe epidemic of dengue disease occurred in Sri Lanka, with higher mortality and morbidity than any previously recorded epidemic in the country. It corresponded to a shift to dengue virus 1 as the major disease-causing serotype in Sri Lanka. Dengue disease reached epidemic levels in the next 3 years. We report phylogenetic evidence that the 2009 epidemic DENV-1 strain continued to circulate within the population and caused severe disease in the epidemic of 2012. Bayesian phylogeographic analyses suggest that the 2009 Sri Lankan epidemic DENV-1 strain may have traveled directly or indirectly from Thailand through China to Sri Lanka, and after spreading within the Sri Lankan population, it traveled to Pakistan and Singapore. Our findings delineate the dissemination route of a virulent DENV-1 strain in Asia. Understanding such routes will be of particular importance to global control efforts.
Collapse
Affiliation(s)
- Karen E Ocwieja
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Anira N Fernando
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Scott Sherrill-Mix
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Sesh A Sundararaman
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rashika N Tennekoon
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rashmi Tippalagama
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Shivankari Krishnananthasivam
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Gayani Premawansa
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Sunil Premawansa
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Aruna Dharshan De Silva
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| |
Collapse
|
154
|
Weiskopf D, Sette A. T-cell immunity to infection with dengue virus in humans. Front Immunol 2014; 5:93. [PMID: 24639680 PMCID: PMC3945531 DOI: 10.3389/fimmu.2014.00093] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/21/2014] [Indexed: 11/21/2022] Open
Abstract
Dengue virus (DENV) is the etiologic agent of dengue fever, the most significant mosquito-borne viral disease in humans. Up to 400 million DENV infections occur every year, and severity can range from asymptomatic to an acute self-limiting febrile illness. In a small proportion of patients, the disease can exacerbate and progress to dengue hemorrhagic fever and/or dengue shock syndrome, characterized by severe vascular leakage, thrombocytopenia, and hemorrhagic manifestations. A unique challenge in vaccine development against DENV is the high degree of sequence variation, characteristically associated with RNA viruses. This is of particular relevance in the case of DENV since infection with one DENV serotype (primary infection) presumably affords life-long serotype-specific immunity but only partial and temporary immunity to other serotypes in secondary infection settings. The role of T cells in DENV infection and subsequent disease manifestations is not fully understood. According to the original antigenic sin theory, skewing of T-cell responses induced by primary infection with one serotype causes less effective response upon secondary infection with a different serotype, predisposing to severe disease. Our recent study has suggested an HLA-linked protective role for T cells. Herein, we will discuss the role of T cells in protection and pathogenesis from severe disease as well as the implications for vaccine design.
Collapse
Affiliation(s)
- Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| |
Collapse
|
155
|
Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM, Duda KA, Bhatt S, Katzelnick L, Howes RE, Battle KE, Simmons CP, Hay SI. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol 2014; 22:138-46. [PMID: 24468533 PMCID: PMC3946041 DOI: 10.1016/j.tim.2013.12.011] [Citation(s) in RCA: 438] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 12/28/2022]
Abstract
Since the first isolation of dengue virus (DENV) in 1943, four types have been identified. Global phenomena such as urbanization and international travel are key factors in facilitating the spread of dengue. Documenting the type-specific record of DENV spread has important implications for understanding patterns in dengue hyperendemicity and disease severity as well as vaccine design and deployment strategies. Existing studies have examined the spread of DENV types at regional or local scales, or described phylogeographic relationships within a single type. Here we summarize the global distribution of confirmed instances of each DENV type from 1943 to 2013 in a series of global maps. These show the worldwide expansion of the types, the expansion of disease hyperendemicity, and the establishment of an increasingly important infectious disease of global public health significance.
Collapse
Affiliation(s)
- Jane P Messina
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | - Oliver J Brady
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Thomas W Scott
- Department of Entomology, University of California Davis, Davis, California 95616, USA; Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chenting Zou
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - David M Pigott
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Kirsten A Duda
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Samir Bhatt
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Leah Katzelnick
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Rosalind E Howes
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Katherine E Battle
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Cameron P Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK; Nossal Institute of Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Simon I Hay
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK; Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
156
|
Walimbe AM, Lotankar M, Cecilia D, Cherian SS. Global phylogeography of Dengue type 1 and 2 viruses reveals the role of India. INFECTION GENETICS AND EVOLUTION 2014; 22:30-9. [PMID: 24418211 DOI: 10.1016/j.meegid.2014.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 01/02/2023]
Abstract
Patterns in virus dispersal and epidemiology of viral diseases can be revealed by phylogeographic studies. Currently knowledge about phylogeography of Dengue virus (DENV) Types 1 and 2 is limited. We carried out the phylogeographic analyses for DENV-1 and DENV-2, by the Bayesian Markov Chain Monte Carlo (MCMC) approach, with emphasis on Indian isolates in relation to the global evolutionary dynamics of the viruses. More than 250 E-gene sequences of each virus, available in GenBank, were used for the analyses. The study was focused on understanding the most likely geographical origin for the major genotypes and sub-lineages of DENV-1/DENV-2 and also the possible pathways in the dispersal of the virus. The results showed that for DENV-1, Southeast Asia was the most likely geographical origin and India was determined to be the ancestral location of the Cosmopolitan genotype circulating in India, Sri Lanka, West and East Africa, Caribbean region, East and Southeast Asia. For DENV-2, the ancestral source could not be precisely inferred. Further, in spite of the earliest isolate from Trinidad-1953 of the American genotype, it was depicted that India may have been the probable ancestor of this genotype. India was also determined to be the ancestral location of a subgroup of the Cosmopolitan genotype. It was noted that DENV-1 and DENV-2 were introduced into India during 1940s and 1910s respectively. Subsequently, dispersal of both the viruses between India and different regions including West, East and Central Africa, Southeast and East Asia and Caribbean was inferred. Overall, the current study provides insight into the spatial as well as temporal dynamics of dengue virus serotypes 1 and 2.
Collapse
Affiliation(s)
- Atul M Walimbe
- Bioinformatics and Data Management Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Post Box No. 11, Pune 411001, Maharashtra, India.
| | - Mrunalini Lotankar
- Bioinformatics and Data Management Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Post Box No. 11, Pune 411001, Maharashtra, India.
| | - D Cecilia
- Dengue Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Post Box No. 11, Pune 411001, Maharashtra, India.
| | - Sarah S Cherian
- Bioinformatics and Data Management Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Post Box No. 11, Pune 411001, Maharashtra, India.
| |
Collapse
|
157
|
Abstract
Dengue transmission has increased considerably in the past 20 years. Currently, it can only be reduced by mosquito control; however, the application of vector-control methods are labor intensive, require discipline and diligence, and are hard to sustain. In this context, a safe dengue vaccine that confers long-lasting protection against infection with the four dengue viruses is urgently required. This review will discuss the requirements of a dengue vaccine, problems, and advances that have been made. Finally, new targets for research will be presented.
Collapse
Affiliation(s)
- María G Guzmán
- Pedro Kourí Tropical Medicine Institute, Autopista Novia del Mediodía, Km 6 1\2 P.O. Box Marianao 13, C. Habana, Cuba.
| | | | | |
Collapse
|
158
|
Descloux E, La Fuentez C, Roca Y, De Lamballerie X. Clinical significance of intra-host variability of Dengue-1 virus in venous and capillary blood. Clin Microbiol Infect 2014; 20:O167-75. [PMID: 24397875 DOI: 10.1111/1469-0691.12368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/05/2013] [Accepted: 08/10/2013] [Indexed: 11/27/2022]
Abstract
Dengue fever represents a major public health problem. Both viral and host immune factors are involved in severe infections. Humans and mosquito-vectors are infected with diverse viral populations that may play a role in viral adaptation and disease pathogenesis. Our objective was to analyse the intra-host genetic variability of dengue virus type 1 (DENV-1) in the venous and capillary blood and its relationships with the clinical presentation of dengue fever. Early serum samples were collected in 2009 from ten DENV-1-infected patients hospitalized in Santa Cruz de la Sierra, Bolivia. Partial viral envelope sequences were analysed at the inter-host and intra-host level. For each patient, an average of 56 clone sequences was analysed both in the venous sector and the capillary sector (from right and left hands). The ten consensus sequences were highly similar. The intra-host DENV-1 genetic variability was significantly lower in the venous sector than in the capillary sector, and in patients with haemorrhagic symptoms than in those without haemorrhagic symptoms, particularly in capillary samples. No relation was found with sex, age, dengue IgG-serological status, day of serum sampling, or viral load. Significant relationships were found between the clinical presentation of dengue fever and the variability of viral populations within hosts, particularly in capillary samples. The observed variability of envelope sequences at the early phase of dengue infection was not critically influenced by the previous dengue serological status of patients. An important part of viral microevolution may occur in the capillary sector and influence the mechanisms of severe forms.
Collapse
Affiliation(s)
- E Descloux
- IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 "Emergence des Pathologies Virales" Aix-Marseille Université, Marseille, France; Service de Médecine Interne et Maladies Infectieuses, Centre Hospitalier Territorial de Nouvelle Calédonie, Noumea, New Caledonia
| | | | | | | |
Collapse
|
159
|
Abstract
Dengue viruses cause mild disease in the majority of infected individuals. In most cases, the disease is characterised by fever, headache, pain behind the eyes, muscle ache, joint pains, vomiting and diarrhoea. In a low percentage of patients, bleeding and loss of plasma (haemorrhage and plasma leakage) may occur. The hyper-permeability syndrome results in plasma leakage and, if the compensatory mechanisms of the body fail to control the plasma leakage or if medical intervention is late, shock may set in. Profound shock will subsequently lead to acidic blood (metabolic acidosis) and development of disseminated intravascular coagulation (DIC). During DIC multiple micro thromboses occur, leading to organ failure. The mechanisms governing pathogenesis of these forms of severe disease are not clear. High amounts of virus in the blood are believed to cause vascular fragility which, together with infection of endothelial cells and high levels of cytokines and other soluble mediators, may result in bleeding. In the absence of a correlation between the amount of virus in the blood and disease severity, it is likely that response to infection is an important cause of disease. The aberrant immune response to infection is believed to result in a cytokine storm, defined as an imbalance between cytokines driving an inflammation (pro-inflammatory) and those silencing an inflammation (anti-inflammatory). Several lines of evidence indicate that displacement of viral genotype and host genetic background are key factors driving the production of a cytokine storm. Several cytokines are known to induce apoptosis, a form of cell suicide (cause of haemorrhage), and/or affect adherens junctions (cause permeability) in vitro. Whether these cytokines may have such effects in vivo remains to be established.
Collapse
|
160
|
Parameswaran P, Liu Y, Roskin KM, Jackson KKL, Dixit VP, Lee JY, Artiles KL, Zompi S, Vargas MJ, Simen BB, Hanczaruk B, McGowan KR, Tariq MA, Pourmand N, Koller D, Balmaseda A, Boyd SD, Harris E, Fire AZ. Convergent antibody signatures in human dengue. Cell Host Microbe 2013; 13:691-700. [PMID: 23768493 DOI: 10.1016/j.chom.2013.05.008] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/03/2013] [Accepted: 04/30/2013] [Indexed: 01/05/2023]
Abstract
Dengue is the most prevalent mosquito-borne viral disease in humans, and the lack of early prognostics, vaccines, and therapeutics contributes to immense disease burden. To identify patterns that could be used for sequence-based monitoring of the antibody response to dengue, we examined antibody heavy-chain gene rearrangements in longitudinal peripheral blood samples from 60 dengue patients. Comparing signatures between acute dengue, postrecovery, and healthy samples, we found increased expansion of B cell clones in acute dengue patients, with higher overall clonality in secondary infection. Additionally, we observed consistent antibody sequence features in acute dengue in the highly variable major antigen-binding determinant, complementarity-determining region 3 (CDR3), with specific CDR3 sequences highly enriched in acute samples compared to postrecovery, healthy, or non-dengue samples. Dengue thus provides a striking example of a human viral infection where convergent immune signatures can be identified in multiple individuals. Such signatures could facilitate surveillance of immunological memory in communities.
Collapse
Affiliation(s)
- Poornima Parameswaran
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Tsai JJ, Chokephaibulkit K, Chen PC, Liu LT, Hsiao HM, Lo YC, Perng GC. Role of cognitive parameters in dengue hemorrhagic fever and dengue shock syndrome. J Biomed Sci 2013; 20:88. [PMID: 24305068 PMCID: PMC4174897 DOI: 10.1186/1423-0127-20-88] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/26/2013] [Indexed: 01/10/2023] Open
Abstract
Dengue is becoming recognized as one of the most important vector-borne human diseases. It is predominant in tropical and subtropical zones but its geographical distribution is progressively expanding, making it an escalating global health problem of today. Dengue presents with spectrum of clinical manifestations, ranging from asymptomatic, undifferentiated mild fever, dengue fever (DF), to dengue hemorrhagic fever (DHF) with or without shock (DSS), a life-threatening illness characterized by plasma leakage due to increased vascular permeability. Currently, there are no antiviral modalities or vaccines available to treat and prevent dengue. Supportive care with close monitoring is the standard clinical practice. The mechanisms leading to DHF/DSS remains poorly understood. Multiple factors have been attributed to the pathological mechanism, but only a couple of these hypotheses are popular in scientific circles. The current discussion focuses on underappreciated factors, temperature, natural IgM, and endotoxin, which may be critical components playing roles in dengue pathogenesis.
Collapse
Affiliation(s)
- Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
162
|
|
163
|
HUHTAMO E, COMACH G, SIERRA G, CAMACHO DE, SIRONEN T, VAPALAHTI O, UZCÁTEGUI NY. Diversity and composition of dengue virus type 2 in Venezuela. Epidemiol Infect 2013; 141:1816-22. [PMID: 23110744 PMCID: PMC9156957 DOI: 10.1017/s0950268812002324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/07/2012] [Accepted: 09/23/2012] [Indexed: 11/07/2022] Open
Abstract
Dengue is a mosquito-borne disease caused by four closely related dengue virus (genus Flavivirus)serotypes (DENV-1–4). The clinical outcomes vary from mild febrile illness to life-threatening haemorrhagic manifestations. DENVs are endemic in the tropics and subtropics globally and currently no specific treatment or vaccines are available. In Venezuela, the American-Asian genotype of DENV-2 is the most prevalent and has been associated with severe disease outcomes.We aimed to follow-up the molecular epidemiology of DENV-2 in Venezuela to investigate if the evolution of the virus has remained the same throughout time or if the same dynamics documented in Brazil (hyperendemic co-circulation) also occurred. The results show that whereas the epidemiology of DENV in several endemic areas is characterized by serotype replacements through time, in Venezuela the American-Asian genotype DENV-2 has evolved into several genetic lineages and has remained in hyperendemic co-circulation with the other serotypes.
Collapse
Affiliation(s)
- E. HUHTAMO
- Research Programs Unit, Infection Biology & Department of Virology, Haartman Institute, University of Helsinki, Finland
| | - G. COMACH
- Laboratorio Regional de Diagnóstico e Investigación del Dengue y otras Enfermedades Virales (LARDIDEV), Instituto de Investigaciones Biomedicas de la Universidad de Carabobo (BIOMED-UC) Maracay, Estado Aragua, Venezuela
| | - G. SIERRA
- Laboratorio Regional de Diagnóstico e Investigación del Dengue y otras Enfermedades Virales (LARDIDEV), Instituto de Investigaciones Biomedicas de la Universidad de Carabobo (BIOMED-UC) Maracay, Estado Aragua, Venezuela
| | - D. E. CAMACHO
- Laboratorio Regional de Diagnóstico e Investigación del Dengue y otras Enfermedades Virales (LARDIDEV), Instituto de Investigaciones Biomedicas de la Universidad de Carabobo (BIOMED-UC) Maracay, Estado Aragua, Venezuela
| | - T. SIRONEN
- Research Programs Unit, Infection Biology & Department of Virology, Haartman Institute, University of Helsinki, Finland
| | - O. VAPALAHTI
- Research Programs Unit, Infection Biology & Department of Virology, Haartman Institute, University of Helsinki, Finland
- Department of Virology, HUSLAB, Hospital District of Helsinki and Uusimaa, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - N. Y. UZCÁTEGUI
- Research Programs Unit, Infection Biology & Department of Virology, Haartman Institute, University of Helsinki, Finland
| |
Collapse
|
164
|
Bäck AT, Lundkvist A. Dengue viruses - an overview. Infect Ecol Epidemiol 2013; 3:19839. [PMID: 24003364 PMCID: PMC3759171 DOI: 10.3402/iee.v3i0.19839] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 07/11/2013] [Accepted: 07/16/2013] [Indexed: 12/11/2022] Open
Abstract
Dengue viruses (DENVs) cause the most common arthropod-borne viral disease in man with 50-100 million infections per year. Because of the lack of a vaccine and antiviral drugs, the sole measure of control is limiting the Aedes mosquito vectors. DENV infection can be asymptomatic or a self-limited, acute febrile disease ranging in severity. The classical form of dengue fever (DF) is characterized by high fever, headache, stomach ache, rash, myalgia, and arthralgia. Severe dengue, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) are accompanied by thrombocytopenia, vascular leakage, and hypotension. DSS, which can be fatal, is characterized by systemic shock. Despite intensive research, the underlying mechanisms causing severe dengue is still not well understood partly due to the lack of appropriate animal models of infection and disease. However, even though it is clear that both viral and host factors play important roles in the course of infection, a fundamental knowledge gap still remains to be filled regarding host cell tropism, crucial host immune response mechanisms, and viral markers for virulence.
Collapse
Affiliation(s)
- Anne Tuiskunen Bäck
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden ; Swedish Institute for Communicable Disease Control, Solna, Sweden ; Swedish International Development Cooperation Agency, Unit for Research Cooperation, Stockholm, Sweden
| | | |
Collapse
|
165
|
Khoo CCH, Doty JB, Held NL, Olson KE, Franz AWE. Isolation of midgut escape mutants of two American genotype dengue 2 viruses from Aedes aegypti. Virol J 2013; 10:257. [PMID: 23937713 PMCID: PMC3751248 DOI: 10.1186/1743-422x-10-257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/22/2013] [Indexed: 11/24/2022] Open
Abstract
Background Several studies have shown that American genotype dengue 2 viruses (DENV2) have reduced viral fitness in the mosquito vector, Aedes aegypti, compared to other DENV2 genotypes. Diminished replication efficiency or inability to efficiently traverse membrane barriers encompassing organs such as the midgut or salivary glands are considered major factors negatively impacting viral fitness in the mosquito. Results We analyzed the vector competence of Ae. aegypti for two American DENV2 strains, QR94 and PR159 originating from Mexico and Puerto-Rico, respectively. Both strains infected mosquito midguts following acquisition of infectious bloodmeals. However, DENV2-QR94 and DENV2-PR159 poorly disseminated from the midgut at 7 or 14 days post-bloodmeal (pbm). We detected one virus isolate, EM33, among 31 DENV2-QR94 infected mosquitoes, and one isolate, EM41, among 121 DENV2-PR159 infected mosquitoes, generating high virus titers in mosquito carcasses at 7 days pbm. In oral challenge experiments, EM33 and EM41 showed midgut dissemination rates of 40-50%. Replication efficiency of EM41 in secondary mosquito tissue was similar to that of a dissemination-competent control strain, whereas the replication efficiency of EM33 was significantly lower than that of the control virus. The genome sequence of DENV2-QR94 encoded seven unique amino acids (aa), which were not found in 100 of the most closely related DENV2 strains. EM33 had one additional aa change, E202K, in the E protein. DENV2-PR159 encoded four unique aa residues, one of them E202K, whereas EM41 had two additional aa substitutions, Q77E in the E protein and E93D in NS3. Conclusions Our results indicate that the midgut of Ae. aegypti acts as a selective sieve for DENV2 in which genetically distinct, dissemination-competent virus variants are rapidly selected from the viral quasispecies to be transmitted to vertebrates.
Collapse
|
166
|
Molecular epidemiology of American/Asian genotype DENV-2 in Peru. INFECTION GENETICS AND EVOLUTION 2013; 18:220-8. [DOI: 10.1016/j.meegid.2013.04.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/15/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022]
|
167
|
Spiropoulou CF, Srikiatkhachorn A. The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome. Virulence 2013; 4:525-36. [PMID: 23841977 PMCID: PMC5359750 DOI: 10.4161/viru.25569] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The loss of the endothelium barrier and vascular leakage play a central role in the pathogenesis of hemorrhagic fever viruses. This can be caused either directly by the viral infection and damage of the vascular endothelium, or indirectly by a dysregulated immune response resulting in an excessive activation of the endothelium. This article briefly reviews our knowledge of the importance of the disruption of the vascular endothelial barrier in two severe disease syndromes, dengue hemorrhagic fever and hantavirus pulmonary syndrome. Both viruses cause changes in vascular permeability without damaging the endothelium. Here we focus on our understanding of the virus interaction with the endothelium, the role of the endothelium in the induced pathogenesis, and the possible mechanisms by which each virus causes vascular leakage. Understanding the dynamics between viral infection and the dysregulation of the endothelial cell barrier will help us to define potential therapeutic targets for reducing disease severity.
Collapse
|
168
|
Rodriguez-Roche R, Gould EA. Understanding the dengue viruses and progress towards their control. BIOMED RESEARCH INTERNATIONAL 2013; 2013:690835. [PMID: 23936833 PMCID: PMC3722981 DOI: 10.1155/2013/690835] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/08/2013] [Indexed: 01/12/2023]
Abstract
Traditionally, the four dengue virus serotypes have been associated with fever, rash, and the more severe forms, haemorrhagic fever and shock syndrome. As our knowledge as well as understanding of these viruses increases, we now recognise not only that they are causing increasing numbers of human infections but also that they may cause neurological and other clinical complications, with sequelae or fatal consequences. In this review we attempt to highlight some of these features in the context of dengue virus pathogenesis. We also examine some of the efforts currently underway to control this "scourge" of the tropical and subtropical world.
Collapse
Affiliation(s)
- Rosmari Rodriguez-Roche
- Pedro Kouri Tropical Medicine Institute, WHO/PAHO Collaborating Centre for the Study of Dengue and Its Vector, Havana, Cuba.
| | | |
Collapse
|
169
|
Erra EO, Korhonen EM, Voutilainen L, Huhtamo E, Vapalahti O, Kantele A. Dengue in travelers: kinetics of viremia and NS1 antigenemia and their associations with clinical parameters. PLoS One 2013; 8:e65900. [PMID: 23755291 PMCID: PMC3670861 DOI: 10.1371/journal.pone.0065900] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/29/2013] [Indexed: 11/18/2022] Open
Abstract
Despite the increasing numbers of travel-acquired dengue, few studies have assessed virologic markers of the disease in non-endemic populations. We examined the kinetics of diagnostic markers and their associations with clinical parameters in 93 patients with travel-acquired dengue fever. Kinetics analyses suggested a longer average duration for viremia (9 days, CI95%: 8–10) and non-structural protein 1 (NS1) antigenemia (15 days, CI95%: 12–20) than reported in endemic populations. While none of the tests sufficed alone, the best diagnostic coverage was achieved by combining antibody detection with RNA or NS1 testing. Studied by regression models, early relative levels of viremia and NS1 antigenemia proved to be significantly associated with several clinical parameters: high viremia predicted greater likelihood and increased length of hospitalization, the degree of NS1 antigenemia correlated positively with hematocrit and liver transaminases, and both viremia and NS1 antigenemia levels negatively with platelet counts in follow-up. Levels of viremia and NS1 antigenemia may serve as predictors of the clinical manifestations in travel-acquired dengue.
Collapse
Affiliation(s)
- Elina O Erra
- Division of Infectious Diseases, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
170
|
Abstract
PURPOSE OF REVIEW Dengue is one of the most rapidly spreading vector-borne diseases in the world, with the incidence increasing 30-fold in the past 50 years. There are currently no licensed treatments or vaccines for dengue. This review covers the recent advances in our understanding of dengue pathogenesis, including host and viral determinants. RECENT FINDINGS The pathogenesis of severe dengue is thought to be immune-mediated due to the timing of the clinical manifestations and higher incidence in secondary infections with a heterologous serotype. Recent evidence has provided further information of neutralizing versus enhancing monoclonal antibodies and their target epitopes on the dengue virion, which has major implications for vaccine design. The role of T-cell immunopathology has also been advanced with recent evidence of cross-reactive high pro-inflammatory cytokine producing T cells predominating in severe dengue. Recent large genome-wide association studies have identified specific susceptibility loci associated with severe disease. Epidemiological studies have served to define certain at-risk groups and specific viral virulence factors have recently been described. SUMMARY The pathogenesis of dengue is likely to be a complex interplay of host immunity and genetic predisposition combined with certain viral virulence factors. Better understanding of the underlying mechanisms leading to severe dengue is crucial if we are to develop prognostic markers, novel diagnostics and therapeutics and ultimately a balanced and safe vaccine.
Collapse
Affiliation(s)
- Sophie Yacoub
- Department of Medicine, Imperial College, Hammersmith Campus, London, UK.
| | | | | |
Collapse
|
171
|
Medina F, Medina JF, Colón C, Vergne E, Santiago GA, Muñoz-Jordán JL. Dengue virus: isolation, propagation, quantification, and storage. ACTA ACUST UNITED AC 2013. [PMID: 23184594 DOI: 10.1002/9780471729259.mc15d02s27] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dengue is a disease caused by infection with one of the four dengue virus serotypes (DENV-1, -2, -3, and -4). The virus is transmitted to humans by Aedes sp. mosquitoes. This enveloped virus contains a positive single-stranded RNA genome. Clinical manifestations of dengue can have a wide range of outcomes varying from a mild febrile illness to a life-threatening condition. New techniques have largely replaced the use of DENV isolation in disease diagnosis. However, virus isolation still serves as the gold standard for detection and serotyping of DENV and is common practice in research and reference laboratories where clinical isolates of the virus are characterized and sequenced, or used for a variety of research experiments. Isolation of DENV from clinical samples can be achieved in mammalian and mosquito cells or by inoculation of mosquitoes. The experimental methods presented here describe the most common procedures used for the isolation, serotyping, propagation, and quantification of DENV.
Collapse
Affiliation(s)
- Freddy Medina
- Centers for Disease Control and Prevention, Division of Vector Borne Infectious Diseases, Dengue Branch, San Juan, Puerto Rico
| | | | | | | | | | | |
Collapse
|
172
|
Drumond BP, Mondini A, Schmidt DJ, Bronzoni RVDM, Bosch I, Nogueira ML. Circulation of different lineages of Dengue virus 2, genotype American/Asian in Brazil: dynamics and molecular and phylogenetic characterization. PLoS One 2013; 8:e59422. [PMID: 23533624 PMCID: PMC3606110 DOI: 10.1371/journal.pone.0059422] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/14/2013] [Indexed: 01/05/2023] Open
Abstract
The American/Asian genotype of Dengue virus type 2 (DENV-2) was introduced into the Americas in the 80′s. Although there is no data showing when this genotype was first introduced into Brazil, it was first detected in Brazil in 1990. After which the virus spread throughout the country and major epidemics occurred in 1998, 2007/08 and 2010. In this study we sequenced 12 DENV-2 genomes obtained from serum samples of patients with dengue fever residing in São José do Rio Preto, São Paulo (SJRP/SP), Brazil, in 2008. The whole open reading frame or envelope sequences were used to perform phylogenetic, phylogeographic and evolutionary analyses. Isolates from SJRP/SP were grouped within one lineage (BR3) close to isolates from Rio de Janeiro, Brazil. Isolates from SJRP were probably introduced there at least in 2007, prior to its detection in the 2008 outbreak. DENV-2 circulation in Brazil is characterized by the introduction, displacement and circulation of three well-defined lineages in different times, most probably from the Caribbean. Thirty-seven unique amino acid substitutions were observed among the lineages, including seven amino acid differences in domains I to III of the envelope protein. Moreover, we dated here, for the first time, the introduction of American/Asian genotype into Brazil (lineage BR1) to 1988/89, followed by the introduction of lineages BR2 (1998–2000) and BR3 (2003–05). Our results show a delay between the introduction and detection of DENV-2 lineages in Brazil, reinforcing the importance and need for surveillance programs to detect and trace the evolution of these viruses. Additionally, Brazilian DENV-2 differed in genetic diversity, date of introduction and geographic origin and distribution in Brazil, and these are important factors for the evolution, dynamics and control of dengue.
Collapse
Affiliation(s)
- Betânia Paiva Drumond
- Laboratório de Virologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
- * E-mail: (BPD); (MLN)
| | - Adriano Mondini
- Laboratório de Saúde Pública, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Diane J. Schmidt
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | | | - Irene Bosch
- Genome Resources in Dengue Consortium, Massachusetts Institute of Technology. Cambridge, Massachusetts, United States of America
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisa em Virologia, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
- * E-mail: (BPD); (MLN)
| |
Collapse
|
173
|
Faria NRDC, Nogueira RMR, de Filippis AMB, Simões JBS, Nogueira FDB, da Rocha Queiroz Lima M, dos Santos FB. Twenty years of DENV-2 activity in Brazil: molecular characterization and phylogeny of strains isolated from 1990 to 2010. PLoS Negl Trop Dis 2013; 7:e2095. [PMID: 23516646 PMCID: PMC3597488 DOI: 10.1371/journal.pntd.0002095] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/22/2013] [Indexed: 11/18/2022] Open
Abstract
In Brazil, dengue has been a major public health problem since its introduction in the 1980s. Phylogenetic studies constitute a valuable tool to monitor the introduction and spread of viruses as well as to predict the potential epidemiological consequences of such events. Aiming to perform the molecular characterization and phylogenetic analysis of DENV-2 during twenty years of viral activity in the country, viral strains isolated from patients presenting different disease manifestations (n = 34), representing six states of the country, from 1990 to 2010, were sequenced. Partial genome sequencing (genes C/prM/M/E) was performed in 25 DENV-2 strains and full-length genome sequencing (coding region) was performed in 9 strains. The percentage of similarity among the DENV-2 strains in this study and reference strains available in Genbank identified two groups epidemiologically distinct: one represented by strains isolated from 1990 to 2003 and one from strains isolated from 2007 to 2010. No consistent differences were observed on the E gene from strains isolated from cases with different clinical manifestations analyzed, suggesting that if the disease severity has a genetic origin, it is not only due to the differences observed on the E gene. The results obtained by the DENV-2 full-length genome sequencing did not point out consistent differences related to a more severe disease either. The analysis based on the partial and/or complete genome sequencing has characterized the Brazilian DENV-2 strains as belonging to the Southeast Asian genotype, however a distinction of two Lineages within this genotype has been identified. It was established that strains circulating prior DENV-2 emergence (1990–2003) belong to Southeast Asian genotype, Lineage I and strains isolated after DENV-2 emergence in 2007 belong to Southeast Asian genotype, Lineage II. Furthermore, all DENV-2 strains analyzed presented an asparagine (N) in E390, previously identified as a probable genetic marker of virulence observed in DHF strains from Asian origin. The percentage of identity of the latter with the Dominican Republic strain isolated in 2001 combined to the percentage of divergence with the strains first introduced in the country in the 1990s suggests that those viruses did not evolve locally but were due to a new viral Lineage introduction in the country from the Caribbean. In Brazil, the first dengue haemorrhagic cases were reported after the DENV-2 introduction in Rio de Janeiro, which spread to other states in the country. Aiming to perform the molecular characterization and phylogenetic analysis of DENV-2 during twenty years of viral activity in the country, strains isolated from patients presenting different disease manifestations were sequenced. Phylogeny characterized the DENV-2 as belonging to the Southeast Asian genotype, however a distinction of two Lineages within this genotype has been identified. Furthermore, all strains presented an asparagine in E390, previously identified as a probable genetic marker of virulence. The results show a temporal circulation of genetically different viruses in Brazil, probably due to the introduction of a new viral lineage from the Caribbean, which lead to the re-emergence of this serotype after 2007, causing the most severe epidemic already described in the country.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Flavia Barreto dos Santos
- Flavivirus Laboratory, Oswaldo Cruz Institute, Manguinhos, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
174
|
Guzman MG, Alvarez M, Halstead SB. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch Virol 2013; 158:1445-59. [PMID: 23471635 DOI: 10.1007/s00705-013-1645-3] [Citation(s) in RCA: 504] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/17/2013] [Indexed: 01/06/2023]
Abstract
Today, dengue viruses are the most prevalent arthropod-borne viruses in the world. Since the 1960s, numerous reports have identified a second heterologous dengue virus (DENV) infection as a principal risk factor for severe dengue disease (dengue hemorrhagic fever/dengue shock syndrome, DHF/DSS). Modifiers of dengue disease response include the specific sequence of two DENV infections, the interval between infections, and contributions from the human host, such as age, ethnicity, chronic illnesses and genetic background. Antibody-dependent enhancement (ADE) of dengue virus infection has been proposed as the early mechanism underlying DHF/DSS. Dengue cross-reactive antibodies raised following a first dengue infection combine with a second infecting virus to form infectious immune complexes that enter Fc-receptor-bearing cells. This results in an increased number of infected cells and increased viral output per cell. At the late illness stage, high levels of cytokines, possibly the result of T cell elimination of infected cells, result in vascular permeability, leading to shock and death. This review is focused on the etiological role of secondary infections (SI) and mechanisms of ADE.
Collapse
Affiliation(s)
- Maria G Guzman
- Institute of Tropical Medicine Pedro Kouri, Havana, Cuba.
| | | | | |
Collapse
|
175
|
Pagni S, Fernandez-Sesma A. Evasion of the human innate immune system by dengue virus. Immunol Res 2013; 54:152-9. [PMID: 22569913 DOI: 10.1007/s12026-012-8334-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dengue virus is a worldwide health problem, with billions of people at risk annually. Dengue virus causes a spectrum of diseases, namely dengue fever, dengue hemorrhagic fever and dengue shock syndrome with the latter two being linked to death. Understanding how dengue is able to evade the immune system and cause enhanced severity of disease is the main topics of interest in the Fernandez-Sesma laboratory at Mount Sinai School of Medicine. Using primary human immune cells, our group investigates the contribution of dengue virus-specific proteins to the evasion of innate immunity by this virus and the host factors that the virus interacts with in order to evade immune recognition and to establish infection in humans. Here, we review recent findings from our group as well as published data from other groups regarding immune modulation by dengue virus.
Collapse
Affiliation(s)
- Sarah Pagni
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | | |
Collapse
|
176
|
Williams KL, Sukupolvi-Petty S, Beltramello M, Johnson S, Sallusto F, Lanzavecchia A, Diamond MS, Harris E. Therapeutic efficacy of antibodies lacking Fcγ receptor binding against lethal dengue virus infection is due to neutralizing potency and blocking of enhancing antibodies [corrected]. PLoS Pathog 2013; 9:e1003157. [PMID: 23459315 PMCID: PMC3573116 DOI: 10.1371/journal.ppat.1003157] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/10/2012] [Indexed: 11/18/2022] Open
Abstract
Dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS) are life-threatening complications following infection with one of the four serotypes of dengue virus (DENV). At present, no vaccine or antiviral therapies are available against dengue. Here, we characterized a panel of eight human or mouse-human chimeric monoclonal antibodies (MAbs) and their modified variants lacking effector function and dissected the mechanism by which some protect against antibody-enhanced lethal DENV infection. We found that neutralizing modified MAbs that recognize the fusion loop or the A strand epitopes on domains II and III of the envelope protein, respectively, act therapeutically by competing with and/or displacing enhancing antibodies. By analyzing these relationships, we developed a novel in vitro suppression-of-enhancement assay that predicts the ability of modified MAbs to act therapeutically against antibody-enhanced disease in vivo. These studies provide new insight into the biology of DENV pathogenesis and the requirements for antibodies to treat lethal DENV disease.
Collapse
Affiliation(s)
- Katherine L. Williams
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Soila Sukupolvi-Petty
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | - Syd Johnson
- Macrogenics, Inc., Rockville, Maryland, United States of America
| | | | | | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
177
|
Dengue virus therapeutic intervention strategies based on viral, vector and host factors involved in disease pathogenesis. Pharmacol Ther 2013; 137:266-82. [DOI: 10.1016/j.pharmthera.2012.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 12/27/2022]
|
178
|
Manakkadan A, Joseph I, Prasanna RR, Kunju RI, Kailas L, Sreekumar E. Lineage shift in Indian strains of Dengue virus serotype-3 (Genotype III), evidenced by detection of lineage IV strains in clinical cases from Kerala. Virol J 2013; 10:37. [PMID: 23360780 PMCID: PMC3598737 DOI: 10.1186/1743-422x-10-37] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/25/2013] [Indexed: 11/23/2022] Open
Abstract
Background Local epidemiology of Dengue is defined by the genetic diversity of the circulating Dengue virus (DENV) strains. This important information is not available for the virus strains from most parts of the Indian subcontinent. The present study focused on the genetic diversity of the serotype 3 DENV strains (DENV-3) from India. Results A total of 22 DENV-3 strains identified by reverse-transcription PCR analysis of serum samples from 709 patients were studied. These samples were collected over a period of 4 years (2008–2011) from dengue fever suspected patients from Kerala, a dengue endemic state in South India. Comparison of a 1740bp nucleotide sequence of the viral Capsid-Pre-membrane-Envelope coding region of our strains and previously reported DENV-3 strains from India, South Asia and South America revealed non-synonymous substitutions that were genotype III-specific as well as sporadic. Evidence of positive selection was detected in the I81 amino acid residue of the envelope protein. Out of the 22 samples, three had I81A and 18 had I81V substitutions. In the phylogenetic analysis by maximum likelihood method the strains from Kerala clustered in two different lineages (lineage III and IV) within genotype III clade of DENV-3 strains. The ten strains that belonged to lineage IV had a signature amino acid substitution T219A in the envelope protein. Interestingly, all these strains were found to be closely related to a Singapore strain GU370053 isolated in 2007. Conclusions Our study identifies for the first time the presence of lineage IV strains in the Indian subcontinent. Results indicate the possibility of a recent exotic introduction and also a shift from the existing lineage III strains to lineage IV. Lineage shifts in DENV-3 strains have been attributed to dramatic increase in disease severity in many parts of the world. Hence the present observation could be significant in terms of the clinical severity of future dengue cases in the region.
Collapse
Affiliation(s)
- Anoop Manakkadan
- Viral Disease Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | | | | | | | | |
Collapse
|
179
|
Bona ACD, Twerdochlib AL, Navarro-Silva MA. Genetic diversity of dengue virus serotypes 1 and 2 in the State of Paraná, Brazil, based on a fragment of the capsid/premembrane junction region. Rev Soc Bras Med Trop 2012; 45:297-300. [PMID: 22760124 DOI: 10.1590/s0037-86822012000300003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/11/2011] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The precise identification of the genetic variants of the dengue virus is important to understand its dispersion and virulence patterns and to identify the strains responsible for epidemic outbreaks. This study investigated the genetic variants of the capsid-premembrane junction region fragment in the dengue virus serotypes 1 and 2 (DENV1-2). METHODS Samples from 11 municipalities in the State of Paraná, Brazil, were provided by the Central Laboratory of Paraná. They were isolated from the cell culture line C6/36 (Aedes albopictus) and were positive for indirect immunofluorescence. Ribonucleic acid (RNA) extracted from these samples was submitted to the reverse transcription polymerase chain reaction (RT-PCR) and nested PCR. RESULTS RT-PCR revealed that 4 of the samples were co-infected with both serotypes. The isolated DENV-1 sequences were 95-100% similar to the sequences of other serotype 1 strains deposited in GenBank. Similarly, the isolated DENV-2 sequences were 98-100% similar to other serotype 2 sequences in GenBank. According to our neighbor-joining tree, all strains obtained in this study belonged to genotype V of DENV-1. The DENV-2 strains, by contrast, belonged to the American/Asian genotypes. CONCLUSIONS The monitoring of circulating strains is an important tool to detect the migration of virus subtypes involved in dengue epidemics.
Collapse
Affiliation(s)
- Ana Caroline Dalla Bona
- Laboratório de Entomologia Médica e Veterinária, Setor de Ciências Biológicas, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | | | | |
Collapse
|
180
|
Voge NV, Sánchez-Vargas I, Blair CD, Eisen L, Beaty BJ. Detection of dengue virus NS1 antigen in infected Aedes aegypti using a commercially available kit. Am J Trop Med Hyg 2012. [PMID: 23185074 DOI: 10.4269/ajtmh.2012.12-0477] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epidemic dengue has emerged throughout the tropical world. In the continued absence of a vaccine against dengue virus (DENV), mosquito vector surveillance and control programs are essential to reduce human infections. An effective test to detect DENV in infected mosquitoes would be a valuable addition to the surveillance effort. We investigated DENV detection in infected Aedes aegypti using a commercially available DENV non-structural protein 1 (NS1) ELISA kit (Platelia Dengue NS1 Ag), and by reverse transcription-polymerase chain reaction (RT-PCR) and virus isolation assays. The DENV-infected mosquitoes were subjected to field-relevant conditions and assayed individually and pooled with uninfected mosquitoes. Overall, DENV NS1 antigen was detected in 98% of infected mosquitoes/pools versus 79% for RT-PCR and 29% for virus isolation. Our results indicate that NS1 is an excellent analyte for detection of DENV in Ae. aegypti and that the tested NS1 antigen kit provides a sensitive, rapid, and convenient test for DENV surveillance in mosquitoes.
Collapse
Affiliation(s)
- Natalia V Voge
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | |
Collapse
|
181
|
Chakravarti A, Chauhan MS, Kumar S, Ashraf A. Genotypic characterization of dengue virus strains circulating during 2007-2009 in New Delhi. Arch Virol 2012; 158:571-81. [DOI: 10.1007/s00705-012-1522-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 09/21/2012] [Indexed: 11/29/2022]
|
182
|
Brathwaite Dick O, San Martín JL, Montoya RH, del Diego J, Zambrano B, Dayan GH. The history of dengue outbreaks in the Americas. Am J Trop Med Hyg 2012; 87:584-93. [PMID: 23042846 PMCID: PMC3516305 DOI: 10.4269/ajtmh.2012.11-0770] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 07/13/2012] [Indexed: 11/07/2022] Open
Abstract
Dengue is a viral disease usually transmitted by Aedes aegypti mosquitoes. Dengue outbreaks in the Americas reported in medical literature and to the Pan American Health Organization are described. The outbreak history from 1600 to 2010 was categorized into four phases: Introduction of dengue in the Americas (1600-1946); Continental plan for the eradication of the Ae. aegypti (1947-1970) marked by a successful eradication of the mosquito in 18 continental countries by 1962; Ae. aegypti reinfestation (1971-1999) caused by the failure of the mosquito eradication program; Increased dispersion of Ae. aegypti and dengue virus circulation (2000-2010) characterized by a marked increase in the number of outbreaks. During 2010 > 1.7 million dengue cases were reported, with 50,235 severe cases and 1,185 deaths. A dramatic increase in the number of outbreaks has been reported in recent years. Urgent global action is needed to avoid further disease spread.
Collapse
Affiliation(s)
- Olivia Brathwaite Dick
- Viral Diseases Program, Pan American Health Organization (PAHO), Washington, DC; Dengue Regional Program, Pan American Health Organization (PAHO), San José, Costa Rica; Sanofi Pasteur, Research and Development, Clinical Department, Swiftwater, Pennsylvania
| | | | | | | | | | - Gustavo H. Dayan
- Viral Diseases Program, Pan American Health Organization (PAHO), Washington, DC; Dengue Regional Program, Pan American Health Organization (PAHO), San José, Costa Rica; Sanofi Pasteur, Research and Development, Clinical Department, Swiftwater, Pennsylvania
| |
Collapse
|
183
|
Carneiro AR, Cruz ACR, Vallinoto M, Melo DDV, Ramos RTJ, Medeiros DBA, Silva EVPD, Vasconcelos PFDC. Molecular characterisation of dengue virus type 1 reveals lineage replacement during circulation in Brazilian territory. Mem Inst Oswaldo Cruz 2012; 107:805-12. [DOI: 10.1590/s0074-02762012000600016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/10/2012] [Indexed: 11/22/2022] Open
|
184
|
Tam DTH, Ngoc TV, Tien NTH, Kieu NTT, Thuy TTT, Thanh LTC, Tam CT, Truong NT, Dung NT, Qui PT, Hien TT, Farrar JJ, Simmons CP, Wolbers M, Wills BA. Effects of short-course oral corticosteroid therapy in early dengue infection in Vietnamese patients: a randomized, placebo-controlled trial. Clin Infect Dis 2012; 55:1216-24. [PMID: 22865871 PMCID: PMC3466094 DOI: 10.1093/cid/cis655] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Patients with dengue can experience a variety of serious complications including hypovolemic shock, thrombocytopenia, and bleeding. These problems occur as plasma viremia is resolving and are thought to be immunologically mediated. Early corticosteroid therapy may prevent the development of such complications but could also prolong viral clearance. METHODS We performed a randomized, placebo-controlled, blinded trial of low-dose (0.5 mg/kg) or high-dose (2 mg/kg) oral prednisolone therapy for 3 days in Vietnamese patients aged 5-20 years admitted with dengue and fever for ≤72 hours, aiming to assess potential harms from steroid use during the viremic phase. Intention-to-treat analysis was performed using linear trend tests with a range of clinical and virological endpoints specified in advance. In addition to recognized complications of dengue, we focused on the are under the curve for serial plasma viremia measurements and the number of days after enrollment to negative viremia and dengue nonstructural protein 1 status. RESULTS Between August 2009 and January 2011, 225 participants were randomized to 1 of the 3 treatment arms. Baseline characteristics were similar across the groups. All patients recovered fully and adverse events were infrequent. Aside from a trend toward hyperglycemia in the steroid recipients, we found no association between treatment allocation and any of the predefined clinical, hematological, or virological endpoints. CONCLUSIONS Use of oral prednisolone during the early acute phase of dengue infection was not associated with prolongation of viremia or other adverse effects. Although not powered to assess efficacy, we found no reduction in the development of shock or other recognized complications of dengue virus infection in this study.
Collapse
Affiliation(s)
- Dong T H Tam
- University of Medicine and Pharmacy of Ho Chi Minh City, Viet Nam
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Anoop M, Mathew AJ, Jayakumar B, Issac A, Nair S, Abraham R, Anupriya MG, Sreekumar E. Complete genome sequencing and evolutionary analysis of dengue virus serotype 1 isolates from an outbreak in Kerala, South India. Virus Genes 2012; 45:1-13. [PMID: 22729802 DOI: 10.1007/s11262-012-0756-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/05/2012] [Indexed: 11/26/2022]
Abstract
In this study, dengue virus (DENV) isolates from a localized, small-scale, non-seasonal dengue outbreak were genetically characterized. The outbreak occurred during the pre-monsoon months (April-May) in a medical college campus in Kerala, South India in 2009 affecting 76 people. Analysis of 39 viral RNA positive serum samples by a serotype specific reverse-transcription polymerase chain reaction identified dengue virus serotype 1 (DENV1) as the causative strain. Formation of a distinct genetic clade was revealed in the initial phylogenetic analysis using nucleotide sequences of a partial (303 bp) Capsid-Pre-membrane protein (C-PrM) coding region of 37 outbreak strains. The sequences of these strains clustered with that of the Genotype III DENV-1 strains from India, and 32 among them formed a single major sub-clade. Whole-genome sequencing (10,693 bp) of two strains (RGCB585/2009 and RGCB592/2009) selected from this major sub-clade, and subsequent phylogenetic analysis using the full-length coding region sequence showed that the sequences grouped with that of the isolates from Thailand (1980), Comoros (1993), Singapore (1993), and Brunei (2005) among the Indo-Pacific isolates. The sequences of the two strains had a nucleotide identity of 97-98 % and an amino acid identity of 98-99 % with these closely related strains. Maximum amino acid similarity was shown with the Singapore 8114/93 isolate (99.6 %). Four mutations-L46M in the capsid, D278N in the NS1, L123I, and L879S in the NS5 protein coding regions-were seen as signature substitutions uniformly in RGCB585/2009 and RGCB592/2009; in another isolate from Kerala (RGCB419/2008) and in the Brunei isolate (DS06-210505). These four isolates also had in common a 21-nucleotide deletion in the hyper-variable region of the 3'-non-translated region. This first report on the complete genome characterization of DENV-1 isolates from India reveals a dengue outbreak caused by a genetically different viral strain. The results point to the possibility of exotic introduction of these circulating viral strains in the region.
Collapse
Affiliation(s)
- M Anoop
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, 695014 Kerala, India
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Lindow JC, Borochoff-Porte N, Durbin AP, Whitehead SS, Fimlaid KA, Bunn JY, Kirkpatrick BD. Primary vaccination with low dose live dengue 1 virus generates a proinflammatory, multifunctional T cell response in humans. PLoS Negl Trop Dis 2012; 6:e1742. [PMID: 22816004 PMCID: PMC3398956 DOI: 10.1371/journal.pntd.0001742] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/08/2012] [Indexed: 01/07/2023] Open
Abstract
The four dengue virus serotypes (DENV-1-DENV-4) have a large impact on global health, causing 50-100 million cases of dengue fever annually. Herein, we describe the first kinetic T cell response to a low-dose DENV-1 vaccination study (10 PFU) in humans. Using flow cytometry, we found that proinflammatory cytokines, IFNγ, TNFα, and IL-2, were generated by DENV-1-specific CD4(+) cells 21 days post-DENV-1 exposure, and their production continued through the latest time-point, day 42 (p<0.0001 for all cytokines). No statistically significant changes were observed at any time-points for IL-10 (p = 0.19), a regulatory cytokine, indicating that the response to DENV-1 was primarily proinflammatory in nature. We also observed little T cell cross-reactivity to the other 3 DENV serotypes. The percentage of multifunctional T cells (T cells making ≥ 2 cytokines simultaneously) increased with time post-DENV-1 exposure (p<0.0001). The presence of multifunctional T cells together with neutralizing antibody data suggest that the immune response generated to the vaccine may be protective. This work provides an initial framework for defining primary T cell responses to each DENV serotype and will enhance the evaluation of a tetravalent DENV vaccine.
Collapse
Affiliation(s)
- Janet C Lindow
- Vaccine Testing Center and Unit of Infectious Diseases, Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America.
| | | | | | | | | | | | | |
Collapse
|
187
|
Sierra B, Pérez AB, Alvarez M, García G, Vogt K, Aguirre E, Schmolke K, Volk HD, Guzmán MG. Variation in inflammatory/regulatory cytokines in secondary, tertiary, and quaternary challenges with dengue virus. Am J Trop Med Hyg 2012; 87:538-47. [PMID: 22802438 DOI: 10.4269/ajtmh.2012.11-0531] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Secondary heterologous dengue infection is a risk factor for severe disease manifestations because of the immune-enhancement phenomenon. Succeeding clinical infections are seldom reported, and the clinical course of tertiary and quaternary dengue infections is not clear. Cuba represents a unique environment to study tertiary/quaternary dengue infections in a population with known clinical and serologic dengue markers and no dengue endemicity. We took advantage of this exceptional epidemiologic condition to study the effect of primary, secondary, tertiary, and quaternary dengue infection exposure on the expression of pro-inflammatory and regulatory cytokines, critical in dengue infection pathogenesis, by using a dengue infection ex vivo model. Whereas secondary exposure induced a high cytokine response, we found a significantly lower expression of tumor necrosis factor-α, interferon-γ, interleukin-10, and tumor growth factor-β after tertiary and quaternary infectious challenge. Significant differences in expression of the cytokines were seen between the dengue immune profiles, suggesting that the sequence in which the immune system encounters serotypes may be important in determining the nature of the immune response to subsequent infections.
Collapse
Affiliation(s)
- Beatriz Sierra
- Department of Virology, Tropical Medicine Institute Pedro Kourí, Havana, Cuba.
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Bouri N, Sell TK, Franco C, Adalja AA, Henderson DA, Hynes NA. Return of epidemic dengue in the United States: implications for the public health practitioner. Public Health Rep 2012; 127:259-66. [PMID: 22547856 DOI: 10.1177/003335491212700305] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Conditions that facilitate sustained dengue transmission exist in the United States, and outbreaks have occurred during the past decade in Texas, Hawaii, and Florida. More outbreaks can also be expected in years to come. To combat dengue, medical and public health practitioners in areas with mosquito vectors that are competent to transmit the virus must be aware of the threat of reemergent dengue, and the need for early reporting and control to reduce the impact of dengue outbreaks. Comprehensive dengue control includes human and vector surveillance, vector management programs, and community engagement efforts. Public health, medical, and vector-control communities must collaborate to prevent and control disease spread. Policy makers should understand the role of mosquito abatement and community engagement in the prevention and control of the disease.
Collapse
Affiliation(s)
- Nidhi Bouri
- Center for Biosecurity of UPMC, Baltimore, MD 21205, USA.
| | | | | | | | | | | |
Collapse
|
189
|
Malavige GN, McGowan S, Atukorale V, Salimi M, Peelawatta M, Fernando N, Jayaratne SD, Ogg G. Identification of serotype-specific T cell responses to highly conserved regions of the dengue viruses. Clin Exp Immunol 2012; 168:215-23. [PMID: 22471283 DOI: 10.1111/j.1365-2249.2012.04566.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Determining previous infecting dengue virus (DENV) serotypes has been difficult due to highly cross-reactive immune responses from previous DENV infections. Determining the correlates of serotype-specific immune responses would be crucial in understanding dengue transmission in the community and would also help to determine the correlates of protective immune responses. Therefore, we set out to define highly conserved, serotype-specific regions of the DENVs. Serotype-specific and highly conserved regions of the four DENV serotypes were identified using Basic Local Alignment Search Tool (BLAST) searches and custom perl scripts. Using ex-vivo and cultured enzyme-linked immunospot (ELISPOT) assays, we identified serotype-specific T cell epitopes within the four DENV serotypes in healthy adult donors from Sri Lanka. We identified T cell responses to 19 regions of the four DENV serotypes. Six peptides were from the NS2A region and four peptides were from the NS4A region. All immune donors responded to peptides of at least two DENV serotypes, suggesting that heterologous infection is common in Sri Lanka. Eight of 20 individuals responded to at least two peptides of DENV-4, despite this serotype not being implicated previously in any of the epidemics in Sri Lanka. The use of these regions to determine past and current infecting DENV serotypes will be of value to characterize further the dynamics of silent dengue transmission in the community. In addition, these T cell responses to these regions could be used to characterize DENV serotype-specific immune responses and thus possibly help us to understand the immune correlates of a protective immune response.
Collapse
Affiliation(s)
- G N Malavige
- Department of Microbiology, University of Sri Jayawardanapura, Nugegoda, Sri Lanka
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Barban V, Munoz-Jordan JL, Santiago GA, Mantel N, Girerd Y, Gulia S, Claude JB, Lang J. Broad neutralization of wild-type dengue virus isolates following immunization in monkeys with a tetravalent dengue vaccine based on chimeric yellow fever 17D/dengue viruses. Virology 2012; 429:91-8. [PMID: 22542002 DOI: 10.1016/j.virol.2012.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/15/2012] [Indexed: 11/16/2022]
Abstract
The objective of the study was to evaluate if the antibodies elicited after immunization with a tetravalent dengue vaccine, based on chimeric yellow fever 17D/dengue viruses, can neutralize a large range of dengue viruses (DENV). A panel of 82 DENVs was developed from viruses collected primarily during the last decade in 30 countries and included the four serotypes and the majority of existing genotypes. Viruses were isolated and minimally amplified before evaluation against a tetravalent polyclonal serum generated during vaccine preclinical evaluation in monkey, a model in which protection efficacy of this vaccine has been previously demonstrated (Guirakhoo et al., 2004). Neutralization was observed across all the DENV serotypes, genotypes, geographical origins and isolation years. These data indicate that antibodies elicited after immunization with this dengue vaccine candidate should widely protect against infection with contemporary DENV lineages circulating in endemic countries.
Collapse
Affiliation(s)
- Veronique Barban
- Research Department, Sanofi Pasteur Campus Merieux, 1541 avenue Marcel Merieux, 69680 Marcy l'Etoile, France.
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Synergistic interactions between the NS3(hel) and E proteins contribute to the virulence of dengue virus type 1. PLoS Negl Trop Dis 2012; 6:e1624. [PMID: 22530074 PMCID: PMC3328427 DOI: 10.1371/journal.pntd.0001624] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 03/08/2012] [Indexed: 01/04/2023] Open
Abstract
Background Dengue includes a broad range of symptoms, ranging from fever to hemorrhagic fever and may occasionally have alternative clinical presentations. Many possible viral genetic determinants of the intrinsic virulence of dengue virus (DENV) in the host have been identified, but no conclusive evidence of a correlation between viral genotype and virus transmissibility and pathogenicity has been obtained. Methodology/Principal Findings We used reverse genetics techniques to engineer DENV-1 viruses with subsets of mutations found in two different neuroadapted derivatives. The mutations were inserted into an infectious clone of DENV-1 not adapted to mice. The replication and viral production capacity of the recombinant viruses were assessed in vitro and in vivo. The results demonstrated that paired mutations in the envelope protein (E) and in the helicase domain of the NS3 (NS3hel) protein had a synergistic effect enhancing viral fitness in human and mosquito derived cell lines. E mutations alone generated no detectable virulence in the mouse model; however, the combination of these mutations with NS3hel mutations, which were mildly virulent on their own, resulted in a highly neurovirulent phenotype. Conclusions/Significance The generation of recombinant viruses carrying specific E and NS3hel proteins mutations increased viral fitness both in vitro and in vivo by increasing RNA synthesis and viral load (these changes being positively correlated with central nervous system damage), the strength of the immune response and animal mortality. The introduction of only pairs of amino acid substitutions into the genome of a non-mouse adapted DENV-1 strain was sufficient to alter viral fitness substantially. Given current limitations to our understanding of the molecular basis of dengue neuropathogenesis, these results could contribute to the development of attenuated strains for use in vaccinations and provide insights into virus/host interactions and new information about the mechanisms of basic dengue biology. Dengue virus constitutes a significant public health problem in tropical regions of the world. Despite the high morbidity and mortality of this infection, no effective antiviral drugs or vaccines are available for the treatment or prevention of dengue infections. The profile of clinical signs associated with dengue infection has changed in recent years with an increase in the number of episodes displaying unusual signs. We use reverse genetics technology to engineer DENV-1 viruses with subsets of mutations previously identified in highly neurovirulent strains to provide insights into the molecular mechanisms underlying dengue neuropathogenesis. We found that single mutations affecting the E and NS3hel proteins, introduced in a different genetic context, had a synergistic effect increasing DENV replication capacity in human and mosquito derived cells in vitro. We also demonstrated correlations between the presence of these mutations and viral replication efficiency, viral loads, the induction of innate immune response genes and pathogenesis in a mouse model. These results should improve our understanding of the DENV-host cell interaction and contribute to the development of effective antiviral strategies.
Collapse
|
192
|
Abstract
The viral hemorrhagic fever (VHF) syndrome is a potentially life-threatening infection typified by a combination of a capillary leak syndrome and bleeding diathesis. Most but not all agents causing VHF are arboviruses, with transmission to humans resulting from an arthropod bite. Agents of VHF affect humans on all continents. Population growth, urbanization, human activities, and even climate change all contribute to a continual flux in the epidemiology of many arboviruses. This review provides an overview of the epidemiology of arboviral infections and VHF, the main clinical syndromes, and their diagnosis and treatment.
Collapse
|
193
|
Affiliation(s)
- Cameron P Simmons
- Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | | | | | | |
Collapse
|
194
|
OhAinle M, Balmaseda A, Macalalad AR, Tellez Y, Zody MC, Saborío S, Nuñez A, Lennon NJ, Birren BW, Gordon A, Henn MR, Harris E. Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity. Sci Transl Med 2012; 3:114ra128. [PMID: 22190239 DOI: 10.1126/scitranslmed.3003084] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The rapid spread of dengue is a worldwide public health problem. In two clinical studies of dengue in Managua, Nicaragua, we observed an abrupt increase in disease severity across several epidemic seasons of dengue virus serotype 2 (DENV-2) transmission. Waning DENV-1 immunity appeared to increase the risk of severe disease in subsequent DENV-2 infections after a period of cross-protection. The increase in severity coincided with replacement of the Asian/American DENV-2 NI-1 clade with a new virus clade, NI-2B. In vitro analyses of viral isolates from the two clades and analysis of viremia in patient blood samples support the emergence of a fitter virus in later, relative to earlier, epidemic seasons. In addition, the NI-1 clade of viruses was more virulent specifically in children who were immune to DENV-1, whereas DENV-3 immunity was associated with more severe disease among NI-2B infections. Our data demonstrate that the complex interaction between viral genetics and population dynamics of serotype-specific immunity contributes to the risk of severe dengue disease. Furthermore, this work provides insights into viral evolution and the interaction between viral and immunological determinants of viral fitness and virulence.
Collapse
Affiliation(s)
- Molly OhAinle
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-7354, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Machain-Williams C, Mammen MP, Zeidner NS, Beaty BJ, Prenni JE, Nisalak A, Blair CD. Association of human immune response to Aedes aegypti salivary proteins with dengue disease severity. Parasite Immunol 2012; 34:15-22. [PMID: 21995849 DOI: 10.1111/j.1365-3024.2011.01339.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dengue viruses (DENV; family Flaviviridae, genus Flavivirus) are transmitted by Aedes aegypti mosquitoes and can cause dengue fever (DF), a relatively benign disease, or more severe dengue haemorrhagic fever (DHF). Arthropod saliva contains proteins delivered into the bite wound that can modulate the host haemostatic and immune responses to facilitate the intake of a blood meal. The potential effects on DENV infection of previous exposure to Ae. aegypti salivary proteins have not been investigated. We collected Ae. aegypti saliva, concentrated the proteins and fractionated them by nondenaturing polyacrylamide gel electrophoresis (PAGE). By the use of immunoblots, we analysed reactivity with the mosquito salivary proteins (MSP) of sera from 96 Thai children diagnosed with secondary DENV infections leading either to DF or DHF, or with no DENV infection, and found that different proportions of each patient group had serum antibodies reactive to specific Ae. aegypti salivary proteins. Our results suggest that prior exposure to MSP might play a role in the outcome of DENV infection in humans.
Collapse
Affiliation(s)
- C Machain-Williams
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Fort Collins, CO, USA.
| | | | | | | | | | | | | |
Collapse
|
196
|
Bhatnagar J, Blau DM, Shieh WJ, Paddock CD, Drew C, Liu L, Jones T, Patel M, Zaki SR. Molecular detection and typing of dengue viruses from archived tissues of fatal cases by rt-PCR and sequencing: diagnostic and epidemiologic implications. Am J Trop Med Hyg 2012; 86:335-40. [PMID: 22302871 DOI: 10.4269/ajtmh.2012.11-0346] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Diagnosis of dengue virus (DENV) infection in fatal cases is challenging because of the frequent unavailability of blood or fresh tissues. For formalin-fixed, paraffin-embedded (FFPE) tissues immunohistochemistry (IHC) can be used; however, it may not be as sensitive and serotyping is not possible. The application of reverse transcription-polymerase chain reaction (RT-PCR) for the detection of DENV in FFPE tissues has been very limited. We evaluated FFPE autopsy tissues of 122 patients with suspected DENV infection by flavivirus and DENV RT-PCR, sequencing, and DENV IHC. The DENV was detected in 61 (50%) cases by RT-PCR or IHC. The RT-PCR and sequencing detected DENV in 60 (49%) cases (DENV-1 in 16, DENV-2 in 27, DENV-3 in 8, and DENV-4 in 6 cases). No serotype could be identified in three cases. The IHC detected DENV antigens in 50 (40%) cases. The RT-PCR using FFPE tissue improves detection of DENV in fatal cases and provides sequence information useful for typing and epidemiologic studies.
Collapse
Affiliation(s)
- Julu Bhatnagar
- Infectious Diseases Pathology Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Méndez JA, Usme-Ciro JA, Domingo C, Rey GJ, Sánchez JA, Tenorio A, Gallego-Gomez JC. Phylogenetic reconstruction of dengue virus type 2 in Colombia. Virol J 2012; 9:64. [PMID: 22405440 PMCID: PMC3349600 DOI: 10.1186/1743-422x-9-64] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 03/09/2012] [Indexed: 12/31/2022] Open
Abstract
Background Dengue fever is perhaps the most important viral re-emergent disease especially in tropical and sub-tropical countries, affecting about 50 million people around the world yearly. In Colombia, dengue virus was first detected in 1971 and still remains as a major public health issue. Although four viral serotypes have been recurrently identified, dengue virus type 2 (DENV-2) has been involved in the most important outbreaks during the last 20 years, including 2010 when the fatality rate highly increased. As there are no major studies reviewing virus origin and genotype distribution in this country, the present study attempts to reconstruct the phylogenetic history of DENV-2 using a sequence analysis from a 224 bp PCR-amplified product corresponding to the carboxyl terminus of the envelope (E) gene from 48 Colombian isolates. Results As expected, the oldest isolates belonged to the American genotype (subtype V), but the strains collected since 1990 represent the American/Asian genotype (subtype IIIb) as previously reported in different American countries. Interestingly, the introduction of this genotype coincides with the first report of dengue hemorrhagic fever in Colombia at the end of 1989 and the increase of cases during the next years. Conclusion After replacement of the American genotype, several lineages of American/Asian subtype have rapidly spread all over the country evolving in new clades. Nevertheless, the direct association of these new variants in the raise of lethality rate observed during the last outbreak has to be demonstrated.
Collapse
Affiliation(s)
- Jairo A Méndez
- Laboratorio de Virología, Instituto Nacional de Salud, Avenida/Calle 26 No, 51-20, Bogotá, D.C.,Colombia.
| | | | | | | | | | | | | |
Collapse
|
198
|
Matheus S, Chappert JL, Cassadou S, Berger F, Labeau B, Bremand L, Winicki A, Huc-Anais P, Quenel P, Dussart P. Virological surveillance of dengue in Saint Martin and Saint Barthelemy, French West Indies, using blood samples on filter paper. Am J Trop Med Hyg 2012; 86:159-65. [PMID: 22232467 DOI: 10.4269/ajtmh.2012.11-0475] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To strengthen active dengue surveillance in Saint Martin and Saint Barthélemy, two French Caribbean islands, we evaluated the epidemiological usefulness of collecting blood samples from NS1-positive dengue patients on filter paper to identify the dengue serotypes circulating in these regions during a 27-month period. This approach allowed dengue serotypes to be identified by reverse transcriptase-polymerase chain reaction in 90.1% of the total set of 666 samples analyzed and, in 95.5% of the samples collected during the acute phase of the disease. This prospective virological surveillance using blood samples absorbed onto filter paper, which were stored at 4°C and shipped at ambient temperature to a specialized laboratory for analysis, allowed us to avoid the logistic and financial costs associated with shipping frozen venous blood samples. This surveillance system offers a low-cost alternative for reinforcing dengue prevention in areas where specialized laboratories do not exist, notably by facilitating the early detection of potentially new dengue serotypes.
Collapse
Affiliation(s)
- Séverine Matheus
- Laboratoire de Virologie, Centre National de Référence des Arbovirus et Virus Influenza Région Antilles-Guyane, Institut Pasteur de la Guyane, Cayenne, French Guiana.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Messer WB, Yount B, Hacker KE, Donaldson EF, Huynh JP, de Silva AM, Baric RS. Development and characterization of a reverse genetic system for studying dengue virus serotype 3 strain variation and neutralization. PLoS Negl Trop Dis 2012; 6:e1486. [PMID: 22389731 PMCID: PMC3289595 DOI: 10.1371/journal.pntd.0001486] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 12/07/2011] [Indexed: 12/15/2022] Open
Abstract
Dengue viruses (DENV) are enveloped single-stranded positive-sense RNA viruses transmitted by Aedes spp. mosquitoes. There are four genetically distinct serotypes designated DENV-1 through DENV-4, each further subdivided into distinct genotypes. The dengue scientific community has long contended that infection with one serotype confers lifelong protection against subsequent infection with the same serotype, irrespective of virus genotype. However this hypothesis is under increased scrutiny and the role of DENV genotypic variation in protection from repeated infection is less certain. As dengue vaccine trials move increasingly into field-testing, there is an urgent need to develop tools to better define the role of genotypic variation in DENV infection and immunity. To better understand genotypic variation in DENV-3 neutralization and protection, we designed and constructed a panel of isogenic, recombinant DENV-3 infectious clones, each expressing an envelope glycoprotein from a different DENV-3 genotype; Philippines 1982 (genotype I), Thailand 1995 (genotype II), Sri Lanka 1989 and Cuba 2002 (genotype III) and Puerto Rico 1977 (genotype IV). We used the panel to explore how natural envelope variation influences DENV-polyclonal serum interactions. When the recombinant viruses were tested in neutralization assays using immune sera from primary DENV infections, neutralization titers varied by as much as ∼19-fold, depending on the expressed envelope glycoprotein. The observed variability in neutralization titers suggests that relatively few residue changes in the E glycoprotein may have significant effects on DENV specific humoral immunity and influence antibody mediated protection or disease enhancement in the setting of both natural infection and vaccination. These genotypic differences are also likely to be important in temporal and spatial microevolution of DENV-3 in the background of heterotypic neutralization. The recombinant and synthetic tools described here are valuable for testing hypotheses on genetic determinants of DENV-3 immunopathogenesis.
Collapse
Affiliation(s)
- William B. Messer
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Boyd Yount
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kari E. Hacker
- Department of Microbiology and Immunology, and Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Eric F. Donaldson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeremy P. Huynh
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, and Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
200
|
Chakravarti A, Arora R, Luxemburger C. Fifty years of dengue in India. Trans R Soc Trop Med Hyg 2012; 106:273-82. [PMID: 22357401 DOI: 10.1016/j.trstmh.2011.12.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 11/19/2022] Open
Abstract
Dengue is the most important mosquito-borne, human viral disease in many tropical and sub-tropical areas. In India the disease has been essentially described in the form of case series. We reviewed the epidemiology of dengue in India to improve understanding of its evolution in the last 50 years and support the development of effective local prevention and control measures. Early outbreak reports showed a classic epidemic pattern of transmission with sporadic outbreaks, with low to moderate numbers of cases, usually localized to urban centres and neighbouring regions, but occasionally spreading and causing larger epidemics. Trends in recent decades include: larger and more frequent outbreaks; geographic expansion of endemic transmission; spread of the disease from urban to peri-urban and rural areas; an increasing proportion of severe cases and deaths; and progression to hyperendemicity, particularly in large urban areas. The global picture of dengue in India is currently that of a largely endemic country. Understanding demographic differences in infection rates and severity of dengue has important implications for the planning and implementation of effective public health prevention and control measures and targeting of future vaccination campaigns.
Collapse
Affiliation(s)
- Anita Chakravarti
- Maulana Azad Medical College, Bahadur Shah Zafar Marg, New Delhi, Delhi, 10002, India
| | | | | |
Collapse
|