151
|
Sumithran SP, Crooks PA, Xu R, Zhu J, Deaciuc AG, Wilkins LH, Dwoskin LP. Introduction of unsaturation into the N-n-alkyl chain of the nicotinic receptor antagonists, NONI and NDNI: effect on affinity and selectivity. AAPS JOURNAL 2005; 7:E201-17. [PMID: 16146341 PMCID: PMC2751509 DOI: 10.1208/aapsj070119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
N-n-octylnicotinium iodide (NONI) and N-n-decylnicotinium iodide (NDNI) are selective nicotinic receptor (nAChR) antagonists mediating nicotine-evoked striatal dopamine (DA) release, and inhibiting [3H]nicotine binding, respectively. This study evaluated effects of introducing unsaturation into the N-n-alkyl chains of NONI and NDNI on inhibition of [3H]nicotine and [3H]methyllycaconitine binding (alpha4beta2* and alpha7* nAChRs, respectively), (86)Rb+ efflux and [3H]DA release (agonist or antagonist effects at alpha4beta2* and alpha6beta2*-containing nAChRs, respectively). In the NONI series, introduction of a C3-cis- (NONB3c), C3-trans- (NONB3t), C7-double-bond (NONB7e), or C3-triple-bond (NONB3y) afforded a 4-fold to 250-fold increased affinity for [3H]nicotine binding sites compared with NONI. NONB7e and NONB3y inhibited nicotine-evoked 86Rb+ efflux, indicating alpha4beta2* antagonism. NONI analogs exhibited a 3-fold to 8-fold greater potency inhibiting nicotine-evoked [3H]DA overflow compared with NONI (IC50 = 0.62 microM; Imax = 89%), with no change in Imax, except for NONB3y (Imax = 50%). In the NDNI series, introduction of a C4-cis- (NDNB4c), C4-trans-double-bond (NDNB4t), or C3-triple-bond (NDNB3y) afforded a 4-fold to 80-fold decreased affinity for [3H]nicotine binding sites compared with NDNI, whereas introduction of a C9 double-bond (NDNB9e) did not alter affinity. NDNB3y and NDNB4t inhibited nicotine-evoked 86Rb+ efflux, indicating antagonism at alpha4beta2* nAChRs. Although NDNI had no effect, NDNB4t and NDNB9e potently inhibited nicotine-evoked [3H]DA overflow (IC50 = 0.02-0.14 microM, Imax = 90%), as did NDNB4c (IC50 = 0.08 microM; Imax = 50%), whereas NDNB3y showed no inhibition. None of the analogs had significant affinity for alpha7* nAChRs. Thus, unsaturated NONI analogs had enhanced affinity at alpha4beta2*- and alpha6beta2*-containing nAChRs, however a general reduction of affinity at alpha4beta2* and an uncovering of antagonist effects at alpha6beta2*-containing nAChRs were observed with unsaturated NDNI analogs.
Collapse
Affiliation(s)
| | - Peter A. Crooks
- College of Pharmacy, University of Kentucky, 40536-0082 Lexington, KY
| | - Rui Xu
- College of Pharmacy, University of Kentucky, 40536-0082 Lexington, KY
| | - Jun Zhu
- College of Pharmacy, University of Kentucky, 40536-0082 Lexington, KY
| | | | | | - Linda P. Dwoskin
- College of Pharmacy, University of Kentucky, 40536-0082 Lexington, KY
| |
Collapse
|
152
|
Li MD, Beuten J, Ma JZ, Payne TJ, Lou XY, Garcia V, Duenes AS, Crews KM, Elston RC. Ethnic- and gender-specific association of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) with nicotine dependence. Hum Mol Genet 2005; 14:1211-9. [PMID: 15790597 DOI: 10.1093/hmg/ddi132] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We tested six single nucleotide polymorphisms (SNPs) in the alpha4 subunit gene (CHRNA4) and four SNPs in the beta2 subunit gene (CHRNB2) of nicotinic acetylcholine receptors (nAChRs) for association with nicotine dependence (ND), which was assessed by smoking quantity (SQ), the heaviness of smoking index (HSI) and the Fagerstrom test for ND (FTND) in 2037 subjects from 602 nuclear families of either European-American (EA) or African-American (AA) ancestry. Analysis of the six SNPs within CHRNA4 demonstrated that in the EA sample SNPs rs2273504 and rs1044396 are significantly associated with the adjusted SQ and FTND score, respectively. In the AA samples, SNPs rs3787137 and rs2236196 are each significantly associated with at least two adjusted ND measures. Association of rs2236196 with the adjusted HSI and FTND scores in the AA samples remained significant after correction for multiple testing. Furthermore, analysis revealed gender- and ethnic-specific associations for several SNPs with ND measures in both ethnic samples; however, only the association of SNP rs2236196 with the three adjusted ND measures remained significant after correcting for multiple testing in the AA female samples. Haplotype analysis of rs2273505-rs2273504-rs2236196 showed significant association after Bonferroni correction of a C-G-G haplotype (53.4%) with three adjusted ND measures in samples from the AA females. A similar analysis for the four SNPs within CHRNB2 did not reveal significant association with the three ND measures. In summary, our findings provide convincing evidence for the involvement of the nAChR alpha4 subunit, but not of the nAChR beta2 subunit, in nicotine addiction.
Collapse
|
153
|
Gündisch D, Koren AO, Horti AG, Pavlova OA, Kimes AS, Mukhin AG, London ED. In vitro characterization of 6-[18F]fluoro-A-85380, a high-affinity ligand for alpha4beta2* nicotinic acetylcholine receptors. Synapse 2005; 55:89-97. [PMID: 15529332 DOI: 10.1002/syn.20096] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nicotinic acetylcholine receptors are involved in tobacco dependence and several other neuropathologies (e.g., Alzheimer's disease, Parkinson's disease), as well as in attention, learning, and memory. Performing in vivo imaging of these receptors in humans holds great promise for understanding their role in these conditions. Recently, three radiohalogenated analogs of 3-(2(S)-azetidinylmethoxy)pyridine (A- 85380) were used successfully for the in vivo visualization of alpha4beta2* nicotinic receptors in the human brain with PET/SPECT. Herein, we present the results of the in vitro characterization of one of these radioligands, 6-[18F]fluoro-3-(2(S)-azetidinylmethoxy)-pyridine (6-[18F]fluoro-A-85380), which is a fluoro-analog of the potent nonopioid analgesic ABT-594. In human postmortem cortical tissue, 6-[18F]fluoro-A-85380 reversibly binds with high affinity to a single population of sites (Kd = 59 pM at 37 degrees C, Bmax = 0.7 pmol/g tissue). The binding is fully reversible and is characterized at 37 degrees C by T(1/2assoc) = 2.2 min (at a ligand concentration of 39 pM) and by T(1/2dissoc) = 3.6 min. 6-Fluoro-A-85380 exhibits clear selectivity for alpha4beta2* over the other major mammalian nicotinic receptor subtypes: alpha7, alpha3beta4, and muscle-type. These results suggest that 6-[18F]fluoro-A-85380 is a promising radioligand for in vivo imaging of brain alpha4beta2* nicotinic receptors.
Collapse
Affiliation(s)
- Daniela Gündisch
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, DHHS, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
154
|
Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 2005; 74:363-96. [PMID: 15649582 DOI: 10.1016/j.pneurobio.2004.09.006] [Citation(s) in RCA: 714] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 09/29/2004] [Indexed: 02/07/2023]
Abstract
Neuronal nicotinic receptors (NAChRs) form a heterogeneous family of ion channels that are differently expressed in many regions of the central nervous system (CNS) and peripheral nervous system. These different receptor subtypes, which have characteristic pharmacological and biophysical properties, have a pentameric structure consisting of the homomeric or heteromeric combination of 12 different subunits (alpha2-alpha10, beta2-beta4). By responding to the endogenous neurotransmitter acetylcholine, NAChRs contribute to a wide range of brain activities and influence a number of physiological functions. Furthermore, it is becoming evident that the perturbation of cholinergic nicotinic neurotransmission can lead to various diseases involving nAChR dysfunction during development, adulthood and ageing. In recent years, it has been discovered that NAChRs are present in a number of non-neuronal cells where they play a significant functional role and are the pathogenetic targets in several diseases. NAChRs are also the target of natural ligands and toxins including nicotine (Nic), the most widespread drug of abuse. This review will attempt to survey the major achievements reached in the study of the structure and function of NAChRs by examining their regional and cellular localisation and the molecular basis of their functional diversity mainly in pharmacological and biochemical terms. The recent availability of mice with the genetic ablation of single or double nicotinic subunits or point mutations have shed light on the role of nAChRs in major physiological functions, and we will here discuss recent data relating to their behavioural phenotypes. Finally, the role of NAChRs in disease will be considered in some details.
Collapse
Affiliation(s)
- C Gotti
- CNR, Institute of Neuroscience, Cellular and Molecular Pharmacology Section, Department of Medical Pharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | | |
Collapse
|
155
|
Gotti C, Moretti M, Clementi F, Riganti L, McIntosh JM, Collins AC, Marks MJ, Whiteaker P. Expression of nigrostriatal alpha 6-containing nicotinic acetylcholine receptors is selectively reduced, but not eliminated, by beta 3 subunit gene deletion. Mol Pharmacol 2005; 67:2007-15. [PMID: 15749993 DOI: 10.1124/mol.105.011940] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
mRNAs for the neuronal nicotinic acetylcholine receptor (nAChR) alpha6 and beta3 subunits are abundantly expressed and colocalized in dopaminergic cells of the substantia nigra and ventral tegmental area. Studies using subunit-null mutant mice have shown that alpha6- or beta3-dependent nAChRs bind alpha-conotoxin MII (alpha-CtxMII) with high affinity and modulate striatal dopamine release. This study explores the effects of beta3 subunit-null mutation on striatal and midbrain nAChR expression, composition, and pharmacology. Ligand binding and immunoprecipitation experiments using subunit-specific antibodies indicated that beta3-null mutation selectively reduced striatal alpha6* nAChR expression by 76% versus beta3(+/+) control. Parallel experiments showed a smaller reduction in both midbrain alpha3* and alpha6* nAChRs (34 and 42% versus beta3(+/+) control, respectively). Sedimentation coefficient determinations indicated that residual alpha6* nAChRs in beta3(-/-) striatum were pentameric, like their wild-type counterparts. Immunoprecipitation experiments on immunopurified beta3* nAChRs demonstrated that almost all wild-type striatal beta3* nAChRs also contain alpha4, alpha6, and beta2 subunits, although a small population of non-beta3 alpha6* nAChRs is also expressed. beta3 subunit incorporation seemed to increase alpha4 participation in alpha6beta2* complexes. (125)I-Epibatidine competition binding studies showed that the alpha-CtxMII affinity of alpha6* nAChRs from the striata of beta3(-/-) mice was similar to those isolated from beta3(+/+) animals. Together, the results of these experiments show that the beta3 subunit is important for the correct assembly, stability and/or transport of alpha6* nAChRs in dopaminergic neurons and influences their subunit composition. However, beta3 subunit expression is not essential for the expression of alpha6*, high-affinity alpha-CtxMII binding nAChRs.
Collapse
Affiliation(s)
- Cecilia Gotti
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Section of Cellular and Molecular Pharmacology Center, Department of Medical Pharmacology, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Dwoskin LP, Xu R, Ayers JT, Crooks PA. Recent developments in neuronal nicotinic acetylcholine receptor antagonists. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.10.10.1561] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
157
|
Tasneem A, Iyer LM, Jakobsson E, Aravind L. Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. Genome Biol 2004; 6:R4. [PMID: 15642096 PMCID: PMC549065 DOI: 10.1186/gb-2004-6-1-r4] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/26/2004] [Accepted: 11/24/2004] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Acetylcholine receptor type ligand-gated ion channels (ART-LGIC; also known as Cys-loop receptors) are a superfamily of proteins that include the receptors for major neurotransmitters such as acetylcholine, serotonin, glycine, GABA, glutamate and histamine, and for Zn2+ ions. They play a central role in fast synaptic signaling in animal nervous systems and so far have not been found outside of the Metazoa. RESULTS Using sensitive sequence-profile searches we have identified homologs of ART-LGICs in several bacteria and a single archaeal genus, Methanosarcina. The homology between the animal receptors and the prokaryotic homologs spans the entire length of the former, including both the ligand-binding and channel-forming transmembrane domains. A sequence-structure analysis using the structure of Lymnaea stagnalis acetylcholine-binding protein and the newly detected prokaryotic versions indicates the presence of at least one aromatic residue in the ligand-binding boxes of almost all representatives of the superfamily. Investigation of the domain architectures of the bacterial forms shows that they may often show fusions with other small-molecule-binding domains, such as the periplasmic binding protein superfamily I (PBP-I), Cache and MCP-N domains. Some of the bacterial forms also occur in predicted operons with the genes of the PBP-II superfamily and the Cache domains. Analysis of phyletic patterns suggests that the ART-LGICs are currently absent in all other eukaryotic lineages except animals. Moreover, phylogenetic analysis and conserved sequence motifs also suggest that a subset of the bacterial forms is closer to the metazoan forms. CONCLUSIONS From the information from the bacterial forms we infer that cation-pi or hydrophobic interactions with the ligand are likely to be a pervasive feature of the entire superfamily, even though the individual residues involved in the process may vary. The conservation pattern in the channel-forming transmembrane domains also suggests similar channel-gating mechanisms in the prokaryotic versions. From the distribution of charged residues in the prokaryotic M2 transmembrane segments, we expect that there will be examples of both cation and anion selectivity within the prokaryotic members. Contextual connections suggest that the prokaryotic forms may function as chemotactic receptors for low molecular weight solutes. The phyletic patterns and phylogenetic relationships suggest the possibility that the metazoan receptors emerged through an early lateral transfer from a prokaryotic source, before the divergence of extant metazoan lineages.
Collapse
Affiliation(s)
- Asba Tasneem
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL 61801, USA
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eric Jakobsson
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL 61801, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
158
|
Valiante S, Capaldo A, Virgilio F, Sciarrillo R, De Falco M, Gay F, Laforgia V, Varano L. Distribution of α7 and α4 nicotinic acetylcholine receptor subunits in several tissues of Triturus carnifex (Amphibia, Urodela). Tissue Cell 2004; 36:391-8. [PMID: 15533454 DOI: 10.1016/j.tice.2004.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 05/17/2004] [Accepted: 06/30/2004] [Indexed: 10/26/2022]
Abstract
The distribution of neuronal and non-neuronal mRNAs for alpha7 and alpha4 nicotinic acetylcholine receptor subunits was investigated in Triturus carnifex tissues using the in situ hybridization approach. The findings reveal a composite pattern of expression only partially overlapping for the two subunits; subunit alpha7 seems to be expressed widely throughout nervous, gastrointestinal and skin tissues, while alpha4 is present in a restricted number of cells of nervous and gastrointestinal tissue. We also found a specific pattern for each subunit; alpha7 and alpha4 associated exclusively to the epidermal glands and hypophysis, respectively; this is probably due to alternative roles that nicotinic acetylcholine receptors play in regulating physiological functions of non-neuronal amphibian tissues, rather than as mere neurotransmitters in the nervous system.
Collapse
Affiliation(s)
- Salvatore Valiante
- Department of Evolutionary and Comparative Biology, University of Naples "Federico II", 80134 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Ray M, Bohr I, McIntosh JM, Ballard C, McKeith I, Chalon S, Guilloteau D, Perry R, Perry E, Court JA, Piggott M. Involvement of α6/α3 neuronal nicotinic acetylcholine receptors in neuropsychiatric features of Dementia with Lewy bodies: [125I]-α-conotoxin MII binding in the thalamus and striatum. Neurosci Lett 2004; 372:220-5. [PMID: 15542244 DOI: 10.1016/j.neulet.2004.09.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 09/06/2004] [Accepted: 09/20/2004] [Indexed: 11/26/2022]
Abstract
Dementia with Lewy bodies (DLB) is a neurodegenerative disease associated with a range of neuropsychiatric symptoms and reduced expression of neuronal nicotinic acetylcholine receptors (nAChRs) in neocortex, hippocampus, thalamus and basal ganglia. To determine whether there are selective associations between alterations in alpha6/alpha3 neuronal nicotinic acetylcholine receptors (nAChRs) and the two key neuropsychiatric features of DLB, impaired consciousness (IC) and visual hallucinations (VH), quantitative [(125)I]-alpha-conotoxin MII ([(125)I]-alpha-Ctx MII) autoradiography was undertaken on 28 people with DLB and 15 control cases from the Newcastle Brain Bank. There was a highly significant overall trend for reduced thalamic [(125)I]-alpha-Ctx MII binding in DLB (p < 0.001), with significant deficits in the centromedian, ventral lateral and ventroposterior medial thalamic nuclei (p < 0.05), together with caudate and putamen (p < 0.001). [(125)I]-alpha-Ctx MII binding was significantly lower in DLB cases with IC than without IC in the putamen (p < 0.05), however there was no significant association between [(125)I]-alpha-Ctx MII binding and VH. Reductions in [(125)I]-alpha-Ctx MII binding in caudate and putamen were paralleled by similar reductions in [(125)I]PE2I binding. [(125)I]PE2I binding was also significantly lower in DLB cases with IC than without IC in the caudate (p < 0.05) and putamen (p < 0.001). These results demonstrate that deficits in alpha6/alpha3 nAChRs occur in specific brain regions in DLB, may in part be related to the loss of dopaminergic neurons and may contribute to the development of impaired consciousness in the disorder.
Collapse
Affiliation(s)
- Melissa Ray
- Institute for Ageing and Health, University of Newcastle upon Tyne, MRC Building, Newcastle General Hospital, Westgate Road, Newcastle upon Tyne NE4 6BE, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Keramidas A, Moorhouse AJ, Schofield PR, Barry PH. Ligand-gated ion channels: mechanisms underlying ion selectivity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 86:161-204. [PMID: 15288758 DOI: 10.1016/j.pbiomolbio.2003.09.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anion/cation selectivity is a critical property of ion channels and underpins their physiological function. Recently, there have been numerous mutagenesis studies, which have mapped sites within the ion channel-forming segments of ligand-gated ion channels that are determinants of the ion selectivity. Site-directed mutations to specific amino acids within or flanking the M2 transmembrane segments of the anion-selective glycine, GABA(A) and GABA(C) receptors and the cation-selective nicotinic acetylcholine and serotonin (type 3) receptors have revealed discrete, equivalent regions within the ion channel that form the principal selectivity filter, leading to plausible molecular mechanisms and mathematical models to describe how ions preferentially permeate these channels. In particular, the dominant factor determining anion/cation selectivity seems to be the sign and exposure of charged amino acids lining the selectivity filter region of the open channel. In addition, the minimum pore diameter, which can be influenced by the presence of a local proline residue, also makes a contribution to such ion selectivity in LGICs with smaller diameters increasing anion/cation selectivity and larger ones decreasing it.
Collapse
Affiliation(s)
- Angelo Keramidas
- Department of Physiology and Pharmacology, School of Medical Sciences, The University of New South Wales, UNSW Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
161
|
Centeno ML, Luo J, Lindstrom JM, Caba M, Pau KYF. Expression of alpha 4 and alpha 7 nicotinic receptors in the brainstem of female rabbits after coitus. Brain Res 2004; 1012:1-12. [PMID: 15158155 DOI: 10.1016/j.brainres.2004.03.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2004] [Indexed: 02/02/2023]
Abstract
Coital signaling in the female rabbit involves sequential events in the brainstem and hypothalamus, resulting in a massive release of hypothalamic gonadotropin-releasing hormone (GnRH) that peaks within 1-2 h after mating. The neural connections between coitus and GnRH release involves norepinephrine (NE) and acetylcholine (ACh) since administration of antagonists against NE (dibenamine or phentolamine) or ACh (atropine, alpha-bungarotoxin (alpha-BTX) or scopolamine) blocks or attenuates ovulating events. Moreover, hypothalamic NE release and brainstem tyrosine hydroxylase (TH, the rate-limiting enzyme for NE synthesis) expression in the noradrenergic areas increase prior to, or in concert with, the preovulatory GnRH surge. How ACh is involved in the control of ovulation in the rabbit is lesser known. In the present study, the number of brainstem neurons expressing TH, alpha4 and alpha7 subunits of the nicotinic ACh receptor (nAChR) before and after coitus was determined by immunocytochemistry. Compared to non-mated female rabbits, the number of alpha4, alpha7 and TH single-labeled neurons as well as alpha4/TH and alpha7/TH double-labeled neurons increased in the A1, A2 and A6 brainstem noradrenergic areas at 1 h, but not 2 h, after coitus. The results suggest that the participation of ACh in the control of coitus-induced ovulation may include activation of alpha4beta2 and alpha7 nAChRs in neurons within or adjacent to the brainstem noradrenergic areas in female rabbits.
Collapse
Affiliation(s)
- Maria Luisa Centeno
- Division of Reproductive Sciences and Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, Beaverton 97006, USA
| | | | | | | | | |
Collapse
|
162
|
Wüstenberg DG, Grünewald B. Pharmacology of the neuronal nicotinic acetylcholine receptor of cultured Kenyon cells of the honeybee, Apis mellifera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190:807-21. [PMID: 15309481 DOI: 10.1007/s00359-004-0530-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 04/29/2004] [Accepted: 04/30/2004] [Indexed: 10/26/2022]
Abstract
We investigated the pharmacology of the nicotinic acetylcholine receptor of honeybee Kenyon cells, a subset of olfactory interneurons, which are crucial for olfactory learning and memory. Whole-cell currents were recorded using patch-clamp techniques. Pressure application of agonists induced inward currents in cultured Kenyon cells at holding potentials of -110 mV. Acetylcholine or carbamylcholine were full agonists, nicotine, epibatidine and cytisine were only partial agonists. Coapplications of these partial agonists with acetylcholine reduced the current amplitude. The most efficient antagonists were dihydroxy-beta-erythroidine (EC(50)=0.5 pmol x l(-1)) and methyllycaconitine (EC(50)=24 pmol x l(-1)). The open channel blocker mecamylamine, d-tubocurarine and hexamethonium were rather weak blockers of the honeybee nicotinic response. Bath applications of the muscarinic antagonist atropine inhibited nicotinic currents dependent on concentration (EC(50)=24.3 micromol x l(-1)). Muscarine, pilocarpine or oxotremorine (1 mmol x l(-1)) did not induce any measurable currents. The non-cholinergic drugs strychnine, bicuculline and picrotoxin partially and reversibly blocked the acetylcholine-induced currents. Our results indicate the expression of only one nicotinic acetylcholine receptor subtype in cultured Kenyon cells. Muscarinic as well as non-cholinergic antagonists also inhibit the receptor function, distinguishing the honeybee nicotinic receptor from the "typical" nicotinic receptor of vertebrates and from many described insects receptors.
Collapse
Affiliation(s)
- Daniel G Wüstenberg
- Institut für Biologie, Neurobiologie, Freie Universität Berlin, Königin-Luise-Str. 28/30, 14 195 Berlin, Germany
| | | |
Collapse
|
163
|
Moretti M, Vailati S, Zoli M, Lippi G, Riganti L, Longhi R, Viegi A, Clementi F, Gotti C. Nicotinic Acetylcholine Receptor Subtypes Expression during Rat Retina Development and Their Regulation by Visual Experience. Mol Pharmacol 2004; 66:85-96. [PMID: 15213299 DOI: 10.1124/mol.66.1.85] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
By acting through retinal nicotinic acetylcholine receptors (nAChRs), acetylcholine plays an important role in the development of both the retina and central visual pathways. Ligand binding and immunoprecipitation studies with subunit-specific antibodies showed that the expression of alphaBungarotoxin (alphaBgtx) and high-affinity epibatidine (Epi) receptors is regulated developmentally and increases until postnatal day 21 (P21). The increase in Epi receptors is caused by a selective increase in the subtypes containing the alpha2, alpha4, alpha6, beta2, and beta3 subunits. Immunopurification studies revealed three major populations of Epi receptors on P21: alpha6(*) receptors (26%), which contain the alpha6beta3beta2, alpha6alpha4beta3beta2, and alpha6alpha3/alpha2beta3beta2 subtypes; alpha4(non-alpha6)(*) receptors (60%), which contain the alpha2alpha4beta2 and alpha4beta2 subtypes; and (non-alpha4/non-alpha6)(*) receptors (14%), which contain the alpha2beta2/beta4 and alpha3beta2/beta4 subtypes. These three populations can be pharmacologically discriminated using alphaconotoxin MII, which binds the alpha6(*) population with high affinity. In situ hybridization showed that the transcripts for all of the subunits are heterogeneously distributed throughout retinal neurons at P21, with alpha3, alpha6, and beta3 transcripts preferentially concentrated in the ganglion cell layer, alpha5 in the inner nuclear layer, and alpha4 and beta2 distributed rather homogeneously. To investigate whether nAChR expression is affected by visual experience, we also studied dark-reared P21 rats. Visual deprivation had no effect on the expression of alphaBgtx receptors or the developmentally regulated Epi receptors containing the alpha2, alpha6, and/or beta3 subunits but significantly increased the expression of the Epi receptors containing the alpha4 and beta2 subunits. Overall, this study demonstrates that the retina is the rat neural region that expresses the widest array of nAChR subtypes. These receptors have a specific distribution, and their expression is finely regulated during development and by visual experience.
Collapse
Affiliation(s)
- Milena Moretti
- CNR, Institute of Neuroscience, Section of Cellular and Molecular Pharmacology, Department of Medical Pharmacology, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Grailhe R, de Carvalho LP, Paas Y, Le Poupon C, Soudant M, Bregestovski P, Changeux JP, Corringer PJ. Distinct subcellular targeting of fluorescent nicotinic alpha 3 beta 4 and serotoninergic 5-HT3A receptors in hippocampal neurons. Eur J Neurosci 2004; 19:855-62. [PMID: 15009132 DOI: 10.1111/j.1460-9568.2004.03153.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nicotinic acetylcholine receptors (nAChRs) and the 5-HT3 serotonin receptor subtype belong to a superfamily of neurotransmitter-gated ion channels involved in fast synaptic communication throughout the nervous system. Their trafficking to the neuron plasmalemma, as well as their targeting to specific subcellular compartments, is critical for understanding their physiological role. In order to investigate the cellular distribution of these receptors, we tagged the N-termini of alpha3beta4-nAChR subunits and the 5-HT3AR subunit with cyan and yellow fluorescent proteins (CFP, YFP). The fusion subunits were coexpressed in human embryonic kidney (HEK-293) cells, where they assemble into functional receptor channels, as well as in primary cultures of hippocampal neurons. Fluorescence microscopy of living cells revealed that the heteropentameric alpha3CFP-beta4 and YFP-alpha3beta4 receptors are mainly distributed in the endoplasmic reticulum, while the homopentameric YFP-5-HT3A receptor was localized both to the plasma membrane and within intracellular compartments. Moreover, the YFP-5-HT3A receptor was found to be targeted to the micropodia in HEK-293 cells and to the dendritic spines in hippocampal neurons, where it could be accessed by extracellularly applied specific fluorescent probes. The efficient targeting of the YFP-5-HT3A to the cytoplasmic membrane is in line with the large serotonin-elicited currents (nA range) measured by whole-cell voltage-clamp recordings in transfected HEK-293 cells. In contrast, alpha3beta4-nAChRs expressed in the same cells yielded weaker ACh-evoked responses. Taken together, the fluorescent and electrophysiological studies presented here demonstrate the predominant intracellular location of alpha3beta4-nACh receptors and the predominant expression of the 5-HT3AR in dendritic surface loci.
Collapse
Affiliation(s)
- Régis Grailhe
- Récepteurs et Cognition, Unité de recherche associée D1284, CNRS, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Yakel JL, Shao Z. Functional and molecular characterization of neuronal nicotinic ACh receptors in rat hippocampal interneurons. PROGRESS IN BRAIN RESEARCH 2004; 145:95-107. [PMID: 14650909 DOI: 10.1016/s0079-6123(03)45006-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jerrel L Yakel
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, F2-08, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
166
|
Jones AK, Elgar G, Sattelle DB. The nicotinic acetylcholine receptor gene family of the pufferfish, Fugu rubripes☆. Genomics 2003; 82:441-51. [PMID: 13679024 DOI: 10.1016/s0888-7543(03)00153-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission at nerve-muscle junctions and in the brain. However, the complete gene family of nAChRs has not so far been reported for any vertebrate organism. We have identified the complete nAChR gene family from the reference genome of the pufferfish, Fugu rubripes. It consists of 16 alpha and 12 non-alpha candidate subunits, making it the largest vertebrate nAChR gene family known to date. The gene family includes an unusual set of muscle-like nAChR subunits comprising two alpha1s, two beta1s, one delta, one epsilon, and one gamma. One of the beta1 subunits possesses an aspartate residue and N-glycosylation sites hitherto shown to be necessary for delta-subunit function. Potential Fugu orthologs of neuronal nAChR subunits alpha2-4, alpha6, and beta2-4 have been identified. Interestingly, the Fugu alpha5 counterpart appears to be a non-alpha subunit. Fugu possesses an expanded set of alpha7-9-like subunits and no alpha10 ortholog has been found. Two new candidate beta subtypes, designated beta5 and beta6, may represent subunits yet to be found in the human genome. The Fugu nAChR gene structures are considerably more diverse than those of higher vertebrates, with evidence of "intron gain" in many cases. We show, using RT-PCR, that the Fugu nAChR subunits are expressed in a variety of tissues.
Collapse
Affiliation(s)
- Andrew K Jones
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | |
Collapse
|
167
|
Lyford LK, Sproul AD, Eddins D, McLaughlin JT, Rosenberg RL. Agonist-induced conformational changes in the extracellular domain of alpha 7 nicotinic acetylcholine receptors. Mol Pharmacol 2003; 64:650-8. [PMID: 12920201 DOI: 10.1124/mol.64.3.650] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The molecular mechanisms that couple agonist binding to the gating of Cys-loop ionotropic receptors are not well understood. The crystal structure of the acetylcholine (ACh) binding protein has provided insights into the structure of the extracellular domain of nicotinic receptors and a framework for testing mechanisms of activation. Key ligand binding residues are located at the C-terminal end of the beta9 strand. At the N-terminal end of this strand (loop 9) is a conserved glutamate [E172 in chick alpha7 nicotinic acetylcholine receptors (nAChRs)] that is important for modulating activation. We hypothesize that agonist binding induces the movement of loop 9. To test this, we used the substituted-cysteine accessibility method to examine agonist-dependent changes in the modification of cysteines introduced in loop 9 of L247T alpha7 nAChRs. In the absence of agonist, ACh-evoked responses of E172C/L247T alpha7 nAChRs were inhibited by 2-trimethylammonioethylmethane thiosulfonate (MTSET). Agonist coapplication with MTSET reduced the extent and rate of modification. The dose-dependence of ACh activation was nearly identical with that of ACh-dependent protection from modification. ACh increased the inhibition by methanethiosulfonate reagents of N170C and did not change inhibition of G171C receptors. The antagonist dihydro-beta-erythroidine did not mimic the effects of ACh. Combined with a structural model, the data suggest that receptor activation includes subunit rotation and/or intrasubunit conformational changes that move N170 to a more accessible position and E172 to a more protected position away from the vestibule. Thus, loop 9, located near the junction between the extracellular and transmembrane domains, participates in conformational changes triggered by ligand binding.
Collapse
Affiliation(s)
- Lisa K Lyford
- Department of Pharmacology, CB #7365, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | | | | | | | | |
Collapse
|
168
|
Smit AB, Brejc K, Syed N, Sixma TK. Structure and Function of AChBP, Homologue of the Ligand-Binding Domain of the Nicotinic Acetylcholine Receptor. Ann N Y Acad Sci 2003; 998:81-92. [PMID: 14592865 DOI: 10.1196/annals.1254.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Acetylcholine-binding protein (AChBP) is a novel protein with high similarity to the extracellular domain of the nicotinic acetylcholine receptor. AChBP lacks the transmembrane domains and intracellular loops typical for the nAChRs. AChBP is secreted from glia cells in the central nervous system of the freshwater snail, Lymnaea stagnalis, where it modulates synaptic transmission. AChBP forms homopentamers with pharmacology that resembles the alpha(7)-type of nicotinic receptors. As such, AChBP is a good model for the ligand-binding domain of the nAChRs. In the crystal structure of AChBP at 2.7 A, each protomer has a modified immunoglobulin fold. Almost all residues previously shown to be involved in ligand binding in the nicotinic receptor are found in a pocket at the subunit interface, which is lined with aromatic residues. The AChBP crystal structure explains many of the biochemical studies on the nicotinic acetylcholine receptors. Surprisingly, the interface between protomers is relatively weakly conserved between families in the superfamily of pentameric ligand-gated ion channels. The lack of conservation has implications for the mechanism of gating of the ion channels.
Collapse
Affiliation(s)
- August B Smit
- Department of Molecular and Cellular Neurobiology, Faculty of Biology, Research Institute Neurosciences Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
169
|
Mulholland PJ, Harris BR, Wilkins LH, Self RL, Blanchard JA, Holley RC, Littleton JM, Prendergast MA. Opposing effects of ethanol and nicotine on hippocampal calbindin-D28k expression. Alcohol 2003; 31:1-10. [PMID: 14615005 DOI: 10.1016/j.alcohol.2003.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Long-term ethanol exposure produces multiple neuroadaptations that likely contribute to dysregulation of Ca(2+) balance and neurotoxicity during ethanol withdrawal. Conversely, nicotine exposure may reduce the neurotoxic consequences of Ca(2+) dysregulation, putatively through up-regulation of the Ca(2+)-buffering protein calbindin-D(28k). The current studies were designed to examine the extent to which 10-day ethanol exposure and withdrawal altered calbindin-D(28k) expression in rat hippocampus. Further, in these studies, we examined the ability of nicotine, through action at alpha(7)(*)-bearing nicotinic acetylcholine receptors (nAChRs), to antagonize the effects of ethanol exposure on calbindin-D(28k) expression. Organotypic cultures of rat hippocampus were exposed to ethanol (50-100 mM) for 10 days. Additional cultures were exposed to 500 nM (-)-nicotine with or without the addition of 50 mM ethanol, 100 nM methyllycaconitine (an alpha(7)*-bearing nAChR antagonist), or both. Prolonged exposure to ethanol (>/=50 mM) produced significant reductions of calbindin-D(28k) immunolabeling in all regions of the hippocampal formation, even at nontoxic concentrations of ethanol. Calbindin-D(28k) expression levels returned to near-control levels after 72 h of withdrawal from 10-day ethanol exposure. Extended (-)-nicotine exposure produced significant elevations in calbindin-D(28k) expression levels that were prevented by methyllycaconitine co-exposure. Co-exposure of cultures to (-)-nicotine with ethanol resulted in an attenuation of ethanol-induced reductions in calbindin-D(28k) expression levels. These findings support the suggestion that long-term ethanol exposure reduces the neuronal capacity to buffer accumulated Ca(2+) in a reversible manner, an effect that likely contributes to withdrawal-induced neurotoxicity. Further, long-term exposure to (-)-nicotine enhances calbindin-D(28k) expression in an alpha(7)* nAChR-dependent manner and antagonizes the effects of ethanol on calbindin-D(28k) expression.
Collapse
Affiliation(s)
- Patrick J Mulholland
- Department of Psychology, University of Kentucky, 115 Kastle Hall, Lexington, KY 40506-0044, USA
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Vailati S, Moretti M, Longhi R, Rovati GE, Clementi F, Gotti C. Developmental expression of heteromeric nicotinic receptor subtypes in chick retina. Mol Pharmacol 2003; 63:1329-37. [PMID: 12761343 DOI: 10.1124/mol.63.6.1329] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acting through nicotinic acetylcholine receptors (nAChRs), acetylcholine plays an important role in retinal development and the formation of retinal connections to target tissues, but very little is known about the nAChR subtypes expressed in vertebrate retina during neuronal development. We used immunoprecipitation and [3H]epibatidine binding to study the expression of chick retina alpha-bungarotoxin-insensitive heteromeric nAChRs during development and adulthood, and found that it is strictly developmentally regulated, reaching a peak on postnatal day 1. The increase in [3H]epibatidine receptors is caused mainly by an increase in the receptors containing the alpha2, alpha6, beta3, and beta4 subunits. The contribution of beta subunits to [3H]epibatidine receptors significantly changes during development: the beta2 subunit is contained in the majority (84%) of receptors on embryonic day (E) 7 but in only 32% on postnatal day (P) 1, whereas the beta4-containing receptors increase from 22% to 78% during the same period. Using a sequential immunodepletion procedure, we purified the beta2- and beta4-containing subtypes and found that they coassemble with alpha4 and/or alpha3 on E11, and also with the alpha2, alpha6, and beta3 on P1. After the immunodepletion of alpha6-containing receptors, the beta2- and beta4-containing receptors have a very similar pharmacological profile on P1. Parallel immunoprecipitation experiments in other brain areas showed that the developmentally regulated receptors in optic lobe are those containing the alpha2, alpha5, and beta2 subunits and those containing the alpha4 and beta2 subunits, whereas the receptors in forebrain-cerebellum contain the alpha4 and beta2 subunits with or without the alpha5 subunit. These results indicate that there is an increase in receptor heterogeneity and complexity in chick retina during development that is also maintained in adulthood.
Collapse
Affiliation(s)
- S Vailati
- National Research Council, Institute of Neuroscience, Section of Cellular and Molecular Pharmacology, Department of Medical Pharmacology, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | | | | | | | | | | |
Collapse
|
171
|
Marinou M, Tzartos SJ. Identification of regions involved in the binding of alpha-bungarotoxin to the human alpha7 neuronal nicotinic acetylcholine receptor using synthetic peptides. Biochem J 2003; 372:543-54. [PMID: 12614199 PMCID: PMC1223412 DOI: 10.1042/bj20021537] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Revised: 02/10/2003] [Accepted: 03/04/2003] [Indexed: 02/07/2023]
Abstract
The neuronal alpha7 nicotinic acetylcholine receptor (AChR) binds the neurotoxin alpha-bungarotoxin (alpha-Bgt). Fine mapping of the alpha-Bgt-binding site on the human alpha7 AChR was performed using synthetic peptides covering the entire extracellular domain of the human alpha7 subunit (residues 1-206). Screening of these peptides for (125)I-alpha-Bgt binding resulted in the identification of at least two toxin-binding sites, one at residues 186-197, which exhibited the best (125)I-alpha-Bgt binding, and one at residues 159-165, with weak toxin-binding capacity; these correspond, respectively, to loops C and IV of the agonist-binding site. Toxin binding to the alpha7(186-197) peptide was almost completely inhibited by unlabelled alpha-Bgt or d -tubocurarine. Alanine substitutions within the sequence 186-198 revealed a predominant contribution of aromatic and negatively charged residues to the binding site. This sequence is homologous to the alpha-Bgt binding site of the alpha1 subunit (residues 188-200 in Torpedo AChR). In competition experiments, the soluble peptides alpha7(186-197) and Torpedo alpha1(184-200) inhibited the binding of (125)I-alpha-Bgt to the immobilized alpha7(186-197) peptide, to native Torpedo AChR, and to the extracellular domain of the human alpha1 subunit. These results suggest that the toxin-binding sites of the neuronal alpha7 and muscle-type AChRs bind to identical or overlapping sites on the alpha-Bgt molecule. In support of this, when synthetic alpha-Bgt peptides were tested for binding to the recombinant extracellular domains of the human alpha7 and alpha1 subunits, and to native Torpedo and alpha7 AChR, the results indicated that alpha-Bgt interacts with both neuronal and muscle-type AChRs through its central loop II and C-terminal tail.
Collapse
Affiliation(s)
- Martha Marinou
- Department of Biochemistry, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521 Athens, Greece
| | | |
Collapse
|
172
|
Faimali M, Falugi C, Gallus L, Piazza V, Tagliafierro G. Involvement of acetyl choline in settlement of Balanus amphitrite. BIOFOULING 2003; 19 Suppl:213-220. [PMID: 14618723 DOI: 10.1080/0892701021000044228] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The aim of the present study was to investigate the presence and distribution of cholinergic molecules in Balanus amphitrite cyprids and their possible involvement in settlement and adhesion. Acetylcholinesterase (AChE, the lythic enzyme of acetylcholine) activity was detected, for the first time, by biochemical and histoenzymological methods, in the thoracic muscles, gut wall and cement gland. The immunodetection of choline acetyltransferase-like (ChAT) molecules in the same area and in the neuropil of the central nervous system suggests the presence of a cholinergic innervation, and the involvement of acetylcholine in muscular contraction and cement gland exocytosis. The binding of FITC-conjugate alpha-bungarotoxin in the cement gland cells confirms the latter hypothesis. Acetylcholine involvement in the settlement process was also investigated by laboratory tests employing cholinergic antagonists and agonists. An increase of available acetylcholine due to the partial inhibition of AChE activity produced an increase in cyprid settlement. The data presented support the hypothesis that acetylcholine has a neurotransmitter/neuromodulator role in settlement and adhesion of barnacle cyprids.
Collapse
Affiliation(s)
- M Faimali
- Istituto per la Corrosione Marina dei Metalli (ICMM), CNR, Via De Marini 6, 16149 Genova, Italy.
| | | | | | | | | |
Collapse
|
173
|
Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003; 421:384-8. [PMID: 12508119 DOI: 10.1038/nature01339] [Citation(s) in RCA: 2389] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Accepted: 12/02/2002] [Indexed: 02/06/2023]
Abstract
Excessive inflammation and tumour-necrosis factor (TNF) synthesis cause morbidity and mortality in diverse human diseases including endotoxaemia, sepsis, rheumatoid arthritis and inflammatory bowel disease. Highly conserved, endogenous mechanisms normally regulate the magnitude of innate immune responses and prevent excessive inflammation. The nervous system, through the vagus nerve, can inhibit significantly and rapidly the release of macrophage TNF, and attenuate systemic inflammatory responses. This physiological mechanism, termed the 'cholinergic anti-inflammatory pathway' has major implications in immunology and in therapeutics; however, the identity of the essential macrophage acetylcholine-mediated (cholinergic) receptor that responds to vagus nerve signals was previously unknown. Here we report that the nicotinic acetylcholine receptor alpha7 subunit is required for acetylcholine inhibition of macrophage TNF release. Electrical stimulation of the vagus nerve inhibits TNF synthesis in wild-type mice, but fails to inhibit TNF synthesis in alpha7-deficient mice. Thus, the nicotinic acetylcholine receptor alpha7 subunit is essential for inhibiting cytokine synthesis by the cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Hong Wang
- Laboratory of Biomedical Science, North Shore Long Island Jewish Research Institute, 350 Community Drive, Manhasset, New York 11030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Chen J, Norrholm S, Dwoskin LP, Crooks PA, Bai D. N,N-disubstituted piperazines: synthesis and affinities at alpha4beta2(*) and alpha7(*) neuronal nicotinic acetylcholine receptors. Bioorg Med Chem Lett 2003; 13:97-100. [PMID: 12467625 PMCID: PMC3749776 DOI: 10.1016/s0960-894x(02)00849-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of N,N-disubstituted piperazines were prepared and evaluated for binding to alpha4beta2(*) and alpha7(*) neuronal nicotinic acetylcholine receptors using rat striatum and whole brain membrane preparations, respectively. This series of compounds exhibited selectivity for alpha4beta2(*) nAChRs and did not interact with the alpha7(*) nAChRs subtype. The most potent analogues were compounds 8b and 8f (K(i)=32 microM). Thus, linking together a pyridine pi-system and a cyclic amine moiety via a piperazine ring affords compounds with low affinity, but good selectivity for alpha4beta2(*) nicotinic receptors.
Collapse
Affiliation(s)
- Jianhong Chen
- Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Tai-yuan Road, Shanghai 200031, China
| | - Seth Norrholm
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0082, USA
| | - Linda P. Dwoskin
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0082, USA
| | - Peter A. Crooks
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0082, USA
- Corresponding authors. Tel.: +86-21-64311833628; fax: +86-21-64370269; (D. Bai); Tel.: +1-859-257-1718; fax: +1-859-257-7585; (P. A. Crooks)
| | - Donglu Bai
- Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Tai-yuan Road, Shanghai 200031, China
- Corresponding authors. Tel.: +86-21-64311833628; fax: +86-21-64370269; (D. Bai); Tel.: +1-859-257-1718; fax: +1-859-257-7585; (P. A. Crooks)
| |
Collapse
|
175
|
Jones AK, Sattelle DB. Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode,Caenorhabditis elegans. Bioessays 2003; 26:39-49. [PMID: 14696039 DOI: 10.1002/bies.10377] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that bring about a diversity of fast synaptic actions. Analysis of the Caenorhabditis elegans genome has revealed one of the most-extensive and diverse nAChR gene families known, consisting of at least 27 subunits. Striking variation with possible functional implications has been observed in normally conserved motifs at the acetylcholine-binding site and in the channel-lining region. Some nAChR subunits are particular to neurons whilst others are present in both neurons and muscles. The localization of subunits in non-synaptic regions suggests novel roles for nAChRs. Genetic and heterologous expression studies have identified a subset of nAChR subunits that are important drug targets while the study of mutants has identified genes functionally-linked to nAChRs. Future studies using C. elegans offer the prospect of increasing our understanding of the functional diversity of a complex nAChR gene family as well as addressing the role of nAChRs and associated proteins in human disorders.
Collapse
Affiliation(s)
- Andrew K Jones
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX
| | | |
Collapse
|
176
|
Abstract
Nicotinic receptors (NRs) belong to the group of polymeric receptors of the cell membrane and are key elements of cholinergic transmission. Numerous subtypes of NRs exist with the alpha 4 beta 2 and alpha 7 types being encountered most frequently. Deficiencies in NRs seem to play a role in Alzheimer's disease, which is characterised by accumulation of senile plaques, mainly composed of beta-amyloid peptide (beta A). Although the aetiology of this disease is unknown, different pathogenesis hypotheses implicating alpha 7 NRs have been proposed, with the receptors exerting a direct or indirect action on the mechanism of beta A toxicity. Allosteric modulators of NRs, such as the cholinesterase inhibitor galantamine, that facilitate the action of acetylcholine on these receptors may provide therapeutic benefits in the areas of cognition, attention and antineurodegenerative activity.
Collapse
Affiliation(s)
- Michel Bourin
- Research Group Neurobiology of Anxiety and Depression, Faculty of Medicine, Nantes, France.
| | | | | |
Collapse
|
177
|
Sinclair J, Pihl J, Olofsson J, Karlsson M, Jardemark K, Chiu DT, Orwar O. A cell-based bar code reader for high-throughput screening of ion channel-ligand interactions. Anal Chem 2002; 74:6133-8. [PMID: 12510730 DOI: 10.1021/ac026133f] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper presents a microfluidics-patch clamp platform for performing high-throughput screening and rapid characterization of weak-affinity ion channel-ligand interactions. This platform integrates a microfluidic chip consisting of multiple channels entering an open volume with standard patch clamp equipment. The microfluidic chip is placed on a motorized scanning stage and the method relies on the ability to scan rapidly, on the order of milliseconds, a patch-clamped cell across discrete zones of different solutions created in the open volume. Under ideal conditions, this method has the capacity to obtain kinetically resolved patch clamp measurements and dose-response curves of up to 10(3) ligand solutions in a single day.
Collapse
Affiliation(s)
- Jon Sinclair
- Department of Physical Chemistry, and Microtechnology Centre, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
178
|
Le Novère N, Corringer PJ, Changeux JP. The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. JOURNAL OF NEUROBIOLOGY 2002; 53:447-56. [PMID: 12436412 DOI: 10.1002/neu.10153] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nicotinic acetylcholine receptors are made up of homologous subunits, which are encoded by a large multigene family. The wide number of receptor oligomers generated display variable pharmacological properties. One of the main questions underlying research in molecular pharmacology resides in the actual role of this diversity. It is generally assumed that the observed differences between the pharmacology of homologous receptors, for instance, the EC(50) for the endogenous agonist, or the kinetics of desensitization, bear some kind of physiologic relevance in vivo. Here we develop the quite challenging point of view that, at least within a given subfamily of nicotinic receptor subunits, the pharmacologic variability observed in vitro would not be directly relevant to the function of receptor proteins in vivo. In vivo responses are not expected to be sensitive to mild differences in affinities, and several examples of functional replacement of one subunit by another have been unravelled by knockout animals. The diversity of subunits might have been conserved through evolution primarily to account for the topologic diversity of subunit distribution patterns, at the cellular and subcellular levels. A quantitative variation of pharmacological properties would be tolerated within a physiologic envelope, as a consequence of a near-neutral genetic drift. Such a "gratuitous" pharmacologic diversity is nevertheless of practical interest for the design of drugs, which would specifically tackle particular receptor oligomers with a defined subunit composition among the multiple nicotinic receptors present in the organism.
Collapse
Affiliation(s)
- Nicolas Le Novère
- Receptors and Cognition, CNRS URA 2182, Institut Pasteur, 75724 Paris, France.
| | | | | |
Collapse
|
179
|
Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J Neurosci 2002. [PMID: 12388584 DOI: 10.1523/jneurosci.22-20-08785.2002] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) expressed on mesostriatal dopaminergic neurons are thought to mediate several behavioral effects of nicotine, including locomotion, habit learning, and reinforcement. Using immunoprecipitation and ligand-binding techniques, we have shown that both alpha6beta2* and alpha4(nonalpha6)beta2* nAChRs are expressed in the caudate-putamen and that only alpha6* nAChRs can bind alpha-conotoxin MII and methyllycaconitine with affinities of 1.3 and 40 nm, respectively. Further studies performed on 6-hydroxydopamine-lesioned striatum led to the identification of nAChR subtypes selectively expressed on dopaminergic terminals [alpha4alpha5beta2, alpha4alpha6beta2(beta3), and alpha6beta2(beta3)], nondopaminergic neuronal structures (alpha2alpha4beta2), or both structures (alpha4beta2). The identification of the nAChRs expressed on striatal dopaminergic terminals opens up the possibility of developing selective nAChR ligands active on dopaminergic systems and associated diseases, such as Parkinson's disease.
Collapse
|
180
|
Newman MB, Kuo YP, Lukas RJ, Sanberg PR, Douglas Shytle R, McGrogan MP, Zigova T. Nicotinic acetylcholine receptors on NT2 precursor cells and hNT (NT2-N) neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 139:73-86. [PMID: 12414096 DOI: 10.1016/s0165-3806(02)00513-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This is the first report, to our knowledge, of prominent, natural expression of nAChR alpha4, alpha6 and alpha9 subunits in a human, neuronally-committed cell line. We performed studies with specific reference to the expression of nicotinic acetylcholine receptors (nAChR) to further characterize a human, postmitotic, transplantable, with a neuronal phenotype, cell line called hNT (also called NT2-N). hNT cells acquire a distinctive neuronal phenotype upon differentiation from their NT2 precursors. Immunocytochemical studies showed that NT2 cells were strongly immunopositive for alpha4 or alpha7 subunits, moderately immunopositive for alpha3/alpha5 subunits, and weakly immunopositive for beta2 or beta4 subunits, whereas hNT neurons showed positive, strong-to-moderate immunostaining for all of these nAChR subunits. Reverse transcription-polymerase chain reaction (RT-PCR) mRNA analyses indicated that levels of alpha7 subunit messages were similar in both NT2 and hNT cells, whereas alpha2, alpha10, and beta3 subunit transcripts were not detected. Levels of alpha3, alpha5, and beta4 subunit messages were lower in hNT neurons than in NT2 precursors. However, alpha4 and beta2 subunit messages were present in NT2 precursors but were greatly induced in hNT neurons. Levels of alpha6 and alpha9 subunit messages, not detectable in NT2 precursors, rose to high levels in hNT neurons. hNT cell nAChR subunit message levels were comparable to (alpha4, alpha5, beta4) or higher than (alpha6, alpha9, beta2) levels in adult human brain. NT2 and hNT cells may provide an excellent model for studies of neurogenesis, roles played by nAChR in differentiation and neurodegeneration, and effects of neuronal differentiation on nAChR expression.
Collapse
Affiliation(s)
- Mary B Newman
- Center for Aging and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | |
Collapse
|
181
|
Ayers JT, Dwoskin LP, Deaciuc AG, Grinevich VP, Zhu J, Crooks PA. bis-Azaaromatic quaternary ammonium analogues: ligands for alpha4beta2* and alpha7* subtypes of neuronal nicotinic receptors. Bioorg Med Chem Lett 2002; 12:3067-71. [PMID: 12372503 DOI: 10.1016/s0960-894x(02)00687-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of bis-nicotinium, bis-pyridinium, bis-picolinium, bis-quinolinium and bis-isoquinolinium compounds was evaluated for their binding affinity at nicotinic acetylcholine receptors (nAChRs) using rat brain membranes. N,N'-Decane-1,12-diyl-bis-nicotinium diiodide (bNDI) exhibited the highest affinity for [(3)H]nicotine binding sites (K(i)=330 nM), but did not inhibit [(3)H]methyllycaconitine binding (K(i) >100 microM), indicative of an interaction with alpha4beta2*, but not alpha7* receptor subtypes, respectively. Also, bNDI inhibited (IC(50)=3.76 microM) nicotine-evoked (86)Rb(+) efflux from rat thalamic synaptosomes, indicating antagonist activity at alpha4beta2* nAChRs. N,N'-Dodecane-1,12-diyl-bis-quinolinium dibromide (bQDDB) exhibited highest affinity for [(3)H]methyllycaconitine binding sites (K(i)=1.61 microM), but did not inhibit [(3)H]nicotine binding (K(i)>100 microM), demonstrating an interaction with alpha7*, but not alpha4beta2* nAChRs. Thus, variation of N-n-alkyl chain length together with structural modification of the azaaromatic quaternary ammonium moiety afforded selective antagonists for the alpha4beta2* nAChR subtype, as well as ligands with selectivity at alpha7* nAChRs.
Collapse
Affiliation(s)
- Joshua T Ayers
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA
| | | | | | | | | | | |
Collapse
|
182
|
Newman MB, Arendash GW, Shytle RD, Bickford PC, Tighe T, Sanberg PR. Nicotine's oxidative and antioxidant properties in CNS. Life Sci 2002; 71:2807-20. [PMID: 12377264 DOI: 10.1016/s0024-3205(02)02135-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nicotine has been reported to be therapeutic in some patients with certain neurodegenerative diseases and to have neuroprotective effects in the central nervous system. However, nicotine administration may result in oxidative stress by inducing the generation of reactive oxygen species in the periphery and central nervous system. There is also evidence suggesting that nicotine may have antioxidant properties in the central nervous system. The antioxidant properties of nicotine may be intracellular through the activation of the nicotinic receptors or extracellular by acting as a radical scavenger in that it binds to iron. The possibility that nicotine might be used to treat some symptoms of certain neurodegenerative diseases underlies the necessity to determine whether nicotine has pro-oxidant, antioxidant or properties of both. This review discusses the studies that have addressed this issue, the behavioral effects of nicotine, and the possible mechanisms of action that result from nicotine administration or nicotinic receptor activation.
Collapse
Affiliation(s)
- Mary B Newman
- Center for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | | | |
Collapse
|
183
|
Abstract
The identification of a genetically transmissible form of epilepsy that is associated with a mutation in CHRNA4, the gene that encodes the alpha4 subunit of the high-affinity nicotinic acetylcholine receptor, was the first demonstration that an alteration in a ligand-gated ion channel can cause seizures. Since then, nine mutations have been found, and analysis of their physiologic properties has revealed that all of them enhance receptor function.
Collapse
Affiliation(s)
- Daniel Bertrand
- Department of Physiology, Medical Faculty, Geneva, Switzerland
| |
Collapse
|
184
|
Abstract
The identification of a genetically transmissible form of epilepsy that is associated with a mutation in CHRNA4, the gene that encodes the α4 subunit of the high-affinity nicotinic acetylcholine receptor, was the first demonstration that an alteration in a ligand-gated ion channel can cause seizures. Since then, nine mutations have been found, and analysis of their physiologic properties has revealed that all of them enhance receptor function.
Collapse
Affiliation(s)
- Daniel Bertrand
- />Department of Physiology, Medical Faculty,
Geneva, Switzerland
| |
Collapse
|
185
|
De Rosa MJ, Rayes D, Spitzmaul G, Bouzat C. Nicotinic receptor M3 transmembrane domain: position 8' contributes to channel gating. Mol Pharmacol 2002; 62:406-14. [PMID: 12130694 DOI: 10.1124/mol.62.2.406] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) is a pentamer of homologous subunits with composition alpha(2)(beta)(epsilon)(delta) in adult muscle. Each subunit contains four transmembrane domains (M1-M4). Position 8' of the M3 domain is phenylalanine in all heteromeric alpha subunits, whereas it is a hydrophobic nonaromatic residue in non-alpha subunits. Given this peculiar conservation pattern, we studied its contribution to muscle nAChR activation by combining mutagenesis with single-channel kinetic analysis. Construction of nAChRs carrying different numbers of phenylalanine residues at 8' reveals that the mean open time decreases as a function of the number of phenylalanine residues. Thus, all subunits contribute through this position independently and additively to the channel closing rate. The impairment of channel opening increases when the number of phenylalanine residues at 8' increases from two (wild-type nAChR) to five. The gating equilibrium constant of the latter mutant nAChR is 13-fold lower than that of the wild-type nAChR. The replacement of (alpha)F8', (beta)L8', (delta)L8', and (epsilon)V8' by a series of hydrophobic amino acids reveals that the structural bases of the observed kinetic effects are nonequivalent among subunits. In the alpha subunit, hydrophobic amino acids at 8' lead to prolonged channel lifetimes, whereas they lead either to normal kinetics (delta and epsilon subunits) or impaired channel gating (beta subunit) in the non-alpha subunits. The overall results indicate that 8' positions of the M3 domains of all subunits contribute to channel gating.
Collapse
Affiliation(s)
- María José De Rosa
- Instituto de Investigaciones Bioquímicas, Universidad Nacíonal del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
186
|
Si ML, Lee TJF. Alpha7-nicotinic acetylcholine receptors on cerebral perivascular sympathetic nerves mediate choline-induced nitrergic neurogenic vasodilation. Circ Res 2002; 91:62-9. [PMID: 12114323 DOI: 10.1161/01.res.0000024417.79275.23] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been suggested in isolated porcine cerebral arteries that stimulation by nicotine of alpha7-nicotinic acetylcholine receptors (alpha7-nAChRs) on sympathetic nerves, but not direct stimulation of parasympathetic nitrergic nerves, caused nitrergic neurogenic dilation. Direct evidence supporting this hypothesis has not been presented. The present study, which used in vitro tissue bath and confocal microscopy techniques, was designed to determine whether choline, a selective agonist for alpha7-nAChRs, induced sympathetic-dependent nitrergic dilation of porcine basilar arterial rings. Choline and several nAChR agonists induced exclusive relaxation of basilar arterial rings without endothelium. The relaxation was blocked by tetrodotoxin, nitro-L-arginine, guanethidine, and beta2-adrenoceptor antagonists. Furthermore, the relaxation was blocked by methyllycaconitine and alpha-bungarotoxin (preferential alpha7-nAChR antagonists) and mecamylamine but was not affected by dihydro-beta-erythroidine (a preferential alpha4-nAChR antagonist). Confocal microscopic study demonstrated that choline and nicotine induced significant calcium influx in cultured porcine superior cervical ganglionic cells but failed to affect calcium influx in cultured sphenopalatine ganglionic cells, providing direct evidence that choline and nicotine did not act directly on the parasympathetic nitrergic neurons. The increased calcium influx in superior cervical ganglionic cells was attenuated by alpha-bungarotoxin and methyllycaconitine but not by dihydro-beta-erythroidine. These results support our hypothesis that activation of alpha7-nAChRs on cerebral perivascular sympathetic nerves causes calcium influx and the release of norepinephrine, which then act on presynaptic beta2-adrenoceptors located on the neighboring nitrergic nerve terminals, resulting in NO release and vasodilation. Endogenous choline may play an important role in regulating cerebral sympathetic activity and vascular tone.
Collapse
Affiliation(s)
- Min-Liang Si
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Ill 62794-9629, USA
| | | |
Collapse
|
187
|
Wong JYF, Ross SA, McColl C, Massalas JS, Powney E, Finkelstein DI, Clark M, Horne MK, Berkovic SF, Drago J. Proconvulsant-induced seizures in alpha(4) nicotinic acetylcholine receptor subunit knockout mice. Neuropharmacology 2002; 43:55-64. [PMID: 12213259 DOI: 10.1016/s0028-3908(02)00067-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The genetic basis of a number of epilepsy syndromes has been identified but the precise mechanism whereby these mutations produce seizures is unknown. Three mutations of the alpha(4) subunit of the neuronal nicotinic acetylcholine receptor (nAChR) have been identified in autosomal dominant nocturnal frontal lobe epilepsy. In vitro studies of two mutations suggest an alteration of receptor function resulting in decreased ion channel current flow. We investigated the response of alpha(4) nAChR subunit knockout mice to the gamma-aminobutyric acid (GABA) receptor antagonists; pentylenetetrazole (PTZ) and bicuculline (BIC), the glutamate receptor agonist kainic acid (KA), the glycine receptor antagonist strychnine and the K(+) channel blocker 4-aminopyridine (4-AP). Mutant (Mt) mice had a greater sensitivity to PTZ and BIC, with an increase in major motor seizures and seizure-related deaths. Furthermore, Mt mice were more sensitive to KA and strychnine, but the effects were much smaller compared to those seen with the GABA receptor antagonists. Paradoxically, Mt mice appeared to be relatively protected from 4-AP-induced major motor seizures and death. The results show that a functional deletion of the alpha(4) nAChR subunit in vivo is associated with a major increase in sensitivity to GABA receptor blockers.
Collapse
Affiliation(s)
- John Y F Wong
- Neurosciences Group, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Mogg AJ, Whiteaker P, McIntosh JM, Marks M, Collins AC, Wonnacott S. Methyllycaconitine is a potent antagonist of alpha-conotoxin-MII-sensitive presynaptic nicotinic acetylcholine receptors in rat striatum. J Pharmacol Exp Ther 2002; 302:197-204. [PMID: 12065717 DOI: 10.1124/jpet.302.1.197] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The plant alkaloid methyllycaconitine (MLA) is considered to be a selective antagonist of the alpha7 subtype of neuronal nicotinic acetylcholine receptor (nAChR). However, 50 nM MLA partially inhibited (by 16%) [(3)H]dopamine release from rat striatal synaptosomes stimulated with 10 microM nicotine. Other alpha7-selective antagonists had no effect. Similarly, MLA (50 nM) inhibited [(3)H]dopamine release evoked by the partial agonist (2-chloro-5-pyridyl)-9-azabicyclo[4.2.1]non-2-ene (UB-165) (0.2 microM) by 37%. In both cases, inhibition by MLA was surmountable with higher agonist concentrations, indicative of a competitive interaction. At least two subtypes of presynaptic nAChR can modulate dopamine release in the striatum, and these nAChR are distinguished by their differential sensitivity to alpha-conotoxin-MII (alpha-CTx-MII). MLA was not additive with a maximally effective concentration of alpha-CTx-MII (100 nM) in inhibiting [(3)H]dopamine release elicited by 10 microM nicotine or 0.2 microM UB-165, suggesting that both toxins act at the same site. This was confirmed in quantitative binding assays with (125)I-alpha-CTx-MII, which displayed saturable specific binding to rat striatum and nucleus accumbens with B(max) values of 9.8 and 16.5 fmol/mg of protein, and K(d) values of 0.63 and 0.83 nM, respectively. MLA fully inhibited (125)I-alpha-CTx-MII binding to striatum and nucleus accumbens with a K(i) value of 33 nM, consistent with the potency observed in the functional assays. We speculate that MLA and alpha-CTx-MII interact with a presynaptic nAChR of subunit composition alpha3/alpha6beta2beta3* on dopamine neurons. The use of MLA as an alpha7-selective antagonist should be exercised with caution, especially in studies of nAChR in basal ganglia.
Collapse
Affiliation(s)
- Adrian J Mogg
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | | | | | |
Collapse
|
189
|
Harrison PK, Falugi C, Angelini C, Whitaker MJ. Muscarinic signalling affects intracellular calcium concentration during the first cell cycle of sea urchin embryos. Cell Calcium 2002; 31:289-97. [PMID: 12098218 DOI: 10.1016/s0143-4160(02)00057-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The existence of a response to acetylcholine (ACh) and cholinomimetic drugs in sea urchin eggs and zygotes was investigated in two sea urchin species: Paracentrotus lividus and Lytechinus pictus. The calcium sensitive fluorescent probe, Fura-2 dextran, was employed to investigate the regulation of cytosolic free calcium concentration ([Ca(2+)](i)) by cholinomimetic drugs in unfertilised and fertilised eggs of both the sea urchin species. Exposure to cholinomimetic agonists/antagonists, either extracellularly or intracellularly, had no effect either on resting [Ca(2+)](i) levels in the unfertilised sea urchin egg, or on the transient [Ca(2+)](i) increase at fertilisation. However, following fertilisation, extracellular application of ACh receptors agonists, such as ACh and carbachol, predominantly muscarinic agonist, but not nicotine, induced a significant increase in [Ca(2+)](i), which was partially inhibited by atropine. As a consequence of exposure after fertilisation to the agonists of ACh receptors, chromatin structure was transiently affected. The hypothesis is proposed that muscarinic receptors may be involved in the (presumably Ca(2+)-dependent) modulation of the nuclear status during the first cell cycles.
Collapse
Affiliation(s)
- P K Harrison
- Department of Physiological Sciences, Medical School, University of Newcastle Upon Tyne, UK
| | | | | | | |
Collapse
|
190
|
Picciotto MR, Zoli M, Changeux JP. Use of knock-out mice to determine the molecular basis for the actions of nicotine. Nicotine Tob Res 2002; 1 Suppl 2:S121-5; discussion S139-40. [PMID: 11768168 DOI: 10.1080/14622299050011931] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recombinant DNA techniques have been used to identify the family of molecules that mediate nicotine's effects on the brain. Nicotine binds and activates nicotinic acetylcholine receptors (nAChRs) which are made up of combinations of individual nicotinic subunits. It is important to determine which of the many possible subunit combinations are responsible for the physiological and behavioral effects of nicotine that lead to addiction. Molecular genetic tools such as antisense strategies have been useful in elucidating the electrophysiological properties of nAChRs in different tissues. Use of knock-out mice lacking individual nAChR subunits has also begun to elucidate how nicotine exerts its actions from the molecular level to the behavioral level. Experiments using mice lacking the beta2 subunit of the nAChR have shown that binding of nicotine to receptors containing this subunit is the first step in a pathway leading to increased dopamine levels in the mesolimbic dopamine system, and ultimately to the behavioral effects of nicotine in a test of nicotine reinforcement. Mice deficient in various alpha subunits of the nAChR will identify the partners of beta2 mediating the addictive properties of nicotine. In addition, more data needs to be gathered on the electrophysiological properties of different subunit combinations, the effects of nicotine on different neurotransmitter systems and the links between the molecular biology of nicotine receptors, their physiology and the ultimate role of individual receptor subtypes in complex behaviors. Multidisciplinary approaches to nAChR function will be essential to answering these questions.
Collapse
Affiliation(s)
- M R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA.
| | | | | |
Collapse
|
191
|
Mongan NP, Jones AK, Smith GR, Sansom MSP, Sattelle DB. Novel alpha7-like nicotinic acetylcholine receptor subunits in the nematode Caenorhabditis elegans. Protein Sci 2002; 11:1162-71. [PMID: 11967372 PMCID: PMC2373549 DOI: 10.1110/ps.3040102] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
We have used reverse-transcription-polymerase chain reaction (RT-PCR) and DNA sequencing techniques to confirm the transcription of seven (six alpha and one non-alpha) novel candidate nicotinic acetylcholine receptor (nAChR) subunit-encoding genes identified in the genome sequence of the nematode Caenorhabditis elegans. Compared to vertebrate nAChR subunits, they most closely resemble the homomer-forming, neuronal alpha7 subunit. Comparison of the predicted amino acid sequences of the new nAChR subunits with those described previously in C. elegans reveals five subunits (four alpha and one non-alpha) which resemble the DEG-3-like group of subunits. To date, this highly divergent nAChR subunit group is unique to C. elegans. ACR-22 is the first non-alpha member of the DEG-3-like group of subunits to be identified. Two new members of the related ACR-16-like nAChR group of subunits have also been shown to be transcribed, making the ACR-16-like subunit group the largest in C. elegans. Residues in the alpha subunit second transmembrane region (M2) which contribute to the channel lining show variations with implications for channel function. For example, in ACR-22, the highly conserved 0' lysine of M2 is replaced by histidine. Restrained molecular dynamics simulations have been used to generate molecular models of homo-pentameric M2 helix bundles for the novel subunits, enabling identification and display of pore-lining and protein interface residues. The number and diversity of genes encoding C. elegans nAChR subunits with similarities to the homomer-forming vertebrate alpha7 subunits and the identification of related non-alpha subunits, only found in C. elegans to date, suggest that at least some of these subunits may contribute to heteromers in vivo.
Collapse
Affiliation(s)
- Nigel P Mongan
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | | | |
Collapse
|
192
|
Abstract
The alpha3 subunit gene was one of the first neuronal nicotinic acetylcholine receptor (nAChR) subunits to be cloned (Boulter et al., 1986), but direct evidence of alpha3 subunit contributions to mammalian central nAChR populations has not been presented. The studies reported here used mice engineered to contain a null mutation in the alpha3 nAChR subunit gene (Xu et al., 1999) to examine the involvement of the alpha3 subunit in central nAChR populations. Heterologously expressed alpha3beta2 and alpha3beta4 nAChRs are pharmacologically similar to native [125I]alpha-conotoxin MII (alpha-CtxMII)-binding and 3-(2(S)-azetidinylmethoxy)pyridine dihydrochloride (A85380)-resistant [125I]epibatidine-binding nAChR subtypes, respectively. The hypothesis that both native sites are alpha3-subtype nAChRs was tested using quantitative autoradiography in alpha3-null mutant mice. Somewhat surprisingly, deletion of the alpha3 nAChR subunit gene did not affect expression of the great majority of [125I]alpha-CtxMII-binding sites, indicating that they do not correspond to heterologously expressed alpha3beta2 nAChRs. The only exception to this was observed in the habenulointerpeduncular tract, where alpha3-dependent [125I]alpha-CtxMII binding was observed. This finding may suggest the presence of an additional, minor nicotinic population in this pathway. In contrast, most -resistant [125I]epibatidine-binding nAChRs were dependent on alpha3 gene expression, suggesting that they do indeed correspond to an alpha3 nAChR subtype. However, widespread but lower levels of alpha3-independent -resistant [125I]epibatidine binding were also seen. Again, this may indicate the existence of an additional, minor population of non-alpha3 -resistant sites.
Collapse
|
193
|
Le Novère N, Grutter T, Changeux JP. Models of the extracellular domain of the nicotinic receptors and of agonist- and Ca2+-binding sites. Proc Natl Acad Sci U S A 2002; 99:3210-5. [PMID: 11867716 PMCID: PMC122498 DOI: 10.1073/pnas.042699699] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We constructed a three-dimensional model of the amino-terminal extracellular domain of three major types of nicotinic acetylcholine receptor, (alpha7)5, (alpha4)2(beta2)3, and (alpha1)2beta1gammadelta, on the basis of the recent x-ray structure determination of the molluscan acetylcholine-binding protein. Comparative analysis of the three models reveals that the agonist-binding pocket is much more conserved than the overall structure. Differences exist, however, in the side chains of several residues. In particular, a phenylalanine residue, present in beta2 but not in alpha7, is proposed to contribute to the high affinity for agonists in receptors containing the beta2 subunit. The semiautomatic docking of agonists in the ligand-binding pocket of (alpha7)5 led to positions consistent with labeling and mutagenesis experiments. Accordingly, the quaternary ammonium head group of nicotine makes a pi-cation interaction with W148 (alpha7 numbering), whereas the pyridine ring is close to both the cysteine pair 189-190 and the complementary component of the binding site. The intrinsic affinities inferred from docking give a rank order epibatidine > nicotine > acetylcholine, in agreement with experimental values. Finally, our models offer a structural basis for potentiation by external Ca2+.
Collapse
Affiliation(s)
- Nicolas Le Novère
- Récepteurs et Cognition, Centre National de la Recherche Scientifique Unité de Recherche Associée 2182, Institut Pasteur, 75724 Paris, France.
| | | | | |
Collapse
|
194
|
Abstract
Impairment in cholinergic systems is a highly consistent finding in human dementia. Among cholinergic markers, marked decreases in nicotine binding have been most consistently observed in the telencephalic regions of demented patients and are thought to contribute to the cognitive deficits associated with ageing and age-related neurodegenerative diseases. New evidence that the cholinergic system has a specific pathogenic role in the neurodegenerative alterations of aged and, especially, demented patients is fast accumulating. Both in vivo and in culture, nicotine protects striatal, hippocampal and cortical neurons against the neurotoxicity induced by excitotoxic amino acids as well as the toxicity caused by beta-amyloid, the major component of senile plaques. Further support for the implication of nicotinic receptors in brain ageing is come from recent studies on transgenic animals lacking nicotinic receptor subtypes, which shed light on the mechanisms of nicotine neuroprotection and neurotoxicity.
Collapse
Affiliation(s)
- Alessio Zanardi
- Dipartimento di Scienze Biomediche, Sezione di Fisiologia, Università di Modena e Reggio Emilia, via Campi 287, 41100, Italy
| | | | | | | |
Collapse
|
195
|
Distribution and pharmacology of alpha 6-containing nicotinic acetylcholine receptors analyzed with mutant mice. J Neurosci 2002. [PMID: 11850448 DOI: 10.1523/jneurosci.22-04-01208.2002] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The alpha6 subunit of the nicotinic acetylcholine receptor (nAChR) is expressed at very high levels in dopaminergic (DA) neurons. However, because of the lack of pharmacological tools selective for alpha6-containing nAChRs, the role of this subunit in the etiology of nicotine addiction remains unknown. To provide new tools to investigate this issue, we generated an alpha6 nAChR knock-out mouse. Homozygous null mutants (alpha6-/-) did not exhibit any gross neurological or behavioral deficits. A careful anatomic and molecular examination of alpha6-/- mouse brains demonstrated the absence of developmental alterations in these animals, especially in the visual and dopaminergic pathways, where the alpha6 subunit is normally expressed at the highest levels. On the other hand, receptor autoradiography revealed a decrease in [3H]nicotine, [3H]epibatidine, and [3H]cytisine high-affinity binding in the terminal fields of retinal ganglion cells of alpha6-/- animals, whereas high-affinity [125I]alpha-conotoxinMII (alphaCtxMII) binding completely disappeared in the brain. Moreover, inhibition of [3H]epibatidine binding on striatal membranes, using unlabeled alphaCtxMII or cytisine, revealed the absence of alphaCtxMII-sensitive and cytisine-resistant [3H]epibatidine binding sites in alpha6-/- mice, although the total amount of binding was unchanged. Because alphaCtxMII, a toxin formerly thought to be specific for alpha3beta2-containing nAChRs, is known to partially inhibit nicotine-induced dopamine release, these results support the conclusion that alpha6 rather than alpha3 is the partner of beta2 in the nicotinic modulation of DA neurons. They further show that alpha6-/- mice might be useful tools to understand the mechanisms of nicotine addiction, although some developmental compensation might occur in these mice.
Collapse
|
196
|
Picciotto MR, Caldarone BJ, Brunzell DH, Zachariou V, Stevens TR, King SL. Neuronal nicotinic acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes and possible clinical implications. Pharmacol Ther 2001; 92:89-108. [PMID: 11916531 DOI: 10.1016/s0163-7258(01)00161-9] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) in the muscle, autonomic ganglia, and brain are targets for pharmacologically administered nicotine. Several of the subunits that combine to form neuronal nicotinic receptors have been deleted by knockout or mutated by knockin in mice using homologous recombination. We will review the biochemical, pharmacological, anatomical, physiological, and behavioral phenotypes of mice with genetically altered neuronal nAChR subunits. Clinically relevant mutations in nAChR genes will also be discussed. In addition, some of the signal transduction pathways activated through nAChRs will be described in order to delineate the longer-term changes that might result from persistent activation or inactivation of nAChRs. Genetically manipulated mice have greatly increased our understanding of the subunit composition and physiological properties of nAChRs in vivo. In addition, these mice have provided a model system to determine the molecular basis for many of the pharmacological actions of nicotine on neurotransmitter release and behavior. Genetic manipulations in mice have also elucidated the role of nAChR subunits in various disease states, and suggest several avenues for drug development.
Collapse
Affiliation(s)
- M R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA.
| | | | | | | | | | | |
Collapse
|
197
|
López-Valdés HE, García-Colunga J. Antagonism of nicotinic acetylcholine receptors by inhibitors of monoamine uptake. Mol Psychiatry 2001; 6:511-9. [PMID: 11526465 DOI: 10.1038/sj.mp.4000885] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2000] [Revised: 01/18/2001] [Accepted: 01/24/2001] [Indexed: 11/08/2022]
Abstract
A study was made of the effects of several monoamine-uptake inhibitors on membrane currents elicited by acetylcholine (ACh-currents) generated by rat neuronal alpha2beta4 and mouse muscle nicotinic acetylcholine receptors (AChRs) expressed in Xenopus laevis oocytes. For the two types of receptors the monoamine-uptake inhibitors reduced the ACh-currents albeit to different degrees. The order of inhibitory potency was norfluoxetine > clomipramine > indatraline > fluoxetine > imipramine > zimelidine > 6-nitro-quipazine > trazodone for neuronal alpha2beta4 AChRs, and norfluoxetine > fluoxetine > imipramine > clomipramine > indatraline > zimelidine > trazodone > 6-nitro-quipazine for muscle AChRs. Thus, the most potent inhibitor was norfluoxetine, whilst the weakest ones were trazodone, 6-nitro-quipazine and zimelidine. Effects of the tricyclic antidepressant imipramine were studied in more detail. Imipramine inhibited reversibly and non-competitively the ACh-current with a similar inhibiting potency for both neuronal alpha2beta4 and muscle AChRs. The half-inhibitory concentrations of imipramine were 3.65 +/- 0.30 microM for neuronal alpha2beta4 and 5.57 +/- 0.19 microM for muscle receptors. The corresponding Hill coefficients were 0.73 and 1.2 respectively. The inhibition of imipramine was slightly voltage-dependent, with electric distances of approximately 0.10 and approximately 0.12 for neuronal alpha2beta4 and muscle AChRs respectively. Moreover, imipramine accelerated the rate of decay of ACh- currents of both muscle and neuronal AChRs. The ACh-current inhibition was stronger when oocytes, expressing neuronal alpha2beta4 or muscle receptors, were preincubated with imipramine alone than when it was applied after the ACh-current had been generated, suggesting that imipramine acts also on non-activated or closed AChRs. We conclude that monoamine-uptake inhibitors reduce ACh-currents and that imipramine regulates reversibly and non- competitively neuronal alpha2beta4 and muscle AChRs through similar mechanisms, perhaps by interacting externally on a non-conducting state of the AChR and by blocking the open receptor-channel complex close to the vestibule of the channel. These studies may be important for understanding the regulation of AChRs as well as for understanding antidepressant- and side-effects of monoamine-uptake inhibitors.
Collapse
Affiliation(s)
- H E López-Valdés
- Centro de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Apartado Postal 1-1141, Juriquilla, Querétaro 76001, México
| | | |
Collapse
|
198
|
|
199
|
Breitinger HG, Geetha N, Hess GP. Inhibition of the serotonin 5-HT3 receptor by nicotine, cocaine, and fluoxetine investigated by rapid chemical kinetic techniques. Biochemistry 2001; 40:8419-29. [PMID: 11444989 DOI: 10.1021/bi0106890] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 5-HT(3) serotonin receptor plays an important role in regulating communication between cells in the central and peripheral nervous systems. It is the target of many different therapeutic agents and abused drugs. A rapid chemical kinetic method with a time resolution of 10 ms in combination with the whole-cell current-recording technique was employed to study the receptor in NIE-115 mouse neuroblastoma cells. The mechanism of the channel-opening process, receptor desensitization, and receptor inhibition by nicotine, cocaine, and fluoxetine were investigated. Two different forms of the 5-HT(3) serotonin receptor, each with a different desensitization rate, were observed. The inhibition of the receptor by nicotine has not previously been reported. Both nicotine and cocaine compete with serotonin for the receptor site that controls channel opening, with observed dissociation constants of 25 and 7 microM, respectively. Fluoxetine (Prozac), a widely used antidepressant, occupies a different regulatory site on the receptor with an apparent K(i) value of 244 microM.
Collapse
Affiliation(s)
- H G Breitinger
- Department of Molecular Biology and Genetics, 216 Biotechnology Building, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | |
Collapse
|
200
|
Carlson J, Noguchi K, Ellison G. Nicotine produces selective degeneration in the medial habenula and fasciculus retroflexus. Brain Res 2001; 906:127-34. [PMID: 11430869 DOI: 10.1016/s0006-8993(01)02570-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nicotine's neurotoxic properties in rats were investigated by administering (-)-nicotine tartrate for 5 days either continuously in doses of 5.01, 5.72, 6.44, 7.13, 20.41 and 43.1 mg/kg/day via osmotic minipump or intermittently at 11.32 mg/kg/day via one daily subcutaneous injection. As assessed by silver staining, neurotoxicity was seen almost exclusively in the axons of the medial habenula and its output tract, the fasciculus retroflexus, in all treatment groups except the lowest dose. Within the habenula, the damage was noted in the ventral-medial-most portion of the nucleus which is thought to be dense with the alpha 4 beta 2 and/or alpha 3 beta 4 receptor subtypes. Past research has shown the medial habenula to be highly sensitive to the effects of nicotine, and these findings, in conjunction with related research using dopaminergic stimulants, indicate that the habenula may be a weak link in the neurotoxicity seen following stimulant drugs of abuse.
Collapse
Affiliation(s)
- J Carlson
- Department of Psychology, University of California -- Los Angeles, 405 Hilgard Avenue -- Franz Hall, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|