151
|
Giarraputo J, DeLoach J, Padbury J, Uzun A, Marsit C, Hawes K, Lester B. Medical morbidities and DNA methylation of NR3C1 in preterm infants. Pediatr Res 2017; 81:68-74. [PMID: 27653086 PMCID: PMC5313510 DOI: 10.1038/pr.2016.185] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/08/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Although there are no accepted "normal" levels of circulating cortisol in preterm infants, critically ill preterm infants show lower cortisol levels than healthy preterm infants. The regulation of cortisol reactivity by epigenetic changes in glucocorticoid receptor gene (NR3C1) expression has been demonstrated. This study aims to examine the relationship between medical morbidities in preterm infants and DNA methylation of NR3C1. METHODS Pyrosequencing was used to determine DNA methylation in CpG sites 1-4 of promoter region 1F of NR3C1. Cluster analysis placed 67 preterm infants born <1,500 g into groups based on medical morbidities. The DNA methylation pattern was compared across groups. RESULTS Cluster analysis identified a high medical risk cluster and a low medical risk cluster. A Mann-Whitney U-test showed lower methylation at CpG1 for infants in the high-risk group (M = 0.336, SE = 0.084) than infants in the low-risk group (M = 0.617, SE = 0.109, P = 0.032). The false discovery rate was low (q = 0.025). Cohen's D effect size was moderate (0.525). CONCLUSION Decreased DNA methylation of CpG1 of NR3C1 in high-risk infants may allow for increased binding of transcription factors involved in the stress response, repair and regulation of NR3C1. This may ensure healthy growth in high-risk preterm infants over increasing cortisol levels.
Collapse
Affiliation(s)
- James Giarraputo
- Department of Neuroscience, Brown University, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Center for the Study of Children at Risk, Providence, Rhode Island
| | - Jordan DeLoach
- Warren Alpert Medical School of Brown University, Center for the Study of Children at Risk, Providence, Rhode Island
- Department of Sociology, Brown University, Providence, Rhode Island
| | - James Padbury
- Warren Alpert Medical School of Brown University, Departments of Pediatrics, Providence, Rhode Island
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, Rhode Island
| | - Alper Uzun
- Warren Alpert Medical School of Brown University, Departments of Pediatrics, Providence, Rhode Island
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, Rhode Island
| | - Carmen Marsit
- Department of Pharmacology and Toxicology and Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Katheleen Hawes
- Warren Alpert Medical School of Brown University, Center for the Study of Children at Risk, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Departments of Pediatrics, Providence, Rhode Island
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, Rhode Island
| | - Barry Lester
- Warren Alpert Medical School of Brown University, Center for the Study of Children at Risk, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Departments of Pediatrics, Providence, Rhode Island
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, Rhode Island
- Warren Alpert Medical School of Brown University, Departments of Psychiatry and Human Behavior, Providence, Rhode Island
| |
Collapse
|
152
|
Zhang LQ, Li QZ, Su WX, Jin W. Predicting gene expression level by the transcription factor binding signals in human embryonic stem cells. Biosystems 2016; 150:92-98. [DOI: 10.1016/j.biosystems.2016.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 11/28/2022]
|
153
|
Brucker DP, Maurer GD, Harter PN, Rieger J, Steinbach JP. FOXO3a orchestrates glioma cell responses to starvation conditions and promotes hypoxia-induced cell death. Int J Oncol 2016; 49:2399-2410. [DOI: 10.3892/ijo.2016.3760] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/21/2016] [Indexed: 11/06/2022] Open
|
154
|
Fang F, Zhao Q, Li X, Liang Z, Zhang L, Zhang Y. Dissolving capability difference based sequential extraction: A versatile tool for in-depth membrane proteome analysis. Anal Chim Acta 2016; 945:39-46. [DOI: 10.1016/j.aca.2016.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 01/05/2023]
|
155
|
Moustakim M, Clark PGK, Hay DA, Dixon DJ, Brennan PE. Chemical probes and inhibitors of bromodomains outside the BET family. MEDCHEMCOMM 2016; 7:2246-2264. [PMID: 29170712 PMCID: PMC5644722 DOI: 10.1039/c6md00373g] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/06/2016] [Indexed: 01/03/2023]
Abstract
Significant progress has been made in discovering inhibitors and chemical probes of bromodomains, epigenetic readers of lysine acetylation.
In the last five years, the development of inhibitors of bromodomains has emerged as an area of intensive worldwide research. Emerging evidence has implicated a number of non-BET bromodomains in the onset and progression of diseases such as cancer, HIV infection and inflammation. The development and use of small molecule chemical probes has been fundamental to pre-clinical evaluation of bromodomains as targets. Recent efforts are described highlighting the development of potent, selective and cell active non-BET bromodomain inhibitors and their therapeutic potential. Over half of typical bromodomains now have reported ligands, but those with atypical binding site residues remain resistant to chemical probe discovery efforts.
Collapse
Affiliation(s)
- Moses Moustakim
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.,Structural Genomics Consortium, University of Oxford, OX3 7DQ, UK. .,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK
| | - Peter G K Clark
- Department of Chemistry, Simon Fraser University, Burnaby V5A 1S6, Canada
| | - Duncan A Hay
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, UK
| | - Darren J Dixon
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Paul E Brennan
- Structural Genomics Consortium, University of Oxford, OX3 7DQ, UK. .,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK
| |
Collapse
|
156
|
Dutta R, Tiu B, Sakamoto KM. CBP/p300 acetyltransferase activity in hematologic malignancies. Mol Genet Metab 2016; 119:37-43. [PMID: 27380996 DOI: 10.1016/j.ymgme.2016.06.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 02/08/2023]
Abstract
CREB binding protein (CBP) and p300 are critical regulators of hematopoiesis through both their transcriptional coactivator and acetyltransferase activities. Loss or mutation of CBP/p300 results in hematologic deficiencies in proliferation and differentiation as well as disruption of hematopoietic stem cell renewal and the microenvironment. Aberrant lysine acetylation mediated by CBP/p300 has recently been implicated in the genesis of multiple hematologic cancers. Understanding the effects of disrupting the acetyltransferase activity of CBP/p300 could pave the way for new therapeutic approaches to treat patients with these diseases.
Collapse
Affiliation(s)
- Ritika Dutta
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Bruce Tiu
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
157
|
Shen H, Xu W, Guo R, Rong B, Gu L, Wang Z, He C, Zheng L, Hu X, Hu Z, Shao ZM, Yang P, Wu F, Shi YG, Shi Y, Lan F. Suppression of Enhancer Overactivation by a RACK7-Histone Demethylase Complex. Cell 2016; 165:331-42. [PMID: 27058665 DOI: 10.1016/j.cell.2016.02.064] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/14/2015] [Accepted: 02/22/2016] [Indexed: 12/29/2022]
Abstract
Regulation of enhancer activity is important for controlling gene expression programs. Here, we report that a biochemical complex containing a potential chromatin reader, RACK7, and the histone lysine 4 tri-methyl (H3K4me3)-specific demethylase KDM5C occupies many active enhancers, including almost all super-enhancers. Loss of RACK7 or KDM5C results in overactivation of enhancers, characterized by the deposition of H3K4me3 and H3K27Ac, together with increased transcription of eRNAs and nearby genes. Furthermore, loss of RACK7 or KDM5C leads to de-repression of S100A oncogenes and various cancer-related phenotypes. Our findings reveal a RACK7/KDM5C-regulated, dynamic interchange between histone H3K4me1 and H3K4me3 at active enhancers, representing an additional layer of regulation of enhancer activity. We propose that RACK7/KDM5C functions as an enhancer "brake" to ensure appropriate enhancer activity, which, when compromised, could contribute to tumorigenesis.
Collapse
Affiliation(s)
- Hongjie Shen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wenqi Xu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Rui Guo
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bowen Rong
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Gu
- Newborn Medicine Division, Boston Children's Hospital and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhentian Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Chenxi He
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lijuan Zheng
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Zhen Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Pengyuan Yang
- Department of System Biology, Institutes of Biomedical Sciences, Fudan University, 138 Yixue Yuan Road, Shanghai 200032, China
| | - Feizhen Wu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yujiang Geno Shi
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China; Division of Endocrinology, Brigham and Women Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yang Shi
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China; Newborn Medicine Division, Boston Children's Hospital and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Fei Lan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China; Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China.
| |
Collapse
|
158
|
Kao YC, Sung YS, Zhang L, Chen CL, Huang SC, Antonescu CR. Expanding the molecular signature of ossifying fibromyxoid tumors with two novel gene fusions: CREBBP-BCORL1 and KDM2A-WWTR1. Genes Chromosomes Cancer 2016; 56:42-50. [PMID: 27537276 DOI: 10.1002/gcc.22400] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/28/2022] Open
Abstract
Ossifying fibromyxoid tumor (OFMT) is an uncommon mesenchymal neoplasm of uncertain differentiation and intermediate malignant potential. Recurrent gene fusions involving either PHF1 or BCOR have been found in 85% of OFMT, including typical and malignant examples. As a subset of OFMT still lack known genetic abnormalities, we identified two OFMTs negative for PHF1 and BCOR rearrangements, which were subjected to transcriptome analysis for fusion discovery. The RNA sequencing found a novel CREBBP-BCORL1 fusion candidate in an axillary mass of a 51 year-old male and a KDM2A-WWTR1 in a thigh mass of a 36 year-old male. The gene fusions were validated by RT-PCR and FISH in the index cases and then screened by FISH on 4 additional OFMTs lacking known fusions. An identical CREBBP-BCORL1 fusion was found in an elbow tumor from a 30 year-old male. Both OFMTs with CREBBP-BCORL1 fusions had areas of typical OFMT morphology, exhibiting uniform round to epithelioid cells arranged in cords or nesting pattern in a fibromyxoid stroma. The OFMT with KDM2A-WWTR1 fusion involved dermis and superficial subcutis, being composed of ovoid cells in a fibromyxoid background with hyalinized giant rosettes. The S100 immunoreactivity ranged from very focal to absent. Similar to other known fusion genes in OFMT, BCORL1, CREBBP and KDM2A are also involved in histone modification. In summary, we expand the spectrum of molecular abnormalities in OFMT with 2 novel fusions, CREBBP-BCORL1 and KDM2A-WWTR1, further implicating the epigenetic deregulation as the leading pathogenetic mechanism in OFMT. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu-Chien Kao
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yun-Shao Sung
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chun-Liang Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Shih-Chiang Huang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Anatomical Pathology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | |
Collapse
|
159
|
Hakami NY, Dusting GJ, Peshavariya HM. Trichostatin A, a histone deacetylase inhibitor suppresses NADPH Oxidase 4-Derived Redox Signalling and Angiogenesis. J Cell Mol Med 2016; 20:1932-44. [PMID: 27297729 PMCID: PMC5020625 DOI: 10.1111/jcmm.12885] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors are known to suppress abnormal development of blood vessels. Angiogenic activity in endothelial cells depends upon NADPH oxidase 4 (Nox4)-dependent redox signalling. We set out to study whether the HDAC inhibitor trichostatin A (TSA) affects Nox4 expression and angiogenesis. Nox4 expression was measured by real time PCR and Western blot analysis in endothelial cells. Hydrogen peroxide (H2 O2 ) was measured by amplex(®) red assay in endothelial cells. Nox4 was knocked down by Nox4 shRNA. In vitro angiogenic activities such migration and tubulogenesis were assessed using wound healing and Matrigel assays, respectively. In vivo angiogenic activity was assessed using subcutaneous sponge assay in C57Bl/6 and Nox4-deficient mice. Trichostatin A reduced Nox4 expression in a time- and concentration-dependent manner. Both TSA and Nox4 silencing decreased Nox4 protein and H2 O2 . Mechanistically, TSA reduced expression of Nox4 via ubiquitination of p300- histone acetyltransferase (p300-HAT). Thus, blocking of the ubiquitination pathway using an inhibitor of ubiquitin-activating enzyme E1 (PYR-41) prevented TSA inhibition of Nox4 expression. Trichostatin A also reduced migration and tube formation, and these effects were not observed in Nox4-deficient endothelial cells. Finally, transforming growth factor beta1 (TGFβ1) enhanced angiogenesis in sponge model in C57BL/6 mice. This response to TGFβ1 was substantially reduced in Nox4-deficient mice. Similarly intraperitoneal infusion of TSA (1 mg/kg) also suppressed TGFβ1-induced angiogenesis in C57BL/6 mice. Trichostatin A reduces Nox4 expression and angiogenesis via inhibition of the p300-HAT-dependent pathway. This mechanism might be exploited to prevent aberrant angiogenesis in diabetic retinopathy, complicated vascular tumours and malformations.
Collapse
Affiliation(s)
- Nora Y Hakami
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, University of Melbourne, Department of Surgery, East Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, University of Melbourne, Department of Surgery, East Melbourne, VIC, Australia
| | - Hitesh M Peshavariya
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia. .,Ophthalmology, University of Melbourne, Department of Surgery, East Melbourne, VIC, Australia.
| |
Collapse
|
160
|
Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 2016; 13:127-37. [PMID: 26820547 DOI: 10.1038/nmeth.3733] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/16/2015] [Indexed: 02/08/2023]
Abstract
Gene regulation is a complex and tightly controlled process that defines cell identity, health and disease, and response to pharmacologic and environmental signals. Recently developed DNA-targeting platforms, including zinc finger proteins, transcription activator-like effectors (TALEs) and the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 system, have enabled the recruitment of transcriptional modulators and epigenome-modifying factors to any genomic site, leading to new insights into the function of epigenetic marks in gene expression. Additionally, custom transcriptional and epigenetic regulation is facilitating refined control over cell function and decision making. The unique properties of the CRISPR-Cas9 system have created new opportunities for high-throughput genetic screens and multiplexing targets to manipulate complex gene expression patterns. This Review summarizes recent technological developments in this area and their application to biomedical challenges. We also discuss remaining limitations and necessary future directions for this field.
Collapse
|
161
|
Cifola I, Lionetti M, Pinatel E, Todoerti K, Mangano E, Pietrelli A, Fabris S, Mosca L, Simeon V, Petrucci MT, Morabito F, Offidani M, Di Raimondo F, Falcone A, Caravita T, Battaglia C, De Bellis G, Palumbo A, Musto P, Neri A. Whole-exome sequencing of primary plasma cell leukemia discloses heterogeneous mutational patterns. Oncotarget 2016; 6:17543-58. [PMID: 26046463 PMCID: PMC4627327 DOI: 10.18632/oncotarget.4028] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 02/04/2023] Open
Abstract
Primary plasma cell leukemia (pPCL) is a rare and aggressive form of plasma cell dyscrasia and may represent a valid model for high-risk multiple myeloma (MM). To provide novel information concerning the mutational profile of this disease, we performed the whole-exome sequencing of a prospective series of 12 pPCL cases included in a Phase II multicenter clinical trial and previously characterized at clinical and molecular levels. We identified 1, 928 coding somatic non-silent variants on 1, 643 genes, with a mean of 166 variants per sample, and only few variants and genes recurrent in two or more samples. An excess of C > T transitions and the presence of two main mutational signatures (related to APOBEC over-activity and aging) occurring in different translocation groups were observed. We identified 14 candidate cancer driver genes, mainly involved in cell-matrix adhesion, cell cycle, genome stability, RNA metabolism and protein folding. Furthermore, integration of mutation data with copy number alteration profiles evidenced biallelically disrupted genes with potential tumor suppressor functions. Globally, cadherin/Wnt signaling, extracellular matrix and cell cycle checkpoint resulted the most affected functional pathways. Sequencing results were finally combined with gene expression data to better elucidate the biological relevance of mutated genes. This study represents the first whole-exome sequencing screen of pPCL and evidenced a remarkable genetic heterogeneity of mutational patterns. This may provide a contribution to the comprehension of the pathogenetic mechanisms associated with this aggressive form of PC dyscrasia and potentially with high-risk MM.
Collapse
Affiliation(s)
- Ingrid Cifola
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Marta Lionetti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Hematology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eva Pinatel
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (PZ), Italy
| | - Eleonora Mangano
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | | | - Sonia Fabris
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Hematology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Mosca
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Hematology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vittorio Simeon
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (PZ), Italy
| | - Maria Teresa Petrucci
- Hematology, Department of Cellular Biotechnologies and Hematology, La Sapienza University, Rome, Italy
| | | | - Massimo Offidani
- Hematologic Clinic, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Ancona, Italy
| | - Francesco Di Raimondo
- Department of Biomedical Sciences, Division of Hematology, Ospedale Ferrarotto, University of Catania, Catania, Italy
| | - Antonietta Falcone
- Hematology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Tommaso Caravita
- Department of Hematology, Ospedale S. Eugenio, Tor Vergata University, Rome, Italy
| | - Cristina Battaglia
- Institute for Biomedical Technologies, National Research Council, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Gianluca De Bellis
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Antonio Palumbo
- Division of Hematology, University of Torino, A.O.U. San Giovanni Battista, Torino, Italy
| | - Pellegrino Musto
- Scientific Direction, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (PZ), Italy
| | - Antonino Neri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Hematology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
162
|
Pieraccioli M, Nicolai S, Antonov A, Somers J, Malewicz M, Melino G, Raschellà G. ZNF281 contributes to the DNA damage response by controlling the expression of XRCC2 and XRCC4. Oncogene 2016; 35:2592-601. [PMID: 26300006 DOI: 10.1038/onc.2015.320] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022]
Abstract
ZNF281 is a zinc-finger factor involved in the control of cellular stemness and epithelial-mesenchymal transition (EMT). Here, we report that ZNF281 expression increased after genotoxic stress caused by DNA-damaging drugs. Comet assays demonstrated that DNA repair was delayed in cells silenced for the expression of ZNF281 and treated with etoposide. Furthermore, the expression of 10 DNA damage response genes was downregulated in cells treated with etoposide and silenced for ZNF281. In line with this finding, XRCC2 and XRCC4, two genes that take part in homologous recombination and non-homologous end joining, respectively, were transcriptionally activated by ZNF281 through a DNA-binding-dependent mechanism, as demonstrated by luciferase assays and Chromatin crosslinking ImmunoPrecipitation experiments. c-Myc, which also binds to the promoters of XRCC2 and XRCC4, was unable to promote their transcription or to modify ZNF281 activity. Of interest, bioinformatic analysis of 1971 breast cancer patients disclosed a significant correlation between the expression of ZNF281 and that of XRCC2. In summary, our data highlight, for the first time, the involvement of ZNF281 in the cellular response to genotoxic stress through the control exercised on the expression of genes that act in different repair mechanisms.
Collapse
Affiliation(s)
- M Pieraccioli
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - S Nicolai
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - A Antonov
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
| | - J Somers
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
| | - M Malewicz
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
| | - G Melino
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
| | - G Raschellà
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
- Radiation Biology and Human Health Unit, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Research Center Casaccia, Rome, Italy
| |
Collapse
|
163
|
Dotto GP, Rustgi AK. Squamous Cell Cancers: A Unified Perspective on Biology and Genetics. Cancer Cell 2016; 29:622-637. [PMID: 27165741 PMCID: PMC4870309 DOI: 10.1016/j.ccell.2016.04.004] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/20/2016] [Accepted: 04/07/2016] [Indexed: 01/11/2023]
Abstract
Squamous cell carcinomas (SCCs) represent the most frequent human solid tumors and are a major cause of cancer mortality. These highly heterogeneous tumors arise from closely interconnected epithelial cell populations with intrinsic self-renewal potential inversely related to the stratified differentiation program. SCCs can also originate from simple or pseudo-stratified epithelia through activation of quiescent cells and/or a switch in cell-fate determination. Here, we focus on specific determinants implicated in the development of SCCs by recent large-scale genomic, genetic, and epigenetic studies, and complementary functional analysis. The evidence indicates that SCCs from various body sites, while clinically treated as separate entities, have common determinants, pointing to a unified perspective of the disease and potential new avenues for prevention and treatment.
Collapse
Affiliation(s)
- G Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
164
|
Tong Q, Weaver MR, Kosmacek EA, O'Connor BP, Harmacek L, Venkataraman S, Oberley-Deegan RE. MnTE-2-PyP reduces prostate cancer growth and metastasis by suppressing p300 activity and p300/HIF-1/CREB binding to the promoter region of the PAI-1 gene. Free Radic Biol Med 2016; 94:185-94. [PMID: 26944191 PMCID: PMC5486868 DOI: 10.1016/j.freeradbiomed.2016.02.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
Abstract
To improve radiation therapy-induced quality of life impairments for prostate cancer patients, the development of radio-protectors is needed. Our previous work has demonstrated that MnTE-2-PyP significantly protects urogenital tissues from radiation-induced damage. So, in order for MnTE-2-PyP to be used clinically as a radio-protector, it is fully necessary to explore the effect of MnTE-2-PyP on human prostate cancer progression. MnTE-2-PyP inhibited prostate cancer growth in the presence and absence of radiation and also inhibited prostate cancer migration and invasion. MnTE-2-PyP altered p300 DNA binding, which resulted in the inhibition of HIF-1β and CREB signaling pathways. Accordingly, we also found that MnTE-2-PyP reduced the expression of three genes regulated by HIF-1β and/or CREB: TGF-β2, FGF-1 and PAI-1. Specifically, MnTE-2-PyP decreased p300 complex binding to a specific HRE motif within the PAI-1 gene promoter region, suppressed H3K9 acetylation, and consequently, repressed PAI-1 expression. Mechanistically, less p300 transcriptional complex binding is not due to the reduction of binding between p300 and HIF-1/CREB transcription factors, but through inhibiting the binding of HIF-1/CREB transcription factors to DNA. Our data provide an in depth mechanism by which MnTE-2-PyP reduces prostate cancer growth and metastasis, which validates the clinical use of MnTE-2-PyP as a radio-protector to enhance treatment outcomes in prostate cancer radiotherapy.
Collapse
Affiliation(s)
- Qiang Tong
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Michael R Weaver
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Brian P O'Connor
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Laura Harmacek
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
165
|
Zhang Y, Liu J, Wang S, Luo X, Li Y, Lv Z, Zhu J, Lin J, Ding L, Ye Q. The DEK oncogene activates VEGF expression and promotes tumor angiogenesis and growth in HIF-1α-dependent and -independent manners. Oncotarget 2016; 7:23740-56. [PMID: 26988756 PMCID: PMC5029660 DOI: 10.18632/oncotarget.8060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/29/2016] [Indexed: 11/25/2022] Open
Abstract
The DEK oncogene is overexpressed in various cancers and overexpression of DEK correlates with poor clinical outcome. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis, a process essential for tumor growth and metastasis. However, whether DEK enhances tumor angiogenesis remains unclear. Here, we show that DEK is a key regulator of VEGF expression and tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that DEK promoted VEGF transcription in breast cancer cells (MCF7, ZR75-1 and MDA-MB-231) by directly binding to putative DEK-responsive element (DRE) of the VEGF promoter and indirectly binding to hypoxia response element (HRE) upstream of the DRE through its interaction with the transcription factor hypoxia-inducible factor 1α (HIF-1α), a master regulator of tumor angiogenesis and growth. DEK is responsible for recruitment of HIF-1α and the histone acetyltransferase p300 to the VEGF promoter. DEK-enhanced VEGF increases vascular endothelial cell proliferation, migration and tube formation as well as angiogenesis in the chick chorioallantoic membrane. DEK promotes tumor angiogenesis and growth in nude mice in HIF-1α-dependent and -independent manners. Immunohistochemical staining showed that DEK expression positively correlates with the expression of VEGF and microvessel number in 58 breast cancer patients. Our data establish DEK as a sequence-specific binding transcription factor, a novel coactivator for HIF-1α in regulation of VEGF transcription and a novel promoter of angiogenesis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor
- Breast Neoplasms/blood supply
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation
- Chick Embryo
- Chorioallantoic Membrane/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice
- Mice, Nude
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Poly-ADP-Ribose Binding Proteins/genetics
- Poly-ADP-Ribose Binding Proteins/metabolism
- Response Elements
- Signal Transduction
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| | - Jie Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Shibin Wang
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaoli Luo
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Yang Li
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhaohui Lv
- Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, People's Republic of China
| | - Jie Zhu
- Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, People's Republic of China
| | - Jing Lin
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| |
Collapse
|
166
|
Nakaoka H, Gurumurthy A, Hayano T, Ahmadloo S, Omer WH, Yoshihara K, Yamamoto A, Kurose K, Enomoto T, Akira S, Hosomichi K, Inoue I. Allelic Imbalance in Regulation of ANRIL through Chromatin Interaction at 9p21 Endometriosis Risk Locus. PLoS Genet 2016; 12:e1005893. [PMID: 27055116 PMCID: PMC4824487 DOI: 10.1371/journal.pgen.1005893] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/02/2016] [Indexed: 12/19/2022] Open
Abstract
Genome-wide association studies (GWASs) have discovered numerous single nucleotide polymorphisms (SNPs) associated with human complex disorders. However, functional characterization of the disease-associated SNPs remains a formidable challenge. Here we explored regulatory mechanism of a SNP on chromosome 9p21 associated with endometriosis by leveraging “allele-specific” functional genomic approaches. By re-sequencing 1.29 Mb of 9p21 region and scrutinizing DNase-seq data from the ENCODE project, we prioritized rs17761446 as a candidate functional variant that was in perfect linkage disequilibrium with the original GWAS SNP (rs10965235) and located on DNase I hypersensitive site. Chromosome conformation capture followed by high-throughput sequencing revealed that the protective G allele of rs17761446 exerted stronger chromatin interaction with ANRIL promoter. We demonstrated that the protective allele exhibited preferential binding affinities to TCF7L2 and EP300 by bioinformatics and chromatin immunoprecipitation (ChIP) analyses. ChIP assays for histone H3 lysine 27 acetylation and RNA polymerase II reinforced the enhancer activity of the SNP site. The allele specific expression analysis for eutopic endometrial tissues and endometrial carcinoma cell lines showed that rs17761446 was a cis-regulatory variant where G allele was associated with increased ANRIL expression. Our work illuminates the allelic imbalances in a series of transcriptional regulation from factor binding to gene expression mediated by chromatin interaction underlie the molecular mechanism of 9p21 endometriosis risk locus. Functional genomics on common disease will unlock functional aspect of genotype-phenotype correlations in the post-GWAS stage. A large number of variants associated with human complex diseases have been discovered by genome-wide association studies (GWASs). These discoveries have been anticipated to be translated into the definitive understanding of disease pathogeneses; however, functional characterization of the disease-associated SNPs remains a formidable challenge. Here we explored regulatory mechanism of a variant on chromosome 9p21 associated with endometriosis, a common gynecological disorder. By scrutinizing linkage disequilibrium structure and DNase I hypersensitive sites across the risk locus, we prioritized rs17761446 as a candidate causal variant. The results of our “allele-specific” functional genomic approaches sheds light on regulatory mechanisms underlying 9p21 endometriosis risk locus, in which preferential bindings of TCF7L2 and its coactivator EP300 to the protective G allele of rs17761446 lead to stronger chromatin interaction with the promoter of ANRIL, which in turn activate transcription of the non-coding RNA. Motivated by the fact that TCF7L2 was a key transcription factor of Wnt signaling pathway, we postulated that the induction of Wnt signaling activated expression levels of ANRIL and cell cycle inhibitors, CDKN2A/2B. Functional genomics on common disease will unlock functional aspect of genotype-phenotype correlations in the post-GWAS stage.
Collapse
Affiliation(s)
- Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Aishwarya Gurumurthy
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takahide Hayano
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Somayeh Ahmadloo
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Waleed H Omer
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Akihito Yamamoto
- Department of Obstetrics and Gynecology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Keisuke Kurose
- Department of Obstetrics and Gynecology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Shigeo Akira
- Department of Obstetrics and Gynecology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Kazuyoshi Hosomichi
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Ituro Inoue
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
167
|
Unzue A, Zhao H, Lolli G, Dong J, Zhu J, Zechner M, Dolbois A, Caflisch A, Nevado C. The “Gatekeeper” Residue Influences the Mode of Binding of Acetyl Indoles to Bromodomains. J Med Chem 2016; 59:3087-97. [DOI: 10.1021/acs.jmedchem.5b01757] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Andrea Unzue
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Hongtao Zhao
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Graziano Lolli
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Jing Dong
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Jian Zhu
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Melanie Zechner
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Aymeric Dolbois
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Cristina Nevado
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
168
|
Odoux A, Jindal D, Tamas TC, Lim BWH, Pollard D, Xu W. Experimental and molecular dynamics studies showed that CBP KIX mutation affects the stability of CBP:c-Myb complex. Comput Biol Chem 2016; 62:47-59. [PMID: 27082784 DOI: 10.1016/j.compbiolchem.2016.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/06/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
Abstract
The coactivators CBP (CREBBP) and its paralog p300 (EP300), two conserved multi-domain proteins in eukaryotic organisms, regulate gene expression in part by binding DNA-binding transcription factors. It was previously reported that the CBP/p300 KIX domain mutant (Y650A, A654Q, and Y658A) altered both c-Myb-dependent gene activation and repression, and that mice with these three point mutations had reduced numbers of platelets, B cells, T cells, and red blood cells. Here, our transient transfection assays demonstrated that mouse embryonic fibroblast cells containing the same mutations in the KIX domain and without a wild-type allele of either CBP or p300, showed decreased c-Myb-mediated transcription. Dr. Wright's group solved a 3-D structure of the mouse CBP:c-Myb complex using NMR. To take advantage of the experimental structure and function data and improved theoretical calculation methods, we performed MD simulations of CBP KIX, CBP KIX with the mutations, and c-Myb, as well as binding energy analysis for both the wild-type and mutant complexes. The binding between CBP and c-Myb is mainly mediated by a shallow hydrophobic groove in the center where the side-chain of Leu302 of c-Myb plays an essential role and two salt bridges at the two ends. We found that the KIX mutations slightly decreased stability of the CBP:c-Myb complex as demonstrated by higher binding energy calculated using either MM/PBSA or MM/GBSA methods. More specifically, the KIX mutations affected the two salt bridges between CBP and c-Myb (CBP-R646 and c-Myb-E306; CBP-E665 and c-Myb-R294). Our studies also revealed differing dynamics of the hydrogen bonds between CBP-R646 and c-Myb-E306 and between CBP-E665 and c-Myb-R294 caused by the CBP KIX mutations. In the wild-type CBP:c-Myb complex, both of the hydrogen bonds stayed relatively stable. In contrast, in the mutant CBP:c-Myb complex, hydrogen bonds between R646 and E306 showed an increasing trend followed by a decreasing trend, and hydrogen bonds of the E665:R294 pair exhibited a fast decreasing trend over time during MD simulations. In addition, our data showed that the KIX mutations attenuate CBP's hydrophobic interaction with Leu302 of c-Myb. Furthermore, our 500-ns MD simulations showed that CBP KIX with the mutations has a slightly lower potential energy than wild-type CBP. The CBP KIX structures with or without its interacting protein c-Myb are different for both wild-type and mutant CBP KIX, and this is likewise the case for c-Myb with or without CBP, suggesting that the presence of an interacting protein influences the structure of a protein. Taken together, these analyses will improve our understanding of the exact functions of CBP and its interaction with c-Myb.
Collapse
Affiliation(s)
- Anne Odoux
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Darren Jindal
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Tamara C Tamas
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Benjamin W H Lim
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Drake Pollard
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA.
| |
Collapse
|
169
|
Walsh L, Gallagher WM, O’Connor DP, Ní Chonghaile T. Diagnostic and Therapeutic Implications of Histone Epigenetic Modulators in Breast Cancer. Expert Rev Mol Diagn 2016; 16:541-51. [DOI: 10.1586/14737159.2016.1156534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Louise Walsh
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - William M. Gallagher
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
- OncoMark Limited, NovaUCD, Belfield Innovation Park, Belfield, Dublin 4, Ireland
| | - Darran P. O’Connor
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Tríona Ní Chonghaile
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
170
|
Tang Z, Yu W, Zhang C, Zhao S, Yu Z, Xiao X, Tang R, Xuan Y, Yang W, Hao J, Xu T, Zhang Q, Huang W, Deng W, Guo W. CREB-binding protein regulates lung cancer growth by targeting MAPK and CPSF4 signaling pathway. Mol Oncol 2016; 10:317-29. [PMID: 26628108 PMCID: PMC5528962 DOI: 10.1016/j.molonc.2015.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022] Open
Abstract
CBP (CREB-binding protein) is a transcriptional co-activator which possesses HAT (histone acetyltransferases) activity and participates in many biological processes, including embryonic development, growth control and homeostasis. However, its roles and the underlying mechanisms in the regulation of carcinogenesis and tumor development remain largely unknown. Here we investigated the molecular mechanisms and potential targets of CBP involved in tumor growth and survival in lung cancer cells. Elevated expression of CBP was detected in lung cancer cells and tumor tissues compared to the normal lung cells and tissues. Knockdown of CBP by siRNA or inhibition of its HAT activity using specific chemical inhibitor effectively suppressed cell proliferation, migration and colony formation and induced apoptosis in lung cancer cells by inhibiting MAPK and activating cytochrome C/caspase-dependent signaling pathways. Co-immunoprecipitation and immunofluorescence analyses revealed the co-localization and interaction between CBP and CPSF4 (cleavage and polyadenylation specific factor 4) proteins in lung cancer cells. Knockdown of CPSF4 inhibited hTERT transcription and cell growth induced by CBP, and vice versa, demonstrating the synergetic effect of CBP and CPSF4 in the regulation of lung cancer cell growth and survival. Moreover, we found that high expression of both CBP and CPSF4 predicted a poor prognosis in the patients with lung adenocarcinomas. Collectively, our results indicate that CBP regulates lung cancer growth by targeting MAPK and CPSF4 signaling pathways.
Collapse
Affiliation(s)
- Zhipeng Tang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Changlin Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Shilei Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhenlong Yu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiangsheng Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ranran Tang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yang Xuan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenjing Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jiaojiao Hao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Tingting Xu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qianyi Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China.
| | - Wei Guo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
171
|
Seo M, Song M, Seok YM, Kang SH, Lee HA, Sohn UD, Kim IK. Lysine acetyltransferases cyclic adenosine monophosphate response element-binding binding protein and acetyltransferase p300 attenuate transcriptional activity of the mineralocorticoid receptor through its acetylation. Clin Exp Pharmacol Physiol 2016; 42:559-66. [PMID: 25707758 DOI: 10.1111/1440-1681.12377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/12/2022]
Abstract
Acetylation of the mineralocorticoid receptor (MR) by inhibition of lysine deacetylases attenuates MR's transcriptional activity. However, the specific lysine acetyltransferases that are responsible for acetylation of the MR remain unknown. We hypothesized that the acetyltransferases cyclic adenosine monophosphate response element-binding binding protein (CBP) and acetyltransferase p300 (p300) attenuate transcriptional activity of the MR through its acetylation. Expression of MR target genes was measured by quantitative real-time polymerase chain reaction. Recruitment of MR and RNA polymerase II (Pol II) on promoters of target genes was analysed by chromatin immunoprecipitation. Acetylation of the MR was determined by western blot with an anti-acetyl-lysine antibody after immunoprecipitation with an anti-MR antibody. In human embryonic kidney (HEK) 293 cells, overexpression of CBP or p300, but not p300/CBP-associated factor, increased MR acetylation and decreased expression of MR target genes. The downregulation of target genes coincided with a decrease in the recruitment of MR and Pol II to specific hormone response elements. These results demonstrate that overexpression of CBP or p300 attenuates the transcriptional activity of the MR through its acetylation in HEK 293 cells. Our data provide strong evidence identifying CBP and p300 as lysine acetyltransferases responsible for the regulation of MR that may provide new therapeutic targets for the treatment of hypertension.
Collapse
Affiliation(s)
- Minchul Seo
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Korea; Laboratory of Clinical Medicine, Dongguk University College of Medicine, Gyeongju, Korea
| | | | | | | | | | | | | |
Collapse
|
172
|
Wu TC, Lin YC, Chen HL, Huang PR, Liu SY, Yeh SL. The enhancing effect of genistein on apoptosis induced by trichostatin A in lung cancer cells with wild type p53 genes is associated with upregulation of histone acetyltransferase. Toxicol Appl Pharmacol 2016; 292:94-102. [PMID: 26768552 DOI: 10.1016/j.taap.2015.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/10/2015] [Accepted: 12/31/2015] [Indexed: 11/24/2022]
Abstract
Genistein has been shown to enhance the antitumor activity of trichostatin A (TSA) in human lung carcinoma A549 cells. However, whether the combined treatment exerts the same effect in other lung cancer cells is unclear. In the present study we first compared the enhancing effect of genistein on the antitumor effect of TSA in ABC-1, NCI-H460 (H460) and A549 cells. Second, we investigated whether the effects of genistein are associated with increased histone/non-histone protein acetylation. We found that the enhancing effect of genistein on cell-growth-arrest in ABC-1 cells (p53 mutant) was less than in A549 and H460 cells. Genistein enhanced TSA induced apoptosis in A549 and H460 cells rather than in ABC-1 cells. After silencing p53 expression in A549 and H460 cells, the enhancing effect of genistein was diminished. In addition, genistein increased TSA-induced histone H3/H4 acetylation in A549 and H460 cells. Genistein also increased p53 acetylation in H460 cells. The inhibitor of acetyltransferase, anacardic acid, diminished the enhancing effect of genistein on all TSA-induced histone/p53 acetylation and apoptosis. Genistein in combination with TSA increased the expression of p300 protein, an acetyltransferase, in A549 and NCI-H460 cells. Furthermore, we demonstrated that genistein also enhanced the antitumor effect of genistein in A549-tumor-bearing mice. Taken together, these results suggest that the enhancing effects of genistein on TSA-induced apoptosis in lung cancer cells were p53-dependent and were associated with histone/non-histone protein acetylation.
Collapse
Affiliation(s)
- Tzu-Chin Wu
- Chest Clinic, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Chin Lin
- Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiao-Ling Chen
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Pei-Ru Huang
- Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan
| | - Shang-Yu Liu
- Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan
| | - Shu-Lan Yeh
- Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
173
|
Zhong T, Ren F, Huang CS, Zou WY, Yang Y, Pan YD, Sun B, Wang E, Guo QL. Swimming exercise ameliorates neurocognitive impairment induced by neonatal exposure to isoflurane and enhances hippocampal histone acetylation in mice. Neuroscience 2015; 316:378-88. [PMID: 26748054 DOI: 10.1016/j.neuroscience.2015.12.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/25/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022]
Abstract
Isoflurane-induced neurocognitive impairment in the developing rodent brain is well documented, and regular physical exercise has been demonstrated to be a viable intervention for some types of neurocognitive impairment. This study was designed to investigate the potential protective effect of swimming exercise on both neurocognitive impairment caused by repeated neonatal exposure to isoflurane and the underlying molecular mechanism. Mice received 0.75% isoflurane exposures for 4h on postnatal days 7, 8, and 9. From the third month after anesthesia, the mice were subjected to regular swimming exercise for 4weeks, followed by a contextual fear condition (CFC) trial. We found that repeated neonatal exposure to isoflurane reduced freezing behavior during CFC testing and deregulated hippocampal histone H4K12 acetylation. Conversely, mice subjected to regular swimming exercise showed enhanced hippocampal H3K9, H4K5, and H4K12 acetylation levels, increased numbers of c-Fos-positive cells 1h after CFC training, and less isoflurane-induced memory impairment. We also observed increases in histone acetylation and of cAMP-response element-binding protein (CREB)-binding protein (CBP) during the swimming exercise program. The results suggest that neonatal isoflurane exposure-induced memory impairment was associated with dysregulation of H4K12 acetylation, which may lead to less hippocampal activation following learning tasks. Swimming exercise was associated with enhanced hippocampal histone acetylation and CBP expression. Exercise most likely ameliorated isoflurane-induced memory impairment by enhancing hippocampal histone acetylation and activating more neuron cells during memory formation.
Collapse
Affiliation(s)
- T Zhong
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, PR China
| | - F Ren
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, PR China
| | - C S Huang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, PR China
| | - W Y Zou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, PR China
| | - Y Yang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, PR China
| | - Y D Pan
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, PR China
| | - B Sun
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, PR China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, PR China
| | - Q L Guo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, PR China.
| |
Collapse
|
174
|
C646, a Novel p300/CREB-Binding Protein-Specific Inhibitor of Histone Acetyltransferase, Attenuates Influenza A Virus Infection. Antimicrob Agents Chemother 2015; 60:1902-6. [PMID: 26711748 DOI: 10.1128/aac.02055-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/16/2015] [Indexed: 01/01/2023] Open
Abstract
New strategies to develop novel broad-spectrum antiviral drugs against influenza virus infections are needed due to the emergence of antigenic variants and drug-resistant viruses. Here, we evaluated C646, a novel p300/CREB-binding protein-specific inhibitor of histone acetyltransferase (HAT), as an anti-influenza virus agent in vitro and in vivo and explored how C646 affects the viral life cycle and host response. Our studies highlight the value of targeting HAT activity for anti-influenza drug development.
Collapse
|
175
|
LaBarge SA, Migdal CW, Buckner EH, Okuno H, Gertsman I, Stocks B, Barshop BA, Nalbandian SR, Philp A, McCurdy CE, Schenk S. p300 is not required for metabolic adaptation to endurance exercise training. FASEB J 2015; 30:1623-33. [PMID: 26712218 DOI: 10.1096/fj.15-281741] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/11/2015] [Indexed: 11/11/2022]
Abstract
The acetyltransferase, E1a-binding protein (p300), is proposed to regulate various aspects of skeletal muscle development, metabolism, and mitochondrial function,viaits interaction with numerous transcriptional regulators and other proteins. Remarkably, however, the contribution of p300 to skeletal muscle function and metabolism,in vivo, is poorly understood. To address this, we used Cre-LoxP methodology to generate mice with skeletal muscle-specific knockout of E1a-binding protein (mKO). mKO mice were indistinguishable from their wild-type/floxed littermates, with no differences in lean mass, skeletal muscle structure, fiber type, respirometry flux, or metabolites of fatty acid and amino acid metabolism.Ex vivomuscle function in extensor digitorum longus and soleus muscles, including peak stress and time to fatigue, as well asin vivorunning capacity were also comparable. Moreover, expected adaptations to a 20 d voluntary wheel running regime were not compromised in mKO mice. Taken together, these findings demonstrate that p300 is not required for the normal development or functioning of adult skeletal muscle, nor is it required for endurance exercise-mediated mitochondrial adaptations.-LaBarge, S. A., Migdal, C. W., Buckner, E. H., Okuno, H., Gertsman, I., Stocks, B., Barshop, B. A., Nalbandian, S. R., Philp, A., McCurdy, C. E., Schenk, S. p300 is not required for metabolic adaptation to endurance exercise training.
Collapse
Affiliation(s)
- Samuel A LaBarge
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Christopher W Migdal
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Elisa H Buckner
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Hiroshi Okuno
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Ilya Gertsman
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Ben Stocks
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Bruce A Barshop
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Sarah R Nalbandian
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Andrew Philp
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Carrie E McCurdy
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Simon Schenk
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
176
|
Inagaki Y, Shiraki K, Sugimoto K, Yada T, Tameda M, Ogura S, Yamamoto N, Takei Y, Ito M. Epigenetic regulation of proliferation and invasion in hepatocellular carcinoma cells by CBP/p300 histone acetyltransferase activity. Int J Oncol 2015; 48:533-40. [PMID: 26676548 DOI: 10.3892/ijo.2015.3288] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
Altered epigenetic control of gene expression plays a substantial role in tumor development and progression. Accumulating studies suggest that somatic mutations of CREB binding proteins (CBP)/p300 occur in some cancer cells. CBP/p300 possess histone acetyltransferase (HAT) activity, and are involved in many cellular processes. In this study, we investigated the expression and functional role of CBP/p300 in hepatocellular carcinoma (HCC) using the specific inhibitor C646 of CBP/p300 HAT activity. We examined its effect on several apoptosis-related proteins and invasion-related genes. The results showed that CBP/p300 were highly expressed in HCC tissues and that expression of p300, but not of CBP, was strongly correlated with the malignant character of HCC. C646 inhibited proliferation of HCC cell lines in a dose dependent manner. C646 significantly augmented TRAIL-induced apoptotic sensitivity, which was accompanied by reduced levels of survivin, in HepG2, HLE and SK-HEP1 cells. C646 significantly inhibited invasion of Huh7, HLE and SK-HEP1 cells. The level of matrix metallopeptidase 15 (MMP15) mRNA expression was significantly reduced, whereas the level of laminin alpha 3 (LAMA3) and secreted phosphoprotein 1 (SPP1) mRNA expression was significantly increased in Huh7 cells following exposure to C646. In conclusion, our results suggest that CBP/p300 HAT activity has an important role in malignant transformation, proliferation, apoptotic sensitivity and invasion in HCC. CBP/p300 could be a promising therapeutic target in HCC.
Collapse
Affiliation(s)
- Yuji Inagaki
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Katsuya Shiraki
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Kazushi Sugimoto
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takazumi Yada
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masahiko Tameda
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Suguru Ogura
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Norihiko Yamamoto
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
177
|
Ogiwara H, Sasaki M, Mitachi T, Oike T, Higuchi S, Tominaga Y, Kohno T. Targeting p300 Addiction in CBP-Deficient Cancers Causes Synthetic Lethality by Apoptotic Cell Death due to Abrogation of MYC Expression. Cancer Discov 2015; 6:430-45. [DOI: 10.1158/2159-8290.cd-15-0754] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/20/2015] [Indexed: 11/16/2022]
|
178
|
Successful strategies in the discovery of small-molecule epigenetic modulators with anticancer potential. Future Med Chem 2015; 7:2243-61. [DOI: 10.4155/fmc.15.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
As a class, epigenetic enzymes have been identified as clear targets for cancer therapeutics based on their broad hyperactivity in solid and hematological malignancies. The search for effective inhibitors of histone writers and of histone erasers has been a focus of drug discovery efforts both in academic and pharmaceutical laboratories and has led to the identification of some promising leads. This review focuses on the discovery strategies and preclinical evaluation studies of a subset of the more advanced compounds that target histone writers or histone erasers. The specificity and anticancer potential of these small molecules is discussed within the context of their development pipeline.
Collapse
|
179
|
Nishimura Y, Sasagawa S, Ariyoshi M, Ichikawa S, Shimada Y, Kawaguchi K, Kawase R, Yamamoto R, Uehara T, Yanai T, Takata R, Tanaka T. Systems pharmacology of adiposity reveals inhibition of EP300 as a common therapeutic mechanism of caloric restriction and resveratrol for obesity. Front Pharmacol 2015; 6:199. [PMID: 26441656 PMCID: PMC4569862 DOI: 10.3389/fphar.2015.00199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/31/2015] [Indexed: 12/26/2022] Open
Abstract
Both caloric restriction (CR) and resveratrol (RSV) have beneficial effects on obesity. However, the biochemical pathways that mediate these beneficial effects might be complex and interconnected and have not been fully elucidated. To reveal the common therapeutic mechanism of CR and RSV, we performed a comparative transcriptome analysis of adipose tissues from diet-induced obese (DIO) zebrafish and obese humans. We identified nine genes in DIO zebrafish and seven genes in obese humans whose expressions were regulated by CR and RSV. Although the gene lists did not overlap except for one gene, the gene ontologies enriched in the gene lists were highly overlapped, and included genes involved in adipocyte differentiation, lipid storage and lipid metabolism. Bioinformatic analysis of cis-regulatory sequences of these genes revealed that their transcriptional regulators also overlapped, including EP300, HDAC2, CEBPB, CEBPD, FOXA1, and FOXA2. We also identified 15 and 46 genes that were dysregulated in the adipose tissue of DIO zebrafish and obese humans, respectively. Bioinformatics analysis identified EP300, HDAC2, and CEBPB as common transcriptional regulators for these genes. EP300 is a histone and lysyl acetyltransferase that modulates the function of histone and various proteins including CEBPB, CEBPD, FOXA1, and FOXA2. We demonstrated that adiposity in larval zebrafish was significantly reduced by C646, an inhibitor of EP300 that antagonizes acetyl-CoA. The reduction of adiposity by C646 was not significantly different from that induced by RSV or co-treatment of C646 and RSV. These results indicate that the inhibition of EP300 might be a common therapeutic mechanism between CR and RSV in adipose tissues of obese individuals.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan ; Mie University Medical Zebrafish Research Center Tsu, Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine Tsu, Japan ; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute Tsu, Japan ; Department of Bioinformatics, Mie University Life Science Research Center Tsu, Japan
| | - Shota Sasagawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Michiko Ariyoshi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Sayuri Ichikawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Yasuhito Shimada
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Koki Kawaguchi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Reiko Kawase
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Reiko Yamamoto
- Product Development Research Institute, Mercian Corporation Fujisawa, Japan
| | - Takuma Uehara
- Product Development Research Institute, Mercian Corporation Fujisawa, Japan
| | - Takaaki Yanai
- Product Development Research Institute, Mercian Corporation Fujisawa, Japan
| | - Ryoji Takata
- Product Development Research Institute, Mercian Corporation Fujisawa, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan ; Mie University Medical Zebrafish Research Center Tsu, Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine Tsu, Japan ; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute Tsu, Japan ; Department of Bioinformatics, Mie University Life Science Research Center Tsu, Japan
| |
Collapse
|
180
|
Auto-regulation of Slug mediates its activity during epithelial to mesenchymal transition. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1209-18. [DOI: 10.1016/j.bbagrm.2015.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 01/24/2023]
|
181
|
Zakari M, Yuen K, Gerton JL. Etiology and pathogenesis of the cohesinopathies. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:489-504. [PMID: 25847322 PMCID: PMC6680315 DOI: 10.1002/wdev.190] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 01/12/2023]
Abstract
Cohesin is a chromosome-associated protein complex that plays many important roles in chromosome function. Genetic screens in yeast originally identified cohesin as a key regulator of chromosome segregation. Subsequently, work by various groups has identified cohesin as critical for additional processes such as DNA damage repair, insulator function, gene regulation, and chromosome condensation. Mutations in the genes encoding cohesin and its accessory factors result in a group of developmental and intellectual impairment diseases termed 'cohesinopathies.' How mutations in cohesin genes cause disease is not well understood as precocious chromosome segregation is not a common feature in cells derived from patients with these syndromes. In this review, the latest findings concerning cohesin's function in the organization of chromosome structure and gene regulation are discussed. We propose that the cohesinopathies are caused by changes in gene expression that can negatively impact translation. The similarities and differences between cohesinopathies and ribosomopathies, diseases caused by defects in ribosome biogenesis, are discussed. The contribution of cohesin and its accessory proteins to gene expression programs that support translation suggests that cohesin provides a means of coupling chromosome structure with the translational output of cells.
Collapse
Affiliation(s)
- Musinu Zakari
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Universite Pierre et Marie Curie, Paris, France
| | - Kobe Yuen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
182
|
Lopez-Atalaya JP, Valor LM, Barco A. Epigenetic factors in intellectual disability: the Rubinstein-Taybi syndrome as a paradigm of neurodevelopmental disorder with epigenetic origin. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 128:139-76. [PMID: 25410544 DOI: 10.1016/b978-0-12-800977-2.00006-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The number of genetic syndromes associated with intellectual disability that are caused by mutations in genes encoding chromatin-modifying enzymes has sharply risen in the last decade. We discuss here a neurodevelopmental disorder, the Rubinstein-Taybi syndrome (RSTS), originated by mutations in the genes encoding the lysine acetyltransferases CBP and p300. We first describe clinical and genetic aspects of the syndrome to later focus on the insight provided by the research in animal models of this disease. These studies have not only clarified the molecular etiology of RSTS and helped to dissect the developmental and adult components of the syndrome but also contributed to outline some important connections between epigenetics and cognition. We finally discuss how this body of research has opened new venues for the therapeutic intervention of this currently untreatable disease and present some of the outstanding questions in the field. We believe that the progress in the understanding of this rare disorder also has important implications for other intellectual disability disorders that share an epigenetic origin.
Collapse
Affiliation(s)
- Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | - Luis M Valor
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Alicante, Spain
| |
Collapse
|
183
|
Peirs S, Van der Meulen J, Van de Walle I, Taghon T, Speleman F, Poppe B, Van Vlierberghe P. Epigenetics in T-cell acute lymphoblastic leukemia. Immunol Rev 2015; 263:50-67. [PMID: 25510271 DOI: 10.1111/imr.12237] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Normal T-cell development is a strictly regulated process in which hematopoietic progenitor cells migrate from the bone marrow to the thymus and differentiate from early T-cell progenitors toward mature and functional T cells. During this maturation process, cooperation between a variety of oncogenes and tumor suppressors can drive immature thymocytes into uncontrolled clonal expansion and cause T-cell acute lymphoblastic leukemia (T-ALL). Despite improved insights in T-ALL disease biology and comprehensive characterization of its genetic landscape, clinical care remained largely similar over the past decades and still consists of high-dose multi-agent chemotherapy potentially followed by hematopoietic stem cell transplantation. Even with such aggressive treatment regimens, which are often associated with considerable side effects, clinical outcome is still extremely poor in a significant subset of T-ALL patients as a result of therapy resistance or hematological relapses. Recent genetic studies have identified recurrent somatic alterations in genes involved in DNA methylation and post-translational histone modifications in T-ALL, suggesting that epigenetic homeostasis is critically required in restraining tumor development in the T-cell lineage. In this review, we provide an overview of the epigenetic regulators that could be implicated in T-ALL disease biology and speculate how the epigenetic landscape of T-ALL could trigger the development of epigenetic-based therapies to further improve the treatment of human T-ALL.
Collapse
Affiliation(s)
- Sofie Peirs
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
184
|
|
185
|
Shimomura A, Patel D, Wilson SM, Koehler KR, Khanna R, Hashino E. Tlx3 promotes glutamatergic neuronal subtype specification through direct interactions with the chromatin modifier CBP. PLoS One 2015; 10:e0135060. [PMID: 26258652 PMCID: PMC4530954 DOI: 10.1371/journal.pone.0135060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 07/17/2015] [Indexed: 12/31/2022] Open
Abstract
Nervous system development relies on the generation of precise numbers of excitatory and inhibitory neurons. The homeodomain transcription factor, T-cell leukemia 3 (Tlx3), functions as the master neuronal fate regulator by instructively promoting the specification of glutamatergic excitatory neurons and suppressing the specification of gamma-aminobutyric acid (GABAergic) neurons. However, how Tlx3 promotes glutamatergic neuronal subtype specification is poorly understood. In this study, we found that Tlx3 directly interacts with the epigenetic co-activator cyclic adenosine monophosphate (cAMP)-response element-binding protein (CREB)-binding protein (CBP) and that the Tlx3 homeodomain is essential for this interaction. The interaction between Tlx3 and CBP was enhanced by the three amino acid loop extension (TALE)-class homeodomain transcription factor, pre-B-cell leukemia transcription factor 3 (Pbx3). Using mouse embryonic stem (ES) cells stably expressing Tlx3, we found that the interaction between Tlx3 and CBP became detectable only after these Tlx3-expressing ES cells were committed to a neural lineage, which coincided with increased Pbx3 expression during neural differentiation from ES cells. Forced expression of mutated Tlx3 lacking the homeodomain in ES cells undergoing neural differentiation resulted in significantly reduced expression of glutamatergic neuronal subtype markers, but had little effect on the expression on pan neural markers. Collectively, our results strongly suggest that functional interplay between Tlx3 and CBP plays a critical role in neuronal subtype specification, providing novel insights into the epigenetic regulatory mechanism that modulates the transcriptional efficacy of a selective set of neuronal subtype-specific genes during differentiation.
Collapse
Affiliation(s)
- Atsushi Shimomura
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; School of Psychological Science, Health Sciences University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Dharmeshkumar Patel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sarah M Wilson
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Karl R Koehler
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Rajesh Khanna
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology, University of Arizona School of Medicine, Tucson, Arizona, United States of America
| | - Eri Hashino
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
186
|
Li H, Liu Q, Wang Z, Fang R, Shen Y, Cai X, Gao Y, Li Y, Zhang X, Ye L. The oncoprotein HBXIP modulates the feedback loop of MDM2/p53 to enhance the growth of breast cancer. J Biol Chem 2015; 290:22649-61. [PMID: 26229107 DOI: 10.1074/jbc.m115.658468] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 12/26/2022] Open
Abstract
MDM2 and p53 form a negative feedback loop, in which p53 as a transcription factor positively regulates MDM2 and MDM2 negatively regulates tumor suppressor p53 through promoting its degradation. However, the mechanism of the feedback loop is poorly understood in cancers. We had reported previously that the oncoprotein hepatitis B X-interacting protein (HBXIP) is a key oncoprotein in the development of cancer. Thus, we supposed that HBXIP might be involved in the event. Here, we observed that the expression levels of HBXIP were positively correlated to those of MDM2 in clinical breast cancer tissues. Interestingly, HBXIP was able to up-regulate MDM2 at the levels of mRNA and protein in MCF-7 breast cancer cells. Mechanically, HBXIP increased the promoter activities of MDM2 through directly binding to p53 in the P2 promoter of MDM2. Strikingly, we identified that the acetyltransferase p300 was recruited by HBXIP to p53 in the promoter of MDM2. Moreover, we validated that HBXIP enhanced the p53 degradation mediated by MDM2. Functionally, the knockdown of HBXIP or/and p300 inhibited the proliferation of breast cancer cells in vitro, and the depletion of MDM2 or overexpression of p53 significantly blocked the HBXIP-promoted growth of breast cancer in vitro and in vivo. Thus, we concluded that highly expressed HBXIP accelerates the MDM2-mediated degradation of p53 in breast cancer through modulating the feedback loop of MDM2/p53, resulting in the fast growth of breast cancer cells. Our findings provide new insights into the mechanism of the acceleration of the MDM2/p53 feedback loop in the development of cancer.
Collapse
Affiliation(s)
- Hang Li
- From the Department of Biochemistry and
| | - Qian Liu
- From the Department of Biochemistry and
| | - Zhen Wang
- From the Department of Biochemistry and
| | | | - Yu Shen
- From the Department of Biochemistry and
| | | | - Yuen Gao
- the Department of Cancer Research, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | - Xiaodong Zhang
- the Department of Cancer Research, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lihong Ye
- From the Department of Biochemistry and
| |
Collapse
|
187
|
Dogan J, Jonasson J, Andersson E, Jemth P. Binding Rate Constants Reveal Distinct Features of Disordered Protein Domains. Biochemistry 2015; 54:4741-50. [DOI: 10.1021/acs.biochem.5b00520] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jakob Dogan
- Department
of Medical Biochemistry
and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Josefin Jonasson
- Department
of Medical Biochemistry
and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Eva Andersson
- Department
of Medical Biochemistry
and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Per Jemth
- Department
of Medical Biochemistry
and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| |
Collapse
|
188
|
Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia. PLoS One 2015; 10:e0132468. [PMID: 26171964 PMCID: PMC4501668 DOI: 10.1371/journal.pone.0132468] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/15/2015] [Indexed: 12/15/2022] Open
Abstract
Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.
Collapse
|
189
|
Duval R, Fritsch L, Bui LC, Berthelet J, Guidez F, Mathieu C, Dupret JM, Chomienne C, Ait-Si-Ali S, Rodrigues-Lima F. An acetyltransferase assay for CREB-binding protein based on reverse phase-ultra-fast liquid chromatography of fluorescent histone H3 peptides. Anal Biochem 2015; 486:35-7. [PMID: 26099937 DOI: 10.1016/j.ab.2015.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 11/16/2022]
Abstract
CREB-binding protein (CBP) is a lysine acetyltransferase that regulates transcription by acetylating histone and non-histone substrates. Defects in CBP activity are associated with hematologic malignancies, neurodisorders, and congenital malformations. Sensitive and quantitative enzymatic assays are essential to better characterize the pathophysiological features of CBP. We describe a sensitive nonradioactive method to measure purified and immunopurified cellular CBP enzymatic activity through rapid reverse phase-ultra-fast liquid chromatography (RP-UFLC) analysis of fluorescent histone H3 peptide substrates. The applicability and biological relevance of the assay are supported by kinetic, inhibition, and immunoprecipitation studies. More broadly, this approach could be easily adapted to assay other lysine acetyltransferases or methyltransferases.
Collapse
Affiliation(s)
- Romain Duval
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Lauriane Fritsch
- Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Linh-Chi Bui
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Jérémy Berthelet
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Fabien Guidez
- INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, 75010 Paris, France
| | - Cécile Mathieu
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Jean-Marie Dupret
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Christine Chomienne
- INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, 75010 Paris, France; Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, 75010 Paris, France
| | - Slimane Ait-Si-Ali
- Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Fernando Rodrigues-Lima
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| |
Collapse
|
190
|
Wang F, Marshall CB, Ikura M. Forkhead followed by disordered tail: The intrinsically disordered regions of FOXO3a. INTRINSICALLY DISORDERED PROTEINS 2015; 3:e1056906. [PMID: 28232890 DOI: 10.1080/21690707.2015.1056906] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 12/22/2022]
Abstract
Forkhead box Class O is one of 19 subfamilies of the Forkhead box family, comprising 4 human transcription factors: FOXO1, FOXO3a, FOXO4, and FOXO6, which are involved in many crucial cellular processes. FOXO3a is a tumor suppressor involved in multiple physiological and pathological processes, and plays essential roles in metabolism, cell cycle arrest, DNA repair, and apoptosis. In its role as a transcription factor, the FOXO3a binds a consensus Forkhead response element DNA sequence, and recruits transcriptional coactivators to activate gene transcription. FOXO3a has additional functions, such as regulating p53-mediated apoptosis and activating kinase ATM. With the exception of the structured DNA-binding forkhead domain, most of the FOXO3a sequence comprises intrinsically disordered regions (IDRs), including 3 regions (CR1-3) that are conserved within the FOXO subfamily. Numerous studies have demonstrated that these IDRs directly mediate many of the diverse functions of FOXO3a. These regions contain post-translational modification and protein-protein interaction sites that integrate upstream signals to maintain homeostasis. Thus, the FOXO3a IDRs are emerging as key mediators of diverse regulatory processes, and represent an important target for the future development of therapeutics for FOXO3a-related diseases.
Collapse
Affiliation(s)
- Feng Wang
- The Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Present affiliation: Department of Biochemistry; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Christopher B Marshall
- The Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, Department of Medical Biophysics, University of Toronto , Toronto, Ontario, Canada
| | - Mitsuhiko Ikura
- The Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, Department of Medical Biophysics, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
191
|
Long MD, Sucheston-Campbell LE, Campbell MJ. Vitamin D receptor and RXR in the post-genomic era. J Cell Physiol 2015; 230:758-66. [PMID: 25335912 DOI: 10.1002/jcp.24847] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/16/2014] [Indexed: 12/25/2022]
Abstract
Following the elucidation of the human genome and components of the epigenome, it is timely to revisit what is known of vitamin D receptor (VDR) function. Early transcriptomic studies using microarray approaches focused on the protein coding mRNA that were regulated by the VDR, usually following treatment with ligand. These studies quickly established the approximate size and surprising diversity of the VDR transcriptome, revealing it to be highly heterogenous and cell type and time dependent. Investigators also considered VDR regulation of non-protein coding RNA and again, cell and time dependency was observed. Attempts to integrate mRNA and miRNA regulation patterns are beginning to reveal patterns of co-regulation and interaction that allow for greater control of mRNA expression, and the capacity to govern more complex cellular events. Alternative splicing in the trasncriptome has emerged as a critical process in transcriptional control and there is evidence of the VDR interacting with components of the splicesome. ChIP-Seq approaches have proved to be pivotal to reveal the diversity of the VDR binding choices across cell types and following treatment, and have revealed that the majority of these are non-canonical in nature. The underlying causes driving the diversity of VDR binding choices remain enigmatic. Finally, genetic variation has emerged as important to impact the transcription factor affinity towards genomic binding sites, and recently the impact of this on VDR function has begun to be considered.
Collapse
Affiliation(s)
- Mark D Long
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | | | | |
Collapse
|
192
|
Affiliation(s)
| | - Philip A. Cole
- Department
of Pharmacology
and Molecular Sciences, The Johns Hopkins
University School of Medicine, 725 North Wolfe Street, Hunterian 316, Baltimore, Maryland 21205, United States
| |
Collapse
|
193
|
Miller Jenkins LM, Feng H, Durell SR, Tagad HD, Mazur SJ, Tropea JE, Bai Y, Appella E. Characterization of the p300 Taz2-p53 TAD2 complex and comparison with the p300 Taz2-p53 TAD1 complex. Biochemistry 2015; 54:2001-10. [PMID: 25753752 DOI: 10.1021/acs.biochem.5b00044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The p53 tumor suppressor is a critical mediator of the cellular response to stress. The N-terminal transactivation domain of p53 makes protein interactions that promote its function as a transcription factor. Among those cofactors is the histone acetyltransferase p300, which both stabilizes p53 and promotes local chromatin unwinding. Here, we report the nuclear magnetic resonance solution structure of the Taz2 domain of p300 bound to the second transactivation subdomain of p53. In the complex, p53 forms an α-helix between residues 47 and 55 that interacts with the α1-α2-α3 face of Taz2. Mutational analysis indicated several residues in both p53 and Taz2 that are critical for stabilizing the interaction. Finally, further characterization of the complex by isothermal titration calorimetry revealed that complex formation is pH-dependent and releases a bound chloride ion. This study highlights differences in the structures of complexes formed by the two transactivation subdomains of p53 that may be broadly observed and play critical roles in p53 transcriptional activity.
Collapse
Affiliation(s)
- Lisa M Miller Jenkins
- †Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hanqiao Feng
- ‡Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Stewart R Durell
- †Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Harichandra D Tagad
- †Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sharlyn J Mazur
- †Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Joseph E Tropea
- §Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yawen Bai
- ‡Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ettore Appella
- †Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
194
|
Ek CJ, Nathanielsz P, Li C, Mallard C. Transcriptomal changes and functional annotation of the developing non-human primate choroid plexus. Front Neurosci 2015; 9:82. [PMID: 25814924 PMCID: PMC4357249 DOI: 10.3389/fnins.2015.00082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/25/2015] [Indexed: 12/04/2022] Open
Abstract
The choroid plexuses are small organs that protrude into each brain ventricle producing cerebrospinal fluid that constantly bathes the brain. These organs differentiate early in development just after neural closure at a stage when the brain is little vascularized. In recent years the plexus has been shown to have a much more active role in brain development than previously appreciated thereby it can influence both neurogenesis and neural migration by secreting factors into the CSF. However, much of choroid plexus developmental function is still unclear. Most previous studies on this organ have been undertaken in rodents but translation into humans is not straightforward since they have a different timing of brain maturation processes. We have collected choroid plexus from three fetal gestational ages of a non-human primate, the baboon, which has much closer brain development to humans. The transcriptome of the plexuses was determined by next generation sequencing and Ingenuity Pathway Analysis software was used to annotate functions and enrichment of pathways of changes in the transcriptome. The number of unique transcripts decreased with development and the majority of differentially expressed transcripts were down-regulated through development suggesting a more complex and active plexus earlier in fetal development. The functional annotation indicated changes across widespread biological functions in plexus development. In particular we find age-dependent regulation of genes associated with annotation categories: Gene Expression, Development of Cardiovascular System, Nervous System Development and Molecular Transport. Our observations support the idea that the choroid plexus has roles in shaping brain development.
Collapse
Affiliation(s)
- C Joakim Ek
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy Gothenburg, Sweden
| | - Peter Nathanielsz
- Department of Obstetrics, Center for Pregnancy and Newborn Research, The University of Texas Health Science Center San Antonio, TX, USA
| | - Cun Li
- Department of Obstetrics, Center for Pregnancy and Newborn Research, The University of Texas Health Science Center San Antonio, TX, USA
| | - Carina Mallard
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy Gothenburg, Sweden
| |
Collapse
|
195
|
DeForte S, Reddy KD, Uversky VN. Digested disorder, Quarterly intrinsic disorder digest (October-November-December, 2013). INTRINSICALLY DISORDERED PROTEINS 2015; 3:e984569. [PMID: 28293487 DOI: 10.4161/21690707.2014.984569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 11/19/2022]
Abstract
This is the 4th issue of the Digested Disorder series that represents reader's digest of the scientific literature on intrinsically disordered proteins. The only 2 criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the fourth quarter of 2013; i.e. during the period of October, November, and December of 2013. Similar to previous issues, the papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings.
Collapse
Affiliation(s)
- Shelly DeForte
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA; These authors contributed equally to this work
| | - Krishna D Reddy
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA; These authors contributed equally to this work
| | - Vladimir N Uversky
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA; USF Health Byrd Alzheimer Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia; Laboratory of Structural Dynamics, Stability, and Folding of Proteins; Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; Institute for Biological Instrumentation; Russian Academy of Sciences; Moscow Region, Russia
| |
Collapse
|
196
|
Farria A, Li W, Dent SYR. KATs in cancer: functions and therapies. Oncogene 2015; 34:4901-13. [PMID: 25659580 PMCID: PMC4530097 DOI: 10.1038/onc.2014.453] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022]
Abstract
Post-translational acetylation of lysines is most extensively studied in histones, but this modification is also found in many other proteins and is implicated in a wide range of biological processes in both the cell nucleus and the cytoplasm. Like phosphorylation, acetylation patterns and levels are often altered in cancer, therefore small molecule inhibition of enzymes that regulate acetylation and deacetylation offers much potential for inhibiting cancer cell growth, as does disruption of interactions between acetylated residues and ‘reader’ proteins. For more than a decade now, histone deacetylase (HDAC) inhibitors have been investigated for their ability to increase acetylation and promote expression of tumor suppressor genes. However, emerging evidence suggests that acetylation can also promote cancer, in part by enhancing the functions of oncogenic transcription factors. In this review we focus on how acetylation of both histone and non-histone proteins may drive cancer, and we will discuss the implications of such changes on how patients are assigned to therapeutic agents. Finally, we will explore what the future holds in the design of small molecule inhibitors for modulation of levels or functions of acetylation states.
Collapse
Affiliation(s)
- A Farria
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Graduate School of Biomedical Sciences, University of Texas M.D Anderson Cancer Center Science Park, Smithville, Texas, USA
| | - W Li
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Graduate School of Biomedical Sciences, University of Texas M.D Anderson Cancer Center Science Park, Smithville, Texas, USA
| | - S Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Graduate School of Biomedical Sciences, University of Texas M.D Anderson Cancer Center Science Park, Smithville, Texas, USA
| |
Collapse
|
197
|
Hartman ML, Czyz M. MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci 2014; 72:1249-60. [PMID: 25433395 PMCID: PMC4363485 DOI: 10.1007/s00018-014-1791-0] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 02/06/2023]
Abstract
MITF (microphthalmia-associated transcription factor) represents a melanocytic lineage-specific transcription factor whose role is profoundly extended in malignant melanoma. Over the last few years, the function of MITF has been tightly connected to plasticity of melanoma cells. MITF participates in executing diverse melanoma phenotypes defined by distinct gene expression profiles. Mutation-dependent alterations in MITF expression and activity have been found in a relatively small subset of melanomas. MITF activity is rather modulated by its upstream activators and suppressors operating on transcriptional, post-transcriptional and post-translational levels. These regulatory mechanisms also include epigenetic and microenvironmental signals. Several transcription factors and signaling pathways involved in the regulation of MITF expression and/or activity such as the Wnt/β-catenin pathway are broadly utilized by various types of tumors, whereas others, e.g., BRAFV600E/ERK1/2 are more specific for melanoma. Furthermore, the MITF activity can be affected by the availability of transcriptional co-partners that are often redirected by MITF from their own canonical signaling pathways. In this review, we discuss the complexity of a multilevel regulation of MITF expression and activity that underlies distinct context-related phenotypes of melanoma and might explain diverse responses of melanoma patients to currently used therapeutics.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | | |
Collapse
|
198
|
Le JM, Squarize CH, Castilho RM. Histone modifications: Targeting head and neck cancer stem cells. World J Stem Cells 2014; 6:511-525. [PMID: 25426249 PMCID: PMC4178252 DOI: 10.4252/wjsc.v6.i5.511] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and is responsible for a quarter of a million deaths annually. The survival rate for HNSCC patients is poor, showing only minor improvement in the last three decades. Despite new surgical techniques and chemotherapy protocols, tumor resistance to chemotherapy remains a significant challenge for HNSCC patients. Numerous mechanisms underlie chemoresistance, including genetic and epigenetic alterations in cancer cells that may be acquired during treatment and activation of mitogenic signaling pathways, such as nuclear factor kappa-light-chain-enhancer-of activated B cell, that cause reduced apoptosis. In addition to dysfunctional molecular signaling, emerging evidence reveals involvement of cancer stem cells (CSCs) in tumor development and in tumor resistance to chemotherapy and radiotherapy. These observations have sparked interest in understanding the mechanisms involved in the control of CSC function and fate. Post-translational modifications of histones dynamically influence gene expression independent of alterations to the DNA sequence. Recent findings from our group have shown that pharmacological induction of post-translational modifications of tumor histones dynamically modulates CSC plasticity. These findings suggest that a better understanding of the biology of CSCs in response to epigenetic switches and pharmacological inhibitors of histone function may directly translate to the development of a mechanism-based strategy to disrupt CSCs. In this review, we present and discuss current knowledge on epigenetic modifications of HNSCC and CSC response to DNA methylation and histone modifications. In addition, we discuss chromatin modifications and their role in tumor resistance to therapy.
Collapse
|
199
|
Sui D, Xu X, Ye X, Liu M, Mianecki M, Rattanasinchai C, Buehl C, Deng X, Kuo MH. Protein interaction module-assisted function X (PIMAX) approach to producing challenging proteins including hyperphosphorylated tau and active CDK5/p25 kinase complex. Mol Cell Proteomics 2014; 14:251-62. [PMID: 25385071 DOI: 10.1074/mcp.o114.044412] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many biomedically critical proteins are underrepresented in proteomics and biochemical studies because of the difficulty of their production in Escherichia coli. These proteins might possess posttranslational modifications vital to their functions, tend to misfold and be partitioned into bacterial inclusion bodies, or act only in a stoichiometric dimeric complex. Successful production of these proteins requires efficient interaction between these proteins and a specific "facilitator," such as a protein-modifying enzyme, a molecular chaperone, or a natural physical partner within the dimeric complex. Here we report the design and application of a protein interaction module-assisted function X (PIMAX) system that effectively overcomes these hurdles. By fusing two proteins of interest to a pair of well-studied protein-protein interaction modules, we were able to potentiate the association of these two proteins, resulting in successful production of an enzymatically active cyclin-dependent kinase complex and hyperphosphorylated tau protein, which is intimately linked to Alzheimer disease. Furthermore, using tau isoforms quantitatively phosphorylated by GSK-3β and CDK5 kinases via PIMAX, we demonstrated the hyperphosphorylation-stimulated tau oligomerization in vitro, paving the way for new Alzheimer disease drug discoveries. Vectors for PIMAX can be easily modified to meet the needs of different applications. This approach thus provides a convenient and modular suite with broad implications for proteomics and biomedical research.
Collapse
Affiliation(s)
- Dexin Sui
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Xinjing Xu
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Xuemei Ye
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Mengyu Liu
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Maxwell Mianecki
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Chotirat Rattanasinchai
- ¶Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824
| | - Christopher Buehl
- ¶Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824
| | - Xiexiong Deng
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Min-Hao Kuo
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824;
| |
Collapse
|
200
|
Riaz N, Morris LG, Lee W, Chan TA. Unraveling the molecular genetics of head and neck cancer through genome-wide approaches. Genes Dis 2014; 1:75-86. [PMID: 25642447 PMCID: PMC4310010 DOI: 10.1016/j.gendis.2014.07.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 12/15/2022] Open
Abstract
The past decade has seen an unprecedented increase in our understanding of the biology and etiology of head and neck squamous cell carcinomas (HNSCC). Genome-wide sequencing projects have identified a number of recurrently mutated genes, including unexpected alterations in the NOTCH pathway and chromatin related genes. Gene-expression profiling has identified 4 distinct genetic subtypes which show some parallels to lung squamous cell carcinoma biology. The identification of the human papilloma virus as one causative agent in a subset of oropharyngeal cancers and their association with a favorable prognosis has opened up avenues for new therapeutic strategies. The expanding knowledge of the underlying molecular abnormalities in this once very poorly understood cancer should allow for increasingly rational clinical trial design and improved patient outcomes.
Collapse
Affiliation(s)
- Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Luc G. Morris
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - William Lee
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Timothy A. Chan
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Human Oncology and Pathogenesis, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|