151
|
Lacourt TE, Vichaya EG, Chiu GS, Dantzer R, Heijnen CJ. The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure. Front Behav Neurosci 2018; 12:78. [PMID: 29755330 PMCID: PMC5932180 DOI: 10.3389/fnbeh.2018.00078] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/09/2018] [Indexed: 02/03/2023] Open
Abstract
Chronic or persistent fatigue is a common, debilitating symptom of several diseases. Persistent fatigue has been associated with low-grade inflammation in several models of fatigue, including cancer-related fatigue and chronic fatigue syndrome. However, it is unclear how low-grade inflammation leads to the experience of fatigue. We here propose a model of an imbalance in energy availability and energy expenditure as a consequence of low-grade inflammation. In this narrative review, we discuss how chronic low-grade inflammation can lead to reduced cellular-energy availability. Low-grade inflammation induces a metabolic switch from energy-efficient oxidative phosphorylation to fast-acting, but less efficient, aerobic glycolytic energy production; increases reactive oxygen species; and reduces insulin sensitivity. These effects result in reduced glucose availability and, thereby, reduced cellular energy. In addition, emerging evidence suggests that chronic low-grade inflammation is associated with increased willingness to exert effort under specific circumstances. Circadian-rhythm changes and sleep disturbances might mediate the effects of inflammation on cellular-energy availability and non-adaptive energy expenditure. In the second part of the review, we present evidence for these metabolic pathways in models of persistent fatigue, focusing on chronic fatigue syndrome and cancer-related fatigue. Most evidence for reduced cellular-energy availability in relation to fatigue comes from studies on chronic fatigue syndrome. While the mechanistic evidence from the cancer-related fatigue literature is still limited, the sparse results point to reduced cellular-energy availability as well. There is also mounting evidence that behavioral-energy expenditure exceeds the reduced cellular-energy availability in patients with persistent fatigue. This suggests that an inability to adjust energy expenditure to available resources might be one mechanism underlying persistent fatigue.
Collapse
|
152
|
Hussain G, Zhang L, Rasul A, Anwar H, Sohail MU, Razzaq A, Aziz N, Shabbir A, Ali M, Sun T. Role of Plant-Derived Flavonoids and Their Mechanism in Attenuation of Alzheimer's and Parkinson's Diseases: An Update of Recent Data. Molecules 2018; 23:E814. [PMID: 29614843 PMCID: PMC6017497 DOI: 10.3390/molecules23040814] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
Neurodegeneration is a progressive loss of neuronal cells in certain regions of the brain. Most of the neurodegenerative disorders (NDDs) share the communal characteristic such as damage or reduction of various cell types typically including astrocytes and microglial activity. Several compounds are being trialed to treat NDDs but they possess solitary symptomatic advantages along with copious side effects. The finding of more enthralling and captivating compounds to suspend and standstill the pathology of NDDs will be considered as a hallmark of present times. Phytochemicals possess the potential to alternate the synthetic line of therapy against NDDs. The present review explores the potential efficacy of plant-derived flavonoids against most common NDDs including Alzheimer's disease (AD) and Parkinson's disease (PD). Flavonoids are biologically active phytochemicals which possess potential pharmacological effects, including antiviral, anti-allergic, antiplatelet, anti-inflammatory, anti-tumor, anti-apoptotic and anti-oxidant effects and are able to attenuate the pathology of various NDDs through down-regulating the nitric oxide (NO) production, by reducing the tumor necrosis factor-α (TNF-α), by reducing the excitotoxicity of superoxide as well as acting as tyrosine kinase (TK) and monoamine oxidase (MAO) inhibiting enzyme.
Collapse
Affiliation(s)
- Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Longbin Zhang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Umar Sohail
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Aroona Razzaq
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Nimra Aziz
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Asghar Shabbir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad 44000, Pakistan.
| | - Muhammad Ali
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
153
|
Frandsen JR, Narayanasamy P. Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway. Redox Biol 2018; 14:465-473. [PMID: 29080525 PMCID: PMC5680520 DOI: 10.1016/j.redox.2017.10.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
The glyoxalase pathway functions to detoxify reactive dicarbonyl compounds, most importantly methylglyoxal. The glyoxalase pathway is an antioxidant defense mechanism that is essential for neuroprotection. Excessive concentrations of methylglyoxal have deleterious effects on cells, leading to increased levels of inflammation and oxidative stress. Neurodegenerative diseases - including Alzheimer's, Parkinson's, Aging and Autism Spectrum Disorder - are often induced or exacerbated by accumulation of methylglyoxal. Antioxidant compounds possess several distinct mechanisms that enhance the glyoxalase pathway and function as neuroprotectants. Flavonoids are well-researched secondary plant metabolites that appear to be effective in reducing levels of oxidative stress and inflammation in neural cells. Novel flavonoids could be designed, synthesized and tested to protect against neurodegenerative diseases through regulating the glyoxalase pathway.
Collapse
Affiliation(s)
- Joel R Frandsen
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA.
| |
Collapse
|
154
|
Proanthocyanidins against Oxidative Stress: From Molecular Mechanisms to Clinical Applications. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8584136. [PMID: 29750172 PMCID: PMC5884402 DOI: 10.1155/2018/8584136] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/14/2018] [Indexed: 12/15/2022]
Abstract
Proanthocyanidins (PCs) are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerous in vitro and in vivo studies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, anti-inflammation, immunomodulation, DNA repair, and antitumor activity. Accumulation of prooxidants such as reactive oxygen species (ROS) exceeding cellular antioxidant capacity results in oxidative stress (OS), which can damage macromolecules (DNA, lipids, and proteins), organelles (membranes and mitochondria), and whole tissues. OS is implicated in the pathogenesis and exacerbation of many cardiovascular, neurodegenerative, dermatological, and metabolic diseases, both through direct molecular damage and secondary activation of stress-associated signaling pathways. PCs are promising natural agents to safely prevent acute damage and control chronic diseases at relatively low cost. In this review, we summarize the molecules and signaling pathways involved in OS and the corresponding therapeutic mechanisms of PCs.
Collapse
|
155
|
Niranjan R, Mishra KP, Thakur AK. Inhibition of Cyclooxygenase-2 (COX-2) Initiates Autophagy and Potentiates MPTP-Induced Autophagic Cell Death of Human Neuroblastoma Cells, SH-SY5Y: an Inside in the Pathology of Parkinson’s Disease. Mol Neurobiol 2018; 55:8038-8050. [DOI: 10.1007/s12035-018-0950-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/05/2018] [Indexed: 01/22/2023]
|
156
|
Lu Y, Zhang X, Zhao L, Yang C, Pan L, Li C, Liu K, Bai G, Gao H, Yan Z. Metabolic Disturbances in the Striatum and Substantia Nigra in the Onset and Progression of MPTP-Induced Parkinsonism Model. Front Neurosci 2018. [PMID: 29515360 PMCID: PMC5826279 DOI: 10.3389/fnins.2018.00090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolic confusion has been linked to the pathogenesis of Parkinson's disease (PD), while the dynamic changes associated with the onset and progression of PD remain unclear. Herein, dynamic changes in metabolites were detected from the initiation to the development of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) -induced Parkinsonism model to elucidate its potential metabolic mechanism. Ex vivo1H nuclear magnetic resonance (NMR) spectroscopy was used to measure metabolite changes in the striatum and substantia nigra (SN) of mice at 1, 7, and 21 days after injection of MPTP. Metabolomic analysis revealed a clear separation of the overall metabolites between PD and control mice at different time points. Glutamate (Glu) in the striatum was significantly elevated at induction PD day 1 mice, which persisted to day 21. N-acetylaspartate (NAA) increased in the striatum of induction PD mice on days 1 and 7, but no significant difference was found in striatum on day 21. Myo-Inositol (mI) and taurine (Tau) were also disturbed in the striatum in induction PD day 1 mice. Additionally, key enzymes in the glutamate-glutamine cycle were significantly increased in PD mice. These findings suggest that neuron loss and motor function impairment in induction PD mice may be linked to overactive glutamate-glutamine cycle and altered membrane metabolism.
Collapse
Affiliation(s)
- Yi Lu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoxia Zhang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Changwei Yang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Linlin Pan
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kun Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
157
|
de Oliveira MR, Andrade CMB, Fürstenau CR. Naringenin Exerts Anti-inflammatory Effects in Paraquat-Treated SH-SY5Y Cells Through a Mechanism Associated with the Nrf2/HO-1 Axis. Neurochem Res 2018; 43:894-903. [DOI: 10.1007/s11064-018-2495-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 12/16/2022]
|
158
|
Gorshkov K, Aguisanda F, Thorne N, Zheng W. Astrocytes as targets for drug discovery. Drug Discov Today 2018; 23:673-680. [PMID: 29317338 PMCID: PMC5937927 DOI: 10.1016/j.drudis.2018.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/08/2017] [Accepted: 01/04/2018] [Indexed: 12/18/2022]
Abstract
Recent studies have illuminated the crucial role of astrocytes in maintaining proper neuronal health and function. Abnormalities in astrocytic functions have now been implicated in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). Historically, drug development programs for neurodegenerative diseases generally target only neurons, overlooking the contributions of astrocytes. Therefore, targeting both disease neurons and astrocytes offers a new approach for drug development for the treatment of neurological diseases. Looking forward, the co-culturing of human neurons with astrocytes could be the next evolutionary step in drug discovery for neurodegenerative diseases.
Collapse
Affiliation(s)
- Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francis Aguisanda
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha Thorne
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
159
|
Zhang N, Dou D, Ran X, Kang T. Neuroprotective effect of arctigenin against neuroinflammation and oxidative stress induced by rotenone. RSC Adv 2018; 8:2280-2292. [PMID: 35541453 PMCID: PMC9077403 DOI: 10.1039/c7ra10906g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/05/2017] [Indexed: 11/21/2022] Open
Abstract
Background: the present study was to investigate the neuroprotective effect of arctigenin, the major active component of a traditional Chinese medicine “Arctii Fructus”, against PD in a rat model induced by rotenone. Materials and methods: in the present study, rotenone was injected subcutaneously in the backs of rats to mimic the progressive neurodegenerative nature of PD and arctigenin was administered. Behavioral analyses including a grid test, bar test and open-field test were used to evaluate motor activities and behavioral movement abilities. Energy metabolism indexes including oxygen consumption, carbon dioxide production, heat production and energy expenditure were measured via a TSE phenoMaster/LabMaster animal monitoring system. Immunohistochemistry was performed to detect the staining of TH and the expression of α-synuclein in substantia nigra (SN). The effect of arctigenin on oxidative stress was evaluated by the levels of GSH and MDA, and activities of SOD and GSH-Px. The levels of pro-inflammatory cytokines such as IL-6, IL-1β, TNF-α, IFN-γ and PGE2, the expression of Iba-1 and GFAP, and the impression of inflammatory mediators such as COX-2 and NF-κB in the SN were measured to evaluate the effect on the inflammation of SN area induced by rotenone. Results: compared with the ROT group, the deadlock time of rats treated with arctigenin was significantly shortened and the score of locomotor activity increased in the behavioral test; the number of TH+ positive DA neurons of the arctigenin treated group was increased and α-synuclein immunopositive was decreased; the level of GSH and activities of SOD and GSH-Px in the arctigenin-treated group were significantly increased; arctigenin administration induced a significant decrease in the MDA level; arctigenin also significantly decreased the levels of IL-6, IL-1β, TNF-α, IFN-γ and PGE2 and reduced the impression of COX-2 and NF-κB in SN; treatment with arctigenin decreased microglia and astrocyte activation evidenced by the reduced expression of Iba-1 and GFAP. Conclusion: the findings demonstrated that arctigenin can improve the behavior changes of PD rats and the damage of DA neurons. The oxidative stress and inflammation involved in the pathogenesis of PD and arctigenin may protect DA neurons through its potent antioxidant and anti-inflammatory activities. The present study was to investigate the neuroprotective effect of arctigenin, the major active component of a traditional Chinese medicine “Arctii Fructus”, against PD in a rat model induced by rotenone.![]()
Collapse
Affiliation(s)
- Na Zhang
- College of Pharmacy
- Liaoning University of Traditional Chinese Medicine
- Dalian 116600
- PR China
| | - Deqiang Dou
- College of Pharmacy
- Liaoning University of Traditional Chinese Medicine
- Dalian 116600
- PR China
| | - Xiaoku Ran
- College of Pharmacy
- Liaoning University of Traditional Chinese Medicine
- Dalian 116600
- PR China
| | - Tingguo Kang
- College of Pharmacy
- Liaoning University of Traditional Chinese Medicine
- Dalian 116600
- PR China
| |
Collapse
|
160
|
Goes AT, Jesse CR, Antunes MS, Lobo Ladd FV, Lobo Ladd AA, Luchese C, Paroul N, Boeira SP. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson's disease: Involvement of neuroinflammation and neurotrophins. Chem Biol Interact 2018; 279:111-120. [DOI: 10.1016/j.cbi.2017.10.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/15/2017] [Accepted: 10/16/2017] [Indexed: 01/28/2023]
|
161
|
Zhao Y, Pu D, Sun Y, Chen J, Luo C, Wang M, Zhou J, Lv A, Zhu S, Liao Z, Zhao K, Xiao Q. High glucose-induced defective thrombospondin-1 release from astrocytes via TLR9 activation contributes to the synaptic protein loss. Exp Cell Res 2017; 363:171-178. [PMID: 29294308 DOI: 10.1016/j.yexcr.2017.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022]
Abstract
Diabetes, characterized by chronic hyperglycemia, is known to induce synaptic degeneration in the brain, thereby resulting in cognitive dysfunction. Thrombospondin-1(TSP-1), the secreted protein produced by astrocytes, plays a crucial role in promoting synapse formation. Toll-like receptor 9 (TLR9) has been widely known to initiate the innate immune response. We recently reported TLR9 activation in neurons results in tau hyperphosphorylation induced by HG in vitro. Its activation has been also considered to mediate oxidative stress and astrocytic dysfunction under pathological circumstance. However, whether astrocytic TSP-1 alteration plays a role in synaptic protein loss under high glucose condition and whether TLR9 activation is involved in this process have not been reported. In this study, we found that primary mouse astrocytes incubated in high glucose (30mM) induced a significant decreased TSP-1 secretion and increased intracellular contents of TSP-1 without affecting transcription level. Addition of conditioned medium from high glucose (30mM) treated astrocytes to the primary neurons exhibited reduced synaptic proteins expression, which was attenuated by treatment with exogenous rTSP-1. In addition, we demonstrated that TLR9 activation along with reactive oxygen species (ROS) generation in astrocytes was induced by high glucose (30mM). Furthermore, we explored the relationship between TLR9 activation and TSP-1 production. Both TLR9 deficiency and the antioxidant N-acetyl-L-cysteine treatment improved altered intra- and extracellular TSP-1 levels under high glucose condition. Together, our findings suggest that high glucose (30mM) impairs TSP-1 secretion from astrocytes, which depends on astrocytic dysfunction associated with TLR9 activation mediated ROS signaling, ultimately contributing to the synaptic proteins loss.
Collapse
Affiliation(s)
- Yuxing Zhao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Die Pu
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Jinliang Chen
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Cheng Luo
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Meili Wang
- The First People's Hospital of Zunyi, Zunyi, China
| | - Jing Zhou
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Ankang Lv
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Shiyu Zhu
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Zhiyin Liao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Kexiang Zhao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China.
| |
Collapse
|
162
|
Yu WW, Cao SN, Zang CX, Wang L, Yang HY, Bao XQ, Zhang D. Heat shock protein 70 suppresses neuroinflammation induced by α-synuclein in astrocytes. Mol Cell Neurosci 2017; 86:58-64. [PMID: 29183796 DOI: 10.1016/j.mcn.2017.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation triggered by activation of glial cells plays an important role in the pathophysiology of several neurodegenerative diseases including Parkinson's disease (PD). Besides microglia, astrocytes are also critical in initiating and perpetuating inflammatory process associated with PD. Heat shock protein 70 (Hsp70) is originally described as intracellular chaperone, however, recent study revealed that it had anti-inflammatory effects as well. The present study is designed to investigate whether Hsp70 mediates neuroinflammation in astrocytes. By employing α-synuclein (α-Syn) (A53T) aggregates on primary cultured astrocytes of rats, we found that astrocytes were activated and neuroinflammatory response was triggered, as indicated by over-expression of glial fibrillary acidic protein (GFAP), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), increased production of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). The data also showed that the neuroinflammatory response accompanied up-regulated Hsp70 expression. Moreover, over-expression of Hsp70 through transfection of Hsp70 cDNA plasmids could significantly reduce the production of TNF-α, IL-1β, and the expression of GFAP, COX-2 as well as iNOS. While inhibition of Hsp70 by VER155008 exacerbated neuroinflammatory response in astrocytes challenged by α-Syn aggregates. Further mechanistic study indicated that c-Jun N-terminal kinase (JNK) and nuclear factor-κB (NF-κB) signalings were responsible for the neuroinflammation, which was also regulated by Hsp70. These findings demonstrated that Hsp70 was an important modulator in astrocytes induced inflammation, and up-regulation of Hsp70 might be a potential regulating approach for neuroinflammation-related neurodegenerative diseases, such as PD.
Collapse
Affiliation(s)
- Wen-Wen Yu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China; State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Sheng-Nan Cao
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China; State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Cai-Xia Zang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China; State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Lu Wang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China; State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Han-Yu Yang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China; State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiu-Qi Bao
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China; State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| | - Dan Zhang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China; State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| |
Collapse
|
163
|
Yu L, Wang X, Chen H, Yan Z, Wang M, Li Y. Neurochemical and Behavior Deficits in Rats with Iron and Rotenone Co-treatment: Role of Redox Imbalance and Neuroprotection by Biochanin A. Front Neurosci 2017; 11:657. [PMID: 29217997 PMCID: PMC5703859 DOI: 10.3389/fnins.2017.00657] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022] Open
Abstract
Increasing evidences show that the etiology of Parkinson's disease (PD) is multifactorial. Studying the combined effect of several factors is becoming a hot topic in PD research. On one hand, iron is one of the essential trace metals for human body; on the other hand, iron may be involved in the etiopathogenesis of PD. In our present study, the rats with increased neonatal iron (120 μg/g bodyweight) supplementation were treated with rotenone (0.5 mg/kg) when they were aged to 14 weeks. We observed that iron and rotenone co-treatment induced significant behavior deficits (time-dependent) and striatal dopamine depletion in the male and female rats, while they did not do so when they were used alone. No significant change in striatal 5-hydroxytryptamine content was observed in the male and female rats with iron and rotenone co-treatment. Also, iron and rotenone co-treatment significantly decreased substantia nigra TH expression in the male rats. Furthermore, co-treatment with iron and rotenone significantly induced malondialdehyde increase and glutathione decrease in the substantia nigra of male and female rats. There was no significant change in cerebellar malondialdehyde and glutathione content of the rats co-treated with iron and rotenone. Interestingly, biochanin A significantly attenuated striatal dopamine depletion and improved behavior deficits (dose-dependently) in the male and female rats with iron and rotenone co-treatment. Biochanin A treatment also significantly alleviated substantia nigra TH expression reduction in the male rats co-treated with iron and rotenone. Finally, biochanin A significantly decreased malondialdehyde content and increased glutathione content in the substantia nigra of male and female rats with iron and rotenone co-treatment. Our results indicate that iron and rotenone co-treatment may result in aggravated neurochemical and behavior deficits through inducing redox imbalance and increased neonatal iron supplementation may participate in the etiopathogenesis of PD. Moreover, biochanin A may exert dopaminergic neuroprotection by maintaining redox balance.
Collapse
Affiliation(s)
- Lijia Yu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xijin Wang
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanqing Chen
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| | - Zhiqiang Yan
- Shanghai Laboratory Animal Center, Chinese Academy of Sciences, Shanghai, China
| | - Meihua Wang
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunhong Li
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
164
|
Neal M, Richardson JR. Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2017; 1864:432-443. [PMID: 29113750 DOI: 10.1016/j.bbadis.2017.11.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/22/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023]
Abstract
Epigenetic mechanisms control various functions throughout the body, from cell fate determination in development to immune responses and inflammation. Neuroinflammation is one of the prime contributors to the initiation and progression of neurodegeneration in a variety of diseases, including Alzheimer's and Parkinson's diseases. Because astrocytes are the largest population of glial cells, they represent an important regulator of CNS function, both in health and disease. Only recently have studies begun to identify the epigenetic mechanisms regulating astrocyte responses in neurodegenerative diseases. These epigenetic mechanisms, along with the epigenetic marks involved in astrocyte development, could elucidate novel pathways to potentially modulate astrocyte-mediated neuroinflammation and neurotoxicity. This review examines the known epigenetic mechanisms involved in regulation of astrocyte function, from development to neurodegeneration, and links these mechanisms to potential astrocyte-specific roles in neurodegenerative disease with a focus on potential opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew Neal
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH 44201, USA
| | - Jason R Richardson
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH 44201, USA.
| |
Collapse
|
165
|
Bonilla-Porras AR, Arevalo-Arbelaez A, Alzate-Restrepo JF, Velez-Pardo C, Jimenez-Del-Rio M. PARKIN overexpression in human mesenchymal stromal cells from Wharton's jelly suppresses 6-hydroxydopamine-induced apoptosis: Potential therapeutic strategy in Parkinson's disease. Cytotherapy 2017; 20:45-61. [PMID: 29079356 DOI: 10.1016/j.jcyt.2017.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND AIMS Stem cell transplantation is an excellent option for regenerative or replacement therapy. However, deleterious microenvironmental and endogenous factors (e.g., oxidative stress) compromise ongoing graft survival and longevity. Therefore, (transient or stable) genetically modified cells may be reasonably thought to resist oxidative stress-induced damage. Genetic engineering of mesenchymal stromal cells (MSCs) obtained from Wharton's jelly tissue may offer some therapeutic potential. PARKIN is a multifunctional ubiquitin ligase able to protect dopaminergic cells against stress-related signaling. We, therefore, evaluated the effect of the neurotoxicant 6-hydroxydopamine (6-OHDA) on regulated cell death signaling in MSCs and investigated whether overexpression of PARKIN in MSCs was capable of modulating the effect of 6-OHDA. METHODS We transiently transfected Wharton's jelly-derived MSCs with an mCherry-PARKIN vector using the Lipofectamine LTX method. Naïve MSCs and MSCs overexpressing PARKIN were exposed to increasing concentrations of 6-OHDA. We used light and fluorescence microscopy, flow cytometry, immunocytochemistry staining, in-cell Western and Western blot analysis. RESULTS After 12-24 h of 6-OHDA exposure, we detected dichlorofluorescein (DCF)-positive cells (80%) indicative of reactive oxygen species (H2O2) production, reduced cell viability (40-50%), decreased mitochondrial membrane potential (ΔΨm, ~35-45%), DNA fragmentation (18-30%), and G1-arrested cell cycle in the MSCs. 6-OHDA exposure increased the expression of the transcription factor c-JUN, increased the expression of the mitochondria maintenance Phosphatase and tensin homologue-induced putative kinase 1 (PINK1) protein and increased the expression of pro-apoptotic PUMA, caspase-3 and apoptosis-inducing factor (AIF). 6-OHDA exposure also significantly augmented the oxidation of the oxidative stress sensor, DJ-1. Overexpression of PARKIN in MSCs not only significantly reduced the expression of cell death and oxidative stress markers but also significantly reduced DCF-positive cells (~50% reduction). DISCUSSION 6-OHDA induced apoptosis in MSCs via generation of H2O2, activation of c-JUN and PUMA, mitochondrial depolarization and nuclei fragmentation. Our findings suggest that PARKIN protects MSCs against 6-OHDA toxicity by partly interacting with H2O2, reducing the expression of c-JUN, PUMA, AIF and caspase-3, and maintaining the mitochondrial ΔΨm.
Collapse
Affiliation(s)
- A R Bonilla-Porras
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - A Arevalo-Arbelaez
- National Center for Genome Sequencing, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - J F Alzate-Restrepo
- National Center for Genome Sequencing, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - C Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia.
| | - M Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia.
| |
Collapse
|
166
|
Genoud S, Roberts BR, Gunn AP, Halliday GM, Lewis SJG, Ball HJ, Hare DJ, Double KL. Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson's disease brain. Metallomics 2017; 9:1447-1455. [PMID: 28944802 PMCID: PMC5647261 DOI: 10.1039/c7mt00244k] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Elevated iron and decreased copper levels are cardinal features of the degenerating substantia nigra pars compacta in the Parkinson's disease brain. Both of these redox-active metals, and fellow transition metals manganese and zinc, are found at high concentrations within the midbrain and participate in a range of unique biological reactions. We examined the total metal content and cellular compartmentalisation of manganese, iron, copper and zinc in the degenerating substantia nigra, disease-affected but non-degenerating fusiform gyrus, and unaffected occipital cortex in the post mortem Parkinson's disease brain compared with age-matched controls. An expected increase in iron and a decrease in copper concentration was isolated to the soluble cellular fraction, encompassing both interstitial and cytosolic metals and metal-binding proteins, rather than the membrane-associated or insoluble fractions. Manganese and zinc levels did not differ between experimental groups. Altered Fe and Cu levels were unrelated to Braak pathological staging in our cases of late-stage (Braak stage V and VI) disease. The data supports our hypothesis that regional alterations in Fe and Cu, and in proteins that utilise these metals, contribute to the regional selectively of neuronal vulnerability in this disorder.
Collapse
Affiliation(s)
- Sian Genoud
- Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Blaine R Roberts
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Adam P Gunn
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Glenda M Halliday
- Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia. and Neuroscience Research Australia, Randwick, NSW 2031, Australia and School of Medical Sciences, University of New South Wales, NSW 2052, Australia
| | - Simon J G Lewis
- Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia. and Healthy Brain Ageing Program, University of Sydney, NSW 2006, Australia and Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Helen J Ball
- Bosch Institute, University of Sydney, Camperdown, NSW 2006, Australia
| | - Dominic J Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia. and Elemental Bio-imaging Facility, University of Technology Sydney, Broadway, NSW 2007, Australia and Department of Pathology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kay L Double
- Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
167
|
Sashourpour M, Zahri S, Radjabian T, Ruf V, Pan-Montojo F, Morshedi D. A study on the modulation of alpha-synuclein fibrillation by Scutellaria pinnatifida extracts and its neuroprotective properties. PLoS One 2017; 12:e0184483. [PMID: 28957336 PMCID: PMC5619708 DOI: 10.1371/journal.pone.0184483] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/24/2017] [Indexed: 01/08/2023] Open
Abstract
Aggregation of alpha-synuclein (α-SN) is a key pathogenic event in Parkinson's disease (PD) leading to dopaminergic degeneration. The identification of natural compounds inhibiting α-SN aggregation may have a major role in treating PD. Different Scutellaria species are known as valuable medicinal plants, primarily due to their high flavonoid levels. Scutellaria pinnatifida (S. pinnatifida) is endemic to Iran; however, the knowledge of its pharmaceutical properties is limited. Here we report that S. pinnatifida extracts have an anti-fibrillation effect on α-SN aggregation and neuroprotective properties on PC12 and primary dopaminergic neurons. Treatment during α-SN fibril formation with S. pinnatifida extracts showed that the extractions performed with dichloromethane (DCMEx) and n-butanol (BuOHEx) strongly inhibited α-SN fibrillation. TLC-based analysis revealed that S. pinnatifida contains a great amount of flavonoids with high antioxidant properties as shown using a radical scavenging assay. Further analysis using HPLC and Mass spectroscopy on the DCMEx revealed the presence of baicalein in this extract. We then selected the more efficient extracts based on cell viability and ROS scavenging on PC12 cells and tested their neuroprotective properties on primary dopaminergic neurons. Our results showed the extracts strongly protected against α-SN oligomers. Surprisingly, they also neutralized the severe toxicity of paraquat. Therefore, S. pinnatifida may be a potential valuable medicinal herb for further studies related to the treatment of PD.
Collapse
Affiliation(s)
- Mahdyeh Sashourpour
- Department of Biology, Faculty of Science, Mohaghegh Ardabili University, Ardabil, Iran
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saber Zahri
- Department of Biology, Faculty of Science, Mohaghegh Ardabili University, Ardabil, Iran
| | - Tayebeh Radjabian
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilian University, Munich, Germany
| | - Francisco Pan-Montojo
- Department of Neurology, University Hospital, LMU, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
168
|
Li X, Zhang Y, Wang Y, Xu J, Xin P, Meng Y, Wang Q, Kuang H. The Mechanisms of Traditional Chinese Medicine Underlying the Prevention and Treatment of Parkinson's Disease. Front Pharmacol 2017; 8:634. [PMID: 28970800 PMCID: PMC5609571 DOI: 10.3389/fphar.2017.00634] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/28/2017] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD), characterized with bradykinesia, static tremor, rigidity and disturbances in balance, is the second most common neurodegenerative disorder. Along with the largely aging population in the world, the incidence is increasing year by year, which imposes the negative impacts on patients, their families and the whole society. Traditional Chinese medicine (TCM) has a positive prospect for the prevention and cure of PD due to its advantages of less side effects and multi-target effects. At present, the pathogenesis of PD is not yet fully discovered. This paper elaborates the mechanisms of TCM underlying the prevention and treatment of PD with regards to the inhibition of oxidative stress, the regulation of mitochondrial dysfunction, the reduction of toxic excitatory amino acids (EAA), the inhibition of neuroinflammation, the inhibition of neuronal apoptosis, and the inhibition of abnormal protein aggregation.
Collapse
Affiliation(s)
- Xiaoliang Li
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China.,Science of Chinese Materia Medica, Jiamusi College, Heilongjiang University of Chinese MedicineJiamusi, China
| | - YaNan Zhang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - Yu Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - Jing Xu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - Ping Xin
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - YongHai Meng
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - Qiuhong Wang
- Science of Processing Chinese Materia Medica, College of Pharmacy, Guangdong Pharmaceutical UniversityGuangzhou, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| |
Collapse
|
169
|
Perez-Urrutia N, Mendoza C, Alvarez-Ricartes N, Oliveros-Matus P, Echeverria F, Grizzell JA, Barreto GE, Iarkov A, Echeverria V. Intranasal cotinine improves memory, and reduces depressive-like behavior, and GFAP + cells loss induced by restraint stress in mice. Exp Neurol 2017. [DOI: 10.1016/j.expneurol.2017.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
170
|
Kim DS, Choi HI, Wang Y, Luo Y, Hoffer BJ, Greig NH. A New Treatment Strategy for Parkinson's Disease through the Gut-Brain Axis: The Glucagon-Like Peptide-1 Receptor Pathway. Cell Transplant 2017; 26:1560-1571. [PMID: 29113464 PMCID: PMC5680957 DOI: 10.1177/0963689717721234] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
Molecular communications in the gut-brain axis, between the central nervous system and the gastrointestinal tract, are critical for maintaining healthy brain function, particularly in aging. Epidemiological analyses indicate type 2 diabetes mellitus (T2DM) is a risk factor for neurodegenerative disorders including Alzheimer's disease (AD) and Parkinson's diseases (PD) for which aging shows a major correlative association. Common pathophysiological features exist between T2DM, AD, and PD, including oxidative stress, inflammation, insulin resistance, abnormal protein processing, and cognitive decline, and suggest that effective drugs for T2DM that positively impact the gut-brain axis could provide an effective treatment option for neurodegenerative diseases. Glucagon-like peptide-1 (GLP-1)-based antidiabetic drugs have drawn particular attention as an effectual new strategy to not only regulate blood glucose but also decrease body weight by reducing appetite, which implies that GLP-1 could affect the gut-brain axis in normal and pathological conditions. The neurotrophic and neuroprotective effects of GLP-1 receptor (R) stimulation have been characterized in numerous in vitro and in vivo preclinical studies using GLP-1R agonists and dipeptidyl peptidase-4 inhibitors. Recently, the first open label clinical study of exenatide, a long-acting GLP-1 agonist, in the treatment of PD showed long-lasting improvements in motor and cognitive function. Several double-blind clinical trials of GLP-1R agonists including exenatide in PD and other neurodegenerative diseases are already underway or are about to be initiated. Herein, we review the physiological role of the GLP-1R pathway in the gut-brain axis and the therapeutic strategy of GLP-1R stimulation for the treatment of neurodegenerative diseases focused on PD, for which age is the major risk factor.
Collapse
Affiliation(s)
- Dong Seok Kim
- Peptron Inc., Yuseong-gu, Daejeon, Republic of Korea
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ho-Il Choi
- Peptron Inc., Yuseong-gu, Daejeon, Republic of Korea
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yu Luo
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nigel H. Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
171
|
Yin WL, Yin WG, Huang BS, Wu LX. Neuroprotective effects of lentivirus-mediated cystathionine-beta-synthase overexpression against 6-OHDA-induced parkinson's disease rats. Neurosci Lett 2017; 657:45-52. [DOI: 10.1016/j.neulet.2017.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/16/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
|
172
|
Guo Q, You H, Yang X, Lin B, Zhu Z, Lu Z, Li X, Zhao Y, Mao L, Shen S, Cheng H, Zhang J, Deng L, Fan J, Xi Z, Li R, Li CM. Functional single-walled carbon nanotubes 'CAR' for targeting dopamine delivery into the brain of parkinsonian mice. NANOSCALE 2017; 9:10832-10845. [PMID: 28726961 DOI: 10.1039/c7nr02682j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Current treatments for Parkinson's disease (PD) are limited, partly due to the difficulties posed by the blood brain barrier (BBB) when delivering drugs to the brain. Herein, we explore the feasibility and efficacy of functional single-walled carbon nanotubes 'CAR' (SWCNT-PEGs-Lf) which carry and target-deliver dopamine (DA) to the brain in PD mice for treatment. SWCNTs can penetrate the cell-membrane remarkably, with the characteristics including high drug-loading and pH-dependent therapeutic unloading capacities. It has been reported that polyethylene glycol (PEG)-coated SWCNTs could increase the circulation time and thus prolong the concentration gradient of SWCNTs to the brain. Besides, an obvious lactoferrin-nanoparticle (Lf-NP) accumulation in the striatum, wherein the pharmacological target site of PD has been reported, a dual modification of PEG and Lf onto SWCNTs was applied and thus a specific 'CAR' to carry DA. The results from in vitro studies demonstrate that with 20 mol L-1 DA loaded onto SWCNT-polyethylene glycol (PEGs) in addition to 100 μmol L-1 6-hydroxydopamine (6-OHDA), the activity of PC12 cells increases significantly (p < 0.05), and that the lactate dehydrogenase (LDH) levels and reactive oxygen species (ROS) content also significantly decrease (p < 0.01). Furthermore, the levels of oxidative stress, tumor necrosis factor (TNF)-α and interleukin (IL)-1β are all reduced significantly in PD mice and the CAR-25 mg kg-1 DA group in comparison with that in 6-OHDA-lesioned mice with saline and 6-OHDA-lesioned mice, as well as the Tyrosine hydroxylase-immunoreactive (TH-ir) density increased (p < 0.01). The toxicity of CAR was in vitro and in vivo investigated, showing that the safe dose of SWCNT-PEG exposure to PC12 cells was 6.25 μg μl-1 or lower with a higher metabolic activity in comparison with that in the control group and the safe dose of CAR in the mice experiments was 3.25 mg kg-1 or less, given by intraperitoneal injection with a lower level of oxidative stress and inflammatory responses in comparison with that in the control group. This study suggests that 25 mg kg-1 DA loaded onto 3.25 mg kg-1 CAR can alleviate the oxidative stress and inflammatory responses in parkinsonian mice and increase the TH-ir density in the striatum.
Collapse
Affiliation(s)
- Qing Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Prog Neurobiol 2017; 155:76-95. [DOI: 10.1016/j.pneurobio.2015.12.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
|
174
|
Perez-Leal O, Barrero CA, Merali S. Pharmacological stimulation of nuclear factor (erythroid-derived 2)-like 2 translation activates antioxidant responses. J Biol Chem 2017; 292:14108-14121. [PMID: 28684421 DOI: 10.1074/jbc.m116.770925] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/05/2017] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the master regulator of the antioxidant response, and its function is tightly regulated at the transcriptional, translational, and post-translational levels. It is well-known that Nrf2 is regulated at the protein level by proteasomal degradation via Kelch-like ECH-associated protein 1 (Keap1), but how Nrf2 is regulated at the translational level is less clear. Here, we show that pharmacological stimulation increases Nrf2 levels by overcoming basal translational repression. We developed a novel reporter assay that enabled identification of natural compounds that induce Nrf2 translation by a mechanism independent of Keap1-mediated degradation. Apigenin, resveratrol, and piceatannol all induced Nrf2 translation. More importantly, the pharmacologically induced Nrf2 overcomes Keap1 regulation, translocates to the nucleus, and activates the antioxidant response. We conclude that translational regulation controls physiological levels of Nrf2, and this can be modulated by apigenin, resveratrol, and piceatannol. Also, targeting this mechanism with novel compounds could provide new insights into prevention and treatment of multiple diseases in which oxidative stress plays a significant role.
Collapse
Affiliation(s)
- Oscar Perez-Leal
- From the Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140.
| | - Carlos Alberto Barrero
- From the Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140
| | - Salim Merali
- From the Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140.
| |
Collapse
|
175
|
Pathogenic Upregulation of Glial Lipocalin-2 in the Parkinsonian Dopaminergic System. J Neurosci 2017; 36:5608-22. [PMID: 27194339 DOI: 10.1523/jneurosci.4261-15.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/13/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Lipocalin-2 (LCN2) is a member of the highly heterogeneous secretory protein family of lipocalins and increases in its levels can contribute to neurodegeneration in the adult brain. However, there are no reports on the role of LCN2 in Parkinson's disease (PD). Here, we report for the first time that LCN2 expression is increased in the substantia nigra (SN) of patients with PD. In mouse brains, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment for a neurotoxin model of PD significantly upregulated LCN2 expression, mainly in reactive astrocytes in both the SN and striatum. The increased LCN2 levels contributed to neurotoxicity and neuroinflammation, resulting in disruption of the nigrostriatal dopaminergic (DA) projection and abnormal locomotor behaviors, which were ameliorated in LCN2-deficient mice. Similar to the effects of MPTP treatment, LCN2-induced neurotoxicity was also observed in the 6-hydroxydopamine (6-OHDA)-treated animal model of PD. Moreover, treatment with the iron donor ferric citrate (FC) and the iron chelator deferoxamine mesylate (DFO) increased and decreased, respectively, the LCN2-induced neurotoxicity in vivo In addition to the in vivo results, 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity in cocultures of mesencephalic neurons and astrocytes was reduced by LCN2 gene deficiency in the astrocytes and conditioned media derived from MPP(+)-treated SH-SY5Y neuronal enhanced glial expression of LCN2 in vitro Therefore, our results demonstrate that astrocytic LCN2 upregulation in the lesioned DA system may play a role as a potential pathogenic factor in PD and suggest that inhibition of LCN2 expression or activity may be useful in protecting the nigrostriatal DA system in the adult brain. SIGNIFICANCE STATEMENT Lipocalin-2 (LCN2), a member of the highly heterogeneous secretory protein family of lipocalins, may contribute to neuroinflammation and neurotoxicity in the brain. However, LCN2 expression and its role in Parkinson's disease (PD) are largely unknown. Here, we report that LCN2 is upregulated in the substantia nigra of patients with PD and neurotoxin-treated animal models of PD. Our results suggest that LCN2 upregulation might be a potential pathogenic mechanism of PD, which would result in disruption of the nigrostriatal dopaminergic system through neurotoxic iron accumulation and neuroinflammation. Therefore, inhibition of LCN2 expression or activity may be useful in protecting the nigrostriatal dopaminergic projection in PD.
Collapse
|
176
|
Venkatesh Gobi V, Rajasankar S, Ramkumar M, Dhanalakshmi C, Manivasagam T, Justin Thenmozhi A, Essa MM, Chidambaram R, Kalandar A. Agaricus blazei extract abrogates rotenone-induced dopamine depletion and motor deficits by its anti-oxidative and anti-inflammatory properties in Parkinsonic mice. Nutr Neurosci 2017. [DOI: 10.1080/1028415x.2017.1337290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Muthu Ramkumar
- Department of Anatomy, Bharath University, Selaiyur, Chennai, Tamil Nadu 600073, India
| | - Chinnasamy Dhanalakshmi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
- Food and Brain Research Foundation, Chennai, Tamil Nadu 600094, India
| | - Ranganathan Chidambaram
- Department of Radiology, Sri Lakshminarayana Institute of Medical Sciences, Puducherry, India
| | - Ameer Kalandar
- College of Health and Medical Science, Haramaya University, Dire Dawa, Ethiopia
| |
Collapse
|
177
|
Zilberter Y, Zilberter M. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction. J Neurosci Res 2017; 95:2217-2235. [PMID: 28463438 DOI: 10.1002/jnr.24064] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022]
Abstract
Hypometabolism, characterized by decreased brain glucose consumption, is a common feature of many neurodegenerative diseases. Initial hypometabolic brain state, created by characteristic risk factors, may predispose the brain to acquired epilepsy and sporadic Alzheimer's and Parkinson's diseases, which are the focus of this review. Analysis of available data suggests that deficient glucose metabolism is likely a primary initiating factor for these diseases, and that resulting neuronal dysfunction further promotes the metabolic imbalance, establishing an effective positive feedback loop and a downward spiral of disease progression. Therefore, metabolic correction leading to the normalization of abnormalities in glucose metabolism may be an efficient tool to treat the neurological disorders by counteracting their primary pathological mechanisms. Published and preliminary experimental results on this approach for treating Alzheimer's disease and epilepsy models support the efficacy of metabolic correction, confirming the highly promising nature of the strategy. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuri Zilberter
- Aix-Marseille Université, INSERM UMR1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California, 94158, USA
| |
Collapse
|
178
|
Taschenberger G, Tereshchenko J, Kügler S. A MicroRNA124 Target Sequence Restores Astrocyte Specificity of gfaABC 1D-Driven Transgene Expression in AAV-Mediated Gene Transfer. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:13-25. [PMID: 28918015 PMCID: PMC5476465 DOI: 10.1016/j.omtn.2017.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 12/03/2022]
Abstract
Experimentally restricting transgene expression exclusively to astrocytes has proven difficult. Using adeno-associated-virus-mediated gene transfer, we assessed two commonly used glial fibrillary acidic protein promoters: the full-length version gfa2 (2,210-bp human glial fibrillary acidic protein [GFAP] promoter) and the truncated variant gfaABC1D (681-bp GFAP promoter). The capacity to drive efficient, but also cell-type specific, expression of the EGFP in astrocytes was tested both in vitro in rat primary cortical cultures as well as in vivo in the rat striatum. We observed an efficient, but not entirely astrocyte-specific, gfa2-driven reporter expression. gfaABC1D exhibited a weaker activity, and most importantly, off-target, neuronal expression of the transgene occurred in a larger fraction of cells. Therefore, we explored the potential of a microRNA (miR)-specific target-sequence-based approach for abolishing off-target expression. When miR124 target sequences were incorporated into the 3′ UTR, neuronal gene expression was effectively silenced. However, unexpectedly, the insertion of an additional sequence in the 3′ UTR clearly diminished transgene expression. In conclusion, the gfaABC1D promoter on its own is not sufficient to specifically target transgene expression to astrocytes and is not well suited for AAV-based gene targeting, even if short promoter sequences are required. The combination with a miR de-targeting sequence represents a promising experimental strategy that eliminates off-target, neuronal expression.
Collapse
Affiliation(s)
- Grit Taschenberger
- Center of Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Goettingen, Germany; Department of Neurology, University Medical Center Goettingen, Waldweg 33, 37073 Goettingen, Germany.
| | - Julia Tereshchenko
- Department of Neurology, University Medical Center Goettingen, Waldweg 33, 37073 Goettingen, Germany
| | - Sebastian Kügler
- Center of Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Goettingen, Germany; Department of Neurology, University Medical Center Goettingen, Waldweg 33, 37073 Goettingen, Germany
| |
Collapse
|
179
|
Liu B, Lv C, Zhang J, Liu Y, Sun J, Cheng X, Mao W, Ma Y, Li S. Effects of eldepryl on glial cell proliferation and activation in the substantia nigra and striatum in a rat model of Parkinson’s disease. Neurol Res 2017; 39:459-467. [PMID: 28276259 DOI: 10.1080/01616412.2017.1297911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bin Liu
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Chaonan Lv
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Jinxia Zhang
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Ying Liu
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Jing Sun
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Xiaohua Cheng
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Wenjing Mao
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Yuanyuan Ma
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Shiying Li
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| |
Collapse
|
180
|
Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Smith R, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Wolterink G, Angeli K, Fritsche E, Hernandez-Jerez AF, Leist M, Mantovani A, Menendez P, Pelkonen O, Price A, Viviani B, Chiusolo A, Ruffo F, Terron A, Bennekou SH. Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson's disease and childhood leukaemia. EFSA J 2017; 15:e04691. [PMID: 32625422 PMCID: PMC7233269 DOI: 10.2903/j.efsa.2017.4691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In 2013, EFSA published a literature review on epidemiological studies linking exposure to pesticides and human health outcome. As a follow up, the EFSA Panel on Plant Protection Products and their residues (PPR Panel) was requested to investigate the plausible involvement of pesticide exposure as a risk factor for Parkinson's disease (PD) and childhood leukaemia (CHL). A systematic literature review on PD and CHL and mode of actions for pesticides was published by EFSA in 2016 and used as background documentation. The Panel used the Adverse Outcome Pathway (AOP) conceptual framework to define the biological plausibility in relation to epidemiological studies by means of identification of specific symptoms of the diseases as AO. The AOP combines multiple information and provides knowledge of biological pathways, highlights species differences and similarities, identifies research needs and supports regulatory decisions. In this context, the AOP approach could help in organising the available experimental knowledge to assess biological plausibility by describing the link between a molecular initiating event (MIE) and the AO through a series of biologically plausible and essential key events (KEs). As the AOP is chemically agnostic, tool chemical compounds were selected to empirically support the response and temporal concordance of the key event relationships (KERs). Three qualitative and one putative AOP were developed by the Panel using the results obtained. The Panel supports the use of the AOP framework to scientifically and transparently explore the biological plausibility of the association between pesticide exposure and human health outcomes, identify data gaps, define a tailored testing strategy and suggests an AOP's informed Integrated Approach for Testing and Assessment (IATA).
Collapse
|
181
|
New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem Toxicol 2017; 103:41-55. [PMID: 28237775 DOI: 10.1016/j.fct.2017.02.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 12/21/2022]
Abstract
Ferulic acid, a natural phytochemical has gained importance as a potential therapeutic agent by virtue of its easy commercial availability, low cost and minimal side-effects. It is a derivative of curcumin and possesses the necessary pharmacokinetic properties to be retained in the general circulation for several hours. The therapeutic effects of ferulic acid are mediated through its antioxidant and anti-inflammatory properties. It exhibits different biological activities such as anti-inflammatory, anti-apoptotic, anti-carcinogenic, anti-diabetic, hepatoprotective, cardioprotective, neuroprotective actions, etc. The current review addresses its therapeutic effects under different pathophysiological conditions (eg. cancer, cardiomyopathy, skin disorders, brain disorders, viral infections, diabetes etc.).
Collapse
|
182
|
Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJA, Kraneveld AD. Exploring Braak's Hypothesis of Parkinson's Disease. Front Neurol 2017; 8:37. [PMID: 28243222 PMCID: PMC5304413 DOI: 10.3389/fneur.2017.00037] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder for which there is no cure. Most patients suffer from sporadic PD, which is likely caused by a combination of genetic and environmental factors. Braak’s hypothesis states that sporadic PD is caused by a pathogen that enters the body via the nasal cavity, and subsequently is swallowed and reaches the gut, initiating Lewy pathology (LP) in the nose and the digestive tract. A staging system describing the spread of LP from the peripheral to the central nervous system was also postulated by the same research group. There has been criticism to Braak’s hypothesis, in part because not all patients follow the proposed staging system. Here, we review literature that either supports or criticizes Braak’s hypothesis, focused on the enteric route, digestive problems in patients, the spread of LP on a tissue and a cellular level, and the toxicity of the protein αSynuclein (αSyn), which is the major constituent of LP. We conclude that Braak’s hypothesis is supported by in vitro, in vivo, and clinical evidence. However, we also conclude that the staging system of Braak only describes a specific subset of patients with young onset and long duration of the disease.
Collapse
Affiliation(s)
- Carmen D Rietdijk
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Nutricia Research, Utrecht, Netherlands
| | - Richard J A van Wezel
- Department of Biomedical Signals and Systems, MIRA, University of Twente, Enschede, Netherlands; Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , Netherlands
| |
Collapse
|
183
|
Ketamine suppresses the substance P-induced production of IL-6 and IL-8 by human U373MG glioblastoma/astrocytoma cells. Int J Mol Med 2017; 39:687-692. [PMID: 28204809 DOI: 10.3892/ijmm.2017.2875] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/19/2017] [Indexed: 11/05/2022] Open
Abstract
The neuropeptide substance P (SP) is an important mediator of neurogenic inflammation within the central and peripheral nervous systems. SP has been shown to induce the expression of pro-inflammatory cytokines implicated in the pathogenesis of several disorders of the human brain via the neurokinin-1 receptor (NK-1R). Ketamine, an intravenous anesthetic agent, functions as a competitive antagonist of the excitatory neurotransmission N-methyl-D‑aspartate (NMDA) receptor, and also antagonizes the NK-1R by interfering with the binding of SP. In the present study, we investigated the anti-inflammatory effects of ketamine on the SP-induced activation of a human astrocytoma cell line, U373MG, which expresses high levels of NK-1R. The results from our experiments indicated that ketamine suppressed the production of interleukin (IL)-6 and IL-8 by the U373MG cells. Furthermore, ketamine inhibited the SP-induced activation of extracellular signal‑regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). Taken together, these observations suggest that ketamine may suppress the SP-induced activation (IL-6 and IL-8 production) of U373MG cells by inhibiting the phosphorylation of signaling molecules (namely ERK1/2, p38 MAPK and NF-κB), thereby exerting anti‑inflammatory effects. Thus, ketamine may modulate SP-induced inflammatory responses by NK-1R‑expressing cells through the suppression of signaling molecules (such as ERK1/2, p38 MAPK and NF-κB).
Collapse
|
184
|
Destination Brain: the Past, Present, and Future of Therapeutic Gene Delivery. J Neuroimmune Pharmacol 2017; 12:51-83. [PMID: 28160121 DOI: 10.1007/s11481-016-9724-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
Neurological diseases and disorders (NDDs) present a significant societal burden and currently available drug- and biological-based therapeutic strategies have proven inadequate to alleviate it. Gene therapy is a suitable alternative to treat NDDs compared to conventional systems since it can be tailored to specifically alter select gene expression, reverse disease phenotype and restore normal function. The scope of gene therapy has broadened over the years with the advent of RNA interference and genome editing technologies. Consequently, encouraging results from central nervous system (CNS)-targeted gene delivery studies have led to their transition from preclinical to clinical trials. As we shift to an exciting gene therapy era, a retrospective of available literature on CNS-associated gene delivery is in order. This review is timely in this regard, since it analyzes key challenges and major findings from the last two decades and evaluates future prospects of brain gene delivery. We emphasize major areas consisting of physiological and pharmacological challenges in gene therapy, function-based selection of a ideal cellular target(s), available therapy modalities, and diversity of viral vectors and nanoparticles as vehicle systems. Further, we present plausible answers to key questions such as strategies to circumvent low blood-brain barrier permeability and most suitable CNS cell types for targeting. We compare and contrast pros and cons of the tested viral vectors in the context of delivery systems used in past and current clinical trials. Gene vector design challenges are also evaluated in the context of cell-specific promoters. Key challenges and findings reported for recent gene therapy clinical trials, assessing viral vectors and nanoparticles are discussed from the perspective of bench to bedside gene therapy translation. We conclude this review by tying together gene delivery challenges, available vehicle systems and comprehensive analyses of neuropathogenesis to outline future prospects of CNS-targeted gene therapies.
Collapse
|
185
|
Su R, Sun M, Wang W, Zhang J, Zhang L, Zhen J, Qian Y, Zheng Y, Wang X. A Novel Immunosuppressor, (5R)-5-Hydroxytriptolide, Alleviates Movement Disorder and Neuroinflammation in a 6-OHDA Hemiparkinsonian Rat Model. Aging Dis 2017; 8:31-43. [PMID: 28203480 PMCID: PMC5287386 DOI: 10.14336/ad.2016.0929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common age-related neurodegenerative diseases. Promising therapies for PD still need to be explored. Immune dysfunction has been found to be involved in PD pathogenesis. Here, a novel immunosuppressor, (5R)-5-hydroxytriptolide (LLDT8), was used to treat 6-hydroxydopamine (6-OHDA)-induced hemiparkinson rats. We found that oral administration of LLDT8 significantly alleviated apomorphine-induced rotations at a dose of 125 µg/kg, and improved performance in cylinder and rotarod tests at a lower dose of 31.25 µg/kg, in 6-OHDA hemiparkinsonian rats. Moreover, loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the 6-OHDA rat was attenuated in response to LLDT8 treatment in a dose-dependent manner. In addition, inflammatory factors IL-1β, IL-6 and TNF-α, were significantly inhibited in LLDT8-treated hemiparkisonian rats, compared with vehicle. Notably, the level of dopamine (DA) in the striatum of PD rats was restored by LLDT8 treatment. Furthermore, we also detected that the disequilibrium of peripheral lymphocytes was reversed by LLDT8 administration. Taken together, the results imply that the immunosuppressor, LLDT8, can rescue dopaminergic neurodegeneration in 6-OHDA hemiparkinsonian rats, thus providing a potential therapeutic strategy for PD.
Collapse
Affiliation(s)
- Ruijun Su
- Department of Neurobiology, and
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China.
- Beijing Institute for Brain Disorders, Beijing100069, China.
| | - Min Sun
- Department of Neurobiology, and
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China.
- Beijing Institute for Brain Disorders, Beijing100069, China.
| | - Wei Wang
- Department of Neurobiology, and
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China.
- Beijing Institute for Brain Disorders, Beijing100069, China.
| | - Jianliang Zhang
- Department of Neurobiology, and
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China.
| | - Li Zhang
- Department of Neurobiology, and
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China.
- Beijing Institute for Brain Disorders, Beijing100069, China.
| | - Junli Zhen
- Department of Neurobiology, and
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China.
- Beijing Institute for Brain Disorders, Beijing100069, China.
| | - Yanjing Qian
- Department of Neurobiology, and
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China.
- Beijing Institute for Brain Disorders, Beijing100069, China.
| | - Yan Zheng
- Department of Physiology,
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China.
- Beijing Institute for Brain Disorders, Beijing100069, China.
| | - Xiaomin Wang
- Department of Neurobiology, and
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China.
- Beijing Institute for Brain Disorders, Beijing100069, China.
| |
Collapse
|
186
|
Stefani A, Trendafilov V, Liguori C, Fedele E, Galati S. Subthalamic nucleus deep brain stimulation on motor-symptoms of Parkinson's disease: Focus on neurochemistry. Prog Neurobiol 2017; 151:157-174. [PMID: 28159574 DOI: 10.1016/j.pneurobio.2017.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/19/2022]
Abstract
Deep brain stimulation (DBS) has become a standard therapy for Parkinson's disease (PD) and it is also currently under investigation for other neurological and psychiatric disorders. Although many scientific, clinical and ethical issues are still unresolved, DBS delivered into the subthalamic nucleus (STN) has improved the quality of life of several thousands of patients. The mechanisms underlying STN-DBS have been debated extensively in several reviews; less investigated are the biochemical consequences, which are still under scrutiny. Crucial and only partially understood, for instance, are the complex interplays occurring between STN-DBS and levodopa (LD)-centred therapy in the post-surgery follow-up. The main goal of this review is to address the question of whether an improved motor control, based on STN-DBS therapy, is also achieved through the additional modulation of other neurotransmitters, such as noradrenaline (NA) and serotonin (5-HT). A critical issue is to understand not only acute DBS-mediated effects, but also chronic changes, such as those involving cyclic nucleotides, capable of modulating circuit plasticity. The present article will discuss the neurochemical changes promoted by STN-DBS and will document the main results obtained in microdialysis studies. Furthermore, we will also examine the preliminary achievements of voltammetry applied to humans, and discuss new hypothetical investigational routes, taking into account novel players such as glia, or subcortical regions such as the pedunculopontine (PPN) area. Our further understanding of specific changes in brain chemistry promoted by STN-DBS would further disseminate its utilisation, at any stage of disease, avoiding an irreversible lesioning approach.
Collapse
Affiliation(s)
- A Stefani
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - V Trendafilov
- Laboratory for Biomedical Neurosciences (LBN), Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland
| | - C Liguori
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - E Fedele
- Department of Pharmacy, Pharmacology and Toxicology Unit and Center of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy
| | - S Galati
- Laboratory for Biomedical Neurosciences (LBN), Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland.
| |
Collapse
|
187
|
de Oliveira MR, de Souza ICC, Fürstenau CR. Carnosic Acid Induces Anti-Inflammatory Effects in Paraquat-Treated SH-SY5Y Cells Through a Mechanism Involving a Crosstalk Between the Nrf2/HO-1 Axis and NF-κB. Mol Neurobiol 2017; 55:890-897. [DOI: 10.1007/s12035-017-0389-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
|
188
|
Impact of serum uric acid, albumin and their interaction on Parkinson’s disease. Neurol Sci 2016; 38:331-336. [DOI: 10.1007/s10072-016-2738-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/12/2016] [Indexed: 01/08/2023]
|
189
|
Sznejder-Pachołek A, Joniec-Maciejak I, Wawer A, Ciesielska A, Mirowska-Guzel D. The effect of α-synuclein on gliosis and IL-1α, TNFα, IFNγ, TGFβ expression in murine brain. Pharmacol Rep 2016; 69:242-251. [PMID: 28126640 DOI: 10.1016/j.pharep.2016.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 02/09/2023]
Abstract
BACKGROUND Alpha - synuclein (ASN) is the principal component of Lewy pathology and strongly influences on the pathogenesis of Parkinson's disease (PD). The increased level of ASN protein causes microglial response. The reactive microglial cells may actively participate in the damaging of dopaminergic neurons. The data suggests that ASN accumulation in astrocytes might damage these cells in the substantia nigra pars compacta (SN) and promotes degeneration of dopaminergic neurons in SN. We examined the potential role of recombinant ASN monomers as a major pathogenic factor causing the inflammatory response in the central nervous system. METHODS Mice were bilaterally infused by human ASN monomers into the striatum (ST) or SN (single treatment was 4μg/structure, 8μg per brain) and decapitated after 1, 4 or 12 weeks post injection. The changes in the level of inflammatory factors in ST were evaluated using Real-Time PCR and Western Blot method. The analysis of morphological changes of glial cells was performed by immunohistochemical staining. RESULTS We observed a strong activation of microglia cells in ST and increased expression of striatal interleukin 1α, tumor necrosis factor alpha and interferon gamma after ASN injection into the ST. We noticed an increase in striatal glial fibrillary acidic protein mRNA level 4 weeks after ASN injection into the ST. Injection of ASN into the SN led to an increase of striatal transforming growth factor beta mRNA level and has no influence on striatal glial fibrillary acidic protein mRNA level. CONCLUSION Our results suggest that both the microglia activation and supressing astrocytes play a crucial role in ASN-related dopaminergic neurotoxicity.
Collapse
Affiliation(s)
- Anna Sznejder-Pachołek
- Department of Experimental and Clinical Pharmacology, Medical University of Warszawa, Centre for Preclinical Research and Technology CePT, Warszawa, Poland.
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Medical University of Warszawa, Centre for Preclinical Research and Technology CePT, Warszawa, Poland.
| | - Adriana Wawer
- Department of Experimental and Clinical Pharmacology, Medical University of Warszawa, Centre for Preclinical Research and Technology CePT, Warszawa, Poland.
| | - Agnieszka Ciesielska
- Department of Neurosurgery, University of California at San Francisco, San Francisco, CA, USA.
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warszawa, Centre for Preclinical Research and Technology CePT, Warszawa, Poland; 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warszawa, Poland.
| |
Collapse
|
190
|
Ozkan A, Parlak H, Tanriover G, Dilmac S, Ulker SN, Birsen I, Agar A. The protective mechanism of docosahexaenoic acid in mouse model of Parkinson: The role of hemeoxygenase. Neurochem Int 2016; 101:S0197-0186(16)30159-0. [PMID: 27984168 DOI: 10.1016/j.neuint.2016.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is characterized by degeneration of the dopaminergic neurons in substantia nigra (SN). Its major clinical symptoms are tremor, rigidity, bradykinesia and postural instability. Docosahexaenoic acid (DHA) is an essential fatty acid for neural functions that resides within the neural membrane. A decline in fatty acid concentration is observed in case of neurodegenerative diseases such as PD. The present study aimed to explore the role of the heme oxygenase (HO) enzyme in protective effects of DHA administration in an experimental model of PD by using the neurotoxin 1-Methly-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Three-month old male C57BL/6 mice were randomly divided into 4 groups as Control, DHA-treated (DHA), MPTP-injected (MPTP) and DHA-treated + MPTP injected (DHA + MPTP). DHA was administered daily (36 mg kg-1 day-1) by gavage to DHA and DHA + MPTP groups for 30 days. On the 23rd day of DHA administration, MPTP was intraperitoneally injected at a dose of 4 × 20 mg kg-1 with 2-hr. intervals. Motor activities of mice were evaluated by pole test, locomotor activity and rotarod tests on the 7th day of the utilization of experimental Parkinson's model. Total brain tissues were used in immunohistochemical analysis of the tyrosine hydroxylase (TH) and Nuclear factor E2 related factor2 (Nrf2). SN tissues were extracted for biochemical analysis. HO-1 and HO-2 protein levels were detected by western blotting. Further, HO activity was measured by spectrophotometric assay. As an indicator of motor coordination and balance, the rotarod test at 40 rpm showed that MPTP-treated animals exhibited shorter time on the rotating rod mill, which was significantly increased by DHA treatment in DHA + MPTP group. The total locomotor activity, ambulatory movement and total distance were decreased in MPTP group, whereas they were improved upon DHA treatment. The results of the pole test indicating the intensity of the bradykinesia showed that the T-turn and T-total were increased in MPTP group, while DHA treatment significantly shortened both parameters. The number of TH-positive cells in SN was significantly reduced in MPTP group compared to the Control and DHA + MPTP groups. Also, immunoreactive Nrf2 levels were clearly increased in MPTP group compared to DHA + MPTP group. HO-1 expression level decreased in the DHA + MPTP group compared to MPTP group. The results of the present study indicated that DHA has protective effects on dopaminergic neurons in MPTP-induced experimental model of PD. In addition, the pathways of HO-1 and HO-2 might participate in this protective mechanism.
Collapse
Affiliation(s)
- Ayse Ozkan
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey.
| | - Hande Parlak
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Gamze Tanriover
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey
| | - Sayra Dilmac
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey
| | | | - Ilknur Birsen
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Aysel Agar
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| |
Collapse
|
191
|
Okuyama S, Semba T, Toyoda N, Epifano F, Genovese S, Fiorito S, Taddeo VA, Sawamoto A, Nakajima M, Furukawa Y. Auraptene and Other Prenyloxyphenylpropanoids Suppress Microglial Activation and Dopaminergic Neuronal Cell Death in a Lipopolysaccharide-Induced Model of Parkinson's Disease. Int J Mol Sci 2016; 17:ijms17101716. [PMID: 27763495 PMCID: PMC5085747 DOI: 10.3390/ijms17101716] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/28/2016] [Accepted: 10/08/2016] [Indexed: 12/02/2022] Open
Abstract
In patients with Parkinson’s disease (PD), hyperactivated inflammation in the brain, particularly microglial hyperactivation in the substantia nigra (SN), is reported to be one of the triggers for the delayed loss of dopaminergic neurons and sequential motor functional impairments. We previously reported that (1) auraptene (AUR), a natural prenyloxycoumain, suppressed inflammatory responses including the hyperactivation of microglia in the ischemic brain and inflamed brain, thereby inhibiting neuronal cell death; (2) 7-isopentenyloxycoumarin (7-IP), another natural prenyloxycoumain, exerted anti-inflammatory and neuroprotective effects against excitotoxicity; and (3) 4′-geranyloxyferulic acid (GOFA), a natural prenyloxycinnamic acid, also exerted anti-inflammatory effects. In the present study, using an intranigral lipopolysaccharide (LPS)-induced PD-like mouse model, we investigated whether AUR, 7-IP, and GOFA suppress microglial activation and protect against dopaminergic neuronal cell death in the SN. We successfully showed that these prenyloxyphenylpropanoids exhibited these prospective abilities, suggesting the potential of these compounds as neuroprotective agents for patients with PD.
Collapse
Affiliation(s)
- Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Tomoki Semba
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Nobuki Toyoda
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Francesco Epifano
- Department of Pharmacy, University "G. D'Annunzio", Chieti-Pescara Via dei Vestini 31, Chieti Scalo 66100, Italy.
| | - Salvatore Genovese
- Department of Pharmacy, University "G. D'Annunzio", Chieti-Pescara Via dei Vestini 31, Chieti Scalo 66100, Italy.
| | - Serena Fiorito
- Department of Pharmacy, University "G. D'Annunzio", Chieti-Pescara Via dei Vestini 31, Chieti Scalo 66100, Italy.
| | - Vito Alessandro Taddeo
- Department of Pharmacy, University "G. D'Annunzio", Chieti-Pescara Via dei Vestini 31, Chieti Scalo 66100, Italy.
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| |
Collapse
|
192
|
Xiong C, Li Q, Chen C, Chen Z, Huang W. Neuroprotective effect of crude polysaccharide isolated from the fruiting bodies of Morchella importuna against H2O2-induced PC12 cell cytotoxicity by reducing oxidative stress. Biomed Pharmacother 2016; 83:569-576. [DOI: 10.1016/j.biopha.2016.07.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022] Open
|
193
|
Chu JMT, Lee DKM, Wong DPK, Wong GTC, Yue KKM. Methylglyoxal-induced neuroinflammatory response in in vitro astrocytic cultures and hippocampus of experimental animals. Metab Brain Dis 2016; 31:1055-64. [PMID: 27250968 DOI: 10.1007/s11011-016-9849-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/25/2016] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus is characterized by chronic hyperglycemia and its diverse complications. Hyperglycemia is associated with inflammatory responses in different organs and diabetic patients have a higher risk of developing neurodegenerative disorders. Methylglyoxal is a reactive advanced glycation end product precursor that accumulates in diabetic patients. It induces various stress responses in the central nervous system and causes neuronal dysfunction. Astrocytes are actively involved in maintaining neuronal homeostasis and possibly play a role in protecting the brain against neurodegeneration. However it is not clear whether methylglyoxal exerts any adverse effects towards these astrocytes. In the present study we investigated the effects of methylglyoxal in astrocytic cultures and hippocampi of experimental animals. The cells from the astrocytic line DITNC1 were treated with methylglyoxal for 1 to 24 h. For the in vivo model, 3 months old C57BL/6 mice were treated with methylglyoxal solution for 6 weeks by intraperitoneal injection. Following the treatment, both astrocytes and hippocampi were harvested for MTT assay, Western blot and real time PCR analyses. We found that methylglyoxal induced astrogliosis in DITNC1 astrocytic cultures and C57BL/6 mice. Further, activation of the pro-inflammatory JNK signaling pathway and its downstream effectors c-Jun were observed. Furthermore, increased gene expression of pro-inflammatory cytokines and astrocytic markers were observed from real time PCR analyses. In addition, inhibition of JNK activities resulted in down-regulation of TNF-α gene expression in methylglyoxal treated astrocytes. Our results suggest that methylglyoxal may contribute to the progression of diabetes related neurodegeneration through JNK pathway activation in astrocytes and the subsequent neuroinflammatory responses in the central nervous system.
Collapse
Affiliation(s)
- John M T Chu
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Dicky K M Lee
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Daniella P K Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Gordon T C Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Research Centre of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Kevin K M Yue
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
194
|
Gliyazova NS, Ibeanu GC. The Chemical Molecule B355252 is Neuroprotective in an In Vitro Model of Parkinson's Disease. Cell Mol Neurobiol 2016; 36:1109-22. [PMID: 26649727 DOI: 10.1007/s10571-015-0304-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
Abstract
6-Hydroxydopamine (6-OHDA) is a neurotoxin frequently used to create in vitro and in vivo experimental models of Parkinson's disease (PD), a chronic neurodegenerative disorder largely resulting from damage to the nigrostriatal dopaminergic pathway. No effective drugs or therapies have been developed for this devastating disorder, and current regimens of symptomatic therapeutics only alleviate symptoms temporarily. Therefore, effective treatments that reverse or cure this disorder are urgently needed. The aim of the study described in this report was to investigate the therapeutic impact of B355252, an aryl thiophene sulfonamide chemical entity, in the widely recognized in vitro model of PD, and to characterize the molecular signaling pathways. We show here that 6-OHDA-induced cell death in HT22, a murine neuronal cell model, through a pathway that involves the mitochondria by increasing the levels of reactive oxygen species (ROS), raising intracellular calcium ([Ca(2+)]i), enhancing the release of cytochrome c to the cytosol, and promoting activation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) signaling pathway. More importantly, we found that B355252 protected HT22 neurons against 6-OHDA toxin-induced neuronal cell death by significant attenuation of ROS production, blocking of mitochondrial depolarization, inhibition of cytochrome c release, sequestration of [Ca(2+)]i, modulation of JNK cascade, and strong inhibition of caspase 3/7 cleavage. Overall, this study demonstrates that death of neurons under toxic conditions characteristic of PD can be efficiently halted by B355252 and suggests that further development of the molecule could be potentially beneficial as a therapeutic prevention or treatment option for PD.
Collapse
Affiliation(s)
- Nailya S Gliyazova
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, 27707, USA
| | - Gordon C Ibeanu
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, 27707, USA.
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
195
|
Del-Bel E, Bortolanza M, Dos-Santos-Pereira M, Bariotto K, Raisman-Vozari R. l-DOPA-induced dyskinesia in Parkinson's disease: Are neuroinflammation and astrocytes key elements? Synapse 2016; 70:479-500. [DOI: 10.1002/syn.21941] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Elaine Del-Bel
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
- Department of Physiology; FMRP; São Paulo Brazil
- Department of Neurology and Behavioral Neuroscience; FMRP, Campus USP, University of São Paulo; Av. Bandeirantes 13400 Ribeirão Preto SP 14049-900 Brazil
| | - Mariza Bortolanza
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Maurício Dos-Santos-Pereira
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
- Department of Physiology; FMRP; São Paulo Brazil
| | - Keila Bariotto
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
- Department of Neurology and Behavioral Neuroscience; FMRP, Campus USP, University of São Paulo; Av. Bandeirantes 13400 Ribeirão Preto SP 14049-900 Brazil
| | - Rita Raisman-Vozari
- INSERM UMR 1127, CNRS UMR 7225, UPMC; Thérapeutique Expérimentale de la Neurodégénérescence, Hôpital de la Salpetrière-ICM (Institut du cerveau et de la moelle épinière); Paris France
| |
Collapse
|
196
|
Development and evaluation of a liquid chromatography–mass spectrometry method for rapid, accurate quantitation of malondialdehyde in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1029-1030:205-212. [DOI: 10.1016/j.jchromb.2016.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/05/2023]
|
197
|
Ellwanger JH, Franke SIR, Bordin DL, Prá D, Henriques JAP. Biological functions of selenium and its potential influence on Parkinson's disease. AN ACAD BRAS CIENC 2016; 88:1655-1674. [PMID: 27556332 DOI: 10.1590/0001-3765201620150595] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/28/2015] [Indexed: 03/01/2023] Open
Abstract
Parkinson's disease is characterized by the death of dopaminergic neurons, mainly in the substantia nigra, and causes serious locomotor dysfunctions. It is likely that the oxidative damage to cellular biomolecules is among the leading causes of neurodegeneration that occurs in the disease. Selenium is an essential mineral for proper functioning of the brain, and mainly due to its antioxidant activity, it is possible to exert a special role in the prevention and in the nutritional management of Parkinson's disease. Currently, few researchers have investigated the effects of selenium on Parkinson´s disease. However, it is known that very high or very low body levels of selenium can (possibly) contribute to the pathogenesis of Parkinson's disease, because this imbalance results in increased levels of oxidative stress. Therefore, the aim of this work is to review and discuss studies that have addressed these topics and to finally associate the information obtained from them so that these data and associations serve as input to new research.
Collapse
Affiliation(s)
- Joel H Ellwanger
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul/UFRGS, Campus do Vale, Prédio 43421, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brasil
| | - Silvia I R Franke
- Programa de Pós-Graduação em Promoção da Saúde, Universidade de Santa Cruz do Sul/UNISC, Bloco 42, sala 4206, Av. Independência, 2293, Universitário, 96815-900 Santa Cruz do Sul, RS, Brasil
| | - Diana L Bordin
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul/UFRGS, Campus do Vale, Prédio 43421, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brasil
| | - Daniel Prá
- Programa de Pós-Graduação em Promoção da Saúde, Universidade de Santa Cruz do Sul/UNISC, Bloco 42, sala 4206, Av. Independência, 2293, Universitário, 96815-900 Santa Cruz do Sul, RS, Brasil.,Departamento de Biologia e Farmácia, Universidade de Santa Cruz do Sul/UNISC, Bloco 12, sala 1206, Av. Independência, 2293, Universitário, 96815-900 Santa Cruz do Sul, RS, Brasil
| | - João A P Henriques
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul/UFRGS, Campus do Vale, Prédio 43421, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brasil.,Instituto de Biotecnologia, Universidade de Caxias do Sul/UCS, Rua Francisco Getúlio Vargas, 1130, 95070-560 Caxias do Sul, RS, Brasil
| |
Collapse
|
198
|
Kheradmand A, Nayebi AM, Jorjani M, Khalifeh S, Haddadi R. Effects of WR1065 on 6-hydroxydopamine-induced motor imbalance: Possible involvement of oxidative stress and inflammatory cytokines. Neurosci Lett 2016; 627:7-12. [DOI: 10.1016/j.neulet.2016.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 01/04/2023]
|
199
|
Shi X, Chen YH, Liu H, Qu HD. Therapeutic effects of paeonol on methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-induced Parkinson's disease in mice. Mol Med Rep 2016; 14:2397-404. [PMID: 27484986 PMCID: PMC4991680 DOI: 10.3892/mmr.2016.5573] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Paeonol is a major phenolic compound of the Chinese herb, Cortex Moutan, and is known for its antioxidant, anti-inflammatory and antitumor properties. The present study was designed to investigate the therapeutic potential and underlying mechanisms of paeonol on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p)-induced mouse model of Parkinson's disease (PD). MPTP (25 mg/kg), followed by probenecid (250 mg/kg), was administered via i.p. injection for five consecutive days to induce the mouse model of PD. Paeonol (20 mg/kg) was administrated orally for 21 days. Behavior was assessed using the rotarod performance and open-field tests. Additionally, the levels of tyrosine hydroxylase (TH), microglia, interleukin-1β (IL-1β), and brain-derived neurotrophic factor (BDNF) in the substantia nigra pars compacta (SNpc) were evaluated by immunohistochemical staining. MPTP/p-induced motor deficits were observed to be significantly improved following long-term treatment with paeonol. Paeonol treatment decreased MPTP/p-induced oxidative stress, as determined by evaluating the activity levels of superoxide dismutase, catalase and glutathione. Additionally, MPTP/p-induced neuroinflammation was assessed by examining the levels of microglia and IL-1β, which were significantly decreased following paeonol treatment. Paeonol treatment improved the MPTP/p-induced dopaminergic neurodegeneration, as measured by observing the increased TH level in the SNpc. Furthermore, the BDNF level was significantly elevated in the paeonol treatment group compared with mice treated with MPTP/p only. In conclusion, paeonol exerted therapeutic effects in the MPTP/p-induced mouse model of PD, possibly by decreasing the damage from oxidative stress and neuroinflammation, and by enhancing the neurotrophic effect on dopaminergic neurons. The results demonstrate paeonol as a potential novel treatment for PD.
Collapse
Affiliation(s)
- Xiaojin Shi
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yu-Hua Chen
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Hao Liu
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hong-Dang Qu
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
200
|
Protective Effects of Costunolide against Hydrogen Peroxide-Induced Injury in PC12 Cells. Molecules 2016; 21:molecules21070898. [PMID: 27409597 PMCID: PMC6274107 DOI: 10.3390/molecules21070898] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress-mediated cellular injury has been considered as a major cause of neurodegenerative diseases including Alzheimer’s and Parkinson’s diseases. The scavenging of reactive oxygen species (ROS) mediated by antioxidants may be a potential strategy for retarding the diseases’ progression. Costunolide (CS) is a well-known sesquiterpene lactone, used as a popular herbal remedy, which possesses anti-inflammatory and antioxidant activity. This study aimed to investigate the protective role of CS against the cytotoxicity induced by hydrogen peroxide (H2O2) and to elucidate potential protective mechanisms in PC12 cells. The results showed that the treatment of PC12 cells with CS prior to H2O2 exposure effectively increased the cell viability. Furthermore, it decreased the intracellular ROS, stabilized the mitochondria membrane potential (MMP), and reduced apoptosis-related protein such as caspase 3. In addition, CS treatment attenuated the cell injury by H2O2 through the inhibition of phosphorylation of p38 and the extracellular signal-regulated kinase (ERK). These results demonstrated that CS is promising as a potential therapeutic candidate for neurodegenerative diseases resulting from oxidative damage and further research on this topic should be encouraged.
Collapse
|