151
|
Ahmadloo S, Talebi S, Miryounesi M, Pasalar P, Keramatipour M. Functional Analysis of A Novel Splicing Mutation in The Mutase Gene of Two Unrelated Pedigrees. CELL JOURNAL 2016; 18:397-404. [PMID: 27602322 PMCID: PMC5011328 DOI: 10.22074/cellj.2016.4568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/22/2015] [Indexed: 01/04/2023]
Abstract
Objective Methylmalonic acidura (MMA) is a rare autosomal recessive inborn error of
metabolism. In this study we present a novel nucleotide change in the mutase (MUT)
gene of two unrelated Iranian pedigrees and introduce the methods used for its functional
analysis.
Materials and Methods Two probands with definite diagnosis of MMA and a common
novel variant in the MUT were included in a descriptive study. Bioinformatic prediction of
the splicing variant was done with different prediction servers. Reverse transcriptionpolymerase
chain reaction (RT-PCR) was done for splicing analysis and the products were
analyzed by sequencing.
Results The included index patients showed elevated levels of propionylcarnitine (C3).
Urine organic acid analysis confirmed the diagnosis of MMA, and screening for mutations in the MUT revealed a novel C to G variation at the 3´ splice acceptor site in intron
12. In silico analysis suggested the change as a mutation in a conserved sequence. The
splicing analysis showed that the C to G nucleotide change at position -3 in the acceptor
splice site can lead to retention of the intron 12 sequence.
Conclusion This is the first report of a mutation at the position -3 in the MUT intron
12 (c.2125-3C>G). The results suggest that the identified variation can be associated
with the typical clinical manifestations of MMA.
Collapse
Affiliation(s)
- Somayeh Ahmadloo
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Talebi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Pasalar
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
152
|
In VV, Ntalamagka N, O'Connor W, Wang T, Powell D, Cummins SF, Elizur A. Reproductive neuropeptides that stimulate spawning in the Sydney Rock Oyster (Saccostrea glomerata). Peptides 2016; 82:109-119. [PMID: 27328253 DOI: 10.1016/j.peptides.2016.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
The Sydney Rock Oyster, Saccostrea glomerata, is a socioeconomically important species in Australia, yet little is known about the molecular mechanism that regulates its reproduction. To address this gap, we have performed a combination of high throughput transcriptomic and peptidomic analysis, to identify genes and neuropeptides that are expressed in the key regulatory tissues of S. glomerata; the visceral ganglia and gonads. Neuropeptides are known to encompass a diverse class of peptide messengers that play functional roles in many aspects of an animal's life, including reproduction. Approximately 28 neuropeptide genes were identified, primarily within the visceral ganglia transcriptome, that encode precursor proteins containing numerous neuropeptides; some were confirmed through mass spectral peptidomics analysis of the visceral ganglia. Of those, 28 bioactive neuropeptides were synthesized, and then tested for their capacity to induce gonad development and spawning in S. glomerata. Egg laying hormone, gonadotropin-releasing hormone, APGWamide, buccalin, CCAP and LFRFamide were neuropeptides found to trigger spawning in ripe animals. Additional testing of APGWa and buccalin demonstrated their capacity to advance conditioning and gonadal maturation. In summary, our analysis of S. glomerata has identified neuropeptides that can influence the reproductive cycle of this species, specifically by accelerating gonadal maturation and triggering spawning. Other molluscan neuropeptides identified in this study will enable further research into understanding the neuroendocrinology of oysters, which may benefit their cultivation.
Collapse
Affiliation(s)
- Vu Van In
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia; Northern National Broodstock Center for Mariculture, Research Institute for Aquaculture No. 1, Catba Islands, Haiphong, Vietnam
| | - Nikoleta Ntalamagka
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Wayne O'Connor
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia; Industry and Investment NSW, Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Tianfang Wang
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Daniel Powell
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Scott F Cummins
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Abigail Elizur
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia.
| |
Collapse
|
153
|
Wang T, Nuurai P, McDougall C, York PS, Bose U, Degnan BM, Cummins SF. Identification of a female spawn-associated Kazal-type inhibitor from the tropical abalone Haliotis asinina. J Pept Sci 2016; 22:461-70. [PMID: 27352998 DOI: 10.1002/psc.2887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/26/2016] [Accepted: 03/26/2016] [Indexed: 11/05/2022]
Abstract
Abalone (Haliotis) undergoes a period of reproductive maturation, followed by the synchronous release of gametes, called broadcast spawning. Field and laboratory studies have shown that the tropical species Haliotis asinina undergoes a two-week spawning cycle, thus providing an excellent opportunity to investigate the presence of endogenous spawning-associated peptides. In female H. asinina, we have isolated a peptide (5145 Da) whose relative abundance in hemolymph increases substantially just prior to spawning and is still detected using reverse-phase high-performance liquid chromatography chromatograms up to 1-day post-spawn. We have isolated this peptide from female hemolymph as well as samples prepared from the gravid female gonad, and demonstrated through comparative sequence analysis that it contains features characteristic of Kazal-type proteinase inhibitors (KPIs). Has-KPI is expressed specifically within the gonad of adult females. A recombinant Has-KPI was generated using a yeast expression system. The recombinant Has-KPI does not induce premature spawning of female H. asinina when administered intramuscularly. However it displays homomeric aggregations and interaction with at least one mollusc-type neuropeptide (LRDFVamide), suggesting a role for it in regulating neuropeptide endocrine communication. This research provides new understanding of a peptide that can regulate reproductive processes in female abalone, which has the potential to lead to the development of greater control over abalone spawning. The findings also highlight the need to further explore abalone reproduction to clearly define a role for novel spawning-associated peptide in sexual maturation and spawning. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tianfang Wang
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Parinyaporn Nuurai
- Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Carmel McDougall
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Patrick S York
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Utpal Bose
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Scott F Cummins
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| |
Collapse
|
154
|
Prontera P, Ottaviani V, Rogaia D, Isidori I, Mencarelli A, Malerba N, Cocciadiferro D, Rolph P, Stangoni G, Vulto-van Silfhout A, Merla G. A novel MED12 mutation: Evidence for a fourth phenotype. Am J Med Genet A 2016; 170:2377-82. [PMID: 27312080 DOI: 10.1002/ajmg.a.37805] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/30/2016] [Indexed: 11/11/2022]
Abstract
Mutations of the MED12 gene have been reported mainly in males with FG (Opitz-Kaveggia), Lujan-Fryns, or X-linked Ohdo syndromes. Recently, a different phenotype characterized by minor anomalies, severe intellectual disability (ID), and absent language was reported in female and male patients belonging to the same family and carrying a frameshift MED12 mutation (c.5898dupC). Here, we report on two brothers and their niece affected by severe and mild ID, respectively, where whole exome sequencing combined with variant analysis within a panel of ID-related genes, disclosed a novel c.2312T>C (p.Ile771Thr) MED12 mutation. This variant, which has not been reported as a polymorphism, was not present in a third unaffected brother, and was predicted to be deleterious by five bioinformatic databases. This finding together with the phenotypic analogies shared with the carriers of c.5898dupC mutation suggests the existence of a fourth MED12-related disorder, characterized by severe ID, absent or deficient language and, milder, clinical manifestation in heterozygotes. We have reviewed the literature on MED12 heterozygotes, their clinical manifestations, and discuss the possible biological causes of this condition. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paolo Prontera
- Medical Genetics Unit, Hospital "Santa Maria della Misericordia", Perugia, Italy
| | - Valentina Ottaviani
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Daniela Rogaia
- Medical Genetics Unit, Hospital "Santa Maria della Misericordia", Perugia, Italy
| | - Ilenia Isidori
- Medical Genetics Unit, Hospital "Santa Maria della Misericordia", Perugia, Italy
| | - Amedea Mencarelli
- Medical Genetics Unit, Hospital "Santa Maria della Misericordia", Perugia, Italy
| | - Natascia Malerba
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Dario Cocciadiferro
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy.,Ph.D. Program in Experimental and Regenerative Medicine, University of Foggia, Foggia, Italy
| | - Pfundt Rolph
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Gabriela Stangoni
- Medical Genetics Unit, Hospital "Santa Maria della Misericordia", Perugia, Italy
| | - Anneke Vulto-van Silfhout
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Giuseppe Merla
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| |
Collapse
|
155
|
CADD score has limited clinical validity for the identification of pathogenic variants in noncoding regions in a hereditary cancer panel. Genet Med 2016; 18:1269-1275. [PMID: 27148939 PMCID: PMC5097698 DOI: 10.1038/gim.2016.44] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Several in silico tools have been shown to have reasonable research sensitivity and specificity for classifying sequence variants in coding regions. The recently-developed Combined Annotation Dependent Depletion (CADD) method generates predictive scores for single nucleotide variants (SNVs) in all areas of the genome, including non-coding regions. We sought to determine the clinical validity of non-coding variant CADD scores. METHODS We evaluated 12,391 unique SNVs in 624 patient samples submitted for germline mutation testing in a cancer-related gene panel. We compared the distributions of CADD scores of rare SNVs, common SNVs in our patient population, and the null distribution of all possible SNVs stratifying by genomic region. RESULTS The median CADD scores of intronic and nonsynonymous variants were significantly different between rare and common SNVs (p<0.0001). Despite these different distributions, no individual variants could be identified as plausibly causative among rare intronic variants with the highest scores. The ROC AUC for non-coding variants is modest, and the positive predictive value of CADD for intronic variants in panel testing was found to be 0.088. CONCLUSION Focused in-silico scoring systems with much higher predictive value will be necessary for clinical genomic applications.
Collapse
|
156
|
Winterhagen P, Hagemann MH, Wünsche JN. Expression and interaction of the mango ethylene receptor MiETR1 and different receptor versions of MiERS1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:26-36. [PMID: 26993233 DOI: 10.1016/j.plantsci.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
Different versions of the mango ethylene receptor MiERS1 were identified and the analysis indicates that, in addition to MiERS1, two short versions of this receptor (MiERS1m, MiERS1s), representing truncated proteins with central deletions of functional domains, are present in mango. The short receptor versions reveal a different expression pattern compared to MiERS1, and they are highly variably transcribed. With transient expression assays using fluorescent fusion proteins, the localisation and the interaction of the receptors were determined in leaf cells of the tobacco model. MiERS1, MiETR1, and the short MiERS1 receptor versions are anchored in the endoplasmic reticulum (ER) membrane and co-localise with each other and with an ER-marker. Furthermore, ectopic expression of the mango receptors appears to induce a re-organisation of the ER resulting in accumulation of ER bodies. Interaction assays suggest that both short MiERS1 receptor versions can bind to proteins located in the ER. Bi-molecular fluorescence complementation (BiFC) assays indicate, that MiERS1m may dimerise with itself and can also interact with MiERS1, but not with MiETR1. Further, it as found that MiETR1 can interact with MiERS1. Interaction of MiERS1s with the other ethylene receptors could not be detected, although it was located in the ER membrane system.
Collapse
Affiliation(s)
- Patrick Winterhagen
- University of Hohenheim, Institute of Crop Science, Crop Physiology of Specialty Crops, Stuttgart, Germany.
| | - Michael H Hagemann
- University of Hohenheim, Institute of Crop Science, Crop Physiology of Specialty Crops, Stuttgart, Germany
| | - Jens N Wünsche
- University of Hohenheim, Institute of Crop Science, Crop Physiology of Specialty Crops, Stuttgart, Germany
| |
Collapse
|
157
|
Lamiquiz-Moneo I, Blanco-Torrecilla C, Bea AM, Mateo-Gallego R, Pérez-Calahorra S, Baila-Rueda L, Cenarro A, Civeira F, de Castro-Orós I. Frequency of rare mutations and common genetic variations in severe hypertriglyceridemia in the general population of Spain. Lipids Health Dis 2016; 15:82. [PMID: 27108409 PMCID: PMC4842266 DOI: 10.1186/s12944-016-0251-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background Hypertriglyceridemia (HTG) is a common complex metabolic trait that results of the accumulation of relatively common genetic variants in combination with other modifier genes and environmental factors resulting in increased plasma triglyceride (TG) levels. The majority of severe primary hypertriglyceridemias is diagnosed in adulthood and their molecular bases have not been fully defined yet. The prevalence of HTG is highly variable among populations, possibly caused by differences in environmental factors and genetic background. However, the prevalence of very high TG and the frequency of rare mutations causing HTG in a whole non-selected population have not been previously studied. Methods The total of 23,310 subjects over 18 years from a primary care-district in a middle-class area of Zaragoza (Spain) with TG >500 mg/dL were selected to establish HTG prevalence. Those affected of primary HTG were considered for further genetic analisys. The promoters, coding regions and exon-intron boundaries of LPL, LMF1, APOC2, APOA5, APOE and GPIHBP1 genes were sequenced. The frequency of rare variants identified was studied in 90 controls. Results One hundred ninety-four subjects (1.04 %) had HTG and 90 subjects (46.4 %) met the inclusion criteria for primary HTG. In this subgroup, nine patients (12.3 %) were carriers of 7 rare variants in LPL, LMF1, APOA5, GPIHBP1 or APOE genes. Three of these mutations are described for the first time in this work. The presence of a rare pathogenic mutation did not confer a differential phenotype or a higher family history of HTG. Conclusion The prevalence of rare mutations in candidate genes in subjects with primary HTG is low. The low frequency of rare mutations, the absence of a more severe phenotype or the dominant transmission of the HTG would not suggest the use of genetic analysis in the clinical practice in this population. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0251-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Itziar Lamiquiz-Moneo
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain.
| | - Cristian Blanco-Torrecilla
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Ana M Bea
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Rocío Mateo-Gallego
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Sofía Pérez-Calahorra
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Lucía Baila-Rueda
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Isabel de Castro-Orós
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain.,Universidad de Zaragoza, Departamento de Bioquímica, Biología Molecular y Celular, 50009, Zaragoza, Spain
| |
Collapse
|
158
|
Winterhagen P, Wünsche JN. Single nucleotide polymorphism analysis reveals heterogeneity within a seedling tree population of a polyembryonic mango cultivar. Genome 2016; 59:319-25. [PMID: 27093244 DOI: 10.1139/gen-2015-0216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Within a polyembryonic mango seedling tree population, the genetic background of individuals should be identical because vigorous plants for cultivation are expected to develop from nucellar embryos representing maternal clones. Due to the fact that the mango cultivar 'Hôi' is assigned to the polyembryonic ecotype, an intra-cultivar variability of ethylene receptor genes was unexpected. Ethylene receptors in plants are conserved, but the number of receptors or receptor isoforms is variable regarding different plant species. However, it is shown here that the ethylene receptor MiETR1 is present in various isoforms within the mango cultivar 'Hôi'. The investigation of single nucleotide polymorphisms revealed that different MiETR1 isoforms can not be discriminated simply by individual single nucleotide exchanges but by the specific arrangement of single nucleotide polymorphisms at certain positions in the exons of MiETR1. Furthermore, an MiETR1 isoform devoid of introns in the genomic sequence was identified. The investigation demonstrates some limitations of high resolution melting and ScreenClust analysis and points out the necessity of sequencing to identify individual isoforms and to determine the variability within the tree population.
Collapse
Affiliation(s)
- Patrick Winterhagen
- University of Hohenheim, Institute of Crop Science, Crop Physiology of Specialty Crops, Stuttgart, Germany.,University of Hohenheim, Institute of Crop Science, Crop Physiology of Specialty Crops, Stuttgart, Germany
| | - Jens-Norbert Wünsche
- University of Hohenheim, Institute of Crop Science, Crop Physiology of Specialty Crops, Stuttgart, Germany.,University of Hohenheim, Institute of Crop Science, Crop Physiology of Specialty Crops, Stuttgart, Germany
| |
Collapse
|
159
|
Marcé-Grau A, Dalton J, López-Pisón J, García-Jiménez MC, Monge-Galindo L, Cuenca-León E, Giraldo J, Macaya A. GNAO1 encephalopathy: further delineation of a severe neurodevelopmental syndrome affecting females. Orphanet J Rare Dis 2016; 11:38. [PMID: 27072799 PMCID: PMC4830060 DOI: 10.1186/s13023-016-0416-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/16/2016] [Indexed: 12/31/2022] Open
Abstract
Background De novo heterozygous mutations in the GNAO1 gene, encoding the Gα o subunit of G-proteins, are the cause of a severe neurodevelopmental disorder, featuring early infantile seizures, profound cognitive dysfunction and, occasionally, movement disorder (early infantile epileptic encephalopathy-17). Methods We report a further case of this association in a 20 month-old Spanish girl with neonatal-onset refractory seizures, progressive microcephaly, oral-lingual dyskinesia and nearly absent psychomotor development. We performed whole-exome sequencing, a computational structural analysis of the novel gene variant identified and reviewed the previously reported cases. Results Trio whole-exome-sequencing uncovered a de novo p.Leu199Pro GNAO1 mutation. Computational structural analysis indicates this novel variant adversely affects the stability of the G-protein heterotrimeric complex as a whole. Of note, our patient showed a sustained seizure reduction while on a ketogenic diet. Conclusions With this observation, a total of twelve patients with GNAO1 encephalopathy have been reported. Oral-lingual dyskinesia and responsiveness of seizures to ketogenic diet are novel features. The distorted sex ratio (12/12 females) of the condition remains unexplained; a differential gender effect of the disruption of G-protein- mediated signal transduction on the developing brain can be hypothesized. Electronic supplementary material The online version of this article (doi:10.1186/s13023-016-0416-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Marcé-Grau
- Grup de Recerca en Neurologia Pediàtrica, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Pg Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - James Dalton
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193 , Bellaterra, Barcelona, Spain
| | - Javier López-Pisón
- Sección de Neuropediatría, Hospital Universitario Miguel Servet, P° Isabel la Católica 1,3, 50009, Zaragoza, Spain
| | | | - Lorena Monge-Galindo
- Secciones de Neuropediatría y Metabolismo, Hospital Universitario Miguel Servet, P° Isabel la Católica 1,3, 50009, Zaragoza, Spain
| | - Ester Cuenca-León
- Grup de Recerca en Neurologia Pediàtrica, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Pg Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193 , Bellaterra, Barcelona, Spain
| | - Alfons Macaya
- Grup de Recerca en Neurologia Pediàtrica, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Pg Vall d'Hebron 119-129, 08035, Barcelona, Spain. .,Pediatric Neurology Section, Hospital Universitari Vall d'Hebron, Pg Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
160
|
Razeen MM, Cooper RF, Langlo CS, Goldberg MR, Wilk MA, Han DP, Connor TB, Fishman GA, Collison FT, Sulai YN, Dubra A, Carroll J, Stepien KE. Correlating Photoreceptor Mosaic Structure to Clinical Findings in Stargardt Disease. Transl Vis Sci Technol 2016; 5:6. [PMID: 26981328 PMCID: PMC4790429 DOI: 10.1167/tvst.5.2.6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/06/2016] [Indexed: 01/29/2023] Open
Abstract
Purpose To demonstrate a method for correlating photoreceptor mosaic structure with optical coherence tomography (OCT) and microperimetry findings in patients with Stargardt disease. Methods A total of 14 patients with clinically diagnosed Stargardt disease were imaged using confocal and split-detection adaptive optics scanning light ophthalmoscopy. Cone photoreceptors were identified manually in a band along the temporal meridian. Resulting values were compared to a normative database (n = 9) to generate cone density deviation (CDD) maps. Manual measurement of outer nuclear layer plus Henle fiber layer (ONL+HFL) thickness was performed, in addition to determination of the presence of ellipsoid zone (EZ) and interdigitation zone (IZ) bands on OCT. These results, along with microperimetry data, were overlaid with the CDD maps. Results Wide variation in foveal structure and CDD maps was seen within this small group. Disruption of ONL+HFL and/or IZ band was seen in all patients, with EZ band preservation in regions with low cone density in 38% of locations analyzed. Normality of retinal lamellar structure on OCT corresponded with cone density and visual function at 50/78 locations analyzed. Outer retinal tubulations containing photoreceptor-like structures were observed in 3 patients. Conclusions The use of CDD color-coded maps enables direct comparison of cone mosaic local density with other measures of retinal structure and function. Larger normative datasets and improved tools for automation of image alignment are needed. Translational Relevance The approach described facilitates comparison of complex multimodal data sets from patients with inherited retinal degeneration, and can be expanded to incorporate other structural imaging or functional testing.
Collapse
Affiliation(s)
- Moataz M Razeen
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA ; Alexandria Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Robert F Cooper
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Christopher S Langlo
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mara R Goldberg
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melissa A Wilk
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dennis P Han
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thomas B Connor
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gerald A Fishman
- The Pangere Center for Hereditary Retinal Diseases, the Chicago Lighthouse for People Who Are Blind or Visually Impaired, Chicago, IL, USA ; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Frederick T Collison
- The Pangere Center for Hereditary Retinal Diseases, the Chicago Lighthouse for People Who Are Blind or Visually Impaired, Chicago, IL, USA
| | - Yusufu N Sulai
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alfredo Dubra
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA ; Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA ; Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA ; Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA ; Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA ; Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA ; Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kimberly E Stepien
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
161
|
Mouton JM, van der Merwe L, Goosen A, Revera M, Brink PA, Moolman-Smook JC, Kinnear C. MYBPH acts as modifier of cardiac hypertrophy in hypertrophic cardiomyopathy (HCM) patients. Hum Genet 2016; 135:477-483. [PMID: 26969327 DOI: 10.1007/s00439-016-1649-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/15/2016] [Indexed: 01/19/2023]
Abstract
Left ventricular hypertrophy is a risk factor for cardiovascular morbidity and mortality. Hypertrophic cardiomyopathy (HCM) is considered a model disease to study causal molecular factors underlying isolated cardiac hypertrophy. However, HCM manifests with various clinical symptoms, even in families bearing the same genetic defects, suggesting that additional factors contribute to hypertrophy. The gene encoding the cardiac myosin binding protein C (cMYBPC) is one of the most frequently implicated genes in HCM. Recently another myosin binding protein, myosin binding protein H (MYBPH) was shown to function in concert with cMYBPC in regulating cardiomyocyte contraction. Given the similarity in sequence, structure and the critical role MYBPH plays in sarcomere contraction, we proposed that MYBPH may be involved in HCM pathogenesis. Family-based genetic association analysis was employed to investigate the contribution of MYBPH in modifying hypertrophy. Seven single nucleotide polymorphisms and haplotypes in MYBPH were investigated for hypertrophy modifying effects in 388 individuals (27 families), in which three unique South African HCM-causing founder mutations (p.R403W and pA797T in β-myosin heavy chain gene (MYH7) and p.R92W in the cardiac troponin T gene (TNNT2)) segregate. We observed a significant association between rs2250509 and hypertrophy traits in the p.A797T MYH7 mutation group. Additionally, haplotype GGTACTT significantly affected hypertrophy within the same mutation group. MYBPH was for the first time assessed as a candidate hypertrophy modifying gene. We identified a novel association between MYBPH and hypertrophy traits in HCM patients carrying the p.A797T MYH7 mutation, suggesting that variation in MYBPH can modulate the severity of hypertrophy in HCM.
Collapse
Affiliation(s)
- J M Mouton
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 19063, Tygerberg, 7505, South Africa.
| | - L van der Merwe
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 19063, Tygerberg, 7505, South Africa
- Department of Statistics, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - A Goosen
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - M Revera
- Department of Cardiology, IRCCS San Matteo Hospital, Pavia, Italy
| | - P A Brink
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - J C Moolman-Smook
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 19063, Tygerberg, 7505, South Africa
| | - C Kinnear
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 19063, Tygerberg, 7505, South Africa
| |
Collapse
|
162
|
Wang X, Sun CL, Quiñones-Lombraña A, Singh P, Landier W, Hageman L, Mather M, Rotter JI, Taylor KD, Chen YDI, Armenian SH, Winick N, Ginsberg JP, Neglia JP, Oeffinger KC, Castellino SM, Dreyer ZE, Hudson MM, Robison LL, Blanco JG, Bhatia S. CELF4 Variant and Anthracycline-Related Cardiomyopathy: A Children's Oncology Group Genome-Wide Association Study. J Clin Oncol 2016; 34:863-70. [PMID: 26811534 PMCID: PMC5070560 DOI: 10.1200/jco.2015.63.4550] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Interindividual variability in the dose-dependent association between anthracyclines and cardiomyopathy suggests that genetic susceptibility could play a role. The current study uses an agnostic approach to identify genetic variants that could modify cardiomyopathy risk. METHODS A genome-wide association study was conducted in childhood cancer survivors with and without cardiomyopathy (cases and controls, respectively). Single-nucleotide polymorphisms (SNPs) that surpassed a prespecified threshold for statistical significance were independently replicated. The possible mechanistic significance of validated SNP(s) was sought by using healthy heart samples. RESULTS No SNP was marginally associated with cardiomyopathy. However, SNP rs1786814 on the CELF4 gene passed the significance cutoff for gene-environment interaction (Pge = 1.14 × 10(-5)). Multivariable analyses adjusted for age at cancer diagnosis, sex, anthracycline dose, and chest radiation revealed that, among patients with the A allele, cardiomyopathy was infrequent and not dose related. However, among those exposed to greater than 300 mg/m(2) of anthracyclines, the rs1786814 GG genotype conferred a 10.2-fold (95% CI, 3.8- to 27.3-fold; P < .001) increased risk of cardiomyopathy compared with those who had GA/AA genotypes and anthracycline exposure of 300 mg/m(2) or less. This gene-environment interaction was successfully replicated in an independent set of anthracycline-related cardiomyopathy. CUG-BP and ETR-3-like factor proteins control developmentally regulated splicing of TNNT2, the gene that encodes for cardiac troponin T (cTnT), a biomarker of myocardial injury. Coexistence of more than one cTnT variant results in a temporally split myofilament response to calcium, which causes decreased contractility. Analysis of TNNT2 splicing variants in healthy human hearts suggested an association between the rs1786814 GG genotype and coexistence of more than one TNNT2 splicing variant (90.5% GG v 41.7% GA/AA; P = .005). CONCLUSION We report a modifying effect of a polymorphism of CELF4 (rs1786814) on the dose-dependent association between anthracyclines and cardiomyopathy, which possibly occurs through a pathway that involves the expression of abnormally spliced TNNT2 variants.
Collapse
Affiliation(s)
- Xuexia Wang
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Can-Lan Sun
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Adolfo Quiñones-Lombraña
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Purnima Singh
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Wendy Landier
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Lindsey Hageman
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Molly Mather
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Jerome I Rotter
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Kent D Taylor
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Yii-Der Ida Chen
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Saro H Armenian
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Naomi Winick
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Jill P Ginsberg
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Joseph P Neglia
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Kevin C Oeffinger
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Sharon M Castellino
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Zoann E Dreyer
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Melissa M Hudson
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Leslie L Robison
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Javier G Blanco
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN
| | - Smita Bhatia
- Xuexia Wang, University of Wisconsin-Milwaukee, Milwaukee, WI; Can-Lan Sun, Molly Mather, Saro H. Armenian, City of Hope, Duarte; Jerome I. Rotter, Kent D. Taylor, Yii-Der Ida Chen, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Torrance, CA; Adolfo Quiñones-Lombraña, Javier G. Blanco, State University of New York at Buffalo, Buffalo; Kevin C. Oeffinger, Memorial Sloan Kettering Cancer Center, New York, NY; Purnima Singh, Wendy Landier, Lindsey Hageman, Smita Bhatia, University of Alabama at Birmingham, Birmingham, AL; Naomi Winick, University of Texas Southwestern Medical Center, Dallas; Zoann E. Dreyer, Texas Children's Cancer Center, Houston, TX; Jill P. Ginsberg, Childrens Hospital of Philadelphia, Philadelphia, PA; Joseph P. Neglia, University of Minnesota, Minneapolis, MN; Sharon M. Castellino, Emory University and Children's Healthcare of Atlanta, Atlanta, GA; and Melissa M. Hudson, Leslie L. Robison, St Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
163
|
Alves-Bezerra M, De Paula IF, Medina JM, Silva-Oliveira G, Medeiros JS, Gäde G, Gondim KC. Adipokinetic hormone receptor gene identification and its role in triacylglycerol metabolism in the blood-sucking insect Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 69:51-60. [PMID: 26163435 DOI: 10.1016/j.ibmb.2015.06.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
Adipokinetic hormone (AKH) has been associated with the control of energy metabolism in a large number of arthropod species due to its role on the stimulation of lipid, carbohydrate and amino acid mobilization/release. In the insect Rhodnius prolixus, a vector of Chagas' disease, triacylglycerol (TAG) stores must be mobilized to sustain the metabolic requirements during moments of exercise or starvation. Besides the recent identification of the R. prolixus AKH peptide, other components required for the AKH signaling cascade and its mode of action remain uncharacterized in this insect. In the present study, we identified and investigated the expression profile of the gene encoding the AKH receptor of R. prolixus (RhoprAkhr). This gene is highly conserved in comparison to other sequences already described and its transcript is abundant in the fat body and the flight muscle of the kissing bug. Moreover, RhoprAkhr expression is induced in the fat body at moments of increased TAG mobilization; the knockdown of this gene resulted in TAG accumulation both in fat body and flight muscle after starvation. The inhibition of Rhopr-AKHR transcription as well as the treatment of insects with the peptide Rhopr-AKH in its synthetic form altered the transcript levels of two genes involved in lipid metabolism, the acyl-CoA-binding protein-1 (RhoprAcbp1) and the mitochondrial glycerol-3-phosphate acyltransferase-1 (RhoprGpat1). These results indicate that the AKH receptor is regulated at transcriptional level and is required for TAG mobilization under starvation. In addition to the classical view of AKH as a direct regulator of enzymatic activity, we propose here that AKH signaling may account for the regulation of nutrient metabolism by affecting the expression profile of target genes.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iron F De Paula
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge M Medina
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gleidson Silva-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonas S Medeiros
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, John Day Building, Rondebosch ZA-7701, South Africa
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
164
|
Chang JY, Lee MH, Lin SR, Yang LY, Sun HS, Sze CI, Hong Q, Lin YS, Chou YT, Hsu LJ, Jan MS, Gong CX, Chang NS. Trafficking protein particle complex 6A delta (TRAPPC6AΔ) is an extracellular plaque-forming protein in the brain. Oncotarget 2016; 6:3578-89. [PMID: 25650666 PMCID: PMC4414138 DOI: 10.18632/oncotarget.2876] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/08/2014] [Indexed: 11/25/2022] Open
Abstract
Tumor suppressor WWOX is involved in the progression of cancer and neurodegeneration. Here, we examined whether protein aggregation occurs in the brain of nondemented, middle-aged humans and whether this is associated with WWOX downregulation. We isolated an N-terminal internal deletion isoform, TPC6AΔ, derived from alternative splicing of the TRAPPC6A (TPC6A) gene transcript. TPC6AΔ proteins are present as aggregates or plaques in the extracellular matrix of the brain such as in the cortex. Filter retardation assays revealed that aggregate formation of TPC6AΔ occurs preceding Aβ generation in the hippocampi of middle-aged postmortem normal humans. In a Wwox gene knockout mouse model, we showed the plaques of pT181-Tau and TPC6AΔ in the cortex and hippocampus in 3-week-old mice, suggesting a role of WWOX in limiting TPC6AΔ aggregation. To support this hypothesis, in vitro analysis revealed that TGF-β1 induces dissociation of the ectopic complex of TPC6AΔ and WWOX in cells, and then TPC6AΔ undergoes Ser35 phosphorylation-dependent polymerization and induces caspase 3 activation and Aβ production. Similarly, knockdown of WWOX by siRNA resulted in dramatic aggregation of TPC6AΔ. Together, when WWOX is downregulated, TPC6AΔ is phosphorylated at Ser35 and becomes aggregated for causing caspase activation that leads to Tau aggregation and Aβ formation.
Collapse
Affiliation(s)
- Jean-Yun Chang
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Ming-Hui Lee
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Sing-Ru Lin
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Li-Yi Yang
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - H Sunny Sun
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Chun-I Sze
- Departments of Anatomy and Cell Biology, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Qunying Hong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, ROC
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan, ROC.,Center for Infectious Disease and Signaling Research, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Ying-Tsen Chou
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Li-Jin Hsu
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan, ROC.,Center for Infectious Disease and Signaling Research, National Cheng Kung University Medical College, Tainan, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Ming-Shiou Jan
- Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Cheng-Xin Gong
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Nan-Shan Chang
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, ROC.,Center for Infectious Disease and Signaling Research, National Cheng Kung University Medical College, Tainan, Taiwan, ROC.,Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan, ROC.,Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan, ROC.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
165
|
Obeidova L, Seeman T, Elisakova V, Reiterova J, Puchmajerova A, Stekrova J. Molecular genetic analysis of PKHD1 by next-generation sequencing in Czech families with autosomal recessive polycystic kidney disease. BMC MEDICAL GENETICS 2015; 16:116. [PMID: 26695994 PMCID: PMC4689053 DOI: 10.1186/s12881-015-0261-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/11/2015] [Indexed: 12/18/2022]
Abstract
Background Autosomal recessive polycystic kidney disease (ARPKD) is an early-onset form of polycystic kidney disease that often leads to devastating outcomes for patients. ARPKD is caused by mutations in the PKHD1 gene, an extensive gene that encodes for the ciliary protein fibrocystin/polyductin. Next-generation sequencing is presently the best option for molecular diagnosis of ARPKD. Our aim was to set up the first study of ARPKD patients from the Czech Republic, to determine the composition of their mutations and genotype-phenotype correlations, along with establishment of next-generation sequencing of the PKHD1 gene that could be used for the diagnosis of ARPKD patients. Methods Mutational analysis of the PKHD1 gene was performed in 24 families using the amplicon-based next-generation sequencing (NGS) technique. In patients without 2 causal mutations identified by NGS, subsequent MLPA analysis of the PKHD1 gene was carried out. Results Two underlying mutations were detected in 54 % of families (n = 13), one mutation in 13 % of families (n = 3), and in 33 % of families (n = 8) no mutation could be detected. Overall, seventeen different mutations (5 novel) were detected, including deletion of one exon. The detection rate in our study reached 60 % in the entire cohort of patients; but 90 % in the group of patients who fulfilled all clinical criteria of ARPKD, and 42 % in the group of patients with unknown kidney pathology. The most frequent mutation was T36M, accounting for nearly 21 % of all identified mutations. Conclusions Next-generation sequencing of the PKHD1 gene is a very useful method of molecular diagnosis in patients with a full clinical picture of ARPKD, and it has a high detection rate. Furthermore, its relatively low costs and rapidity allow the molecular genetic analysis of patients without the full clinical criteria of ARPKD, who might also have mutations in the PKHD1 gene.
Collapse
Affiliation(s)
- Lena Obeidova
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, General University Hospital in Prague, Prague, Czech.
| | - Tomas Seeman
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech.
| | - Veronika Elisakova
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, General University Hospital in Prague, Prague, Czech.
| | - Jana Reiterova
- Department of Nephrology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech.
| | - Alena Puchmajerova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech.
| | - Jitka Stekrova
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, General University Hospital in Prague, Prague, Czech.
| |
Collapse
|
166
|
Poyomtip T, Hodge K, Matangkasombut P, Sakuntabhai A, Pisitkun T, Jirawatnotai S, Chimnaronk S. Development of viable TAP-tagged dengue virus for investigation of host-virus interactions in viral replication. J Gen Virol 2015; 97:646-658. [PMID: 26669909 DOI: 10.1099/jgv.0.000371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus responsible for life-threatening dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS). The viral replication machinery containing the core non-structural protein 5 (NS5) is implicated in severe dengue symptoms but molecular details remain obscure. To date, studies seeking to catalogue and characterize interaction networks between viral NS5 and host proteins have been limited to the yeast two-hybrid system, computational prediction and co-immunoprecipitation (IP) of ectopically expressed NS5. However, these traditional approaches do not reproduce a natural course of infection in which a number of DENV NS proteins colocalize and tightly associate during the replication process. Here, we demonstrate the development of a recombinant DENV that harbours a TAP tag in NS5 to study host-virus interactions in vivo. We show that our engineered DENV was infective in several human cell lines and that the tags were stable over multiple viral passages, suggesting negligible structural and functional disturbance of NS5. We further provide proof-of-concept for the use of rationally tagged virus by revealing a high confidence NS5 interaction network in human hepatic cells. Our analysis uncovered previously unrecognized hnRNP complexes and several low-abundance fatty acid metabolism genes, which have been implicated in the viral life cycle. This study sets a new standard for investigation of host-flavivirus interactions.
Collapse
Affiliation(s)
- Teera Poyomtip
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kenneth Hodge
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Anavaj Sakuntabhai
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,Functional Genetics of Infectious Diseases Unit, Institute Pasteur, Paris, France.,Centre National de la Recherche Scientifique (CNRS), URA3012, F-75015 Paris, France
| | - Trairak Pisitkun
- Systems Biology Center, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siwanon Jirawatnotai
- Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sarin Chimnaronk
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phutthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
167
|
Liu B, Chen SC, Yang YM, Yan K, Qian YQ, Zhang JY, Hu YT, Dong MY, Jin F, Huang HF, Xu CM. Identification of novel PKD1 and PKD2 mutations in a Chinese population with autosomal dominant polycystic kidney disease. Sci Rep 2015; 5:17468. [PMID: 26632257 PMCID: PMC4668380 DOI: 10.1038/srep17468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/30/2015] [Indexed: 02/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most frequently inherited renal diseases caused by mutations in PKD1 and PKD2. We performed mutational analyses of PKD genes in 49 unrelated patients using direct PCR-sequencing and multiplex ligation-dependent probe amplification (MLPA) for PKD1 and PKD2. RT-PCR analysis was also performed in a family with a novel PKD2 splicing mutation. Disease-causing mutations were identified in 44 (89.8%) of the patients: 42 (95.5%) of the patients showed mutations in PKD1, and 2 (4.5%) showed mutations in PKD2. Ten nonsense, 17 frameshift, 4 splicing and one in-frame mutation were found in 32 of the patients. Large rearrangements were found in 3 patients, and missense mutations were found in 9 patients. Approximately 61.4% (27/44) of the mutations are first reported with a known mutation rate of 38.6%. RNA analysis of a novel PKD2 mutation (c.595_595 + 14delGGTAAGAGCGCGCGA) suggested monoallelic expression of the wild-type allele. Furthermore, patients with PKD1-truncating mutations reached end-stage renal disease (ESRD) earlier than patients with non-truncating mutations (47 ± 3.522 years vs. 59 ± 11.687 years, P = 0.016). The mutation screening of PKD genes in Chinese ADPKD patients will enrich our mutation database and significantly contribute to improve genetic counselling for ADPKD patients.
Collapse
Affiliation(s)
- Bei Liu
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - Song-Chang Chen
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,The International Peace Maternity &Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Yan-Mei Yang
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - Kai Yan
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - Ye-Qing Qian
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - Jun-Yu Zhang
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,The International Peace Maternity &Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Yu-Ting Hu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,The International Peace Maternity &Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Min-Yue Dong
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - Fan Jin
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - He-Feng Huang
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,The International Peace Maternity &Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Chen-Ming Xu
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,The International Peace Maternity &Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| |
Collapse
|
168
|
Negri G, Magini P, Milani D, Colapietro P, Rusconi D, Scarano E, Bonati MT, Priolo M, Crippa M, Mazzanti L, Wischmeijer A, Tamburrino F, Pippucci T, Finelli P, Larizza L, Gervasini C. From Whole Gene Deletion to Point Mutations of EP300-Positive Rubinstein-Taybi Patients: New Insights into the Mutational Spectrum and Peculiar Clinical Hallmarks. Hum Mutat 2015; 37:175-83. [PMID: 26486927 DOI: 10.1002/humu.22922] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/12/2015] [Indexed: 12/16/2022]
Abstract
Rubinstein-Taybi syndrome (RSTS) is a rare congenital neurodevelopmental disorder characterized by growth deficiency, skeletal abnormalities, dysmorphic features, and intellectual disability. Causative mutations in CREBBP and EP300 genes have been identified in ∼55% and ∼8% of affected individuals. To date, only 28 EP300 alterations in 29 RSTS clinically described patients have been reported. EP300 analysis of 22 CREBBP-negative RSTS patients from our cohort led us to identify six novel mutations: a 376-kb deletion depleting EP300 gene; an exons 17-19 deletion (c.(3141+1_3142-1)_(3590+1_3591-1)del/p.(Ile1047Serfs*30)); two stop mutations, (c.3829A>T/p.(Lys1277*) and c.4585C>T/p.(Arg1529*)); a splicing mutation (c.1878-12A>G/p.(Ala627Glnfs*11)), and a duplication (c.4640dupA/p.(Asn1547Lysfs*3)). All EP300-mutated individuals show a mild RSTS phenotype and peculiar findings including maternal gestosis, skin manifestation, especially nevi or keloids, back malformations, and a behavior predisposing to anxiety. Furthermore, the patient carrying the complete EP300 deletion does not show a markedly severe clinical picture, even if a more composite phenotype was noticed. By characterizing six novel EP300-mutated patients, this study provides further insights into the EP300-specific clinical presentation and expands the mutational repertoire including the first case of a whole gene deletion. These new data will enhance EP300-mutated cases identification highlighting distinctive features and will improve the clinical practice allowing a better genotype-phenotype correlation.
Collapse
Affiliation(s)
- Gloria Negri
- Genetica Medica, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italia
| | - Pamela Magini
- Laboratorio di Genetica Medica, Dipartimento di Scienze Mediche e Chirurgiche, Policlinico Ospedaliero Universitario S. Orsola-Malpighi, Bologna, Italia
| | - Donatella Milani
- Unità di Pediatria ad alta Intensità di Cura, Fondazione IRCCS Ca' Granda, Milano, Italia
| | - Patrizia Colapietro
- Genetica Medica, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italia
| | - Daniela Rusconi
- Genetica Medica, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italia
| | - Emanuela Scarano
- UO di Endocrinologia Pediatrica e Malattie Rare, Dipartimento di Pediatria, Ospedale Universitario S. Orsola Malpighi, Università degli Studi di Bologna, Bologna, Italia
| | - Maria Teresa Bonati
- Clinica di Genetica Medica, IRCCS Istituto Auxologico Italiano, Milano, Italia
| | - Manuela Priolo
- UOC Genetica Medica, Azienda Ospedaliera Bianchi-Melacrino-Morelli, Reggio Calabria, Italia
| | - Milena Crippa
- Laboratorio di Citogenetica e Genetica Molecolare, Centro di Ricerche e Tecnologie Biomediche, IRCCS Istituto Auxologico Italiano, Milano, Italia
| | - Laura Mazzanti
- UO di Endocrinologia Pediatrica e Malattie Rare, Dipartimento di Pediatria, Ospedale Universitario S. Orsola Malpighi, Università degli Studi di Bologna, Bologna, Italia
| | - Anita Wischmeijer
- Laboratorio di Genetica Medica, Dipartimento di Scienze Mediche e Chirurgiche, Policlinico Ospedaliero Universitario S. Orsola-Malpighi, Bologna, Italia
| | - Federica Tamburrino
- UO di Endocrinologia Pediatrica e Malattie Rare, Dipartimento di Pediatria, Ospedale Universitario S. Orsola Malpighi, Università degli Studi di Bologna, Bologna, Italia
| | - Tommaso Pippucci
- Laboratorio di Genetica Medica, Dipartimento di Scienze Mediche e Chirurgiche, Policlinico Ospedaliero Universitario S. Orsola-Malpighi, Bologna, Italia
| | - Palma Finelli
- Laboratorio di Citogenetica e Genetica Molecolare, Centro di Ricerche e Tecnologie Biomediche, IRCCS Istituto Auxologico Italiano, Milano, Italia.,Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italia
| | - Lidia Larizza
- Genetica Medica, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italia.,Laboratorio di Citogenetica e Genetica Molecolare, Centro di Ricerche e Tecnologie Biomediche, IRCCS Istituto Auxologico Italiano, Milano, Italia
| | - Cristina Gervasini
- Genetica Medica, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italia
| |
Collapse
|
169
|
Neves F, Abrantes J, Almeida T, de Matos AL, Costa PP, Esteves PJ. Genetic characterization of interleukins (IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs. Innate Immun 2015; 21:787-801. [PMID: 26395994 PMCID: PMC4609935 DOI: 10.1177/1753425915606209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022] Open
Abstract
ILs, as essential innate immune modulators, are involved in an array of biological processes. In the European rabbit (Oryctolagus cuniculus) IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18 have been implicated in inflammatory processes and in the immune response against rabbit hemorrhagic disease virus and myxoma virus infections. In this study we characterized these ILs in six Lagomorpha species (European rabbit, pygmy rabbit, two cottontail rabbit species, European brown hare and American pika). Overall, these ILs are conserved between lagomorphs, including in their exon/intron structure. Most differences were observed between leporids and American pika. Indeed, when comparing both, some relevant differences were observed in American pika, such as the location of the stop codon in IL-1α and IL-2, the existence of a different transcript in IL8 and the number of cysteine residues in IL-1β. Changes at N-glycosylation motifs were also detected in IL-1, IL-10, IL-12B and IL-15. IL-1α is the protein that presents the highest evolutionary distances, which is in contrast to IL-12A where the distances between lagomorphs are the lowest. For all these ILs, sequences of human and European rabbit are more closely related than between human and mouse or European rabbit and mouse.
Collapse
Affiliation(s)
- Fabiana Neves
- CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal UMIB/UP-Unidade Multidisciplinar de Investigação Biomédica/Universidade do Porto, Porto, Portugal
| | - Joana Abrantes
- CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal
| | - Tereza Almeida
- CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal
| | - Ana Lemos de Matos
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Paulo P Costa
- UMIB/UP-Unidade Multidisciplinar de Investigação Biomédica/Universidade do Porto, Porto, Portugal Departmento Genética, CSPGF, Instituto Nacional de Saúde Dr. Ricardo Jorge, Porto, Portugal
| | - Pedro J Esteves
- CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal CITS-Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal
| |
Collapse
|
170
|
Survey of Programs Used to Detect Alternative Splicing Isoforms from Deep Sequencing Data In Silico. BIOMED RESEARCH INTERNATIONAL 2015; 2015:831352. [PMID: 26421304 PMCID: PMC4573434 DOI: 10.1155/2015/831352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/17/2015] [Accepted: 03/02/2015] [Indexed: 11/29/2022]
Abstract
Next-generation sequencing techniques have been rapidly emerging. However, the massive sequencing reads hide a great deal of unknown important information. Advances have enabled researchers to discover alternative splicing (AS) sites and isoforms using computational approaches instead of molecular experiments. Given the importance of AS for gene expression and protein diversity in eukaryotes, detecting alternative splicing and isoforms represents a hot topic in systems biology and epigenetics research. The computational methods applied to AS prediction have improved since the emergence of next-generation sequencing. In this study, we introduce state-of-the-art research on AS and then compare the research methods and software tools available for AS based on next-generation sequencing reads. Finally, we discuss the prospects of computational methods related to AS.
Collapse
|
171
|
Lamiquiz-Moneo I, Bea AM, Mateo-Gallego R, Baila-Rueda L, Cenarro A, Pocoví M, Civeira F, de Castro-Orós I. [Identification of variants in LMF1 gene associated with primary hypertriglyceridemia]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2015; 27:246-252. [PMID: 25817768 DOI: 10.1016/j.arteri.2015.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
The majority of severe primary hypertriglyceridemia (HTG) are diagnosed in adults, and their molecular bases have not yet been fully defined. The promoter, coding regions and intron-exon boundaries of LMF1 were sequenced in 112 patients with severe primary hipertrigliceridemia (defined as TG above 500mg/dl). Five patients (4.46%) were carriers of four rare variants in the LMF1 gene associated with HTG, which participate in lipoprotein lipase (LpL) function. Also, we have identified two common variants, c.194-28 T>G and c.729+18C>G that were associated with HTG, with a different allelic frequency to that observed in the general population. A bioinformatic analysis of all found variants was conducted, defining the following as potentially harmful: p.Arg364Gln, p.Arg451Trp, p.Pro562Arg and p.Leu85Leu. Our results suggest that LMF1 mutations are involved in a substantial proportion of cases with severe HTG, putting together the moderate-aggressive effect of rare mutations with polymorphisms classically associated with this disease.
Collapse
Affiliation(s)
- Itziar Lamiquiz-Moneo
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España.
| | - Ana M Bea
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Rocío Mateo-Gallego
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Lucía Baila-Rueda
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Miguel Pocoví
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Isabel de Castro-Orós
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| |
Collapse
|
172
|
Prontera P, Micale L, Verrotti A, Napolioni V, Stangoni G, Merla G. A New Homozygous IGF1R Variant Defines a Clinically Recognizable Incomplete Dominant form of SHORT Syndrome. Hum Mutat 2015; 36:1043-7. [PMID: 26252249 DOI: 10.1002/humu.22853] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/23/2015] [Indexed: 11/07/2022]
Abstract
Here, we describe a child, born from consanguineous parents, with clinical features of SHORT syndrome, high IGF1 levels, developmental delay, CNS defects, and marked progeroid appearance. By exome sequencing, we identified a new homozygous c.2201G>T missense mutation in the IGF1R gene. Proband's parents and other relatives, all heterozygous carriers of the mutation, presented with milder phenotype including high IGFI levels, short stature, and type 2 diabetes. Functional studies using patient's cell lines showed a lower IGF1R expression that leads to the alteration of IGF1R-mediated PI3K/AKT/mTOR downstream pathways, including autophagy. This study defines a clinically recognizable incomplete dominant form of SHORT syndrome, and provides relevant insights into the pathophysiological and phenotypical consequences of IGF1R mutations.
Collapse
Affiliation(s)
- Paolo Prontera
- Medical Genetics Unit, University and Hospital of Perugia, Perugia, Italy
| | - Lucia Micale
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of Perugia, Perugia, 06132, Italy
| | - Valerio Napolioni
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Gabriela Stangoni
- Medical Genetics Unit, University and Hospital of Perugia, Perugia, Italy
| | - Giuseppe Merla
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| |
Collapse
|
173
|
Darsey JA, Griffin WO, Joginipelli S, Melapu VK. Architecture and biological applications of artificial neural networks: a tuberculosis perspective. Methods Mol Biol 2015; 1260:269-83. [PMID: 25502388 DOI: 10.1007/978-1-4939-2239-0_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.
Collapse
Affiliation(s)
- Jerry A Darsey
- Department of Chemistry, University of Arkansas at Little Rock, 2801 S University Ave, Little Rock, AR, 72204, USA
| | | | | | | |
Collapse
|
174
|
Gleize V, Alentorn A, Connen de Kérillis L, Labussière M, Nadaradjane AA, Mundwiller E, Ottolenghi C, Mangesius S, Rahimian A, Ducray F, Mokhtari K, Villa C, Sanson M. CIC inactivating mutations identify aggressive subset of 1p19q codeleted gliomas. Ann Neurol 2015; 78:355-74. [PMID: 26017892 DOI: 10.1002/ana.24443] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVE CIC gene is frequently mutated in oligodendroglial tumors with 1p19q codeletion. However, clinical and biological impact remain poorly understood. METHODS We sequenced the CIC gene on 127 oligodendroglial tumors (109 with the 1p19q codeletion) and analyzed patients' outcome. We compared magnetic resonance imaging, transcriptomic profile, and CIC protein expression of CIC wild-type (WT) and mutant gliomas. We compared the level of expression of CIC target genes on Hs683-IDH1(R132H) cells transfected with lentivirus encoding mutant and WT CIC. RESULTS We found 63 mutations affecting 60 of 127 patients, virtually all 1p19q codeleted and IDH mutated (59 of 60). In the 1p19q codeleted gliomas, CIC mutations were associated with a poorer outcome by uni- (p = 0.001) and multivariate analysis (p < 0.016). CIC mutation prognostic impact was validated on the TCGA cohort. CIC mutant grade II codeleted gliomas spontaneously grew faster than WTs. Transcriptomic analysis revealed an enrichment of proliferative pathways and oligodendrocyte precursor cell gene expression profile in CIC mutant gliomas, with upregulation of normally CIC repressed genes ETV1, ETV4, ETV5, and CCND1. Various missense mutations resulted in CIC protein expression loss. Moreover, a truncating CIC mutation resulted in a defect of nuclear targeting of CIC protein to the nucleus in a human glioma cell line expressing IDH1(R132H) and overexpression of CCND1 and other new target genes of CIC, such as DUSP4 and SPRED1. INTERPRETATION CIC mutations result in protein inactivation with upregulation of CIC target genes, activation of proliferative pathways, inhibition of differentiation, and poorer outcome in patients with a 1p19q codeleted glioma.
Collapse
Affiliation(s)
- Vincent Gleize
- Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
| | - Agusti Alentorn
- Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris, France
| | - Léa Connen de Kérillis
- Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
| | - Marianne Labussière
- Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
| | - Aravidan A Nadaradjane
- Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
| | - Emeline Mundwiller
- Institut du Cerveau et de la Moelle Epinière, Plateforme de Génotypage et Séquençage, Paris, France
| | - Chris Ottolenghi
- Biochimie Métabolique, Université Paris Descartes et Inserm U1124, Paris, France
| | - Stephanie Mangesius
- Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France
| | | | | | | | - Karima Mokhtari
- Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France.,AP-HP, Onconeurothèque, Paris, France.,AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Neuropathologie R Escourolle, Paris, France
| | - Chiara Villa
- AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Neuropathologie R Escourolle, Paris, France
| | - Marc Sanson
- Sorbonne Université, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris, France.,AP-HP, Onconeurothèque, Paris, France
| |
Collapse
|
175
|
Atik T, Karakoyun M, Sukalo M, Zenker M, Ozkinay F, Aydoğdu S. Two novel UBR1 gene mutations ın a patient with Johanson Blizzard Syndrome: A mild phenotype without mental retardation. Gene 2015; 570:153-5. [PMID: 26149651 DOI: 10.1016/j.gene.2015.06.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/31/2015] [Accepted: 06/15/2015] [Indexed: 11/27/2022]
Abstract
Johanson-Blizzard Syndrome (JBS) (MIM #243800) is a rare autosomal recessive genetic disorder characterized by exocrine pancreatic insufficiency, abnormal facial appearance and varying degrees of mental retardation. Mutations in UBR1 gene (MIM *605981) are considered to be responsible for the syndrome. Here, we report a 3 year-old mentally normal JBS girl. The patient presented with exocrine pancreatic insufficiency as well as failure-to-thrive. On dysmorphological examination, she was noted to have an abnormal hair pattern with frontal upsweep and alae nasi hypoplasia. With these findings, JBS diagnosis was established clinically. Molecular analysis of the UBR1 gene revealed two inherited novel mutations; one coming from each parent. These novel mutations were c. 1280T>G and c. 2432+5G>C, and they were found to be disease causing via in-silico analysis. In conclusion, for patients with longstanding exocrine pancreatic insufficiency, it should be considered as being symptomatic of a far broader picture. To omit connection with rare genetic diseases, such as Johanson-Blizzard Syndrome, a detailed dysmorphological examination ought to be performed.
Collapse
Affiliation(s)
- Tahir Atik
- Division of Genetics, Department of Pediatrics, School of Medicine, Ege University, Izmir, Turkey.
| | - Miray Karakoyun
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, School of Medicine, Ege University, Izmir, Turkey
| | - Maja Sukalo
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Ferda Ozkinay
- Division of Genetics, Department of Pediatrics, School of Medicine, Ege University, Izmir, Turkey
| | - Sema Aydoğdu
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, School of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
176
|
Bertoli-Avella AM, Gillis E, Morisaki H, Verhagen JMA, de Graaf BM, van de Beek G, Gallo E, Kruithof BPT, Venselaar H, Myers LA, Laga S, Doyle AJ, Oswald G, van Cappellen GWA, Yamanaka I, van der Helm RM, Beverloo B, de Klein A, Pardo L, Lammens M, Evers C, Devriendt K, Dumoulein M, Timmermans J, Bruggenwirth HT, Verheijen F, Rodrigus I, Baynam G, Kempers M, Saenen J, Van Craenenbroeck EM, Minatoya K, Matsukawa R, Tsukube T, Kubo N, Hofstra R, Goumans MJ, Bekkers JA, Roos-Hesselink JW, van de Laar IMBH, Dietz HC, Van Laer L, Morisaki T, Wessels MW, Loeys BL. Mutations in a TGF-β ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J Am Coll Cardiol 2015; 65:1324-1336. [PMID: 25835445 PMCID: PMC4380321 DOI: 10.1016/j.jacc.2015.01.040] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/17/2014] [Accepted: 01/19/2015] [Indexed: 12/21/2022]
Abstract
Background Aneurysms affecting the aorta are a common condition associated with high mortality as a result of aortic dissection or rupture. Investigations of the pathogenic mechanisms involved in syndromic types of thoracic aortic aneurysms, such as Marfan and Loeys-Dietz syndromes, have revealed an important contribution of disturbed transforming growth factor (TGF)-β signaling. Objectives This study sought to discover a novel gene causing syndromic aortic aneurysms in order to unravel the underlying pathogenesis. Methods We combined genome-wide linkage analysis, exome sequencing, and candidate gene Sanger sequencing in a total of 470 index cases with thoracic aortic aneurysms. Extensive cardiological examination, including physical examination, electrocardiography, and transthoracic echocardiography was performed. In adults, imaging of the entire aorta using computed tomography or magnetic resonance imaging was done. Results Here, we report on 43 patients from 11 families with syndromic presentations of aortic aneurysms caused by TGFB3 mutations. We demonstrate that TGFB3 mutations are associated with significant cardiovascular involvement, including thoracic/abdominal aortic aneurysm and dissection, and mitral valve disease. Other systemic features overlap clinically with Loeys-Dietz, Shprintzen-Goldberg, and Marfan syndromes, including cleft palate, bifid uvula, skeletal overgrowth, cervical spine instability and clubfoot deformity. In line with previous observations in aortic wall tissues of patients with mutations in effectors of TGF-β signaling (TGFBR1/2, SMAD3, and TGFB2), we confirm a paradoxical up-regulation of both canonical and noncanonical TGF-β signaling in association with up-regulation of the expression of TGF-β ligands. Conclusions Our findings emphasize the broad clinical variability associated with TGFB3 mutations and highlight the importance of early recognition of the disease because of high cardiovascular risk.
Collapse
Affiliation(s)
- Aida M Bertoli-Avella
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands; Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Elisabeth Gillis
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Hiroko Morisaki
- Departments of Bioscience and Genetics, and Medical Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Judith M A Verhagen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bianca M de Graaf
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gerarda van de Beek
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Elena Gallo
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Boudewijn P T Kruithof
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hanka Venselaar
- Nijmegen Center for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Center for Molecular and Biomolecular Informatics (CMBI), Nijmegen, the Netherlands
| | - Loretha A Myers
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven Laga
- Department of Cardiac Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Alexander J Doyle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Howard Hughes Medical Institute, Baltimore, Maryland; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Gretchen Oswald
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Howard Hughes Medical Institute, Baltimore, Maryland
| | - Gert W A van Cappellen
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Itaru Yamanaka
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Robert M van der Helm
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Berna Beverloo
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Luba Pardo
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin Lammens
- Department of Pathology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Christina Evers
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | | | - Janneke Timmermans
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Hennie T Bruggenwirth
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Frans Verheijen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Inez Rodrigus
- Department of Cardiac Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Gareth Baynam
- Genetic Services of Western Australia, Subiaco, Western Australia, Australia; School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Johan Saenen
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | | | - Kenji Minatoya
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Ritsu Matsukawa
- Department of Cardiovascular Surgery, Japanese Red Cross Kobe Hospital, Kobe, Japan
| | - Takuro Tsukube
- Department of Cardiovascular Surgery, Japanese Red Cross Kobe Hospital, Kobe, Japan
| | - Noriaki Kubo
- Department of Pediatrics, Urakawa Red Cross Hospital, Urakawa, Hokkaido, Japan
| | - Robert Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marie Jose Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jos A Bekkers
- Department of Cardio-Thoracic Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Howard Hughes Medical Institute, Baltimore, Maryland; Department of Pediatrics, Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lut Van Laer
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Takayuki Morisaki
- Departments of Bioscience and Genetics, and Medical Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan
| | - Marja W Wessels
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bart L Loeys
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands.
| |
Collapse
|
177
|
RNA-Binding Proteins: Splicing Factors and Disease. Biomolecules 2015; 5:893-909. [PMID: 25985083 PMCID: PMC4496701 DOI: 10.3390/biom5020893] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/22/2015] [Accepted: 04/29/2015] [Indexed: 12/12/2022] Open
Abstract
Pre-mRNA splicing is mediated by interactions of the Core Spliceosome and an array of accessory RNA binding proteins with cis-sequence elements. Splicing is a major regulatory component in higher eukaryotes. Disruptions in splicing are a major contributor to human disease. One in three hereditary disease alleles are believed to cause aberrant splicing. Hereditary disease alleles can alter splicing by disrupting a splicing element, creating a toxic RNA, or affecting splicing factors. One of the challenges of medical genetics is identifying causal variants from the thousands of possibilities discovered in a clinical sequencing experiment. Here we review the basic biochemistry of splicing, the mechanisms of splicing mutations, the methods for identifying splicing mutants, and the potential of therapeutic interventions.
Collapse
|
178
|
Mutational analysis of the FIGLA gene in women with idiopathic premature ovarian failure. Menopause 2015; 22:520-6. [DOI: 10.1097/gme.0000000000000340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
179
|
Linkowska K, Jawień A, Marszałek A, Malyarchuk BA, Tońska K, Bartnik E, Skonieczna K, Grzybowski T. Mitochondrial DNA Polymerase γ Mutations and Their Implications in mtDNA Alterations in Colorectal Cancer. Ann Hum Genet 2015; 79:320-328. [PMID: 25850945 DOI: 10.1111/ahg.12111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/26/2015] [Indexed: 01/16/2023]
Abstract
Mitochondrial DNA was found to be highly mutated in colorectal cancer cells. One of the key molecules involved in the maintenance of the mitochondrial genome is the nuclear-encoded polymerase gamma. The aim of our study was to determine if there is a link between polymorphisms within the polymerase gamma gene (POLG) and somatic mutations within the mitochondrial genome in cancer cells. We investigated POLG sequence variability in 50 colorectal cancer patients whose complete mitochondrial genome sequences were determined. Relative mtDNA copy number was also determined. We identified 251 sequence variants in the POLG gene. Most of them were germline-specific (∼92%). Twenty-one somatic changes in POLG were found in 10 colorectal cancer patients. We have found no association between the occurrence of mtDNA somatic mutations and the somatically occurring variants in POLG. MtDNA content was reduced in patients carrying somatic variants in POLG or germline nucleotide variants located in the region encoding the POLG polymerase domain, but the difference did not reach statistical significance. Our findings suggest that somatic mtDNA mutations occurring in colorectal cancer are not a consequence of somatic mutations in POLG. Nevertheless, POLG nucleotide variants may lead to a decrease in mtDNA content, and consequently result in mitochondrial dysfunction.
Collapse
Affiliation(s)
- Katarzyna Linkowska
- Department of Molecular and Forensic Genetics, Institute of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Arkadiusz Jawień
- Chair of Vascular Surgery and Angiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Andrzej Marszałek
- Chair & Department of Clinical Pathomorphology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Boris A Malyarchuk
- Institute of Biological Problems of the North, Far-East Branch of the Russian Academy of Sciences, Magadan, Russia
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Skonieczna
- Department of Molecular and Forensic Genetics, Institute of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Grzybowski
- Department of Molecular and Forensic Genetics, Institute of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
180
|
Caminsky NG, Mucaki EJ, Rogan PK. Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res 2015. [DOI: 10.12688/f1000research.5654.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The interpretation of genomic variants has become one of the paramount challenges in the post-genome sequencing era. In this review we summarize nearly 20 years of research on the applications of information theory (IT) to interpret coding and non-coding mutations that alter mRNA splicing in rare and common diseases. We compile and summarize the spectrum of published variants analyzed by IT, to provide a broad perspective of the distribution of deleterious natural and cryptic splice site variants detected, as well as those affecting splicing regulatory sequences. Results for natural splice site mutations can be interrogated dynamically with Splicing Mutation Calculator, a companion software program that computes changes in information content for any splice site substitution, linked to corresponding publications containing these mutations. The accuracy of IT-based analysis was assessed in the context of experimentally validated mutations. Because splice site information quantifies binding affinity, IT-based analyses can discern the differences between variants that account for the observed reduced (leaky) versus abolished mRNA splicing. We extend this principle by comparing predicted mutations in natural, cryptic, and regulatory splice sites with observed deleterious phenotypic and benign effects. Our analysis of 1727 variants revealed a number of general principles useful for ensuring portability of these analyses and accurate input and interpretation of mutations. We offer guidelines for optimal use of IT software for interpretation of mRNA splicing mutations.
Collapse
|
181
|
Usher JL, Ascher DB, Pires DEV, Milan AM, Blundell TL, Ranganath LR. Analysis of HGD Gene Mutations in Patients with Alkaptonuria from the United Kingdom: Identification of Novel Mutations. JIMD Rep 2015; 24:3-11. [PMID: 25681086 PMCID: PMC4582018 DOI: 10.1007/8904_2014_380] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/23/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022] Open
Abstract
Alkaptonuria (AKU) is a rare autosomal recessive disorder with incidence ranging from 1:100,000 to 1:250,000. The disorder is caused by a deficiency of the enzyme homogentisate 1,2-dioxygenase (HGD), which results from defects in the HGD gene. This enzyme converts homogentisic acid to maleylacetoacetate and has a major role in the catabolism of phenylalanine and tyrosine. To elucidate the mutation spectrum of the HGD gene in patients with alkaptonuria from 42 patients attending the National Alkaptonuria Centre, 14 exons of the HGD gene and the intron-exon boundaries were analysed by PCR-based sequencing. A total of 34 sequence variants was observed, confirming the genetic heterogeneity of AKU. Of these mutations, 26 were missense substitutions and four splice site mutations. There were two deletions and one duplication giving rise to frame shifts and one substitution abolishing the translation termination codon (no stop). Nine of the mutations were previously unreported novel variants. Using computational approaches based on the 3D structure, these novel mutations are predicted to affect the activity of the protein complex through destabilisation of the individual protomer structure or through disruption of protomer-protomer interactions.
Collapse
Affiliation(s)
- Jeannette L Usher
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool and Broadgreen University Hospital Trust, Duncan Building, Liverpool, L7 8XP, UK.
| | - David B Ascher
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Douglas E V Pires
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Anna M Milan
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool and Broadgreen University Hospital Trust, Duncan Building, Liverpool, L7 8XP, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Lakshminarayan R Ranganath
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool and Broadgreen University Hospital Trust, Duncan Building, Liverpool, L7 8XP, UK
| |
Collapse
|
182
|
Kobayashi S, Sasaki M, Nakao R, Setiyono A, Handharyani E, Orba Y, Rahmadani I, Taha S, Adiani S, Subangkit M, Nakamura I, Kimura T, Sawa H. Detection of novel polyomaviruses in fruit bats in Indonesia. Arch Virol 2015; 160:1075-82. [PMID: 25670407 DOI: 10.1007/s00705-015-2349-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
Abstract
Bats are an important natural reservoir for a variety of viral pathogens, including polyomaviruses (PyVs). The aims of this study were: (i) to determine which PyVs are present in bats in Indonesia and (ii) to analyze the evolutionary relationships between bat PyVs and other known PyVs. Using broad-spectrum polymerase chain reaction (PCR)-based assays, we screened PyV DNA isolated from spleen samples from 82 wild fruit bats captured in Indonesia. Fragments of the PyV genome were detected in 10 of the 82 spleen samples screened, and eight full-length viral genome sequences were obtained using an inverse PCR method. A phylogenetic analysis of eight whole viral genome sequences showed that BatPyVs form two distinct genetic clusters within the proposed genus Orthopolyomavirus that are genetically different from previously described BatPyVs. Interestingly, one group of BatPyVs is genetically related to the primate PyVs, including human PyV9 and trichodysplasia spinulosa-associated PyV. This study has identified the presence of novel PyVs in fruit bats in Indonesia and provides genetic information about these BatPyVs.
Collapse
Affiliation(s)
- Shintaro Kobayashi
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo, 001-0020, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Thoenes M, Zimmermann U, Ebermann I, Ptok M, Lewis MA, Thiele H, Morlot S, Hess MM, Gal A, Eisenberger T, Bergmann C, Nürnberg G, Nürnberg P, Steel KP, Knipper M, Bolz HJ. OSBPL2 encodes a protein of inner and outer hair cell stereocilia and is mutated in autosomal dominant hearing loss (DFNA67). Orphanet J Rare Dis 2015; 10:15. [PMID: 25759012 PMCID: PMC4334766 DOI: 10.1186/s13023-015-0238-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/03/2015] [Indexed: 01/08/2023] Open
Abstract
Background Early-onset hearing loss is mostly of genetic origin. The complexity of the hearing process is reflected by its extensive genetic heterogeneity, with probably many causative genes remaining to be identified. Here, we aimed at identifying the genetic basis for autosomal dominant non-syndromic hearing loss (ADNSHL) in a large German family. Methods A panel of 66 known deafness genes was analyzed for mutations by next-generation sequencing (NGS) in the index patient. We then conducted genome-wide linkage analysis, and whole-exome sequencing was carried out with samples of two patients. Expression of Osbpl2 in the mouse cochlea was determined by immunohistochemistry. Because Osbpl2 has been proposed as a target of miR-96, we investigated homozygous Mir96 mutant mice for its upregulation. Results Onset of hearing loss in the investigated ADNSHL family is in childhood, initially affecting the high frequencies and progressing to profound deafness in adulthood. However, there is considerable intrafamilial variability. We mapped a novel ADNSHL locus, DFNA67, to chromosome 20q13.2-q13.33, and subsequently identified a co-segregating heterozygous frameshift mutation, c.141_142delTG (p.Arg50Alafs*103), in OSBPL2, encoding a protein known to interact with the DFNA1 protein, DIAPH1. In mice, Osbpl2 was prominently expressed in stereocilia of cochlear outer and inner hair cells. We found no significant Osbpl2 upregulation at the mRNA level in homozygous Mir96 mutant mice. Conclusion The function of OSBPL2 in the hearing process remains to be determined. Our study and the recent description of another frameshift mutation in a Chinese ADNSHL family identify OSBPL2 as a novel gene for progressive deafness. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0238-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michaela Thoenes
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany.
| | - Ulrike Zimmermann
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen (THRC), Department of Otolaryngology, University of Tübingen, Tübingen, Germany.
| | - Inga Ebermann
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany.
| | - Martin Ptok
- Department of Phoniatrics and Pediatric Audiology, Hannover Medical School, Hannover, Germany.
| | - Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK.
| | - Holger Thiele
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Susanne Morlot
- Institute for Human Genetics, Hannover Medical School, Hannover, Germany.
| | - Markus M Hess
- Department of Voice, Speech and Hearing Disorders, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Andreas Gal
- Department of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany. .,Renal Division, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany.
| | - Gudrun Nürnberg
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK.
| | - Marlies Knipper
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen (THRC), Department of Otolaryngology, University of Tübingen, Tübingen, Germany.
| | - Hanno Jörn Bolz
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany. .,Center for Human Genetics, Bioscientia, Ingelheim, Germany.
| |
Collapse
|
184
|
Goel N, Singh S, Aseri TC. An Improved Method for Splice Site Prediction in DNA Sequences Using Support Vector Machines. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.procs.2015.07.350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
185
|
Soemedi R, Vega H, Belmont JM, Ramachandran S, Fairbrother WG. Genetic variation and RNA binding proteins: tools and techniques to detect functional polymorphisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:227-66. [PMID: 25201108 DOI: 10.1007/978-1-4939-1221-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At its most fundamental level the goal of genetics is to connect genotype to phenotype. This question is asked at a basic level evaluating the role of genes and pathways in genetic model organism. Increasingly, this question is being asked in the clinic. Genomes of individuals and populations are being sequenced and compared. The challenge often comes at the stage of analysis. The variant positions are analyzed with the hope of understanding human disease. However after a genome or exome has been sequenced, the researcher is often deluged with hundreds of potentially relevant variations. Traditionally, amino-acid changing mutations were considered the tractable class of disease-causing mutations; however, mutations that disrupt noncoding elements are the subject of growing interest. These noncoding changes are a major avenue of disease (e.g., one in three hereditary disease alleles are predicted to affect splicing). Here, we review some current practices of medical genetics, the basic theory behind biochemical binding and functional assays, and then explore technical advances in how variations that alter RNA protein recognition events are detected and studied. These advances are advances in scale-high-throughput implementations of traditional biochemical assays that are feasible to perform in any molecular biology laboratory. This chapter utilizes a case study approach to illustrate some methods for analyzing polymorphisms. The first characterizes a functional intronic SNP that deletes a high affinity PTB site using traditional low-throughput biochemical and functional assays. From here we demonstrate the utility of high-throughput splicing and spliceosome assembly assays for screening large sets of SNPs and disease alleles for allelic differences in gene expression. Finally we perform three pilot drug screens with small molecules (G418, tetracycline, and valproic acid) that illustrate how compounds that rescue specific instances of differential pre-mRNA processing can be discovered.
Collapse
Affiliation(s)
- Rachel Soemedi
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | | | | | | | | |
Collapse
|
186
|
Jian X, Boerwinkle E, Liu X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res 2014; 42:13534-44. [PMID: 25416802 PMCID: PMC4267638 DOI: 10.1093/nar/gku1206] [Citation(s) in RCA: 357] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/12/2014] [Accepted: 11/04/2014] [Indexed: 01/17/2023] Open
Abstract
In silico tools have been developed to predict variants that may have an impact on pre-mRNA splicing. The major limitation of the application of these tools to basic research and clinical practice is the difficulty in interpreting the output. Most tools only predict potential splice sites given a DNA sequence without measuring splicing signal changes caused by a variant. Another limitation is the lack of large-scale evaluation studies of these tools. We compared eight in silico tools on 2959 single nucleotide variants within splicing consensus regions (scSNVs) using receiver operating characteristic analysis. The Position Weight Matrix model and MaxEntScan outperformed other methods. Two ensemble learning methods, adaptive boosting and random forests, were used to construct models that take advantage of individual methods. Both models further improved prediction, with outputs of directly interpretable prediction scores. We applied our ensemble scores to scSNVs from the Catalogue of Somatic Mutations in Cancer database. Analysis showed that predicted splice-altering scSNVs are enriched in recurrent scSNVs and known cancer genes. We pre-computed our ensemble scores for all potential scSNVs across the human genome, providing a whole genome level resource for identifying splice-altering scSNVs discovered from large-scale sequencing studies.
Collapse
Affiliation(s)
- Xueqiu Jian
- Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Human Genetics, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Human Genetics, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoming Liu
- Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
187
|
Mudvari P, Movassagh M, Kowsari K, Seyfi A, Kokkinaki M, Edwards NJ, Golestaneh N, Horvath A. SNPlice: variants that modulate Intron retention from RNA-sequencing data. ACTA ACUST UNITED AC 2014; 31:1191-8. [PMID: 25481010 DOI: 10.1093/bioinformatics/btu804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 11/30/2014] [Indexed: 12/22/2022]
Abstract
RATIONALE The growing recognition of the importance of splicing, together with rapidly accumulating RNA-sequencing data, demand robust high-throughput approaches, which efficiently analyze experimentally derived whole-transcriptome splice profiles. RESULTS We have developed a computational approach, called SNPlice, for identifying cis-acting, splice-modulating variants from RNA-seq datasets. SNPlice mines RNA-seq datasets to find reads that span single-nucleotide variant (SNV) loci and nearby splice junctions, assessing the co-occurrence of variants and molecules that remain unspliced at nearby exon-intron boundaries. Hence, SNPlice highlights variants preferentially occurring on intron-containing molecules, possibly resulting from altered splicing. To illustrate co-occurrence of variant nucleotide and exon-intron boundary, allele-specific sequencing was used. SNPlice results are generally consistent with splice-prediction tools, but also indicate splice-modulating elements missed by other algorithms. SNPlice can be applied to identify variants that correlate with unexpected splicing events, and to measure the splice-modulating potential of canonical splice-site SNVs. AVAILABILITY AND IMPLEMENTATION SNPlice is freely available for download from https://code.google.com/p/snplice/ as a self-contained binary package for 64-bit Linux computers and as python source-code. CONTACT pmudvari@gwu.edu or horvatha@gwu.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Prakriti Mudvari
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA
| | - Mercedeh Movassagh
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA
| | - Kamran Kowsari
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA
| | - Ali Seyfi
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA
| | - Maria Kokkinaki
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA
| | - Nathan J Edwards
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA
| | - Nady Golestaneh
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA
| | - Anelia Horvath
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA
| |
Collapse
|
188
|
Evans CJ, Liskova P, Dudakova L, Hrabcikova P, Horinek A, Jirsova K, Filipec M, Hardcastle AJ, Davidson AE, Tuft SJ. Identification of six novel mutations in ZEB1 and description of the associated phenotypes in patients with posterior polymorphous corneal dystrophy 3. Ann Hum Genet 2014; 79:1-9. [PMID: 25441224 DOI: 10.1111/ahg.12090] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/30/2014] [Indexed: 01/18/2023]
Abstract
Posterior polymorphous corneal dystrophy 3 (PPCD3) is a rare autosomal dominant disorder caused by mutations in ZEB1. To date all identified disease-causing variants were unique to the studied families, except for c.1576dup. We have detected six novel ZEB1 mutations; c.1749_1750del; p.(Pro584*) and c.1717_1718del; p.(Val573Phefs*12) in two Czech families, c.1176dup; p.(Ala393Serfs*19), c.1100C>A; p.(Ser367*), c.627del; p.(Phe209Leufs*11) in three British families and a splice site mutation, c.685-2A>G, in a patient of Sri Lankan origin. An additional British proband had the c.1576dup; p.(Val526Glyfs*3) mutation previously reported in other populations. Clinical findings were variable and included bilateral congenital corneal opacity in one proband, development of opacity before the age of 2 years in another individual and bilateral iris flocculi in yet another subject. The majority of eyes examined by corneal topography (10 out of 16) had an abnormally steep cornea (flat keratometry 46.5-52.7 diopters, steep keratometry 48.1-54.0 diopters). One proband underwent surgery for cryptorchidism. Our study further demonstrates that PPCD3 can present as corneal edema in early childhood, and that an abnormally steep keratometry is a common feature of this condition. As cryptorchidism has been previously observed in two other PPCD3 cases, its association with the disease warrants further investigation.
Collapse
|
189
|
Caminsky N, Mucaki EJ, Rogan PK. Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res 2014; 3:282. [PMID: 25717368 PMCID: PMC4329672 DOI: 10.12688/f1000research.5654.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
The interpretation of genomic variants has become one of the paramount challenges in the post-genome sequencing era. In this review we summarize nearly 20 years of research on the applications of information theory (IT) to interpret coding and non-coding mutations that alter mRNA splicing in rare and common diseases. We compile and summarize the spectrum of published variants analyzed by IT, to provide a broad perspective of the distribution of deleterious natural and cryptic splice site variants detected, as well as those affecting splicing regulatory sequences. Results for natural splice site mutations can be interrogated dynamically with Splicing Mutation Calculator, a companion software program that computes changes in information content for any splice site substitution, linked to corresponding publications containing these mutations. The accuracy of IT-based analysis was assessed in the context of experimentally validated mutations. Because splice site information quantifies binding affinity, IT-based analyses can discern the differences between variants that account for the observed reduced (leaky) versus abolished mRNA splicing. We extend this principle by comparing predicted mutations in natural, cryptic, and regulatory splice sites with observed deleterious phenotypic and benign effects. Our analysis of 1727 variants revealed a number of general principles useful for ensuring portability of these analyses and accurate input and interpretation of mutations. We offer guidelines for optimal use of IT software for interpretation of mRNA splicing mutations.
Collapse
Affiliation(s)
- Natasha Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Peter K Rogan
- Departments of Biochemistry and Computer Science, Western University, London, ON, N6A 2C1, Canada
| |
Collapse
|
190
|
Genome-wide identification and analysis of basic helix-loop-helix domains in dog, Canis lupus familiaris. Mol Genet Genomics 2014; 290:633-48. [PMID: 25403511 DOI: 10.1007/s00438-014-0950-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/30/2014] [Indexed: 01/04/2023]
Abstract
The basic helix-loop-helix (bHLH) domain is a highly conserved amino acid motif that defines a group of DNA-binding transcription factors. bHLH proteins play essential regulatory roles in a variety of biological processes in animal, plant, and fungus. The domestic dog, Canis lupus familiaris, is a good model organism for genetic, physiological, and behavioral studies. In this study, we identified 115 putative bHLH genes in the dog genome. Based on a phylogenetic analysis, 51, 26, 14, 4, 12, and 4 dog bHLH genes were assigned to six separate groups (A-F); four bHLH genes were categorized as ''orphans''. Within-group evolutionary relationships inferred from the phylogenetic analysis were consistent with positional conservation, other conserved domains flanking the bHLH motif, and highly conserved intron/exon patterns in other vertebrates. Our analytical results confirmed the GenBank annotations of 89 dog bHLH proteins and provided information that could be used to update the annotations of the remaining 26 dog bHLH proteins. These data will provide good references for further studies on the structures and regulatory functions of bHLH proteins in the growth and development of dogs, which may help in understanding the mechanisms that underlie the physical and behavioral differences between dogs and wolves.
Collapse
|
191
|
The ORF012 gene of Marek's disease virus type 1 produces a spliced transcript and encodes a novel nuclear phosphoprotein essential for virus growth. J Virol 2014; 89:1348-63. [PMID: 25392220 DOI: 10.1128/jvi.02687-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Marek's disease virus (MDV), an alphaherpesvirus, is the causative agent of a lethal disease in chickens characterized by generalized nerve inflammation and rapid lymphoma development. The extensive colinearity of the MDV genome with those of related herpesviruses has eased functional characterization of many MDV genes. However, MDV carries a number of unique open reading frames (ORFs) that have not yet been investigated regarding their coding potentials and the functions of their products. Among these unique ORFs are two putative ORFs, ORF011 and ORF012, which are found at the extreme left end of the MDV unique long region. Using reverse transcriptase PCR, we showed that ORF011 and ORF012 are not individual genes but form a single gene through mRNA splicing of a small intron, resulting in the novel ORF012. We generated an ORF012-null virus using an infectious clone of MDV strain RB-1B. The deletion virus had a marked growth defect in vitro and could not be passaged in cultured cells, suggesting an essential role for the ORF012 product in virus replication. Further studies revealed that protein 012 (p012) localized to the nucleus in transfected and infected cells, and we identified by site-directed mutagenesis and green fluorescent protein (GFP) reporter fusion assays a nuclear localization signal (NLS) that was mapped to a 23-amino-acid sequence at the protein's C terminus. Nuclear export was blocked using leptomycin B, suggesting a potential role for p012 as a nuclear/cytoplasmic shuttling protein. Finally, p012 is phosphorylated at multiple residues, a modification that could possibly regulate its subcellular distribution. IMPORTANCE Marek's disease virus (MDV) causes a devastating oncogenic disease in chickens with high morbidity and mortality. The costs for disease prevention reach several billion dollars annually. The functional investigation of MDV genes is necessary to understand its complex replication cycle, which eventually could help us to interfere with MDV and herpesviral pathogenesis. We have identified a previously unidentified phosphoprotein encoded by MDV ORF012. We were able to show experimentally that predicted splicing of the gene based on bioinformatics data does indeed occur during replication. The newly identified p012 is essential for MDV replication and localizes to the nucleus due to the presence of a transferable nuclear localization signal at its C terminus. Our results also imply that p012 could constitute a nucleocytoplasmic shuttle protein, a feature that could prove interesting and important.
Collapse
|
192
|
Rishmawi L, Sun H, Schneeberger K, Hülskamp M, Schrader A. Rapid identification of a natural knockout allele of ARMADILLO REPEAT-CONTAINING KINESIN1 that causes root hair branching by mapping-by-sequencing. PLANT PHYSIOLOGY 2014; 166:1280-7. [PMID: 25248719 PMCID: PMC4226369 DOI: 10.1104/pp.114.244046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), branched root hairs are an indicator of defects in root hair tip growth. Among 62 accessions, one accession (Heiligkreuztal2 [HKT2.4]) displayed branched root hairs, suggesting that this accession carries a mutation in a gene of importance for tip growth. We determined 200- to 300-kb mapping intervals using a mapping-by-sequencing approach of F2 pools from crossings of HKT2.4 with three different accessions. The intersection of these mapping intervals was 80 kb in size featuring not more than 36 HKT2.4-specific single nucleotide polymorphisms, only two of which changed the coding potential of genes. Among them, we identified the causative single nucleotide polymorphism changing a splicing site in ARMADILLO REPEAT-CONTAINING KINESIN1. The applied strategies have the potential to complement statistical methods in high-throughput phenotyping studies using different natural accessions to identify causative genes for distinct phenotypes represented by only one or a few accessions.
Collapse
Affiliation(s)
- Louai Rishmawi
- Botanical Institute (L.R., M.H., A.S.) and Cluster of Excellence on Plant Sciences (L.R., M.H.), University of Cologne, Cologne Biocenter, D-50674 Cologne, Germany; andDepartment for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.S., K.S.)
| | - Hequan Sun
- Botanical Institute (L.R., M.H., A.S.) and Cluster of Excellence on Plant Sciences (L.R., M.H.), University of Cologne, Cologne Biocenter, D-50674 Cologne, Germany; andDepartment for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.S., K.S.)
| | - Korbinian Schneeberger
- Botanical Institute (L.R., M.H., A.S.) and Cluster of Excellence on Plant Sciences (L.R., M.H.), University of Cologne, Cologne Biocenter, D-50674 Cologne, Germany; andDepartment for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.S., K.S.)
| | - Martin Hülskamp
- Botanical Institute (L.R., M.H., A.S.) and Cluster of Excellence on Plant Sciences (L.R., M.H.), University of Cologne, Cologne Biocenter, D-50674 Cologne, Germany; andDepartment for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.S., K.S.)
| | - Andrea Schrader
- Botanical Institute (L.R., M.H., A.S.) and Cluster of Excellence on Plant Sciences (L.R., M.H.), University of Cologne, Cologne Biocenter, D-50674 Cologne, Germany; andDepartment for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.S., K.S.)
| |
Collapse
|
193
|
Al-Sarraj Y, Ben-Omran T, Tolefat M, Bejaoui Y, El-Shanti H, Kambouris M. A Novel Missense Mutation in SRD5A3 Causes Congenital Disorder of Glycosylation Type I (Cerebello-Ocular Syndrome). JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2014. [DOI: 10.1177/2326409814550528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yasser Al-Sarraj
- Qatar Biomedical Research Institute, Medical Genetics Center, Doha, Qatar
| | - Tawfeg Ben-Omran
- Clinical & Metabolic Genetics, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medical College, Doha, Qatar
| | | | - Yosra Bejaoui
- Qatar Biomedical Research Institute, Medical Genetics Center, Doha, Qatar
| | - Hatem El-Shanti
- Qatar Biomedical Research Institute, Medical Genetics Center, Doha, Qatar
- Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Marios Kambouris
- Qatar Biomedical Research Institute, Medical Genetics Center, Doha, Qatar
- Genetics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
194
|
Stewart MJ, Favrel P, Rotgans BA, Wang T, Zhao M, Sohail M, O'Connor WA, Elizur A, Henry J, Cummins SF. Neuropeptides encoded by the genomes of the Akoya pearl oyster Pinctata fucata and Pacific oyster Crassostrea gigas: a bioinformatic and peptidomic survey. BMC Genomics 2014; 15:840. [PMID: 25277059 PMCID: PMC4200219 DOI: 10.1186/1471-2164-15-840] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oysters impart significant socio-ecological benefits from primary production of food supply, to estuarine ecosystems via reduction of water column nutrients, plankton and seston biomass. Little though is known at the molecular level of what genes are responsible for how oysters reproduce, filter nutrients, survive stressful physiological events and form reef communities. Neuropeptides represent a diverse class of chemical messengers, instrumental in orchestrating these complex physiological events in other species. RESULTS By a combination of in silico data mining and peptide analysis of ganglia, 74 putative neuropeptide genes were identified from genome and transcriptome databases of the Akoya pearl oyster, Pinctata fucata and the Pacific oyster, Crassostrea gigas, encoding precursors for over 300 predicted bioactive peptide products, including three newly identified neuropeptide precursors PFGx8amide, RxIamide and Wx3Yamide. Our findings also include a gene for the gonadotropin-releasing hormone (GnRH) and two egg-laying hormones (ELH) which were identified from both oysters. Multiple sequence alignments and phylogenetic analysis supports similar global organization of these mature peptides. Computer-based peptide modeling of the molecular tertiary structures of ELH highlights the structural homologies within ELH family, which may facilitate ELH activity leading to the release of gametes. CONCLUSION Our analysis demonstrates that oysters possess conserved molluscan neuropeptide domains and overall precursor organization whilst highlighting many previously unrecognized bivalve idiosyncrasies. This genomic analysis provides a solid foundation from which further studies aimed at the functional characterization of these molluscan neuropeptides can be conducted to further stimulate advances in understanding the ecology and cultivation of oysters.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Scott F Cummins
- School of Science and Education, Genecology Research Center, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia.
| |
Collapse
|
195
|
Bidchol AM, Dalal A, Shah H, S S, Nampoothiri S, Kabra M, Gupta N, Danda S, Gowrishankar K, Phadke SR, Kapoor S, Kamate M, Verma IC, Puri RD, Sankar VH, Devi ARR, Patil SJ, Ranganath P, Jain SJMN, Agarwal M, Singh A, Mishra P, Tamhankar PM, Gopinath PM, Nagarajaram HA, Satyamoorthy K, Girisha KM. GALNS mutations in Indian patients with mucopolysaccharidosis IVA. Am J Med Genet A 2014; 164A:2793-801. [PMID: 25252036 DOI: 10.1002/ajmg.a.36735] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 06/27/2014] [Indexed: 01/20/2023]
Abstract
Mucopolysaccharidosis IV A (Morquio syndrome A, MPS IVA) is a lysosomal storage disease caused by the deficiency of N-acetylgalactosamine-6-sulfatase (GALNS). The mutation spectrum in this condition is yet to be determined in Indians. We aimed to analyze the mutations in the GALNS gene in Asian Indians with MPS IVA. All the exons and the adjacent intronic regions of the gene were amplified and sequenced in sixty-eight unrelated Indian families. We identified 136 mutant alleles comprising of 40 different mutations. We report twenty-two novel mutations that comprise of seventeen missense (p.Asn32Thr, p.Leu36Arg, p.Pro52Leu, p.Pro77Ser, p.Cys79Arg, p.His142Pro, p.Tyr191Asp, p.Asn204Thr, p.Gly188Ser, p.Phe216Ser, p.Trp230Cys, p.Ala291Ser, p.Gly317Arg, p.His329Pro, p.Arg386Ser, p.Glu450Gly, p.Cys501Ser), three splice-site variants (c.120+1G>C, c.1003-3C>G, c.1139+1G>A), one nonsense mutation (p.Gln414*) and one frameshift mutation (p.Pro420Leufs*440). Eighteen mutations have been reported earlier. Among these p.Ser287Leu (8.82%), p.Phe216Ser (7.35%), p.Asn32Thr (6.61%) and p.Ala291Ser (5.88%) were the most frequent mutations in Indian patients but were rare in the mutational profiles reported in other populations. These results indicate that the Indian patients may have a distinct mutation spectrum compared to those of other populations. Mutant alleles in exon 1, 7 and 8 accounted for 44.8% of the mutations, and sequencing of these exons initially may be a cost-effective approach in Asian Indian patients. This is the largest study on molecular analysis of patients with MPS IVA reported in the literature, and the first report from India.
Collapse
Affiliation(s)
- Abdul Mueed Bidchol
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Bartels H, Luban J. Gammaretroviral pol sequences act in cis to direct polysome loading and NXF1/NXT-dependent protein production by gag-encoded RNA. Retrovirology 2014; 11:73. [PMID: 25212909 PMCID: PMC4174252 DOI: 10.1186/s12977-014-0073-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/11/2014] [Indexed: 11/21/2022] Open
Abstract
Background All retroviruses synthesize essential proteins via alternatively spliced mRNAs. Retrovirus genera, though, exploit different mechanisms to coordinate the synthesis of proteins from alternatively spliced mRNAs. The best studied of these retroviral, post-transcriptional effectors are the trans-acting Rev protein of lentiviruses and the cis-acting constitutive transport element (CTE) of the betaretrovirus Mason-Pfizer monkey virus (MPMV). How members of the gammaretrovirus genus translate protein from unspliced RNA has not been elucidated. Results The mechanism by which two gammaretroviruses, XMRV and MLV, synthesize the Gag polyprotein (Pr65Gag) from full-length, unspliced mRNA was investigated here. The yield of Pr65Gag from a gag–only expression plasmid was found to be at least 30-fold less than that from an otherwise isogenic gag-pol expression plasmid. A frameshift mutation disrupting the pol open reading frame within the gag-pol expression plasmid did not decrease Pr65Gag production and 398 silent nucleotide changes engineered into gag rendered Pr65Gag synthesis pol-independent. These results are consistent with pol-encoded RNA acting in cis to promote Pr65Gag translation. Two independently-acting pol fragments were identified by screening 17 pol deletion mutations. To determine the mechanism by which pol promoted Pr65Gag synthesis, gag RNA in total and cytoplasmic fractions was quantitated by northern blot and by RT-PCR. The pol sequences caused, maximally, three-fold increase in total or cytoplasmic gag mRNA. Instead, pol sequences increased gag mRNA association with polyribosomes ~100-fold, a magnitude sufficient to explain the increase in Pr65Gag translation efficiency. The MPMV CTE, an NXF1-binding element, substituted for pol in promoting Pr65Gag synthesis. A pol RNA stem-loop resembling the CTE promoted Pr65Gag synthesis. Over-expression of NXF1 and NXT, host factors that bind to the MPMV CTE, synergized with pol to promote gammaretroviral gag RNA loading onto polysomes and to increase Pr65Gag synthesis. Conversely, Gag polyprotein synthesis was decreased by NXF1 knockdown. Finally, overexpression of SRp20, a shuttling protein that binds to NXF1 and promotes NXF1 binding to RNA, also increased gag RNA loading onto polysomes and increased Pr65Gag synthesis. Conclusion These experiments demonstrate that gammaretroviral pol sequences act in cis to recruit NXF1 and SRp20 to promote polysome loading of gag RNA and, thereby license the synthesis of Pr65Gag from unspliced mRNA.
Collapse
Affiliation(s)
| | - Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1205, Switzerland.
| |
Collapse
|
197
|
NAMPT and NAPRT1: novel polymorphisms and distribution of variants between normal tissues and tumor samples. Sci Rep 2014; 4:6311. [PMID: 25201160 PMCID: PMC4158320 DOI: 10.1038/srep06311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/19/2014] [Indexed: 12/21/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase domain containing 1 (NAPRT1) are the main human NAD salvage enzymes. NAD regulates energy metabolism and cell signaling, and the enzymes that control NAD availability are linked to pathologies such as cancer and neurodegeneration. Here, we have screened normal and tumor samples from different tissues and populations of origin for mutations in human NAMPT and NAPRT1, and evaluated their potential pathogenicity. We have identified several novel polymorphisms and showed that NAPRT1 has a greater genetic diversity than NAMPT, where any alteration can have a greater functional impact. Some variants presented different frequencies between normal and tumor samples that were most likely related to their population of origin. The novel mutations described that affect protein structure or expression levels can be functionally relevant and should be considered in a disease context. Particularly, mutations that decrease NAPRT1 expression can predict the usefulness of Nicotinic Acid in tumor treatments with NAMPT inhibitors.
Collapse
|
198
|
Kraus C, Rau TT, Lux P, Erlenbach-Wünsch K, Löhr S, Krumbiegel M, Thiel CT, Stöhr R, Agaimy A, Croner RS, Stürzl M, Hohenberger W, Hartmann A, Reis A. Comprehensive screening for mutations associated with colorectal cancer in unselected cases reveals penetrant and nonpenetrant mutations. Int J Cancer 2014; 136:E559-68. [PMID: 25142776 DOI: 10.1002/ijc.29149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/17/2014] [Accepted: 07/25/2014] [Indexed: 12/14/2022]
Abstract
Germline mutation testing in patients with colorectal cancer (CRC) is offered only to a subset of patients with a clinical presentation or tumor histology suggestive of familial CRC syndromes, probably underestimating familial CRC predisposition. The aim of our study was to determine whether unbiased screening of newly diagnosed CRC cases with next generation sequencing (NGS) increases the overall detection rate of germline mutations. We analyzed 152 consecutive CRC patients for germline mutations in 18 CRC-associated genes using NGS. All patients were also evaluated for Bethesda criteria and all tumors were investigated for microsatellite instability, immunohistochemistry for mismatch repair proteins and the BRAF*V600E somatic mutation. NGS based sequencing identified 27 variants in 9 genes in 23 out of 152 patients studied (18%). Three of them were already reported as pathogenic and 12 were class 3 germline variants with an uncertain prediction of pathogenicity. Only 1 of these patients fulfilled Bethesda criteria and had a microsatellite instable tumor and an MLH1 germline mutation. The others would have been missed with current approaches: 2 with a MSH6 premature termination mutation and 12 uncertain, potentially pathogenic class 3 variants in APC, MLH1, MSH2, MSH6, MSH3 and MLH3. The higher NGS mutation detection rate compared with current testing strategies based on clinicopathological criteria is probably due to the large genetic heterogeneity and overlapping clinical presentation of the various CRC syndromes. It can also identify apparently nonpenetrant germline mutations complicating the clinical management of the patients and their families.
Collapse
Affiliation(s)
- Cornelia Kraus
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Chen M, Li Y, Liu H, Fu X, Yu Y, Yu G, Wang C, Bao F, Liany H, Wang Z, Shi Z, Zhang D, Zhou G, Liu J, Zhang F. Analysis of POFUT1 gene mutation in a Chinese family with Dowling-Degos disease. PLoS One 2014; 9:e104496. [PMID: 25157627 PMCID: PMC4144801 DOI: 10.1371/journal.pone.0104496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/09/2014] [Indexed: 11/19/2022] Open
Abstract
Dowling-Degos disease (DDD) is an autosomal dominant genodermatosis characterized by reticular pigmented anomaly mainly affecting flexures. Though KRT5 has been identified to be the causal gene of DDD, the heterogeneity of this disease was displayed: for example, POFUT1 and POGLUT1 were recently identified and confirmed to be additional pathogenic genes of DDD. To identify other DDD causative genes, we performed genome-wide linkage and exome sequencing analyses in a multiplex Chinese DDD family, in which the KRT5 mutation was absent. Only a novel 1-bp deletion (c.246+5delG) in POFUT1 was found. No other novel mutation or this deletion was detected in POFUT1 in a second DDD family and a sporadic DDD case by Sanger Sequencing. The result shows the genetic-heterogeneity and complexity of DDD and will contribute to the further understanding of DDD genotype/phenotype correlations and to the pathogenesis of this disease.
Collapse
Affiliation(s)
- Mingfei Chen
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Shandong Provincial Institute of Dermatology and Venereology, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Yi Li
- Department of Human Genetics, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Hong Liu
- Shandong Provincial Institute of Dermatology and Venereology, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Xi'an Fu
- Shandong Provincial Institute of Dermatology and Venereology, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Yiongxiang Yu
- Shandong Provincial Institute of Dermatology and Venereology, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Gongqi Yu
- Shandong Provincial Institute of Dermatology and Venereology, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Chuan Wang
- Shandong Provincial Institute of Dermatology and Venereology, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Fangfang Bao
- Shandong Provincial Institute of Dermatology and Venereology, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Herty Liany
- Department of Human Genetics, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Zhenzhen Wang
- Shandong Provincial Institute of Dermatology and Venereology, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
| | - Zhongxiang Shi
- Shandong Provincial Hospital for Skin Diseases, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
| | - Dizhan Zhang
- Shandong Provincial Hospital for Skin Diseases, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
| | - Guizhi Zhou
- Shandong Provincial Institute of Dermatology and Venereology, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
| | - Jianjun Liu
- Department of Human Genetics, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Furen Zhang
- Shandong Provincial Institute of Dermatology and Venereology, Jinan, Shandong, China
- Shandong Provincial Hospital for Skin Diseases, Jinan, Shandong, China
- Shandong Provincial Key Lab for Dermatovenereology, Jinan, Shandong, China
- Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
200
|
Chen X, Sheng X, Liu X, Li H, Liu Y, Rong W, Ha S, Liu W, Kang X, Zhao K, Zhao C. Targeted next-generation sequencing reveals novel USH2A mutations associated with diverse disease phenotypes: implications for clinical and molecular diagnosis. PLoS One 2014; 9:e105439. [PMID: 25133613 PMCID: PMC4136877 DOI: 10.1371/journal.pone.0105439] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/20/2014] [Indexed: 12/15/2022] Open
Abstract
USH2A mutations have been implicated in the disease etiology of several inherited diseases, including Usher syndrome type 2 (USH2), nonsyndromic retinitis pigmentosa (RP), and nonsyndromic deafness. The complex genetic and phenotypic spectrums relevant to USH2A defects make it difficult to manage patients with such mutations. In the present study, we aim to determine the genetic etiology and to characterize the correlated clinical phenotypes for three Chinese pedigrees with nonsyndromic RP, one with RP sine pigmento (RPSP), and one with USH2. Family histories and clinical details for all included patients were reviewed. Ophthalmic examinations included best corrected visual acuities, visual field measurements, funduscopy, and electroretinography. Targeted next-generation sequencing (NGS) was applied using two sequence capture arrays to reveal the disease causative mutations for each family. Genotype-phenotype correlations were also annotated. Seven USH2A mutations, including four missense substitutions (p.P2762A, p.G3320C, p.R3719H, and p.G4763R), two splice site variants (c.8223+1G>A and c.8559-2T>C), and a nonsense mutation (p.Y3745*), were identified as disease causative in the five investigated families, of which three reported to have consanguineous marriage. Among all seven mutations, six were novel, and one was recurrent. Two homozygous missense mutations (p.P2762A and p.G3320C) were found in one individual family suggesting a potential double hit effect. Significant phenotypic divergences were revealed among the five families. Three families of the five families were affected with early, moderated, or late onset RP, one with RPSP, and the other one with USH2. Our study expands the genotypic and phenotypic variability relevant to USH2A mutations, which would help with a clear insight into the complex genetic and phenotypic spectrums relevant to USH2A defects, and is complementary for a better management of patients with such mutations. We have also demonstrated that a targeted NGS approach is a valuable tool for the genetic diagnosis of USH2 and RP.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, China
| | - Xunlun Sheng
- Ningxia Eye Hospital, Ningxia People’s Hospital, Ningxia, China
| | - Xiaoxing Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, China
| | - Huiping Li
- Ningxia Eye Hospital, Ningxia People’s Hospital, Ningxia, China
| | - Yani Liu
- Ningxia Eye Hospital, Ningxia People’s Hospital, Ningxia, China
| | - Weining Rong
- Ningxia Eye Hospital, Ningxia People’s Hospital, Ningxia, China
| | - Shaoping Ha
- Ningxia Eye Hospital, Ningxia People’s Hospital, Ningxia, China
| | - Wenzhou Liu
- Ningxia Eye Hospital, Ningxia People’s Hospital, Ningxia, China
| | - Xiaoli Kang
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kanxing Zhao
- Tianjin Medical University, Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
| | - Chen Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat Sen University, Guangzhou, China
| |
Collapse
|