151
|
Characterization of plasma cytokine response to intraperitoneally administered LPS & subdiaphragmatic branch vagus nerve stimulation in rat model. PLoS One 2019; 14:e0214317. [PMID: 30921373 PMCID: PMC6438475 DOI: 10.1371/journal.pone.0214317] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/11/2019] [Indexed: 01/17/2023] Open
Abstract
Vagus nerve stimulation (VNS) has been on the forefront of inflammatory disorder research and has yielded many promising results. Questions remain, however, about the biological mechanisms of such treatments and the inconsistencies in the methods used in research efforts. Here, we aimed to clarify the inflammatory response to intraperitoneal (IP) injections of lipopolysaccharide (LPS) in rats, while analyzing corresponding effects of electrical stimulation to subdiaphragmatic branches (anterior gastric, accessory celiac, and hepatic) of the left vagus nerve. We accomplished an in-depth characterization of the time-varying cytokine cascade response in the serum of 58 rats to an acute IP LPS challenge over a 330-minute period by utilizing curve-fitting and starting point-alignment methods. We then explored the post-LPS neuromodulation effects of electrically stimulating individually cuffed subdiaphragmatic branches. Through our analysis, we found there to be a consistent order of IP LPS cytokine response (IL-10, TNF-α, GM-CSF, IL-17F, IL-6, IL-22, INF-γ). Apart from IL-10, the IP cytokine cascade was more variable in starting time and occurred later than in previously recorded intravenous (IV) challenges. We also found distinct regulatory effects on multiple cytokine levels by each of the three subdiaphragmatic stimulation subsets. While the time-variability of IP LPS use in rats complicates its utility, we have shown it to be a practical, arguably more physiologically relevant method than IV in rats when our methods are used. More importantly, we have shown that selective subdiaphragmatic neurostimulation can be utilized to selectively induce specific effects on inflammation in the body.
Collapse
|
152
|
Noninvasive sub-organ ultrasound stimulation for targeted neuromodulation. Nat Commun 2019; 10:952. [PMID: 30862827 PMCID: PMC6414607 DOI: 10.1038/s41467-019-08750-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Tools for noninvasively modulating neural signaling in peripheral organs will advance the study of nerves and their effect on homeostasis and disease. Herein, we demonstrate a noninvasive method to modulate specific signaling pathways within organs using ultrasound (U/S). U/S is first applied to spleen to modulate the cholinergic anti-inflammatory pathway (CAP), and US stimulation is shown to reduce cytokine response to endotoxin to the same levels as implant-based vagus nerve stimulation (VNS). Next, hepatic U/S stimulation is shown to modulate pathways that regulate blood glucose and is as effective as VNS in suppressing the hyperglycemic effect of endotoxin exposure. This response to hepatic U/S is only found when targeting specific sub-organ locations known to contain glucose sensory neurons, and both molecular (i.e. neurotransmitter concentration and cFOS expression) and neuroimaging results indicate US induced signaling to metabolism-related hypothalamic sub-nuclei. These data demonstrate that U/S stimulation within organs provides a new method for site-selective neuromodulation to regulate specific physiological functions. Stimulation of peripheral nerve activity may be used to treat metabolic and inflammatory disorders, but current approaches need implanted devices. Here, the authors present a non-invasive approach, and show that ultrasound-mediated stimulation can be targeted to specific sub-organ locations in preclinical models and alter the response of metabolic and inflammatory neural pathways.
Collapse
|
153
|
Horn CC, Ardell JL, Fisher LE. Electroceutical Targeting of the Autonomic Nervous System. Physiology (Bethesda) 2019; 34:150-162. [PMID: 30724129 PMCID: PMC6586833 DOI: 10.1152/physiol.00030.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/16/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
Autonomic nerves are attractive targets for medical therapies using electroceutical devices because of the potential for selective control and few side effects. These devices use novel materials, electrode configurations, stimulation patterns, and closed-loop control to treat heart failure, hypertension, gastrointestinal and bladder diseases, obesity/diabetes, and inflammatory disorders. Critical to progress is a mechanistic understanding of multi-level controls of target organs, disease adaptation, and impact of neuromodulation to restore organ function.
Collapse
Affiliation(s)
- Charles C Horn
- Biobehavioral Oncology Program, UPMC Hillman Cancer Center , Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jeffrey L Ardell
- University of California- Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, California
- UCLA Neurocardiology Research Program of Excellence, David Geffen School of Medicine , Los Angeles, California
| | - Lee E Fisher
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
154
|
Hong GS, Zillekens A, Schneiker B, Pantelis D, de Jonge WJ, Schaefer N, Kalff JC, Wehner S. Non-invasive transcutaneous auricular vagus nerve stimulation prevents postoperative ileus and endotoxemia in mice. Neurogastroenterol Motil 2019; 31:e13501. [PMID: 30406957 DOI: 10.1111/nmo.13501] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The cholinergic anti-inflammatory pathway comprises the perception of peripheral inflammation by afferent sensory neurons and reflex activation of efferent vagus nerve activity to regulate inflammation. Activation of this pathway was shown to reduce the inflammatory response and improve outcome of postoperative ileus (POI) and sepsis in rodents. Herein, we tested if a non-invasive auricular electrical transcutaneous vagus nerve stimulation (tVNS) affects inflammation in models of POI or endotoxemia. METHODS Mice underwent tVNS or sham stimulation before and after induction of either POI by intestinal manipulation (IM) or endotoxemia by lipopolysaccharide administration. Some animals underwent a preoperative right cervical vagotomy. Neuronal activation of the solitary tract nucleus (NTS) and the dorsal motor nucleus of the vagus nerve (DMV) were analyzed by immunohistological detection of c-fos+ cells. Gene and protein expression of IL-6, MCP-1, IL-1β as well as leukocyte infiltration and gastrointestinal transit were analyzed at different time points after IM. IL-6, TNFα, and IL-1β serum levels were analyzed 3 hours after lipopolysaccharide administration. RESULTS tVNS activated the NTS and DMV and reduced intestinal cytokine expression, reduced leukocyte recruitment to the manipulated intestine segment, and improved gastrointestinal transit after IM. Endotoxemia-induced IL-6 and TNF-α release was also reduced by tVNS. The protective effects of tVNS on POI and endotoxemia were abrogated by vagotomy. CONCLUSION tVNS prevents intestinal and systemic inflammation. Activation of the DMV indicates an afferent to efferent central circuitry of the tVNS stimulation and the beneficial effects of tVNS depend on an intact vagus nerve. tVNS may become a non-invasive approach for treatment of POI.
Collapse
Affiliation(s)
- Gun-Soo Hong
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Anne Zillekens
- Department of Surgery, University of Bonn, Bonn, Germany
| | | | | | - Wouter J de Jonge
- Tytgat Institute of Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Nico Schaefer
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Joerg C Kalff
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Sven Wehner
- Department of Surgery, University of Bonn, Bonn, Germany
| |
Collapse
|
155
|
Payne SC, Furness JB, Stebbing MJ. Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nat Rev Gastroenterol Hepatol 2019; 16:89-105. [PMID: 30390018 DOI: 10.1038/s41575-018-0078-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The gastrointestinal tract has extensive, surgically accessible nerve connections with the central nervous system. This provides the opportunity to exploit rapidly advancing methods of nerve stimulation to treat gastrointestinal disorders. Bioelectric neuromodulation technology has considerably advanced in the past decade, but sacral nerve stimulation for faecal incontinence currently remains the only neuromodulation protocol in general use for a gastrointestinal disorder. Treatment of other conditions, such as IBD, obesity, nausea and gastroparesis, has had variable success. That nerves modulate inflammation in the intestine is well established, but the anti-inflammatory effects of vagal nerve stimulation have only recently been discovered, and positive effects of this approach were seen in only some patients with Crohn's disease in a single trial. Pulses of high-frequency current applied to the vagus nerve have been used to block signalling from the stomach to the brain to reduce appetite with variable outcomes. Bioelectric neuromodulation has also been investigated for postoperative ileus, gastroparesis symptoms and constipation in animal models and some clinical trials. The clinical success of this bioelectric neuromodulation therapy might be enhanced through better knowledge of the targeted nerve pathways and their physiological and pathophysiological roles, optimizing stimulation protocols and determining which patients benefit most from this therapy.
Collapse
Affiliation(s)
- Sophie C Payne
- Bionics Institute, East Melbourne, Victoria, Australia. .,Medical Bionics Department, University of Melbourne, Parkville, Victoria, Australia.
| | - John B Furness
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Martin J Stebbing
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
156
|
Wasilczuk KM, Bayer KC, Somann JP, Albors GO, Sturgis J, Lyle LT, Robinson JP, Irazoqui PP. Modulating the Inflammatory Reflex in Rats Using Low-Intensity Focused Ultrasound Stimulation of the Vagus Nerve. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:481-489. [PMID: 30396599 DOI: 10.1016/j.ultrasmedbio.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Tumor necrosis factor α (TNF-α) is linked to several chronic inflammatory diseases. Electrical vagus nerve stimulation reduces serum TNF-α levels but may cause chronic nerve damage and requires surgery. Alternatively, we proposed focused ultrasound stimulation of the vagus nerve (uVNS), which can be applied non-invasively. In this study, we induced an inflammatory response in rats using lipopolysaccharides (LPS) and collected blood to analyze the effects of uVNS on cytokine concentrations. We applied one or three 5-min pulsed focused ultrasound stimulation treatments to the vagus nerve (250 kHz, ISPPA = 3 W/cm2). Animals receiving a single ultrasound application had an average reduction in TNF-α levels of 19%, similar to the 16% reduction observed in electrically stimulated animals. With multiple applications, uVNS therapy statistically reduced serum TNF-α levels by 73% compared with control animals without any observed damage to the nerve. These findings suggest that uVNS is a suitable way to attenuate TNF-α levels.
Collapse
Affiliation(s)
- Kelsey M Wasilczuk
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
| | - Kelsey C Bayer
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Jesse P Somann
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Gabriel O Albors
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Jennifer Sturgis
- Purdue University Cytometry Laboratories, Purdue University, West Lafayette, Indiana, USA
| | - L Tiffany Lyle
- College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - J Paul Robinson
- Purdue University Cytometry Laboratories, Purdue University, West Lafayette, Indiana, USA
| | - Pedro P Irazoqui
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA; Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
157
|
Mannon EC, Sun J, Wilson K, Brands M, Martinez-Quinones P, Baban B, O'Connor PM. A basic solution to activate the cholinergic anti-inflammatory pathway via the mesothelium? Pharmacol Res 2019; 141:236-248. [PMID: 30616018 DOI: 10.1016/j.phrs.2019.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 12/24/2022]
Abstract
Much research now indicates that vagal nerve stimulation results in a systemic reduction in inflammatory cytokine production and an increase in anti-inflammatory cell populations that originates from the spleen. Termed the 'cholinergic anti-inflammatory pathway', therapeutic activation of this innate physiological response holds enormous promise for the treatment of inflammatory disease. Much controversy remains however, regarding the underlying physiological pathways mediating this response. This controversy is anchored in the fact that the vagal nerve itself does not innervate the spleen. Recent research from our own laboratory indicating that oral intake of sodium bicarbonate stimulates splenic anti-inflammatory pathways, and that this effect may require transmission of signals to the spleen through the mesothelium, provide new insight into the physiological pathways mediating the cholinergic anti-inflammatory pathway. In this review, we examine proposed models of the cholinergic anti-inflammatory pathway and attempt to frame our recent results in relation to these hypotheses. Following this discussion, we then provide an alternative model of the cholinergic anti-inflammatory pathway which is consistent both with our recent findings and the published literature. We then discuss experimental approaches that may be useful to delineate these hypotheses. We believe the outcome of these experiments will be critical in identifying the most appropriate methods to harness the therapeutic potential of the cholinergic anti-inflammatory pathway for the treatment of disease and may also shed light on the etiology of other pathologies, such as idiopathic fibrosis.
Collapse
Affiliation(s)
- Elinor C Mannon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jingping Sun
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Katie Wilson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Michael Brands
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Patricia Martinez-Quinones
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Surgery, Augusta University Medical Center, Augusta University, Augusta, GA, United States
| | - Babak Baban
- Department of Oral Biology, Augusta University, Augusta, GA, United States
| | - Paul M O'Connor
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
158
|
Decreased α7nAChR mRNA levels in peripheral blood monocytes are associated with enhanced inflammatory cytokine production in patients with lupus nephritis. Biomed Pharmacother 2018; 111:359-366. [PMID: 30594048 DOI: 10.1016/j.biopha.2018.12.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/16/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
The cholinergic anti-inflammatory pathway modulates cytokine release by activating alpha-7 nicotinic acetylcholine receptors (α7nAChR) in monocytes/macrophages. We aimed to determine the role of α7nAChR in lupus nephritis (LN). We enrolled 36 inactive and 35 active LN patients, 34 primary glomerulonephritis patients, and 35 healthy controls. Peripheral blood monocytes were isolated, and mRNA expression of α7nAChR, interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α) in monocytes was measured. α7nAChR and IL-10 mRNA levels were significantly decreased, but IL-6 was increased, in LN patients compared with healthy controls or glomerulonephritis patients (all P < 0.01). Interestingly, α7nAChR mRNA levels were negatively correlated to SLEDAI (r = -0.68, P < 0.01), anti-dsDNA (r = -0.38, P < 0.05), and proteinuria (r = -0.49, P < 0.01) levels, and positively correlated to serum complement C3 levels (r = 0.38, P < 0.05) in patients with active LN. Furthermore, α7nAChR mRNA levels were negatively correlated to TNF-α (r = -0.50, P < 0.01), IL-1β (r = -0.42, P < 0.05), IL-6 (r = -0.69, P < 0.01) mRNA levels, and positively correlated to IL-10 (r = 0.45, P < 0.01). TNF-α, IL-1β, and IL-6 protein levels in the supernatant of cultured monocytes from active LN patients were significantly higher, while IL-10 was lower, than that of healthy controls. PNU-282987, an α7nAChR agonist, significantly decreased TNF-α, IL-1β, and IL-6 but increased IL-10 in the monocyte culture supernatant of active LN patients, which were abolished by an α7nAChR antagonist methyllycaconitine. The effects of PNU-282987 were confirmed in lipopolysaccharides-stimulated monocytes. Taken together, these findings suggest that decrease in α7nAChR mRNA levels may play a role in LN and that activation of α7nAChR may inhibit inflammation in LN.
Collapse
|
159
|
Payne SC, Burns O, Stebbing M, Thomas R, Silva AD, Sedo A, Weissenborn F, Hyakumura T, Huynh M, May CN, Williams RA, Furness JB, Fallon JB, Shepherd RK. Vagus nerve stimulation to treat inflammatory bowel disease: a chronic, preclinical safety study in sheep. ACTA ACUST UNITED AC 2018. [DOI: 10.2217/bem-2018-0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Aim: Electrical stimulation of the left cervical vagus nerve is a feasible therapy for inflammatory bowel disease (IBD). However, due to the location of the electrode placement, stimulation is often associated with side effects. Methods: We developed a cuff electrode array, designed to be implanted onto the vagus nerve of the lower thorax or abdomen, below branches to vital organs, to minimize off-target effects to stimulation. Results: Following chronic implantation and electrical stimulation, electrodes remained functional and neural thresholds stable, while there were minimal off-target affects to stimulation. No nerve damage or corrosion of stimulated electrodes was observed. Conclusion: This novel electrode array, located on the vagus nerve below branches to vital organs, is a safe approach for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Sophie C Payne
- Bionics Institute, Melbourne, Australia
- Department of Medical Bionics, The University of Melbourne, Melbourne, Australia
| | | | - Martin Stebbing
- Department of Medical Bionics, The University of Melbourne, Melbourne, Australia
- Florey Institute of Neuroscience & Mental Health, Melbourne, Australia
| | | | | | - Alicia Sedo
- Florey Institute of Neuroscience & Mental Health, Melbourne, Australia
| | - Frank Weissenborn
- Florey Institute of Neuroscience & Mental Health, Melbourne, Australia
| | | | | | - Clive N May
- Department of Medical Bionics, The University of Melbourne, Melbourne, Australia
- Florey Institute of Neuroscience & Mental Health, Melbourne, Australia
| | - Richard A Williams
- Department of Medical Bionics, The University of Melbourne, Melbourne, Australia
- Department of Anatomical Pathology, St. Vincent's Hospital, Melbourne, Australia
| | - John B Furness
- Department of Medical Bionics, The University of Melbourne, Melbourne, Australia
- Florey Institute of Neuroscience & Mental Health, Melbourne, Australia
| | - James B Fallon
- Bionics Institute, Melbourne, Australia
- Department of Medical Bionics, The University of Melbourne, Melbourne, Australia
| | - Robert K Shepherd
- Bionics Institute, Melbourne, Australia
- Department of Medical Bionics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
160
|
McGovern AE, Short KR, Kywe Moe AA, Mazzone SB. Translational review: Neuroimmune mechanisms in cough and emerging therapeutic targets. J Allergy Clin Immunol 2018; 142:1392-1402. [DOI: 10.1016/j.jaci.2018.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
|
161
|
Novel 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazoles to investigate the activation of the α7 nicotinic acetylcholine receptor subtype: Synthesis and electrophysiological evaluation. Eur J Med Chem 2018; 160:207-228. [PMID: 30342362 DOI: 10.1016/j.ejmech.2018.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023]
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are relevant therapeutic targets for a variety of disorders including neurodegeneration, cognitive impairment, and inflammation. Although traditionally identified as an ionotropic receptor, the α7 subtype showed metabotropic-like functions, mainly linked to the modulation of immune responses. In the present work, we investigated the structure-activity relationships in a set of novel α7 ligands incorporating the 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazole scaffold, i.e. derivatives 21a-34a and 21b-34b, aiming to identify the structural requirements able to preferentially trigger one of the two activation modes of this receptor subtype. The new compounds were characterized as partial and silent α7 nAChR agonists in electrophysiological assays, which allowed to assess the contribution of the different groups towards the final pharmacological profile. Overall, modifications of the selected structural backbone mainly afforded partial agonists, among them tertiary bases 27a-33a, whereas additional hydrogen-bond acceptor groups in permanently charged ligands, such as 29b and 31b, favored a silent desensitizing profile at the α7 nAChR.
Collapse
|
162
|
Gerritsen RJS, Band GPH. Breath of Life: The Respiratory Vagal Stimulation Model of Contemplative Activity. Front Hum Neurosci 2018; 12:397. [PMID: 30356789 PMCID: PMC6189422 DOI: 10.3389/fnhum.2018.00397] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022] Open
Abstract
Contemplative practices, such as meditation and yoga, are increasingly popular among the general public and as topics of research. Beneficial effects associated with these practices have been found on physical health, mental health and cognitive performance. However, studies and theories that clarify the underlying mechanisms are lacking or scarce. This theoretical review aims to address and compensate this scarcity. We will show that various contemplative activities have in common that breathing is regulated or attentively guided. This respiratory discipline in turn could parsimoniously explain the physical and mental benefits of contemplative activities through changes in autonomic balance. We propose a neurophysiological model that explains how these specific respiration styles could operate, by phasically and tonically stimulating the vagal nerve: respiratory vagal nerve stimulation (rVNS). The vagal nerve, as a proponent of the parasympathetic nervous system (PNS), is the prime candidate in explaining the effects of contemplative practices on health, mental health and cognition. We will discuss implications and limitations of our model.
Collapse
Affiliation(s)
- Roderik J. S. Gerritsen
- Institute of Psychology, Cognitive Psychology, Faculty of Social and Behavioural Sciences, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Guido P. H. Band
- Institute of Psychology, Cognitive Psychology, Faculty of Social and Behavioural Sciences, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands
| |
Collapse
|
163
|
Reardon C, Murray K, Lomax AE. Neuroimmune Communication in Health and Disease. Physiol Rev 2018; 98:2287-2316. [PMID: 30109819 PMCID: PMC6170975 DOI: 10.1152/physrev.00035.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
The immune and nervous systems are tightly integrated, with each system capable of influencing the other to respond to infectious or inflammatory perturbations of homeostasis. Recent studies demonstrating the ability of neural stimulation to significantly reduce the severity of immunopathology and consequently reduce mortality have led to a resurgence in the field of neuroimmunology. Highlighting the tight integration of the nervous and immune systems, afferent neurons can be activated by a diverse range of substances from bacterial-derived products to cytokines released by host cells. While activation of vagal afferents by these substances dominates the literature, additional sensory neurons are responsive as well. It is becoming increasingly clear that although the cholinergic anti-inflammatory pathway has become the predominant model, a multitude of functional circuits exist through which neuronal messengers can influence immunological outcomes. These include pathways whereby efferent signaling occurs independent of the vagus nerve through sympathetic neurons. To receive input from the nervous system, immune cells including B and T cells, macrophages, and professional antigen presenting cells express specific neurotransmitter receptors that affect immune cell function. Specialized immune cell populations not only express neurotransmitter receptors, but express the enzymatic machinery required to produce neurotransmitters, such as acetylcholine, allowing them to act as signaling intermediaries. Although elegant experiments have begun to decipher some of these interactions, integration of these molecules, cells, and anatomy into defined neuroimmune circuits in health and disease is in its infancy. This review describes these circuits and highlights continued challenges and opportunities for the field.
Collapse
Affiliation(s)
- Colin Reardon
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Kaitlin Murray
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Alan E Lomax
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
164
|
Santos PCPD, Delmondes GMB, Melo MPP, Santos LVSE, Maia JN, Moraes SRAD, Castro CMMBD, Andrade MDA. Implicações da dieta hiperlipídica e do exercício de natação sobre os parâmetros imunológicos em ratas. REVISTA BRASILEIRA DE CIÊNCIAS DO ESPORTE 2018. [DOI: 10.1016/j.rbce.2018.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
165
|
Yu J, Zhu X, Zhang L, Kudryavtsev D, Kasheverov I, Lei Y, Zhangsun D, Tsetlin V, Luo S. Species specificity of rat and human α7 nicotinic acetylcholine receptors towards different classes of peptide and protein antagonists. Neuropharmacology 2018; 139:226-237. [DOI: 10.1016/j.neuropharm.2018.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/07/2018] [Accepted: 07/13/2018] [Indexed: 01/12/2023]
|
166
|
Peng ZL, Huang LW, Yin J, Zhang KN, Xiao K, Qing GZ. Association between early serum cholinesterase activity and 30-day mortality in sepsis-3 patients: A retrospective cohort study. PLoS One 2018; 13:e0203128. [PMID: 30161257 PMCID: PMC6117034 DOI: 10.1371/journal.pone.0203128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/15/2018] [Indexed: 12/29/2022] Open
Abstract
Low serum cholinesterase (SCHE) activity has been associated with poor prognoses in a variety of conditions, including sepsis. However, such an association has not been well characterized since the Third International Consensus Definitions Task Force modified the definition of sepsis to "life-threatening organ dysfunction due to a dysregulated host response to infection" (known as sepsis-3) in 2016. In the current retrospective cohort study, we examined whether 30-day mortality in sepsis-3 patients is associated with SCHE activity. A total of 166 sepsis-3 patients receiving treatment at an emergency intensive care unit (EICU) were included. The 30-day death rate was 33.1% (55/166). SCHE activity upon EICU admission was lower in nonsurvivors (3.3 vs. 4.5 KU/L in survivors, p = 0.0002). Subjects with low SCHE activity (defined as <4 KU/L) had higher 30-day mortality rates than subjects with normal SCHE activity (45.5%, 40/88 vs. 19.2%, 15/78; p<0.001). A multivariate logistic regression analysis revealed an association between 30-day mortality and lower SCHE activity after adjustments for relevant factors, such as acute multiple organ dysfunction. The odds ratio (OR) for every unit decrease in SCHE activity was 2.11 (95% confidence interval (CI), 1.37-3.27; p = 0.0008). The area under the curve (AUC) of SCHE activity for predicting 30-day mortality was 0.67 (95% CI 0.59-0.74), and the AUC of lactate for predicting 30-day mortality was 0.64 (95% CI 0.57-0.70). Using a combination of SCHE and lactate, the AUC was 0.74 (95% CI 0.69-0.83). These data suggest that lower SCHE activity is an independent risk factor for 30-day mortality in sepsis-3 patients.
Collapse
Affiliation(s)
- Zheng-Liang Peng
- EICU, First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
- * E-mail: (ZLP); (GZQ)
| | - Liang-Wei Huang
- EICU, First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Jian Yin
- EICU, First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Ke-Na Zhang
- EICU, First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Kang Xiao
- EICU, First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Guo-Zhong Qing
- EICU, First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
- * E-mail: (ZLP); (GZQ)
| |
Collapse
|
167
|
Intachai K, C Chattipakorn S, Chattipakorn N, Shinlapawittayatorn K. Revisiting the Cardioprotective Effects of Acetylcholine Receptor Activation against Myocardial Ischemia/Reperfusion Injury. Int J Mol Sci 2018; 19:ijms19092466. [PMID: 30134547 PMCID: PMC6164157 DOI: 10.3390/ijms19092466] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
Acute myocardial infarction (AMI) is the most common cause of acute myocardial injury and its most clinically significant form. The most effective treatment for AMI is to restore an adequate coronary blood flow to the ischemic myocardium as quickly as possible. However, reperfusion of an ischemic region can induce cardiomyocyte death, a phenomenon termed “myocardial ischemia/reperfusion (I/R) injury”. Disruption of cardiac parasympathetic (vagal) activity is a common hallmark of a variety of cardiovascular diseases including AMI. Experimental studies have shown that increased vagal activity exerts cardioprotective effects against myocardial I/R injury. In addition, acetylcholine (ACh), the principle cardiac vagal neurotransmitter, has been shown to replicate the cardioprotective effects of cardiac ischemic conditioning. Moreover, studies have shown that cardiomyocytes can synthesize and secrete ACh, which gives further evidence concerning the importance of the non-neuronal cholinergic signaling cascades. This suggests that the activation of ACh receptors is involved in cardioprotection against myocardial I/R injury. There are two types of ACh receptors (AChRs), namely muscarinic and nicotinic receptors (mAChRs and nAChRs, respectively). However, the effects of AChRs activation in cardioprotection during myocardial I/R are still not fully understood. In this review, we summarize the evidence suggesting the association between AChRs activation with both electrical and pharmacological interventions and the cardioprotection during myocardial I/R, as well as outline potential mechanisms underlying these cardioprotective effects.
Collapse
Affiliation(s)
- Kannaporn Intachai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
- Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
168
|
O'Sullivan-Greene E, Kameneva T, Trevaks D, Shafton A, Payne SC, McAllen R, Furness JB, Grayden DB. Modeling experimental recordings of vagal afferent signaling of intestinal inflammation for neuromodulation. J Neural Eng 2018; 15:056032. [PMID: 30095078 DOI: 10.1088/1741-2552/aad96d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Artificial modulation of peripheral nerve signals (neuromodulation) by electrical stimulation is an innovation with potential to develop treatments that replace or supplement drugs. One function of the nervous system that can be exploited by neuromodulation is regulation of disease intensity. Optimal interfacing of devices with the nervous system requires suitable models of peripheral nerve systems so that closed-loop control can be utilized for therapeutic benefit. APPROACH We use physiological data to model afferent signaling in the vagus nerve that carries information about inflammation in the small intestine to the brain. MAIN RESULTS The vagal nerve signaling system is distributed and complex; however, we propose a class of reductive models using a state-space formalism that can be tuned in a patient-specific manner. SIGNIFICANCE These models provide excellent fits to a large range of nerve recording data but are computationally simple enough for feedback control in implantable neuromodulation devices.
Collapse
|
169
|
Han YG, Qin X, Zhang T, Lei M, Sun FY, Sun JJ, Yuan WF. Electroacupuncture prevents cognitive impairment induced by lipopolysaccharide via inhibition of oxidative stress and neuroinflammation. Neurosci Lett 2018; 683:190-195. [PMID: 29885447 DOI: 10.1016/j.neulet.2018.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Oxidative stress and neuroinflammation play an important role in the pathophysiology of lipopolysaccharide (LPS)-induced cognitive impairment. This study aims to observe the effect of electroacupuncture (EA) on the cognitive function in LPS-induced mice, and its regulation on hippocampal α7 nicotinic acetylcholine receptors (α7nAChR), oxidative and proinflammatory factors. Adult male C57BL/6 nice were used to establish animal model of LPS-induced cognitive impairment, and were randomly divided into three groups (n = 16): control group, model group (LPS: 5 mg/kg), and EA group. The cognitive function was measured by Morris water-maze test, and protein expression of α7nAChR in hippocampus was detected by immunohistochemistry. Enzyme-linked immunosorbent assay (ELISA) was used to measure hippocampal proinflammatory cytokines. The results showed that LPS significantly impaired working and spatial memory of mice, which could be attenuated by EA treatment. EA prevented LPS-induced decrease of α7nAChR protein, acetylcholine (ACh) content and choline acetyltransferase (ChAT) activity, and prevented LPS-induced increase of acetylcholinesterase (AChE) activity (P < 0.05). EA significantly decreased malondialdehyde (MDA) and hydrogen peroxide (H2O2), and increased the contents of catalase (CAT) and glutathione (GSH) in hippocampus of LPS-treated Mice (P < 0.05). EA also prevented LPS-induced increase of proinflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) in hippocampus (P < 0.05). In conclusion, electroacupuncture can improve the learning and memory in LPS-treated mice, and its mechanism may be related to enhanced expression of α7-nAChR and cholinergic factors, and suppression of oxidative stress and neuroinflammation in hippocampus.
Collapse
Affiliation(s)
- Yao-Guo Han
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, PR China
| | - Xiong Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Shanghai 200433, PR China
| | - Tao Zhang
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, PR China.
| | - Ming Lei
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, PR China.
| | - Fang-Yuan Sun
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, PR China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Shanghai 200433, PR China
| | - Jing-Jing Sun
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, PR China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Shanghai 200433, PR China
| | - Wei-Fang Yuan
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, PR China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Shanghai 200433, PR China
| |
Collapse
|
170
|
Zila I, Mokra D, Kopincova J, Kolomaznik M, Javorka M, Calkovska A. Vagal-immune interactions involved in cholinergic anti-inflammatory pathway. Physiol Res 2018; 66:S139-S145. [PMID: 28937230 DOI: 10.33549/physiolres.933671] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inflammation and other immune responses are involved in the variety of diseases and disorders. The acute response to endotoxemia includes activation of innate immune mechanisms as well as changes in autonomic nervous activity. The autonomic nervous system and the inflammatory response are intimately linked and sympathetic and vagal nerves are thought to have anti-inflammation functions. The basic functional circuit between vagus nerve and inflammatory response was identified and the neuroimmunomodulation loop was called cholinergic anti-inflammatory pathway. Unique function of vagus nerve in the anti-inflammatory reflex arc was found in many experimental and pre-clinical studies. They brought evidence on the cholinergic signaling interacting with systemic and local inflammation, particularly suppressing immune cells function. Pharmacological/electrical modulation of vagal activity suppressed TNF-alpha and other proinflammatory cytokines production and had beneficial therapeutic effects. Many questions related to mapping, linking and targeting of vagal-immune interactions have been elucidated and brought understanding of its basic physiology and provided the initial support for development of Tracey´s inflammatory reflex. This review summarizes and critically assesses the current knowledge defining cholinergic anti-inflammatory pathway with main focus on studies employing an experimental approach and emphasizes the potential of modulation of vagally-mediated anti-inflammatory pathway in the treatment strategies.
Collapse
Affiliation(s)
- I Zila
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | | | | | | | | | | |
Collapse
|
171
|
Noble BT, Brennan FH, Popovich PG. The spleen as a neuroimmune interface after spinal cord injury. J Neuroimmunol 2018; 321:1-11. [PMID: 29957379 DOI: 10.1016/j.jneuroim.2018.05.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 01/17/2023]
Abstract
Traumatic spinal cord injury (SCI) causes widespread damage to neurons, glia and endothelia located throughout the spinal parenchyma. In response to the injury, resident and blood-derived leukocytes orchestrate an intraspinal inflammatory response that propagates secondary neuropathology and also promotes tissue repair. SCI also negatively affects autonomic control over peripheral immune organs, notably the spleen. The spleen is the largest secondary lymphoid organ in mammals, with major roles in blood filtration and host defense. Splenic function is carefully regulated by neuroendocrine mechanisms that ensure that the immune responses to infection or injury are proportionate to the initiating stimulus, and can be terminated when the stimulus is cleared. After SCI, control over the viscera, including endocrine and lymphoid tissues is lost due to damage to spinal autonomic (sympathetic) circuitry. This review begins by examining the normal structure and function of the spleen including patterns of innervation and the role played by the nervous system in regulating spleen function. We then describe how after SCI, loss of proper neural control over splenic function leads to systems-wide neuropathology, immune suppression and autoimmunity. We conclude by discussing opportunities for targeting the spleen to restore immune homeostasis, reduce morbidity and mortality, and improve functional recovery after SCI.
Collapse
Affiliation(s)
- Benjamin T Noble
- Neuroscience Graduate Studies Program, Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, Columbus 43210, OH, USA
| | - Faith H Brennan
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus 43210, OH, USA
| | - Phillip G Popovich
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus 43210, OH, USA.
| |
Collapse
|
172
|
Petitjeans F, Leroy S, Pichot C, Geloen A, Ghignone M, Quintin L. Hypothesis: Fever control, a niche for alpha-2 agonists in the setting of septic shock and severe acute respiratory distress syndrome? Temperature (Austin) 2018; 5:224-256. [PMID: 30393754 PMCID: PMC6209424 DOI: 10.1080/23328940.2018.1453771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 03/11/2018] [Indexed: 12/12/2022] Open
Abstract
During severe septic shock and/or severe acute respiratory distress syndrome (ARDS) patients present with a limited cardio-ventilatory reserve (low cardiac output and blood pressure, low mixed venous saturation, increased lactate, low PaO2/FiO2 ratio, etc.), especially when elderly patients or co-morbidities are considered. Rescue therapies (low dose steroids, adding vasopressin to noradrenaline, proning, almitrine, NO, extracorporeal membrane oxygenation, etc.) are complex. Fever, above 38.5-39.5°C, increases both the ventilatory (high respiratory drive: large tidal volume, high respiratory rate) and the metabolic (increased O2 consumption) demands, further limiting the cardio-ventilatory reserve. Some data (case reports, uncontrolled trial, small randomized prospective trials) suggest that control of elevated body temperature ("fever control") leading to normothermia (35.5-37°C) will lower both the ventilatory and metabolic demands: fever control should simplify critical care management when limited cardio-ventilatory reserve is at stake. Usually fever control is generated by a combination of general anesthesia ("analgo-sedation", light total intravenous anesthesia), antipyretics and cooling. However general anesthesia suppresses spontaneous ventilation, making the management more complex. At variance, alpha-2 agonists (clonidine, dexmedetomidine) administered immediately following tracheal intubation and controlled mandatory ventilation, with prior optimization of volemia and atrio-ventricular conduction, will reduce metabolic demand and facilitate normothermia. Furthermore, after a rigorous control of systemic acidosis, alpha-2 agonists will allow for accelerated emergence without delirium, early spontaneous ventilation, improved cardiac output and micro-circulation, lowered vasopressor requirements and inflammation. Rigorous prospective randomized trials are needed in subsets of patients with a high fever and spiraling toward refractory septic shock and/or presenting with severe ARDS.
Collapse
Affiliation(s)
- F. Petitjeans
- Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France
| | - S. Leroy
- Pediatric Emergency Medicine, Hôpital Avicenne, Paris-Bobigny, France
| | - C. Pichot
- Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France
| | - A. Geloen
- Physiology, INSA de Lyon (CARMeN, INSERM U 1060), Lyon-Villeurbanne, France
| | - M. Ghignone
- Critical Care, JF Kennedy Hospital North Campus, WPalm Beach, Fl, USA
| | - L. Quintin
- Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France
| |
Collapse
|
173
|
Park JY, Namgung U. Electroacupuncture therapy in inflammation regulation: current perspectives. J Inflamm Res 2018; 11:227-237. [PMID: 29844696 PMCID: PMC5963483 DOI: 10.2147/jir.s141198] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although acupuncture therapy is increasingly used to treat diverse symptoms and disorders in humans, its underlying mechanism is not known well. Only recently have experimental studies begun to provide insights into how acupuncture stimulation generates and relates to pathophysiological responsiveness. Acupuncture intervention is frequently used to control pathologic symptoms in several visceral organs, and a growing number of studies using experimental animal models suggest that acupuncture stimulation may be involved in inducing anti-inflammatory responses. The vagus nerve, a principal parasympathetic nerve connecting neurons in the central nervous system to cardiovascular systems and a majority of visceral organs, is known to modulate neuroimmune communication and anti-inflammatory responses in target organs. Here, we review a broad range of experimental studies demonstrating anti-inflammatory effects of electroacupuncture in pathologic animal models of cardiovascular and visceral organs and also ischemic brains. Then, we provide recent progress on the role of autonomic nerve activity in anti-inflammation mediated by electroacupuncture. We also discuss a perspective on the role of sensory signals generated by acupuncture stimulation, which may induce a neural code unique to acupuncture in the central nervous system.
Collapse
Affiliation(s)
- Ji-Yeun Park
- Department of Oriental Medicine, Daejeon University, Daejeon, South Korea
| | - Uk Namgung
- Department of Oriental Medicine, Daejeon University, Daejeon, South Korea
| |
Collapse
|
174
|
Kanashiro A, Shimizu Bassi G, de Queiróz Cunha F, Ulloa L. From neuroimunomodulation to bioelectronic treatment of rheumatoid arthritis. ACTA ACUST UNITED AC 2018; 1:151-165. [PMID: 30740246 DOI: 10.2217/bem-2018-0001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuronal stimulation is an emerging field in modern medicine to control organ function and reestablish physiological homeostasis during illness. The nervous system innervates most of the peripheral organs and provides a fine tune to control the immune system. Most of these studies have focused on vagus nerve stimulation and the physiological, cellular and molecular mechanisms regulating the immune system. Here, we review the new results revealing afferent vagal signaling pathways, immunomodulatory brain structures, spinal cord-dependent circuits, neural and non-neural cholinergic/catecholaminergic signals and their respective receptors contributing to neuromodulation of inflammation in rheumatoid arthritis. These new neuromodulatory networks and structures will allow the design of innovative bioelectronic or pharmacological approaches for safer and low-cost treatment of arthritis and related inflammatory disorders.
Collapse
Affiliation(s)
- Alexandre Kanashiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Physiological Sciences, Federal University of São Carlos (UFSCAR), São Carlos, SP, Brazil
| | - Gabriel Shimizu Bassi
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fernando de Queiróz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis Ulloa
- Department of Surgery, Center of Immunology & Inflammation, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| |
Collapse
|
175
|
Zhu B, Cao H, Sun L, Li B, Guo L, Duan J, Zhu H, Zhang Q. Metabolomics-based mechanisms exploration of Huang-Lian Jie-Du decoction on cerebral ischemia via UPLC-Q-TOF/MS analysis on rat serum. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:147-156. [PMID: 29360497 DOI: 10.1016/j.jep.2018.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Lian Jie-Du decoction (HLJDD), a traditional formula of Chinese medicine constituted with Rhizoma Coptidis, RadixScutellariae, CortexPhellodendri amurensis and Fructus Gardeniae, exhibits unambiguous therapeutic effect on cerebral ischemia via multi-targets action. Further investigation, however, is still required to explore the relationship between those mechanisms and targets through system approaches. MATERIALS AND METHODS Rats of cerebral ischemia were completed by middle cerebral artery occlusion (MCAO) with reperfusion. Following evaluation of pharmacological actions of HLJDD on MCAO rats, the plasma samples from rats of control, MCAO and HLJDD-treated MCAO groups were prepared strictly and subjected to ultra-performance liquid chromatography quadrupole time of flight mass spectrometry for metabolites analysis. The raw mass data were imported to MassLynx software for peak detection and alignment, and further introduced to EZinfo 2.0 software for orthogonal projection to latent structures analysis, principal component analysis and partial least-squares-discriminant analysis. The metabolic pathways assay of those potential biomarkers were performed with MetaboAnalyst through the online database, HMDB, Metlin, KEGG and SMPD. Those intriguing metabolic pathways were further investigated via biochemical assay. RESULTS HLJDD ameliorated the MCAO-induce cerebral damage and blocked the severe inflammation response. There were nineteen different biomarkers identified among control, MCAO and HLJDD-treated MCAO groups. Ten metabolic pathways were proposed from these significant metabolites. Incorporation with the biochemical assay of cerebral tissue, modulation of metabolic stress, regulation glutamate/GABA-glutamine cycle and enhancement of cholinergic neurons function were explored that involved in the actions of HLJDD on cerebral ischemia. CONCLUSION HLJDD achieves therapeutic action on cerebral ischemia via coordinating the basic pathophysiological network of metabolic stress, glutamate metabolism, and acetylcholine levels and function.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Animals
- Behavior, Animal/drug effects
- Biomarkers/blood
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Chromatography, Liquid
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Energy Metabolism/drug effects
- Glutamic Acid/metabolism
- Infarction, Middle Cerebral Artery/blood
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/psychology
- Inflammation Mediators/blood
- Least-Squares Analysis
- Male
- Metabolomics/methods
- Multivariate Analysis
- Neuroprotective Agents/pharmacology
- Principal Component Analysis
- Rats, Sprague-Dawley
- Spectrometry, Mass, Electrospray Ionization
- Stress, Physiological/drug effects
- Time Factors
Collapse
Affiliation(s)
- Baojie Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Huiting Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Limin Sun
- School of Traditional Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China.
| | - Bo Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Liwei Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qichun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
176
|
Ray SC, Baban B, Tucker MA, Seaton AJ, Chang KC, Mannon EC, Sun J, Patel B, Wilson K, Musall JB, Ocasio H, Irsik D, Filosa JA, Sullivan JC, Marshall B, Harris RA, O'Connor PM. Oral NaHCO 3 Activates a Splenic Anti-Inflammatory Pathway: Evidence That Cholinergic Signals Are Transmitted via Mesothelial Cells. THE JOURNAL OF IMMUNOLOGY 2018; 200:3568-3586. [PMID: 29661827 DOI: 10.4049/jimmunol.1701605] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/10/2018] [Indexed: 12/15/2022]
Abstract
We tested the hypothesis that oral NaHCO3 intake stimulates splenic anti-inflammatory pathways. Following oral NaHCO3 loading, macrophage polarization was shifted from predominantly M1 (inflammatory) to M2 (regulatory) phenotypes, and FOXP3+CD4+ T-lymphocytes increased in the spleen, blood, and kidneys of rats. Similar anti-inflammatory changes in macrophage polarization were observed in the blood of human subjects following NaHCO3 ingestion. Surprisingly, we found that gentle manipulation to visualize the spleen at midline during surgical laparotomy (sham splenectomy) was sufficient to abolish the response in rats and resulted in hypertrophy/hyperplasia of the capsular mesothelial cells. Thin collagenous connections lined by mesothelial cells were found to connect to the capsular mesothelium. Mesothelial cells in these connections stained positive for the pan-neuronal marker PGP9.5 and acetylcholine esterase and contained many ultrastructural elements, which visually resembled neuronal structures. Both disruption of the fragile mesothelial connections or transection of the vagal nerves resulted in the loss of capsular mesothelial acetylcholine esterase staining and reduced splenic mass. Our data indicate that oral NaHCO3 activates a splenic anti-inflammatory pathway and provides evidence that the signals that mediate this response are transmitted to the spleen via a novel neuronal-like function of mesothelial cells.
Collapse
Affiliation(s)
- Sarah C Ray
- Department of Physiology, Augusta University, Augusta, GA 30912
| | - Babak Baban
- Department of Oral Biology, Augusta University, Augusta, GA 30912
| | - Matthew A Tucker
- Georgia Prevention Institute, Augusta University, Augusta, GA 30912; and
| | - Alec J Seaton
- Department of Physiology, Augusta University, Augusta, GA 30912
| | - Kyu Chul Chang
- Department of Physiology, Augusta University, Augusta, GA 30912
| | - Elinor C Mannon
- Department of Physiology, Augusta University, Augusta, GA 30912
| | - Jingping Sun
- Department of Physiology, Augusta University, Augusta, GA 30912
| | - Bansari Patel
- Department of Physiology, Augusta University, Augusta, GA 30912
| | - Katie Wilson
- Department of Physiology, Augusta University, Augusta, GA 30912
| | | | - Hiram Ocasio
- Department of Physiology, Augusta University, Augusta, GA 30912
| | - Debra Irsik
- Department of Physiology, Augusta University, Augusta, GA 30912
| | | | | | - Brendan Marshall
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA 30912
| | - Ryan A Harris
- Georgia Prevention Institute, Augusta University, Augusta, GA 30912; and
| | - Paul M O'Connor
- Department of Physiology, Augusta University, Augusta, GA 30912;
| |
Collapse
|
177
|
Bellinger DL, Lorton D. Sympathetic Nerve Hyperactivity in the Spleen: Causal for Nonpathogenic-Driven Chronic Immune-Mediated Inflammatory Diseases (IMIDs)? Int J Mol Sci 2018; 19:ijms19041188. [PMID: 29652832 PMCID: PMC5979464 DOI: 10.3390/ijms19041188] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Immune-Mediated Inflammatory Diseases (IMIDs) is a descriptive term coined for an eclectic group of diseases or conditions that share common inflammatory pathways, and for which there is no definitive etiology. IMIDs affect the elderly most severely, with many older individuals having two or more IMIDs. These diseases include, but are not limited to, type-1 diabetes, obesity, hypertension, chronic pulmonary disease, coronary heart disease, inflammatory bowel disease, and autoimmunity, such as rheumatoid arthritis (RA), Sjőgren's syndrome, systemic lupus erythematosus, psoriasis, psoriatic arthritis, and multiple sclerosis. These diseases are ostensibly unrelated mechanistically, but increase in frequency with age and share chronic systemic inflammation, implicating major roles for the spleen. Chronic systemic and regional inflammation underlies the disease manifestations of IMIDs. Regional inflammation and immune dysfunction promotes targeted end organ tissue damage, whereas systemic inflammation increases morbidity and mortality by affecting multiple organ systems. Chronic inflammation and skewed dysregulated cell-mediated immune responses drive many of these age-related medical disorders. IMIDs are commonly autoimmune-mediated or suspected to be autoimmune diseases. Another shared feature is dysregulation of the autonomic nervous system and hypothalamic pituitary adrenal (HPA) axis. Here, we focus on dysautonomia. In many IMIDs, dysautonomia manifests as an imbalance in activity/reactivity of the sympathetic and parasympathetic divisions of the autonomic nervous system (ANS). These major autonomic pathways are essential for allostasis of the immune system, and regulating inflammatory processes and innate and adaptive immunity. Pathology in ANS is a hallmark and causal feature of all IMIDs. Chronic systemic inflammation comorbid with stress pathway dysregulation implicate neural-immune cross-talk in the etiology and pathophysiology of IMIDs. Using a rodent model of inflammatory arthritis as an IMID model, we report disease-specific maladaptive changes in β₂-adrenergic receptor (AR) signaling from protein kinase A (PKA) to mitogen activated protein kinase (MAPK) pathways in the spleen. Beta₂-AR signal "shutdown" in the spleen and switching from PKA to G-coupled protein receptor kinase (GRK) pathways in lymph node cells drives inflammation and disease advancement. Based on these findings and the existing literature in other IMIDs, we present and discuss relevant literature that support the hypothesis that unresolvable immune stimulation from chronic inflammation leads to a maladaptive disease-inducing and perpetuating sympathetic response in an attempt to maintain allostasis. Since the role of sympathetic dysfunction in IMIDs is best studied in RA and rodent models of RA, this IMID is the primary one used to evaluate data relevant to our hypothesis. Here, we review the relevant literature and discuss sympathetic dysfunction as a significant contributor to the pathophysiology of IMIDs, and then discuss a novel target for treatment. Based on our findings in inflammatory arthritis and our understanding of common inflammatory process that are used by the immune system across all IMIDs, novel strategies to restore SNS homeostasis are expected to provide safe, cost-effective approaches to treat IMIDs, lower comorbidities, and increase longevity.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Dianne Lorton
- College of Arts and Sciences, Kent State University, Kent, OH 44304, USA.
| |
Collapse
|
178
|
Neural pathways involved in infection-induced inflammation: recent insights and clinical implications. Clin Auton Res 2018. [PMID: 29541878 DOI: 10.1007/s10286-018-0518-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although the immune and nervous systems have long been considered independent biological systems, they turn out to mingle and interact extensively. The present review summarizes recent insights into the neural pathways activated by and involved in infection-induced inflammation and discusses potential clinical applications. The simplest activation concerns a reflex action within C-fibers leading to neurogenic inflammation. Low concentrations of pro-inflammatory cytokines or bacterial fragments may also act on these afferent nerve fibers to signal the central nervous system and bring about early fever, hyperalgesia and sickness behavior. In the brain, the preoptic area and the paraventricular hypothalamus are part of a neuronal network mediating sympathetic activation underlying fever while brainstem circuits play a role in the reduction of food intake after systemic exposure to bacterial fragments. A vagally-mediated anti-inflammatory reflex mechanism has been proposed and, in turn, questioned because the major immune organs driving inflammation, such as the spleen, are not innervated by vagal efferent fibers. On the contrary, sympathetic nerves do innervate these organs and modulate immune cell responses, production of inflammatory mediators and bacterial dissemination. Noradrenaline, which is both released by these fibers and often administered during sepsis, along with adrenaline, may exert pro-inflammatory actions through the stimulation of β1 adrenergic receptors, as antagonists of this receptor have been shown to exert anti-inflammatory effects in experimental sepsis.
Collapse
|
179
|
Willemze RA, Welting O, van Hamersveld HP, Meijer SL, Folgering JHA, Darwinkel H, Witherington J, Sridhar A, Vervoordeldonk MJ, Seppen J, de Jonge WJ. Neuronal control of experimental colitis occurs via sympathetic intestinal innervation. Neurogastroenterol Motil 2018; 30. [PMID: 28745812 DOI: 10.1111/nmo.13163] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Vagus nerve stimulation is currently clinically evaluated as a treatment for inflammatory bowel disease. However, the mechanism by which this therapeutic intervention can have an immune-regulatory effect in colitis remains unclear. We determined the effect of intestine-specific vagotomy or intestine-specific sympathectomy of the superior mesenteric nerve (SMN) on dextran sodium sulfate (DSS)-induced colitis in mice. Furthermore, we tested the efficacy of therapeutic SMN stimulation to treat DSS-induced colitis in rats. METHODS Vagal and SMN fibers were surgically dissected to achieve intestine-specific vagotomy and sympathectomy. Chronic SMN stimulation was achieved by implantation of a cuff electrode. Stimulation was done twice daily for 5 minutes using a biphasic pulse (10 Hz, 200 μA, 2 ms). Disease activity index (DAI) was used as a clinical parameter for colitis severity. Colonic cytokine expression was measured by quantitative PCR and ELISA. KEY RESULTS Intestine-specific vagotomy had no effect on DSS-induced colitis in mice. However, SMN sympathectomy caused a significantly higher DAI compared to sham-operated mice. Conversely, SMN stimulation led to a significantly improved DAI compared to sham stimulation, although no other parameters of colitis were affected significantly. CONCLUSIONS & INFERENCES Our results indicate that sympathetic innervation regulates the intestinal immune system as SMN denervation augments, and SMN stimulation ameliorates DSS-induced colitis. Surprisingly, intestine-specific vagal nerve denervation had no effect in DSS-induced colitis.
Collapse
Affiliation(s)
- R A Willemze
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - O Welting
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - H P van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - S L Meijer
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - H Darwinkel
- Brains On-Line B.V., Groningen, The Netherlands
| | | | - A Sridhar
- Galvani Bioelectronics, Stevenage, UK
| | | | - J Seppen
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - W J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
180
|
A Conceptual Framework Encompassing the Psychoneuroimmunoendocrinological Influences of Listening to Music in Patients With Heart Failure. Holist Nurs Pract 2018; 32:81-89. [DOI: 10.1097/hnp.0000000000000253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
181
|
Liu DD, Chu SF, Chen C, Yang PF, Chen NH, He X. Research progress in stroke-induced immunodepression syndrome (SIDS) and stroke-associated pneumonia (SAP). Neurochem Int 2018; 114:42-54. [DOI: 10.1016/j.neuint.2018.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
|
182
|
Walsh CP, Ewing LJ, Cleary JL, Vaisleib AD, Farrell CH, Wright AGC, Gray K, Marsland AL. Development of glucocorticoid resistance over one year among mothers of children newly diagnosed with cancer. Brain Behav Immun 2018; 69:364-373. [PMID: 29269321 PMCID: PMC5857426 DOI: 10.1016/j.bbi.2017.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/04/2017] [Accepted: 12/17/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic distress associates with peripheral release of cortisol and a parallel upregulation of innate inflammation. Typically, cortisol functions to down-regulate inflammatory processes. However, in the context of chronic stress, it is hypothesized that glucocorticoid receptors within immune cells become less sensitive to the anti-inflammatory effects of cortisol, resulting in increased systemic inflammation. Caring for a child newly diagnosed with cancer is a particularly provocative chronic stressor. Here, we examine evidence for the development of cellular resistance to glucocorticoids among 120 mothers (Aged 18-56 years; 86% Caucasian) across the 12 months following their child's new diagnosis with cancer. Measures of psychological distress, interleukin (IL)-6, and glucocorticoid resistance (GCR) were assessed 1, 6, and 12 months after the diagnosis. A latent factor for distress was derived from the covariation among symptoms of anxiety, depression, and post-traumatic stress. Latent change score models revealed a significant positive association between change in distress and change in GCR from 0 to 6 months, and 6 months-1 year. This finding provides initial evidence for a longitudinal association between change in maternal distress and change in GCR from the onset of a chronic stressor through one year. Although levels of IL-6 increased during the first six months after the child's diagnosis, the magnitude of this change was not related to change in distress or change in GCR. Given the possible health consequences of reduced immune sensitivity to glucocorticoids, future work should further explore this stress response and its clinical significance.
Collapse
Affiliation(s)
| | - Linda J Ewing
- Department of Psychiatry, University of Pittsburgh School of Medicine, United States
| | | | - Alina D Vaisleib
- Department of Psychiatry, University of Pittsburgh School of Medicine, United States
| | - Chelsea H Farrell
- Department of Psychiatry, University of Pittsburgh School of Medicine, United States
| | - Aidan G C Wright
- Department of Psychology, University of Pittsburgh, United States
| | - Katarina Gray
- Department of Psychology, University of Pittsburgh, United States
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, United States
| |
Collapse
|
183
|
Ren HL, Lv CN, Xing Y, Geng Y, Zhang F, Bu W, Wang MW. Downregulated Nuclear Factor E2-Related Factor 2 (Nrf2) Aggravates Cognitive Impairments via Neuroinflammation and Synaptic Plasticity in the Senescence-Accelerated Mouse Prone 8 (SAMP8) Mouse: A Model of Accelerated Senescence. Med Sci Monit 2018; 24:1132-1144. [PMID: 29474348 PMCID: PMC5833362 DOI: 10.12659/msm.908954] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background We observed the effects of nuclear factor E2-related factor 2 (Nrf2) downregulation via intrahippocampal injection of a lentiviral vector on cognition in senescence-accelerated mouse prone 8 (SAMP8) to investigate the role of the (Nrf2)/antioxidant response element (ARE) pathway in age-related changes. Material/Methods Control lentivirus and Nrf2-shRNA-lentivirus were separately injected into the hippocampus of 4-month-old SAMR1 and SAMP8 mice and then successfully downregulated Nrf2 expression in this brain region. Five months later, cognitive function tests, including the novel object test, the Morris water maze test, and the passive avoidance task were conducted. Glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba1) immunohistochemistry was performed to observe an inflammatory response. Presynaptic synapsin (SYN) were observed by immunofluorescence. We then determined the Nrf2-regulated, heme oxygenase-1 (HO-1), P65, postsynaptic density protein (PSD), and SYN protein levels. The ultrastructure of neurons and synapses in the hippocampal CA1 region was observed by transmission electron microscopy. Results Aging led to a decline in cognitive function compared with SAMR1 mice and the Nrf2-shRNA-lentivirus further exacerbated the cognitive impairment in SAMP8 mice. Nrf2, HO-1, PSD, and SYN levels were significantly reduced (all P<0.05) but high levels of inflammation were detected in SAMP8 mice with low expression of Nrf2. Furthermore, neurons were vacuolated, the number of organelles decreased, and the number of synapses decreased. Conclusions Downregulation of Nrf2 suppressed the Nrf2/ARE pathway, activated oxidative stress and neuroinflammation, and accelerated cognitive impairment in SAMP8 mice. Downregulation of Nrf2 accelerates the aging process through neuroinflammation and synaptic plasticity.
Collapse
Affiliation(s)
- Hui Ling Ren
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Chao Nan Lv
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, Hebei, China (mainland)
| | - Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yuan Geng
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, Hebei, China (mainland)
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Wei Bu
- Department of Neurosurgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Ming Wei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
184
|
Revathikumar P, Estelius J, Karmakar U, Le Maître E, Korotkova M, Jakobsson PJ, Lampa J. Microsomal prostaglandin E synthase-1 gene deletion impairs neuro-immune circuitry of the cholinergic anti-inflammatory pathway in endotoxaemic mouse spleen. PLoS One 2018; 13:e0193210. [PMID: 29470537 PMCID: PMC5823444 DOI: 10.1371/journal.pone.0193210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/06/2018] [Indexed: 01/17/2023] Open
Abstract
The cholinergic anti-inflammatory pathway (CAP) is an innate neural reflex where parasympathetic and sympathetic nerves work jointly to control inflammation. Activation of CAP by vagus nerve stimulation (VNS) has paved way for novel therapeutic strategies in treating inflammatory diseases. Recently, we discovered that VNS mediated splenic acetylcholine (ACh) release and subsequent immunosuppression in response to LPS associated inflammation is impaired in mice lacking microsomal prostaglandin E synthase-1 (mPGES-1) expression, a key enzyme responsible for prostaglandin E2 synthesis. Here, we have further investigated the consequences of mPGES-1 deficiency on various molecular/cellular events in the spleen which is critical for the optimal functioning of VNS in endotoxaemic mice. First, VNS induced splenic norepinephrine (NE) release in both mPGES-1 (+/+) and (-/-) mice. Compared to mPGES-1 (+/+), immunomodulatory effects of NE on cytokines were strongly compromised in mPGES-1 (-/-) splenocytes. Interestingly, while LPS increased choline acetyltransferase (ChAT) protein level in mPGES-1 (+/+) splenocytes, it failed to exert similar effects in mPGES-1 (-/-) splenocytes despite unaltered β2 AR protein expression. In addition, nicotine inhibited TNFα release by LPS activated mPGES-1 (+/+) splenocytes in vitro. However, such immunosuppressive effects of nicotine were reversed both in mPGES-1 (-/-) mouse splenocytes and human PBMC treated with mPGES-1 inhibitor. In summary, our data implicate PGE2 as an important mediator of ACh synthesis and noradrenergic/cholinergic molecular events in the spleen that constitute a crucial part of the CAP immune regulation. Our results suggest a possible link between cholinergic and PG system of CAP that may be of clinical significance in VNS treatment.
Collapse
Affiliation(s)
- Priya Revathikumar
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Estelius
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Utsa Karmakar
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Erwan Le Maître
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marina Korotkova
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jon Lampa
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
185
|
Scarr E, Udawela M, Dean B. Changed frontal pole gene expression suggest altered interplay between neurotransmitter, developmental, and inflammatory pathways in schizophrenia. NPJ SCHIZOPHRENIA 2018; 4:4. [PMID: 29463818 PMCID: PMC5820249 DOI: 10.1038/s41537-018-0044-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/22/2022]
Abstract
Schizophrenia (Sz) probably occurs after genetically susceptible individuals encounter a deleterious environmental factor that triggers epigenetic mechanisms to change CNS gene expression. To determine if omnibus changes in CNS gene expression are present in Sz, we compared mRNA levels in the frontal pole (Brodmann’s area (BA) 10), the dorsolateral prefrontal cortex (BA 9) and cingulate cortex (BA 33) from 15 subjects with Sz and 15 controls using the Affymetrix™ Human Exon 1.0 ST Array. Differences in mRNA levels (±≥20%; p < 0.01) were identified (JMP Genomics 5.1) and used to predict pathways and gene x gene interactions that would be affected by the changes in gene expression using Ingenuity Pathway Analysis. There was significant variation in mRNA levels with diagnoses for 566 genes in BA 10, 65 genes in BA 9 and 40 genes in BA 33. In Sz, there was an over-representation of genes with changed expression involved in inflammation and development in BA 10, cell morphology in BA 9 and amino acid metabolism and small molecule biochemistry in BA 33. Using 94 genes with altered levels of expression in BA 10 from subjects with Sz, it was possible to construct an interactome of proven direct gene x gene interactions that was enriched for genes in inflammatory, developmental, oestrogen, serotonergic, cholinergic and NRG1 regulated pathways. Our data shows complex, regionally specific changes in cortical gene expression in Sz that are predicted to affect homeostasis between biochemical pathways already proposed to be important in the pathophysiology of the disorder. Anterior brain regions exhibit significant amounts of differentially-expressed genes which might cause dysfunction in schizophrenia. It’s thought that schizophrenia occurs when environmental factors trigger gene expression changes and downstream effects in the human brain, though this is not fully understood. An Australian research group led by Brian Dean, from the Florey Institute of Neuroscience and Mental Health, conducted a post-mortem human brain study in which they compared gene expression between 15 schizophrenia patients and 15 controls. They found 566 instances of altered gene expression in the most frontal part of the brain, Brodmann Area 10, and fewer changes in proximal regions. These are brain areas known to mediate schizophrenia-related traits and the changes in gene expression in these areas will affect a range of essential biological pathways. The group also found 97 differentially-expressed genes that have been shown to directly interact with each. This study paints a complex picture of the causes of schizophrenia but suggests modern technologies can help unravel these complexities.
Collapse
Affiliation(s)
- Elizabeth Scarr
- Molecular Psychiatry Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, VIC 3052, Australia.,CRC for Mental Health, Carlton, VIC, 3053, Australia.,Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, VIC 3052, Australia.,CRC for Mental Health, Carlton, VIC, 3053, Australia
| | - Brian Dean
- Molecular Psychiatry Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, VIC 3052, Australia. .,CRC for Mental Health, Carlton, VIC, 3053, Australia. .,Research Centre for Mental Health, the Faculty of Health, Arts and Design, Swinburne University, Hawthorne, VIC, 3122, Australia.
| |
Collapse
|
186
|
Behavioural effects of novel multitarget anticholinesterasic derivatives in Alzheimer's disease. Behav Pharmacol 2018; 28:124-131. [PMID: 28125507 DOI: 10.1097/fbp.0000000000000292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The current pharmacological approach to Alzheimer's disease (AD) treatment, mostly based on acetylcholinesterase inhibitors (AChEIs), is being revisited, especially in terms of the temporal frames and the potential benefits of their noncanonic actions, raising the question of whether inhibitors of AChE might also act in a disease-modifying manner. Besides, in the last decades, the pharmacophoric moieties of known AChEIs have been covalently linked to other pharmacophores in the pursuit of multitarget hybrid molecules that are expected to induce long-lasting amelioration of impaired neurotransmission and clinical symptoms but also to exert disease-modifying effects. Our research consortium has synthesized and defined the pharmacological profile of new AChEIs derivatives of potential interest for the treatment of AD. Among these, huprines and derivatives have been characterized successfully. Huprine X, a reversible AChE inhibitor, designed by molecular hybridization of tacrine and huperzine A, has been shown to affect the amyloidogenic process in vitro, and the AD-related neuropathology in vivo in mice models of the disease. More recently, we have shown that a group of donepezil-huprine heterodimers exerts a highly potent and selective inhibitory action on AChE both in vitro and ex vivo, simultaneously interacting with both peripheral and catalytic binding sites, and inhibiting the β-amyloid aggregation, whereas some levetiracetam-huprine hybrids have been shown to reduce epileptiform activity, neuroinflammation and amyloid burden in an animal model of AD. Here, we summarize the behavioural correlates of these noncanonic actions as assessed in three distinct biological scenarios: middle-age, cognitive deficits associated with ageing and AD-like phenotype in mice. Besides the improvement in the hallmark cognitive symptomatology without inducing side effects, these drugs have shown to be able to modulate emotional and anxiety-like behaviours or to reduce spontaneous seizures, all of them related to the so-called 'behavioural and psychological symptoms of dementia'. Overall, the studies show that these novel multitarget anticholinesterasics exert noncanonic actions providing symptomatic and disease-modifying benefits of potential interest for the management of AD.
Collapse
|
187
|
Seyedabadi M, Rahimian R, Ghia JE. The role of alpha7 nicotinic acetylcholine receptors in inflammatory bowel disease: involvement of different cellular pathways. Expert Opin Ther Targets 2018; 22:161-176. [PMID: 29298542 DOI: 10.1080/14728222.2018.1420166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Autonomic imbalance plays a pivotal role in the pathophysiology of inflammatory bowel diseases (IBD). The central nervous system (CNS) cooperates dynamically with the immune system to regulate inflammation through humoral and neural pathways. In particular, acetylcholine (Ach), the main neurotransmitter in the vagus nerve, decreases the production of pro-inflammatory cytokines through a mechanism dependent on the α7 nicotinic Ach receptors (α7nAChRs). Areas covered: Here, we review the evidence for involvement of the cholinergic anti-inflammatory pathway (CAP) in IBD. We also elaborate the role of α7nAChRs and subsequent cellular pathways in CAP. Finally, we review potential therapeutic implications of modulators of these receptors. Expert opinion: Alpha7nAChR modulators possess both cognitive improving and anti-inflammatory properties. Although, these agents demonstrated therapeutic benefits in experimental models, their efficacy has not always been translated in clinical trials. Thus, development of more specific α7nAChR ligands as well as more experimental studies and better controlled trials, especially in the field of IBD, are encouraged for a progress in this field.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- a Department of Pharmacology, School of Medicine , Bushehr University of Medical Sciences , Bushehr , Iran.,b The Persian Gulf Biomedical Sciences Research Institute , Bushehr University of Medical Sciences , Bushehr , Iran.,c Education Development Center , Bushehr University of Medical Sciences , Bushehr , Iran
| | - Reza Rahimian
- d Department of Psychiatry and Neuroscience, Faculty of Medicine , CERVO Brain Research Center, Laval University , Quebec , Quebec , Canada
| | - Jean-Eric Ghia
- e Department of Immunology , University of Manitoba , Winnipeg , Manitoba , Canada.,f Department of Internal Medicine Section of Gastroenterology, and Inflammatory Bowel Disease Clinical & Research Center , University of Manitoba , Winnipeg , Manitoba , Canada
| |
Collapse
|
188
|
Insulin Resistance, Glucose Metabolism, Inflammation, and the Role of Neuromodulation as a Therapy for Type-2 Diabetes. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00133-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
189
|
Dantzer R. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa. Physiol Rev 2018; 98:477-504. [PMID: 29351513 PMCID: PMC5866360 DOI: 10.1152/physrev.00039.2016] [Citation(s) in RCA: 550] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/05/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.
Collapse
Affiliation(s)
- Robert Dantzer
- Department of Symptom Research, University of Texas MD Anderson Cancer Center , Houston, Texas
| |
Collapse
|
190
|
Chen JD, Jin H, Yin J. Vagal Nerve Stimulation Versus Sacral Nerve Stimulation for Control of Inflammation. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
191
|
Abstract
The thermoregulatory functions may vary with age. Thermosensitivity is active in neonates and children; both heat production and heat loss effector mechanisms are functional but easily exhaustable. Proportional and lasting defense against thermal challenges is difficult, and both hypothermia and hyperthermia may easily develop. Febrile or hypothermic responses to infections or endotoxin can also develop, together with confusion. In small children febrile convulsions may be dangerous. In old age the resting body temperature may be lower than in young adults. Further, thermosensitivity decreases, the thresholds for activating skin vasomotor and evaporative responses or metabolism are shifted, and responses to thermal challenges are delayed or insufficient: both hypothermia and hyperthermia may develop easily. Infection-induced fevers are often limited or absent, or replaced by hypothermia. Various types of brain damage may induce special forms of hypothermia, hyperthermia, or severe fever. Impaired mental state often accompanies hypothermia and hyperthermia, and may occasionally be a dominant feature of infection (instead of the most commonly observed fever). Aging brings about a turning point in women's life: the menopause. The well-known influence of regular hormonal cycles on the thermoregulation of a woman of fertile age gives way to menopausal hot flushes caused by estrogen withdrawal. Not all details of this thermoregulatory anomaly are fully understood yet.
Collapse
|
192
|
Somann JP, Albors GO, Neihouser KV, Lu KH, Liu Z, Ward MP, Durkes A, Robinson JP, Powley TL, Irazoqui PP. Chronic cuffing of cervical vagus nerve inhibits efferent fiber integrity in rat model. J Neural Eng 2017; 15:036018. [PMID: 29219123 DOI: 10.1088/1741-2552/aaa039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Numerous studies of vagal nerve stimulation (VNS) have been published showing it to be a potential treatment for chronic inflammation and other related diseases and disorders. Studies in recent years have shown that electrical stimulation of the vagal efferent fibers can artificially modulate cytokine levels and reduce systematic inflammation. Most VNS research in the treatment of inflammation have been acute studies on rodent subjects. Our study tested VNS on freely moving animals by stimulating and recording from the cervical vagus with nerve cuff electrodes over an extended period of time. APPROACH We used methods of electrical stimulation, retrograde tracing (using Fluorogold) and post necropsy histological analysis of nerve tissue, flow cytometry to measure plasma cytokine levels, and MRI scanning of gastric emptying. This novel combination of methods allowed examination of physiological aspects of VNS previously unexplored. MAIN RESULTS Through our study of 53 rat subjects, we found that chronically cuffing the left cervical vagus nerve suppressed efferent Fluorogold transport in 43 of 44 animals (36 showed complete suppression). Measured cytokine levels and gastric emptying rates concurrently showed nominal differences between chronically cuffed rats and those tested with similar acute methods. Meanwhile, results of electrophysiological and histological tests of the cuffed nerves revealed them to be otherwise healthy, consistent with previous literature. SIGNIFICANCE We hypothesize that due to these unforeseen and unexplored physiological consequences of the chronically cuffed vagus nerve in a rat, that inflammatory modulation and other vagal effects by VNS may become unreliable in chronic studies. Given our findings, we submit that it would benefit the VNS community to re-examine methods used in previous literature to verify the efficacy of the rat model for chronic VNS studies.
Collapse
Affiliation(s)
- Jesse P Somann
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, United States of America. Center for Implantable Devices (CID), Purdue University, West Lafayette, Indiana, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Ulloa L, Quiroz-Gonzalez S, Torres-Rosas R. Nerve Stimulation: Immunomodulation and Control of Inflammation. Trends Mol Med 2017; 23:1103-1120. [PMID: 29162418 PMCID: PMC5724790 DOI: 10.1016/j.molmed.2017.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/31/2022]
Abstract
Neuronal stimulation is an emerging field in modern medicine to control organ function and re-establish physiological homeostasis during illness. Transdermal nerve stimulation with electroacupuncture is currently endorsed by the World Health Organization (WHO) and the National Institutes of Health (NIH), and is used by millions of people to control pain and inflammation. Recent advances in electroacupuncture may permit activation of specific neuronal networks to prevent organ damage in inflammatory and infectious disorders. Experimental studies of nerve stimulation are also providing new information on the functional organization of the nervous system to control inflammation and its clinical implications in infectious and inflammatory disorders. These studies may allow the design of novel non-invasive techniques for nerve stimulation to help to control immune and organ functions.
Collapse
Affiliation(s)
- Luis Ulloa
- Center for Immunology and Inflammation, Department of Surgery, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA; International Laboratory of Neuro-Immunomodulation, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| | - Salvador Quiroz-Gonzalez
- Center for Immunology and Inflammation, Department of Surgery, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| | - Rafael Torres-Rosas
- Center for Immunology and Inflammation, Department of Surgery, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA; Universidad Autónoma 'Benito Juárez' de Oaxaca, 68120 Mexico
| |
Collapse
|
194
|
Chen H, Zhou Z, Wang L, Wang H, Liu R, Zhang H, Song L. An invertebrate-specific miRNA targeted the ancient cholinergic neuroendocrine system of oyster. Open Biol 2017; 6:rsob.160059. [PMID: 27488375 PMCID: PMC5008008 DOI: 10.1098/rsob.160059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/05/2016] [Indexed: 02/07/2023] Open
Abstract
Acetylcholine (ACh) is the main neurotransmitter in the cholinergic neuroendocrine system and plays an indispensable role in modulating diverse immune responses. As important transporters in choline uptake, choline transporter-like proteins (CTLs) can control ACh synthesis and release indirectly in multiple organisms. In this study, cgi-miR-2d, an invertebrate-specific miRNA in oyster Crassostrea gigas, is proved to repress the synthesis/release of ACh by targeting CgCTL1 and choline uptake in haemocytes during the early stage of pathogen infection. In short, an opposite expression pattern between CgCTL1 and cgi-miR-2d is observed during Vibrio splendidus infection, accompanied by changes in haemolymph ACh. In addition, the expression level of CgCTL1 is found to be significantly repressed after cgi-miR-2d overexpression in vivo, while both haemocyte choline and haemolymph ACh are also decreased simultaneously, similar to the finding in CgCTL1 knock-down assay. As a result, the expression of two tumour necrosis factor-like proteins and the bacteriostatic activity of oyster haemocytes are found to be altered significantly by either gain-of-function cgi-miR-2d or knock-down of CgCTL1. To our knowledge, this is the first miRNA identified in invertebrates that can target the ancient cholinergic system and augment immune response during infection.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Lingling Wang
- Key Laboratory of Mariculture and Stock enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, People's Republic of China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China Key Laboratory of Mariculture and Stock enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, People's Republic of China
| |
Collapse
|
195
|
Stornetta RL, Guyenet PG. C1 neurons: a nodal point for stress? Exp Physiol 2017; 103:332-336. [PMID: 29080216 DOI: 10.1113/ep086435] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the topic of this review? The C1 neurons (C1) innervate sympathetic and parasympathetic preganglionic neurons plus numerous brain nuclei implicated in stress, arousal and autonomic regulations. We consider here the contribution of C1 to stress-induced responses. What advances does it highlight? C1 activation is required for blood pressure stability during hypoxia and mild hemorrhage which exemplifies their homeostatic function. During restraint stress, C1 activate the splenic anti-inflammatory pathway resulting in tissue protection against ischemic injury. This effect, along with glucose release and, possibly, arousal are examples of adaptive non-homeostatic responses to stress that are also mediated by C1. The C1 cells are catecholaminergic and glutamatergic neurons located in the rostral ventrolateral medulla. Collectively, these neurons innervate sympathetic and parasympathetic preganglionic neurons, the hypothalamic paraventricular nucleus and countless brain structures involved in autonomic regulation, arousal and stress. Optogenetic inhibition of rostral C1 neurons has little effect on blood pressure (BP) at rest in conscious rats but produces large reductions in BP when the animals are anaesthetized or exposed to hypoxia. Optogenetic C1 stimulation increases BP and produces arousal from non-rapid eye movement sleep. C1 cell stimulation mimics the effect of restraint stress to attenuate kidney injury caused by renal ischaemia-reperfusion. These effects are mediated by the sympathetic nervous system through the spleen and eliminated by silencing the C1 neurons. These few examples illustrate that, depending on the nature of the stress, the C1 cells mediate adaptive responses of a homeostatic or allostatic nature.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
196
|
Grandi A, Zini I, Flammini L, Cantoni AM, Vivo V, Ballabeni V, Barocelli E, Bertoni S. α 7 Nicotinic Agonist AR-R17779 Protects Mice against 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis in a Spleen-Dependent Way. Front Pharmacol 2017; 8:809. [PMID: 29167641 PMCID: PMC5682330 DOI: 10.3389/fphar.2017.00809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/26/2017] [Indexed: 12/26/2022] Open
Abstract
The existence of a cholinergic anti-inflammatory pathway negatively modulating the inflammatory and immune responses in various clinical conditions and experimental models has long been postulated. In particular, the protective involvement of the vagus nerve and of nicotinic Ach receptors (nAChRs) has been proposed in intestinal inflammation and repeatedly investigated in DSS- and TNBS-induced colitis. However, the role of α7 nAChRs stimulation is still controversial and the potential contribution of α4β2 nAChRs has never been explored in this experimental condition. Our aims were therefore to pharmacologically investigate the role played by both α7 and α4β2 nAChRs in the modulation of the local and systemic inflammatory responses activated in TNBS-induced colitis in mice and to assess the involvement of the spleen in nicotinic responses. To this end, TNBS-exposed mice were sub-acutely treated with various subcutaneous doses of highly selective agonists (AR-R17779 and TC-2403) and antagonists (methyllycaconitine and dihydro-β-erythroidine) of α7 and α4β2 nAChRs, respectively, or with sulfasalazine 50 mg/kg per os and clinical and inflammatory responses were evaluated by means of biochemical, histological and flow cytometry assays. α4β2 ligands evoked weak and contradictory effects, while α7 nAChR agonist AR-R17779 emerged as the most beneficial treatment, able to attenuate several local markers of colitis severity and to revert the rise in splenic T-cells and in colonic inflammatory cytokines levels induced by haptenization. After splenectomy, AR-R17779 lost its protective effects, demonstrating for the first time that, in TNBS-model of experimental colitis, the anti-inflammatory effect of exogenous α7 nAChR stimulation is strictly spleen-dependent. Our findings showed that the selective α7 nAChRs agonist AR-R17779 exerted beneficial effects in a model of intestinal inflammation characterized by activation of the adaptive immune system and that the spleen is essential to mediate this cholinergic protection.
Collapse
Affiliation(s)
- Andrea Grandi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Irene Zini
- Food and Drug Department, University of Parma, Parma, Italy
| | - Lisa Flammini
- Food and Drug Department, University of Parma, Parma, Italy
| | - Anna M. Cantoni
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Valentina Vivo
- Food and Drug Department, University of Parma, Parma, Italy
| | | | | | - Simona Bertoni
- Food and Drug Department, University of Parma, Parma, Italy
| |
Collapse
|
197
|
Hereditary angioedema: Assessing the hypothesis for underlying autonomic dysfunction. PLoS One 2017; 12:e0187110. [PMID: 29107952 PMCID: PMC5673184 DOI: 10.1371/journal.pone.0187110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/13/2017] [Indexed: 11/19/2022] Open
Abstract
Background Attacks of Hereditary Angioedema due to C1-inhibitor deficiency (C1-INH-HAE)are often triggered by stressful events/hormonal changes. Objective Our study evaluates the relationship between autonomic nervous system (ANS) and contact/complement system activation. Methods Twenty-three HAE patients (6 males, mean age 47.5±11.4 years) during remission and 24 healthy controls (8 males, mean age 45.3±10.6 years) were studied. ECG, beat-by-beat blood pressure, respiratory activity were continuously recorded during rest (10’) and 75-degrees-head-up tilt (10’). C1-INH, C4, cleaved high molecular weight kininogen (cHK) were assessed; in 16 patients and 11 controls plasma catecholamines were also evaluated. Spectral analysis of heart rate variability allowed extraction of low-(LF) and high-(HF) frequency components, markers of sympathetic and vagal modulation respectively. Results HAE patients showed higher mean systolic arterial pressure (SAP) than controls during both rest and tilt. Tilt induced a significant increase in SAP and its variability only in controls. Although sympathetic modulation (LFnu) increased significantly with tilt in both groups, LF/HF ratio, index of sympathovagal balance, increased significantly only in controls. At rest HAE patients showed higher noradrenaline values (301.4±132.9 pg/ml vs 210.5±89.6pg/ml, p = 0.05). Moreover, in patients tilt was associated with a significant increase in cHK, marker of contact system activation (49.5 ± 7.5% after T vs 47.1 ± 7.8% at R, p = 0.01). Conclusions Our data are consistent with altered ANS modulation in HAE patients, i.e. increased sympathetic activation at rest and blunted response to orthostatic challenge. Tilt test-induced increased HK cleavage suggests a link between stress and bradykinin production.
Collapse
|
198
|
Hone AJ, McIntosh JM. Nicotinic acetylcholine receptors in neuropathic and inflammatory pain. FEBS Lett 2017; 592:1045-1062. [PMID: 29030971 DOI: 10.1002/1873-3468.12884] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/22/2017] [Accepted: 10/05/2017] [Indexed: 01/11/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are actively being investigated as therapeutic targets for the treatment of pain and inflammation, but despite more than 30 years of research, there are currently no FDA-approved analgesics that are specific for these receptors. Much of the initial research effort focused on the α4β2 nAChR subtype, but more recently, additional subtypes have been identified as promising new leads and include α6β4, α7, and α9-containing nAChRs. This Review will focus on the distribution of these nAChRs in the cell types involved in neuropathic pain and inflammation and the activity of currently available nicotinic ligands.
Collapse
Affiliation(s)
- Arik J Hone
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - J Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, USA.,Department of Psychiatry, University of Utah, Salt Lake City, UT, USA.,George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
199
|
Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K. Expression and Function of the Cholinergic System in Immune Cells. Front Immunol 2017; 8:1085. [PMID: 28932225 PMCID: PMC5592202 DOI: 10.3389/fimmu.2017.01085] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/21/2017] [Indexed: 12/29/2022] Open
Abstract
T and B cells express most cholinergic system components—e.g., acetylcholine (ACh), choline acetyltransferase (ChAT), acetylcholinesterase, and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Using ChATBAC-eGFP transgenic mice, ChAT expression has been confirmed in T and B cells, dendritic cells, and macrophages. Moreover, T cell activation via T-cell receptor/CD3-mediated pathways upregulates ChAT mRNA expression and ACh synthesis, suggesting that this lymphocytic cholinergic system contributes to the regulation of immune function. Immune cells express all five mAChRs (M1–M5). Combined M1/M5 mAChR-deficient (M1/M5-KO) mice produce less antigen-specific antibody than wild-type (WT) mice. Furthermore, spleen cells in M1/M5-KO mice produce less tumor necrosis factor (TNF)-α and interleukin (IL)-6, suggesting M1/M5 mAChRs are involved in regulating pro-inflammatory cytokine and antibody production. Immune cells also frequently express the α2, α5, α6, α7, α9, and α10 nAChR subunits. α7 nAChR-deficient (α7-KO) mice produce more antigen-specific antibody than WT mice, and spleen cells from α7-KO mice produce more TNF-α and IL-6 than WT cells. This suggests that α7 nAChRs are involved in regulating cytokine production and thus modulate antibody production. Evidence also indicates that nicotine modulates immune responses by altering cytokine production and that α7 nAChR signaling contributes to immunomodulation through modification of T cell differentiation. Together, these findings suggest the involvement of both mAChRs and nAChRs in the regulation of immune function. The observation that vagus nerve stimulation protects mice from lethal endotoxin shock led to the notion of a cholinergic anti-inflammatory reflex pathway, and the spleen is an essential component of this anti-inflammatory reflex. Because the spleen lacks direct vagus innervation, it has been postulated that ACh synthesized by a subset of CD4+ T cells relays vagal nerve signals to α7 nAChRs on splenic macrophages, which downregulates TNF-α synthesis and release, thereby modulating inflammatory responses. However, because the spleen is innervated solely by the noradrenergic splenic nerve, confirmation of an anti-inflammatory reflex pathway involving the spleen requires several more hypotheses to be addressed. We will review and discuss these issues in the context of the cholinergic system in immune cells.
Collapse
Affiliation(s)
- Takeshi Fujii
- Faculty of Pharmaceutical Sciences, Department of Pharmacology, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Masato Mashimo
- Faculty of Pharmaceutical Sciences, Department of Pharmacology, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Yasuhiro Moriwaki
- Faculty of Pharmacy, Department of Pharmacology, Keio University, Tokyo, Japan
| | - Hidemi Misawa
- Faculty of Pharmacy, Department of Pharmacology, Keio University, Tokyo, Japan
| | - Shiro Ono
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Kazuhide Horiguchi
- Department of Anatomy, Division of Medicine, University of Fukui Faculty of Medical Sciences, Fukui, Japan
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
200
|
Borghammer P. How does parkinson's disease begin? Perspectives on neuroanatomical pathways, prions, and histology. Mov Disord 2017; 33:48-57. [PMID: 28843014 DOI: 10.1002/mds.27138] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/20/2017] [Accepted: 07/23/2017] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a multisystem disorder with involvement of the peripheral nervous system. Misfolding and aggregation of α-synuclein is central to the pathogenesis of PD, and it has been postulated that the disease may originate in olfactory and gastrointestinal nerve terminals. The prion-like behavior of α-synuclein has been convincingly demonstrated in vitro and in animal models of PD. Lewy-type pathology have been detected in peripheral organs many years prior to PD diagnosis, and 2 independent studies have now suggested that truncal vagotomy may be protective against the disorder. Other lines of evidence are difficult to reconcile with a peripheral onset of PD, most importantly the relative scarcity of post mortem cases with isolated gastrointestinal α-synuclein pathology without concomitant CNS pathology. This Scientific Perspectives article revisits some important topics with implications for the dual-hit hypothesis. An account of the neuroanatomical pathways necessary for stereotypical α-synuclein spreading is presented. Parallels to the existing knowledge on true prion disorders, including Creutzfeld-Jakob disease, are examined. Finally, the vagotomy studies and the somewhat inconsistent findings in the growing literature on peripheral α-synuclein pathology are discussed. It is concluded that the dual-hit hypothesis remains a potential explanation for PD pathogenesis, but several issues need to be resolved before more firm conclusions can be drawn. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Per Borghammer
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|