151
|
Eltony SA, Elmottaleb NA, Gomaa AM, Anwar MM, El-Metwally TH. Effect of All-Trans Retinoic Acid on the Pancreas of Streptozotocin-Induced Diabetic Rat. Anat Rec (Hoboken) 2016; 299:334-51. [PMID: 26704900 DOI: 10.1002/ar.23307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 10/31/2015] [Accepted: 11/05/2015] [Indexed: 12/25/2022]
Abstract
All-trans Retinoic acid (atRA) is instructive for the development of endocrine pancreas and is an integral component of β-cell induction protocols. We showed that atRA induces glucose-responsive endocrine transdifferentiation of pleomorphic pancreatic ductal adenocarcinoma cells in vitro. This study aimed to detect the role of atRA in improving the histological changes of the pancreas in diabetic rats. Forty young male Wistar rats were used and divided into three groups. Group I: normal vehicle control (N = 5). Group II: streptozotocin-induced diabetic rats (N = 20) were followed up at 0.0, 1, 2, and 4 weeks. Group III: streptozotocin-induced diabetic rats (N = 15) treated with atRA (2.5 mg/kg/day), were followed up at 1, 2, and 4 weeks. Specimens from the pancreas were processed for light, electron microscopy and pancreatic insulin mRNA expression. Blood samples were assayed for the levels of glucose, insulin, and total peroxides. In the atRA-treated group, the number of the islets and the islet area significantly increased. Strong insulin-immunoreactive endocrine-like cells were observed nearby the pancreatic acini and the interlobular ducts. Interestingly, insulin-positive cells seemed to arise from pancreatic acinar and ductal epithelium. Ultrastructurally, ß-cells, acinar, and ductal cells restored their normal appearance. Pancreatic insulin mRNA and blood indices were almost normalized. AtRA improved the histological changes of the pancreas and the blood indices in diabetic rats.
Collapse
Affiliation(s)
- Sohair A Eltony
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Egypt
| | - Nashwa A Elmottaleb
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Egypt
| | - Asmaa M Gomaa
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Egypt
| | - Mamdouh M Anwar
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Egypt
| | - Tarek H El-Metwally
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Egypt
| |
Collapse
|
152
|
Brown HR, Castellino S, Groseclose MR, Elangbam CS, Mellon-Kusibab K, Yoon LW, Gates LD, Krull DL, Cariello NF, Arrington-Brown L, Tillman T, Fowler S, Shah V, Bailey D, Miller RT. Drug-induced Liver Fibrosis. Toxicol Pathol 2016; 44:112-31. [DOI: 10.1177/0192623315617033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nevirapine (NVP) is associated with hepatotoxicity in 1–5% of patients. In rodent studies, NVP has been shown to cause hepatic enzyme induction, centrilobular hypertrophy, and skin rash in various rat strains but not liver toxicity. In an effort to understand whether NVP is metabolized differently in a transiently inflamed liver and whether a heightened immune response alters NVP-induced hepatic responses, female brown Norway rats were dosed with either vehicle or NVP alone (75 mg/kg/day for 15 days) or galactosamine alone (single intraperitoneal [ip] injection on day 7 to mimic viral hepatitis) or a combination of NVP (75/100/150 mg/kg/day for 15 days) and galactosamine (single 750 mg/kg ip on day 7). Livers were collected at necropsy for histopathology, matrix-assisted laser desorption/ionization imaging mass spectrometry and gene expression. Eight days after galactosamine, hepatic fibrosis was noted in rats dosed with the combination of NVP and galactosamine. No fibrosis occurred with NVP alone or galactosamine alone. Gene expression data suggested a viral-like response initiated by galactosamine via RNA sensors leading to apoptosis, toll-like receptor, and dendritic cell responses. These were exacerbated by NVP-induced growth factor, retinol, apoptosis, and periostin effects. This finding supports clinical reports warning against exacerbation of fibrosis by NVP in patients with hepatitis C.
Collapse
Affiliation(s)
- H. Roger Brown
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Stephen Castellino
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - M. Reid Groseclose
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Chandikumar S. Elangbam
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Kathryn Mellon-Kusibab
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Lawrence W. Yoon
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Lisa D. Gates
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - David L. Krull
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Neal F. Cariello
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Leigh Arrington-Brown
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Tony Tillman
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Serita Fowler
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Vishal Shah
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - David Bailey
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Richard T. Miller
- Department of Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| |
Collapse
|
153
|
Mansouri E, Hardani A, Afzalzadeh MR, Amir zargar A, Meamar Z. Combined Effects of Retinoic Acid and Hydro-Alcoholic Extract of Rosa Damascena Mill on Wound in Diabetic Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2016; 15:583-9. [PMID: 27642329 PMCID: PMC5018286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Retinoic acid and Rosa damascena are compounds that have considerable effects in the cellular proliferation and synthesis of extracellular matrix. The present study was designed to assess the combined effects of retinoic acid and Rosa damascena mill on wound in diabetic rats. Seventy-two rats were used in this study. Diabetes was induced by a single intraperitoneal injection of streptozotocin (60 mg. Kg(-1)). Then, a full thickness wound was created on dorsal surface of all animals. After that, rats were divided, into three groups; control (normal saline), positive control (Phenytoin), and case (combined of 0.1% Tretinoein lotion and hydro-alcoholic extract of Rosa damascena mill). Afterward, wounds were evaluated macroscopically and microscopically on days 5, 10 and 15. Macroscopic and microscopic evaluations showed a significant improvement (p<0.05) of wounds in case group on 5(th) and 10(th) days when compared to positive control and control groups. The combination of Retinoic acid and hydro-alcholic extract of Rosa damascena mill can accelerate wound healing in diabetic rats.
Collapse
Affiliation(s)
- Esrafil Mansouri
- Department of Anatomical Sciences, Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Iran.
| | - Ameneh Hardani
- Department of Public Health, Faculty of Hygiene Sciences, Ahvaz Jundishapur University of Medical Sciences, Iran.
| | - Mohamad Reza Afzalzadeh
- Department of Physiology, Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, Iran.
| | - Ashraf Amir zargar
- Department of Physiology and Diabetes Research Center, Faculty of Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Iran.
| | - Zakiaeh Meamar
- Department of Engineering Environmental Health, Faculty of Hygiene Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,
| |
Collapse
|
154
|
Agrimson KS, Hogarth CA. Germ Cell Commitment to Oogenic Versus Spermatogenic Pathway: The Role of Retinoic Acid. Results Probl Cell Differ 2016; 58:135-166. [PMID: 27300178 DOI: 10.1007/978-3-319-31973-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The core of the decision to commit to either oogenesis or spermatogenesis lies in the timing of meiotic entry. Primordial germ cells within the fetal ovary become committed to the female pathway prior to birth and enter meiosis during embryonic development. In the fetal testis, however, the germ cells are protected from this signal before birth and instead receive this trigger postnatally. There is a growing body of evidence to indicate that RA is the meiosis-inducing factor in both sexes, with the gender-specific timing of meiotic entry controlled via degradation of this molecule only within the fetal testis. This chapter will review our current understanding of how RA controls germ cell fate in both the embryonic ovary and postnatal testis, highlighting the key studies that have led to the hypothesis that RA can drive the commitment to meiosis in both sexes and discussing the current debate over whether RA truly is the meiosis-inducing factor in the fetal ovary.
Collapse
Affiliation(s)
- Kellie S Agrimson
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
- The Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Cathryn A Hogarth
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA.
- The Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
155
|
Abstract
Retinoic acid (RA) was identified as the biologically active form of vitamin A almost 70 years ago and work on its function and mechanism of action is still of major interest both from a scientific and a clinical perspective. The currently accepted model postulates that RA is produced in two sequential oxidative steps: first, retinol is oxidized reversibly to retinaldehyde, and then retinaldehyde is oxidized irreversibly to RA. Excess RA is inactivated by conversion to hydroxylated derivatives. Much is left to learn, especially about retinoid binding proteins and the trafficking of the hydrophobic retinoid substrates between membrane bound and cytosolic enzymes. Here, background on development of the field and an update on recent advances in our understanding of the enzymatic pathways and mechanisms that control the rate of RA production and degradation are presented with a focus on the many questions that remain unanswered.
Collapse
|
156
|
Abstract
Visual systems detect light by monitoring the effect of photoisomerization of a chromophore on the release of a neurotransmitter from sensory neurons, known as rod and cone photoreceptor cells in vertebrate retina. In all known visual systems, the chromophore is 11-cis-retinal complexed with a protein, called opsin, and photoisomerization produces all-trans-retinal. In mammals, regeneration of 11-cis-retinal following photoisomerization occurs by a thermally driven isomerization reaction. Additional reactions are required during regeneration to protect cells from the toxicity of aldehyde forms of vitamin A that are essential to the visual process. Photochemical and phototransduction reactions in rods and cones are identical; however, reactions of the rod and cone visual pigment regeneration cycles differ, and perplexingly, rod and cone regeneration cycles appear to use different mechanisms to overcome the energy barrier involved in converting all-trans- to 11-cis-retinoid. Abnormal processing of all-trans-retinal in the rod regeneration cycle leads to retinal degeneration, suggesting that excessive amounts of the retinoid itself or its derivatives are toxic. This line of reasoning led to the development of various approaches to modifying the activity of the rod visual cycle as a possible therapeutic approach to delay or prevent retinal degeneration in inherited retinal diseases and perhaps in the dry form of macular degeneration (geographic atrophy). In spite of great progress in understanding the functioning of rod and cone regeneration cycles at a molecular level, resolution of a number of remaining puzzling issues will offer insight into the amelioration of several blinding retinal diseases.
Collapse
|
157
|
Chen H, Babino D, Schoenbichler SA, Arkhipova V, Töchterle S, Martin F, Huck CW, von Lintig J, Meyer D. Nmnat1-Rbp7 Is a Conserved Fusion-Protein That Combines NAD+ Catalysis of Nmnat1 with Subcellular Localization of Rbp7. PLoS One 2015; 10:e0143825. [PMID: 26618989 PMCID: PMC4664474 DOI: 10.1371/journal.pone.0143825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/10/2015] [Indexed: 01/08/2023] Open
Abstract
Retinol binding proteins (Rbps) are known as carriers for transport and targeting of retinoids to their metabolizing enzymes. Rbps are also reported to function in regulating the homeostatic balance of retinoid metabolism, as their level of retinoid occupancy impacts the activities of retinoid metabolizing enzymes. Here we used zebrafish as a model to study rbp7a function and regulation. We find that early embryonic rbp7a expression is negatively regulated by the Nodal/FoxH1-signaling pathway and we show that Nodal/FoxH1 activity has the opposite effect on aldh1a2, which encodes the major enzyme for early embryonic retinoic acid production. The data are consistent with a Nodal-dependent coordination of the allocation of retinoid precursors to processing enzymes with the catalysis of retinoic acid formation. Further, we describe a novel nmnat1-rbp7 transcript encoding a fusion of Rbp7 and the NAD+ (Nicotinamide adenine dinucleotide) synthesizing enzyme Nmnat1. We show that nmnat1-rbp7 is conserved in fish, mouse and chicken, and that in zebrafish regulation of nmnat1-rbp7a is distinct from that of rbp7a and nmnat1. Injection experiments in zebrafish further revealed that Nmnat1-Rbp7a and Nmnat1 have similar NAD+ catalyzing activities but a different subcellular localization. HPLC measurements and protein localization analysis highlight Nmnat1-Rbp7a as the only known cytoplasmic and presumably endoplasmic reticulum (ER) specific NAD+ catalyzing enzyme. These studies, taken together with previously documented NAD+ dependent interaction of RBPs with ER-associated enzymes of retinal catalysis, implicate functions of this newly described NMNAT1-Rbp7 fusion protein in retinol oxidation.
Collapse
Affiliation(s)
- Hao Chen
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Darwin Babino
- School of Medicine, Department of Pharmacology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio, 44106, United States of America
| | - Stefan A. Schoenbichler
- Institute of Analytical Chemistry and Radiochemistry/ CCB–Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80–82, 6020, Innsbruck, Austria
| | - Valeryia Arkhipova
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Sonja Töchterle
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Fabian Martin
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry/ CCB–Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80–82, 6020, Innsbruck, Austria
| | - Johannes von Lintig
- School of Medicine, Department of Pharmacology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio, 44106, United States of America
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
158
|
Vitamin A Impairs the Reprogramming of Tregs into IL-17-Producing Cells during Intestinal Inflammation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:137893. [PMID: 26583087 PMCID: PMC4637025 DOI: 10.1155/2015/137893] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/11/2015] [Indexed: 12/21/2022]
Abstract
Maintaining the identity of Foxp3+ regulatory T cells (Tregs) is critical for controlling immune responses in the gut, where an imbalance between Tregs and T effector cells has been linked to inflammatory bowel disease. Accumulating evidence suggests that Tregs can convert into Th17 cells and acquire an inflammatory phenotype. In this study, we used an adoptive transfer model of Ag-specific T cells to study the contribution of different factors to the reprogramming of in vitro-generated Treg cells (iTreg) into IL-17-producing cells in a mouse model of gut inflammation in vivo. Our results show that intestinal inflammation induces the reprogramming of iTreg cells into IL-17-producing cells and that vitamin A restrains reprogramming in the gut. We also demonstrate that the presence of IL-2 during the in vitro generation of iTreg cells confers resistance to Th17 conversion but that IL-2 and retinoic acid (RA) cooperate to maintain Foxp3 expression following stimulation under Th17-polarizing conditions. Additionally, although IL-2 and RA differentially regulate the expression of different Treg cell suppressive markers, Treg cells generated under different polarizing conditions present similar suppressive capacity.
Collapse
|
159
|
Everts HB, Suo L, Ghim S, Bennett Jenson A, Sundberg JP. Retinoic acid metabolism proteins are altered in trichoblastomas induced by mouse papillomavirus 1. Exp Mol Pathol 2015; 99:546-51. [PMID: 26416148 DOI: 10.1016/j.yexmp.2015.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022]
Abstract
Skin cancer burden is significant as treatment costs have skyrocketed to $8.1 million annually and some forms metastasize, such as cutaneous squamous cell carcinoma (cSCC) and melanoma. cSCC is caused by altered growth factor signaling induced by chemical carcinogens, ultraviolet light (UV) exposure, and infections with papillomaviruses (PVs). One of the few options for preventing cSCC in high-risk patients is oral retinoids. While much is understood about retinoid treatments and metabolism in mouse models of chemically and UV exposure induced cSCC, little is known about the role of retinoids in PV-induced cSCC. To better understand how retinoid metabolism is altered in cSCC, we examined the expression of this pathway in the newly discovered mouse papillomavirus (MmuPV1), which produces trichoblastomas in dorsal skin but not cSCC. We found significant increases in a rate-limiting enzyme involved in retinoic acid synthesis and retinoic acid binding proteins, suggestive of increased RA synthesis, in MmuPV1-induced tumors in B6.Cg-Foxn1(nu)/J mice. Similar increases in these proteins were seen after acute UVB exposure in Crl:SKH1-Hr(hr) mice and in regressing pre-cancerous lesions in a chemically-induced mouse model, suggesting a common mechanism in limiting the progression of papillomas to full blown cSCC.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Human Sciences (Nutrition), The Ohio State University, Columbus, OH, United States.
| | - Liye Suo
- Department of Human Sciences (Nutrition), The Ohio State University, Columbus, OH, United States
| | - Shinge Ghim
- The James Graham Brown Cancer Center, The University of Louisville, Louisville, KY, United States
| | - A Bennett Jenson
- The James Graham Brown Cancer Center, The University of Louisville, Louisville, KY, United States
| | | |
Collapse
|
160
|
Expression of the retinoic acid catabolic enzyme CYP26B1 in the human brain to maintain signaling homeostasis. Brain Struct Funct 2015; 221:3315-26. [PMID: 26374207 PMCID: PMC4920859 DOI: 10.1007/s00429-015-1102-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/27/2015] [Indexed: 11/29/2022]
Abstract
Retinoic acid (RA) is a potent regulator of gene transcription via its activation of a set of nuclear receptors controlling transcriptional activation. Precise maintenance of where and when RA is generated is essential and achieved by local expression of synthetic and catabolic enzymes. The catabolic enzymes Cyp26a1 and Cyp26b1 have been studied in detail in the embryo, where they limit gradients of RA that form patterns of gene expression, crucial for morphogenesis. This paracrine role of RA has been assumed to occur in most tissues and that the RA synthetic enzymes release RA at a site distant from the catabolic enzymes. In contrast to the embryonic CNS, relatively little is known about RA metabolism in the adult brain. This study investigated the distribution of Cyp26a1 and Cyp26b1 transcripts in the rat brain, identifying several novel regions of expression, including the cerebral cortex for both enzymes and striatum for Cyp26b1. In vivo use of a new and potent inhibitor of the Cyp26 enzymes, ser 2–7, demonstrated a function for endogenous Cyp26 in the brain and that hippocampal RA levels can be raised by ser 2–7, altering the effect of RA on differential patterning of cell proliferation in the hippocampal region of neurogenesis, the subgranular zone. The expression of CYP26A1 and CYP26B1 was also investigated in the adult human brain and colocalization of CYP26A1 and the RA synthetic enzyme RALDH2 indicated a different, autocrine role for RA in human hippocampal neurons. Studies with the SH-SY5Y human neuroblastoma cell line implied that the co-expression of RA synthetic and catabolic enzymes maintains retinoid homeostasis within neurons. This presents a novel view of RA in human neurons as part of an autocrine, intracellular signaling system.
Collapse
|
161
|
Whitmore LS, Ye P. Dissecting Germ Cell Metabolism through Network Modeling. PLoS One 2015; 10:e0137607. [PMID: 26367011 PMCID: PMC4721539 DOI: 10.1371/journal.pone.0137607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/20/2015] [Indexed: 11/18/2022] Open
Abstract
Metabolic pathways are increasingly postulated to be vital in programming cell fate, including stemness, differentiation, proliferation, and apoptosis. The commitment to meiosis is a critical fate decision for mammalian germ cells, and requires a metabolic derivative of vitamin A, retinoic acid (RA). Recent evidence showed that a pulse of RA is generated in the testis of male mice thereby triggering meiotic commitment. However, enzymes and reactions that regulate this RA pulse have yet to be identified. We developed a mouse germ cell-specific metabolic network with a curated vitamin A pathway. Using this network, we implemented flux balance analysis throughout the initial wave of spermatogenesis to elucidate important reactions and enzymes for the generation and degradation of RA. Our results indicate that primary RA sources in the germ cell include RA import from the extracellular region, release of RA from binding proteins, and metabolism of retinal to RA. Further, in silico knockouts of genes and reactions in the vitamin A pathway predict that deletion of Lipe, hormone-sensitive lipase, disrupts the RA pulse thereby causing spermatogenic defects. Examination of other metabolic pathways reveals that the citric acid cycle is the most active pathway. In addition, we discover that fatty acid synthesis/oxidation are the primary energy sources in the germ cell. In summary, this study predicts enzymes, reactions, and pathways important for germ cell commitment to meiosis. These findings enhance our understanding of the metabolic control of germ cell differentiation and will help guide future experiments to improve reproductive health.
Collapse
Affiliation(s)
- Leanne S. Whitmore
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, Washington, 99164, United States of America
| | - Ping Ye
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, Washington, 99164, United States of America
- Department of Molecular and Experimental Medicine, Avera Cancer Institute, 1000 E 23rd Street, Sioux Falls, South Dakota, 57105, United States of America
- * E-mail:
| |
Collapse
|
162
|
Castillo Y, Tachibana M, Nakatsu Y, Watanabe K, Shimizu T, Watarai M. Combination of Zinc and All-Trans Retinoic Acid Promotes Protection against Listeria monocytogenes Infection. PLoS One 2015; 10:e0137463. [PMID: 26351852 PMCID: PMC4564104 DOI: 10.1371/journal.pone.0137463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 11/29/2022] Open
Abstract
Zinc (Zn) is the second most abundant transition metal after iron. It plays a vital role in living organisms and affects multiple aspects of the immune system. All-trans retinoic acid (atRA) is an isomeric form of the vitamin A or retinol. It possesses the greatest biological activity of Vitamin A. Vitamin A and related retinoids influence many aspects of immunity. In this study, we demonstrated that treatment with a combination of Zn and atRA contributes to host resistance against infection by Listeria monocytogenes. Pretreatment with Zn and atRA enhanced resistance against L. monocytogenes infection in mice and treatment with both Zn and atRA showed a higher protective effect than treatment with either alone. Supplementation with Zn, atRA or their combination decreased the number of L. monocytogenes present in target organs. In vitro, supplementation increased the bacterial uptake by macrophage cells and reduced the replication of L. monocytogenes. Our results suggest that the combination of Zn and atRA has a great bacteriostatic impact on L. monocytogenes and its infection.
Collapse
Affiliation(s)
- Yussaira Castillo
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Masato Tachibana
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Yukiko Nakatsu
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Takashi Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Masahisa Watarai
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
- * E-mail:
| |
Collapse
|
163
|
The use of gene arrays and corresponding connectivity mapping (Cmap) to identify novel anti-ageing ingredients. Int J Cosmet Sci 2015; 37 Suppl 1:9-14. [DOI: 10.1111/ics.12251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/05/2015] [Indexed: 01/10/2023]
|
164
|
Kelly M, von Lintig J. STRA6: role in cellular retinol uptake and efflux. Hepatobiliary Surg Nutr 2015; 4:229-42. [PMID: 26312242 DOI: 10.3978/j.issn.2304-3881.2015.01.12] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/13/2015] [Indexed: 12/11/2022]
Abstract
Distribution of vitamin A throughout the body is important to maintain retinoid function in peripheral tissues and to ensure optimal vision. A critical step of this process is the transport of vitamin A across cell membranes. Increasing evidence indicates that this process is mediated by a multidomian membrane protein that is encoded by the stimulated by retinoic acid 6 (STRA6) gene. Biochemical studies revealed that STRA6 is a transmembrane pore which transports vitamin A bidirectionally between extra- and intracellular retinoid binding proteins. Vitamin A accumulation in cells is driven by coupling of transport with vitamin A esterification. Loss-of-function studies in zebrafish and mouse models have unraveled the critical importance of STRA6 for vitamin A homeostasis of peripheral tissues. Impairment in vitamin A transport and uptake homeostasis are associated with diseases including type 2 diabetes and a microphthalmic syndrome known as Matthew Wood Syndrome. This review will discuss the advanced state of knowledge about STRA6's biochemistry, biology and association with disease.
Collapse
Affiliation(s)
- Mary Kelly
- Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
165
|
Hu L, Chen HY, Han T, Yang GZ, Feng D, Qi CY, Gong H, Zhai YX, Cai QP, Gao CF. Downregulation of DHRS9 expression in colorectal cancer tissues and its prognostic significance. Tumour Biol 2015; 37:837-45. [PMID: 26254099 PMCID: PMC4841860 DOI: 10.1007/s13277-015-3880-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/30/2015] [Indexed: 12/03/2022] Open
Abstract
Dehydrogenase/reductase (SDR family) member 9 (DHRS9) is aberrantly expressed in colorectal cancer (CRC), but its prognostic value is unknown. The aim of the work was to investigate the prognostic significance of DHRS9 expression in CRC. We found that DHRS9 was frequently downregulated in CRC clinical samples at both the messenger RNA (mRNA) and protein levels. Decreased expression of DHRS9 was significantly correlated with increased lymph node metastasis (p = 0.032), advanced tumor–node–metastasis (TNM) stage (p = 0.021), increased disease recurrence (p = 0.001), and death (p = 0.014). Kaplan–Meier analysis indicated that low DHRS9 expression predicted poor disease-free survival (p = 0.003) and disease-specific survival (p = 0.021). Cox multivariate analysis revealed that reduced expression of DHRS9 was an independent unfavorable prognostic indicator for CRC. Furthermore, combination of DHRS9 with TNM stage was a more powerful predictor of poor prognosis than either of the two parameters alone. Our results suggest that decreased expression of DHRS9 correlates with tumor progression and may serve as a potential prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Liang Hu
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China.
| | - Hai-Yang Chen
- Department of Oncology, 150th Hospital of PLA, Luoyang, China
| | - Tao Han
- Department of Oncology, Cancer Center of People's Liberation Army, General Hospital of Shenyang Military Region, Shenyang, China
| | - Guang-Zhen Yang
- Department of Clinical Laboratory, 150th Hospital of PLA, Luoyang, China
| | - Dan Feng
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chen-Ye Qi
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China
| | - Hui Gong
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China
| | - Yan-Xia Zhai
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China
| | - Qing-Ping Cai
- Department of Gastrointestine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Chun-Fang Gao
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China.
| |
Collapse
|
166
|
Abstract
Vitamin A (retinol) and its congeners - the retinoids - participate in a panoply of biological events, as for instance cell differentiation, proliferation, survival, and death, necessary to maintain tissue homeostasis. Furthermore, such molecules may be applied as therapeutic agents in the case of some diseases, including dermatological disturbances, immunodeficiency, and cancer (mainly leukemia). In spite of this, there is a growing body of evidences showing that vitamin A doses exceeding the nutritional requirements may lead to negative consequences, including bioenergetics state dysfunction, redox impairment, altered cellular signaling, and cell death or proliferation, depending on the cell type. Neurotoxicity has long been demonstrated as a possible side effect of inadvertent consumption, or even under medical recommendation of vitamin A and retinoids at moderate to high doses. However, the exact mechanism by which such molecules exert a neurotoxic role is not clear yet. In this review, recent data are discussed regarding the molecular findings associated with the vitamin A-related neurotoxicity.
Collapse
|
167
|
Taylor RN, Kane MA, Sidell N. Pathogenesis of Endometriosis: Roles of Retinoids and Inflammatory Pathways. Semin Reprod Med 2015; 33:246-56. [PMID: 26132929 DOI: 10.1055/s-0035-1554920] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endometriosis is a nonmalignant, but potentially metastatic, gynecological condition manifested by the extrauterine growth of inflammatory endometrial implants. Ten percent of reproductive-age women are affected and commonly suffer pelvic pain and/or infertility. The theories of endometriosis histogenesis remain controversial, but retrograde menstruation and metaplasia each infer mechanisms that explain the immune cell responses observed around the ectopic lesions. Recent findings from our laboratories and others suggest that retinoic acid metabolism and action are fundamentally flawed in endometriotic tissues and even generically in women with endometriosis. The focus of our ongoing research is to develop medical therapies as adjuvants or alternatives to the surgical excision of these lesions. On the basis of concepts put forward in this review, we predict that the pharmacological actions and anticipated low side-effect profiles of retinoid supplementation might provide a new treatment option for the long-term management of this chronic and debilitating gynecological disease.
Collapse
Affiliation(s)
- Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Neil Sidell
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
168
|
Hogarth CA, Evans E, Onken J, Kent T, Mitchell D, Petkovich M, Griswold MD. CYP26 Enzymes Are Necessary Within the Postnatal Seminiferous Epithelium for Normal Murine Spermatogenesis. Biol Reprod 2015; 93:19. [PMID: 26040672 DOI: 10.1095/biolreprod.115.129718] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
The active metabolite of vitamin A, retinoic acid (RA), is known to be essential for spermatogenesis. Changes to RA levels within the seminiferous epithelium can alter the development of male germ cells, including blocking their differentiation completely. Excess RA has been shown to cause germ cell death in both neonatal and adult animals, yet the cells capable of degrading RA within the testis have yet to be investigated. One previous study alluded to a requirement for one of the RA degrading enzymes, CYP26B1, in Sertoli cells but no data exist to determine whether germ cells possess the ability to degrade RA. To bridge this gap, the roles of CYP26A1 and CYP26B1 within the seminiferous epithelium were investigated by creating single and dual conditional knockouts of these enzymes in either Sertoli or germ cells. Analysis of these knockout models revealed that deletion of both Cyp26a1 and Cyp26b1 in either cell type resulted in increased vacuolization within the seminiferous tubules, delayed spermatid release, and an increase in the number of STRA8-positive spermatogonia, but spermatozoa were still produced and the animals were found to be fertile. However, elimination of CYP26B1 activity within both germ and Sertoli cells resulted in severe male subfertility, with a loss of advanced germ cells from the seminiferous epithelium. These data indicate that CYP26 activity within either Sertoli or germ cells is essential for the normal progression of spermatogenesis and that its loss can result in reduced male fertility.
Collapse
Affiliation(s)
- Cathryn A Hogarth
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Elizabeth Evans
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Jennifer Onken
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Travis Kent
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Debra Mitchell
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Martin Petkovich
- Cancer Research Institute, Queen's University, Kingston Ontario, Canada
| | - Michael D Griswold
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| |
Collapse
|
169
|
Wang J, Yoo HS, Obrochta KM, Huang P, Napoli JL. Quantitation of retinaldehyde in small biological samples using ultrahigh-performance liquid chromatography tandem mass spectrometry. Anal Biochem 2015; 484:162-8. [PMID: 26045160 DOI: 10.1016/j.ab.2015.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/26/2015] [Indexed: 12/24/2022]
Abstract
We report an ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method to quantify all-trans-retinal in biological samples of limited size (15-35mg), which is especially advantageous for use with adipose. To facilitate recovery, retinal and the internal standard 3,4-didehydroretinal were derivatized in situ into their O-ethyloximes. UHPLC resolution combined with high sensitivity and specificity of MS/MS allowed quantification of retinal-O-ethyloximes with a 5-fmol lower limit of detection and a linear range from 5fmol to 1pmol. This assay revealed that extraocular concentrations of retinal range from approximately 2 to 40pmol/g in multiple tissues-the same range as all-trans-retinoic acid. All-trans-retinoic acid has high affinity (kd⩽0.4nM) for its nuclear receptors (RARα, -β, and -γ), whereas retinal has low (if any) affinity for these receptors, making it unlikely that these retinal concentrations would activate RAR. We also show that the copious amount of vitamin A used in chow diets increases retinal in adipose depots 2- to 5-fold relative to levels in adipose of mice fed a vitamin A-sufficient diet, as recommended for laboratory rodents. This assay also is proficient for quantifying conversion of retinol into retinal in vitro and, therefore, provides an efficient method to study metabolism of retinol in vivo and in vitro.
Collapse
Affiliation(s)
- Jinshan Wang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hong Sik Yoo
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kristin M Obrochta
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Priscilla Huang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph L Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
170
|
Role of Retinoic Acid-Metabolizing Cytochrome P450s, CYP26, in Inflammation and Cancer. ADVANCES IN PHARMACOLOGY 2015; 74:373-412. [PMID: 26233912 DOI: 10.1016/bs.apha.2015.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vitamin A (retinol) and its active metabolite, all-trans-retinoic acid (atRA), play critical roles in regulating the differentiation, growth, and migration of immune cells. Similarly, as critical signaling molecules in the regulation of the cell cycle, retinoids are important in cancers. Concentrations of atRA are tightly regulated in tissues, predominantly by the availability of retinol, synthesis of atRA by ALDH1A enzymes and metabolism and clearance of atRA by CYP26 enzymes. The ALDH1A and CYP26 enzymes are expressed in several cell types in the immune system and in cancer cells. In the immune system, the ALDH1A and CYP26 enzymes appear to modulate RA concentrations. Consequently, alterations in the activity of ALDH1A and CYP26 enzymes are expected to change disease outcomes in inflammation. There is increasing evidence from various disease models of intestinal and skin inflammation that treatment with atRA has a positive effect on disease markers. However, whether aberrant atRA concentrations or atRA synthesis and metabolism play a role in inflammatory disease development and progression is not well understood. In cancers, especially in acute promyelocytic leukemia and neuroblastoma, increasing intracellular concentrations of atRA appears to provide clinical benefit. Inhibition of the CYP26 enzymes to increase atRA concentrations and combat therapy resistance has been pursued as a drug target in these cancers. This chapter covers the current knowledge of how atRA and retinol regulate the immune system and inflammation, how retinol and atRA metabolism is altered in inflammation and cancer, and what roles atRA-metabolizing enzymes have in immune responses and cancers.
Collapse
|
171
|
The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development. Exp Eye Res 2015; 133:100-11. [PMID: 25819458 DOI: 10.1016/j.exer.2014.07.015] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023]
Abstract
Myopia is a common ocular condition, characterized by excessive elongation of the ocular globe. The prevalence of myopia continues to increase, particularly among highly educated groups, now exceeding 80% in some groups. In parallel with the increased prevalence of myopia, are increases in associated blinding ocular conditions including glaucoma, retinal detachment and macular degeneration, making myopia a significant global health concern. The elongation of the eye is closely related to the biomechanical properties of the sclera, which in turn are largely dependent on the composition of the scleral extracellular matrix. Therefore an understanding of the cellular and extracellular events involved in the regulation of scleral growth and remodeling during childhood and young adulthood will provide future avenues for the treatment of myopia and its associated ocular complications.
Collapse
|
172
|
Vitamin A and Retinoids as Mitochondrial Toxicants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:140267. [PMID: 26078802 PMCID: PMC4452429 DOI: 10.1155/2015/140267] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/30/2015] [Indexed: 12/14/2022]
Abstract
Vitamin A and its derivatives, the retinoids, are micronutrient necessary for the human diet in order to maintain several cellular functions from human development to adulthood and also through aging. Furthermore, vitamin A and retinoids are utilized pharmacologically in the treatment of some diseases, as, for instance, dermatological disturbances and some types of cancer. In spite of being an essential micronutrient with clinical application, vitamin A exerts several toxic effects regarding redox environment and mitochondrial function. Moreover, decreased life quality and increased mortality rates among vitamin A supplements users have been reported. However, the exact mechanism by which vitamin A elicits its deleterious effects is not clear yet. In this review, the role of mitochondrial dysfunction in the mechanism of vitamin A-induced toxicity is discussed.
Collapse
|
173
|
Zolfaghari R, Ross AC. Hepatocyte nuclear factor 4α (HNF4α) in coordination with retinoic acid receptors increases all-trans-retinoic acid-dependent CYP26A1 gene expression in HepG2 human hepatocytes. J Cell Biochem 2015; 115:1740-51. [PMID: 24819304 DOI: 10.1002/jcb.24839] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/11/2014] [Accepted: 05/08/2014] [Indexed: 12/17/2022]
Abstract
CYP26A1 expression is very highly induced by retinoic acid (RA) in the liver, compared to most other tissues, suggesting that a liver-enriched factor may be required for its physiological transcriptional response. HNF4α is a highly conserved liver-specific/enriched member of nuclear receptor superfamily. In this study, we hypothesized that HNF4α and RARs may cooperate in an RA-dependent manner to induce a high level of CYP26A1 expression in liver cells. Partial inhibition of endogenous HNF4α by siRNA reduced the level of RA-induced CYP26A1 mRNA in HepG2 cells. Cotransfection of HNF4α, with or without RARs, demonstrated RA-dependent activation of a human CYP26A1 promoter-luciferase construct. Analysis of a 2.5-kbp putative CYP26A1 promoter sequence identified five potential HNF4α DNA response elements: H1 located in a proximal region overlapping with an RAR element-1 (RARE1 or R1); H2 and H3 in the distal region, close to RARE2 (R2) and RARE3 (R3); and H4 and H5 in intermediary regions. In EMSA and ChIP analyses HNF4α and RARs binding in the proximal and distal CYP26A1 promoter regions was significantly higher in RA-treated cells. Mutational analysis of the individual HNF4α DNA-response elements identified H1 as the major site for HNF4α binding because mutation of H1 inhibited the promoter activity by ~90%, followed by H2 mutation with less than 40% inhibition. Our results indicate that HNF4α coordinates with RARs in an RA-dependent manner to strongly induce CYP26A1 gene expression in the liver, which may explain the high level of response to RA observed in vivo.
Collapse
Affiliation(s)
- Reza Zolfaghari
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | | |
Collapse
|
174
|
Horschitz S, Matthäus F, Groß A, Rosner J, Galach M, Greffrath W, Treede RD, Utikal J, Schloss P, Meyer-Lindenberg A. Impact of preconditioning with retinoic acid during early development on morphological and functional characteristics of human induced pluripotent stem cell-derived neurons. Stem Cell Res 2015; 15:30-41. [PMID: 26001168 DOI: 10.1016/j.scr.2015.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/21/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are a suitable tool to study basic molecular and cellular mechanisms of neurodevelopment. The directed differentiation of hiPSCs via the generation of a self-renewable neuronal precursor cell line allows the standardization of defined differentiation protocols. Here, we have investigated whether preconditioning with retinoic acid during early neural induction impacts on morphological and functional characteristics of the neuronal culture after terminal differentiation. For this purpose we have analyzed neuronal and glial cell markers, neuronal outgrowth, soma size, depolarization-induced distal shifts of the axon initial segment as well as glutamate-evoked calcium influx. Retinoic acid preconditioning led to a higher yield of neurons vs. glia cells and longer axons than unconditioned controls. In contrast, glutamatergic activation and depolarization induced structural plasticity were unchanged. Our results show that the treatment of neuroectodermal cells with retinoic acid during early development, i.e. during the neurulation phase, increases the yield of neuronal phenotypes, but does not impact on the functionality of terminally differentiated neuronal cells.
Collapse
Affiliation(s)
- Sandra Horschitz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany
| | - Friederike Matthäus
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany
| | - Anja Groß
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany
| | - Jan Rosner
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany; Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Marta Galach
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Wolfgang Greffrath
- Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Patrick Schloss
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany
| |
Collapse
|
175
|
Campos B, Weisang S, Osswald F, Ali R, Sedlmeier G, Bageritz J, Mallm JP, Hartmann C, von Deimling A, Popanda O, Goidts V, Plass C, Unterberg A, Schmezer P, Burhenne J, Herold-Mende C. Retinoid resistance and multifaceted impairment of retinoic acid synthesis in glioblastoma. Glia 2015; 63:1850-9. [PMID: 25944104 DOI: 10.1002/glia.22849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 04/13/2015] [Indexed: 01/06/2023]
Abstract
Measuring concentrations of the differentiation-promoting hormone retinoic acid (RA) in glioblastoma tissues would help to understand the reason why RA treatment has been inefficient in clinical trials involving brain tumor patients. Here, we apply a recently established extraction and measurement protocol to screen glioblastoma tissues for the levels of the RA precursor retinol and biologically active RA. Combining this approach with mRNA analyses of 26 tumors and 8 normal brains, we identify a multifaceted disturbance of RA synthesis in glioblastoma, involving multiple aldehyde dehydrogenase 1 family and retinol dehydrogenase enzymes. Through database studies and methylation analyses, we narrow down chromosomal deletions and aberrant promoter hypermethylation as potential mechanisms accounting for these alterations. Employing chromatin immunoprecipitation analyses and cell-culture studies, we further show that chromatin at RA target genes is poised to RA substitution, but most glioblastoma cell cultures are completely resistant to RA treatment. This paradoxical RA response is unrelated to alternative RA signaling through the fatty acid-binding protein 5/peroxisome proliferator-activated receptor delta axis. Our data suggest a multifaceted disturbance of RA synthesis in glioblastoma and contribute to reconsider current RA treatment strategies.
Collapse
Affiliation(s)
- Benito Campos
- Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Sarah Weisang
- Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Florian Osswald
- Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Ramadan Ali
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Georg Sedlmeier
- Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Josephine Bageritz
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Jan-Philipp Mallm
- Research Group Genome Organization and Function, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Interdisciplinary Research Group Genome Organization and Function, BioQuant, Heidelberg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany.,Department of Neuropathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Center, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Center, Heidelberg, Germany
| | - Odillia Popanda
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Violaine Goidts
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Unterberg
- Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Peter Schmezer
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Christel Herold-Mende
- Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
176
|
Brown CC, Noelle RJ. Seeing through the dark: New insights into the immune regulatory functions of vitamin A. Eur J Immunol 2015; 45:1287-95. [PMID: 25808452 PMCID: PMC4426035 DOI: 10.1002/eji.201344398] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/08/2014] [Accepted: 03/20/2015] [Indexed: 12/20/2022]
Abstract
The importance of vitamin A for host defense is undeniable and the study of its mechanisms is paramount. Of the estimated 250 million preschool children who are vitamin A-deficient (VAD), 10% will die from their increased susceptibility to infectious disease. Vitamin A supplementation was established in the 1980s as one of the most successful interventions in the developing world. Understanding how vitamin A controls immunity will help curb the mortality and morbidity associated with vitamin A deficiency and exploit the immune-enhancing capacity of vitamin A to heighten host resistance to infectious disease. The discoveries that retinoic acid (RA) imprints the homing of leukocytes to the gut and enhances the induction of regulatory T cells, highlighted a potential role for RA in mucosal tolerance. However, more recently emerging data tell of a more profound systemic impact of RA on leukocyte function and commitment. In animal models using genetic manipulation of RA signaling, we learned when and how RA controls T cell fate. Here, we review the role for RA as a critical checkpoint regulator in the differentiation of CD4(+) T cells within the immune system.
Collapse
Affiliation(s)
- Chrysothemis C Brown
- Division of Transplantation Immunology and Mucosal Biology, Kings College London, United Kingdom
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH, USA
| |
Collapse
|
177
|
Iskakova M, Karbyshev M, Piskunov A, Rochette-Egly C. Nuclear and extranuclear effects of vitamin A. Can J Physiol Pharmacol 2015; 93:1065-75. [PMID: 26459513 DOI: 10.1139/cjpp-2014-0522] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vitamin A or retinol is a multifunctional vitamin that is essential at all stages of life from embryogenesis to adulthood. Up to now, it has been accepted that the effects of vitamin A are exerted by active metabolites, the major ones being 11-cis retinal for vision, and all trans-retinoic acid (RA) for cell growth and differentiation. Basically RA binds nuclear receptors, RARs, which regulate the expression of a battery of target genes in a ligand dependent manner. During the last decade, new scenarios have been discovered, providing a rationale for the understanding of other long-noted but not explained functions of retinol. These novel scenarios involve: (i) other nuclear receptors such as PPAR β/δ, which regulate the expression of other target genes with other functions; (ii) extranuclear and nontranscriptional effects, such as the activation of kinases, which phosphorylate RARs and other transcription factors, thus expanding the list of the RA-activated genes; (iii) finally, vitamin A is active per se and can work as a cytokine that regulates gene transcription by activating STRA6. New effects of vitamin A and RA are continuously being discovered in new fields, revealing new targets and new mechanisms thus improving the understanding the pleiotropicity of their effects.
Collapse
Affiliation(s)
- Madina Iskakova
- a Division of Cell Biology and Cell Line Development, The International Biotechnology Center « Generium », Vladimirskaya Street 14, Volginsky, 601125, Russian Federation
| | - Mikhail Karbyshev
- a Division of Cell Biology and Cell Line Development, The International Biotechnology Center « Generium », Vladimirskaya Street 14, Volginsky, 601125, Russian Federation
| | - Aleksandr Piskunov
- a Division of Cell Biology and Cell Line Development, The International Biotechnology Center « Generium », Vladimirskaya Street 14, Volginsky, 601125, Russian Federation
| | - Cécile Rochette-Egly
- b Department of Functional Genomics and Cancer, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964; CNRS, UMR7104; Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| |
Collapse
|
178
|
Identification of active retinaldehyde dehydrogenase isoforms in the postnatal human eye. PLoS One 2015; 10:e0122008. [PMID: 25793304 PMCID: PMC4368790 DOI: 10.1371/journal.pone.0122008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/09/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/OBJECTIVES Retinaldehyde dehydrogenase 2 (RALDH2) has been implicated in regulating all-trans-retinoic acid (atRA) synthesis in response to visual signals in animal models of myopia. To explore the potential role of retinaldehyde dehydrogenase (RALDH) enzymes and atRA in human postnatal ocular growth, RALDH activity, along with the distribution of RALDH1, RALDH2, and RALDH3 in the postnatal eye was determined. METHODOLOGY Retina, retinal pigment epithelium (RPE), choroid, and sclera were isolated from donor human eyes. RALDH catalytic activity was measured in tissue homogenates using an in vitro atRA synthesis assay together with HPLC quantification of synthesized atRA. Homogenates were compared by western blotting for RALDH1, RALDH2, and RALDH3 protein. Immunohistochemistry was used to determine RALDH1 and RALDH2 localization in posterior fundal layers of the human eye. PRINCIPAL FINDINGS In the postnatal human eye, RALDH catalytic activity was detected in the choroid (6.84 ± 1.20 pmol/hr/ug), RPE (5.46 ± 1.18 pmol/hr/ug), and retina (4.21 ± 1.55 pmol/hr/ug), indicating the presence of active RALDH enzymes in these tissues. RALDH2 was most abundant in the choroid and RPE, in moderate abundance in the retina, and in relatively low abundance in sclera. RALDH1 was most abundant in the choroid, in moderate abundance in the sclera, and substantially reduced in the retina and RPE. RALDH3 was undetectable in human ocular fundal tissues. In the choroid, RALDH1 and RALDH2 localized to slender cells in the stroma, some of which were closely associated with blood vessels. CONCLUSIONS/SIGNIFICANCE Results of this study demonstrated that: 1) Catalytically active RALDH is present in postnatal human retina, RPE, and choroid, 2) RALDH1 and RALDH2 isoforms are present in these ocular tissues, and 3) RALDH1 and RALDH2 are relatively abundant in the choroid and/or RPE. Taken together, these results suggest that RALDH1 and 2 may play a role in the regulation of postnatal ocular growth in humans through the synthesis of atRA.
Collapse
|
179
|
Jones JW, Pierzchalski K, Yu J, Kane MA. Use of fast HPLC multiple reaction monitoring cubed for endogenous retinoic acid quantification in complex matrices. Anal Chem 2015; 87:3222-30. [PMID: 25704261 DOI: 10.1021/ac504597q] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Retinoic acid (RA), an essential active metabolite of vitamin A, controls numerous physiological processes. In addition to the analytical challenges owing to its geometric isomers, low endogenous abundance, and often localized occurrence, nonspecific interferences observed during liquid chromatography (LC) multiple reaction monitoring (MRM) quantification methods have necessitated lengthy chromatography to obtain accurate quantification free of interferences. We report the development and validation of a fast high performance liquid chromatography (HPLC) multiplexing multiple reaction monitoring cubed (MRM(3)) assay for selective and sensitive quantification of endogenous RA from complex matrices. The fast HPLC separation was achieved using an embedded amide C18 column packed with 2.7 μm fused-core particles which provided baseline resolution of endogenous RA isomers (all-trans-RA, 9-cis-RA, 13-cis-RA, and 9,13-di-cis-RA) and demonstrated significant improvements in chromatographic efficiency compared to porous particle stationary phases. Multiplexing technology further enhanced sample throughput by a factor of 2 by synchronizing parallel HPLC systems to a single mass spectrometer. The fast HPLC multiplexing MRM(3) assay demonstrated enhanced selectivity for endogenous RA quantification in complex matrices and had comparable analytical performance to robust, validated LC-MRM methodology for RA quantification. The quantification of endogenous RA using the described assay was validated on a number of mouse tissues, nonhuman primate tissues, and human plasma samples. The combined integration of fast HPLC, MRM(3), and multiplexing yields an analysis workflow for essential low-abundance endogenous metabolites that has enhanced selectivity in complex matrices and increased throughput that will be useful in efficiently interrogating the biological role of RA in larger study populations.
Collapse
Affiliation(s)
- Jace W Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N. Pine Street, Baltimore, Maryland 21201, United States
| | - Keely Pierzchalski
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N. Pine Street, Baltimore, Maryland 21201, United States
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N. Pine Street, Baltimore, Maryland 21201, United States
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N. Pine Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
180
|
Zhang M, Liu C, Hu MY, Zhang J, Xu P, Li F, Zhong ZY, Liu L, Liu XD. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats. J Pharmacol Sci 2015; 127:430-8. [PMID: 25953270 DOI: 10.1016/j.jphs.2015.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 01/26/2023] Open
Abstract
Evidence has shown that hyperlipidemia is associated with retinoid dyshomeostasis. In liver, retinol is mainly oxidized to retinal by retinol dehydrogenases (RDHs) and alcohol dehydrogenases (ADHs), further converted to retinoic acid by retinal dehydrogenases (RALDHs). The aim of this study was to investigate whether high-fat diet (HFD) induced hyperlipidemia affected activity and expression of hepatic ADHs/RDHs and RALDHs in rats. Results showed that retinol levels in liver, kidney and adipose tissue of HFD rats were significantly increased, while plasma retinol and hepatic retinal levels were markedly decreased. HFD rats exhibited significantly downregulated hepatic ADHs/RDHs activity and Adh1, Rdh10 and Dhrs9 expression. Oppositely, hepatic RALDHs activity and Raldh1 expression were upregulated in HFD rats. In HepG2 cells, treatment of HFD rat serum inhibited ADHs/RDHs activity and induced RALDHs activity. Among the tested abnormally altered components in HFD rat serum, cholesterol reduced ADHs/RDHs activity and RDH10 expression, while induced RALDHs activity and RALDH1 expression in HepG2 cells. Contrary to the effect of cholesterol, cholesterol-lowering agent pravastatin upregulated ADHs/RDHs activity and RDH10 expression, while suppressed RALDHs activity and RALDH1 expression. In conclusion, hyperlipidemia oppositely altered activity and expression of hepatic ADHs/RDHs and RALDHs, which is partially due to the elevated cholesterol levels.
Collapse
Affiliation(s)
- Mian Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Can Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Meng-yue Hu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Ji Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Ping Xu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Feng Li
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Ze-yu Zhong
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xiao-dong Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|
181
|
|
182
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
183
|
Obrochta KM, Krois CR, Campos B, Napoli JL. Insulin regulates retinol dehydrogenase expression and all-trans-retinoic acid biosynthesis through FoxO1. J Biol Chem 2015; 290:7259-68. [PMID: 25627686 DOI: 10.1074/jbc.m114.609313] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All-trans-retinoic acid (atRA), an autacoid derived from retinol (vitamin A), regulates energy balance and reduces adiposity. We show that energy status regulates atRA biosynthesis at the rate-limiting step, catalyzed by retinol dehydrogenases (RDH). Six h after re-feeding, Rdh1 expression decreased 80-90% in liver and brown adipose tissue and Rdh10 expression was decreased 45-63% in liver, pancreas, and kidney, all relative to mice fasted 16 h. atRA in the liver was decreased 44% 3 h after reduced Rdh expression. Oral gavage with glucose or injection with insulin decreased Rdh1 and Rdh10 mRNA 50% or greater in mouse liver. Removing serum from the medium of the human hepatoma cell line HepG2 increased Rdh10 and Rdh16 (human Rdh1 ortholog) mRNA expression 2-3-fold by 4 h, by increasing transcription and stabilizing mRNA. Insulin decreased Rdh10 and Rdh16 mRNA in HepG2 cells incubated in serum-free medium by inhibiting transcription and destabilizing mRNA. Insulin action required PI3K and Akt, which suppress FoxO1. Serum removal increased atRA biosynthesis 4-fold from retinol in HepG2 cells, whereas dominant-negative FoxO1 prevented the increase. Thus, energy status via insulin and FoxO1 regulate Rdh expression and atRA biosynthesis. These results reveal mechanisms for regulating atRA biosynthesis and the opposing effects of atRA and insulin on gluconeogenesis, and also suggest an interaction between atRA and insulin signaling related diseases, such as type II diabetes and cancer.
Collapse
Affiliation(s)
- Kristin M Obrochta
- From the Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, California 94720
| | - Charles R Krois
- From the Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, California 94720
| | - Benito Campos
- From the Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, California 94720
| | - Joseph L Napoli
- From the Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, California 94720
| |
Collapse
|
184
|
D'Aniello E, Waxman JS. Input overload: Contributions of retinoic acid signaling feedback mechanisms to heart development and teratogenesis. Dev Dyn 2015; 244:513-23. [PMID: 25418431 DOI: 10.1002/dvdy.24232] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 11/07/2022] Open
Abstract
Appropriate levels of retinoic acid (RA) signaling are critical for normal heart development in vertebrates. A fascinating property of RA signaling is the thoroughness by which positive and negative feedback are employed to promote proper embryonic RA levels. In the present short review, we first cover the advancement of hypotheses regarding the impact of RA signaling on cardiac specification. We then discuss our current understanding of RA signaling feedback mechanisms and the implications of recent studies, which have indicated improperly maintained RA signaling feedback can be a contributing factor to developmental malformations.
Collapse
Affiliation(s)
- Enrico D'Aniello
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | | |
Collapse
|
185
|
Hogarth CA, Arnold S, Kent T, Mitchell D, Isoherranen N, Griswold MD. Processive pulses of retinoic acid propel asynchronous and continuous murine sperm production. Biol Reprod 2014; 92:37. [PMID: 25519186 DOI: 10.1095/biolreprod.114.126326] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The asynchronous cyclic nature of spermatogenesis is essential for continual sperm production and is one of the hallmarks of mammalian male fertility. While various mRNA and protein localization studies have indirectly implicated changing retinoid levels along testis tubules, no quantitative evidence for these changes across the cycle of the seminiferous epithelium currently exists. This study utilized a unique mouse model of induced synchronous spermatogenesis, localization of the retinoid-signaling marker STRA8, and sensitive quantification of retinoic acid concentrations to determine whether there are fluctuations in retinoid levels at each of the individual stages of germ cell differentiation and maturation to sperm. These data show that processive pulses of retinoic acid are generated during spermatogonial differentiation and are the likely trigger for cyclic spermatogenesis and allow us, for the first time, to understand how the cycle of the seminiferous epithelium is generated and maintained. In addition, this study represents the first direct quantification of a retinoid gradient controlling cellular differentiation in a postnatal tissue.
Collapse
Affiliation(s)
- Cathryn A Hogarth
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Samuel Arnold
- University of Washington Medical Center, University of Washington, Seattle, Washington
| | - Travis Kent
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Debra Mitchell
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Nina Isoherranen
- University of Washington Medical Center, University of Washington, Seattle, Washington
| | - Michael D Griswold
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| |
Collapse
|
186
|
Arnold SL, Kent T, Hogarth CA, Schlatt S, Prasad B, Haenisch M, Walsh T, Muller CH, Griswold MD, Amory JK, Isoherranen N. Importance of ALDH1A enzymes in determining human testicular retinoic acid concentrations. J Lipid Res 2014; 56:342-57. [PMID: 25502770 DOI: 10.1194/jlr.m054718] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Retinoic acid (RA), the active metabolite of vitamin A, is required for spermatogenesis and many other biological processes. RA formation requires irreversible oxidation of retinal to RA by aldehyde dehydrogenase enzymes of the 1A family (ALDH1A). While ALDH1A1, ALDH1A2, and ALDH1A3 all form RA, the expression pattern and relative contribution of these enzymes to RA formation in the testis is unknown. In this study, novel methods to measure ALDH1A protein levels and intrinsic RA formation were used to accurately predict RA formation velocities in individual human testis samples and an association between RA formation and intratesticular RA concentrations was observed. The distinct localization of ALDH1A in the testis suggests a specific role for each enzyme in controlling RA formation. ALDH1A1 was found in Sertoli cells, while only ALDH1A2 was found in spermatogonia, spermatids, and spermatocytes. In the absence of cellular retinol binding protein (CRBP)1, ALDH1A1 was predicted to be the main contributor to intratesticular RA formation, but when CRBP1 was present, ALDH1A2 was predicted to be equally important in RA formation as ALDH1A1. This study provides a comprehensive novel methodology to evaluate RA homeostasis in human tissues and provides insight to how the individual ALDH1A enzymes mediate RA concentrations in specific cell types.
Collapse
Affiliation(s)
- Samuel L Arnold
- Department of Pharmaceutics, School of Pharmacy, School of Medicine, University of Washington, Seattle, WA 98195
| | - Travis Kent
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - Cathryn A Hogarth
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - Stefan Schlatt
- Center for Reproductive Medicine and Andrology, Munster, Germany
| | - Bhagwat Prasad
- Department of Pharmaceutics, School of Pharmacy, School of Medicine, University of Washington, Seattle, WA 98195
| | - Michael Haenisch
- Departments of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195
| | - Thomas Walsh
- Urology, School of Medicine, University of Washington, Seattle, WA 98195
| | - Charles H Muller
- Urology, School of Medicine, University of Washington, Seattle, WA 98195
| | - Michael D Griswold
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - John K Amory
- Medicine, School of Medicine, University of Washington, Seattle, WA 98195
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, School of Medicine, University of Washington, Seattle, WA 98195
| |
Collapse
|
187
|
Topletz AR, Tripathy S, Foti RS, Shimshoni JA, Nelson WL, Isoherranen N. Induction of CYP26A1 by metabolites of retinoic acid: evidence that CYP26A1 is an important enzyme in the elimination of active retinoids. Mol Pharmacol 2014; 87:430-41. [PMID: 25492813 DOI: 10.1124/mol.114.096784] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
All-trans-retinoic acid (atRA), the active metabolite of vitamin A, induces gene transcription via binding to nuclear retinoic acid receptors (RARs). The primary hydroxylated metabolites formed from atRA by CYP26A1, and the subsequent metabolite 4-oxo-atRA, bind to RARs and potentially have biologic activity. Hence, CYP26A1, the main atRA hydroxylase, may function either to deplete bioactive retinoids or to form active metabolites. This study aimed to determine the role of CYP26A1 in modulating RAR activation via formation and elimination of active retinoids. After treatment of HepG2 cells with atRA, (4S)-OH-atRA, (4R)-OH-atRA, 4-oxo-atRA, and 18-OH-atRA, mRNAs of CYP26A1 and RARβ were increased 300- to 3000-fold, with 4-oxo-atRA and atRA being the most potent inducers. However, >60% of the 4-OH-atRA enantiomers were converted to 4-oxo-atRA in the first 12 hours of treatment, suggesting that the activity of the 4-OH-atRA was due to 4-oxo-atRA. In human hepatocytes, atRA, 4-OH-atRA, and 4-oxo-atRA induced CYP26A1 and 4-oxo-atRA formation was observed from 4-OH-atRA. In HepG2 cells, 4-oxo-atRA formation was observed even in the absence of CYP26A1 activity and this formation was not inhibited by ketoconazole. In human liver microsomes, 4-oxo-atRA formation was supported by NAD(+), suggesting that 4-oxo-atRA formation is mediated by a microsomal alcohol dehydrogenase. Although 4-oxo-atRA was not formed by CYP26A1, it was depleted by CYP26A1 (Km = 63 nM and intrinsic clearance = 90 μl/min per pmol). Similarly, CYP26A1 depleted 18-OH-atRA and the 4-OH-atRA enantiomers. These data support the role of CYP26A1 to clear bioactive retinoids, and suggest that the enzyme forming active 4-oxo-atRA may be important in modulating retinoid action.
Collapse
Affiliation(s)
- Ariel R Topletz
- Departments of Pharmaceutics (A.R.T., S.T., J.A.S., N.I.) and Medicinal Chemistry (W.L.N.), University of Washington, Seattle, Washington; and Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.)
| | - Sasmita Tripathy
- Departments of Pharmaceutics (A.R.T., S.T., J.A.S., N.I.) and Medicinal Chemistry (W.L.N.), University of Washington, Seattle, Washington; and Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.)
| | - Robert S Foti
- Departments of Pharmaceutics (A.R.T., S.T., J.A.S., N.I.) and Medicinal Chemistry (W.L.N.), University of Washington, Seattle, Washington; and Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.)
| | - Jakob A Shimshoni
- Departments of Pharmaceutics (A.R.T., S.T., J.A.S., N.I.) and Medicinal Chemistry (W.L.N.), University of Washington, Seattle, Washington; and Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.)
| | - Wendel L Nelson
- Departments of Pharmaceutics (A.R.T., S.T., J.A.S., N.I.) and Medicinal Chemistry (W.L.N.), University of Washington, Seattle, Washington; and Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.)
| | - Nina Isoherranen
- Departments of Pharmaceutics (A.R.T., S.T., J.A.S., N.I.) and Medicinal Chemistry (W.L.N.), University of Washington, Seattle, Washington; and Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington (R.S.F.)
| |
Collapse
|
188
|
Ito K, Zolfaghari R, Hao L, Ross AC. Inflammation rapidly modulates the expression of ALDH1A1 (RALDH1) and vimentin in the liver and hepatic macrophages of rats in vivo. Nutr Metab (Lond) 2014; 11:54. [PMID: 25926859 PMCID: PMC4414379 DOI: 10.1186/1743-7075-11-54] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/16/2014] [Indexed: 12/21/2022] Open
Abstract
Background Members of the ALDH1 protein family, known as retinal dehydrogenases (RALDH), produce retinoic acid (RA), a metabolite of vitamin A, and may also oxidize other lipid aldehydes. Of three related ALDH1 genes, ALDH1A1 is most highly expressed in liver. ALDH1A1 is also rapidly gaining importance as a stem cell marker. We hypothesized that ALDH1A1 may have a broad cellular distribution in the liver, and that its expression may be regulated by RA and perturbed by inflammation. Methods Studies were conducted in vitamin A-deficient and –adequate rats that were further treated with all-trans-RA or lipopolysaccharide (LPS) to induce a state of moderate inflammation. RALDH1A1 expression was determined by quantitative PCR and RALDH1, as well as marker gene expression, was determined by immunocytochemical methods. Results Inflammation reduced ALDH1A1 mRNA in whole liver regardless of the level of vitamin A in the diet (P < 0.05), while treatment with RA reduced ALDH1A1 expression only in chow-fed rats. ALDH1A1 protein exhibited diffuse staining in hepatocytes, with greater intensity in the periportal region including surrounding bile ducts. Six h after administration of LPS, portal region macrophages were more numerous and some of these cells contained ALDH1A1. Vimentin, which was used as a marker for stellate cells and fibroblasts, was increased by LPS, P = 0.011 vs. without LPS, in both ED1 (CD68)-positive macrophages and fibroblastic stellate-like cells in the parenchyma as well as portal regions. Alpha-smooth muscle actin staining was intense around blood vessels, but did not change after LPS or RA, nor overlap with staining for vimentin. Conclusions Acute inflammation rapidly downregulates ALDH1A1 expression in whole liver while increasing its expression in periportal macrophages. Changes in ALDH1A1 expression appear to be part of the early acute-phase inflammatory response, which has been shown to alter the expression of other retinoid homeostatic genes. In addition, the rapid strong response of vimentin expression after treatment with LPS suggests that increased vimentin may be a useful marker of early hepatic inflammation.
Collapse
Affiliation(s)
- Kyoko Ito
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| | - Reza Zolfaghari
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| | - Lei Hao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802 USA ; Graduate Program in Nutrition, The Pennsylvania State University, University Park, PA 16802 USA
| | - A Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802 USA ; Center for Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA ; Huck Institutes for Life Sciences and Department of Nutritional Sciences, Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA 16803 USA
| |
Collapse
|
189
|
Fry JP, Li KY, Devall AJ, Cockcroft S, Honour JW, Lovick TA. Fluoxetine elevates allopregnanolone in female rat brain but inhibits a steroid microsomal dehydrogenase rather than activating an aldo-keto reductase. Br J Pharmacol 2014; 171:5870-80. [PMID: 25161074 PMCID: PMC4290723 DOI: 10.1111/bph.12891] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/03/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022] Open
Abstract
Background and Purpose Fluoxetine, a selective serotonin reuptake inhibitor, elevates brain concentrations of the neuroactive progesterone metabolite allopregnanolone, an effect suggested to underlie its use in the treatment of premenstrual dysphoria. One report showed fluoxetine to activate the aldo-keto reductase (AKR) component of 3α-hydroxysteroid dehydrogenase (3α-HSD), which catalyses production of allopregnanolone from 5α-dihydroprogesterone. However, this action was not observed by others. The present study sought to clarify the site of action for fluoxetine in elevating brain allopregnanolone. Experimental Approach Adult male rats and female rats in dioestrus were treated with fluoxetine and their brains assayed for allopregnanolone and its precursors, progesterone and 5α-dihydroprogesterone. Subcellular fractions of rat brain were also used to investigate the actions of fluoxetine on 3α-HSD activity in both the reductive direction, producing allopregnanolone from 5α-dihydroprogesterone, and the reverse oxidative direction. Fluoxetine was also tested on these recombinant enzyme activities expressed in HEK cells. Key Results Short-term treatment with fluoxetine increased brain allopregnanolone concentrations in female, but not male, rats. Enzyme assays on native rat brain fractions and on activities expressed in HEK cells showed fluoxetine did not affect the AKR producing allopregnanolone from 5α-dihydroprogesterone but did inhibit the microsomal dehydrogenase oxidizing allopregnanolone to 5α-dihydroprogesterone. Conclusions and Implications Fluoxetine elevated allopregnanolone in female rat brain by inhibiting its oxidation to 5α-dihydroprogesterone by a microsomal dehydrogenase. This is a novel site of action for fluoxetine, with implications for the development of new agents and/or dosing regimens to raise brain allopregnanolone.
Collapse
Affiliation(s)
- J P Fry
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | | | | | | | | | | |
Collapse
|
190
|
Kono N, Arai H. Intracellular transport of fat-soluble vitamins A and E. Traffic 2014; 16:19-34. [PMID: 25262571 DOI: 10.1111/tra.12231] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/11/2022]
Abstract
Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E.
Collapse
Affiliation(s)
- Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | |
Collapse
|
191
|
Pierzchalski K, Taylor RN, Nezhat C, Jones JW, Napoli JL, Yang G, Kane MA, Sidell N. Retinoic acid biosynthesis is impaired in human and murine endometriosis. Biol Reprod 2014; 91:84. [PMID: 25143356 PMCID: PMC4435029 DOI: 10.1095/biolreprod.114.119677] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/08/2014] [Accepted: 08/08/2014] [Indexed: 11/01/2022] Open
Abstract
Endometriosis is characterized by the presence of endometrial glands and stroma in extrauterine sites. Our objective was to determine whether endometriotic lesions (ELs) from women with endometriosis have altered retinoid levels compared with their eutopic endometrium, and to test the hypothesis that defects in all-trans retinoic acid (ATRA) biosynthesis in EL is related to reduced expression of cellular retinol-binding protein type 1 (RBP1). Retinoids were evaluated by liquid chromatography-tandem mass spectrometry and high-performance liquid chromatography in eutopic endometrial biopsies (EBs) and ELs from 42 patients with pathologically confirmed endometriosis. The ATRA levels were reduced, whereas the retinol and retinyl ester concentrations were elevated in EL compared with EB tissue. Similar results were found in a mouse model of endometriosis that used green fluorescent protein-positive endometrial tissue injected into the peritoneum of syngeneic hosts to mimic retrograde menses. The ATRA biosynthesis in vitro in retinol-treated primary human endometrial stromal cell (ESC) cultures derived from ELs was reduced compared with that of ESCs derived from patient-matched EBs. Correspondingly, RBP1 expression was reduced in tissue and ESCs derived from EL versus EB. Rbp1(-/-) mice showed reduced endometrial ATRA concentrations compared with wild type, associated with loss of tissue organization and hypercellularity. These findings provide the first quantitative measurements of ATRA in human endometrium and endometriosis, demonstrating reduced ATRA in ectopic tissue and corresponding ESC cultures. Quantitation of retinoids in murine endometriosis and in Rbp1(-/-) mice supports the contention that impaired ATRA synthesis caused by reduced RBP1 promotes an "endometriosis phenotype" that enables cells to implant and grow at ectopic sites.
Collapse
Affiliation(s)
- Keely Pierzchalski
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Robert N Taylor
- Department of Obstetrics & Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Joseph L Napoli
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California
| | - Guixiang Yang
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Neil Sidell
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
192
|
Effects of diet and strain on mouse serum and tissue retinoid concentrations. PLoS One 2014; 9:e99435. [PMID: 24911926 PMCID: PMC4049816 DOI: 10.1371/journal.pone.0099435] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/13/2014] [Indexed: 12/01/2022] Open
Abstract
The relationship between dietary vitamin A and all-trans-retinoic acid levels in serum and tissues had not been quantified. We determined the impact of dietary vitamin A on retinoid levels in serum, liver, kidney, testis, and epididymal white adipose of five mouse strains: AKR/J; BALB/cByJ; C3H/HeJ; C57BL/6J; 129S1/SvImJ. Retinoids were quantified in mice fed copious vitamin A (lab chow, ≥20 IU/g) followed by one month feeding a vitamin A-sufficient diet (4 IU/g), or after three generations of feeding a vitamin A-sufficient diet. Retinol and retinyl esters were measured by high-performance liquid chromatography with ultraviolet absorbance detection. All-trans-retinoic acid was quantified by liquid chromatography tandem mass spectrometry. The amounts of dietary vitamin A had long-term strain-specific effects on tissue retinyl ester, retinol and all-trans-retinoic acid concentrations. Three generations of feeding a vitamin A-sufficient diet decreased all-trans-retinoic acid in most tissues of most strains, in some cases more than 60%, compared to a diet with copious vitamin A. With both diets, all-trans-retinoic acid concentrations maintained an order of liver ≈ testis > kidney > white adipose tissue ≈ serum. Neither retinol nor all-trans-retinoic acid in serum reflected all-trans-retinoic acid concentrations in tissues. Strain and tissue-specific differences in retinol and all-trans-retinoic acid altered by different amounts of dietary vitamin A could have profound effects on retinoid action. This would be the case especially with the increased all-trans-retinoic acid values associated with the amounts of vitamin A and its precursors (carotenoids) in chow diets.
Collapse
|
193
|
Pan J, Guleria RS, Zhu S, Baker KM. Molecular Mechanisms of Retinoid Receptors in Diabetes-Induced Cardiac Remodeling. J Clin Med 2014; 3:566-94. [PMID: 26237391 PMCID: PMC4449696 DOI: 10.3390/jcm3020566] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 02/07/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a significant contributor to morbidity and mortality in diabetic patients, is characterized by ventricular dysfunction, in the absence of coronary atherosclerosis and hypertension. There is no specific therapeutic strategy to effectively treat patients with DCM, due to a lack of a mechanistic understanding of the disease process. Retinoic acid, the active metabolite of vitamin A, is involved in a wide range of biological processes, through binding and activation of nuclear receptors: retinoic acid receptors (RAR) and retinoid X receptors (RXR). RAR/RXR-mediated signaling has been implicated in the regulation of glucose and lipid metabolism. Recently, it has been reported that activation of RAR/RXR has an important role in preventing the development of diabetic cardiomyopathy, through improving cardiac insulin resistance, inhibition of intracellular oxidative stress, NF-κB-mediated inflammatory responses and the renin-angiotensin system. Moreover, downregulated RAR/RXR signaling has been demonstrated in diabetic myocardium, suggesting that impaired RAR/RXR signaling may be a trigger to accelerate diabetes-induced development of DCM. Understanding the molecular mechanisms of retinoid receptors in the regulation of cardiac metabolism and remodeling under diabetic conditions is important in providing the impetus for generating novel therapeutic approaches for the prevention and treatment of diabetes-induced cardiac complications and heart failure.
Collapse
Affiliation(s)
- Jing Pan
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
| | - Rakeshwar S Guleria
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
| | - Sen Zhu
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
| | - Kenneth M Baker
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
| |
Collapse
|
194
|
Abstract
Vitamin A and its active metabolite retinoic acid are essential for the development and function of many tissues including the immune system. The induction of mucosal homing receptors on T and B cells by mucosal dendritic cells (DC) depends on the presence of vitamin A. Recent studies indicate that also the differentiation of CD11b+ DC subsets in the mucosa as well as the spleen depend on vitamin A signalling. As CD11b+ DC subsets exert non-redundant functions in anti-bacterial and anti-fungal immune responses, defects in CD11b+ DC differentiation will contribute to the clinical problems observed during vitamin A deficiency.
Collapse
|
195
|
Thiede BR, Mann ZF, Chang W, Ku YC, Son YK, Lovett M, Kelley MW, Corwin JT. Retinoic acid signalling regulates the development of tonotopically patterned hair cells in the chicken cochlea. Nat Commun 2014; 5:3840. [PMID: 24845860 DOI: 10.1038/ncomms4840] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 04/08/2014] [Indexed: 01/07/2023] Open
Abstract
Precise frequency discrimination is a hallmark of auditory function in birds and mammals and is required for distinguishing similar sounding words, like 'bat,' 'cat' and 'hat.' In the cochlea, tuning and spectral separation result from longitudinal differences in basilar membrane stiffness and numerous individual gradations in sensory hair cell phenotypes, but it is unknown what patterns the phenotypes. Here we used RNA-seq to compare transcriptomes from proximal, middle and distal regions of the embryonic chicken cochlea, and found opposing longitudinal gradients of expression for retinoic acid (RA)-synthesizing and degrading enzymes. In vitro experiments showed that RA is necessary and sufficient to induce the development of distal-like hair cell phenotypes and promotes expression of the actin-crosslinking proteins, Espin and Fscn2. These and other findings highlight a role for RA signalling in patterning the development of a longitudinal gradient of frequency-tuned hair cell phenotypes in the cochlea.
Collapse
Affiliation(s)
- Benjamin R Thiede
- Department of Neuroscience, University of Virginia School of Medicine, 409 Lane Road, Charlottesville, Virginia 22908, USA
| | - Zoë F Mann
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 35A Convent Drive, Bethesda, Maryland 20892-3729, USA
| | - Weise Chang
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 35A Convent Drive, Bethesda, Maryland 20892-3729, USA
| | - Yuan-Chieh Ku
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Yena K Son
- Department of Neuroscience, University of Virginia School of Medicine, 409 Lane Road, Charlottesville, Virginia 22908, USA
| | - Michael Lovett
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 35A Convent Drive, Bethesda, Maryland 20892-3729, USA
| | - Jeffrey T Corwin
- 1] Department of Neuroscience, University of Virginia School of Medicine, 409 Lane Road, Charlottesville, Virginia 22908, USA [2] Department of Cell Biology, University of Virginia School of Medicine, 409 Lane Road, Charlottesville, Virginia 22908, USA
| |
Collapse
|
196
|
Chen W, Chen G. The Roles of Vitamin A in the Regulation of Carbohydrate, Lipid, and Protein Metabolism. J Clin Med 2014; 3:453-79. [PMID: 26237385 PMCID: PMC4449691 DOI: 10.3390/jcm3020453] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/06/2014] [Accepted: 03/14/2014] [Indexed: 02/07/2023] Open
Abstract
Currently, two-thirds of American adults are overweight or obese. This high prevalence of overweight/obesity negatively affects the health of the population, as obese individuals tend to develop several chronic diseases, such as type 2 diabetes and cardiovascular diseases. Due to obesity's impact on health, medical costs, and longevity, the rise in the number of obese people has become a public health concern. Both genetic and environmental/dietary factors play a role in the development of metabolic diseases. Intuitively, it seems to be obvious to link over-nutrition to the development of obesity and other metabolic diseases. However, the underlying mechanisms are still unclear. Dietary nutrients not only provide energy derived from macronutrients, but also factors such as micronutrients with regulatory roles. How micronutrients, such as vitamin A (VA; retinol), regulate macronutrient homeostasis is still an ongoing research topic. As an essential micronutrient, VA plays a key role in the general health of an individual. This review summarizes recent research progress regarding VA's role in carbohydrate, lipid, and protein metabolism. Due to the large amount of information regarding VA functions, this review focusses on metabolism in metabolic active organs and tissues. Additionally, some perspectives for future studies will be provided.
Collapse
Affiliation(s)
- Wei Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
197
|
Ransom J, Morgan PJ, McCaffery PJ, Stoney PN. The rhythm of retinoids in the brain. J Neurochem 2014; 129:366-76. [PMID: 24266881 PMCID: PMC4283048 DOI: 10.1111/jnc.12620] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 12/24/2022]
Abstract
The retinoids are a family of compounds that in nature are derived from vitamin A or pro-vitamin A carotenoids. An essential part of the diet for mammals, vitamin A has long been known to be essential for many organ systems in the adult. More recently, however, they have been shown to be necessary for function of the brain and new discoveries point to a central role in processes ranging from neuroplasticity to neurogenesis. Acting in several regions of the central nervous system including the eye, hippocampus and hypothalamus, one common factor in its action is control of biological rhythms. This review summarizes the role of vitamin A in the brain; its action through the metabolite retinoic acid via specific nuclear receptors, and the regulation of its concentration through controlled synthesis and catabolism. The action of retinoic acid to regulate several rhythms in the brain and body, from circadian to seasonal, is then discussed to finish with the importance of retinoic acid in the regular pattern of sleep. We review the role of vitamin A and retinoic acid (RA) as mediators of rhythm in the brain. In the suprachiasmatic nucleus and hippocampus they control expression of circadian clock genes while in the cortex retinoic acid is required for delta oscillations of sleep. Retinoic acid is also central to a second rhythm that keeps pace with the seasons, regulating function in the hypothalamus and pineal gland.
Collapse
Affiliation(s)
- Jemma Ransom
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| | - Peter J Morgan
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
| | - Peter J McCaffery
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| | - Patrick N Stoney
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| |
Collapse
|
198
|
Sanders TJ, McCarthy NE, Giles EM, Davidson KLM, Haltalli MLR, Hazell S, Lindsay JO, Stagg AJ. Increased production of retinoic acid by intestinal macrophages contributes to their inflammatory phenotype in patients with Crohn's disease. Gastroenterology 2014; 146:1278-88.e1-2. [PMID: 24503130 DOI: 10.1053/j.gastro.2014.01.057] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 01/22/2014] [Accepted: 01/25/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Reduced generation of all-trans retinoic acid (RA) by CD103(+) intestinal dendritic cells (DCs) is linked to intestinal inflammation in mice. However, the role of RA in intestinal inflammation in humans is unclear. We investigated which antigen-presenting cells (APCs) produce RA in the human intestine and whether generation of RA is reduced in patients with Crohn's disease (CD). METHODS Ileal and colonic tissues were collected from patients with CD during endoscopy or surgery, and healthy tissues were collected from subjects who were undergoing follow-up because of rectal bleeding, altered bowel habits, or cancer (controls). Cells were isolated from the tissue samples, and APCs were isolated by flow cytometry. Retinaldehyde dehydrogenase (RALDH) activity was assessed by Aldefluor assay, and ALDH1A expression was measured by quantitative real-time polymerase chain reaction. Macrophages were derived by incubation of human blood monocytes with granulocyte-macrophage colony-stimulating factor (GM-CSF). RESULTS CD103(+) and CD103(-) DCs and CD14(+) macrophages from healthy human intestine had RALDH activity. Although ALDH1A1 was not expressed by DCs, it was the predominant RALDH enzyme isoform expressed by intestinal CD14(+) macrophages and their putative precursors, CD14(+) monocytes. RALDH activity was up-regulated in all 3 populations of APCs from patients with CD; in CD14(+) macrophages, it was associated with local induction of ALDH1A1 expression. Blocking of RA receptor signaling during GM-CSF-mediated differentiation of monocytes into macrophages down-regulated CD14 and HLA-DR expression and reduced the development of tumor necrosis factor α-producing inflammatory macrophages. CONCLUSIONS RA receptor signaling promotes differentiation of human tumor necrosis factor α-producing inflammatory macrophages in vitro. In vivo, more CD14(+) macrophages from the intestinal mucosa of patients with CD than from controls are capable of generating RA, which might increase the inflammatory phenotype of these cells. Strategies to reduce the generation of RA by CD14(+) macrophages could provide new therapeutic options for patients with CD.
Collapse
Affiliation(s)
- Theodore J Sanders
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, England
| | - Neil E McCarthy
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, England
| | - Edward M Giles
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, England
| | - Katherine L M Davidson
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, England
| | - Myriam L R Haltalli
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, England
| | - Sophie Hazell
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, England
| | - James O Lindsay
- Digestive Diseases Clinical Academic Unit, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, England; The Royal London Hospital, Barts Health NHS Trust, London, England
| | - Andrew J Stagg
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, England.
| |
Collapse
|
199
|
Gillbro JM, Al-Bader T, Westman M, Olsson MJ, Mavon A. Transcriptional changes in organoculture of full-thickness human skin following topical application of all-trans retinoic acid. Int J Cosmet Sci 2014; 36:253-61. [PMID: 24697191 PMCID: PMC4265278 DOI: 10.1111/ics.12121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/09/2014] [Indexed: 12/28/2022]
Abstract
Objective Retinoids are used as therapeutic agents for numerous skin diseases, for example, psoriasis, acne and keratinization disorders. The same substances have also been recognized in the treatment for hyperpigmentation disorders such as melasma. Other studies on photo-damaged skin have shown that retinoids reduce wrinkles, surface roughness, mottled pigmentation, and visual skin appearance as a whole. We tested the hypothesis that an organoculture of full-thickness human skin could be used as a preclinical model to investigate the retinoid transcriptional profile in human skin in vitro. Methods Full-thickness skin explants were exposed to topically applied all-trans retinoic acid (RA) for 24 h. The gene expression profile was analysed using oligonucleotide microarrays, and data were validated with real-time (RT) PCR. Results We showed that the expression of 93 genes was significantly altered more than twofold. Several of the altered genes, for example, KRT4, CYP26 and LCN2, have previously been shown to be affected by RA in keratinocyte monocultures, reconstructed epidermis and skin biopsies from patients treated topically or orally with RA. In addition, genes, such as SCEL, NRIP1, DGAT2, RDH12 EfnB2, MAPK14, SAMD9 and CEACAM6 not previously reported to be affected by RA in human skin, were identified for the first time in this study. Conclusion The results in the present study show that full-thickness human explants represent a valuable pre-clinical model for studying the effects of retinoids in skin. Résumé
Collapse
Affiliation(s)
- J M Gillbro
- Oriflame Skin Research Institute, Mäster Samuelsgatan 56, Stockholm, 11121, Sweden
| | | | | | | | | |
Collapse
|
200
|
Kropotova ES, Zinovieva OL, Zyryanova AF, Dybovaya VI, Prasolov VS, Beresten SF, Oparina NY, Mashkova TD. Altered expression of multiple genes involved in retinoic acid biosynthesis in human colorectal cancer. Pathol Oncol Res 2014; 20:707-17. [PMID: 24599561 DOI: 10.1007/s12253-014-9751-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/18/2014] [Indexed: 12/15/2022]
Abstract
All-trans-retinoic acid (atRA), the oxidized form of vitamin A (retinol), regulates a wide variety of biological processes, such as cell proliferation and differentiation. Multiple alcohol, retinol and retinaldehyde dehydrogenases (ADHs, RDHs, RALDHs) as well as aldo-keto reductases (AKRs) catalyze atRA production. The reduced atRA biosynthesis has been observed in several human tumors, including colorectal cancer. However, subsets of atRA-synthesizing enzymes have not been determined in colorectal tumors. We investigated the expression patterns of genes involved in atRA biosynthesis in normal human colorectal tissues, primary carcinomas and cancer cell lines by RT-PCR. These genes were identified using transcriptomic data analysis (expressed sequence tags, RNA-sequencing, microarrays). Our results indicate that each step of the atRA biosynthesis pathway is dysregulated in colorectal cancer. Frequent and significant decreases in the mRNA levels of the ADH1B, ADH1C, RDHL, RDH5 and AKR1B10 genes were observed in a majority of colorectal carcinomas. The expression levels of the RALDH1 gene were reduced, and the expression levels of the cytochrome CYP26A1 gene increased. The human colon cancer cell lines showed a similar pattern of changes in the mRNA levels of these genes. A dramatic reduction in the expression of genes encoding the predominant retinol-oxidizing enzymes could impair atRA production. The most abundant of these genes, ADH1B and ADH1C, display decreased expression during progression from adenoma to early and more advanced stage of colorectal carcinomas. The diminished atRA biosynthesis may lead to alteration of cell growth and differentiation in the colon and rectum, thus contributing to the progression of colorectal cancer.
Collapse
Affiliation(s)
- Ekaterina S Kropotova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|