151
|
Huang G, Shrestha R, Jia K, Geisbrecht BV, Li P. Enantioselective Synthesis of Dilignol Model Compounds and Their Stereodiscrimination Study with a Dye-Decolorizing Peroxidase. Org Lett 2017; 19:1820-1823. [PMID: 28326791 DOI: 10.1021/acs.orglett.7b00587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A four-step enantioselective approach was developed to synthesize anti (1R,2S)-1a and (1S,2R)-1b containing a β-O-4 linkage in good yields. A significant difference was observed for the apparent binding affinities of four stereospecific lignin model compounds with TcDyP by surface plasmon resonance, which was not translated into a significant difference in enzyme activities. The discrepancy may be attributed to the conformational change involving a loop widely present in DyPs upon H2O2 binding.
Collapse
Affiliation(s)
- Gaochao Huang
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biophysics, Kansas State University , Manhattan, Kansas 66506, United States
| | - Ruben Shrestha
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biophysics, Kansas State University , Manhattan, Kansas 66506, United States
| | - Kaimin Jia
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biophysics, Kansas State University , Manhattan, Kansas 66506, United States
| | - Brian V Geisbrecht
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biophysics, Kansas State University , Manhattan, Kansas 66506, United States
| | - Ping Li
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biophysics, Kansas State University , Manhattan, Kansas 66506, United States
| |
Collapse
|
152
|
A bacterial aromatic aldehyde dehydrogenase critical for the efficient catabolism of syringaldehyde. Sci Rep 2017; 7:44422. [PMID: 28294121 PMCID: PMC5353671 DOI: 10.1038/srep44422] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/07/2017] [Indexed: 01/18/2023] Open
Abstract
Vanillin and syringaldehyde obtained from lignin are essential intermediates for the production of basic chemicals using microbial cell factories. However, in contrast to vanillin, the microbial conversion of syringaldehyde is poorly understood. Here, we identified an aromatic aldehyde dehydrogenase (ALDH) gene responsible for syringaldehyde catabolism from 20 putative ALDH genes of Sphingobium sp. strain SYK-6. All these genes were expressed in Escherichia coli, and nine gene products, including previously characterized BzaA, BzaB, and vanillin dehydrogenase (LigV), exhibited oxidation activities for syringaldehyde to produce syringate. Among these genes, SLG_28320 (desV) and ligV were most highly and constitutively transcribed in the SYK-6 cells. Disruption of desV in SYK-6 resulted in a significant reduction in growth on syringaldehyde and in syringaldehyde oxidation activity. Furthermore, a desV ligV double mutant almost completely lost its ability to grow on syringaldehyde. Purified DesV showed similar kcat/Km values for syringaldehyde (2100 s−1·mM−1) and vanillin (1700 s−1·mM−1), whereas LigV substantially preferred vanillin (8800 s−1·mM−1) over syringaldehyde (1.4 s−1·mM−1). These results clearly demonstrate that desV plays a major role in syringaldehyde catabolism. Phylogenetic analyses showed that DesV-like ALDHs formed a distinct phylogenetic cluster separated from the vanillin dehydrogenase cluster.
Collapse
|
153
|
Jackson CA, Couger MB, Prabhakaran M, Ramachandriya KD, Canaan P, Fathepure BZ. Isolation and characterization of Rhizobium sp. strain YS-1r that degrades lignin in plant biomass. J Appl Microbiol 2017; 122:940-952. [PMID: 28092137 DOI: 10.1111/jam.13401] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this work was to isolate novel lignin-degrading organisms. METHODS AND RESULTS Several pure cultures of bacteria that degrade lignin were isolated from bacterial consortia developed from decaying biomass. Among the isolates, Rhizobium sp. strain YS-1r (closest relative of Rhizobium petrolearium strain SL-1) was explored for its lignin-degrading ability. Microcosm studies showed that strain YS-1r was able to degrade a variety of lignin monomers, dimers and also native lignin in switchgrass and alfalfa. The isolate demonstrated lignin peroxidase (LiP) activity when grown on alkali lignin, p-anisoin, switchgrass or alfalfa, and only negligible activity was measured in glucose-grown cells suggesting inducible nature of the LiP activity. Analysis of the strain YS-1r genome revealed the presence of a variety of genes that code for various lignin-oxidizing, H2 O2 -producing as well as polysaccharide-hydrolysing enzymes. CONCLUSIONS This study shows both the genomic and physiological capability of bacteria in the genus Rhizobium to metabolize lignin and lignin-like compounds. This is the first detailed report on the lignocellulose-degrading ability of a Rhizobium species and thus this study expands the role of alpha-proteobacteria in the degradation of lignin. SIGNIFICANCE AND IMPACT OF THE STUDY The organism's ability to degrade lignin is significant since Rhizobia are widespread in soil, water and plant rhizospheres and some fix atmospheric nitrogen and also have the ability to degrade aromatic hydrocarbons.
Collapse
Affiliation(s)
- C A Jackson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - M B Couger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - M Prabhakaran
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - K D Ramachandriya
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA
| | - P Canaan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - B Z Fathepure
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
154
|
Enhanced delignification of steam-pretreated poplar by a bacterial laccase. Sci Rep 2017; 7:42121. [PMID: 28169340 PMCID: PMC5294454 DOI: 10.1038/srep42121] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/05/2017] [Indexed: 11/09/2022] Open
Abstract
The recalcitrance of woody biomass, particularly its lignin component, hinders its sustainable transformation to fuels and biomaterials. Although the recent discovery of several bacterial ligninases promises the development of novel biocatalysts, these enzymes have largely been characterized using model substrates: direct evidence for their action on biomass is lacking. Herein, we report the delignification of woody biomass by a small laccase (sLac) from Amycolatopsis sp. 75iv3. Incubation of steam-pretreated poplar (SPP) with sLac enhanced the release of acid-precipitable polymeric lignin (APPL) by ~6-fold, and reduced the amount of acid-soluble lignin by ~15%. NMR spectrometry revealed that the APPL was significantly syringyl-enriched relative to the original material (~16:1 vs. ~3:1), and that sLac preferentially oxidized syringyl units and altered interunit linkage distributions. sLac's substrate preference among monoaryls was also consistent with this observation. In addition, sLac treatment reduced the molar mass of the APPL by over 50%, as determined by gel-permeation chromatography coupled with multi-angle light scattering. Finally, sLac acted synergistically with a commercial cellulase cocktail to increase glucose production from SPP ~8%. Overall, this study establishes the lignolytic activity of sLac on woody biomass and highlights the biocatalytic potential of bacterial enzymes.
Collapse
|
155
|
Pornsuwan S, Maenpuen S, Kamutira P, Watthaisong P, Thotsaporn K, Tongsook C, Juttulapa M, Nijvipakul S, Chaiyen P. 3,4-Dihydroxyphenylacetate 2,3-dioxygenase from Pseudomonas aeruginosa: An Fe(II)-containing enzyme with fast turnover. PLoS One 2017; 12:e0171135. [PMID: 28158217 PMCID: PMC5291488 DOI: 10.1371/journal.pone.0171135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/15/2017] [Indexed: 11/18/2022] Open
Abstract
3,4-dihydroxyphenylacetate (DHPA) dioxygenase (DHPAO) from Pseudomonas aeruginosa (PaDHPAO) was overexpressed in Escherichia coli and purified to homogeneity. As the enzyme lost activity over time, a protocol to reactivate and conserve PaDHPAO activity has been developed. Addition of Fe(II), DTT and ascorbic acid or ROS scavenging enzymes (catalase or superoxide dismutase) was required to preserve enzyme stability. Metal content and activity analyses indicated that PaDHPAO uses Fe(II) as a metal cofactor. NMR analysis of the reaction product indicated that PaDHPAO catalyzes the 2,3-extradiol ring-cleavage of DHPA to form 5-carboxymethyl-2-hydroxymuconate semialdehyde (CHMS) which has a molar absorptivity of 32.23 mM-1cm-1 at 380 nm and pH 7.5. Steady-state kinetics under air-saturated conditions at 25°C and pH 7.5 showed a Km for DHPA of 58 ± 8 μM and a kcat of 64 s-1, indicating that the turnover of PaDHPAO is relatively fast compared to other DHPAOs. The pH-rate profile of the PaDHPAO reaction shows a bell-shaped plot that exhibits a maximum activity at pH 7.5 with two pKa values of 6.5 ± 0.1 and 8.9 ± 0.1. Study of the effect of temperature on PaDHPAO activity indicated that the enzyme activity increases as temperature increases up to 55°C. The Arrhenius plot of ln(k’cat) versus the reciprocal of the absolute temperature shows two correlations with a transition temperature at 35°C. Two activation energy values (Ea) above and below the transition temperature were calculated as 42 and 14 kJ/mol, respectively. The data imply that the rate determining steps of the PaDHPAO reaction at temperatures above and below 35°C may be different. Sequence similarity network analysis indicated that PaDHPAO belongs to the enzyme clusters that are largely unexplored. As PaDHPAO has a high turnover number compared to most of the enzymes previously reported, understanding its biochemical and biophysical properties should be useful for future applications in biotechnology.
Collapse
Affiliation(s)
- Soraya Pornsuwan
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Philaiwarong Kamutira
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Pratchaya Watthaisong
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kittisak Thotsaporn
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chanakan Tongsook
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Maneerat Juttulapa
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sarayut Nijvipakul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
156
|
Draft Genome Sequence of Pseudonocardia autotrophica Strain DSM 43083, an Efficient Producer of Peroxidases for Lignin Modification. GENOME ANNOUNCEMENTS 2017; 5:5/5/e01562-16. [PMID: 28153904 PMCID: PMC5289690 DOI: 10.1128/genomea.01562-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pseudonocardia autotrophica strain DSM 43083 is a filamentous actinobacterium and was described to degrade or modify lignin. Here, we present its draft genome sequence, with a size of 5.8 Mb, to unravel the gene set coding for promising monooxygenases, dioxygenases, and DyP-type peroxidases associated with aromatic metabolism and lignin modification.
Collapse
|
157
|
Lei Y, Hannoufa A, Yu P. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage. Int J Mol Sci 2017; 18:E298. [PMID: 28146083 PMCID: PMC5343834 DOI: 10.3390/ijms18020298] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/10/2017] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
Alfalfa is one of the most important legume forage crops in the world. In spite of its agronomic and nutritive advantages, alfalfa has some limitations in the usage of pasture forage and hay supplement. High rapid degradation of protein in alfalfa poses a risk of rumen bloat to ruminants which could cause huge economic losses for farmers. Coupled with the relatively high lignin content, which impedes the degradation of carbohydrate in rumen, alfalfa has unbalanced and asynchronous degradation ratio of nitrogen to carbohydrate (N/CHO) in rumen. Genetic engineering approaches have been used to manipulate the expression of genes involved in important metabolic pathways for the purpose of improving the nutritive value, forage yield, and the ability to resist abiotic stress. Such gene modification could bring molecular structural changes in alfalfa that are detectable by advanced structural analytical techniques. These structural analyses have been employed in assessing alfalfa forage characteristics, allowing for rapid, convenient and cost-effective analysis of alfalfa forage quality. In this article, we review two major obstacles facing alfalfa utilization, namely poor protein utilization and relatively high lignin content, and highlight genetic studies that were performed to overcome these drawbacks, as well as to introduce other improvements to alfalfa quality. We also review the use of advanced molecular structural analysis in the assessment of alfalfa forage for its potential usage in quality selection in alfalfa breeding.
Collapse
Affiliation(s)
- Yaogeng Lei
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada.
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
158
|
Casciello C, Tonin F, Berini F, Fasoli E, Marinelli F, Pollegioni L, Rosini E. A valuable peroxidase activity from the novel species Nonomuraea gerenzanensis growing on alkali lignin. ACTA ACUST UNITED AC 2017; 13:49-57. [PMID: 28352563 PMCID: PMC5361131 DOI: 10.1016/j.btre.2016.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022]
Abstract
Actinomycetes represent an attractive source of ligninolytic enzymes. 43 actinomycetes were screened for laccase and peroxidase activities. The novel species N. gerenzanensis produces a valuable bacterial peroxidase activity. The dye-decolorizing activity paves the way for an industrial use of this peroxidase.
Degradation of lignin constitutes a key step in processing biomass to become useful monomers but it remains challenging. Compared to fungi, bacteria are much less characterized with respect to their lignin metabolism, although it is reported that many soil bacteria, especially actinomycetes, attack and solubilize lignin. In this work, we screened 43 filamentous actinomycetes by assaying their activity on chemically different substrates including a soluble and semi-degraded lignin derivative (known as alkali lignin or Kraft lignin), and we discovered a novel and valuable peroxidase activity produced by the recently classified actinomycete Nonomuraea gerenzanensis. Compared to known fungal manganese and versatile peroxidases, the stability of N. gerenzanensis peroxidase activity at alkaline pHs and its thermostability are significantly higher. From a kinetic point of view, N. gerenzanensis peroxidase activity shows a Km for H2O2 similar to that of Phanerochaete chrysosporium and Bjerkandera enzymes and a lower affinity for Mn2+, whereas it differs from the six Pleurotus ostreatus manganese peroxidase isoenzymes described in the literature. Additionally, N. gerenzanensis peroxidase shows a remarkable dye-decolorizing activity that expands its substrate range and paves the way for an industrial use of this enzyme. These results confirm that by exploring new bacterial diversity, we may be able to discover and exploit alternative biological tools putatively involved in lignin modification and degradation.
Collapse
Key Words
- 2,4-DCP, 2,4-dichlorophenol
- 2,6-DMP, 2,6-dimethoxyphenol
- ABTS, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
- Alkali lignin
- DyP, dye decolorizing peroxidase
- Filamentous actinomycetes
- Kraft lignin
- LiP, lignin peroxidase
- MAM, mannitol agar medium
- MM-L, minimal salt medium plus lignin
- MnP, manganese peroxidase
- Nonomuraea gerenzanensis
- Peroxidases
- RB5, reactive black 5
- RBBR, remazol brilliant blue R
- VP, versatile peroxidase
Collapse
Affiliation(s)
- Carmine Casciello
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Fabio Tonin
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico of Milano, via Mancinelli 7, 20131, Milano, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; The Protein Factory Research Center, Politecnico of Milano and University of Insubria, via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
159
|
Rais D, Zibek S. Biotechnological and Biochemical Utilization of Lignin. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 166:469-518. [PMID: 28540404 DOI: 10.1007/10_2017_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This chapter provides an overview of the biosynthesis and structure of lignin. Moreover, examples of the commercial use of lignin and its promising future implementation are briefly described. Many applications are still hampered by the properties of technical lignins. Thus, the major challenge is the conversion of lignins into suitable building blocks or aromatics in order to open up new avenues for the usage of this renewable raw material. This chapter focuses on details about natural lignin degradation by fungi and bacteria, which harbor potential tools for lignin degradation and modification, which might help to develop eco-efficient processes for lignin utilization.
Collapse
Affiliation(s)
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany.
| |
Collapse
|
160
|
Ravindran R, Jaiswal S, Abu-Ghannam N, Jaiswal AK. Evaluation of ultrasound assisted potassium permanganate pre-treatment of spent coffee waste. BIORESOURCE TECHNOLOGY 2017; 199:92-102. [PMID: 27866804 DOI: 10.1016/j.biortech.2015.07.106] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 05/23/2023]
Abstract
In the present study, novel pre-treatment for spent coffee waste (SCW) has been proposed which utilises the superior oxidising capacity of alkaline KMnO4 assisted by ultra-sonication. The pre-treatment was conducted for different exposure times (10, 20, 30 and 40min) using different concentrations of KMnO4 (1, 2, 3, 4, 5%w/v) at room temperature with solid/liquid ratio of 1:10. Pretreating SCW with 4% KMnO4 and exposing it to ultrasound for 20min resulted in 98% cellulose recovery and a maximum lignin removal of 46%. 1.7 fold increase in reducing sugar yield was obtained after enzymatic hydrolysis of KMnO4 pretreated SCW as compared to raw. SEM, XRD and FTIR analysis of the pretreated SCW revealed the various effects of pretreatment. Thermal behaviour of the pretreated substrate against the native biomass was also studied using DSC. Ultrasound-assisted potassium permanganate oxidation was found to be an effective pretreatment for SCW, and can be a used as a potential feedstock pretreatment strategy for bioethanol production.
Collapse
Affiliation(s)
- Rajeev Ravindran
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland
| | - Swarna Jaiswal
- Centre for Research in Engineering and Surface Technology, FOCAS Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - Nissreen Abu-Ghannam
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland.
| |
Collapse
|
161
|
Duwe A, Tippkötter N, Ulber R. Lignocellulose-Biorefinery: Ethanol-Focused. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 166:177-215. [PMID: 29071401 DOI: 10.1007/10_2016_72] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development prospects of the world markets for petroleum and other liquid fuels are diverse and partly contradictory. However, comprehensive changes for the energy supply of the future are essential. Notwithstanding the fact that there are still very large deposits of energy resources from a geological point of view, the finite nature of conventional oil reserves is indisputable. To reduce our dependence on oil, the EU, the USA, and other major economic zones rely on energy diversification. For this purpose, alternative materials and technologies are being sought, and is most obvious in the transport sector. The objective is to progressively replace fossil fuels with renewable and more sustainable fuels. In this respect, biofuels have a pre-eminent position in terms of their capability of blending with fossil fuels and being usable in existing cars without substantial modification. Ethanol can be considered as the primary renewable liquid fuel. In this chapter enzymes, micro-organisms, and processes for ethanol production based on renewable resources are described.
Collapse
Affiliation(s)
- A Duwe
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany.
| | - N Tippkötter
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - R Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| |
Collapse
|
162
|
El Enshasy HA, Hanapi SZ, Abdelgalil SA, Malek RA, Pareek A. Mycoremediation: Decolourization Potential of Fungal Ligninolytic Enzymes. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68957-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
163
|
Zheng Y, Shi J, Tu M, Cheng YS. Principles and Development of Lignocellulosic Biomass Pretreatment for Biofuels. ADVANCES IN BIOENERGY 2017. [DOI: 10.1016/bs.aibe.2017.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
164
|
Lacerda Júnior GV, Noronha MF, de Sousa STP, Cabral L, Domingos DF, Sáber ML, de Melo IS, Oliveira VM. Potential of semiarid soil from Caatinga biome as a novel source for mining lignocellulose-degrading enzymes. FEMS Microbiol Ecol 2016; 93:fiw248. [PMID: 27986827 DOI: 10.1093/femsec/fiw248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/11/2016] [Accepted: 12/13/2016] [Indexed: 11/14/2022] Open
Abstract
The litterfall is the major organic material deposited in soil of Brazilian Caatinga biome, thus providing the ideal conditions for plant biomass-degrading microorganisms to thrive. Herein, the phylogenetic composition and lignocellulose-degrading capacity have been explored for the first time from a fosmid library dataset of Caatinga soil by sequence-based screening. A complex bacterial community dominated by Proteobacteria and Actinobacteria was unraveled. SEED subsystems-based annotations revealed a broad range of genes assigned to carbohydrate and aromatic compounds metabolism, indicating microbial ability to utilize plant-derived material. CAZy-based annotation identified 7275 genes encoding 37 glycoside hydrolases (GHs) families related to hydrolysis of cellulose, hemicellulose, oligosaccharides and other lignin-modifying enzymes. Taxonomic affiliation of genes showed high genetic potential of the phylum Acidobacteria for hemicellulose degradation, whereas Actinobacteria members appear to play an important role in celullose hydrolysis. Additionally, comparative analyses revealed greater GHs profile similarity among soils as compared to the digestive tract of animals capable of digesting plant biomass, particularly in the hemicellulases content. Combined results suggest a complex synergistic interaction of community members required for biomass degradation into fermentable sugars. This large repertoire of lignocellulolytic enzymes opens perspectives for mining potential candidates of biochemical catalysts for biofuels production from renewable resources and other environmental applications.
Collapse
Affiliation(s)
- Gileno V Lacerda Júnior
- Research Center for Chemistry, Biology and Agriculture (CPQBA), UNICAMP, Division of Microbial Resources, Zip code 13148-218, Paulínia, São Paulo, Brazil
| | - Melline F Noronha
- Research Center for Chemistry, Biology and Agriculture (CPQBA), UNICAMP, Division of Microbial Resources, Zip code 13148-218, Paulínia, São Paulo, Brazil
| | - Sanderson Tarciso P de Sousa
- Research Center for Chemistry, Biology and Agriculture (CPQBA), UNICAMP, Division of Microbial Resources, Zip code 13148-218, Paulínia, São Paulo, Brazil
| | - Lucélia Cabral
- Research Center for Chemistry, Biology and Agriculture (CPQBA), UNICAMP, Division of Microbial Resources, Zip code 13148-218, Paulínia, São Paulo, Brazil
| | - Daniela F Domingos
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0412, USA
| | - Mírian L Sáber
- Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation, EMBRAPA Environment, Jaguariúna, Zip code 13820-000, Brazil
| | - Itamar S de Melo
- Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation, EMBRAPA Environment, Jaguariúna, Zip code 13820-000, Brazil
| | - Valéria M Oliveira
- Research Center for Chemistry, Biology and Agriculture (CPQBA), UNICAMP, Division of Microbial Resources, Zip code 13148-218, Paulínia, São Paulo, Brazil
| |
Collapse
|
165
|
Biological valorization of low molecular weight lignin. Biotechnol Adv 2016; 34:1318-1346. [DOI: 10.1016/j.biotechadv.2016.10.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
|
166
|
Watson SB, Jüttner F. Malodorous volatile organic sulfur compounds: Sources, sinks and significance in inland waters. Crit Rev Microbiol 2016; 43:210-237. [DOI: 10.1080/1040841x.2016.1198306] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Susan B. Watson
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Canada Center for Inland Waters, Burlington, Ontario, Canada
| | - Friedrich Jüttner
- University of Zurich, Department of Limnology, Limnological Station, Kilchberg, Switzerland
| |
Collapse
|
167
|
Genome Sequence of Pandoraea sp. ISTKB, a Lignin-Degrading Betaproteobacterium, Isolated from Rhizospheric Soil. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01240-16. [PMID: 27811115 PMCID: PMC5095485 DOI: 10.1128/genomea.01240-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report here the genome sequence of Pandoraea sp. ISTKB, a betaproteobacterium isolated from rhizospheric soil in the backwaters of Alappuzha, Kerala, India. The strain is alkalotolerant and grows on medium containing lignin as a sole carbon source. Genes and pathways related to lignin degradation were complemented by genomic analysis.
Collapse
|
168
|
Asina F, Brzonova I, Voeller K, Kozliak E, Kubátová A, Yao B, Ji Y. Biodegradation of lignin by fungi, bacteria and laccases. BIORESOURCE TECHNOLOGY 2016; 220:414-424. [PMID: 27598570 DOI: 10.1016/j.biortech.2016.08.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 05/24/2023]
Abstract
Indulin AT biodegradation by basidiomycetous fungi, actinobacteria and commercial laccases was evaluated using a suite of chemical analysis methods. The extent of microbial degradation was confirmed by novel thermal carbon analysis (TCA), as the treatments altered the carbon desorption and pyrolysis temperature profiles in supernatants. Laccase treatments caused only minor changes, though with increases occurring in the 850°C and char precursor fractions. After fungal treatments, lignin showed a similar change in the TCA profile, along with a gradual decrease of the total carbon, signifying lignin mineralization (combined with polymerization). By contrast, bacteria produced phenolic monomers without their further catabolism. After 54days of cultivation, a 20wt% weight loss was observed only for fungi, Coriolus versicolor, corroborating the near-80% carbon mass balance closure obtained by TCA. Compositional changes in lignin as a result of biodegradation were confirmed by thermal desorption (TD)-pyrolysis-GC-MS validating the carbon fractionation obtained by TCA.
Collapse
Affiliation(s)
- Fnu Asina
- Department of Chemical Engineering, University of North Dakota, Grand Forks, ND, USA
| | - Ivana Brzonova
- Department of Chemical Engineering, University of North Dakota, Grand Forks, ND, USA
| | - Keith Voeller
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Evguenii Kozliak
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Bin Yao
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mine and Technology, Rapid City, SD, USA
| | - Yun Ji
- Department of Chemical Engineering, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
169
|
Bartholameuz EM, Hettiaratchi JPA, Kumar S. Enhanced performance of the aerobic landfill reactor by augmentation of manganese peroxidase. BIORESOURCE TECHNOLOGY 2016; 218:46-52. [PMID: 27347797 DOI: 10.1016/j.biortech.2016.06.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
The aim of the work discussed in this article was to determine the ability of an MnP augmented aerobic waste cell to reach stable conditions rapidly in terms of gas production, nutrient content and cellulose and hemicellulose to lignin ratio (C+H/L). Two types of experiments were conducted; small batch and laboratory scale lysimeter experiments. Results from batch experiments showed that enzyme added treatments have the capability to reach a stable C+H/L and lower gas production rates, faster than the treatments without enzyme addition. Enzyme enhancement of the lysimeter increased the rate of biodegradability of the waste; gas production increased more than two times and there was clear evidence of increase in nutrients (nitrogen, dissolved carbon, biological oxygen demand) in the lysimeter leachate.
Collapse
Affiliation(s)
- E M Bartholameuz
- Centre for Environmental Engineering Research and Education (CEERE), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - J P A Hettiaratchi
- Centre for Environmental Engineering Research and Education (CEERE), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.
| | - S Kumar
- Council of Scientific and Industrial Research-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, India
| |
Collapse
|
170
|
Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. Proc Natl Acad Sci U S A 2016; 113:E5802-E5811. [PMID: 27634497 DOI: 10.1073/pnas.1606043113] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Sphingobium sp. SYK-6 is a soil bacterium boasting a well-studied ligninolytic pathway and the potential for development into a microbial chassis for lignin valorization. An improved understanding of its metabolism will help researchers in the engineering of SYK-6 for the production of value-added chemicals through lignin valorization. We used 13C-fingerprinting, 13C metabolic flux analysis (13C-MFA), and RNA-sequencing differential expression analysis to uncover the following metabolic traits: (i) SYK-6 prefers alkaline conditions, making it an efficient host for the consolidated bioprocessing of lignin, and it also lacks the ability to metabolize sugars or organic acids; (ii) the CO2 release (i.e., carbon loss) from the ligninolysis-based metabolism of SYK-6 is significantly greater than the CO2 release from the sugar-based metabolism of Escherichia coli; (iii) the vanillin catabolic pathway (which is the converging point of majority of the lignin catabolic pathways) is coupled with the tetrahydrofolate-dependent C1 pathway that is essential for the biosynthesis of serine, histidine, and methionine; (iv) catabolic end products of lignin (pyruvate and oxaloacetate) must enter the tricarboxylic acid (TCA) cycle first and then use phosphoenolpyruvate carboxykinase to initiate gluconeogenesis; and (v) 13C-MFA together with RNA-sequencing differential expression analysis establishes the vanillin catabolic pathway as the major contributor of NAD(P)H synthesis. Therefore, the vanillin catabolic pathway is essential for SYK-6 to obtain sufficient reducing equivalents for its healthy growth; cosubstrate experiments support this finding. This unique energy feature of SYK-6 is particularly interesting because most heterotrophs rely on the transhydrogenase, the TCA cycle, and the oxidative pentose phosphate pathway to obtain NADPH.
Collapse
|
171
|
Machado LFM, Dixon N. Development and substrate specificity screening of an in vivo biosensor for the detection of biomass derived aromatic chemical building blocks. Chem Commun (Camb) 2016; 52:11402-11405. [PMID: 27722239 PMCID: PMC5048394 DOI: 10.1039/c6cc04559f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/24/2016] [Indexed: 12/01/2022]
Abstract
Measuring substrate and/or product concentration can create a major bottleneck for synthetic and biosynthetic processes. Here we report the development and substrate screening of a whole cell biosensor to detect biomass-derived aromatic chemical building blocks, supporting the use of sustainable feedstocks in the bulk and fine chemical industries.
Collapse
Affiliation(s)
- Leopoldo F M Machado
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Neil Dixon
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
172
|
Liguori R, Faraco V. Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy. BIORESOURCE TECHNOLOGY 2016; 215:13-20. [PMID: 27131870 DOI: 10.1016/j.biortech.2016.04.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 05/21/2023]
Abstract
The actualization of a circular economy through the use of lignocellulosic wastes as renewable resources can lead to reduce the dependence from fossil-based resources and contribute to a sustainable waste management. The integrated biorefineries, exploiting the overall lignocellulosic waste components to generate fuels, chemicals and energy, are the pillar of the circular economy. The biological treatment is receiving great attention for the biorefinery development since it is considered an eco-friendly alternative to the physico-chemical strategies to increase the biobased product recovery from wastes and improve saccharification and fermentation yields. This paper reviews the last advances in the biological treatments aimed at upgrading lignocellulosic wastes, implementing the biorefinery concept and advocating circular economy.
Collapse
Affiliation(s)
- Rossana Liguori
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126 Naples, Italy
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126 Naples, Italy; European Center "Europe Direct LUPT", Italy; Interdepartmental Center "R. d'Ambrosio, LUPT", Italy.
| |
Collapse
|
173
|
Palazzolo MA, Kurina-Sanz M. Microbial utilization of lignin: available biotechnologies for its degradation and valorization. World J Microbiol Biotechnol 2016; 32:173. [PMID: 27565783 DOI: 10.1007/s11274-016-2128-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
Abstract
Lignocellulosic biomasses, either from non-edible plants or from agricultural residues, stock biomacromolecules that can be processed to produce both energy and bioproducts. Therefore, they become major candidates to replace petroleum as the main source of energy. However, to shift the fossil-based economy to a bio-based one, it is imperative to develop robust biotechnologies to efficiently convert lignocellulosic streams in power and platform chemicals. Although most of the biomass processing facilities use celluloses and hemicelluloses to produce bioethanol and paper, there is no consolidated bioprocess to produce valuable compounds out of lignin at industrial scale available currently. Usually, lignin is burned to provide heat or it remains as a by-product in different streams, thus arising environmental concerns. In this way, the biorefinery concept is not extended to completion. Due to Nature offers an arsenal of biotechnological tools through microorganisms to accomplish lignin valorization or degradation, an increasing number of projects dealing with these tasks have been described recently. In this review, outstanding reports over the last 6 years are described, comprising the microbial utilization of lignin to produce a variety of valuable compounds as well as to diminish its ecological impact. Furthermore, perspectives on these topics are given.
Collapse
Affiliation(s)
- Martín A Palazzolo
- Instituto de Investigaciones en Tecnología Química, Universidad Nacional de San Luis, CONICET, Area de Química Orgánica, FQByF, 5700, San Luis, Argentina.
| | - Marcela Kurina-Sanz
- Instituto de Investigaciones en Tecnología Química, Universidad Nacional de San Luis, CONICET, Area de Química Orgánica, FQByF, 5700, San Luis, Argentina
| |
Collapse
|
174
|
Johnston SR, Boddy L, Weightman AJ. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol Ecol 2016; 92:fiw179. [PMID: 27559028 DOI: 10.1093/femsec/fiw179] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 01/02/2023] Open
Abstract
The fungal community within dead wood has received considerable study, but far less attention has been paid to bacteria in the same habitat. Bacteria have long been known to inhabit decomposing wood, but much remains underexplored about their identity and ecology. Bacteria within the dead wood environment must interact with wood-decay fungi, but again, very little is known about the form this takes; there are indications of both antagonistic and beneficial interactions within this fungal microbiome. Fungi are hypothesised to play an important role in shaping bacterial communities in wood, and conversely, bacteria may affect wood-decay fungi in a variety of ways. This minireview considers what is currently known about bacteria in wood and their interactions with fungi, and proposes possible associations based on examples from other habitats. It aims to identify key knowledge gaps and pressing questions for future research.
Collapse
Affiliation(s)
- Sarah R Johnston
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Lynne Boddy
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Andrew J Weightman
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
175
|
Musilova L, Ridl J, Polivkova M, Macek T, Uhlik O. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments. Int J Mol Sci 2016; 17:E1205. [PMID: 27483244 PMCID: PMC5000603 DOI: 10.3390/ijms17081205] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/20/2016] [Accepted: 07/15/2016] [Indexed: 12/19/2022] Open
Abstract
Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the "secondary compound hypothesis" and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes.
Collapse
Affiliation(s)
- Lucie Musilova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| | - Jakub Ridl
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| | - Marketa Polivkova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| | - Tomas Macek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| |
Collapse
|
176
|
van Kuijk SJA, Sonnenberg ASM, Baars JJP, Hendriks WH, Cone JW. The effect of particle size and amount of inoculum on fungal treatment of wheat straw and wood chips. J Anim Sci Biotechnol 2016; 7:39. [PMID: 27418962 PMCID: PMC4944425 DOI: 10.1186/s40104-016-0098-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/21/2016] [Indexed: 11/19/2022] Open
Abstract
Background The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinula edodes with various amounts of colonized millet grains (0.5, 1.5 or 3.0 % per g of wet weight of substrate) added to the substrates. Also, wheat straw and wood chips were chopped to either 0.5 or 2 cm. Effectiveness of the fungal treatment after 0, 2, 4, 6, or 8 wk of incubation was determined by changes in chemical composition, in vitro gas production (IVGP) as a measure for rumen degradability, and ergosterol content as a measure of fungal biomass. Results Incomplete colonization was observed for C. subvermispora treated wheat straw and L. edodes treated wood chips. The different particle sizes and amounts of inoculum tested, had no significant effects on the chemical composition and the IVGP of C. subvermispora treated wood chips. Particle size did influence L. edodes treatment of wheat straw. The L. edodes treatment of 2 cm wheat straw resulted in a more selective delignification and a higher IVGP than the smaller particles. Addition of 1.5 % or 3 % L. edodes inoculum to wheat straw resulted in more selective delignification and a higher IVGP than addition of 0.5 % inoculum. Conclusion Particle size and amount of inoculum did not have an effect on C. subvermispora treatment of wood chips. At least 1.5 % L. edodes colonized millet grains should be added to 2 cm wheat straw to result in an increased IVGP and acid detergent lignin (ADL) degradation.
Collapse
Affiliation(s)
- Sandra J A van Kuijk
- Animal Nutrition Group, Wageningen University, De Elst 1, 6708WD Wageningen, The Netherlands
| | - Anton S M Sonnenberg
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Johan J P Baars
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Wouter H Hendriks
- Animal Nutrition Group, Wageningen University, De Elst 1, 6708WD Wageningen, The Netherlands
| | - John W Cone
- Animal Nutrition Group, Wageningen University, De Elst 1, 6708WD Wageningen, The Netherlands
| |
Collapse
|
177
|
Doud DFR, Angenent LT. Single-Genotype Syntrophy by Rhodopseudomonas palustris Is Not a Strategy to Aid Redox Balance during Anaerobic Degradation of Lignin Monomers. Front Microbiol 2016; 7:1082. [PMID: 27471497 PMCID: PMC4943940 DOI: 10.3389/fmicb.2016.01082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/28/2016] [Indexed: 11/13/2022] Open
Abstract
Rhodopseudomonas palustris has emerged as a model microbe for the anaerobic metabolism of p-coumarate, which is an aromatic compound and a primary component of lignin. However, under anaerobic conditions, R. palustris must actively eliminate excess reducing equivalents through a number of known strategies (e.g., CO2 fixation, H2 evolution) to avoid lethal redox imbalance. Others had hypothesized that to ease the burden of this redox imbalance, a clonal population of R. palustris could functionally differentiate into a pseudo-consortium. Within this pseudo-consortium, one sub-population would perform the aromatic moiety degradation into acetate, while the other sub-population would oxidize acetate, resulting in a single-genotype syntrophy through acetate sharing. Here, the objective was to test this hypothesis by utilizing microbial electrochemistry as a research tool with the extracellular-electron-transferring bacterium Geobacter sulfurreducens as a reporter strain replacing the hypothesized acetate-oxidizing sub-population. We used a 2 × 4 experimental design with pure cultures of R. palustris in serum bottles and co-cultures of R. palustris and G. sulfurreducens in bioelectrochemical systems. This experimental design included growth medium with and without bicarbonate to induce non-lethal and lethal redox imbalance conditions, respectively, in R. palustris. Finally, the design also included a mutant strain (NifA*) of R. palustris, which constitutively produces H2, to serve both as a positive control for metabolite secretion (H2) to G. sulfurreducens, and as a non-lethal redox control for without bicarbonate conditions. Our results demonstrate that acetate sharing between different sub-populations of R. palustris does not occur while degrading p-coumarate under either non-lethal or lethal redox imbalance conditions. This work highlights the strength of microbial electrochemistry as a tool for studying microbial syntrophy.
Collapse
Affiliation(s)
- Devin F R Doud
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| | - Largus T Angenent
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| |
Collapse
|
178
|
Rinta-Kanto JM, Sinkko H, Rajala T, Al-Soud WA, Sørensen SJ, Tamminen MV, Timonen S. Natural decay process affects the abundance and community structure of Bacteria and Archaea in Picea abies logs. FEMS Microbiol Ecol 2016; 92:fiw087. [PMID: 27127195 DOI: 10.1093/femsec/fiw087] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2016] [Indexed: 11/14/2022] Open
Abstract
Prokaryotes colonize decaying wood and contribute to the degradation process, but the dynamics of prokaryotic communities during wood decay is still poorly understood. We studied the abundance and community composition of Bacteria and Archaea inhabiting naturally decaying Picea abies logs and tested the hypothesis that the variations in archaeal and bacterial abundances and community composition are coupled with environmental parameters related to the decay process. The data set comprises >500 logs at different decay stages from five geographical locations in south and central Finland. The results show that Bacteria and Archaea are an integral and dynamic component of decaying wood biota. The abundances of bacterial and archaeal 16S rRNA genes increase as wood decay progresses. Changes in bacterial community composition are clearly linked to the loss of density of wood, while specific fungal-bacterial interactions may also affect the distribution of bacterial taxa in decaying wood. Thaumarchaeota were prominent members of the archaeal populations colonizing decaying wood, providing further evidence of the versatility and cosmopolitan nature of this phylum in the environment. The composition and dynamics of the prokaryotic community suggest that they are an active component of biota that are involved in processing substrates in decaying wood material.
Collapse
Affiliation(s)
- J M Rinta-Kanto
- University of Helsinki, Department of Food and Environmental Sciences, Division of Microbiology, Viikinkaari 9, 00014 Helsinki, Finland
| | - H Sinkko
- University of Helsinki, Department of Food and Environmental Sciences, Division of Microbiology, Viikinkaari 9, 00014 Helsinki, Finland
| | - T Rajala
- Natural Resources Institute Finland, Jokiniemenkuja 1, 01370 Vantaa, Finland
| | - W A Al-Soud
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - S J Sørensen
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - M V Tamminen
- Swiss Federal Institute of Technology Zurich, Universitätstrasse 8-22, 8006 Zurich, Switzerland
| | - S Timonen
- University of Helsinki, Department of Food and Environmental Sciences, Division of Microbiology, Viikinkaari 9, 00014 Helsinki, Finland
| |
Collapse
|
179
|
Pistone L, Ottolina G, De S, Romero AA, Martins LO, Luque R. Encapsulated Laccases for the Room-Temperature Oxidation of Aromatics: Towards Synthetic Low-Molecular-Weight Lignins. CHEMSUSCHEM 2016; 9:756-62. [PMID: 26898517 DOI: 10.1002/cssc.201501427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/30/2015] [Indexed: 05/23/2023]
Abstract
A new approach for the encapsulation of laccases with enhanced activity and stability by biomimetic silica mineralisation is reported. A range of lignin model compounds, which includes syringol, syringyl acid, 4-vinylphenol, gallic acid, vanillic acid and guaiacol, was oxidised to lignin-type polymers by the silica-immobilised laccase systems at room temperature. The oxidation rate of the immobilised systems was lower than that of the free enzyme counterparts, but interesting products were observed with the new bio-catalytic materials, which showed reusability and good stability.
Collapse
Affiliation(s)
- Lucia Pistone
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131, Milano, Italy.
| | - Gianluca Ottolina
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131, Milano, Italy
| | - Sudipta De
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie(C-3), Ctra Nnal IV-A, Km 396, E14014, Córdoba, Spain
| | - Antonio A Romero
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie(C-3), Ctra Nnal IV-A, Km 396, E14014, Córdoba, Spain
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Rafael Luque
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie(C-3), Ctra Nnal IV-A, Km 396, E14014, Córdoba, Spain
| |
Collapse
|
180
|
Leo VV, Passari AK, Joshi JB, Mishra VK, Uthandi S, Ramesh N, Gupta VK, Saikia R, Sonawane VC, Singh BP. A Novel Triculture System (CC3) for Simultaneous Enzyme Production and Hydrolysis of Common Grasses through Submerged Fermentation. Front Microbiol 2016; 7:447. [PMID: 27065995 PMCID: PMC4815437 DOI: 10.3389/fmicb.2016.00447] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 03/18/2016] [Indexed: 11/13/2022] Open
Abstract
The perennial grasses are considered as a rich source of lignocellulosic biomass, making it a second generation alternative energy source and can diminish the use of fossil fuels. In this work, four perennial grasses Saccharum arundinaceum, Panicum antidotale, Thysanolaena latifolia, and Neyraudia reynaudiana were selected to verify their potential as a substrate to produce hydrolytic enzymes and to evaluate them as second generation energy biomass. Here, cellulase and hemi-cellulase producing three endophytic bacteria (Burkholderia cepacia BPS-GB3, Alcaligenes faecalis BPS-GB5 and Enterobacter hormaechei BPS-GB8) recovered from N. reynaudiana and S. arundinaceum were selected to develop a triculture (CC3) consortium. During 12 days of submerged cultivation, a 55–70% loss in dry weight was observed and the maximum activity of β-glucosidase (5.36–12.34 IU) and Xylanase (4.33 to 10.91 IU) were observed on 2nd and 6th day respectively, whereas FPase (0.26 to 0.53 IU) and CMCase (2.31 to 4.65 IU) showed maximum activity on 4th day. Around 15–30% more enzyme activity was produced in CC3 as compared to monoculture (CC1) and coculture (CC2) treatments, suggested synergetic interaction among the selected three bacterial strains. Further, the biomass was assessed using Fourier-transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The FTIR analysis provides important insights into the reduction of cellulose and hemicellulose moieties in CC3 treated biomass and SEM studies shed light into the disruption of surface structure leading to access of cellulose or hemicelluloses microtubules. The hydrolytic potential of the CC3 system was further enhanced due to reduction in lignin as evidenced by 1–4% lignin reduction in biomass compositional analysis. Additionally, laccase gene was detected from A. faecalis and E. hormaechei which further shows the laccase production potential of the isolates. To our knowledge, first time we develop an effective endophytic endogenous bacterial triculture system having potential for the production of extracellular enzymes utilizing S. arundinaceum and N. reynaudiana as lignocellulosic feedstock.
Collapse
Affiliation(s)
- Vincent V Leo
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram UniversityAizawl, India; Department of Biotechnology, J.J College for Arts and SciencePudukkottai, India
| | - Ajit K Passari
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University Aizawl, India
| | - J Beslin Joshi
- Biocatalysts Lab, Department of Agricultural Microbiology, Tamil Nadu Agricultural University Coimbatore, India
| | - Vineet K Mishra
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University Aizawl, India
| | - Sivakumar Uthandi
- Biocatalysts Lab, Department of Agricultural Microbiology, Tamil Nadu Agricultural University Coimbatore, India
| | - N Ramesh
- Department of Biotechnology, J.J College for Arts and Science Pudukkottai, India
| | - Vijai K Gupta
- Molecular Glyco-biotechnology Group, Department of Biochemistry, National University of Ireland Galway Galway, Ireland
| | - Ratul Saikia
- Biotechnology Division, CSIR-North East Institute of Science and Technology Jorhat, Assam, India
| | - Vijay C Sonawane
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology Chandigarh, India
| | - Bhim P Singh
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University Aizawl, India
| |
Collapse
|
181
|
Haq I, Kumar S, Kumari V, Singh SK, Raj A. Evaluation of bioremediation potentiality of ligninolytic Serratia liquefaciens for detoxification of pulp and paper mill effluent. JOURNAL OF HAZARDOUS MATERIALS 2016; 305:190-199. [PMID: 26686478 DOI: 10.1016/j.jhazmat.2015.11.046] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/09/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
Due to high pollution load and colour contributing substances, pulp and paper mill effluents cause serious aquatic and soil pollution. A lignin-degrading bacterial strain capable of decolourising Azure-B dye was identified as lignin peroxidase (LiP) producing strain LD-5. The strain was isolated from pulp and paper mill effluent contaminated site. Biochemical and 16S rDNA gene sequence analysis suggested that strain LD-5 belonged to the Serratia liquefaciens. The strain LD-5 effectively reduced pollution parameters (colour 72%, lignin 58%, COD 85% and phenol 95%) of real effluent after 144h of treatment at 30°C, pH 7.6 and 120rpm. Extracellular LiP produced by S. liquefaciens during effluent decolourisation was purified to homogeneity using ammonium sulfate (AMS) precipitation and DEAE cellulose column chromatography. The molecular weight of the purified lignin peroxidase was estimated to be ∼28kDa. Optimum pH and temperature for purified lignin peroxidase activity were determined as pH 6.0 and 40°C, respectively. Detoxified effluent was evaluated for residual toxicity by alkaline single cell (comet) gel electrophoresis (SCGE) assay using Saccharomyces cerevisiae MTCC 36 as model organism. The toxicity reduction to treated effluent was 49.4%. These findings suggest significant potential of S. liquefaciens for bioremediation of pulp and paper mill effluent.
Collapse
Affiliation(s)
- Izharul Haq
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), M.G. Marg, Lucknow, Uttar Pradesh 226 001, India
| | - Sharad Kumar
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), M.G. Marg, Lucknow, Uttar Pradesh 226 001, India
| | - Vineeta Kumari
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), M.G. Marg, Lucknow, Uttar Pradesh 226 001, India
| | - Sudheer Kumar Singh
- Microbiology Division, CSIR-Central Drug Research Institute (CDRI), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226 031, India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), M.G. Marg, Lucknow, Uttar Pradesh 226 001, India.
| |
Collapse
|
182
|
Wu SG, Shimizu K, Tang JKH, Tang YJ. Facilitate Collaborations among Synthetic Biology, Metabolic Engineering and Machine Learning. CHEMBIOENG REVIEWS 2016. [DOI: 10.1002/cben.201500024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
183
|
Nelsen MP, DiMichele WA, Peters SE, Boyce CK. Delayed fungal evolution did not cause the Paleozoic peak in coal production. Proc Natl Acad Sci U S A 2016; 113:2442-7. [PMID: 26787881 PMCID: PMC4780611 DOI: 10.1073/pnas.1517943113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organic carbon burial plays a critical role in Earth systems, influencing atmospheric O2 and CO2 concentrations and, thereby, climate. The Carboniferous Period of the Paleozoic is so named for massive, widespread coal deposits. A widely accepted explanation for this peak in coal production is a temporal lag between the evolution of abundant lignin production in woody plants and the subsequent evolution of lignin-degrading Agaricomycetes fungi, resulting in a period when vast amounts of lignin-rich plant material accumulated. Here, we reject this evolutionary lag hypothesis, based on assessment of phylogenomic, geochemical, paleontological, and stratigraphic evidence. Lignin-degrading Agaricomycetes may have been present before the Carboniferous, and lignin degradation was likely never restricted to them and their class II peroxidases, because lignin modification is known to occur via other enzymatic mechanisms in other fungal and bacterial lineages. Furthermore, a large proportion of Carboniferous coal horizons are dominated by unlignified lycopsid periderm with equivalent coal accumulation rates continuing through several transitions between floral dominance by lignin-poor lycopsids and lignin-rich tree ferns and seed plants. Thus, biochemical composition had little relevance to coal accumulation. Throughout the fossil record, evidence of decay is pervasive in all organic matter exposed subaerially during deposition, and high coal accumulation rates have continued to the present wherever environmental conditions permit. Rather than a consequence of a temporal decoupling of evolutionary innovations between fungi and plants, Paleozoic coal abundance was likely the result of a unique combination of everwet tropical conditions and extensive depositional systems during the assembly of Pangea.
Collapse
Affiliation(s)
| | - William A DiMichele
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
| | - Shanan E Peters
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706
| | - C Kevin Boyce
- Geological Sciences, Stanford University, Stanford, CA 94305;
| |
Collapse
|
184
|
Yamaguchi A, Isozaki K, Nakamura M, Takaya H, Watanabe T. Discovery of 12-mer peptides that bind to wood lignin. Sci Rep 2016; 6:21833. [PMID: 26903196 PMCID: PMC4794044 DOI: 10.1038/srep21833] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/02/2016] [Indexed: 11/09/2022] Open
Abstract
Lignin, an abundant terrestrial polymer, is the only large-volume renewable feedstock composed of an aromatic skeleton. Lignin has been used mostly as an energy source during paper production; however, recent interest in replacing fossil fuels with renewable resources has highlighted its potential value in providing aromatic chemicals. Highly selective degradation of lignin is pivotal for industrial production of paper, biofuels, chemicals, and materials. However, few studies have examined natural and synthetic molecular components recognizing the heterogeneous aromatic polymer. Here, we report the first identification of lignin-binding peptides possessing characteristic sequences using a phage display technique. The consensus sequence HFPSP was found in several lignin-binding peptides, and the outer amino acid sequence affected the binding affinity of the peptides. Substitution of phenylalanine7 with Ile in the lignin-binding peptide C416 (HFPSPIFQRHSH) decreased the affinity of the peptide for softwood lignin without changing its affinity for hardwood lignin, indicating that C416 recognised structural differences between the lignins. Circular dichroism spectroscopy demonstrated that this peptide adopted a highly flexible random coil structure, allowing key residues to be appropriately arranged in relation to the binding site in lignin. These results provide a useful platform for designing synthetic and biological catalysts selectively bind to lignin.
Collapse
Affiliation(s)
- Asako Yamaguchi
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Katsuhiro Isozaki
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Masaharu Nakamura
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Hikaru Takaya
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| |
Collapse
|
185
|
Hervé V, Ketter E, Pierrat JC, Gelhaye E, Frey-Klett P. Impact of Phanerochaete chrysosporium on the Functional Diversity of Bacterial Communities Associated with Decaying Wood. PLoS One 2016; 11:e0147100. [PMID: 26824755 PMCID: PMC4732817 DOI: 10.1371/journal.pone.0147100] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022] Open
Abstract
Bacteria and fungi naturally coexist in various environments including forest ecosystems. While the role of saprotrophic basidiomycetes in wood decomposition is well established, the influence of these fungi on the functional diversity of the wood-associated bacterial communities has received much less attention. Based on a microcosm experiment, we tested the hypothesis that both the presence of the white-rot fungus Phanerochaete chrysosporium and the wood, as a growth substrate, impacted the functional diversity of these bacterial communities. Microcosms containing sterile sawdust were inoculated with a microbial inoculum extracted from a forest soil, in presence or in absence of P. chrysosporium and subsequently, three enrichment steps were performed. First, bacterial strains were isolated from different microcosms previously analyzed by 16S rRNA gene-based pyrosequencing. Strains isolated from P. chrysosporium mycosphere showed less antagonism against this fungus compared to the strains isolated from the initial forest soil inoculum, suggesting a selection by the fungus of less inhibitory bacterial communities. Moreover, the presence of the fungus in wood resulted in a selection of cellulolytic and xylanolytic bacterial strains, highlighting the role of mycospheric bacteria in wood decomposition. Additionally, the proportion of siderophore-producing bacteria increased along the enrichment steps, suggesting an important role of bacteria in iron mobilization in decaying-wood. Finally, taxonomic identification of 311 bacterial isolates revealed, at the family level, strong similarities with the high-throughput sequencing data as well as with other studies in terms of taxonomic composition of the wood-associated bacterial community, highlighting that the isolated strains are representative of the wood-associated bacterial communities.
Collapse
Affiliation(s)
- Vincent Hervé
- INRA, Interactions Arbres–Microorganismes, UMR1136, F-54280 Champenoux, France
- Université de Lorraine, Interactions Arbres–Microorganismes, UMR1136, F-54500 Vandoeuvre-lès-Nancy, France
- * E-mail:
| | - Elodie Ketter
- INRA, Interactions Arbres–Microorganismes, UMR1136, F-54280 Champenoux, France
- Université de Lorraine, Interactions Arbres–Microorganismes, UMR1136, F-54500 Vandoeuvre-lès-Nancy, France
| | - Jean-Claude Pierrat
- INRA, UMR 1092 LERFOB, F-54280 Champenoux, France
- AgroParisTech, UMR 1092 LERFOB, F-54000 Nancy, France
| | - Eric Gelhaye
- INRA, Interactions Arbres–Microorganismes, UMR1136, F-54280 Champenoux, France
- Université de Lorraine, Interactions Arbres–Microorganismes, UMR1136, F-54500 Vandoeuvre-lès-Nancy, France
| | - Pascale Frey-Klett
- INRA, Interactions Arbres–Microorganismes, UMR1136, F-54280 Champenoux, France
- Université de Lorraine, Interactions Arbres–Microorganismes, UMR1136, F-54500 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
186
|
Lignin Biodegradation with Fungi, Bacteria and Enzymes for Producing Chemicals and Increasing Process Efficiency. PRODUCTION OF BIOFUELS AND CHEMICALS FROM LIGNIN 2016. [DOI: 10.1007/978-981-10-1965-4_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
187
|
Ma J, Zhang K, Liao H, Hector SB, Shi X, Li J, Liu B, Xu T, Tong C, Liu X, Zhu Y. Genomic and secretomic insight into lignocellulolytic system of an endophytic bacterium Pantoea ananatis Sd-1. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:25. [PMID: 26839588 PMCID: PMC4736469 DOI: 10.1186/s13068-016-0439-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 01/14/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND Exploring microorganisms especially bacteria associated with the degradation of lignocellulosic biomass shows great potentials in biofuels production. The rice endophytic bacterium Pantoea ananatis Sd-1 with strong lignocellulose degradation capacity has been reported in our previous study. However, a comprehensive analysis of its corresponding degradative system has not yet been conducted. The aim of this work is to identify and characterize the lignocellulolytic enzymes of the bacterium to understand its mechanism of lignocellulose degradation and facilitate its application in sustainable energy production. RESULTS The genomic analysis revealed that there are 154 genes encoding putative carbohydrate-active enzymes (CAZy) in P. ananatis Sd-1. This number is higher than that of compared cellulolytic and ligninolytic bacteria as well as other eight P. ananatis strains. The CAZy in P. ananatis Sd-1 contains a complete repertoire of enzymes required for cellulose and hemicellulose degradation. In addition, P. ananatis Sd-1 also possesses plenty of genes encoding potential ligninolytic relevant enzymes, such as multicopper oxidase, catalase/hydroperoxidase, glutathione S-transferase, and quinone oxidoreductase. Quantitative real-time PCR analysis of parts of genes encoding lignocellulolytic enzymes revealed that they were significantly up-regulated (at least P < 0.05) in presence of rice straw. Further identification of secretome of P. ananatis Sd-1 by nano liquid chromatography-tandem mass spectrometry confirmed that considerable amounts of proteins involved in lignocellulose degradation were only detected in rice straw cultures. Rice straw saccharification levels by the secretome of P. ananatis Sd-1 reached 129.11 ± 2.7 mg/gds. Correspondingly, the assay of several lignocellulolytic enzymes including endoglucanase, exoglucanase, β-glucosidase, xylanase-like, lignin peroxidase-like, and laccase-like activities showed that these enzymes were more active in rice straw relative to glucose substrates. The high enzymes activities were not attributed to bacterial cell densities but to the difference of secreted protein contents. CONCLUSION Our results indicate that P. ananatis Sd-1 can produce considerable lignocellulolytic enzymes including cellulases, hemicellulases, and ligninolytic relevant enzymes. The high activities of those enzymes could be efficiently induced by lignocellulosic biomass. This identified degradative system is valuable for the lignocellulosic bioenergy industry.
Collapse
Affiliation(s)
- Jiangshan Ma
- />Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Keke Zhang
- />Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Hongdong Liao
- />Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Stanton B. Hector
- />Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602 South Africa
- />DNA Sequencing Unit, Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602 South Africa
| | - Xiaowei Shi
- />Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Jianglin Li
- />State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Bin Liu
- />Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Ting Xu
- />Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Chunyi Tong
- />Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Xuanming Liu
- />Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Yonghua Zhu
- />Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| |
Collapse
|
188
|
Hunt CJ, Tanksale A, Haritos VS. Biochemical characterization of a halotolerant feruloyl esterase from Actinomyces spp.: refolding and activity following thermal deactivation. Appl Microbiol Biotechnol 2015; 100:1777-1787. [DOI: 10.1007/s00253-015-7044-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/13/2015] [Accepted: 09/24/2015] [Indexed: 11/28/2022]
|
189
|
Kumar M, Singh J, Singh MK, Singhal A, Thakur IS. Investigating the degradation process of kraft lignin by β-proteobacterium, Pandoraea sp. ISTKB. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15690-702. [PMID: 26018290 DOI: 10.1007/s11356-015-4771-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/22/2015] [Indexed: 05/07/2023]
Abstract
The present study investigates the kraft lignin (KL) degrading potential of novel alkalotolerant Pandoraea sp. ISTKB utilizing KL as sole carbon source. The results displayed 50.2 % reduction in chemical oxygen demand (COD) and 41.1 % decolorization after bacterial treatment. The maximum lignin peroxidase (LiP) and manganese peroxidase (MnP) activity detected was 2.73 and 4.33 U ml(-1), respectively, on day 3. The maximum extracellular and intracellular laccase activities observed were 1.32 U ml(-1) on day 5 and 4.53 U ml(-1) on day 4, respectively. The decolorization and degradation was maximum on day 2. Further, it registered an increase with the production of extracellular laccase. This unusual trend of decolorization and degradation was studied using various aromatic compounds and dyes. SEM and FTIR results indicated significant change in surface morphology and functional group composition during the course of degradation. Gas chromatography and mass spectroscopy (GC-MS) analysis confirmed KL degradation by emergence of new peaks and the identification of low molecular weight aromatic intermediates in treated sample. The degradation of KL progressed through the generation of phenolic intermediates. The identified intermediates implied the degradation of hydroxyphenyl, ferulic acid, guaiacyl, syringyl, phenylcoumarane, and pinoresinol components commonly found in lignin. The degradation, decolorization, and GC-MS analysis indicated potential application of the isolate Pandoraea sp. ISTKB in treatment of lignin-containing pollutants and KL valorization.
Collapse
Affiliation(s)
- Madan Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Jyoti Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Manoj Kumar Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Anjali Singhal
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
190
|
Li W, Li Q, Zheng L, Wang Y, Zhang J, Yu Z, Zhang Y. Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. BIORESOURCE TECHNOLOGY 2015. [PMID: 26210140 DOI: 10.1016/j.biortech.2015.06.112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bioenergy has become attractive as alternatives of gradually exhausted fossil fuel. Obtaining high grade bioenergy from lignocellulose is attractive that can gradually meet the demand. This study reported biogas and biodiesel were produced from corncob by a two-step bioprocess, biogas was produced from corncob by anaerobic fermentation, then biogas residue was converted by black soldier fly larvae, and then biodiesel was produced from larvae grease. 86.70 L biogas was obtained from 400 g corncob with the accumulation of biogas yield of 220.71 mL/g VS(added) by anaerobic digestion. Besides, 3.17 g of biodiesel was produced from grease after inoculating black soldier fly larvae into 400 g biogas residue. Meanwhile, the results showed that the addition of black soldier fly larvae could be effective for the degradation of lignocellulose and the accumulation of grease.
Collapse
Affiliation(s)
- Wu Li
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Qing Li
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Yuanyuan Wang
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Yanlin Zhang
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, PR China.
| |
Collapse
|
191
|
Phylogenetic and kinetic characterization of a suite of dehydrogenases from a newly isolated bacterium, strain SG61-1L, that catalyze the turnover of guaiacylglycerol-β-guaiacyl ether stereoisomers. Appl Environ Microbiol 2015; 81:8164-76. [PMID: 26386069 PMCID: PMC4651090 DOI: 10.1128/aem.01573-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022] Open
Abstract
Lignin is a complex aromatic polymer found in plant cell walls that makes up 15 to 40% of plant biomass. The degradation of lignin substructures by bacteria is of emerging interest because it could provide renewable alternative feedstocks and intermediates for chemical manufacturing industries. We have isolated a bacterium, strain SG61-1L, that rapidly degrades all of the stereoisomers of one lignin substructure, guaiacylglycerol-β-guaiacyl ether (GGE), which contains a key β-O-4 linkage found in most intermonomer linkages in lignin. In an effort to understand the rapid degradation of GGE by this bacterium, we heterologously expressed and kinetically characterized a suite of dehydrogenase candidates for the first known step of GGE degradation. We identified a clade of active GGE dehydrogenases and also several other dehydrogenases outside this clade that were all able to oxidize GGE. Several candidates exhibited stereoselectivity toward the GGE stereoisomers, while others had higher levels of catalytic performance than previously described GGE dehydrogenases for all four stereoisomers, indicating a variety of potential applications for these enzymes in the manufacture of lignin-derived commodities.
Collapse
|
192
|
Gazi S, Hung Ng WK, Ganguly R, Putra Moeljadi AM, Hirao H, Soo HS. Selective photocatalytic C-C bond cleavage under ambient conditions with earth abundant vanadium complexes. Chem Sci 2015; 6:7130-7142. [PMID: 29861949 PMCID: PMC5951195 DOI: 10.1039/c5sc02923f] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/10/2015] [Indexed: 11/21/2022] Open
Abstract
Chemoselective aliphatic carbon–carbon bond activation photocatalyzed by vanadium oxo complexes under ambient conditions and visible light.
Selective C–C bond cleavage under ambient conditions is a challenging chemical transformation that can be a valuable tool for organic syntheses and macromolecular disassembly. Herein, we show that base metal vanadium photocatalysts can harvest visible light to effect the chemoselective C–C bond cleavage of lignin model compounds under ambient conditions. Lignin, a major aromatic constituent of non-food biomass, is an inexpensive, accessible source of fine chemical feedstocks such as phenols and aryl ethers. However, existing lignin degradation technologies are harsh and indiscriminately degrade valuable functional groups to produce intractable mixtures. The selective, photocatalytic depolymerization of lignin remains underexplored. In the course of our studies on lignin model compounds, we have uncovered a new C–C activation reaction that takes place under exceptionally mild conditions with high conversions. We present our fundamental studies on representative lignin model compounds, with the aim of expanding and generalizing the substrate scope in the future. Visible light is employed in the presence of earth-abundant vanadium oxo catalysts under ambient conditions. Selective C–C bond cleavage leads to valuable and functionally rich fine chemicals such as substituted aryl aldehydes and formates. Isotope labeling experiments, product analyses, and intermediate radical trapping, together with density functional theory studies, suggest a unique pathway that involves a photogenerated T1 state during the C–C bond cleavage reactions. Our study demonstrates a sustainable approach to harvest sunlight for an unusual, selective bond activation, which can potentially be applied in organic transformations and biomass valorization.
Collapse
Affiliation(s)
- Sarifuddin Gazi
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . ; .,Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE) , 1 Create Way , Singapore 138602
| | - Wilson Kwok Hung Ng
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . ;
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . ;
| | - Adhitya Mangala Putra Moeljadi
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . ;
| | - Hajime Hirao
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . ;
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . ; .,Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE) , 1 Create Way , Singapore 138602
| |
Collapse
|
193
|
Picart P, de María PD, Schallmey A. From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization. Front Microbiol 2015; 6:916. [PMID: 26388858 PMCID: PMC4560021 DOI: 10.3389/fmicb.2015.00916] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/21/2015] [Indexed: 11/13/2022] Open
Abstract
The set-up of biorefineries for the valorization of lignocellulosic biomass will be core in the future to reach sustainability targets. In this area, biomass-degrading enzymes are attracting significant research interest for their potential in the production of chemicals and biofuels from renewable feedstock. Glutathione-dependent β-etherases are emerging enzymes for the biocatalytic depolymerization of lignin, a heterogeneous aromatic polymer abundant in nature. They selectively catalyze the reductive cleavage of β-O-4 aryl-ether bonds which account for 45–60% of linkages present in lignin. Hence, application of β-etherases in lignin depolymerization would enable a specific lignin breakdown, selectively yielding (valuable) low-molecular-mass aromatics. Albeit β-etherases have been biochemically known for decades, only very recently novel β-etherases have been identified and thoroughly characterized for lignin valorization, expanding the enzyme toolbox for efficient β-O-4 aryl-ether bond cleavage. Given their emerging importance and potential, this mini-review discusses recent developments in the field of β-etherase biocatalysis covering all aspects from enzyme identification to biocatalytic applications with real lignin samples.
Collapse
Affiliation(s)
- Pere Picart
- Institute of Biotechnology, RWTH Aachen University , Aachen, Germany
| | | | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig , Braunschweig, Germany
| |
Collapse
|
194
|
Zhang S, Ma G, Liu Y, Ling B. Theoretical study of the hydrolysis mechanism of 2-pyrone-4,6-dicarboxylate (PDC) catalyzed by LigI. J Mol Graph Model 2015; 61:21-9. [DOI: 10.1016/j.jmgm.2015.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/09/2015] [Accepted: 06/20/2015] [Indexed: 11/27/2022]
|
195
|
Chen C, Shrestha R, Jia K, Gao PF, Geisbrecht BV, Bossmann SH, Shi J, Li P. Characterization of Dye-decolorizing Peroxidase (DyP) from Thermomonospora curvata Reveals Unique Catalytic Properties of A-type DyPs. J Biol Chem 2015. [PMID: 26205819 DOI: 10.1074/jbc.m115.658807] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dye-decolorizing peroxidases (DyPs) comprise a new family of heme peroxidases, which has received much attention due to their potential applications in lignin degradation. A new DyP from Thermomonospora curvata (TcDyP) was identified and characterized. Unlike other A-type enzymes, TcDyP is highly active toward a wide range of substrates including model lignin compounds, in which the catalytic efficiency with ABTS (kcat(app)/Km(app) = (1.7 × 10(7)) m(-1) s(-1)) is close to that of fungal DyPs. Stopped-flow spectroscopy was employed to elucidate the transient intermediates as well as the catalytic cycle involving wild-type (wt) and mutant TcDyPs. Although residues Asp(220) and Arg(327) are found necessary for compound I formation, His(312) is proposed to play roles in compound II reduction. Transient kinetics of hydroquinone (HQ) oxidation by wt-TcDyP showed that conversion of the compound II to resting state is a rate-limiting step, which will explain the contradictory observation made with the aspartate mutants of A-type DyPs. Moreover, replacement of His(312) and Arg(327) has significant effects on the oligomerization and redox potential (E°') of the enzyme. Both mutants were found to promote the formation of dimeric state and to shift E°' to a more negative potential. Not only do these results reveal the unique catalytic property of the A-type DyPs, but they will also facilitate the development of these enzymes as lignin degraders.
Collapse
Affiliation(s)
| | | | | | - Philip F Gao
- the Protein Production Group, University of Kansas, Lawrence, Kansas 66045
| | | | | | - Jishu Shi
- Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506 and
| | - Ping Li
- From the Departments of Chemistry,
| |
Collapse
|
196
|
Fernández-Fueyo E, Linde D, Almendral D, López-Lucendo MF, Ruiz-Dueñas FJ, Martínez AT. Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II). Appl Microbiol Biotechnol 2015; 99:8927-42. [PMID: 25967658 PMCID: PMC4619462 DOI: 10.1007/s00253-015-6665-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 12/29/2022]
Abstract
Two phylogenetically divergent genes of the new family of dye-decolorizing peroxidases (DyPs) were found during comparison of the four DyP genes identified in the Pleurotus ostreatus genome with over 200 DyP genes from other basidiomycete genomes. The heterologously expressed enzymes (Pleos-DyP1 and Pleos-DyP4, following the genome nomenclature) efficiently oxidize anthraquinoid dyes (such as Reactive Blue 19), which are characteristic DyP substrates, as well as low redox-potential dyes (such as 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) and substituted phenols. However, only Pleos-DyP4 oxidizes the high redox-potential dye Reactive Black 5, at the same time that it displays high thermal and pH stability. Unexpectedly, both enzymes also oxidize Mn2+ to Mn3+, albeit with very different catalytic efficiencies. Pleos-DyP4 presents a Mn2+ turnover (56 s−1) nearly in the same order of the two other Mn2+-oxidizing peroxidase families identified in the P. ostreatus genome: manganese peroxidases (100 s−1 average turnover) and versatile peroxidases (145 s−1 average turnover), whose genes were also heterologously expressed. Oxidation of Mn2+ has been reported for an Amycolatopsis DyP (24 s−1) and claimed for other bacterial DyPs, albeit with lower activities, but this is the first time that Mn2+ oxidation is reported for a fungal DyP. Interestingly, Pleos-DyP4 (together with ligninolytic peroxidases) is detected in the secretome of P. ostreatus grown on different lignocellulosic substrates. It is suggested that generation of Mn3+ oxidizers plays a role in the P. ostreatus white-rot lifestyle since three different families of Mn2+-oxidizing peroxidase genes are present in its genome being expressed during lignocellulose degradation.
Collapse
Affiliation(s)
- Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Dolores Linde
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - David Almendral
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - María F López-Lucendo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | | | - Angel T Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040, Madrid, Spain.
| |
Collapse
|
197
|
Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and site-directed mutagenesis study. Biochem J 2015; 466:253-62. [PMID: 25495127 PMCID: PMC4357238 DOI: 10.1042/bj20141211] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H₂O₂-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (k(cat) > 200 s⁻¹) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 k(cat) ~20 s⁻¹) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant.
Collapse
|
198
|
Schmitt D, Regenbrecht C, Hartmer M, Stecker F, Waldvogel SR. Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption. Beilstein J Org Chem 2015; 11:473-80. [PMID: 25977721 PMCID: PMC4419547 DOI: 10.3762/bjoc.11.53] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/24/2015] [Indexed: 11/23/2022] Open
Abstract
The oxidative degradation of lignin into a variety of valuable products has been under investigation since the first half of the last century. Especially, the chance to claim this cheap, abundant and renewable source for the production of the important aroma chemical vanillin (1) was one of the major driving forces of lignin research. So far most of the developed methods fail in technical application since no viable concept for work-up is included. This work represents a combined approach of electrochemical conversion of Kraft lignin and product recovery by adsorption on a strongly basic anion exchange resin. Electrolysis conditions are optimized regarding reaction temperatures below 100 °C allowing operation of aqueous electrolytes in simple experimental set-up. Employing ion exchange resins gives rise to a selective removal of low molecular weight phenols from the strongly alkaline electrolyte without acidification and precipitation of remaining lignin. The latter represents a significant advantage compared with conventional work-up protocols of lignin solutions.
Collapse
Affiliation(s)
- Dominik Schmitt
- Institute for Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Carolin Regenbrecht
- Institute for Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany ; BASF SE, GCN/ES-M311, 67056 Ludwigshafen, Germany
| | - Marius Hartmer
- Institute for Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | | | - Siegfried R Waldvogel
- Institute for Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
199
|
Affiliation(s)
- James Harrison
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
200
|
Mathews SL, Pawlak J, Grunden AM. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Appl Microbiol Biotechnol 2015; 99:2939-54. [PMID: 25722022 DOI: 10.1007/s00253-015-6471-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 01/10/2023]
Abstract
Lignocellulose is a term for plant materials that are composed of matrices of cellulose, hemicellulose, and lignin. Lignocellulose is a renewable feedstock for many industries. Lignocellulosic materials are used for the production of paper, fuels, and chemicals. Typically, industry focuses on transforming the polysaccharides present in lignocellulose into products resulting in the incomplete use of this resource. The materials that are not completely used make up the underutilized streams of materials that contain cellulose, hemicellulose, and lignin. These underutilized streams have potential for conversion into valuable products. Treatment of these lignocellulosic streams with bacteria, which specifically degrade lignocellulose through the action of enzymes, offers a low-energy and low-cost method for biodegradation and bioconversion. This review describes lignocellulosic streams and summarizes different aspects of biological treatments including the bacteria isolated from lignocellulose-containing environments and enzymes which may be used for bioconversion. The chemicals produced during bioconversion can be used for a variety of products including adhesives, plastics, resins, food additives, and petrochemical replacements.
Collapse
Affiliation(s)
- Stephanie L Mathews
- Department of Plant and Microbial Biology, North Carolina State University, 4550A Thomas Hall, Campus Box 7612, Raleigh, NC, 27695, USA,
| | | | | |
Collapse
|