151
|
Que J, Garman KS, Souza RF, Spechler SJ. Pathogenesis and Cells of Origin of Barrett's Esophagus. Gastroenterology 2019; 157:349-364.e1. [PMID: 31082367 PMCID: PMC6650338 DOI: 10.1053/j.gastro.2019.03.072] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
In patients with Barrett's esophagus (BE), metaplastic columnar mucosa containing epithelial cells with gastric and intestinal features replaces esophageal squamous mucosa damaged by gastroesophageal reflux disease. This condition is estimated to affect 5.6% of adults in the United States, and is a major risk factor for esophageal adenocarcinoma. Despite the prevalence and importance of BE, its pathogenesis is incompletely understood and there are disagreements over the cells of origin. We review mechanisms of BE pathogenesis, including transdifferentiation and transcommitment, and discuss potential cells of origin, including basal cells of the squamous epithelium, cells of esophageal submucosal glands and their ducts, cells of the proximal stomach, and specialized populations of cells at the esophagogastric junction (residual embryonic cells and transitional basal cells). We discuss the concept of metaplasia as a wound-healing response, and how cardiac mucosa might be the precursor of the intestinal metaplasia of BE. Finally, we discuss shortcomings in current diagnostic criteria for BE that have important clinical implications.
Collapse
Affiliation(s)
- Jianwen Que
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, New York, New York.
| | - Katherine S. Garman
- Division of Gastroenterology, Department of Medicine, Duke University School of Medicine. Durham, NC
| | - Rhonda F. Souza
- Center for Esophageal Diseases, Department of Medicine, Baylor University Medical Center at Dallas, and Center for Esophageal Research, Department of Medicine, Baylor Scott & White Research Institute, Dallas, TX
| | - Stuart Jon Spechler
- Center for Esophageal Diseases, Department of Medicine, Baylor University Medical Center at Dallas, Dallas, Texas; Center for Esophageal Research, Department of Medicine, Baylor Scott & White Research Institute, Dallas, Texas.
| |
Collapse
|
152
|
Roudebush C, Catala-Valentin A, Andl T, Le Bras GF, Andl CD. Activin A-mediated epithelial de-differentiation contributes to injury repair in an in vitro gastrointestinal reflux model. Cytokine 2019; 123:154782. [PMID: 31369967 DOI: 10.1016/j.cyto.2019.154782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 02/08/2023]
Abstract
Reflux esophagitis is a result of esophageal exposure to acid and bile during episodes of gastroesophageal reflux. Aside from chemical injury to the esophageal epithelium, it has been shown that acid and bile induce cytokine-mediated injury by stimulating the release of pro-inflammatory cytokines. During the repair and healing process following reflux injury, the squamous esophageal cells are replaced with a columnar epithelium causing Barrett's metaplasia, which predisposes patients to esophageal adenocarcinoma. We identified a novel player in gastroesophageal reflux injury, the TGFβ family member Activin A (ActA), which is a known regulator of inflammation and tissue repair. In this study, we show that in response to bile salt and acidified media (pH 4) exposure, emulating the milieu to which the distal esophagus is exposed during gastroesophageal reflux, long-term treated, tolerant esophageal keratinocytes exhibit increased ActA secretion and a pro-inflammatory cytokine signature. Furthermore, we noted increased motility and expression of the stem cell markers SOX9, LGR5 and DCLK1 supporting the notion that repair mechanisms were activated in the bile salt/acid-tolerant keratinocytes. Additionally, these experiments demonstrated that de-differentiation as characterized by the induction of YAP1, FOXO3 and KRT17 was altered by ActA/TGFβ signaling. Collectively, our results suggest a pivotal role for ActA in the inflammatory GERD environment by modulating esophageal tissue repair and de-differentiation.
Collapse
Affiliation(s)
- Cedric Roudebush
- Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., BMS, Building 20, rm 223, Orlando, FL 32816, United States
| | - Alma Catala-Valentin
- Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., BMS, Building 20, rm 223, Orlando, FL 32816, United States
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., BMS, Building 20, rm 223, Orlando, FL 32816, United States
| | - Gregoire F Le Bras
- Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., BMS, Building 20, rm 223, Orlando, FL 32816, United States
| | - Claudia D Andl
- Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., BMS, Building 20, rm 223, Orlando, FL 32816, United States.
| |
Collapse
|
153
|
Straub D, Oude Elferink RPJ, Jansen PLM, Bergman JJGHM, Parikh K, Krishnadath KK. Glyco-conjugated bile acids drive the initial metaplastic gland formation from multi-layered glands through crypt-fission in a murine model. PLoS One 2019; 14:e0220050. [PMID: 31348796 PMCID: PMC6660124 DOI: 10.1371/journal.pone.0220050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Bile acid reflux is known to be associated with the development of Barrett’s esophagus and esophageal adenocarcinoma (EAC), yet the role of specific bile acids and the mechanism behind the metaplastic changes is unclear. Here, we demonstrate that multi-layered glandular structures at the squamo-columnar junction in mice contain multiple cell lineages, which resemble the human esophageal submucosal gland ducts. Exposing mice to patient’s refluxates induced expansion of multi-layered glandular structures and development of columnar metaplasia at the squamo-columnar junction. The glycine conjugated bile acids induced an intestinal type of metaplasia more typical for Barrett’s esophagus. Through lineage tracing, we excluded the involvement of K5+, DCLK1+, and LGR5+ progenitor cells as the primary source in the development of the glandular metaplastic epithelium. We show that the mechanism behind development of metaplasia involves crypt fission and may be independent of stem cell proliferation. Our findings support the hypothesis that in humans, BE arises from non-squamous cells residing in submucosal gland ducts and that induction of intestinal type of metaplasia is most effectively induced by glycine-conjugated bile acids. These novel insights may lead to more effective strategies to prevent development of Barrett’s esophagus and esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Danielle Straub
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, The Netherlands
| | | | - Peter L. M. Jansen
- Department of Gastrointestinal and Liver Disease, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Kaushal Parikh
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Kausilia K. Krishnadath
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, The Netherlands
- Department of Gastroenterology, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
154
|
Mukaisho KI, Kanai S, Kushima R, Nakayama T, Hattori T, Sugihara H. Barretts's carcinogenesis. Pathol Int 2019; 69:319-330. [PMID: 31290583 PMCID: PMC6851828 DOI: 10.1111/pin.12804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
Barrett's esophagus is considered a precancerous lesion of esophageal adenocarcinoma (EAC). Long‐segment Barrett's esophagus, which is generally associated with intestinal metaplasia, has a higher rate of carcinogenesis than short‐segment Barrett's esophagus, which is mainly composed of cardiac‐type mucosa. However, a large number of cases reportedly develop EAC from the cardiac‐type mucosa which has the potential to involve intestinal phenotypes. There is no consensus regarding whether the definition of Barrett's epithelium should include intestinal metaplasia. Basic researches using rodent models have provided information regarding the origins of Barrett's epithelium. Nevertheless, it remains unclear whether differentiated gastric columnar epithelium or stratified esophageal squamous epithelium undergo transdifferentiation into the intestinal‐type columnar epithelium, transcommittment into the columnar epithelium, or whether the other pathways exist. Reflux of duodenal fluid including bile acids into the stomach may occur when an individual lies down after eating, which could cause the digestive juices to collect in the fornix of the stomach. N‐nitroso‐bile acids are produced with nitrites that are secreted from the salivary glands, and bile acids can drive expression of pro‐inflammatory cytokines via EGFR or the NF‐κB pathway. These steps may contribute significantly to carcinogenesis.
Collapse
Affiliation(s)
- Ken-Ichi Mukaisho
- Division of Molecular and Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Shunpei Kanai
- Division of Molecular and Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Ryoji Kushima
- Division of Diagnostic Pathology, Shiga University of Medical Science Hospital, Otsu, Japan
| | - Takahisa Nakayama
- Division of Molecular and Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Takanori Hattori
- Division of Molecular and Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hiroyuki Sugihara
- Division of Molecular and Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
155
|
Rajendra S, Sharma P. Transforming human papillomavirus infection and the esophageal transformation zone: prime time for total excision/ablative therapy? Dis Esophagus 2019; 32:5477363. [PMID: 31304554 DOI: 10.1093/dote/doz008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High-risk human papillomavirus (hr-HPV) infection is causal for almost all cervical malignancy (both squamous and adenocarcinoma), 90% of anal neoplasia, 70% of penile tumors, and 25% of head and neck cancers. The shared immunogenetics of cervical and esophageal malignancy suggests that HPV infection could well be a common denominator in the etiology of both cancers. In this regard, we have demonstrated that transcriptionally active hr-HPV (genotypes 16 and 18) is strongly associated with Barrett's dysplasia and esophageal adenocarcinoma. Increasing hr-HPV viral load and integration status has been linked with greater disease severity along the Barrett metaplasia-dysplasia-adenocarcinoma sequence as has been demonstrated in cervical intraepithelial neoplasia and cancer. HPV infections in both the cervix and esophagus are both focal, i.e., present in greater quantities at the squamocolumnar junction (SCJ). HPV affinity is to junctional tissue, as basal cells are particularly accessible at the squamocolumnar transformation zone and especially susceptible to this viral infection. We have postulated that progressive acid damage to the esophagus increases the likelihood of mucosal breaks enabling the virus to enter the basal layer of the transformation zone. The SCJ is the transformation zone of the esophagus and is strikingly similar to the transition zone (ectoendocervical SCJ) of the uterine cervix where almost all high-grade cervical lesions and cancers arise including 80% of adenocarcinomas. These transition zone cells exhibit features of squamous epithelium as well as glandular cells, which have been described in both Barrett's esophagus and cervical mucosa. Barrett's esophagus (BE) is derived from a discrete population of embryonic cells residing at the SCJ. There is loss of SCJ immune-phenotype following excision without regeneration at other junctional sites. Prevention of cervical cancer in up to 80-95% of patients with screen-detected CIN is dependent on the excision/ablation of the entire transformation zone. The persistence of hr-HPV 16/18 following eradication of CIN is a significant risk factor for recurrence. Similarly, we have demonstrated that persistent hr-HPV infection 16/18 and p53 overexpression are associated with treatment failure after endoscopic ablation of BD/EAC. Thus, we believe that excision/ablation of the SCJ in patients with BD/intramucosal EAC should be performed to reduce the potential malignant risk. We propose to test this hypothesis by a multicenter randomized controlled trial whereby patients (both HPV positive and those which are virus negative) will be allocated into two arms: complete excision of the SCJ via endoscopic mucosal resection (EMR) in addition to radiofrequency ablation (RFA) ± EMR of BD/intramucosal EAC (experimental arm) versus current standard of care (RFA ± EMR) of said lesions. Treatment efficacy in both groups will be evaluated by comparing disease elimination, regression/progression, and recurrence (if any). All patients would be entered into an intensive endoscopic surveillance protocol (biannually) for at least 2 years with lesional/neosquamous biopsies to compare the recurrence rate of both dysplasia/neoplasia in both arms. Viral (HPV DNA/p16INK4A/E6/E7 mRNA) and host biomarkers (e.g., p53) will be analyzed both at baseline and posttreatment intervals. A positive study would initiate development of tools best suited for SCJ destruction.
Collapse
Affiliation(s)
- S Rajendra
- Gastro-Intestinal Viral Oncology Group, Ingham Institute for Applied Medical Research.,South Western Sydney Clinical School, University of New South Wales, Kensington, Sydney.,Department of Gastroenterology & Hepatology, Bankstown-Lidcombe Hospital, South Western Sydney Local Health Network, Bankstown, Sydney, New South Wales, Australia
| | - P Sharma
- Division of Gastroenterology and Hepatology, Veterans Affairs Medical Centre and University of Kansas City, Missouri, USA
| |
Collapse
|
156
|
The cyclical hit model: how paligenosis might establish the mutational landscape in Barrett's esophagus and esophageal adenocarcinoma. Curr Opin Gastroenterol 2019; 35:363-370. [PMID: 31021922 DOI: 10.1097/mog.0000000000000540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW In this review, we explore a paligenosis-based model to explain Barrett's esophagus development and progression: 'the cyclical hit model.' RECENT FINDINGS Genomic analyses have highlighted the high mutational burden of esophageal adenocarcinoma, Barrett's esophagus, and even normal esophageal epithelium. Somatic mutations in key genes including TP53 occur early in the neoplastic progression sequence of Barrett's esophagus, whereas chromosomal amplification resulting in oncogene activation occurs as a critical late event. Paligenosis is a shared injury response mechanism characterized by activation of autophagy, expression of progenitor markers, and increased mTORC signaling-induced cell-cycle reentry. In the setting of chronic injury/inflammation, cycles of paligenosis may allow accumulation of mutations until eventually the mutational burden, in concert perhaps with mutations in key driver oncogenes, finally alters the cell's ability to redifferentiate, leading to the emergence of a potential neoplastic clone. SUMMARY Under conditions of chronic gastroesophageal refluxate exposure, the normal esophageal squamous epithelium might undergo multiple cycles of paligenosis, allowing initially silent mutations to accumulate until key events impart mutant clones with an oncogenic survival advantage.
Collapse
|
157
|
Tan Y, Wei Z, Chen J, An J, Li M, Zhou L, Men Y, Zhao S. Save your gut save your age: The role of the microbiome in stem cell ageing. J Cell Mol Med 2019; 23:4866-4875. [PMID: 31207055 PMCID: PMC6653314 DOI: 10.1111/jcmm.14373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/06/2019] [Accepted: 04/21/2019] [Indexed: 12/14/2022] Open
Abstract
The tremendous importance of microbiota in microbial homoeostasis, alterations in metabolism and both innate and adaptive immune systems has been well established. A growing body of evidence support that dysbiosis or compositional changes in gut microbiota is linked to the ageing of stem cells in terms of dysregulations of metabolism, aberrant activation of the immune system as well as promoting epigenetic instability of stem cell. In this concise review, we elucidate recent emerging topics on microbiotic alterations and underlying mechanisms in stem cell ageing.
Collapse
Affiliation(s)
- Yi Tan
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Zongke Wei
- Shenzhen Rekindle Biotech Co., Ltd., Shenzhen, China
| | - Jiaoliu Chen
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Junli An
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Manling Li
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Liuyun Zhou
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Yanhua Men
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Shan Zhao
- Shenzhen Rekindle Biotech Co., Ltd., Shenzhen, China
| |
Collapse
|
158
|
Sen M, Hahn F, Black TA, DeMarshall M, Porter W, Snowden E, Yee SS, Tong F, Ferguson M, Fleshman EN, Nakagawa H, Falk GW, Ginsberg GG, Kochman ML, Blaesius R, Rustgi AK, Carpenter EL. Flow based single cell analysis of the immune landscape distinguishes Barrett's esophagus from adjacent normal tissue. Oncotarget 2019; 10:3592-3604. [PMID: 31217895 PMCID: PMC6557213 DOI: 10.18632/oncotarget.26911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/14/2019] [Indexed: 01/21/2023] Open
Abstract
Barrett’s esophagus (BE) is metaplasia of the squamous epithelium to a specialized columnar epithelium. BE progresses through low- and high-grade dysplasia before developing into esophageal adenocarcinoma. The BE microenvironment is not well defined. We compare 12 human clinical BE and adjacent normal squamous epithelium biopsies using single cell immunophenotyping by flow cytometry. A cassette of 19 epithelial and immune cell markers was used to detect differences between cellular compartments in normal and BE tissues. We found that the BE microenvironment has an immunological landscape distinct from adjacent normal epithelium. BE has an increased percentage of epithelial cells with a concomitant decrease in the percentage of immune cells, accompanied by a shift in the immune landscape from a predominantly T cell rich microenvironment in normal tissue to a B cell rich landscape in BE tissue. Hierarchical clustering separates BE and normal samples into two discrete groups based upon our 19-marker panel, but also reveals unexpected, shared phenotypes for three patients. Our results suggest that flow based single cell analysis may have the potential for revealing clinically relevant differences between BE and normal adjacent tissue, and that surface immunophenotypes could identify specific subpopulations from dysplastic tissue for further investigation.
Collapse
Affiliation(s)
- Moen Sen
- Division of Hematology and Oncology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Friedrich Hahn
- Department of Genomic Sciences, BD Technologies and Innovation, Research Triangle Park, Durham, North Carolina, USA
| | - Taylor A Black
- Division of Hematology and Oncology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maureen DeMarshall
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Warren Porter
- Department of Genomic Sciences, BD Technologies and Innovation, Research Triangle Park, Durham, North Carolina, USA
| | - Eileen Snowden
- Department of Genomic Sciences, BD Technologies and Innovation, Research Triangle Park, Durham, North Carolina, USA
| | - Stephanie S Yee
- Division of Hematology and Oncology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frances Tong
- Department of Genomic Sciences, BD Technologies and Innovation, Research Triangle Park, Durham, North Carolina, USA
| | - Mitchell Ferguson
- Department of Genomic Sciences, BD Technologies and Innovation, Research Triangle Park, Durham, North Carolina, USA
| | - Emylee N Fleshman
- Division of Hematology and Oncology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary W Falk
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory G Ginsberg
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael L Kochman
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rainer Blaesius
- Department of Genomic Sciences, BD Technologies and Innovation, Research Triangle Park, Durham, North Carolina, USA
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erica L Carpenter
- Division of Hematology and Oncology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
159
|
Peters Y, Al-Kaabi A, Shaheen NJ, Chak A, Blum A, Souza RF, Di Pietro M, Iyer PG, Pech O, Fitzgerald RC, Siersema PD. Barrett oesophagus. Nat Rev Dis Primers 2019; 5:35. [PMID: 31123267 DOI: 10.1038/s41572-019-0086-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Barrett oesophagus (BE), the only known histological precursor of oesophageal adenocarcinoma (EAC), is a condition in which the squamous epithelium of the oesophagus is replaced by columnar epithelium as an adaptive response to gastro-oesophageal reflux. EAC has one of the fastest rising incidences of cancers in Western countries and has a dismal prognosis. BE is usually detected during endoscopic examination, and diagnosis is confirmed by the histological presence of intestinal metaplasia. Advances in genomics and transcriptomics have improved our understanding of the pathogenesis and malignant progression of intestinal metaplasia. As the majority of EAC cases are diagnosed in individuals without a known history of BE, screening for BE could potentially decrease disease-related mortality. Owing to the pre-malignant nature of BE, endoscopic surveillance of patients with BE is imperative for early detection and treatment of dysplasia to prevent further progression to invasive EAC. Developments in endoscopic therapy have resulted in a major shift in the treatment of patients with BE who have dysplasia or early EAC, from surgical resection to endoscopic resection and ablation. In addition to symptom control by optimization of lifestyle and pharmacological therapy with proton pump inhibitors, chemopreventive strategies based on NSAIDs and statins are currently being investigated for BE management.
Collapse
Affiliation(s)
- Yonne Peters
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ali Al-Kaabi
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nicholas J Shaheen
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amitabh Chak
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew Blum
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Rhonda F Souza
- Department of Medicine and the Center for Esophageal Diseases, Baylor University Medical Center at Dallas and the Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, TX, USA
| | | | - Prasad G Iyer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Oliver Pech
- Department of Gastroenterology, St John of God Hospital, Regensburg, Germany
| | | | - Peter D Siersema
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, Netherlands.
| |
Collapse
|
160
|
Etiology, cancer stem cells and potential diagnostic biomarkers for esophageal cancer. Cancer Lett 2019; 458:21-28. [PMID: 31125642 DOI: 10.1016/j.canlet.2019.05.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/10/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022]
Abstract
Esophageal cancer (EC) has been a leading cause of cancer death worldwide in part due to late detection and lack of precision treatment. EC includes two major malignancies, esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). Recent studies reveal that ESCC and EAC have distinct cell of origin and contain cancer stem cells (also known as tumor initiating cells) expressing different cell surface markers. These biomarkers have potentially important values for both early detection and finding effective therapy. In this review we summarize the updated findings for cell of origin and provide an overview of cancer cell biomarkers that have been tested for ESCC and EAC. In addition, we also discuss recent progress in the study of molecular mechanisms leading to these malignancies.
Collapse
|
161
|
Yuan S, Norgard RJ, Stanger BZ. Cellular Plasticity in Cancer. Cancer Discov 2019; 9:837-851. [PMID: 30992279 DOI: 10.1158/2159-8290.cd-19-0015] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
Abstract
During cancer progression, tumor cells undergo molecular and phenotypic changes collectively referred to as cellular plasticity. Such changes result from microenvironmental cues, stochastic genetic and epigenetic alterations, and/or treatment-imposed selective pressures, thereby contributing to tumor heterogeneity and therapy resistance. Epithelial-mesenchymal plasticity is the best-known case of tumor cell plasticity, but recent work has uncovered other examples, often with functional consequences. In this review, we explore the nature and role(s) of these diverse cellular plasticity programs in premalignant progression, tumor evolution, and adaptation to therapy and consider ways in which targeting plasticity could lead to novel anticancer treatments. SIGNIFICANCE: Changes in cell identity, or cellular plasticity, are common at different stages of tumor progression, and it has become clear that cellular plasticity can be a potent mediator of tumor progression and chemoresistance. Understanding the mechanisms underlying the various forms of cell plasticity may deliver new strategies for targeting the most lethal aspects of cancer: metastasis and resistance to therapy.
Collapse
Affiliation(s)
- Salina Yuan
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert J Norgard
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
162
|
Rogerson C, Britton E, Withey S, Hanley N, Ang YS, Sharrocks AD. Identification of a primitive intestinal transcription factor network shared between esophageal adenocarcinoma and its precancerous precursor state. Genome Res 2019; 29:723-736. [PMID: 30962179 PMCID: PMC6499311 DOI: 10.1101/gr.243345.118] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
Esophageal adenocarcinoma (EAC) is one of the most frequent causes of cancer death, and yet compared to other common cancers, we know relatively little about the molecular composition of this tumor type. To further our understanding of this cancer, we have used open chromatin profiling to decipher the transcriptional regulatory networks that are operational in EAC. We have uncovered a transcription factor network that is usually found in primitive intestinal cells during embryonic development, centered on HNF4A and GATA6. These transcription factors work together to control the EAC transcriptome. We show that this network is activated in Barrett's esophagus, the putative precursor state to EAC, thereby providing novel molecular evidence in support of stepwise malignant transition. Furthermore, we show that HNF4A alone is sufficient to drive chromatin opening and activation of a Barrett's-like chromatin signature when expressed in normal human epithelial cells. Collectively, these data provide a new way to categorize EAC at a genome scale and implicate HNF4A activation as a potential pivotal event in its malignant transition from healthy cells.
Collapse
Affiliation(s)
- Connor Rogerson
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Edward Britton
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Sarah Withey
- School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Neil Hanley
- School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom.,Endocrinology Department, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WU, United Kingdom
| | - Yeng S Ang
- School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom.,GI Science Centre, Salford Royal NHS FT, University of Manchester, Salford M6 8HD, United Kingdom
| | - Andrew D Sharrocks
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
163
|
Harmsen S, Rogalla S, Huang R, Spaliviero M, Neuschmelting V, Hayakawa Y, Lee Y, Tailor Y, Toledo-Crow R, Kang JW, Samii JM, Karabeber H, Davis RM, White JR, van de Rijn M, Gambhir SS, Contag CH, Wang TC, Kircher MF. Detection of Premalignant Gastrointestinal Lesions Using Surface-Enhanced Resonance Raman Scattering-Nanoparticle Endoscopy. ACS NANO 2019; 13:1354-1364. [PMID: 30624916 PMCID: PMC6428194 DOI: 10.1021/acsnano.8b06808] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cancers of the gastrointestinal (GI) tract are among the most frequent and most lethal cancers worldwide. An important reason for this high mortality is that early disease is typically asymptomatic, and patients often present with advanced, incurable disease. Even in high-risk patients who routinely undergo endoscopic screening, lesions can be missed due to their small size or subtle appearance. Thus, current imaging approaches lack the sensitivity and specificity to accurately detect incipient GI tract cancers. Here we report our finding that a single dose of a high-sensitivity surface-enhanced resonance Raman scattering nanoparticle (SERRS-NP) enables reliable detection of precancerous GI lesions in animal models that closely mimic disease development in humans. Some of these animal models have not been used previously to evaluate imaging probes for early cancer detection. The studies were performed using a commercial Raman imaging system, a newly developed mouse Raman endoscope, and finally a clinically applicable Raman endoscope for larger animal studies. We show that this SERRS-NP-based approach enables robust detection of small, premalignant lesions in animal models that faithfully recapitulate human esophageal, gastric, and colorectal tumorigenesis. This method holds promise for much earlier detection of GI cancers than currently possible and could lead therefore to marked reduction of morbidity and mortality of these tumor types.
Collapse
Affiliation(s)
- Stefan Harmsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Pediatrics, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Stephan Rogalla
- Department of Pediatrics, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Ruimin Huang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Massimiliano Spaliviero
- Urology Service, Department of Surgery, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Volker Neuschmelting
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Neurosurgery, University Hospital Cologne, Cologne 50937, Germany
| | - Yoku Hayakawa
- Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Yoomi Lee
- Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Yagnesh Tailor
- Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Ricardo Toledo-Crow
- Research Engineering Lab, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jason M. Samii
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Hazem Karabeber
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ryan M. Davis
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Julie R. White
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, and Weill Cornell Medical College, New York, New York 10065, United States
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Matt van de Rijn
- Department of Pathology, Stanford University, Stanford, California 94305, United States
| | - Sanjiv S. Gambhir
- Department of Radiology, Stanford University, Stanford, California 94305, United States
- Department of Bioengineering, Department of Materials Science & Engineering, Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California 94305, United States
| | - Christopher H. Contag
- Department of Pediatrics, Stanford University, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, United States
- Institute of Quantitative Health Science and Engineering, Department of Biomedical Engineering, and Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
- Corresponding Authors., .,
| | - Timothy C. Wang
- Department of Medicine, Columbia University, New York, New York 10032, United States
- Corresponding Authors., .,
| | - Moritz F. Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Department of Imaging, Dana-Farber Cancer Institute & Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Corresponding Authors., .,
| |
Collapse
|
164
|
Kim S, Trudo SP, Gallaher DD. Apiaceous and Cruciferous Vegetables Fed During the Post-Initiation Stage Reduce Colon Cancer Risk Markers in Rats. J Nutr 2019; 149:249-257. [PMID: 30649390 DOI: 10.1093/jn/nxy257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/20/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Vegetable consumption reduces colon cancer risk when fed in the initiation stage of carcinogenesis; however, the effect of vegetable consumption during the post-initiation stage has rarely been examined. OBJECTIVE We investigated the chemopreventive effects of feeding apiaceous and cruciferous vegetables on colon cancer risk in the post-initiation stage. METHODS Thirty male Wistar rats (∼5 wk, 92 g) were subcutaneously injected with 1,2-dimethylhydrazine 1 time/wk for 2 wk. One week after the last dose, rats were randomly assigned to 3 groups: the basal diet, an apiaceous vegetable-containing diet (API; 21% fresh wt/wt), or a cruciferous vegetable-containing diet (CRU; 21% fresh wt/wt). All diets contained ∼20% protein, 7% fat, and 63% digestible carbohydrate. Experimental diets were fed for 10 wk, after which colons were harvested. RESULTS CRU reduced aberrant crypt foci (ACF) number compared to the basal group (P = 0.014) and API (P = 0.013), whereas API decreased the proportion of dysplastic ACF relative to the basal group (P < 0.05). Both CRU and API reduced doublecortin-like kinase 1-positive marker expression relative to basal by 57.9% (P = 0.009) and 51.4% (P < 0.02). The numbers of CD44-positive ACF did not differ between the groups. We identified 14 differentially expressed microRNAs (miRNAs). Of these, expression of 6 miRNAs were greater or tended to be greater (P ≤ 0.10) in one or both vegetable-containing groups compared to the basal group. Bioinformatic analysis of these expression changes in miRNA predicted a change in WNT/β-catenin signaling, indicating downregulation of β-catenin in the vegetable-fed groups. Consistent with this bioinformatics analysis, β-catenin-accumulated ACF were decreased in CRU (93.1%, P = 0.012), but not in API (54.4%, P = 0.125), compared to the basal group. CONCLUSION Both apiaceous and cruciferous vegetables, fed post-initiation, reduce colonic preneoplastic lesions as well as cancer stem cell marker expression in rats, possibly by suppressing oncogenic signaling through changes in miRNA expression.
Collapse
Affiliation(s)
- Sangyub Kim
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | - Sabrina P Trudo
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN.,School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR
| | - Daniel D Gallaher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| |
Collapse
|
165
|
RUSTGI ANILK. ESOPHAGEAL CANCERS AND MODEL SYSTEMS. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2019; 130:266-271. [PMID: 31516191 PMCID: PMC6735981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gastrointestinal cancers are largely epithelial in nature and arise from the esophagus, stomach, pancreas, colorectum and liver. In aggregate, these cancers are the most common malignancies in the United States and worldwide, but suffer from poor outcomes in late stages. Our overall work aims to elucidate the following: 1) how normal epithelial cells become metaplastic and dysplastic; 2) how tumor cells invade and interact with activated fibroblasts and immune cells; and 3) how tumor cells disseminate into the circulation and colonize distant organs (metastatic organotropism). We develop three-dimensional cell culture models and genetically engineered mouse models to decipher mechanisms. Our overarching desire is to translate preclinical models to clinical trials that impact upon outcomes in patients with metastatic gastrointestinal cancers. We will frame these principles and approaches in the context of esophageal cancers and three-dimensional models.
Collapse
Affiliation(s)
- ANIL K. RUSTGI
- Correspondence and reprint requests: Anil K. Rustgi, MD, University of Pennsylvania Perelman School of Medicine,
GI Division, 950 BRB, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104215-898-0154215-573-2024
| |
Collapse
|
166
|
Gantuya B, Oyuntsetseg K, Bolor D, Erdene-Ochir Y, Sanduijav R, Davaadorj D, Tserentogtokh T, Uchida T, Yamaoka Y. Evaluation of serum markers for gastric cancer and its precursor diseases among high incidence and mortality rate of gastric cancer area. Gastric Cancer 2019; 22:104-112. [PMID: 29934751 DOI: 10.1007/s10120-018-0844-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mongolia has the highest mortality rate of gastric cancer. The early detection of cancer and down-staging screening for high risk patients are essential. Therefore, we aimed to validate serum markers for stratifying patients for further management. METHODS Endoscopy and histological examination were performed to determine high risk and gastric cancer patients. Rapid urease test, culture and histological tests were performed to diagnose Helicobacter pylori infection. Serum pepsinogen (PG) I and II and anti-H. pylori IgG were measured by ELISA. Receiver Operating Characteristic analysis was used to extract the best cut-off point. RESULTS Totally 752 non-cancer and 50 consecutive gastric cancer patients were involved. The corpus chronic gastritis (72%: 36/50 vs. 56.4%: 427/752), corpus atrophy (42.0%: 21/50 vs. 18.2%: 137/752) and intestinal metaplasia (IM) (64.0%: 32/50 vs. 21.5%: 162/752) were significantly higher in gastric cancer than non-cancer patients, respectively. Therefore, corpus chronic gastritis, corpus atrophy and IM were considered as high risk disease. The best serum marker to predict the high risk status was PGI/II < 3.1 (sensitivity 67.2%, specificity 61%) and PGI/II further reduced to < 2.2 (sensitivity 66%, specificity 65.1%) together with PGI < 28 ng/mL (sensitivity 70%, specificity 70%) were the best prediction for gastric cancer. The best cut-off point to diagnose H. pylori infection was anti-H. pylori IgG > 8 U/mL. Multivariate analysis showed that anti-H. pylori IgG > 8 U/mL and PGI/II < 3.1 increased risk for high risk status and PGI/II < 3.1 remained to increase risk for gastric cancer. CONCLUSION The serum diagnosis using PGI/II < 3.1 cut-off value is valuable marker to predict high risk patients for population based massive screening.
Collapse
Affiliation(s)
- Boldbaatar Gantuya
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan.,Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Khasag Oyuntsetseg
- Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Dashdorj Bolor
- Department of Endoscopy, National Cancer Center, Ulaanbaatar, Mongolia
| | - Yansan Erdene-Ochir
- Department of General Surgery, National Cancer Center, Ulaanbaatar, Mongolia
| | - Ruvjir Sanduijav
- Department of Oncology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Duger Davaadorj
- Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Tegshee Tserentogtokh
- Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Tomohisa Uchida
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan. .,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
167
|
Raza MH, Gul K, Arshad A, Riaz N, Waheed U, Rauf A, Aldakheel F, Alduraywish S, Rehman MU, Abdullah M, Arshad M. Microbiota in cancer development and treatment. J Cancer Res Clin Oncol 2018; 145:49-63. [PMID: 30542789 DOI: 10.1007/s00432-018-2816-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Human microbiota comprises of a variety of organisms ranging from bacterial species to viruses, fungi, and protozoa which are present on the epidermal and mucosal barriers of the body. It plays a key role in health and survival of the host by regulation of the systemic functions. Its apparent functions in modulation of the host immune system, inducing carcinogenesis and regulation of the response to the cancer therapy through a variety of mechanisms such as bacterial dysbiosis, production of genotoxins, pathobionts, and disruption of the host metabolism are increasingly becoming evident. METHODS Different electronic databases such as PubMed, Google Scholar, and Web of Science were searched for relevant literature which has been reviewed in this article. RESULTS Characterization of the microbiome particularly gut microbiota, understanding of the host-microbiota interactions, and its potential for therapeutic exploitation are necessary for the development of novel anticancer therapeutic strategies with better efficacy and lowered off-target side effects. CONCLUSION In this review, the role of microbiota is explained in carcinogenesis, mechanisms of microbiota-mediated carcinogenesis, and role of gut microbiota in modulation of cancer therapy.
Collapse
Affiliation(s)
- Muhammad Hassan Raza
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Kamni Gul
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Abida Arshad
- Department of Biology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Naveeda Riaz
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Usman Waheed
- Department of Pathology and Blood Bank, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Abdul Rauf
- Department of Zoology, Azad Jammu and Kashmir University, Muzaffarabad, Pakistan
| | - Fahad Aldakheel
- Department of Clinical Laboratory Medicine, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shatha Alduraywish
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Maqbool Ur Rehman
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Muhammad Arshad
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan.
| |
Collapse
|
168
|
Obesity and gastrointestinal cancer: the interrelationship of adipose and tumour microenvironments. Nat Rev Gastroenterol Hepatol 2018; 15:699-714. [PMID: 30323319 DOI: 10.1038/s41575-018-0069-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing recognition of an association between obesity and many cancer types exists, but how the myriad of local and systemic effects of obesity affect key cellular and non-cellular processes within the tumour microenvironment (TME) relevant to carcinogenesis, tumour progression and response to therapies remains poorly understood. The TME is a complex cellular environment in which the tumour exists along with blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, signalling molecules and the extracellular matrix. Obesity, in particular visceral obesity, might fuel the dysregulation of key pathways relevant to both the adipose microenvironment and the TME, which interact to promote carcinogenesis in at-risk epithelium. The tumour-promoting effects of obesity can occur at the local level as well as systemically via circulating inflammatory, growth factor and metabolic mediators associated with adipose tissue inflammation, as well as paracrine and autocrine effects. This Review explores key pathways linking visceral obesity and gastrointestinal cancer, including inflammation, hypoxia, altered stromal and immune cell function, energy metabolism and angiogenesis.
Collapse
|
169
|
O'Leary CE, Schneider C, Locksley RM. Tuft Cells-Systemically Dispersed Sensory Epithelia Integrating Immune and Neural Circuitry. Annu Rev Immunol 2018; 37:47-72. [PMID: 30379593 DOI: 10.1146/annurev-immunol-042718-041505] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tuft cells-rare solitary chemosensory cells in mucosal epithelia-are undergoing intense scientific scrutiny fueled by recent discovery of unsuspected connections to type 2 immunity. These cells constitute a conduit by which ligands from the external space are sensed via taste-like signaling pathways to generate outputs unique among epithelial cells: the cytokine IL-25, eicosanoids associated with allergic immunity, and the neurotransmitter acetylcholine. The classic type II taste cell transcription factor POU2F3 is lineage defining, suggesting a conceptualization of these cells as widely distributed environmental sensors with effector functions interfacing type 2 immunity and neural circuits. Increasingly refined single-cell analytics have revealed diversity among tuft cells that extends from nasal epithelia and type II taste cells to ex-Aire-expressing medullary thymic cells and small-intestine cells that mediate tissue remodeling in response to colonizing helminths and protists.
Collapse
Affiliation(s)
- Claire E O'Leary
- Department of Medicine, University of California, San Francisco, California 94143, USA; , ,
| | - Christoph Schneider
- Department of Medicine, University of California, San Francisco, California 94143, USA; , ,
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, California 94143, USA; , , .,Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA.,University of California, San Francisco, Howard Hughes Medical Institute, San Francisco, California 94143, USA
| |
Collapse
|
170
|
Hata M, Hayakawa Y, Koike K. Gastric Stem Cell and Cellular Origin of Cancer. Biomedicines 2018; 6:biomedicines6040100. [PMID: 30384487 PMCID: PMC6315982 DOI: 10.3390/biomedicines6040100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/28/2018] [Accepted: 10/28/2018] [Indexed: 12/16/2022] Open
Abstract
Several stem cell markers within the gastrointestinal epithelium have been identified in mice. One of the best characterized is Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) and evidence suggests that Lgr5+ cells in the gut are the origin of gastrointestinal cancers. Reserve or facultative stem or progenitor cells with the ability to convert to Lgr5+ cells following injury have also been identified. Unlike the intestine, where Lgr5+ cells at the crypt base act as active stem cells, the stomach may contain unique stem cell populations, since gastric Lgr5+ cells seem to behave as a reserve rather than active stem cells, both in the corpus and in the antral glands. Gastrointestinal stem cells are supported by a specific microenvironment, the stem cell niche, which also promotes tumorigenesis. This review focuses on stem cell markers in the gut and their supporting niche factors. It also discusses the molecular mechanisms that regulate stem cell function and tumorigenesis.
Collapse
Affiliation(s)
- Masahiro Hata
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 1138655, Japan.
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 1138655, Japan.
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 1138655, Japan.
| |
Collapse
|
171
|
Owen RP, White MJ, Severson DT, Braden B, Bailey A, Goldin R, Wang LM, Ruiz-Puig C, Maynard ND, Green A, Piazza P, Buck D, Middleton MR, Ponting CP, Schuster-Böckler B, Lu X. Single cell RNA-seq reveals profound transcriptional similarity between Barrett's oesophagus and oesophageal submucosal glands. Nat Commun 2018; 9:4261. [PMID: 30323168 PMCID: PMC6189174 DOI: 10.1038/s41467-018-06796-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Barrett's oesophagus is a precursor of oesophageal adenocarcinoma. In this common condition, squamous epithelium in the oesophagus is replaced by columnar epithelium in response to acid reflux. Barrett's oesophagus is highly heterogeneous and its relationships to normal tissues are unclear. Here we investigate the cellular complexity of Barrett's oesophagus and the upper gastrointestinal tract using RNA-sequencing of single cells from multiple biopsies from six patients with Barrett's oesophagus and two patients without oesophageal pathology. We find that cell populations in Barrett's oesophagus, marked by LEFTY1 and OLFM4, exhibit a profound transcriptional overlap with oesophageal submucosal gland cells, but not with gastric or duodenal cells. Additionally, SPINK4 and ITLN1 mark cells that precede morphologically identifiable goblet cells in colon and Barrett's oesophagus, potentially aiding the identification of metaplasia. Our findings reveal striking transcriptional relationships between normal tissue populations and cells in a premalignant condition, with implications for clinical practice.
Collapse
Affiliation(s)
- Richard Peter Owen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Michael Joseph White
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - David Tyler Severson
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Barbara Braden
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Adam Bailey
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Robert Goldin
- Centre for Pathology, St Mary's Hospital, Imperial College, London, W2 1NY, UK
| | - Lai Mun Wang
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Carlos Ruiz-Puig
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Angie Green
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Paolo Piazza
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - David Buck
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Mark Ross Middleton
- Department of Oncology, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Chris Paul Ponting
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Benjamin Schuster-Böckler
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
172
|
|
173
|
Kircher M, Herhaus P, Schottelius M, Buck AK, Werner RA, Wester HJ, Keller U, Lapa C. CXCR4-directed theranostics in oncology and inflammation. Ann Nucl Med 2018; 32:503-511. [PMID: 30105558 PMCID: PMC6182637 DOI: 10.1007/s12149-018-1290-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
Given its prominent role in inflammation and cancer biology, the C-X-C motif chemokine receptor 4 (CXCR4) has gained a lot of attention in the recent years. This review gives a short overview of the physiology and pathology of chemokines and chemokine receptors and then focuses on the current experience of targeting CXCR4, using radiolabeled receptor ligands suitable for positron emission tomography (PET) imaging, in both hematologic and solid malignancy as well as in inflammatory conditions. Additionally, CXCR4-directed endoradiotherapy (ERT) as a new treatment option is discussed.
Collapse
Affiliation(s)
- Malte Kircher
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Peter Herhaus
- Internal Medicine III, Hematology and Medical Oncology, Technische Universität München, Munich, Germany
| | - Margret Schottelius
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
- Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany
| | - Ulrich Keller
- Internal Medicine III, Hematology and Medical Oncology, Technische Universität München, Munich, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| |
Collapse
|
174
|
|
175
|
Abstract
PURPOSE OF REVIEW The cellular origins of Barrett's esophagus remain elusive. In this review, we discuss the potential cellular mechanisms behind squamous to columnar metaplasia as well as the limitations of these proposed mechanisms. RECENT FINDINGS Several theories have been proposed, including the reprogramming of native squamous cells, repopulation from submucosal glands, contributions from circulating bone marrow-derived cells, and direct extension of gastric cells. Most recent data support an innate progenitor cell unique to the squamocolumnar junction that can expand into metaplastic glands. Active investigation to clarify each of these potential cells of origin is being pursued, but ultimately each could contribute to the pathogenesis of Barrett's esophagus depending on the clinical context. Nonetheless, identifying cells of origin is critical to understand the molecular mechanisms behind Barrett's esophagus and developing strategies to better treat (and possibly prevent) this increasingly significant premalignant disease.
Collapse
Affiliation(s)
- Horace Rhee
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - David H Wang
- Division of Hematology and Oncology, Esophageal Diseases Center, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8584, USA. .,Medical Service, VA North Texas Health Care System, Dallas, TX, USA.
| |
Collapse
|
176
|
Liu R, Li X, Hylemon PB, Zhou H. Conjugated Bile Acids Promote Invasive Growth of Esophageal Adenocarcinoma Cells and Cancer Stem Cell Expansion via Sphingosine 1-Phosphate Receptor 2-Mediated Yes-Associated Protein Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2042-2058. [PMID: 29963993 PMCID: PMC6105923 DOI: 10.1016/j.ajpath.2018.05.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/05/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023]
Abstract
Esophageal adenocarcinoma (EAC) is the sixth leading cause of cancer deaths worldwide and has been dramatically increasing in incidence over the past decade. Gastroesophageal reflux and Barrett esophagus are well-established risk factors for disease progression. Conjugated bile acids (CBAs), including taurocholate (TCA), represent the major bile acids in the gastroesophageal refluxate of advanced Barrett esophagus and EAC patients. Our previous studies suggested that CBA-induced activation of sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in promoting cholangiocarcinoma cell invasive growth. However, the role of CBAs in EAC development and underlying mechanisms remains elusive. In the current study, we identified that the expression level of S1PR2 is correlated to invasiveness of EAC cells. TCA significantly promoted cell proliferation, migration, invasion, transformation, and cancer stem cell expansion in highly invasive EAC cells (OE-33 cells), but had less effect on the lower invasive EAC cells (OE-19 cells). Pharmacologic inhibition of S1PR2 with specific antagonist JTE-013 or knockdown of S1PR2 expression significantly reduced TCA-induced invasive growth of OE-33 cells, whereas overexpression of S1PR2 sensitized OE-19 cells to TCA-induced invasive growth. Furthermore, TCA-induced activation of S1PR2 was closely associated with YAP and β-catenin signaling pathways. In conclusion, CBA-induced activation of the S1PR2 signaling pathway is critically involved in invasive growth of EAC cells and represents a novel therapeutic target for EAC.
Collapse
Affiliation(s)
- Runping Liu
- Department of Microbiology and Immunology, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia
| | - Xiaojiaoyang Li
- Department of Microbiology and Immunology, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia
| | - Huiping Zhou
- Department of Microbiology and Immunology, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
177
|
Xiong D, Jin C, Ye X, Qiu B, Jianjun X, Zhu S, Xiang L, Wu H, Yongbing W. TRIM44 promotes human esophageal cancer progression via the AKT/mTOR pathway. Cancer Sci 2018; 109:3080-3092. [PMID: 30098109 PMCID: PMC6172051 DOI: 10.1111/cas.13762] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022] Open
Abstract
Aberrant expression of TRIM‐containing protein 44 (TRIM44) acts as a promoter in multiple cancers. Here, we investigated the biological functions and clinical significance of TRIM44 in human esophageal cancer (HEC). TRIM44 expression was significantly higher in HEC tissues than corresponding normal tissues at both the mRNA (2.42 ± 0.52 vs 0.99 ± 0.25) and protein (1.01 ± 0.27 vs 0.30 ± 0.13) levels. Patients with high TRIM44 expression showed poor differentiation (P = 1.39 × 10−5), advanced TNM stage (P = 3.87 × 10−4) and, most importantly, significantly poorer prognosis (P = 2.80 × 10−5). TRIM44 played a crucial role in epithelial mesenchymal transition (EMT). A significant correlation was observed between TRIM44 and Ki67 expression. We demonstrated that TRIM44 markedly enhanced HEC cell proliferation, migration, and invasion. Additionally, TRIM44 was involved in the AKT/mTOR signaling pathway and its downstream targets, such as STAT3 phosphorylation. Thus, elevated TRIM44 expression promotes HEC development by EMT via the AKT/mTOR pathway, and TRIM44 may be a novel prognostic indicator for HEC patients after curative resection.
Collapse
Affiliation(s)
- Dian Xiong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province, China.,Department of Thoracic Surgery, The Central Hospital of Xuhui District, Shanghai, China
| | - Chun Jin
- Department of Thoracic Surgery, The Central Hospital of Xuhui District, Shanghai, China.,Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xudong Ye
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Baiquan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Xu Jianjun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Shuqiang Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Long Xiang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Haibo Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Wu Yongbing
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province, China
| |
Collapse
|
178
|
Abstract
Chronic injury and inflammation in the esophagus can cause a change in cellular differentiation known as metaplasia. Most commonly, the differentiation changes manifest as Barrett's esophagus (BE), characterized by the normal stratified squamous epithelium converting into a cuboidal-columnar, glandular morphology. BE cells can phenotypically resemble specific normal cell types of the stomach or intestine, or they can have overlapping phenotypes in disorganized admixtures. The stomach can also undergo metaplasia characterized by aberrant gastric or intestinal differentiation patterns. In both organs, it has been argued that metaplasia may represent a recapitulation of the embryonic or juvenile gastrointestinal tract, as cells access a developmental progenitor genetic program that can help repair damaged tissue. Here, we review the normal development of esophagus and stomach, and describe how BE represents an intermixing of cells resembling gastric pseudopyloric (SPEM) and intestinal metaplasia. We discuss a cellular process recently termed "paligenosis" that governs how mature, differentiated cells can revert to a proliferating progenitor state in metaplasia. We discuss the "Cyclical Hit" theory in which paligenosis might be involved in the increased risk of metaplasia for progression to cancer. However, somatic mutations might occur in proliferative phases and then be warehoused upon redifferentiation. Through years of chronic injury and many rounds of paligenosis and dedifferentiation, eventually a cell with a mutation that prevents dedifferentiation may arise and clonally expand fueling stable metaplasia and potentially thereafter acquiring additional mutations and progressing to dysplasia and cancer.
Collapse
Affiliation(s)
- Ramon U Jin
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
179
|
Zhang W, Wang DH. Origins of Metaplasia in Barrett's Esophagus: Is this an Esophageal Stem or Progenitor Cell Disease? Dig Dis Sci 2018; 63:2005-2012. [PMID: 29675663 PMCID: PMC6783253 DOI: 10.1007/s10620-018-5069-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The incidence of esophageal adenocarcinoma has been increasing in Western countries over the past several decades. Though Barrett's esophagus, in which the normal esophageal squamous epithelium is replaced with metaplastic intestinalized columnar cells due to chronic damage from gastroesophageal reflux, is accepted as the requisite precursor lesion for esophageal adenocarcinoma, the Barrett's esophagus cell of origin and the molecular mechanism underlying esophageal epithelial metaplasia remain controversial. Much effort has been dedicated towards identifying the Barrett's esophagus cell of origin since this could lead to more effective prevention and treatment strategies for both Barrett's esophagus and esophageal adenocarcinoma. Previously, it was hypothesized that terminally differentiated esophageal squamous cells might undergo direct conversion into specialized intestinal columnar cells via the process of transdifferentiation. However, there is increasing evidence that stem and/or progenitor cells are molecularly reprogrammed through the process of transcommitment to differentiate into the columnar cell lineages that characterize Barrett's esophagus. Given that Barrett's esophagus originates at the gastroesophageal junction, the boundary between the distal esophagus and gastric cardia, potential sources of these stem and/or progenitor cells include columnar cells from the squamocolumnar junction or neighboring gastric cardia, native esophageal squamous cells, native esophageal cuboidal or columnar cells from submucosal glands or ducts, or circulating bone marrow-derived cells. In this review, we focus on native esophageal specific stem and/or progenitor cells and detail molecular mediators of transcommitment based on recent insights gained from novel mouse models and clinical observations from patients.
Collapse
Affiliation(s)
- Wei Zhang
- Esophageal Diseases Center, Department of Internal Medicine and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David H. Wang
- Esophageal Diseases Center, Department of Internal Medicine and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Medical Service, Dallas VA Medical Center, Dallas, Texas, USA
| |
Collapse
|
180
|
Abstract
The incidence of esophageal adenocarcinoma (EAC) and its precursor lesion Barrett's esophagus (BE) has been increasing steadily in the western world in recent decades. Understanding the cellular origins of BE and the conditions responsible for their malignant transformation would greatly facilitate risk assessment and identification of patients at risk of progression, but this topic remains a source of debate. Here, we review recent findings that have provided support for the gastroesophageal junction (GEJ) as the main source of stem cells that give rise to BE and EAC. These include both gastric cardia cells and transitional basal cells. Furthermore, we discuss the role of chronic injury and inflammation in a tumor microenvironment as a major factor in promoting stem cell expansion and proliferation as well as transformation of the GEJ-derived stem cells and progression to EAC. We conclude that there exists a large amount of empirical support for the GEJ as the likely source of BE stem cells. While BE seems to resemble a successful adaptation to esophageal damage, carcinogenesis appears as a consequence of natural selection at the level of GEJ stem cells, and later glands, that expand into the esophagus wherein the local ecology creates the selective landscape for cancer progression.
Collapse
|
181
|
Li X, Francies HE, Secrier M, Perner J, Miremadi A, Galeano-Dalmau N, Barendt WJ, Letchford L, Leyden GM, Goffin EK, Barthorpe A, Lightfoot H, Chen E, Gilbert J, Noorani A, Devonshire G, Bower L, Grantham A, MacRae S, Grehan N, Wedge DC, Fitzgerald RC, Garnett MJ. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat Commun 2018; 9:2983. [PMID: 30061675 PMCID: PMC6065407 DOI: 10.1038/s41467-018-05190-9] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/22/2018] [Indexed: 12/22/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) incidence is increasing while 5-year survival rates remain less than 15%. A lack of experimental models has hampered progress. We have generated clinically annotated EAC organoid cultures that recapitulate the morphology, genomic, and transcriptomic landscape of the primary tumor including point mutations, copy number alterations, and mutational signatures. Karyotyping of organoid cultures has confirmed polyclonality reflecting the clonal architecture of the primary tumor. Furthermore, subclones underwent clonal selection associated with driver gene status. Medium throughput drug sensitivity testing demonstrates the potential of targeting receptor tyrosine kinases and downstream mediators. EAC organoid cultures provide a pre-clinical tool for studies of clonal evolution and precision therapeutics.
Collapse
Affiliation(s)
- Xiaodun Li
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | | | - Maria Secrier
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- Oncology IMED, AstraZeneca, Chesterford, Cambridge, CB10 1XL, UK
| | - Juliane Perner
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
| | - Ahmad Miremadi
- Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
| | | | | | | | | | - Emma K Goffin
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | | | - Elisabeth Chen
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - James Gilbert
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Ayesha Noorani
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | | | - Lawrence Bower
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
| | - Amber Grantham
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Shona MacRae
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Nicola Grehan
- Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
| | - David C Wedge
- Big Data Institute, University of Oxford, Oxford, OX3 7LF, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX4 2PG, UK
| | - Rebecca C Fitzgerald
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK.
- Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK.
| | | |
Collapse
|
182
|
Kennedy L, Alpini G. Therapeutic Role of Sphingosine-1-Phosphate Receptor 2 in the Progression of Esophageal Adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1949-1952. [PMID: 30026028 DOI: 10.1016/j.ajpath.2018.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 02/07/2023]
Abstract
This commentary highlights the article by Liu et al that provides novel mechanistic insights in how conjugated bile acids promote invasive growth of esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Lindsey Kennedy
- Research Service, Central Texas Veterans Health Care System, Temple, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Gianfranco Alpini
- Research Service, Central Texas Veterans Health Care System, Temple, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Baylor Scott & White Health Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas.
| |
Collapse
|
183
|
Inadomi J, Alastal H, Bonavina L, Gross S, Hunt RH, Mashimo H, di Pietro M, Rhee H, Shah M, Tolone S, Wang DH, Xie SH. Recent advances in Barrett's esophagus. Ann N Y Acad Sci 2018; 1434:227-238. [PMID: 29974975 DOI: 10.1111/nyas.13909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022]
Abstract
Barrett's esophagus (BE) is the only known precursor of esophageal adenocarcinoma, one of the few cancers with increasing incidence in developed countries. The pathogenesis of BE is unclear with regard to either the cellular origin of this metaplastic epithelium or the manner in which malignant transformation occurs, although recent data indicate a possible junctional origin of stem cells for BE. Treatment of BE may be achieved using endoscopic eradication therapy; however, there is a lack of discriminatory tools to identify individuals at sufficient risk for cancer development in whom intervention is warranted. Reduction in gastroesophageal reflux of gastric contents including acid is mandatory to achieve remission from BE after endoscopic ablation, and can be achieved using medical or nonmedical interventions. Research topics of greatest interest include the mechanism of BE development and transformation to cancer, risk stratification methods to identify individuals who may benefit from ablation of BE, optimization of eradication therapy, and surveillance methods to ensure that remission is maintained after eradication is achieved.
Collapse
Affiliation(s)
- John Inadomi
- Division of Gastroenterology, University of Washington School of Medicine, Seattle, Washington
| | - Hani Alastal
- MRC Cancer Unit at the University of Cambridge, Cambridge, UK.,Faculty of Life Sciences and Education, University of South Wales, Newport City, UK
| | - Luigi Bonavina
- Department of Biomedical Sciences for Health, University of Milano School of Medicine, Milan, Italy.,Division of General Surgery, IRCCS Policlinico San Donato, Milan, Italy
| | - Seth Gross
- Division of Gastroenterology, New York University, New York, New York
| | | | - Hiroshi Mashimo
- Division of Gastroenterology, Harvard Medical School, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts
| | | | - Horace Rhee
- Division of Gastroenterology and Hepatology, Stanford University, Palo Alto, California
| | - Marmy Shah
- Division of Gastroenterology, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois
| | - Salvatore Tolone
- Division of General, Mini-Invasive and Bariatric Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - David H Wang
- Division of Hematology and Oncology, UT Southwestern Medical Center and VA North Texas Health Care System, Dallas, Texas
| | - Shao-Hua Xie
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
184
|
Read MD, Krishnadath KK, Clemons NJ, Phillips WA. Preclinical models for the study of Barrett's carcinogenesis. Ann N Y Acad Sci 2018; 1434:139-148. [PMID: 29974961 DOI: 10.1111/nyas.13916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/17/2022]
Abstract
Barrett's esophagus (BE) is clinically significant, as it is the only known precursor lesion for esophageal adenocarcinoma. To develop improved therapies for the treatment of BE, a greater understanding of the disease process at the molecular genetic level is needed. However, achieving a greater understanding will require improved preclinical models so that the disease process can be more closely studied and novel therapies can be tested. Our concise review highlights progress in the development of preclinical models for the study of BE and identifies the most suitable model in which to test novel therapies.
Collapse
Affiliation(s)
- Matthew D Read
- Cancer Biology and Surgical Oncology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kausilia K Krishnadath
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands
| | - Nicholas J Clemons
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Wayne A Phillips
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
185
|
Zhang H, Sun L. When human cells meet bacteria: precision medicine for cancers using the microbiota. Am J Cancer Res 2018; 8:1157-1175. [PMID: 30094091 PMCID: PMC6079160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023] Open
Abstract
The human microbiota interacts with the host immune system in multiple ways to influence the development of diseases, including cancers; however, a detailed understanding of their relationship is unavailable. Accumulating evidence has only revealed an association rather than a causal link between microbial alterations and carcinogenesis. The regulatory loops among the microbiome, human cells and the immune system are far more complicated and require further studies to be revealed. In this review, we discuss the impact of the microbiota on cancer initiation, development and progression in different types of human cells, mainly focusing on the clinical translation from microbiome research to an accurate diagnosis, subtype classification and precision medicine.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming 650031, Yunnan, China
| | - Litao Sun
- The Scripps Laboratories for tRNA Synthetase Research, The Scripps Research InstituteLa Jolla, CA 92037, USA
- Department of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research InstituteLa Jolla, CA 92037, USA
| |
Collapse
|
186
|
Sun L, Suo C, Li ST, Zhang H, Gao P. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochim Biophys Acta Rev Cancer 2018; 1870:51-66. [PMID: 29959989 DOI: 10.1016/j.bbcan.2018.06.005] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023]
Abstract
While metabolic reprogramming of cancer cells has long been considered from the standpoint of how and why cancer cells preferentially utilize glucose via aerobic glycolysis, the so-called Warburg Effect, the progress in the following areas during the past several years has substantially advanced our understanding of the rewired metabolic network in cancer cells that is intertwined with oncogenic signaling. First, in addition to the major nutrient substrates glucose and glutamine, cancer cells have been discovered to utilize a variety of unconventional nutrient sources for survival. Second, the deregulated biomass synthesis is intertwined with cell cycle progression to coordinate the accelerated progression of cancer cells. Third, the reciprocal regulation of cancer cell's metabolic alterations and the microenvironment, involving extensive host immune cells and microbiota, have come into view as critical mechanisms to regulate cancer progression. These and other advances are shaping the current and future paradigm of cancer metabolism.
Collapse
Affiliation(s)
- Linchong Sun
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Caixia Suo
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Shi-Ting Li
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Huafeng Zhang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Ping Gao
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
187
|
Agoston AT, Pham TH, Odze RD, Wang DH, Das KM, Spechler SJ, Souza RF. Columnar-Lined Esophagus Develops via Wound Repair in a Surgical Model of Reflux Esophagitis. Cell Mol Gastroenterol Hepatol 2018; 6:389-404. [PMID: 30186929 PMCID: PMC6122432 DOI: 10.1016/j.jcmgh.2018.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/19/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS After esophagojejunostomy, rodents develop reflux esophagitis and a columnar-lined esophagus with features of Barrett's metaplasia. This rodent columnar-lined esophagus has been proposed to develop from cellular reprogramming of progenitor cells, but studies on early columnar-lined esophagus development are lacking. We performed a systematic, histologic, and immunophenotypic analysis of columnar-lined esophagus development in rats after esophagojejunostomy. METHODS At various times after esophagojejunostomy in 52 rats, the esophagus was removed and tissue sections were evaluated for type, location, and length of columnar lining. Molecular characteristics were evaluated by immunohistochemistry and immunofluorescence. RESULTS At week 2, ulceration was seen in esophageal squamous epithelium, starting distally at the esophagojejunostomy anastomosis. Re-epithelialization of the distal ulcer segment occurred via proliferation and expansion of immature-appearing glands budding directly off jejunal crypts, characteristic of wound healing. The columnar-lined esophagus's immunoprofile was similar to jejunal crypt epithelium, and columnar-lined esophagus length increased significantly from 0.15 mm (±0.1 SEM) at 2 weeks to 5.22 mm (±0.37) at 32 weeks. Neoglands were found within esophageal ulcer beds, and spindle-shaped cells expressing epithelial-mesenchymal transition markers were found at the columnar-lined esophagus's leading edge. Only proliferative squamous epithelium was found at the proximal ulcer border. CONCLUSIONS After esophagojejunostomy in rats, metaplastic columnar-lined esophagus develops via a wound healing process that does not appear to involve cellular reprogramming of progenitor cells. This process involves EMT-associated migration of jejunal cells into the esophagus, where they likely have a competitive advantage over squamous cells in the setting of ongoing gastroesophageal reflux disease.
Collapse
Affiliation(s)
- Agoston T. Agoston
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thai H. Pham
- Department of Surgery, VA North Texas Health Care System, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robert D. Odze
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - David H. Wang
- Department of Medicine, VA North Texas Health Care System, University of Texas Southwestern Medical Center, Dallas, Texas,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kiron M. Das
- Division of Gastroenterology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Stuart J. Spechler
- Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center, Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, Texas
| | - Rhonda F. Souza
- Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center, Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, Texas,Correspondence Address correspondence to: Rhonda F. Souza, MD, Center for Esophageal Research, Baylor University Medical Center, 2 Hoblitzelle, Suite 250, 3500 Gaston Avenue, Dallas, Texas 75246.
| |
Collapse
|
188
|
|
189
|
A Comprehensive Genome Survey Provides Novel Insights into Bile Salt Hydrolase (BSH) in Lactobacillaceae. Molecules 2018; 23:molecules23051157. [PMID: 29751655 PMCID: PMC6100381 DOI: 10.3390/molecules23051157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/28/2023] Open
Abstract
Bile salt hydrolase (BSH) is a well-known enzyme that has been commonly characterized in probiotic bacteria, as it has cholesterol-lowering effects. However, its molecular investigations are scarce. Here, we build a local database of BSH sequences from Lactobacillaceae (BSH⁻SDL), and phylogenetic analysis and homology searches were employed to elucidate their comparability and distinctiveness among species. Evolutionary study demonstrates that BSH sequences in BSH⁻SDL are divided into five groups, named BSH A, B, C, D and E here, which can be the genetic basis for BSH classification and nomenclature. Sequence analysis suggests the differences between BSH-active and BSH-inactive proteins clearly, especially on site 82. In addition, a total of 551 BSHs from 107 species are identified from 451 genomes of 158 Lactobacillaceae species. Interestingly, those bacteria carrying various copies of BSH A or B can be predicted to be potential cholesterol-lowering probiotics, based on the results of phylogenetic analysis and the subtypes that those previously reported BSH-active probiotics possess. In summary, this study elaborates the molecular basis of BSH in Lactobacillaceae systematically, and provides a novel methodology as well as a consistent standard for the identification of the BSH subtype. We believe that high-throughput screening can be efficiently applied to the selection of promising candidate BSH-active probiotics, which will advance the development of healthcare products in cholesterol metabolism.
Collapse
|
190
|
Abstract
Oesophageal cancer remains one of the least explored malignancies. However, in recent years its increasing incidence and poor prognosis have stimulated interest from the cancer community to understand the pathways to the initiation and progression of the disease. Critical understanding of the molecular processes controlling changes in stem cell fate and the cross-talk with their adjacent stromal neighbours will provide essential knowledge on the mechanisms that go awry in oesophageal carcinogenesis. Advances in lineage tracing techniques have represented a powerful tool to start understanding changes in oesophageal cell behaviour in response to mutations and mutagens that favour tumour development. Environmental cues constitute an important factor in the aetiology of oesophageal cancer. The oesophageal epithelium is a tissue exposed to harsh conditions that not only damage the DNA of epithelial cells but also result in an active stromal reaction, promoting tumour progression. Ultimately, cancer represents a complex interplay between malignant cells and their microenvironment. Indeed, increasing evidence suggests that the accumulation of somatic mutations is not the sole cause of cancer. Instead, non-cell autonomous components, coming from the stroma, can significantly contribute from the earliest stages of tumour formation. The realisation that stromal cells play an important role in cancer has transformed this cellular compartment into an attractive and emerging field of research. It is becoming increasingly clear that the tumour microenvironment provides unique opportunities to identify early diagnostic and prognostic markers, as well as potential therapeutic strategies that may synergise with those targeting tumour cells. This chapter compiles recent observations on oesophageal epithelial stem cell biology, and how environmental and micro-environmental changes may lead to oesophageal disease and cancer.
Collapse
Affiliation(s)
- Maria P Alcolea
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, CB2 1QR, Cambridge, UK
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, CB2 0XZ, Cambridge, UK
| |
Collapse
|
191
|
Sáenz JB, Mills JC. Acid and the basis for cellular plasticity and reprogramming in gastric repair and cancer. Nat Rev Gastroenterol Hepatol 2018; 15:257-273. [PMID: 29463907 PMCID: PMC6016373 DOI: 10.1038/nrgastro.2018.5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Subjected to countless daily injuries, the stomach still functions as a remarkably efficient digestive organ and microbial filter. In this Review, we follow the lead of the earliest gastroenterologists who were fascinated by the antiseptic and digestive powers of gastric secretions. We propose that it is easiest to understand how the stomach responds to injury by stressing the central role of the most important gastric secretion, acid. The stomach follows two basic patterns of adaptation. The superficial response is a pattern whereby the surface epithelial cells migrate and rapidly proliferate to repair erosions induced by acid or other irritants. The stomach can also adapt through a glandular response when the source of acid is lost or compromised (that is, the process of oxyntic atrophy). We primarily review the mechanisms governing the glandular response, which is characterized by a metaplastic change in cellular differentiation known as spasmolytic polypeptide-expressing metaplasia (SPEM). We propose that the stomach, like other organs, exhibits marked cellular plasticity: the glandular response involves reprogramming mature cells to serve as auxiliary stem cells that replace lost cells. Unfortunately, such plasticity might mean that the gastric epithelium undergoes cycles of differentiation and de-differentiation that increase the risk of accumulating cancer-predisposing mutations.
Collapse
Affiliation(s)
- José B. Sáenz
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine
| | - Jason C. Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine
- Department of Developmental Biology, Washington University School of Medicine
- Department of Pathology and Immunology, Washington University School of Medicine
| |
Collapse
|
192
|
Zeng Q, Fu J, Korrer M, Gorbounov M, Murray PJ, Pardoll D, Masica DL, Kim YJ. Caspase-1 from Human Myeloid-Derived Suppressor Cells Can Promote T Cell-Independent Tumor Proliferation. Cancer Immunol Res 2018; 6:566-577. [PMID: 29653983 DOI: 10.1158/2326-6066.cir-17-0543] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/02/2018] [Accepted: 03/26/2018] [Indexed: 11/16/2022]
Abstract
Immunosuppressive myeloid-derived suppressive cells (MDSCs) are characterized by their phenotypic and functional heterogeneity. To better define their T cell-independent functions within the tumor, sorted monocytic CD14+CD11b+HLA-DRlow/- MDSCs (mMDSC) from squamous cell carcinoma patients showed upregulated caspase-1 activity, which was associated with increased IL1β and IL18 expression. In vitro studies demonstrated that mMDSCs promoted caspase-1-dependent proliferation of multiple squamous carcinoma cell lines in both human and murine systems. In vivo, growth rates of B16, MOC1, and Panc02 were significantly blunted in chimeric mice adoptively transferred with caspase-1 null bone marrow cells under T cell-depleted conditions. Adoptive transfer of wild-type Gr-1+CD11b+ MDSCs from tumor-bearing mice reversed this antitumor response, whereas caspase-1 inhibiting thalidomide-treated MDSCs phenocopied the antitumor response found in caspase-1 null mice. We further hypothesized that MDSC caspase-1 activity could promote tumor-intrinsic MyD88-dependent carcinogenesis. In mice with wild-type caspase-1, MyD88-silenced tumors displayed reduced growth rate, but in chimeric mice with caspase-1 null bone marrow cells, MyD88-silenced tumors did not display differential tumor growth rate. When we queried the TCGA database, we found that caspase-1 expression is correlated with overall survival in squamous cell carcinoma patients. Taken together, our findings demonstrated that caspase-1 in MDSCs is a direct T cell-independent mediator of tumor proliferation. Cancer Immunol Res; 6(5); 566-77. ©2018 AACR.
Collapse
Affiliation(s)
- Qi Zeng
- Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Juan Fu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, Maryland
| | - Michael Korrer
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Peter J Murray
- Johns Hopkins Hospital, Baltimore, Maryland; Max Planck Institute of Biochemistry, Munich, Germany
| | - Drew Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, Maryland
| | - David L Masica
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Young J Kim
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee. .,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
193
|
Berger NA. Young Adult Cancer: Influence of the Obesity Pandemic. Obesity (Silver Spring) 2018; 26:641-650. [PMID: 29570247 PMCID: PMC5868416 DOI: 10.1002/oby.22137] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/07/2017] [Accepted: 01/11/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The purpose of this article is to review the association of the obesity pandemic with appearance of cancers in young adults under age 50 and to define potential mechanisms by which obesity may accelerate the development of malignancy. METHODS A comprehensive narrative review was performed to integrate preclinical, clinical, and epidemiologic evidence describing the association of obesity with cancer in young adults based on a search of PubMed and Google databases. RESULTS Results from more than 100 publications are summarized. Although they differ in age groups analyzed and incidence of obesity, sufficient data exists to suggest an influence of the obesity pandemic on the increase of cancer among young adults. CONCLUSIONS Cancer in young adults is occurring with increasing frequency. Overweight and obesity have become major public health issues reaching pandemic proportions. Excess weight is associated with increased cancer risk, morbidity, and mortality. Multiple murine models indicate that obesity not only increases cancer incidence but also accelerates its development. Thus, the possibility exists that overweight and obesity may be contributing to the appearance of specific malignancies at younger ages. This prospect, in association with the worldwide expansion of obesity, suggests an impending explosive increase in obesity-associated cancers in young adults.
Collapse
Affiliation(s)
- Nathan A Berger
- Hematology/Oncology Division, Departments of Medicine, Biochemistry, Genetics & Genome Sciences, Center for Science, Health, and Society, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
194
|
Wu B, Bai C, Du Z, Zou H, Wu J, Xie W, Zhang P, Xu L, Li E. The arachidonic acid metabolism protein-protein interaction network and its expression pattern in esophageal diseases. Am J Transl Res 2018; 10:907-924. [PMID: 29636881 PMCID: PMC5883132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Arachidonic acid (AA) and its metabolites are involved in the development and progression of inflammation and tumors in various tissues. We investigated the protein-protein interaction network (PPIN) of key enzymes in AA metabolism and their interacting proteins, as well as their expression patterns in different types of esophageal disease, involving esophagitis, Barrett's esophagus, adenocarcinoma and squamous cell carcinoma. PPINs were constructed to illustrate the key enzymes and their interacting proteins along the metabolic cascade. The network also showed key enzymes that could connect or cross-talk with at least one partner protein. The inflammation-related gene RELA (NF-kB) was found to interact with both PLA2G4A and ALOX5. Expression levels of the PPIN proteins, as well as their expression correlations, in different esophageal diseases were analyzed and integrated into the PPIN to illustrate a dynamic change. At least six significant pairs of expression relationships were identified across different esophageal diseases. The expression levels of eight enzymes (ALOX5, ALOX5AP, CYP2C8, CYP4F11, LTA4H, PLA2G4A, CYP2D6, PTGES2) correlated with the survival time of ESCC patients. In summary, we constructed an AA metabolic PPIN to explore AA metabolism-related gene expression patterns in esophageal diseases, showing their dynamic change and potential for therapeutic targeting from inflammation to cancer.
Collapse
Affiliation(s)
- Bingli Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical CollegeShantou 515041, P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeShantou 515041, P. R. China
| | - Chunying Bai
- Molecular Medicine Research Center, School of Medical Science, Chifeng UniversityChifeng 024000, Neimenggu, P. R. China
| | - Zepeng Du
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityShantou 515041, Guangdong, P. R. China
| | - Haiying Zou
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical CollegeShantou 515041, P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeShantou 515041, P. R. China
| | - Jianyi Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical CollegeShantou 515041, P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeShantou 515041, P. R. China
| | - Wenming Xie
- Network and Information Center, Shantou University Medical CollegeShantou 515041, P. R. China
| | - Pixian Zhang
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical CollegeShantou 515041, P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeShantou 515041, P. R. China
| | - Liyan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical CollegeShantou 515041, P. R. China
- Institute of Oncologic Pathology, Shantou University Medical CollegeShantou 515041, China
| | - Enmin Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical CollegeShantou 515041, P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical CollegeShantou 515041, P. R. China
| |
Collapse
|
195
|
Goodman B, Gardner H. The microbiome and cancer. J Pathol 2018; 244:667-676. [PMID: 29377130 DOI: 10.1002/path.5047] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022]
Abstract
Humans coexist with a vast bacterial, fungal and viral microbiome with which we have coevolved for millions of years. Several long recognized epidemiological associations between particular bacteria and cancer are now understood at the molecular level. At the same time, the arrival of next-generation sequencing technology has permitted a thorough exploration of microbiomes such as that of the human gut, enabling observation of taxonomic and metabolomic relationships between the microbiome and cancer. These studies have revealed causal mechanisms for both microbes within tumours and microbes in other host niches separated from tumours, mediated through direct and immunological mechanisms. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
|
196
|
Correlated high expression of FXR and Sp1 in cancer cells confers a poor prognosis for pancreatic cancer: A study based on TCGA and tissue microarray. Oncotarget 2018; 8:33265-33275. [PMID: 28402278 PMCID: PMC5464866 DOI: 10.18632/oncotarget.16633] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/28/2017] [Indexed: 01/13/2023] Open
Abstract
Bile acids (BAs) was critical in the initiation and progression of various tumors. However, their prognostic significance in pancreatic cancer was still illusive. In the present study, the expression and biological significance of FXR, a major receptor of BAs, in the lethal disease were evaluated in mRNA and protein levels. We found that FXR protein was elevated in the cancerous tissues, which was significantly higher than the adjacent tissues (p < 0.05). Meanwhile, our data showed that FXR was positively correlated with primary tumor location (p = 0.04) and poor survival (p = 0.002). Finally, COX regression model indicated that FXR protein was an independent prognostic factor (p = 0.01; HR = 2.15; 95% CI 1.27-3.63). Consistently, we also found a significant difference of FXR expression between the high and low groups in mRNA level (p < 0.001), and that high FXR expression confers a poor prognosis (p < 0.001). More importantly, the correlation assay showed that FXR was positively correlated Sp1 in both protein (r = 0.351, p = 0.008) and mRNA levels (r = 0.263, p < 0.01), with the simultaneously high expression indicated the worst prognosis on protein (p < 0.001) and mRNA levels (p < 0.001). Additionally, we also showed that FXR was elevated in the pancreatic cancer cells responsible for proliferation and migration. Overall, the data suggested co-high expression of the two factors was an independent prognostic factor (p < 0.001; HR = 3.27; 95% CI 1.86–5.76). Based on these data, we proposed a model to link FXR to Sp1, which included triggered FXR, p38/MAPK and/or PI3K/AKT signaling and phosphorylated Sp1, to illustrate the potential crosstalk between the two factors.
Collapse
|
197
|
Guo Y, Bao Y, Ma M, Zhang S, Zhang Y, Yuan M, Liu B, Yang Y, Cui W, Ansong E, Dong H, Macias V, Yang W. Clinical significance of the correlation between PLCE 1 and PRKCA in esophageal inflammation and esophageal carcinoma. Oncotarget 2018; 8:33285-33299. [PMID: 28402280 PMCID: PMC5464868 DOI: 10.18632/oncotarget.16635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/11/2017] [Indexed: 12/16/2022] Open
Abstract
Esophagitis and Barrett's esophagus are linked to esophageal squamous cell carcinoma and adenocarcinoma, respectively. However, the underlying mechanisms are still unclear. This study analyzed the expression levels of and correlation between PLCE1 and PRKCA in human esophagitis, carcinogen NMBA-induced rat esophagus, PLCE1 genetic deficient mouse esophageal epithelial tissues and human esophageal cancer cell line, integrated with Online oncology data sets. We found that the expression levels of both PLCE1 and PRKCA were significantly elevated in human esophagitis, esophageal squamous cell carcinoma, Barrett's esophagus, esophageal adenocarcinoma and in NMBA-treated rat esophageal epithelia. However, PRKCA and cytokines were significantly downregulated in PLCE1-deficient mouse esophageal epithelia, and knockdown of PLCE1 in human esophageal cancer cells led to reduction of PRKCA and cytokines. Finally, high expression of both PLCE1 and PRKCA is significantly associated with poor outcomes of the patients with esophageal cancers. In conclusion, this study defined the initiation and progression of esophageal inflammation and malignant transformation, in which the positive correlation of PLCE1 and PRKCA exhibits critical clinical significance.
Collapse
Affiliation(s)
- Yongchen Guo
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Yonghua Bao
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Ming Ma
- Department of Thoracic Surgery, Affiliated Hospital, Jining Medical University, Jining 272067, China
| | - Shanshan Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yongmeng Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ming Yuan
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Bing Liu
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Yiqiong Yang
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Wen Cui
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Emmanuel Ansong
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Huali Dong
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Virgilia Macias
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wancai Yang
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining 272067, China.,Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
198
|
Gastrin stimulates a cholecystokinin-2-receptor-expressing cardia progenitor cell and promotes progression of Barrett's-like esophagus. Oncotarget 2018; 8:203-214. [PMID: 27448962 PMCID: PMC5352112 DOI: 10.18632/oncotarget.10667] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022] Open
Abstract
Objective The incidence of esophageal adenocarcinoma (EAC) is increasing, but factors contributing to malignant progression of its precursor lesion, Barrett's esophagus (BE), have not been defined. Hypergastrinemia caused by long-term use of proton pump inhibitors (PPIs), has been suggested as one possible risk factor. The gastrin receptor, CCK2R, is expressed in the cardia and upregulated in BE, suggesting the involvement of the gastrin-CCK2R pathway in progression. In the L2-IL-1β mouse model, Barrett's-like esophagus arises from the gastric cardia. Therefore, we aimed to analyze the effect of hypergastrinemia on CCK2R+ progenitor cells in L2-IL-1β mice. Design L2-IL-1β mice were mated with hypergastrinemic (INS-GAS) mice or treated with PPIs to examine the effect of hypergastrinemia in BE progression. CCK2R-CreERT crossed with L2-IL-1β mice were used to analyze the lineage progenitor potential of CCK2R+ cells. Cardia glands were cultured in vitro, and the effect of gastrin treatment analyzed. L2-IL-1β mice were treated with a CCK2R antagonist YF476 as a potential chemopreventive drug. Results Hypergastrinemia resulted in increased proliferation and expansion of Barrett's-like esophagus. Lineage tracing experiments revealed that CCK2R+ cells are long-lived progenitors that can give rise to such lesions under chronic inflammation. Gastrin stimulated organoid growth in cardia culture, while CCK2R inhibition prevented Barrett's-like esophagus and dysplasia. Conclusions Our data suggest a progression model for BE to EAC in which CCK2R+ progenitor cells, stimulated by hypergastrinemia, proliferate to give rise to metaplasia and dysplasia. Hypergastrinemia can result from PPI use, and the effects of hypergastrinemia in human BE should be studied further.
Collapse
|
199
|
Abstract
Emerging evidence points to a strong association between the gut microbiota and the risk, development and progression of gastrointestinal cancers such as colorectal cancer (CRC) and hepatocellular carcinoma (HCC). Bile acids, produced in the liver, are metabolized by enzymes derived from intestinal bacteria and are critically important for maintaining a healthy gut microbiota, balanced lipid and carbohydrate metabolism, insulin sensitivity and innate immunity. Given the complexity of bile acid signalling and the direct biochemical interactions between the gut microbiota and the host, a systems biology perspective is required to understand the liver-bile acid-microbiota axis and its role in gastrointestinal carcinogenesis to reverse the microbiota-mediated alterations in bile acid metabolism that occur in disease states. An examination of recent research progress in this area is urgently needed. In this Review, we discuss the mechanistic links between bile acids and gastrointestinal carcinogenesis in CRC and HCC, which involve two major bile acid-sensing receptors, farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (TGR5). We also highlight the strategies and cutting-edge technologies to target gut-microbiota-dependent alterations in bile acid metabolism in the context of cancer therapy.
Collapse
Affiliation(s)
- Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, Hawaii 96813, USA
| | - Guoxiang Xie
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, Hawaii 96813, USA
| | - Weiping Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
200
|
Mucin Expression in the Esophageal Malignant and Pre-malignant States: A Systematic Review and Meta-analysis. J Clin Gastroenterol 2018; 52:91-96. [PMID: 28697153 DOI: 10.1097/mcg.0000000000000863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mucins are heavily glycosylated glycoproteins, synthesized by mucosal surfaces and have an important role in healthy state and malignant diseases. Change in mucins synthesis or secretion may be primary event or secondary to inflammation or carcinogenesis. AIM The aim of this study is to assess the current knowledge about mucin expression in esophageal lesions, and to establish a role for different mucin expressions as prognostic markers. METHOD English Medical literature searches were conducted for "mucin" and "esophagus." Observational studies were included. Meta-analysis was performed using comprehensive meta-analysis software. Pooled odds ratios (OR) and 95% confidence intervals (CI) were calculated. RESULTS In the random-effect model, mucin expression was significantly higher in esophageal lesions than in normal esophageal mucosa with OR=5.456 (95% CI, 1.883-15.807, P=0.002). Measure of heterogeneity, demonstrated in the included studies, was high: Q=287.501, df (Q)=44.00, P<0.0001, I=84.696%. There is a gradient of mucin expression and complexity in esophageal premalignant to malignant lesions, lower in Barrett's mucosa with low grade dysplasia (LGD), increased in high grade dysplasia (HGD), and highest in esophageal adenocarcinoma (EAC). MUC2, MUC3, MUC5AC, and MUC6 expression was higher in EAC than HGD, and higher in HGD than in LGD mucosa. The opposite was found for MUC1 and MUC4. CONCLUSION Increased expression of certain mucin genes in esophageal mucosa may be further studied as a potential diagnostic tool, and this may add important information in the surveillance of Barrett's esophagus.
Collapse
|